An Overview of the Delphi 2.0
Optimizing Native Code Compiler
for Windows 95 and NT

Zack Urlocker
Director of Delphi Product Management

Borland International
1/3/96

An Overview of the Delphi 2.0 Compiler

OVERVIEW

DELPHI DEVELOPMENT TODAY

NEW 32-BIT OPTIMIZING NATIVE CODE COMPILER ARCHITECTURE

PRELIMINARY BENCHMARK RESULTS
32-BIT COMPILER OPTIMIZATIONS
INCREASED 32-BIT CAPACITY

NEW 32-BIT DATA TYPES

OTHER COMPILER ENHANCEMENTS

SUPPORT FOR OLE AUTOMATION AND OLE CONTROLS (OCXS)

THE IMPORTANCE OF BEING OLE
USING OLE AUTOMATION

CREATING OLE AUTOMATION SERVERS
USING OLE CONTROLS (OCXS)

TAKING ADVANTAGE OF WINDOWS 95 AND NT FEATURES

MULTI-THREADING

HELPING PROGRAMMERS WRITE CORRECT CODE

IMPROVED COMPILER ERROR MESSAGES AND DIAGNOSTICS
IMPROVED ERROR MESSAGES

SMART MODULE MANAGEMENT

AUTOMATIC FORM LINKING

VISUAL FORM INHERITANCE

VISUAL FORM INHERITANCE EXAMPLE
How FORM INHERITANCE IS IMPLEMENTED

THE ADVANTAGE OF NATIVE CODE COMPILERS

COMPATIBILITY WITH 16 BIT CODE

CONCLUSION

2 Borland International

An Overview of the Delphi 2.0 Compiler

Borland International

An Overview of the Delphi 2.0 Compiler

Overview

Since the introduction in February 1995, Borland’s Delphi and Delphi Client/Server development tools
have set a new standard in high-performance rapid application development. As a result of Delphi’s
unique combination of a native code compiler, visual two-way tools and scaleable database
technology, Delphi has won dozens of awards worldwide and has become the fastest growing visual
tool. Delphi has also achieved a tremendous level of third party support including dozens of add-on
libraries and compatible tools, over 30 books, a half dozen monthly magazines and newsletters and
many training courses supported by a growing number of third party consultants.

Borland has developed a new second generation 32-bit version of Delphi known as Delphi 2.0. This new
32-bit release incorporates several new technologies in order to further improve the productivity of
developers and the performance of their applications. Delphi 2.0 is based on a new 32-bit optimizing
native code compiler offering even greater performance and larger memory capacity than before. In
addition, the new compiler architecture helps programmers write correct code by offering better error
checking and smarter module management. Delphi 2.0 also takes advantage of the latest OLE
technology including OLE controls (OCXs) and OLE automation.

i =10] x|
File Edit Search “iew Project Bun Component Tool: Help

r:l@ EEI; 1 @ ﬂ b Standard] .&dditiunal] Data .l’-'xcu:ess] Data Eu:untruls] Dialugs] System] wings OCX]
& H=| v |eolo|el|-|ow|®|w|= 1]
& _[olx]| o]
|Tree'\-"iew1: TTreetiew ﬂ About Delphi

Propertiez } Events] i

BorderStyle bsSingle -] =y J

Calor ciwindow Bu"a“d - : :

CH3D True

Cursor ciDefault D e I n h I ...

Editabl Fal -

Enabled Te 32-Bit - [

nanie == Copyright™ 1953-95 = 3ales

+Fant [TFant] e L Canada

Height 177 us

::-:L:Ecunte:-:t 1] 5 Euraps

[ndent 14 L) T 1] I C I L Sweden

[tems [TStrings] 1 Germany

Left 295 2 LIk

M arne Treetiew] ﬂ 3 France

F. |
ﬁ%’ 4| v [\ Sheetl / 4 |) . |
[7E
[relphi 32 1. 1 Inzert

Figure 1 -- Delphi 2.0 supports all of the features of both Windows 95 and Windows NT.

This whitepaper focuses on explaining the features and benefits of the new 32-bit optimizing native code
compiler. Delphi 2.0 will also include many other improvements to take advantage of platform
features found on Windows 95 and Windows NT. Delphi 2.0 includes complete support for the
Windows 95 user interface, including many new components, support for the entire Windows 95 API,
including advanced features like multi-threading, Unicode and MAPI. Delphi 2.0 meets all of the

4 Borland International

An Overview of the Delphi 2.0 Compiler

requirements to obtain the Windows 95 logo, and makes it easy for developers to obtain the logo for
their own applications.

Our goals for Delphi 2.0 are:

Further increase the performance advantage with a new 32-bit optimizing compiler

Increase scalability for Client/Server applications with the 32-bit Borland Database Engine
Increase the ability to reuse objects by supporting OLE controls (OCX) and OLE automation
Provide full support for all Windows 95 user interface elements and APIs

Fully support 32-bit development and deployment on both Windows 95 and Windows NT
Meet the Windows 95 logo requirements

Provide full compatibility for existing Delphi applications

Exact packaging, pricing and availability of Delphi 2.0 will be provided at a later date.

Delphi Development Today

Delphi customers include such organizations as Alcatel, American Stores, Arthur Anderson, AT&T,
BMW, BP Shipping, Bank of America, BBC Television, British Telecom, City of Los Angeles,
Compaq, Conoco, Coopers & Lybrand, DHL, Dover Elevators, EDS, Ernst & Young, Fiat, First
National Bank of Chicago, Glaxo, KPMG, Mercury Communications, Netscape, Sarah Lee Knitting,
Standard & Poors, SwissBank SG Warburg, Union Bank, US Marine Corps and many others. Delphi
and Delphi Client/Server are being used for a broad range of applications that demand rapid
development and high performance. Sample applications include:

A leading petrochemical company has created an executive information system to provide
key operating and financial information on an hourly basis to over 600 users worldwide.

A commercial bank has created a global funds transfer system supporting 25 currencies with
secure transactions between major financial centers worldwide.

A marketing research agency has created an executive information system to provide on-line
analysis of sales data stored on an Oracle server.

A rental company uses Delphi Client/Server to create an application that tracks equipment
nationwide across several locations with more than forty simultaneous users connecting
to an InterBase server running on Windows NT.

A major textile manufacturer has used Delphi Client/Server to develop an all new IS
infrastructure for all accounting, manufacturing and sales information that will access an
Oracle database with over 100 million rows.

An Internet consulting group used Delphi Client/Server to create an application being used
by advertising agencies, retailers and banks to manage pages on the World Wide Web.

A publisher of technical books and magazines has used Delphi to create a full motion multi-
media application to break into software publishing.

A national health agency use Delphi to create a Dynamic Link Library (DLL) to extend an
existing Paradox for Windows application in order to perform real-time data collection
through scientific instruments for measuring Radon gas levels.

A Fortune 100 organization is using a Delphi Client/Server application and Microsoft SQL as
part of a major business re-engineering effort to dramatically increase efficiency and
increase customer satisfaction.

A major industrial commodity markets analyst has created a global client/server system using
Delphi Client/Server to access a 200 gigabyte Oracle database to produce up-to-date
daily reports that will be deployed to thousands of customer worldwide.

Several case studies are available separately that describe these and other applications in more
detail.

