
Sharing Code and Objects Between
Delphi and C++
Conrad Herrmann, Staff Engineer, Borland International

Delphi's unique blend of component-oriented development methodologies and lightning-fast compilation
have made it extremely popular since its introduction. Delphi draws Windows programmers from many
different environments -- Visual Basic, Clipper, Fox Pro, dBASE, Paradox, and of course C++. As
programmers begin using Delphi, it's natural that they would want to carry their existing code with them.
C++ programmers are fortunate that Object Pascal shares with C++ a common object interface model and
function calling convention. This makes it especially easy to share code and components between the two
languages.

The purpose of this material is to introduce the Delphi programmer to ways in which C++ programs and
components can be integrated into Delphi programs and components, and vice-versa. The course covers:

· ways to share functions and objects between C++ and Delphi.

· how to combine C++ and Delphi code into one program using object files or dynamic libraries.

· how to add Delphi forms to OWL and MFC applications

Sharing Functions
Calling a C++ function from Object Pascal, or vice-versa, is entirely straightforward, since both languages
provide the same basic facilities. The following two lines declare the same function prototype:

To call the function, you use the following syntax:

Make sure you match the calling conventions used in the function declarations. It also helps to declare the
calling convention you're using explicitly, since you never really know if a user might change the default
calling conventions in the IDE.

Unless you have some reason to choose otherwise, use the stdcall calling convention because it is the
"standard" system calling convention. One exception is when you want to have variable numbers of
parameters, in which case you must use the cdecl calling convention.

In C++ code, declaring the function as extern "C" will prevent the C++ compiler from giving the function
a "mangled" symbol. This symbol will be what the Pascal compiler expects when it sees a cdecl function.

If you intend to pass parameters to your function, you need to choose types that are available in both
languages. Pascal's Comp, Currency, Extended, Strings, Sets, method closures, and open arrays do not
map directly to C++ data types. You can pass a String by value as a PChar parameter as long as the
receiving function does not attempt to release the memory held by the string.

 C++: extern "C" int __stdcall MyFunc();

 Pascal: function MyFunc: integer; stdcall;

 C++: int x;
 x = MyFunc();

 Pascal: var
 x: Integer;
 begin
 x := MyFunc;
 end;

The reference modifier in C++ formal parameter lists corresponds to the VAR keyword in an Object
Pascal procedure declaration. Both indicate that the variable is to be passed by reference. For example:

Packaging
Putting Library Routines in a DLL
The simplest way to make your code available to be used by any other language is to put the C++ code in a
DLL, and export the public functions from the DLL. If your code represents some kind of an engine, or a
logical middleware layer, this is usually the best approach since it allows two projects to interact with each
other without being too intimately aware of each others' inner details.

To export a C++ function from a DLL, just add the export attribute to its definition. For example,

To import a function from a DLL into Object Pascal, declare it with the _external_ specification:

Linking OBJs
If you want to link the C++ object file directly into an Object Pascal program file, you can do so by using
the $L directive. This directive tells the Delphi compiler to include the .OBJ file into the final .EXE
or .DLL. For example,

When to package a component as a DLL and when to use OBJs
It makes most sense to package the code as a DLL when:

· the C++ code is a complete, whole subsystem.

· there is a lot of code in the C++ component.

· the C++ code makes use of the C runtime library (RTL).

It makes sense to link the code together using .OBJs when:

· there isn't much C++ code at all.

· you don't need to worry about the RTL interactions.

Sharing Objects between Borland C++ and Delphi
When you're using two different object-oriented languages, you can define two levels at which the
languages accommodate each other's objects: sharing objects and sharing classes.

To share objects, code in one language should be able to

· keep a pointer to an object that was created in another language, and

· call methods of the object specified by the pointer.

To share classes, code in one language must be able to

 C++: int MyFunc(int &x);

 Pascal: function MyFunc(var x: Integer) : Integer;

 int stdcall export MyFunc();

 function InitObject : TMyObject; stdcall; external 'MYLIB.DLL';

 function MyFunc : Integer; stdcall;
 {$L myfunc.obj}

· create an instance of a class specified in another language,

· destroy an instance of a class and remove its memory from the heap, and

· derive new classes from the class.

