
Application Development with 
Borland  C++ and Delphi 

A Technical paper for developers

Alain Tadros with additions by Eric Uber

Borlan

d



Borland Application Development with Borland  C++ and Delphi Technical paper

Copyright © 1996 Borland International, Inc. All rights reserved. 

All Borland product names are trademarks of Borland International, Inc.

Other brand and product names may be trade marks or registered trade marks of their respective  holders.

i
i



Table of Contents

Using Borland C++ and Delphi to increase productivity
Mechanisms for using C++ with Delphi and Delphi with C++
Benefits of DLLs:
Disadvantages of DLLs:
Benefits of statically linked OBJs:
Disadvantages of OBJs:
Using Calling Conventions to ensure protocols are compatible
Exporting C++ Library Routines
Functions to Access and manipulate C++ objects within a DLL
Using a C++ Object Instance in a DLL from a Delphi EXE
Calling a Delphi DLL from a C++ executable
Using a Delphi Object Instance in a DLL from a C++ EXE
C++ OBJ linked into a Delphi Executable
Delphi OBJ Linked into a C++ Executable

Questions and answers
Conclusion
Table of C++ and Delphi data types

iii





Using Borland C++ and Delphi to increase productivity 

A Technical paper for developers 

The purpose of this document is to familiarize you with ways of using your 
existing C/C++ code in Delphi and your existing Delphi code in C++. 

The 1990's have proved to be a booming decade in the PC industry. With 
the growth of the PC market comes the growth of demands for programs 
that run on them. With this demand comes the need for more developers, 
better tools and better platforms on which these programs run. With the 
release of new development tools such as Borland's Delphi, the decision to 
use it can be greatly influenced by the time and cost of porting existing 
code. 

By now, there are millions of lines of C/C++ code in existence which 
equates to billions of dollars for development. It is usually impractical to 
port large bodies of code from one language to another. Furthermore, you 
may have already just completed a large port -- from Pascal to 16 bit Delphi 
and then to 32 bit Delphi. Or maybe you ported your DOS C code to 
Windows in C++. I suspect you are not about to throw it all away so you 
can use only one programming language or the other. The purpose of this 
document is to familiarize you with ways to use your existing C/C++ code 
in Delphi and your existing Delphi code in C++ to productively build 
applications. 

Note: This document assumes you are using Delphi 2.0 and Borland C++ 
5.0 unless otherwise specified. 

Mechanisms for using C++ with Delphi and Delphi with C++ 
There are three ways to integrate C++ and Delphi code. The first is through 
the use of Dynamic Link Libraries (DLLs). By following the various rules 
described in this document, functions and objects made available in DLLs 
in one of these languages can be accessed by the other language. The 
second is through object (OBJ) files Delphi now supports the generation 
and linking of OBJ files. Again, there are restrictions and rules which must 
be followed to integrate OBJ files from one language into another. The 
third approach is to use the Common Object Model (COM) to expose your 
C++ code as an object or set of objects, registering this object or objects 
with OLE (more accurately, COM) and then directly using these objects in 
Delphi. You can similarly use Delphi COM objects from within C++. 
While this last approach is perhaps the most elegant and general solution, it 
requires a fair amount of understanding of the COM infrastructure and is 
well-documented in existing literature. For this reason, we will concentrate 
on the first two approaches in this article. 

You should choose whichever mechanism is most suitable to your 
program's implementation. Knowledge of the pros and cons of using DLLs 
or OBJs will assist in your selection. 

Benefits of DLLs: 
1. Smaller EXE footprint: The DLL is compiled separately from your 

main EXE and linked in dynamically at run-time. Because of this, it 
does not increase the size of your calling EXE. 

2. Easy to maintain: The code is encapsulated in its own module (the 
DLL). Updating this portion of the code no matter how large is as 



simple as sending your customers the changed DLL. Of course, 
with DLLs, you do need to be concerned with versioning issues 
between the EXE and DLLs. 

3. Speeds development time: A "build all" of your main program source 
won't include the DLL source as it is compiled and linked 
separately. 

4. Shared Code means global revisions: Multiple applications can call the 
same DLL file. Fixing a bug in the DLL file fixes the same bug in 
all applications that use it. 

Disadvantages of DLLs:
5. Another file to distribute: The calling process must be able to find the 

file. Also, more files usually means more documentation. 

6. Slower startup: The DLL is loaded separately and mapped into the 
loading process' address space. This means another Kernel file-
mapping object must be created and the DLL must be sought out. 
Once the application has loaded, however, DLLs don't appreciably 
affect performance. 

7. More room for programmatic errors: More allowances and 
considerations must be made programmatically as the loading 
module must match the calling conventions of the DLL and prevent 
C++ name mangling, (this is also an issue with OBJ), and the 
location of the DLL must be known. 

Benefits of statically linked OBJs: 
8. Fast runtime execution: Because there are no external calls to make. 

9. Fewer modules to distribute: Everything is already linked into one 
single executable 

Disadvantages of OBJs: 
10. Large executable: The modules are linked in statically. 

11. Can't share among multiple EXEs: Statically linked code becomes part 
of whatever EXE linked it in. Therefore, if code could potentially 
be shared among multiple EXEs, depending on the 
size/performance tradeoff, a DLL might be more appropriate. 