5 Borland International

An Overview of the Delphi 2.0 Compiler

New 32-Bit Optimizing Native Code Compiler Architecture

Summary: Delphi 2.0 includes an all new optimizing native code compiler featuring:

* g common backend with C++

® new compiler optimizations resulting in up to 300% - 400% performance improvements

® new faster, optimizing linker

e EXEs which are 20-25% smaller than before and still require no runtime interpreter DLLs
* new support for OBJ files for easier code sharing with C

The new 32-bit release of Delphi is built on an all new 32-bit optimizing native code compiler
architecture. Borland is leveraging more than ten years of leading edge compiler technology in this new
release. The new compiler is built using a common compiler “back end” technology that is shared with
the award-winning Borland C++ compiler. This means that not only do Delphi developers get an even
greater performance advantage over p-code interpreter systems, it is much easier to share code between
Delphi and C++ since both can use the standard OBJ object file format. In addition, because Delphi 2.0 is
a native code compiler, there are still no runtime interpreter DLLs required when deploying Delphi
applications.

Preliminary Benchmark results

All benchmark tests were performed on a Gateway 2000 V66 (66Mhz 486 processor) with 16 megabytes
of memory. The 16 bit benchmarks were performed using on Windows 3.1. The 32-bit benchmarks were
performed with a pre-release version of Delphi 2.0.

Larger numbers indicate faster performance

Sieve 0.22 11.95 52.77 179.37
Whetstone 0.04 1.41 4.70 15.53
File write 0.05 0.42 0.74 2.89
File read 0.05 0.33 1.75 5.28

Benchmark tests show that code compiled with Delphi 2.0 applications can run from approximately 300%
to nearly 400% faster than 16 bit Delphi applications. This means that Delphi continues to expand it’s
performance advantage of over 10-20 times faster than p-code interpreters. For example, Delphi 2.0 Sieve
benchmark results are 15 times faster than VB 3.0 and 815 times faster than PowerBuilder 3.0. In
addition, because of the new optimizing linker, .EXEs are 20-25% smaller than before and still require no
runtime interpreter DLLs.

32-Bit Compiler Optimizations

The new 32-bit native code compiler achieves it’s performance increase by using a number of new code
optimization techniques. In the past, optimizing compilers often required experimentation with complex
compiler directives to achieve the fastest performance. In addition, they often depended on performing
additional “passes” over the code which slows down the compiler and discourage rapid application
development. Delphi 2.0 uses many new optimization techniques automatically, without guesswork. In
addition, the compiler remains the fastest native code compiler in the world performing at over 350,000
lines per minute on a pentium. As a result, programmers always get the benefit of rapid application
development and high performance.

The new 32-bit native code compiler includes a number of automatic optimizations including register
optimizations, call stack overhead elimination, common subexpression elimination, loop induction

6 Borland International

An Overview of the Delphi 2.0 Compiler

variables which result in faster performance for much code. All of the optimizations performed in the 32-
bit compiler are guaranteed correct and in no way change the meaning of the code. The optimizations can
also be disabled for benchmark comparisons. Delphi 2.0 also includes the capability of generating
“Pentium-safe FDIV” code to guarantee that Delphi applications which use floating point division run
correctly even on the so-called “flawed Pentium” processors.

11 Delphi32 - Sample M=

Fil= Edit Search “iew Comple Bun Option: Tool: Help

+50 Ey El @ ﬂ b 1l Standard I.-'-‘-.u:lditiu:unall Data ﬂ.ccessl Data I:Dntn:ulsl Dialu:ug&l Syateml Win95| 0C I
= | =

N A = - =H =0 - +—:—

EEE e e e S B B = R = EE S
R | T |
ITree\-fiewt TTreeliew H Forms I fpplication Compilsr I Linker I Directuriesf’tonditiunalsI

Froperties | Evenlsl ~ Code generation

ButtonStyle TTUE_ ﬂ ¥ Optirization % [~ Stack frames

Ecl'la':'[rj $I'w"|ndu:|w W Aligned record fields [+ Pentium-zafe FOIY

f e

Curzor crDefault —Runtime erors————————— [Syntakaptions

EditStyle False [~ Bange checking ¥ Skict war-stings

Enabled Tre [~ Stack checking [~ Complete boolean exval

+||ilm'-ltht [1T2|;C'nt] W 140 checking [V Egtended sprtax

H:EEDntth 0 [T Dverflow checking [Typed = operator

Hint ¥ Open parameters

Indent 13 .

; —Debugging

Iterms TStings . .

Left [215) ¥ Debua infammation [~ Symbal infa

LineStyle Tiue W Local symbols
| Hamem . "I_'n::e"-.-’lew'l ;I ~Message

E v [+ Show warnings
Dl e [~ Default ak I Cancel Help

Figure 2 -- Delphi 2.0’s optimizing compiler creates native code that is 15-50x faster than p-code

Register Optimizations

Heavily used variables and parameters are automatically be placed into CPU registers thereby reducing the
number of machine instructions required to access a variable. This results in faster and more compact
code since there is no need to load variables from memory into registers. This optimization is done
automatically by the compiler with no need to specify that certain variables or parameters should be placed
in registers. The compiler also automatically performs variable “lifetime analysis” in order to reuse
registers. For example, if a variable I is used exclusively in one section of code and a variable J is used
exclusively in later section of code, the compiler uses a single register for both I and J.

Call Stack Overhead Elimination

When possible, parameters passed to functions or procedures are placed in CPU registers also. Not only
does this eliminate the memory access similar to the earlier described register optimization, but it also
means that there is no need to setup a “stack frame” in which to store the values temporarily. This
eliminates instructions to create and destroy the stack frame so that function calls are highly efficient.

7 Borland International

An Overview of the Delphi 2.0 Compiler

Common Subexpression Elimination

As the compiler translates complex mathematical expressions, it ensures that any common subexpressions,
that is computations that would be performed more than once, are eliminated. This allows the programmer
to write code in a manner that is clear and easy to read, knowing that the compiler automatically reduces it
to its most compact and efficient form.

Loop Induction Variables

The compiler automatically uses loop induction variables as a way to speed up access to arrays or strings
within loops. If a variable is used only to index into an array, for example in a for loop, the compiler
“induces” the variable, eliminating multiplication operations and replacing them with a pointer that is
incremented to access items in the array. In addition, if the element size is a 1, 2, 4 or 8 bytes, Intel scale
indexing is used to provide additional performance benefits.

Example of Optimizations
The code below illustrates the compiler's use of register variables and loop induction. The expression

Sums[X-1] is reduced to an induction variable - a register that is incremented in parallel with the loop
variable X, instead of being recalculated on each iteration.

program examplel;
uses Windows;

var
Sums : array [0..500] of Integer;
X: Integer;
begin
Sums [0] = 0;
for X := 1 to High(Sums) do
Sums [X] := Sums[X-1] + X;
writeln (Sums[High (Sums)]);
end.

The code that the new 32-bit compiler generates for this program as shown with Turbo Debugger:

ex1.9: Sums[0] := 0;
XOor eax, eax
mov [ex1.Sums], eax
ex1.10: for X := 1 to High(Sums) do
mov edx, 00000001 ; EDX = X, the loop control variable
mov eax, 0040242C ; EAX = the base memory address of Sums
exl.11l: Sums[X] := Sums[X-1] + X;
mov ecx, [eax] ; Get the value stored at Sums[X-1]
add ecx, edx ; Add X to that value
mov [eax+04], ecx ; Store the sum in Sums|[X]
inc edx ; increment the loop control variable
add eax, 00000004 ; Increment the induction variable
cmp edx, 000001F5 ; Test for loop end
jne ex1.11 (0040185D)
ex1.12: writeln(Sums[High (Sums)]);
mov edx, [EX1.00402BFC]
mov eax, 00402238

call @WriteOLong

call @Writeln

call @ IOTest
ex1.13: end.