Delphi and Borland C++ can share objects because you can pass compatible object pointers between the
two languages, and you can call methods on an object implemented in one language from the other. In the
following section I'll present an example of how you can manipulate a C++ object from Pascal, and then
present an example of how you can manipulate a Pascal object from C++.

Accessing and Manipulating a Pascal object from C++
How can a C++ program call a method on a Delphi object? The first thing to do is make sure the two
languages have an understanding of what methods the object supports. An object's interface is a
specification of what methods can be called on an object. If the two languages can agree on an interface
that is to be used to talk to the object, then one of the languages can implement the object and either
language can call the object's methods.

Just as you describe a function interface by publishing its prototype but not its implementation, we can
describe an object's interface by describing (in both Pascal and C++) a class that has no actual
implementation--all the methods are virtual and abstract (in C++, we call this "pure virtual").

To define an interface for a Pascal object:

· In Pascal, declare an interface class that contains the methods on the object that you want to
share. The methods should be declared abstract and virtual.

· Translate the interface to C++. Use the virtual keyword and the =0 clause to make each method
"pure virtual".

· Make sure both languages are using the same calling conventions. Use stdcall by default.

· Derive the object's class from the interface class.

For example, here is a Pascal object whose methods we want to call from C++.

Suppose you are interested in calling the DoThis and DoThat methods from C++, but not the WalkUp and
WalkDown methods because they are private to the object's implementation. You need to build an
interface that defines DoThis and DoThat, and expose that interface by deriving TMyObject from the
interface. By convention, interfaces start with the letter I, to distinguish them from classes that have real
implementations behind them.

 TMyObject = class
 procedure DoThis(n: Integer);
 function DoThat: PChar;
 procedure WalkUp;
 procedure WalkDown;
 end;

 IMyObject = class
 procedure DoThis(n: Integer); virtual; abstract; stdcall;
 function DoThat : PChar; virtual; abstract; stdcall;
 end;

 TMyObject = class(IMyObject)
 procedure DoThis(n: Integer);
 function DoThat: PChar;
 procedure WalkUp;
 procedure WalkDown;
 end;

Now we can translate the interface to C++:

The Pascal IMyObject is binary-compatible with the C++ IMyObject, because both languages implement
virtual method tables the same way. Since I can cast a TMyObject to an IMyObject in Pascal, and I can
access IMyObject from C++, then once my C++ code acquires a pointer to an object's IMyObject
interface, it can call methods on the object.

For example, the following C++ code calls the DoThis method on the pointer that was returned by the
function CreateMyObject.

Before the C++ code can try to call a method on the object it first has to get a pointer to the object. Since
the object is implemented in Pascal, this means you need to either

· ask a Pascal function to return it, or

· ask another Pascal object to return it.

Factory Functions
In the example above, the function CreateMyObject is just a plain function, exported from the Delphi DLL
(or OBJ) in the manner I discussed previously. It returns an interface of class IMyObject, which it is
responsible for creating. (For the purposes of our example, assume that the factory code is in a DLL called
ObjUtils and that it needs to be exported.)

Notice that even though the C++ program is asking for the object to be created, it is actually being created
(i.e., the memory is being allocated and the class hierarchy is being used) on the Pascal side. This is a
simple convention that allows one language to ask another language to create an object. A function like
CreateMyObject is called a factory function, because its purpose is to manufacture and return objects.

An advantage to using a factory function is that the code that calls the factory does not have to be made
aware of how the object is made in order to create it, it only needs to know that there exists a factory
function that it can ask to create one.

Of course it is possible that you don't want to create a new instance of an object but that you want to get
access to one that exists already. To do this, you might end up asking another object for it, or you might

 class IMyObject {
 void DoThis(int n) = 0;
 char *DoThat() = 0;
 };

 extern "C" IMyObject stdcall *CreateMyObject();

 void ExampleFunc()
 {
 IMyObject *theObj = CreateMyObject();
 theObj->DoThis(5);
 char *s = theObj->DoThat();
 }

 library ObjUtils;
 exports CreateMyObject;
 function CreateMyObject : IMyObject; stdcall;
 begin
 Result := TMyObject.Create;
 end;
 end.

just export a global function to retrieve the object interface. Which you choose depends on what kind of
object you're asking for and how many of them there are.

Freeing Delphi objects from C++
You now can create objects, but how do you destroy a Delphi object from C++? Since we used a function
to create the object, we could very easily use another function to destroy it.