12. More room for programmatic errors: More allowances and 
considerations must be made progammatically as the OBJ routines 
must match the calling conventions of the routine import 
declarations in the executeable using it.

Whichever mechanism is best for you, some additional work is still 
required as described a little later in this document. 

Using Calling Conventions to ensure protocols are compatible 
Whether or not you're using DLLs or OBJs, it is important to ensure that 
the code written in one language is generated following the protocol of the 
other. 

The calling convention used defines important low level aspects of a 
program's behavior. It determines the order in which parameters passed to 
functions are put on the stack. It determines if registers share the 
responsibility with the stack of holding passed parameters. It determines 



who is responsible for maintaining the stack i.e., whether the calling 
function or the called function cleans up the stack. In the case of C++, 
modifiers can be used to specify whether or not the symbol names get 
mangled. 

Failure to correctly match calling conventions will result in fatal program 
errors and/or erratic program behavior and results. 

Windows exports functions in its Application Programming Interfaces 
(API) using a calling convention different from Delphi's default calling 
convention. Similarly, Delphi's default calling convention is different from 
C++'s default. Fortunately both Delphi and C++ provide directives which 
allow you to change the calling convention of a method or function at 
compile time. 

The calling convention used for exported functions in the Win32 API is 
called stdcall. A method or function following the stdcall calling 
convention requires parameters to be passed to it on the stack in right to left 
order. The called routine is responsible for cleaning up the stack. In C++ 
use the directive _stdcall. In Delphi, use the directive StdCall. 

The following declares the same exported function in C++ and Delphi 
using the stdcall calling convention: 

  extern "C" int  _stdcall _export TestStdCall(); 
  function TestStdCall: integer; StdCall; export;

The default calling convention used by Borland C++ is called cdecl. A 
method or function following the cdecl calling convention, like stdcall, 
requires parameters to be passed to it on the stack in right to left order. The 
difference from stdcall is in that the calling routine is responsible for 
cleaning up the stack. This convention is unique in that it supports the 
passing of a variable number of parameters. This type of support is 
available as result of the right to left parameter ordering. 

In C++ use the directive _cdecl to explicitly declare a routine as cdecl 
although this is redundant as _cdecl is the default. In Delphi use cdecl. 

Note that although Delphi supports the cdecl calling convention in terms of 
parameter ordering and stack maintenance, Delphi does not support the 
passing of a variable number of parameters. This becomes an issue when 
you attempt to export functions written in C++ that accept a variable 
number of parameters for use in Delphi. 

The following declares the same exported function in C++ and Delphi 
using the cdecl calling convention: 

  extern "C" int  _cdecl _export TestCDecl(); 
  function TestCDecl: integer; CDecl; export;

The default calling convention used by 16 bit Delphi 1.0 is called pascal. 16 
bit Windows used this calling convention to export most of its API 
functions. A method or function following the pascal calling convention 
requires parameters to be passed to it on the stack in left to right order. This 
ordering is opposite of that used with cdecl and stdcall. Like stdcall, the 
called routine is responsible for cleaning up the stack. In C++ use the 
directive _pascal to explicitly declare a routine to use the pascal calling 



convention. In Delphi, use the directive Pascal. In 16 bit Delphi, the use of 
the Pascal directive is redundant as pascal is the default convention . 

The following declares the same exported function in C++ and Delphi 
using the pascal calling convention: 

  extern "C" int  _pascal _export TestPascal(); 
  function TestPascal: integer; Pascal; export;

The default calling convention used by Delphi 2.0 is called fastcall. A 
method or function following the fastcall calling convention passes the first 
3 parameters (that fit) in CPU registers EAX, EDX and ECX. The 
remaining parameters (if any) are passed on the stack in order from left to 
right. The called routine is responsible for cleaning up the stack. In C++, 
use the directive _stdcall. In Delphi 2.0 use the directive Register, however 
because FastCall is the default, the use of the Register directive is 
redundant. 

The following declares the same exported function in C++ and Delphi 
using the fastcall calling convention: 

  extern "C" int  _fastcall _export TestFastCall(); 
  function TestFastCall: integer; Register; export;

Note: C++ uses name-mangling. Delphi does not. Use extern "C" for all 
functions exported to disable name-mangling so that Delphi will be able to 
link to them. When compiling in C, rather than C++, extern "C" is not 
required. See the Borland C++ on-line help for more information on extern 
and name-mangling. 

Exporting C++ Library Routines 
Suppose you have existing code written in C++ that you wish to access 
from your Delphi code. You can wrap your routines up in to a black box 
module and compile it into a DLL with minimal work. The easiest scenario 
is that of a function library. Maybe you have a robust set of date/time 
routines that exceed the capabilities of those already available in Delphi. 
You can call them from a Delphi program by creating DLL access 
functions which are exported following consistent calling conventions. If 
you wish, you can export the routines directly. The following code 
fragment directly exports a routine in a DLL compiled using Borland C++: 

  //declaration
  extern "C" BOOL  _stdcall _export IsTodayFriday();

  //definition
  extern "C" BOOL  _stdcall _export IsTodayFriday() { 
     return FALSE;
  }

If the routine IsTodayFriday were part of a function library whose 
prototype you would rather avoid modifying, you could export an access 
function to call it instead: 

  //declaration
  extern "C" BOOL _stdcall _export AccessIsTodayFriday();



  //definition
  extern "C" BOOL  _stdcall _export AccessIsTodayFriday () { 
     return IsTodayFriday();
  }

It is really up to you to decide to use access functions or directly export 
your existing library functions themselves. Either way you have to write 
some code. However, the amount of code is far less than what would be 
required to rewrite the routines in one language or another. Again note that 
Delphi supports functions with a fixed number of parameters only no 
matter which calling convention is specified. 