8 Borland International

An Overview of the Delphi 2.0 Compiler

New Optimizing Linker

As part of the compilation process, Delphi uses a new 32-bit linking technology that also includes several
optimizations to operate faster. The new linker is 20% to 50% faster than previously due to a new unit
caching scheme. This means that after the first time you compile an application, any forms or units that
have not changed are linked directly in memory rather than from disk. In addition, .EXEs are 20-25%
smaller than before and still require no runtime interpreter DLLs.

The linker also uses smarter version checking on units to eliminate the need to recompile units whenever
possible, resulting in faster turnaround time and greater version resilience among libraries. For example,
suppose that a function changes in a library unit that is used by four different forms. In the past, all four
forms would have to be recompiled because the compiled code stored on disk (e.g. the DCU file) was an
exact binary snapshot of what the compiler produced and, as a result, a change to any symbol would mean
that the unit and all users of the unit would need to be recompiled. Now with the smarter linking and
built-in version checking, the compiled code in the DCU file has a more robust, resilient format so that
only units that used the modified function would need to be recompiled. This also makes it much easier
for third party vendors to distribute compiled code without the need to recompile their libraries when a
new version of Delphi is released.

In addition, Delphi 2.0 supports the OBJ file format so that you can more easily share code between
Delphi and C or C++, in addition to being able to create and share DLLs. Since many C function libraries
are available in OBJ format, this increases the number of third party libraries that can be used with Delphi.

Increased 32-Bit Capacity

The new 32-bit native code compiler runs in a 32-bit flat address space so that it completely eliminates all
limitations previously associated with the 16-bit segmented architecture of Windows 3.1. For
programmers this means it is now possible to take full advantage of all physical memory of the machine
without resorting to direct Windows API calls. For example, you can declare arrays, strings, records and
other data structures to be as large as you like, limited only by the operating system’s limits. For example,
on Windows 95 you can create strings up to 2 gigabytes. This is a great increase over the segment
limitations in the 16 bit version of Delphi where data structures were limited to 64K.

New 32-Bit Data Types

The new 32-bit native code compiler also introduces several new data types to take advantage of the larger
32-bit flat address space, with additional flexibility and easy migration of 16-bit code.

These new data types include:
* long strings -- limited only by operating system memory
¢ wide strings -- double byte Unicode strings for internationalization of applications
e wide characters -- double byte Unicode character types for internationalization
e variants -- provides the ability to change the type of a variable at runtime for more flexible
database and OLE automation (see below for an example)

Other compiler enhancements

The Delphi 2.0 compiler also includes these additional enhancements:

* An expanded Open Tools API for integrating closely with version control software, CASE tools etc.
Ability to create and inherit from COM (Common Object Model) objects for use in C++ and Delphi
New stdcall reserved words for easier exporting of functions in DLLs

Support for a new currency type for BCD arithmetic for increased accuracy in financial applications
Threadsafe libraries and thread-local storage for easier multi-threading programming

¢ Single line comments using a double slash //, as in C++

9 Borland International

An Overview of the Delphi 2.0 Compiler

Support for OLE Automation and OLE Controls (OCXs)

Summary: Delphi 2.0 includes complete support for OLE facilities on Windows 95 and NT such as:
® the ability to create OLE automation controller and server applications
® full compatibility with forthcoming Network OLE and Remote Automation for partitioning
® the ability to use existing third party OLE controls (OCXs)
® the ability to customize OCXs via inheritance

The Importance of being OLE

Microsoft’s OLE technology includes a variety of important capabilities for increasing the ability of
developers to create more modular and integrated applications. The goal with Delphi 2.0 has been
complete adherence to Microsoft system standards to ensure that developers can use Delphi 2.0 to create a
diverse range of applications without limitations. Delphi 2.0 goes beyond simply adhering to Microsoft
standards; our goal has been to make the use of OLE technology even easier by making it completely
object oriented. As a result, OLE technology is completely integrated into Delphi 2.0 ensuring that
compatibility with future technologies such as Network OLE are ensured.

The OLE support in Delphi 2.0 includes the ability to easily install and use OLE controls (OCXs) as well
as the ability to easily create OLE automation controllers and servers. For maximum flexibility, Delphi
2.0 can create both in-process and out-of-process servers. By supporting both OLE automation controllers
and servers, Delphi 2.0 is completely compatible with the forthcoming Network OLE technology as well
as VB 4.0’s remote automation technology, with the added advantage of faster performance. In addition,
because Delphi 2.0 is a native code compiler, advanced developers are able to write their own OLE
controls (OCXs) within Delphi 2.0 though this is more difficult than creating Delphi components.

Using OLE Automation

Delphi 2.0 makes use of a new type, called variant, to provide seamless integration of OLE automation.
Delphi 2.0 allows you to create applications which can be either an OLE automation controller or an OLE
automation server with equal ease. An OLE automation controller is the most common use of OLE
automation among application developers and system integrators. For example, a Delphi 2.0 application
can be used to control another OLE application, such as Word, Excel, Paradox, Quattro Pro and others.

The variant type allows developers to declare variables whose type is determined at runtime, allowing
them to take advantage of the inherent flexibility of OLE automation. In effect, you can use a single
variable to connect to different types of OLE automation servers at runtime. Delphi 2.0 also introduces the
ability to use named parameters when making calls to OLE automation servers. For complex functions
which often have dozens of parameters, developers can simply supply the parameters of interest and use
the server’s default values for the rest.

The code below is from a sample Delphi 2.0 application which performs a query and then inserts the result
set into a Word document. Note that the OLE automation takes only four lines of code in addition to the
declaration of the variable MSWord of type variant.

{ This example uses OLE automation to insert a query result into Word}
procedure TForml.InsertBtnClick (Sender: TObject);
var

MSWord: Variant;

S: string;

L: Integer;

begin
{ Connect to the automation server in MS Word and run the query}
MSWord := CreateOleObject ('Word.Basic');
with Queryl do
begin

10 Borland International

An Overview of the Delphi 2.0 Compiler

Close;
Params [0] .Text := Editl.Text;
Open;
try
First;
L := 0;

while not EOF do
{ Store the query result set in string S }
begin
S := S + QuerylCompany.AsString + ',' +
QuerylOrderNo.AsString + ', ' + QuerylSaleDate.AsString + #13;
Inc (L) ;
Next;
end;
{ Use OLE automation to insert S into the Word document }
MSWord.Insert (S);
MSWord.LineUp (L, 1);
MSWord.TextToTable (ConvertFrom := 2, NumColumns := 3);
finally
Close;
end;
end;
end;

Delphi32 - AutoChrl [Running] - 0] x|

Fil= Edit 5Search “iew Project Run Component Databaze Tool: Help

o . . O
fmf'_"l EIE; El @ ﬂ [> il Standardl Addltlunall Data Accessl Data Eontrolsl Dlalugsl S_I,Isteml Yfind5 |
glele Tm [| [n (olelolale|w o=« o

LCompany Mame
- Inzert Querny
IUHISCD k

4

Orderto | Company | Salel ate | L=

| 1278 Unizco 124279494
|| 1073 Urisco I

1302 Unizco ile Edit “iew Insert Format Toolz Table ‘Window Help i[
| 4 1160 Unizco =} @ T

02 Uries . NEEEEE

= |Nurmal j| |Times New Roman j| |14
Drear Fred:

Here are the orders outstanding from Unisca:

Undsea | 1298 12/23/04

Unisco 07 4713789

Unisco 1 1302] 11695 .
EEE o . f
| Page 1 Sec 1 141 [& 1.2" Ln 2 Col 45 [229PM [REC [MEE IE

Figure 3 -- Use Delphi 2.0 to create OLE automation controllers and servers.