A different way to do this is to have one of the methods on the interface be a method that destroys the
object. For example, you can add a Free method to the object, and add that method to the interface:

And in C++:

The implementation of the Free method simply destroys the object:

Using a C++ Object from Delphi
In the last section I discussed how you can use a Delphi object from C++. Now let's consider the case
where a Delphi program wants to use a C++ object. I expect that this case is a bit more interesting since
programmers using both languages are more likely to be using Delphi for programming a user interface
and just want to connect the UI code to their C++ engine code.

It turns out that you can use the same techniques presented in the last section for handling this case, too.
The interfaces are the same, but the implementation of the object is now on the C++ side. For example, to
implement the same class we described in Pascal above, use a class definition like this:

 IMyObject = class
 procedure DoThis(n: Integer); virtual; abstract; stdcall;
 function DoThat : PChar; virtual; abstract; stdcall;
 procedure Free; virtual; abstract; stdcall;
 end;

 TMyObject = class(IMyObject)
 procedure DoThis(n: Integer);
 function DoThat: PChar;
 procedure WalkUp;
 procedure WalkDown;
 procedure Free;
 end;

 class IMyObject {
 void stdcall DoThis(int n) = 0;
 char stdcall *DoThat() = 0;
 void stdcall Free() = 0;
 };

 procedure TMyObject.Free;
 begin
 self.Destroy;
 end;

Your C++ program would also need to include a factory function, like the following. Here, I'm assuming
the C++ code is in a DLL, so the factory function is exported.

Your Pascal code can import and then call the CreateMyObject function to get a pointer to the object, and
it can call any of the methods presented by the interface. When it is finished, your Pascal program can free
the object by calling the Free method through the interface.

Subclassing is not for Components
Remember I said there were three things that you need to do to be able to share classes? I'm going to skip
that one because we're talking about components.

The thing that makes components what they are (and component-oriented programming so simple) is that
objects are self-contained and don't reveal their innards to other objects. But to subclass from a class, you
have to know all about its internal implementation. To delve into the guts of an object just to subclass it
across language boundaries rather defeats the purpose of using the objects as components.

A Side Excursion Into the Component Object Model (COM)
If all this talk about interface classes sounds fashionable, consider one additional convention: the
Component Object Model.

COM is a specification for how objects can surface interfaces and how other objects can interact with
them. COM is also the low-level object model that OLE is built on. COM is just one application of the
interfacing technique I've been describing, but there are enough books and articles written about it that it's
worth mentioning specificly.

All COM interfaces have at least these three methods:

All COM objects are reference-counted objects, which means they don't have a Free method. Instead, the
object knows how many other objects are pointing to it; when that number drops to zero, the object
destroys itself. The AddRef and Release methods increment and decrement the use count of the object.

The rule for using AddRef is that you should call it when you make a copy of the interface pointer to hand
off to another object or function, and it is up to the recipient of that copy to call Release on the interface
when it is no longer needed.

The QueryInterface method permits an object to provide more than one interface. If you have one interface
pointer on the object, you can always ask for another by specifying which interface you want.
QueryInterface provides the means for asking for that interface.

 class TMyObject: public IMyObject {
 void DoThis(int n);
 char *DoThat();
 void WalkUp();
 void WalkDown();
 void Free();
 }

 IMyObject stdcall export *CreateMyObject() {
 return (IMyObject *)new TMyObject;
 }

 virtual HRESULT QueryInterface(riid: REFIID, void **p)=0;
 virtual long AddRef()=0;
 virtual long Release()=0;

These three methods make up the interface class IUnknown from which all other COM interfaces are
derived. (It's called IUnknown because if you have an IUnknown pointer you have no idea what kind of
object it is, but you know you have one).

COM is the glue that makes OLE work. It is a very big subject and beyond the scope of this talk. If you're
interested in learning more about COM, I heartily recommend Kraig Brockschmidt's book Inside OLE. Its
first few chapters are an excellent primer on the COM architecture. Mr. Brockschmidt also has written
several articles for Microsoft Systems Journal.

Using Delphi Forms From C++
If you have a large body of engine code written in C++ and intend to write a new Windows user interface
in Delphi, the techniques I've already described will serve you very well. If, on the other hand, you already
have a significant amount of user interface code written in C++, it would be a shame to have to throw it
out just because you have a new UI builder tool. You don't have to throw out your C++ code. This section
of the course covers how you can use Delphi Forms with existing C++, OWL-based, or MFC-based
applications.