Functions to Access and manipulate C++ objects within a DLL 
You can create and export access functions from a DLL that operate on 
objects instantiated within the DLL. This is often necessary when a Delphi 
program wants to use a C++ object but the C++ object has implemented 
function overloading. Delphi does not support function overloading. 

Suppose you have a C++ class called TMyObject which has 3 AddToField 
member functions. Each AddToField member function expects a different 
parameter type and is therefore overloaded. Each AddToField member 
function writes to the correct field in a table based on the data type of the 
passed parameter. Consider the following declaration for TMyObject: 

  class TMyObject {
  public:
       TMyObject();
       virtual BOOL _stdcall AddToField(long);
       virtual BOOL _stdcall AddToField(char*);
       virtual BOOL _stdcall AddToField(BOOL);
  };

Since Delphi does not support function overloading, the class cannot be 
used directly. You could however write access functions which manipulate 
an instance of TMyObject. Consider the following: 

 
  //declarations
  extern "C" BOOL _stdcall _export AddToField_LI(long,TMyObject* 
obj);
  extern "C" BOOL _stdcall _export 
AddToField_STR(char*,TMyObject* obj);
  extern "C" BOOL _stdcall _export 
AddToField_BOOL(BOOL,TMyObject* obj);

  //definitions
  BOOL _stdcall _export AddToField_LI(long liVal, TMyObject* obj) {
       if (obj != NULL)
            return obj->AddToField(liVal);
       else
            return FALSE;
  }

 It is really up to you to decide to use acce  BOOL _stdcall _export 
AddToField_STR(char* sBuf,TMyObject* obj) {



       if (obj != NULL)
            return obj->AddToField(sBuf);
       else
            return FALSE;
  }

  BOOL _stdcall _export AddToField_BOOL(BOOL bTorF,TMyObject* 
obj) {
       if (obj != NULL)
            return obj->AddToField(bTorF);
       else
            return FALSE;
  }

Above, 3 access functions are exported. Each has a slightly different name 
and a different data type in the first required parameter. The body of these 
functions call the appropriate AddToField method of the TMyObject object 
passed as a pointer in the second parameter. The access functions act as a 
wrapper for the overloaded AddToField methods. 

Given the previous example, you are again left with a decision: should you 
rewrite your classes to not overload methods or should you take the time to 
write access functions? Keep in mind that any of your programs that use 
your existing classes would have to be changed if you choose to modify the 
overloaded functions themselves. 

Using a C++ Object Instance in a DLL from a Delphi EXE 
Delphi 2.0 and BC++ use essentially the same 32-bit compiler back end. 
The front ends (parser and semantic analyzer for each language syntax) are 
different, however. Because the back end (optimizer and code emitter) is 
essentially the same for both products, you can compile and link .OBJ files 
built with each language. The products also share the same virtual table 
structure (referred to as the "vtable" in C++ and "virtual method table" or 
"VMT" in Object Pascal) so you access virtual methods from an object 
created by either language from the other (as long as you use single 
inheritance, as multiple inheritance is not supported in Delphi). 

The vtable/VMT holds the addresses of an object's methods all the way up 
the class hierarchy. It is by this mechanism that the correct method gets 
executed even if it has been overridden by several sibling classes. Because 
both BC++ and Delphi share the same vtable/VMT structure, your objects 
can cross the language boundary so long as the methods are declared as 
virtual. 

The layout and representation of the fields within a Delphi object are not 
necessarily compatible with the layout and representation of the member 
variables of the C++ object. For this reason, when using a C++ object 
within Delphi, you can only rely on the ability to call virtual functions -- 
not access data members directly. This kind of programming interface style 
using abstract interfaces (classes with only virtual functions and no data 
members) is a very powerful one and is the basis of the OLE/COM object 
model. It provides a clear, functional interface between two subsystems and 
hides all the underlying implementation (data and non-virtual functions). It 
is this model that you must use when using C++ code from within Delphi. 



Of course, flat "C" functions are callable as well and appear as global 
procedures and functions in Delphi. 

In order to use an object in Delphi instantiated from a class in C++, the 
actual instantiation must occur on the C++ side. Since heap-allocated C++ 
objects are created with the C++ operator new, and the new operator and 
the corresponding memory management routines are not compatible with 
Delphi's, you must wrap the object allocation and destruction with flat 
functions and expose these flat functions to Delphi.. One function is called 
from Delphi to instantiate the object instance. This function uses the C++ 
operator new then returns to your Delphi program a pointer to the created 
object. When you are done using the object from within Delphi, the pointer 
is passed back to C++ code through the second access function, which 
releases the object from memory using the C++ operator delete. Consider 
the following declarations in C++: 

 class TMyObject {
  public:
      TMyObject();
      virtual int _stdcall VTOpenTable(char* sTableName);
      virtual int _stdcall VTDeleteRecord(int iRecNo);
      virtual int _stdcall VTCloseTable();
  };
  extern "C" TMyObject* _stdcall _export InitObject();
  extern "C" void _stdcall _export UnInitObject(TMyobject*);

The class TMyObject is declared first. You may either use an existing 
definition of a C++ class with virtual functions, or you may create a 
wrapper class that exposes the functionality of your object through virtual 
methods. If you use an existing class definition, be aware that you can only 
access it's virtual functions and not its member data. Also, be sure that your 
class uses only single inheritance. 