11 Borland International

An Overview of the Delphi 2.0 Compiler

Creating OLE Automation Servers

Delphi 2.0 also enables you to create your own OLE automation servers. These can be either in-process or

out-of-process (or local) servers. You can expose functions or methods of your application so that they
can be called from other applications such as Microsoft Word, Excel, Visual Basic, C++, Paradox and
Delphi 2.0. Because Delphi 2.0 can produce both OLE automation controllers and servers that are highly
optimized native code executables, it offers a unique performance advantage that will be increasingly
important with the emergence of Network OLE. Delphi 2.0 developers will be able to take advantage of
having applications that are partitioned and have the fastest compiled code running on both the client and
the server side.

To create a new OLE automation server you can use the Automation Object Expert. The expert
automatically defines a new object that inherits from the TAutoObject type and sets up all of the OLE
registration for you including the program ID, class ID and instancing options.

Delphi32 - MemoE dit

=10] x|

File Edit Search “iew Project Bun Component Databaze ‘wiorkgroupz: Tool Help

¢ E0y @ @ @ b i Standard | Additional | Dialogs | System | Data Access | Data Contrals Win35 ILI_'I
= = e B =
e e O = i S T S R

Object Inzpector

%]

I tainFarm: ThdainForm

=

Automation Object Expert x|

Praperties | Eventsl Clazs Mame: ITMemDﬁ'«pd %
ActiveCaontrol - OLE Clazz Mame: IMemDEdit.Memu&pp
AutoScrall | True =l - Memn E ditor Aoplicat
+Borderlcons | [BiSystembdenu, Description: I &mo Eaitar Application e I{c:j‘
EDrdgrStﬁ'le bzSizeable . e IMuItipIe | rstance j
Caption OLE Autormatiar
ClientHeight |78 L
Cliertwicth | 353 ok | conce | hep |
Calar cltppiaiarkS pac
LIEL True procedure TMainForm.FileOpenItemClick [
Cursor ciDefault beqin
Enabled True g . .
ol (TFont] OpenDialog . FilelName := " 7;
FormStyle | FsMDIFam if OpenDialog.Execute then CreateMen
Height 124 LI end:
_'IJ

[Inzent

&

Figure 4 -- Delphi 2.0 lets you easily create OLE Automation servers that are Network OLE compatible

Then you can define the properties and methods you want to automate by adding them to the automated
section of the object. The visibility of an identifier declared in an automated section is the same as a
public identifier. You can expose properties, parameters and function results of any of the following
types: Smallint, Integer, Single, Double, WordBool, Boolean, Currency, TDateTime, String and Variant.

The example code below shows how you can use the automated section to allow OLE controller
applications to control a memo editor. You could then create either an in-process automation server (e.g. a
DLL) or out-of-process OLE automation server (e.g. an .EXE).

{ Shows the use of OLE automation server capabilities in Delphi 2.0 }

12

Borland International

An Overview of the Delphi 2.0 Compiler

unit MemoAuto;
interface

uses
OleAuto;

type
{ TMemoApp defines the automation server object and its services}
TMemoApp = class (TAutoObject)
private
function GetMemo (Index: Integer): Variant;
function GetMemoCount: Integer;
automated
{ OLE enable the following properties and functions }
procedure CascadeWindows;
function NewMemo: Variant;
function OpenMemo (const FileName: string): Variant;
procedure TileWindows;
property MemoCount: Integer read GetMemoCount;
property Memos[Index: Integer]: Variant read GetMemo;
end;

implementation

{ The registration info is created by the Automation Object Expert.}
procedure RegisterMemoApp;
const
AutoClassInfo: TAutoClassInfo = (
AutoClass: TMemoApp;
ProgID: 'MemoEdit.Application';
ClassID: '{F7/FF4880-200D-11CF-BD2F-0020AFO0E5B81}"';
Description: 'Memo Editor Application';
Instancing: acSingleInstance);
begin
Automation.RegisterClass (AutoClassInfo);
end;

initialization
RegisterMemoApp;
end.

Using OLE Controls (OCXs)

Because Delphi 2.0 is a completely object-oriented environment, integration of OLE controls is seamless.
You can install third party OLE controls (OCXs) just as you can install components you write in the
Delphi environment. Delphi 2.0 gives you complete access to the OLE system registry so that you can
load OLE controls and register them in one simple dialog.

When you install an OLE control (OCX), Delphi automatically creates an object wrapper to provide a
completely object-oriented view of the control. Delphi 2.0 is the only rapid application development
environment that makes OLE controls completely object-oriented. This makes it possible for developers
to easily subclass any components, so that they can be easily customized through inheritance.

13 Borland International

An Overview of the Delphi 2.0 Compiler

=10] x|

i11/Delphid2 - Project]
Fil= Edit Search “iew Projsct

Bun Component Databaze Tool: Help

2 L] s

gz 1= I i = =

Standard | Additional | Data dccess | Data Controlz | Dislogs | System | 'wings

s (ole|o|ale|w| 6w

DE><|

)|

Object Inspector x|

IGraph1: ThGraph d

Propertiez | Events |
GraphStyle 1] =l
GraphTitle

GraphType 4 -BardD ll
GridLineStyle (0 - Solid

Import OLE Control

Reqistered cantrals:

‘BPSE; e aph Control
Fountain OLE Custom Control module

Reaister. .

U [
Time OLE Custorn Control modules =IEReE

Yizual Components First Impreszion Contraol
WigualComponentz Formula One OLE Customn Control module

[ndexStyle 0 - Standard
LabelEery 1
Labels 1-0n =l

Grid5tyle 0-Hone Wwebster OLE Custom Control module

Height 100 | CAOCAGRAPH=32. 05

HelpContext (0

HelpFile GRAPHPFR.H Uit file narne: IE:'\BEIFELAND'\DELF'HI32'\LIB'\Gra|:|hLib.pas Browse. .. |
Hirt

Hat 0~ 0 Palette page: IEIEX

b I Clazz names: | TGraph =

ImageFile

Sample OLE Cuztarn Contral module |

Figure 5 -- Delphi 2.0 lets you easily install OLE controls as well as your own Delphi components

Below is an excerpt from the code that is automatically generated and compiled behind the scenes when

you install an OLE control.

{ An object wrapper is automatically generated by Delphi when you install any OCX }

TGraph = class(TOleControl)
private
FOnHotHit: TGraphHotHit;

function Get Color(Index: Smallint): Smallint; stdecall;
procedure Set Color(Index: Smallint; Value: Smallint); stdcall;
function Get Data(Index: Smallint): Single; stdcall;

procedure Set Data(Index: Smallint; Value: Single); stdcall;

public

property Color[Index: Smallint]: Smallint read Get_Color write Set_Color;
property Data[Index: Smallint]: Single read Get Data write Set Data;

published
property TabOrder;
property OnClick;
property OnDblClick;

end;

14

Borland International

An Overview of the Delphi 2.0 Compiler

One an OLE control is installed into the Delphi 2.0 component palette, it can be used just like any of the
supplied Delphi components. All of the OLE controls properties and events are fully accessible within the
environment through the Object Inspector as shown below.