First, let's understand the scope of the problem. Most business programs have two kinds of user interface
surfaces: windows and dialogs. The distinction is largely that windows stay up all the time and generally
have more complex graphical elements, and a dialog is modal and usually just has entry fields and other
controls.

In the following section, I'll cover both how to use Delphi modal forms as dialogs in a C++ program and
how to use Delphi modeless forms as new windows in a C++ program.

Using Delphi Modal Forms to Implement Dialogs
Again, the easiest way to make Delphi code available to a C++ program is to make a DLL and export the
important functions. In the case where we want to make a Delphi form that acts like a modal dialog box,
this function would be one that opens the form, waits for the user to commit or cancel the form, and
returns data to the C++ caller.

You'll want to start by creating a new DLL project and add a form. Pick the "Dialog" form template from
the project expert to have the form designer place the default OK, Cancel and Help buttons on the form.
Then design the form as you would normally do.

When you are done, go into the form's unit file and add a function that invokes the form as a modal dialog.
The function looks like this:

To call the dialog from C++, just call the RunMyForm function in the DLL:

Make sure you export the function in your Pascal library's exports directive, and link your C++ program
with the import library.

 function RunMyForm : Integer; stdcall;
 begin
 Application.CreateForm(TMyForm, MyForm)
 MyForm.Visible := True;
 Result := MyForm.RunModal;
 end;

 extern "C" int stdcall RunMyForm();
 main() {
 int x = RunMyForm();
 printf("The result is %d\n", x);
 }

Using A Delphi Form as a Modeless Window in a C++
MFC or OWL Program
Delphi Forms and MFC or OWL windows are all Windows objects, represented by a window handle.
Since an OWL or MFC window can contain any other window so long as it has a window handle, it is
really a very simple matter to insert a Delphi Form as the child of an OWL window--just create the Delphi
form, take its window handle, and set its parent to be the OWL window. There are a few other issues to
deal with, as I'll outline below.

Making an Embeddable Delphi Form

To make the Delphi Form in a DLL, you need to export a factory function that takes the parent window
handle as a parameter.

You will also need to change the superclass of your form class from TForm to TEmbeddableForm.
TEmbeddableForm can be found on the Conference CD, in the unit EmbForm. The reason for using the
TEmbeddableForm subclass is because even though any Windows window can be parented to any other,
the current VCL implementation does not expose such a method. TEmbeddableForm implements this
method.

To recap the procedure:

· Design your Delphi form.

· Change the derivation of the form so it inherits from TEmbeddableForm instead of TForm. Add
EmbForms to the uses clause of your program file.

· Write a Factory function in the library that looks like the function below. Export the function
using the exports statement in your library module.

You'll notice that the factory function returns both a window handle and a pointer to an IUnknown, which
in my example is always nil. This second return value is simply a convenient way of allowing the
containing window to get both the window handle and some other interface on the window.

Writing OWL C++ Source

If you want to make an OWL-based window that will host a Delphi form, all you have to do is create an
OWL TWindow object to wrap the Delphi form's window handle.

In the source code I've included on the Conference CD, I implement just such a class in dlctl.h.
TDelphiFormWrapper is an OWL class derived from TWindow that takes the factory function in place of
a window class for creating a window. When you make a TDelphiFormWrapper object a child of any
OWL window and then create the parent, TDelphiFormWrapper will take care of calling the factory
function with the parent's handle when the parent window is created.

The Delphi form wrapper class also takes care of passing on the PreProcessMessage method when it is
called, which allows the Delphi form to correctly process tabs, arrows and other dialog navigation keys.

To include the Delphi form in your C++ OWL program, follow these steps:

1. Add the following include to the top of your C++ source file

 function CreateTForm1(hWndParent: HWND; var pObj: IUnknown) : HWND; stdcall;
 var
 theForm: TForm1;
 begin
 Application.CreateForm(TForm1, theForm);
 theForm.ParentHandle := hWndParent;
 Result := theForm.Handle;
 pObj := nil; // optionally, return another interface to the window, too
 end;

Dlctl.h defines TDelphiFormWrapper, which is a TWindow-derived window class that uses your factory
function to create the window.