The two functions InitObject and UnInitObject are declared with the extern 
"C" directive in order to ensure that C++ name mangling doesn't alter the 
names of these functions this is necessary because Delphi doesn't 
understand name mangling. If these wrappers are to be contained within a 
C++ DLL (as opposed to being linked from an OBJ), you will need to 
export these functions with the _export keyword. Further, these functions 
and all virtual functions are declared using the _stdcall calling convention. 
The calling conventions must match on both the Delphi and C++ sides and 
the only way to guarantee this is to explictly specify them. 

The definitions of the wrapper functions are provided below and we'll see 
the code for our object later on: 

  //Definitions
  extern "C" TMyObject* _stdcall _export InitObject() {
       return new TMyObject;
  }

  extern "C" void _stdcall _export UnInitObject(TMyObject* obj) {
       delete obj;
  }

The InitObject function creates a TMyObject object using the new operator 
and returns this pointer. When your Delphi program is done using the 



object as returned from InitObject, it gets released from memory by passing 
it to UnInitObject which simply calls the C++ delete operator. 

Although this appears straightforward on the C++ side, the Delphi side of 
this is a little tricky. In order for Delphi to treat the pointer returned from 
InitObject as an object, a class type TMyObject must be created in Delphi 
with the same method declarations as the TMyObject used in the C++ DLL. 
The difference is on the Delphi side, the methods are declared as abstract. 
This tells the Delphi compiler that the body of the methods are declared 
external to the unit in this case in the C++ code. Here is the needed 
declaration in Delphi code: 

  
  { Class types }
  type
    TMyObject = class
      function VTOpenTable(pcTableName: PChar): integer; virtual; 
stdcall; abstract;
      function VTDeleteRecord(iRecNo: integer): integer; virtual; 
stdcall; abstract;
      function VTCloseTable: integer; virtual; stdcall; abstract;
    end;

The calling conventions on the object's methods (stdcall) must match that 
specified in the C++ program. They are also declared virtual and abstract. 

  { Imports the Object Instance Access Functions from the C++ 
TESTOBJ DLL 
}
  function InitObject: TMyObject; stdcall; far; external 'testobj.dll'
            name 'InitObject';
  procedure UnInitObject(obj: TMyObject); stdcall; far; external 
'testobj.dll' 
            name 'UnInitObject';

The example uses the stdcall calling convention and the methods are 
virtual. Let's take a look at the complete source to both the Delphi and C++ 
sides of the picture. We'll assume we're compiling the C++ code into a DLL 
and importing this DLL into the Delphi application. 

Here is the C++ code which is compiled into a DLL. 

  #include <WINDOWS.H>

  // TMyObject Class Declaration
  class TMyObject {
  public:
      TMyObject();
      virtual int _stdcall VTOpenTable(char* sTableName);
      virtual int _stdcall VTDeleteRecord(int iRecNo);
      virtual int _stdcall VTCloseTable();
  };



  //TMyObject Constructor
  TMyObject::TMyObject() {
      MessageBox(NULL, "Constructor called!", "TMyObject 
constructor", 
MB_OK);
  }

  //VTOpenTable Method hypothetically would open a table.
  int _stdcall TMyObject::VTOpenTable(char* sTableName) {
      MessageBox(NULL, "Code to open table goes here.", sTableName, 
MB_OK);
      return 0;
  }

  //VTDeleteRecord Method hypothetically would delete a record.
  int _stdcall TMyObject::VTDeleteRecord(int i) {
      MessageBox(NULL, "Code to delete record goes here.", 
"VTDeleteRecord", 
MB_OK);
      return i;
  }

  //VTCloseTable Method hypothetically would close a table.
  int _stdcall TMyObject::VTCloseTable() {
      MessageBox(NULL, "Code to close table goes here.", 
"VTCloseTable", 
MB_OK);
      return 0;
  }

  #ifdef __cplusplus
  extern "C" {
  #endif

  //Create Object Instance-Access Function
  TMyObject* _stdcall _export InitObject(){
  return new TMyObject; //Alloc TMyObject instance
  }

  //Release Object Instance-Access Function
  void _stdcall _export UnInitObject(TMyObject * obj) {
  delete obj; //Release TMyObject instance
  }

  #ifdef __cplusplus
  }
  #endif

Notice the extern "C" {} which is wrapped around the definitions of the 
InitObject and UnInitObject global functions. This is necessary to ensure 
that C++ name mangling is disabled so that these functions can be imported 
into the Delphi application. We assume that this C++ program is compiled 
into a DLL named "testobj.dll" but omit the details of doing this. 