111 Delphi32 - Projectl O] x|
File Edit Search “iew Project Run Component Databaze Tool: Help

= : - ac
EE EE; B @ Iﬁ b i Standard | Additional | Data Access | Data Controls | Dialogs | Spstem | wing5 |
Blele B2 el v (o]e|olale|w|s|=]w |
Object Inspector E3 4 Forml _ O] x]

IGraph1: TGraph

Froperties | Events |

GraphStyle 1] =l —,:— —
GraphTitle | |

GraphType 4-BadD ~ 1 100

GridLineStyle |0 - Solid g a0

GridStyle 0-HMaone

Height 5013 | 1 a0

HelpContext [0 5 40

HelpFile GRAPHPPR H 3 ! 20 I
Hint 7 0

Hot 0-Off g

Hiafnd 072 9

ImangeFile 10

|ndexStyle 0 - Standard 1

e || [{E T | — M

[Modified

[Ingert

Praotected

Figure 6 -- Delphi 2.0 allows you to customize third party OCXs via inheritance

15

Borland International

An Overview of the Delphi 2.0 Compiler

Taking Advantage of Windows 95 and NT Features

Because Delphi 2.0 is a native code compiler, it fully supports all of the platform features of Windows 95
and NT. It includes:
* Multi-threading support
e Unicode double byte strings for localization support
* MAPI

Multi-threading

Because Delphi 2.0 is a native code compiler it can take advantage of any platform feature on Windows 95
or Windows NT. This includes complete support for features such as multi-threading. You can easily
create multi-threaded applications by selecting New Thread Object from the Delphi Object Repository.
This will generate a unit with an object that inherits from the TThread type to simplify the creation of
multi-threaded applications. You also have direct access to the threading API. For example, you can call
the CreateThread API function with an Object Pascal function as a parameter. Similarly, you can set a
thread priority by calling the SetThreadPriority API function.

=10] x|

Delphi32 - Project]

Fil= Edit Search “iew Project Bun Component Database Tool: Help

r:D DE; E @ ﬁ b i Standardl Additional *ind3 IDlaIu:ugal S_l,lsteml DataAccessI Data D:untru:ulsl_l_l
1 s OE B P S B T
|

4

IFu:urnﬂ ;... Y m e

Properties | Events |

Activelontral

AutoS croll True
+Borderlconz | [biSyztem

BorderStule | beSizeabl

Caption Forrml

ClientHeight | 316

Mew Items |

Mew IF'n:uiec:t'l I Farmsz I Dialog&l [rata Mndulexl Proiectsl

B 5 @& H '

Automation
Object

Application Component Data Module DLL

Cliertiafidth (427

+ B

Calar clBtnFace W—— .
CHiaD True Form Text Thread Obect it
Curzaor il efaulk
Enabled True .
I C € Inkeit U
et (TFont] S e e
Farm5 tyle fefarmal
Height 43 0k I Cancel Help

[Modified

[Imgert

Figure 7 -- Delphi 2.0 allows you to easily create multi-threading applications on Windows 95 and NT.

The Delphi Visual Component Library (VCL) includes support for creating threadsafe applications. For
example, the Synchronize method of the TThread class allows you to ensure that manipulation of VCL
components is done safely within a thread without any possibility of conflicts in any other thread. Delphi
2.0 also introduces a new reserved word ThreadVar which allows you to declare thread-local storage,
giving you can complete control over variables used in different threads.

16

Borland International

An Overview of the Delphi 2.0 Compiler

Delphi32 - ThrdDemo [Stopped] - |O] x|

File Edit Search “iew Project Bun Component Databaze Toolz Help

E DE; @ @ ﬂ b 1l Standardl Additional 'W'ir'|9.5' I Dialogsl S_I,Isteml Data Accessl [rata Controls | LI_’I
EEE R EE R EEE S
Thread Status N [=] B3

Thread Id | State | Status
%$FFF1 F333 Stopped Breakpaint

by

4

0 I i
ZWatch List [=] 3
BubbleS ortArrap: (77, 79, 51, 164, IIAbhis P B3

SelectionSortArray: (77. 79, 51. 16 ThSoit | SotThds |
QuickSortAmray: [77, 79, 51, 164,

procedure TThreadSortForm. StartBtnclicsl
beqin

[TEukkleScrt.Create (BubbleSortBox, Bu

TlclectionSort.Create (SelectionsSortE
ToulickSort. Create (QuickSortBeox, Qulc

StartBtn.Enakled := False;
end ;

|-

[Imzert

=
o
i

Figure 8 -- Delphi 2.0’s debugger includes support for viewing the status of all threads

The code shown below illustrates how you can use the TThread class to create a multi-threaded sorting
program. There are three descendants of the TSortThread class, each of which defines its sort method.

{Example of multi-threading in Delphi 2.0 }
TSortThread = class (TThread)
private
FBox: TPaintBox;
FSortArray: PSortArray;
FSize: Integer;
FA, FB, FI, FJ: Integer;
procedure DoVisualSwap;
protected
procedure Execute; override;
procedure VisualSwap (A, B, I, J: Integer);
procedure Sort (var A: array of Integer); virtual; abstract;
public
constructor Create (Box: TPaintBox; var SortArray: array of
Integer);
end;

TBubbleSort = class (TSortThread)
protected

procedure Sort (var A: array of Integer); override;
end;

17 Borland International

impl

{ TS

constructor TSortThread.Create (Box:

Inte

ementation
ortThread }

ger) ;

begin
inherited Create (False);

FB
FS
FS
end;

ox := Box;

ortArray := @SortArray;

ize := High (SortArray)

An Overview of the Delphi 2.0 Compiler

TPaintBox; wvar SortArray: array of

- Low(SortArray) + 1;

{ Since DoVisualSwap uses a VCL component (i.e., the TPaintBox) it
should never be called directly by this thread. DoVisualSwap should be
called by passing it to the Synchronize method which causes
DoVisualSwap to be executed by the main VCL thread, avoiding multi-

thre

procedure TSortThread.DoVisualSwap;

ad conflicts.}

begin

wi
be

en
end;

th FBox do

gin
Canvas.Pen.Color
PaintLine (Canvas,
PaintLine (Canvas,
Canvas.Pen.Color
PaintLine (Canvas,
PaintLine (Canvas,
d;

:= clBtnFace;

FI, FA);
FJ, FB);

:= clRed;

FI, FB);
FJ, FA);

{ VisusalSwap is a wrapper on DoVisualSwap making it easier to use.