2. Define the factory function as an external function in your C++ code, so you can call the factory.

3. Where you would normally create a child window, instead make an instance of the class
TDelphiFormWrapper, and pass the Factory function (CreateTForm1) as the first constructor parameter.

4. Link your project with the Delphi DLL's import library, otherwise you'll get an unresolved symbol.

Modifying the OWL C++ Header to Allows Attach/Detach

In order to implement the Delphi RecreateWnd method correctly, the Windows implementation of
TWindow should really support public Attach and Detach methods. This is because when you change
certain properties in a Delphi form the window handle of the Delphi Form is actually destroyed and
recreated.

Version 5.01 supports Attach and Detach, but version 5.0 does not. Therefore, I've included a special
version of WINDOW.H from OWL which defines this function. Because the Attach and Detach methods
are implemented as inlines, you can use this version of the header file with the version 5.0 OWL DLLs or
libraries, since it doesn't change any of the code that exists internal to OWL.

Writing MFC C++ Source

Making an MFC window that will host a form is also straightforward. You just need to be able to create a
CWnd object as a child of your main window, and then Attach the window handle you get back from the
Factory function.

The code below illustrates how this works. Note that the LoadFrame method actually causes
CMainWindow's window handle to be created, so we don't need to call its Create method to ensure the
main window is actually created.

Conclusion
This course has been about understanding the similarities between two different languages. As it turns out,
since C++ and Pascal are fairly compatible languages, functions and objects can be easily shared between
them.

Both languages can share function or procedure symbols, and can link into or with DLLs. This allows you
to easily share the code you've already written in one language with the other.

 #include "dlctl.h"

 extern HWND CreateTForm1(HWND Parent);

 TWindow * myWindow =
 new TDelphiFormWrapper(CreateTForm1, 0, 0, 0);
 TFrameWindow *MainWindow =
 new TFrameWindow(0, "Sample OWL Window containing a Delphi control",
 new TDelphiFormWrapper(CreateTForm1, 0, 0, 0));

 CMainWindow::CMainWindow() {
 LoadFrame(IDR_MAINFRAME, WS_OVERLAPPEDWINDOW);
 LPUNKNOWN pObj;
 CWnd *child = new CWnd();
 child->Attach(CreateTForm1(m_hWnd, pObj));
 }

The key concept that makes object sharing possible is sharing interfaces. When an object defines a
sharable interface, it allows one language to call methods on an object implemented in another language.
Factory functions and Free methods allow you to create and destroy an object from another language. The
COM model extends this even further by making it possible for an object to be shared with many different
languages simultaneously.

Also, because OWL, MFC and Delphi windows are all deep down just "Windows windows", there really
is no reason why you can't plug one into the other. There are a few issues that arise (such as special
message processing that one or the other introduces), but I've provided a suite of classes to implement
solutions to these issues. There are a number of examples on the conference CD-ROM for you to learn
from.

Additional References
This course introduces some new classes to facilitate the interaction between Delphi and C++ class
hierarchies (MFC or OWL). The source for these classes is available on the conference CD-ROM, along
with some sample programs.

A more in-depth discussion of linking options, object sharing, and issues relating to parameter types can
be found in the article, "Using Borland's Delphi and C++ Together" by Alain Tadros and Eric Uber, at
href=http://www.borland.com/delphi/papers/brick.htmlMACROBUTTON. Reference materials for object
file linking, DLL construction, calling conventions and type compatibilities can be found in the Object
Pascal Language Guide.

© 1996 by Borland International, Inc. All rights reserved.

	Sharing Code and Objects Between Delphi and C++
	Sharing Functions
	Packaging
	Putting Library Routines in a DLL
	Linking OBJs
	When to package a component as a DLL and when to use OBJs

	Sharing Objects between Borland C++ and Delphi
	Accessing and Manipulating a Pascal object from C++
	Factory Functions
	Freeing Delphi objects from C++
	Using a C++ Object from Delphi
	Subclassing is not for Components
	A Side Excursion Into the Component Object Model (COM)
	Using Delphi Forms From C++
	Using Delphi Modal Forms to Implement Dialogs

	Using A Delphi Form as a Modeless Window in a C++ MFC or OWL Program
	Making an Embeddable Delphi Form
	Writing OWL C++ Source
	Modifying the OWL C++ Header to Allows Attach/Detach
	Writing MFC C++ Source

	Conclusion
	Additional References