The Delphi application in this case is extremely simple. The GUI is simply 
a form with a single button. When you click the button, InitObject is called 



which returns the object for use in your Delphi program. Each method is 
then called and the object gets released. The following is the Delphi PAS 
file whose code makes use of the C++ DLL: 

  unit Testobj;

  interface

  uses
    Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
    Dialogs, StdCtrls;

  type
    TForm1 = class(TForm)
      Button1: TButton;
      procedure Button1Click(Sender: TObject);
      procedure FormClose(Sender: TObject; var Action: TCloseAction);
    private
      {Private declarations }
    public
      {Public declarations }
    end;

  var  Form1: TForm1;

  implementation

  {$R *.DFM}

  { Class type TMyObject mirrors the C++ declaration but with abstract 
methods. }
  type
    TMyObject = class
      function VTOpenTable(pcTableName: PChar): integer; virtual; 
stdcall; abstract;
      function VTDeleteRecord(iRecNo: integer): integer; virtual; 
stdcall; abstract;
      function VTCloseTable: integer; virtual; stdcall; abstract;
    end;

  { Imports the Object Instance Access Functions from the C++ 
TESTOBJ DLL 
}
  function InitObject: TMyObject; stdcall; far; external 'testobj.dll'
            name 'InitObject';
  procedure UnInitObject(obj: TMyObject); stdcall; far; external 
'testobj.dll' 
            name 'UnInitObject';

  { This program has a single control of type TButton. Here is its 
OnClick }
  procedure TForm1.Button1Click(Sender: TObject);
  var  obj: TMyObject; { Declare TMyObject Object }
  begin
    obj := InitObject; { Get the TMyObject object by calling
                         the function InitObject in the C++ DLL. }



    obj.VTOpenTable('PARTNO.DB'); { Call each TMyObject method  }
    obj.VTDeleteRecord(10);       { remember that the body of these }
    obj.VTCloseTable;             { methods are defined in the C++ DLL.}
    UnInitObject(obj);            { You're done so release the TMyObject
                                    object by passing it back to the
                                    C++ DLL via the UnInitObject access
                                    function. }
  end;

  { The Forms OnClose event }
  procedure TForm1.FormClose(Sender: TObject; var Action: 
TCloseAction);
  begin
    Action := caFree; { Release the form from memory. }
  end;

  end. {End Unit}

If you don't want to use a C++ DLL, but would rather link your C++ obj 
files directly into your Delphi application, you need to specify the C++ obj 
file with the following directive in the Delphi unit's implementation section. 

  {$L myobj.obj}

In addition, instead of importing the C++ wrapper functions into the Delphi 
application, you must declare them as external (since as they are contained 
within an external OBJ file, they are external to the unit which uses them). 

  function InitObject: TMyObject; stdcall; far; external;
  procedure UnInitObject(obj: TMyObject); stdcall; far; external;

By following some simple conventions and rules, you can easily integrate 
C++ code into your Delphi application. We've shown you a very simple 
example; the same principles, however, would apply to more complicated, 
real-world examples. In summary, here are the conventions and rules to 
keep in mind: 

· Your global functions and (member functions) must use match ing 
calling conventions (stdcall was used in our example)

· Your classes must declare and define virtual functions in C++ and only 
use single inheritance.

· Your classes must be declared in Delphi as well with virtual, abstract 
methods

· You must use extern "C" {} on the C++ side to disable name mangling 
for any functions imported into the Delphi application

· You must use wrapper functions to wrap the C++ new and delete 
operators. These are imported by declaring external on the Delphi 
side. The C++ objects must actually be created in C++ code.

Calling a Delphi DLL from a C++ executable 
A DLL written in Delphi can be loaded and its exported functions called 
from an executable written in C++. Again note that the calling conventions 
for each function must be consistent across both languages. The following 



shows the source code to a DLL called DDLL.DLL written using Delphi 
2.0: 

 
  library DDLL;

  uses Windows;

  function GetDelphiString: PChar; StdCall;
  begin
    MessageBox(0, 'Click OK and GetDelphiString will return a string!', 
'Info',
                  MB_OK or MB_TASKMODAL);
    result := PChar('This is a string passed from a Delphi DLL');
  end;

  exports
     GetDelphiString;

  begin
  end.

DLL.DLL exports a single functions called GetDelphiString. 
GetDelphiString Displays a message dialog box then returns a PChar string 
after the user clicks OK. A PChar is the C++ compliment of a NULL 
terminated character buffer. See the section at the end of this document 
called "Table of C++ and Delphi data types" for a listing of Delphi and C++ 
type comparisons. The following is the C++ code which uses DDLL.DLL 
and accesses the GetDelphiString function: 

 
  //Use IMPLIB.EXE against DDLL.DLL to generate a lib file which
  //should be added to this example's project.
  #include <WINDOWS.H>
  #define IDC_PUSHBUTTON1 101

  // C++ uses name-mangling.  Delphi does not.  Use extern "C" for all 
functions
  // exported from Delphi DLLs to indicate that the function is not 
name-mangled.
  // When compiling in C, rather than C++, extern "C" is not required. 
See the
  // Borland C++ on-line help for more information on extern "C" and 
name-mangling.

  extern "C" char*  _stdcall GetDelphiString();

  // Globals
  static HINSTANCE hInst;
  char* StringPassed;

  // This example assumes you have a Dialog resource called 
"MAINDIALOG".