The

parameters are copied to instance variables so they are accessable
by the main VCL thread when it executes DoVisualSwap }
procedure TSortThread.VisualSwap (A, B, I, J: Integer);

begin
FA := A;
FB := B;
FI := I;
FJ := J;

Synchronize (DoVisualSwap) ;

end;

{ The Execute method is called when the thread starts }
procedure TSortThread.Execute;

begi

n

Sort (Slice (FSortArray”, FSize));

end;

end;

18

Borland International

An Overview of the Delphi 2.0 Compiler

Helping Programmers Write Correct Code

Summary: Delphi 2.0’s new compiler architecture makes it easier to write correct code with:
* Multi-error architecture
® New hints and warnings that detect common coding errors
* [mproved error messages
® Smart module management
* Automatic form linking

Improved Compiler Error Messages and Diagnostics

One of the frequently overlooked advantages of a native code compiler is that it provides the programmer
with a complete check of the program before running. Compilers can often catch logic errors that result
from ambiguous or incorrect code that is not detected by an interpreter. Because the Object Pascal
language is a strongly typed language, it prevents the programmer from many common errors of using
types in an incorrect fashion. The new 32-bit compiler also has a “multi-error” architecture so that it can
continue to compile code to find all of the errors, rather than stopping at the first error. This makes it
easier to verify large programs for correctness.

in1 Delphi32 - Project]

File Edit Search “iew Project Bun Component Tool: Help

#50 Ey @ ﬂ b Standard | &dditional | Data dccess | Data Controls | Dialogs | Spsterm Win35] ocx |
==
= =0=s] ug_n mmn| | oo = = £EE
& 8= B W EE R EE
£28 ST ES =10] x|
|Trau:kBar1: TTrackBar ﬂ File
Properties } E'\rentgl Wind5 l OCx l
[| n
Curzor ciDefault - + -z
Height a3 r N H||E||
HelpContext [0 " " "
Hint Z =10] %
el 8 Uniel |
LineSize 1
Max 10 var l:1nteger; Al
befirn 1] .
Marne TrackBarl begln)
Orientation tbHorizonkal __| if 1>% then 1:= J
FPagesize 2 ehd: -
Position 1] 4 >
SelEnd 1]
SelStart 1] j Hint: C:Adelphid2tBIMAUnit]. pas(48): Value assigned to T never uzed,
arning: C:delphiZ2WBIMAWnit1 paz(d8) Wariable ' pogzibly uzed before definition.
ﬁﬁz 915 [Wodred [lnser
elphi e

Figure 9 -- Delphi 2.0 provides improved error messages and diagnostics.

In Delphi 2.0, we have improved the error messages and diagnostics of the compiler in order to provide
hints and warnings when code could be incorrect.

These helps to eliminate many common errors including:

19 Borland International

An Overview of the Delphi 2.0 Compiler

using uninitialized variables and pointers
unused variables

unused function return value

empty loops

® type mismatch

Improved error messages

The compiler also offers better diagnostic messages on syntactic errors, making Delphi easier for
programmers who are new to Object Pascal. Rather than simply reporting a general “Error in statement”
message, the new compiler gives a much clearer indication of the problem. This includes many common
syntactic errors such as:
e forgotten semi-colons

® semi-colons in front of the ELSE statement

Smart module management

Delphi has always used the concept of separate compilation of code modules, known as units, in order to
facilitate development and testing of large projects. By having separate compilation of units you can
enforce stricter discipline between units through interface sections rather than having to expose a large
number of global variables which can lead to more difficult code maintenance. However, newcomers to
Delphi often found that manually updating the uses statements was tedious. In Delphi 2.0, module
management has been facilitated through the use of a new File Uses command and form linking.

Delphi32 - Mastapp H=] E3
Edit Search Yiew Project Bun Component Databaze Tool: Help

Hew... Standardl .t'-‘«ddltlunall Data Access Data Controls I Dlalogsl Syxteml WlnEIEl OC
Open...
Save Chrl+5
L Savehs...
| saveal
Cloze o[x|
Cloze Al e I‘édamt oK. I
¢ |Brparts
Custgry
BT W _ Coned | -[0]x]
Addto Project... T — T
BB i e =2 ; Edcust Help | i
) | - Edorders 0 A |
Print. . . Bmoodat - Ll
Send.. : C. |Splash Y
= . Pickdate [[
0. Autactd.dpr L -;!Jim
: ickrep
E xit
Curzar il efault
Enabled True
+Font [TFant]
FarmStyle fsM armal
Height 291 =

0} EEIFll"Ii z Fraotected

Figure 10 -- Delphi 2.0 includes automatic module management for easier maintenance

20 Borland International

An Overview of the Delphi 2.0 Compiler

In addition, the development environment is more intelligent now and recognizes when a uses statement
should be updated automatically. For example, if you reference Form?2 from Unit inside of Form1 you
will be prompted to add Unit2 to your uses list when you recompile.

Automatic form linking

The next logical step to make modular programming easier was to allow automatic form linking across
different modules. Although you have always been able to access the public objects, properties and code
in different forms programmatically, you could not access them in the design environment. It is quite
common to want to refer to data sources, queries and tables across different forms. Therefore in Delphi
2.0, it is now possible to link these components at design time across forms without having to write code.
This makes it easier to create reusable modules that encapsulate data access and business rules separate
from the user interface components.

i11 Delphi32 - Mastapp =] 5

Fil= Edt 5Search “iew Project Bun Component Databaze Tool: Help

ecenl g i B |
D == A et O

Standard | Additional | Data Access Data Controls I Dialogs | Spstem | tin35 | Ok

Obiect Inspector B ' Orders By Customer =] E3
DBGndl1: TDEGd =
! : = [1221" [Kauai Dive Shoppe ‘ l...| - ‘ - | i ‘ * | _:Ehl
Froperties | Eventsl 1 Jr_“'
Align alMone Bl || = Customer Table O] =]
BorderStyle bsSingle A
ol eliindow e e = a v xe
Colurnsg [TDEColummdt A SR R | [[| R R PR
CHaD True : EustNu|EDmpan_l.J |F'h|:une |Last|nvuiceﬂ i
Cursor ciDefaul - [M1221 " Kavai Dive Shoppe BIGEES2EY 02/02/95 — 1
o _ : | |1231 Uniseo 803-555-3915 11417434 1
""" ErEustDrdme I:Iru:lersS oL | [1351 Sight Diver 357-6-87E708 1041894 :
DragM ode dritd anual | |1354 Cayman Divers World Unlimited 011-5-537044 M /30,92 :
Enabled Trie | 1386 Tom Sawyer Diving Centre R04-795-3022 03420492 _
FixedColor cBinFace || 1380 Blue Jack Agqua Center 401-603-7623 1140834
+Fort (TFant] | |1384 MIP Divers Club 803-453-5576 02401./95
Height 133 | 1510 Ocean Paradise B08-555-8231 11/09/94

Figure 11 -- Delphi 2.0 includes form linking to share components across forms

21

Borland International

Protected

An Overview of the Delphi 2.0 Compiler

Visual Form Inheritance
Summary: Delphi 2.0 extends the support for OOP by offering new Visual Form Inheritance.

One of Delphi’s most important capabilities has been the full support for object-oriented programming.
By having full support for encapsulation, polymorphism and inheritance in the Object Pascal language,
Delphi has the unique capability of allowing developers to create their own custom objects, whether they
subclass from existing visual components in Delphi or represent entirely new abstract business objects.
And since Delphi is written in Delphi, there is no distinction between the types of objects a developer or
third party could create and those written by Borland. In fact, many third party vendors and Delphi
developers have created a large and growing marketplace for these components.

Delphi 2.0 takes the fundamental OOP capabilities and extends them to the visual environment in order to
make inheritance easier to use and more accessible. You can now visually inherit from forms while in the
design environment, without writing code, and immediately see the effects of changes. For example, in
many corporate environments it’s desirable to create a standard “template” form, say for data entry, which
will be used as the basis for many other forms. By using Visual Form Inheritance, you can be assured that
as changes are made to the standard form they can be immediately inherited by other forms.