  // The resource has 3 push buttons: IDOK,IDCANCEL and 
IDC_PUSHBUTTON1.



  #pragma argsused
  LONG FAR PASCAL MainDialogProc(HWND hWnd, WORD wMsg, 
WORDwParam, LONG lParam)
  {
     switch(wMsg)
     {   case WM_INITDIALOG:
              return TRUE;
          case WM_COMMAND:
              switch(wParam)
              {

              // Button was pushed, so call Delphi function
              case IDC_PUSHBUTTON1:
                    StringPassed = GetDelphiString();
                    MessageBox(NULL, StringPassed,  "Success", MB_OK | 
MB_TASKMODAL);
                    return TRUE;

              // Ok or cancel, so end the dialog
              case IDOK:
              case IDCANCEL:
                     EndDialog(hWnd, 0);
                     return TRUE;
              }
              break;
     }
    return FALSE;
  }

  //Program entry-has all the typical Windows stuff
  #pragma argsused
  int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE 
hPrevInstance,
                                          LPSTR lpszCmdLine, int 
nCmdShow)
  { // Save the instance.
    hInst = hInstance;

    // Load the dialog box.
    If ( DialogBox(hInstance, "MAINDIALOG", NULL, 
(FARPROC)MainDialogProc) 
== -1 )
          MessageBox(NULL, "Can't load dialog box!\n", NULL, MB_OK | 
MB_APPLMODAL);
    return 0;
  }

The above executable simply prototypes the GetDelphiString function. The 
stdcall convention is used which matches the export from DDLL.DLL. The 
prototype uses extern "C" to prevent name mangling. Notice the return 
value is char*. This is a C++ compliment to Delphi's PChar type. 

Using a Delphi Object Instance in a DLL from a C++ EXE 
Earlier in this document ("Using a C++ Object Instance in a DLL from a 
Delphi EXE") the issue of using a class in a C++ DLL from a Delphi 



executable was discussed. How about the reverse scenario? Using the C++ 
executable code sample above, make the following modifications: 

 
  //Use IMPLIB.EXE against DDLL.DLL to generate a lib file which
  //Should be included in this example's project.
  #include <WINDOWS.H>
  #define IDC_PUSHBUTTON1 101

  // C++ uses name-mangling.  Delphi does not.  Use extern "C" for all 
functions
  // exported from Delphi DLLs to indicate that the function is not 
name-mangled.
  // When compiling in C, rather than C++, extern "C" is not required. 
See the
  // Borland C++ on-line help for more information on extern "C" and 
name-mangling.

  class TMyObject   {
     public:
          virtual int _stdcall VTOpenTable(char* sTableName) = 0;
          virtual int _stdcall VTDeleteRecord(int iRecNo) = 0;
          virtual int _stdcall VTCloseTable() = 0;
  };

  extern "C" TMyObject* _stdcall InitObject();
  extern "C" void _stdcall DeInitObject(TMyObject* oVertObj);

  // Globals
  static HINSTANCE hInst;

Really the only change thus far is in the removal of the declaration for 
GetDelphiString. It is instead replaced with the declaration of the class 
TMyObject. Notice the methods are all declared virtual and abstract. The 
calling convention chosen is stdcall. One more section of the code still 
requires modification as follows: 

  // Globals
  static HINSTANCE hInst;

  // This example assumes you have a Dialog resource called 
"MAINDIALOG".

  // The resource has 3 push buttons: IDOK,IDCANCEL and 
IDC_PUSHBUTTON1.
  #pragma argsused
  LONG FAR PASCAL MainDialogProc(HWND hWnd, WORD wMsg, 
WORDwParam, LONG lParam)
  {
    switch(wMsg)
    {   case WM_INITDIALOG:
              return TRUE;
         case WM_COMMAND:
              switch(wParam)
              {



              // Button was pushed, so call Delphi function
              case IDC_PUSHBUTTON1:
              {
       TMyObject* obj = InitObject();
       obj->VTOpenTable("CUSTMAIN.DB");
       obj->VTDeleteRecord(10);
       obj->VTCloseTable();
       UnInitObject(obj);
                  return TRUE;
              }

Here, the global declaration for char* StringPassed; was removed. Also, the 
code block following the case IDC_PUSHBUTTON1 has been modified. 
The new code block declares a pointer to an object of type TMyObject as it 
will be defined in the Delphi DLL. The InitObject function is called from 
the Delphi DLL which creates and returns an instance of TMyObject. Each 
TMyObject method is then called. The instance is released by passing it 
back to the Delphi DLL via the UnInitObject function. The following is the 
code for the Delphi DLL: 

 
  library DDLL;

  uses Windows, Dialogs;

  type
    TMyObject = class
      function VTOpenTable(pcTableName: PChar): integer; virtual; 
stdcall;
      function VTDeleteRecord(iRecNo: integer): integer; virtual; 
stdcall;
      function VTCloseTable: integer; virtual; stdcall;
    end;

    function TMyObject.VTOpenTable(pcTableName: PChar): integer; 
stdcall;

    begin
      ShowMessage('VTOpenTable');
    end;

    function TMyObject.VTDeleteRecord(iRecNo: integer): integer; 
stdcall;
    begin
      ShowMessage('VTDeleteRecord');
    end;

    function TMyObject.VTCloseTable: integer;  stdcall;
    begin
      ShowMessage('VTCloseTable');
    end;

    function InitObject: TMyObject; StdCall;
    var oVertObj: TMyObject;
    begin
      oVertObj := TMyObject.Create;



      result := oVertObj
    end;

    procedure UnInitObject(oVertObj: TMyObject); StdCall;
    begin
      oVertObj.Free;
    end;

  exports
     InitObject, UnInitObject;

  begin
  end.

The code for the Delphi DLL is rather simple. It exports the access 
functions InitObject and UnInitObject. These are declared using the 
directive StdCall The type section of the unit declares the actual 
TMyObject class. Its methods are all virtual following the stdcall calling 
convention. The actual method bodies don't do much, they simply 
acknowledge that they were actually called via a call to Delphi's 
ShowMessage function. 

Note: Once you build the Delphi DLL, you should re-run the IMPLIB.EXE 
utility so that the resulting .LIB file includes the InitObject and 
UnInitObject exports. The .LIB file should be compiled into the C++ 
executable. 

C++ OBJ linked into a Delphi Executable 
The following example shows a C++ OBJ linked into a Delphi application. 
The code is simplistic in content as it exports a single function called 
COBJ_Function. The function does not accept any parameters and returns 
nothing. The function body simply calls the Windows API function 
MessageBox which will be displayed when called from the loading Delphi 
program. Here is the C++ source code: 

  
  // COBJ Example
  // This is an example of an OBJ created with Borland C++ that is 
linked

  // into an EXE (DAPP.EXE) created with Delphi.
  #include <WINDOWS.H>

  //Declaration
  extern "C"   void _stdcall COBJ_Function();

  void _stdcall COBJ_Function()
  {
     MessageBox(NULL,  "Hello from a Borland C++ OBJ!",
                "Success", MB_OK | MB_TASKMODAL);
     return;
  }



The Delphi code is also rather simplistic. The following Delphi unit can be 
used in an application to link in the C++ OBJ and make use of the function 
COBJ_Function(). 

 
  unit DAPPMAIN;

  interface

  uses
    Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, 
Dialogs,
    StdCtrls;

  type
    TMain = class(TForm)
      Button1: TButton;
      Label1: TLabel;
      procedure Button1Click(Sender: TObject);
    private
      { Private declarations }
    public
      { Public declarations }
    end;

  var
    Main: TMain;

  implementation

  {$R *.DFM}

  {Specify the name of the OBJ containing the function.}
  {$L cobj.obj}

  procedure COBJ_Function; StdCall; far; external;

  procedure TMain.Button1Click(Sender: TObject);
  begin
    COBJ_Function;
  end;

  end.

The compiler directive following the units implementation section really is 
what is of interest: 

 
  {$L cobj.obj}

Delphi doesn't have a pre-processor like in C++: therefore it makes use of 
compiler directives. To link a .OBJ file into a Delphi application, use the 
$L compiler directive followed by the name of the .OBJ file to bind in. To 
use a function in a .OBJ file, the function must be declared in Delphi as 



external. Notice that the StdCall calling convention is used as well as far 
and external. 

 
  procedure COBJ_Function; StdCall; far; external;

The Delphi unit shown simply calls the COBJ_Funtion when the OnClick 
event for Button1 occurs. 

Delphi OBJ Linked into a C++ Executable 
The following example shows how to link in a Delphi OBJ into a C++ 
application. Here is the code for the C++ executable: 

  // CAPP Example
  // This is an example of an EXE created with Borland C++ that calls a
  // function that resides in an OBJ (DOBJ.OBJ) created with Delphi.
  //Make sure you add DOBJ.OBJ to the project before linking.

  #include <WINDOWS.H>;
  #define IDC_PUSHBUTTON1 101

  extern "C" {
          void _stdcall Delphi_Function();
  }

  static HINSTANCE hInst;

  #pragma argsused
  LONG FAR PASCAL MainDialogProc(HWND hWnd, WORD wMsg, 
WORD
  wParam, LONG lParam)
  {
    switch(wMsg)
    {
         case WM_INITDIALOG:
              return TRUE;

         case WM_COMMAND:
              switch(wParam)
              {

              // button was pushed, so call Delphi function
              case IDC_PUSHBUTTON1:
                     Delphi_Function();
                     return TRUE;

              // ok or cancel, so end the dialog
              case IDOK:
              case IDCANCEL:
                     EndDialog(hWnd, 0);
                     return TRUE;
              }
              break;
    }
    return FALSE;



  }

  #pragma argsused
  int PASCAL WinMain(HINSTANCE hInstance, HINSTANCE 
hPrevInstance,
                                       LPSTR lpszCmdLine, int nCmdShow)
  {
    // save the instance
    hInst = hInstance;

    // load the dialog box
    if(DialogBox(hInstance, "MAINDIALOG", NULL,
  (FARPROC)MainDialogProc) == -1 )
         MessageBox(NULL, "Can't load dialog box!\n", NULL,
  MB_OK | MB_TASKMODAL);

    return 0;
  }

The example executes the function Delphi_Function which is actually 
defined in an OBJ. file called DOBJ.OBJ. In order to use this function, it is 
declared at the top of the code listing as 

  
  extern "C" {
          void _stdcall Delphi_Function();
  }

Note that extern "C" is used and _stdcall as the calling convention. When 
the programs dialog box window procedure receives 
IDC_PUSHBUTTON1 in the wParam of the WM_COMMAND message, 
the function Delpi_Function is called. 