Visual Form Inheritance allows you to inherit all of the code, objects and properties with as many levels of
inheritance as you like without runtime performance penalties. Other systems which attempt to implement
a inheritance have severe performance penalties which render the feature unusable in the real world.

Delphi3Z - GdzDemo =] B2
File Edit Search “iew Project Bun Component Databaze ‘wiorkgroupz: Tool Help

#E0|E0y @ @ ﬂ b i Standard I.-’-'«dditiu:unall Dialogs | Swstem | Datasccess | Data Contrals | win3G | LI_'I
=T = — —— o
= EI|E| s PR RN e RN R E =R EEWET)

Object Inzpector x| o StdD ataForm =101

I GndviewForm: TGndviewForm d

4

Properties | Events |

ActiveCaontrol ;| |
~AutoScrol Falze

H . Grid View I[=] E3

Global Dive Supply

"Serving the Scuba Community Worldwide"

[Eiltered Records Orly

Gilobal Dive Supply —ia || [

“"Serving the Scuba Community Worldwide"

% Sl

Coae | Soweeadoe | T BesdResosOny |10

" Amount | FindHEHtl FindErinrl S

< | |Ordeto IEustND IEustName ISaIeDate I.ﬁ.mountDue Iﬂ L :?:: E

=il 1023 1221 |K.auai Dive Shoppe 7/1/88 ST

| 1076 1221 Kauai Dive Shoppe 12/16/94 R
| 1123 1221 Kauai Dive Shoppe as24/93
1163 1221 Kauai Dive Shoppe /6494

Figure 12 -- Delphi’s Visual Form Inheritance allows you to easily create reusable, shared forms

22 Borland International

An Overview of the Delphi 2.0 Compiler

Visual Form Inheritance Example

The sample application \DEMOS\DB\GDSDEMO\GDSDEMO.DPR contains an example of Visual Form
Inheritance. This example includes two forms which are presented to the user. These are the
GridViewForm and RecViewForm which display a Grid view and Record view, respectively, on a
common data set. These two forms share many common elements and, in fact, inherit those common
elements from an ancestor form type, the StdDataForm. The StdDataForm defines the Customer and
Orders tables, a DataSource, code for applying a filter on the Orders tables and code for finding the next or
previous Order that meets the filter criteria. Because so much of the functionality is defined in the
StdDataForm, there is very little code required in the GridViewForm and no code whatsoever in the
RecViewForm.

Because of the use of Visual Form Inheritance, any changes made to the StdDataForm, whether in code or
visually using the Object Inspector or form designer, are automatically propagated to the descendants
GridViewForm and RecViewForm. For example, if you move the Find Next button or change it’s code in
the StdDataForum you’ll immediately see the change in both of the descendent forms. Of course, you are
also free to override the visual properties or code of any of the inherited components in the
GridViewForm.

Delphi’s Visual Form Inheritance uses a property level of granularity in determining what is inherited and
what is overridden. This means that if you change, say, the location and Font of the Find Next button in
the GridViewForm, it will still inherit all of the other properties including caption, size and the code
associated with the OnClick event handler.

If you decide that you would like to revert back to all of the ancestor component’s properties, you can right
click on a component in the descendant form and select the menu choice Revert to Inherited. This will
effectively disable all overrides to properties that you have changed.

Calling Inherited Event Handlers

When you want to add or override behavior of a component in a descendent form you can simply use the
object Inspector, as with any Delphi component, to attach code to the particular event handlers. For
example, to override the code associated with the OnClick event handler for the Find Next button in the
GridViewForm, you can simply double click on the Find Next button or double click on the OnClick
property in the Object Inspector. The method that is generated will include a call to the inherited method
defined in the ancestor as shown below.

procedure TGridViewForm.NextBtnClick (Sender: TObject) ;
begin

inherited;

{ Add new code here }
end;

Note: For easier code maintenance you should always call the inherited routine. If one does not exist, the
call will be ignored.

Creating a New Inherited Form from the Object Repository

To create a new inherited form, use the File New menu command to bring up the Object Repository. You
can then select any form in the current project page (e.g. GdsDemo) or from the Forms, Dialogs or Data
Modules pages. Note that for forms in the current project the only available option is Inherit, whereas you
can also select Copy or Reference when selecting from the Forms, Dialogs or Data Modules pages. For
more information on these topics, refer to the on-line Help on the Object Repository.

23 Borland International

An Overview of the Delphi 2.0 Compiler

How Form Inheritance is Implemented

When you inherit from a form, whether from the current project or from the Object Repository, the
ancestor class is loaded into memory. If you look at the definition for an inherited form in the Code
Editor, you will see that instead of inheriting from TForm, it inherits from some other form type. For
example, here’s the definition for the GridViewForm:

type
TGridViewForm = class (TStdDataForm)
DBGridl: TDBGrid;
procedure NextBtnEndDrag (Sender, Target: TObject; X, Y: Integer);
procedure NextBtnClick(Sender: TObject);

private

{ Private declarations }
public

{ Public declarations }
end;

You can see that it contains an additional object in it’s definition for the DBGrid control; all of the
GridViewForm’s other components, such as the buttons, tables are defined in the ancestor type,
TStdDataForm, shown below.

TStdDataForm = class (TGDSStdForm)
StdCtrlPanel: TPanel;
FilterOnRadioGroup: TRadioGroup;
Orders: TTable;

Cust: TTable;
OrdersSource: TDataSource;
GroupBoxl: TGroupBox;
FilterOnLabel: TLabel;
FilterCriteria: TEdit;
FilterCheckBox: TCheckBox;
NextBtn: TButton;
PriorBtn: TButton;

procedure FilterOnRadioGroupClick(Sender: TObject) ;
procedure OrdersCalcFields (DataSet: TDataSet);
procedure FilterCheckBoxClick (Sender: TObject) ;
procedure PriorBtnClick(Sender: TObject);
procedure NextBtnClick(Sender: TObject);
procedure FilterCriteriaExit (Sender: TObject);
procedure FilterCriteriaKeyPress (Sender: TObject; var Key: Char);
protected
FLastAmount: Double;
FLastDate: TDateTime;
function CalcAmountDue: Double;
procedure ConvertFilterCriteria;
end;

Similarly, if you right click on the GridViewForm in the form designer and select View as Text you can
see exactly which properties have been changed from the ancestor. The example shows the

GridViewForm text representation like assuming that the Find Next button has a different font and
location.

inherited GridViewForm: TGridViewForm

24 Borland International

An Overview of the Delphi 2.0 Compiler

Caption = 'Grid View'
inherited StdCtrlPanel: TPanel
inherited NextBtn: TButton
Left = 223
Top = 13
Font.Height = -13
Font.Style = [fsBold]
ParentFont = False
end
end
object DBGridl: TDBGrid [2]
Left = 0
Top = 16l
Width = 460
Height = 159
Align = alClient
DataSource = OrdersSource
TabOrder = 2
TitleFont.Color = clBlack

TitleFont.Height = -11
TitleFont.Name = 'MS Sans Serif'
TitleFont.Style = []

end

end

Visual Form Inheritance is implemented by streaming out the property sets on a component by component
basis for the ancestor form and it’s descendants and then comparing the differences. Component writers
should ensure that their components write out only the properties necessary so that the Visual Form
Inheritance difference analysis can be as efficient as possible. Some components use a large granularity
when determining which properties have changed in the descendent. For example, the Database Grid
control uses a Collection property to store the column attributes. Therefore, if you change any of the
properties of such a collection in a descendant form, the entire collection is considered to override the
ancestor’s collection. This means that if you change the column attributes in a descendant grid in an
inherited form, any changes to the column attributes in the ancestor will no longer propagate to the
descendant. Hence, the granularity for column attributes is the entire column attribute set, rather than each
distinct column. However, changes made to other properties in the ancestor grid, such as the Font or Color
will automatically propagate to the descendant, thereby giving you a good balance of flexibility and
efficiency.

Note: If you use a deep level of visual form inheritance, you may notice a slight delay in repainting
complex forms when you resize or move them in the design environment on slower machines. This
performance slow down only occurs in the design environment since Delphi must compute the differences
between the property sets of the ancestor and descendant. During the compilation process, all of this
information is compiled into a static set of properties and so once the forms are loaded there is no such
impact on performance. Both inherited forms and non-inherited forms will behave identically at runtime.

25 Borland International

An Overview of the Delphi 2.0 Compiler

The Advantage of Native Code Compilers

Delphi always compiles immediately to optimized native machine code, unlike 4GL systems which
sometimes allow you to generate C code which can be then compiled with a separate C code compiler.
Although this sounds like an attractive way of correcting the major performance deficiencies of 4GL
systems, in fact, Delphi has shown that there’s a more efficient and reliable way to develop applications by
always directly generating optimized native machine code. Because Delphi always produces optimized
native machine code, it offers a number of advantages over a 2 stage “code generator” approach. These
advantages include:

e faster turnaround -- by having the world’s fastest native code compiler, Delphi increases
productivity and encourages Rapid Application Development. Unlike 2 stage “C code
generators”, you never have to wait for the code generator or go through a separate generate /
compile / link cycle.

e easier testing -- the code you work with in the development environment is the same compiled code
you’ll deploy in your production application. This means you don’t have to worry about whether
code that works with the interpreter will behave the same as the code created by the compiler.

¢ high level debugging -- since code that you write is compiled directly into machine code, the
debugger lets you debug the code you wrote from within the environment. You never have to
look at cryptic C code generated by the system. You never have to debug the C code created by
the code generator.

e easiest maintenance -- you only have to maintain code in a single high-level language, object Pascal,
rather than having to maintain code in both a 4GL language and in low-level C.

e easier deployment -- you can distribute your applications without runtime interpreter DLLs
making it easy to deploy in the field.

Historically P-code systems and code generators have proven to be useful stop gap measures. For
example, some of the early language implementations on the Apple II computer were implemented using
the UCSD P-code system, which allowed programmers to work with high level languages such as Pascal
instead of Basic on machines equipped with as little as 64K. However, since that time, many developers
have been reluctant to use P-code systems due to their inherently slower performance.

Similarly, many of the first C++ language implementations were created as source code translators which
translated C++ code into low-level C code which could then be compiled with any standard C compiler.
However, the disadvantages of a slow turnaround time due to the two-stage compile process and the
difficulty of debugging the generated C code, caused most C++ developers to seek “native code” C++
compilers instead.

Compatibility with 16 bit code

Our goal with Delphi 2.0 is to offer full compatibility of 16-bit code. In order to migrate code from the 16-
bit version to the 32-bit version it must be recompiled, but otherwise, few changes are necessary. In most
cases, developers can simply load their 16 bit applications into the new environment, compile the code for
32-bit and begin adding new 32-bit features. In some cases, conversion of code may be necessary, but
only where fundamental assumptions are made that depend on representations that have changed in either
the Windows environment or code that is dependent upon the low-level physical implementation of data
types that have changed in order to move to 32 bits. Delphi automatically handles changes in the
Windows message types (known as message cracking) so that message handling code does not need to be
changed even where the Windows message data fields have been rearranged or resized to 32 bits. Code
which depends on the physical representation will need to be updated including:

e 16 bit in-line assembler
e Windows API functions which have changed in Win32

26 Borland International

An Overview of the Delphi 2.0 Compiler

® Records or routines that depend on the physical size of integers

In Delphi 2.0, the Integer type is assumed to be 32 bits, rather than 16 bits as it was previously. A new
type, Smalllnt, is provided for compatibility purposes.

The new 32-bit compiler also has the capability of “unit aliasing” which enables you to use a different
symbolic name (or alias) for a unit. This is a useful technique when you want to dramatically change the
implementation of a unit in order to take advantage of new 32-bit capabilities. For example, in the 16 bit
version of Delphi there were two separate units for WinTypes and WinProcs. These units have been
combined into a single unit called Windows in the 32-bit version which contains all of the new 32-bit
Windows types, functions and messages. In order to provide complete compatibility, unit aliases are
included so that old code compiles as is, without needing to change the “uses” statement. Thus the
statement:

Uses WinTypes, WinProcs;

is aliased to be understood as:

Uses Windows;

Applications that are written in Delphi 2.0 and do not take advantage of the 32-bit features can be
recompiled with the 16 bit version of Delphi for use on Windows 3.1. However, if a program takes
advantage of 32-bit features, such as Windows 95 user interface elements, Win32 API functions, the 32-bit
flat address space or other new features, it will require modifications in order to compile for 16 bits.

Conclusion

Delphi 2.0 is a totally new product built from the ground up on an optimizing compiler to take advantage
of the improved performance of 32-bit platforms including Windows 95 and Windows NT. There are
many new compiler optimizations, linker optimizations and new 32-bit data types so that the performance
advantage of Delphi applications over p-code interpreters is even greater than before. In addition, the new
compiler architecture makes it easier to create correct code and also offers easy access to important system
features such as multi-threading, OLE automation and OLE controls (OCXs).

Delphi 2.0 also includes many new components for accessing the Windows 95 user interface elements,
new database components for accessing features of the new 32-bit version of the Borland Database Engine
as well as several new tools that facilitate client/server development and a more extensive Open Tools API
for integrating with third party packages such as CASE tools. Additional whitepapers on these topics will
be forthcoming.

Delphi 2.0 will be available in first calendar quarter 1996. Exact packaging and pricing information will
be made available at a later time.

27 Borland International

	Overview
	Delphi Development Today

	New 32-Bit Optimizing Native Code Compiler Architecture
	Preliminary Benchmark results
	32-Bit Compiler Optimizations
	Register Optimizations
	Call Stack Overhead Elimination
	Common Subexpression Elimination
	Loop Induction Variables
	Example of Optimizations
	New Optimizing Linker

	Increased 32-Bit Capacity
	New 32-Bit Data Types
	Other compiler enhancements

	Support for OLE Automation and OLE Controls (OCXs)
	The Importance of being OLE
	Using OLE Automation
	Creating OLE Automation Servers
	Using OLE Controls (OCXs)

	Taking Advantage of Windows 95 and NT Features
	Multi-threading

	Helping Programmers Write Correct Code
	Improved Compiler Error Messages and Diagnostics
	Improved error messages
	Smart module management
	Automatic form linking

	Visual Form Inheritance
	Visual Form Inheritance Example
	Calling Inherited Event Handlers
	Creating a New Inherited Form from the Object Repository
	How Form Inheritance is Implemented

	The Advantage of Native Code Compilers
	Compatibility with 16 bit code
	Conclusion