Take a look at the following code listing. It is the Delphi OBJ source code 
for the OBJ that gets linked into the C++ executable shown above. It's 
important to enable Project | Options | Linker | Generate Object files before 
compiling this example. (The default in Delphi is NOT to generate OBJ 
files.) 

Note: Many Windows API calls resolve to functions of other names. In C+
+, this is usually handled by the preprocessor. Since this Delphi code never 
goes through the C++ preprocessor, you must call the actual function 
name directly. 

  
  unit dobj;
  {
  DOBJ Example
  This is an example of an OBJ created with Delphi that is linked into
  an EXE created with Borland C++.  It's important to enable
  Project | Options | Linker | Generate Object files.
  }

  interface



  uses windows;

  procedure Delphi_Function; StdCall;

  implementation

  procedure Delphi_Function; StdCall;
  begin
  { Many Windows API calls resolve to functions of other names.  In 
C++,
    this is usually handled by the preprocessor.  Since this Delphi code
    never goes through the C++ preprocessor, you must call the actual
    function name directly. Below, MessageBoxA is called instead of
    MessageBox.
  }

   MessageBoxA(0, 'Hello from a Delphi OBJ!',
                  'Success', MB_OK or MB_TASKMODAL);
  end;

  begin
  end.



Questions and answers 

Question: Can I use any RTL functions in either language to create usable 
OBJs? 

Answer: Yes and no. 

No, because all the RTL functions get linked during Link time, not compile 
time; it's going to be the other language's responsibility to resolve those 
functions. 

Yes, because you can make an OBJ out of the RTL functions and include it 
in the project with your other OBJ file. This way, though, is unrealistic due 
to the size of OBJ created for the RTL functions. This will make your 
executable much, much larger, and is probably not a good choice. 

Question: What utilities can I use to facilitate mixing the 2 languages? 

Answer: Borland ships 2 utilities with its language products that can be 
very helpful in that area, IMPLIB and TDUMP. 

IMPLIB is a utility which converts a DLL file into a LIB file. You can then 
plug this LIB file into your project immediately. For more explanation and 
to see the different arguments, just type implib at the command line and 
press Enter. 

TDUMP is a great utility and you should consider it your friend. It will tell 
you everything you need to know about your DLL, LIB or EXE files from 
the internals stand point: name mangling, exports, imports, library 
definitions, code- and data-segments, memory layout, etc.. You can check 
for function-name mangling, and can find the internal names of functions 
you want to use. You can explore the differences between calling 
conventions, by watching the function names change every time you 
change the calling convention. 

For more information on TDUMP and its arguments, type tdump at the 
command line, and press Enter. 

Question: I bought a Delphi library that contains a function that returns a 
STRING, how can I use this function in C++ although I have no access to 
the Delphi code? 

Answer: There is no immediate way to use the returned STRING value in 
C or C++. The only way is to create another Delphi DLL that will take the 
String result as a parameter and return a pCHAR which will be usable in C 
or C++ as a CHAR * . 

Conclusion 
In summary, Borland Delphi 2.0 and Borland C++ 5.0 use essentially the 
same compiler back end. This provides a useful level of compatibility on 
the lowest levels. Delphi applications can link in Borland C++ OBJ files 
and Borland C++ applications can link in Delphi OBJ files. Because the 
Virtual Table (called the vtable in C++, VMT in Delphi) format is the 
same, the methods of an object instantiated in a DLL written in one 
language (specific to Borland Delphi 2.0 or Borland C++ 5.0) can be 
accessed from another. The Borland Delphi and Borland C++ languages 



provide directives which support the standard calling conventions Cdecl, 
Stdcall, Fast-call and Pascal. 

Given the information in this document, you should now be able to 
conclude which method of code sharing is best for you. It is unfortunate 
that additional work is needed for all of the methods discussed, however, it 
is great that Borland provides these mechanisms as the additional work is 
minimal compared to that which would be required to completely re-write 
all of your existing code in one language or another. 

Table of C++ and Delphi data types 

Delphi C/C++

ShortInt short

Byte BYTE

char unsigned short

Integer int

Word unsigned int

LongInt long

Comp unsigned long

Single float

Real None 

Double double 

Extended long double

Char char

String None

pChar char

Bool bool

Boolean Any 1byte type

Variant None

Currency None




	Using Borland C++ and Delphi to increase productivity
	A Technical paper for developers

	Mechanisms for using C++ with Delphi and Delphi with C++
	Benefits of DLLs:
	Disadvantages of DLLs:
	Benefits of statically linked OBJs:
	Disadvantages of OBJs:
	Using Calling Conventions to ensure protocols are compatible
	Exporting C++ Library Routines
	Functions to Access and manipulate C++ objects within a DLL
	Using a C++ Object Instance in a DLL from a Delphi EXE
	Calling a Delphi DLL from a C++ executable
	Using a Delphi Object Instance in a DLL from a C++ EXE
	C++ OBJ linked into a Delphi Executable
	Delphi OBJ Linked into a C++ Executable
	Questions and answers
	Conclusion
	Table of C++ and Delphi data types


