


array

A set of sequentially indexed elements having the same intrinsic data type. Each element of an array 
has a unique identifying index number. Changes made to one element of an array don't affect the 
other elements.



Automation object

An object that is exposed to other applications or programming tools through Automation interfaces.



class

The formal definition of an object. The class acts as the template from which an instance of an object 
is created at run time. The class defines the properties of the object and the methods used to control 
the object's behavior.



collection

An object that contains a set of related objects. An object's position in the collection can change 
whenever a change occurs in the collection; therefore, the position of any specific object in the 
collection can vary.



expression

A combination of keywords, operators, variables, and constants that yields a string, number, or object. 
An expression can be used to perform a calculation, manipulate characters, or test data.



identifier

An element of an expression that refers to a constant or variable.



member

An element of a collection, object, or user-defined type.



module

A set of declarations followed by procedures.



numeric expression

Any expression that can be evaluated as a number. Elements of an expression can include any 
combination of keywords, variables, constants, and operators that result in a number.



object

A combination of code and data that can be treated as a unit, for example, a control, form, or 
application component. Each object is defined by a class.



procedure

A named sequence of statements executed as a unit. For example, Function and Sub are types of 
procedures.



property

A named attribute of an object. Properties define object characteristics such as size, color, and screen 
location, or the state of an object, such as enabled or disabled.



run-time error

An error that occurs when code is running. A run-time error results when a statement attempts an 
invalid operation.



scope

Defines the visibility of a variable, procedure, or object. For example, a variable declared as Public is 
visible to all procedures in all modules. Variables declared in a procedure are visible only within the 
procedure and lose their value between calls.



string expression

Any expression that evaluates to a sequence of contiguous characters. Elements of a string 
expression can include a function that returns a string, a string literal, a string constant, or a string 
variable.





Can't execute; script is running

You have attempted to access one or more of the ScriptControl object's members while a script is 
running. Once a script is running, most properties are read-only. Also, methods that affect the 
members of the ScriptControl object can't be accessed while script is running. Examples of these 
methods include AddCode and AddObject methods.



Can't set UseSafeSubset property

You can't set the UseSafeSubset property. Either the application hosting the ScriptControl object 
has forced it into safe mode or the scripting engine does not support the safety features. Another 
possibility is that if the scripting engine does support safety features, it may not support changing the 
UseSafeSubset property at all times.Try setting the UseSafeSubset property before calling any 
methods or before setting the Language property.



Executing script has timed out

The script has ended because it has taken more time to execute than specified by the Timeout 
property.



Language property not set

You tried to use a method or property that is only allowed when the Language property of the 
ScriptControl object has been set to a valid language.



Member is not supported by selected script engine

You tried to access a method or property that the scripting engine specified by the Language property 
doesn't support.



Object is no longer valid

You tried to access an object that is no longer available because ScriptControl has been reset.



Error Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scobjErrorC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"scobjErrorX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Properties":"scobjErrorP"}                  {ewc HLP95EN.DLL,DYNALINK,"Methods":"scobjErrorM"} 
{ewc HLP95EN.DLL,DYNALINK,"Events":"scobjErrorE"}

Contains information about compilation and run-time errors that occur. 

Remarks

The ScriptControl Error object provides a superset of the properties found in the standard Visual 
Basic Err object. The additional properties allow you to provide users with feedback after a detectable 
error occurs.

Aside from the additional properties, an important difference between the Visual Basic Err object and 
the ScriptControl Error object is that the Error object is not global, that is, one Error object does not 
handle all ScriptControl errors. Each ScriptControl has its own Error object. In Visual Basic, there 
is only one Err object. 

ScriptControl Error object properties are reset to zero or zero-length strings ("") each time the 
ScriptControl Language property is changed or when a call is made to any of the following methods: 
Reset, AddCode, Eval, or ExecuteStatement. Use the Clear method to explicitly reset Error object 
properties.

When an error occurs during a call into the ScriptControl, the Visual Basic Err object properties are 
set to the same values as those in the ScriptControl Error object. When a run-time error occurs 
within ScriptControl code, only the ScriptControl Error object properties contain the correction 
information.



Module Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scobjModuleC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scobjModuleX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"scobjModuleP"}                  {ewc HLP95EN.DLL,DYNALINK,"Methods":"scobjModuleM"} 
{ewc HLP95EN.DLL,DYNALINK,"Events":"scobjModuleE"}

A Module object is the ScriptControl member in which all procedure, type, and data declarations are 
made. 

Remarks

What, exactly, goes into a module is determined by the scripting engine in use. 

Scripting code, including procedures defined by the scripting engine in use, is added to a Module 
object using the AddCode method.

The ScriptControl is automatically provided with a Global module. Scripting code added to the 
ScriptControl itself always goes into the Global module. Scripting code in the Global module is 
available to all other modules in the ScriptControl.

Additional modules can be added to the Modules collection using the Add method. Scripting code 
added to any additional modules is local to the module in which the code is added.



Modules Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"sccolModulesC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"sccolModulesX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"sccolModulesP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"sccolModulesM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"sccolModulesE"}

The Modules collection contains all modules in a ScriptControl object, including the Global module.

Remarks

The Modules collection provides a convenient way to refer to all modules in a ScriptControl as a 
single object. 

Individual modules are added using the Add method. Specific modules can be returned from the 
Modules collection using the Item method, while the entire collection can be iterated using the For 
Each...Next statement.

The Global module can always be found using the GlobalModule constant as an index to the 
Modules collection.



Procedure Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scobjProcedureC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scobjProcedureX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"scobjProcedureP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"scobjProcedureM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"scobjProcedureE"}

The Procedure object is logical unit of code as defined by the scripting engine in use.

Remarks

The Procedure object provides entry points to the procedures within a module.

Individual Procedure objects are added to the Procedures collection of a specific module using the 
AddCode method. 



Procedures Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"sccolProceduresC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"sccolProceduresX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"sccolProceduresP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"sccolProceduresM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"sccolProceduresE"}

The Procedures collection contains all procedures defined in a specific Module object. 

Remarks

The Procedures collection provides a convenient way to refer to all procedures in a Module as a 
single object.

Individual procedures are added to specified modules using the AddCode method. Individual 
procedures added to the ScriptControl are contained in the Global module's Procedures collection.

Specific procedures can be returned from the Procedures collection using the Item method, while the 
entire collection can be iterated using the For Each...Next statement.



ScriptControl Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scobjScriptControlC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scobjScriptControlX":1}                  {ewc 
HLP95EN.DLL,DYNALINK,"Properties":"scobjScriptControlP"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Methods":"scobjScriptControlM"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Events":"scobjScriptControlE"}

Enables scripting in an application.

Remarks

The ScriptControl provides a simple interface for hosting scripting engines that support ActiveX 
scripting. The ScriptControl object supports the following:

· Any scripting language that supports ActiveX scripting.

· A macro Run dialog box that lists available macros.

· The ability to compile scripts and display rich error information describing any errors that may 
occur.

· The ability to trap and display run-time errors that occur during script execution.

· The ability to expose object model functionality to scripts.

· The ability to expose global functions to scripts.

· An Immediate window.

· The ability to limit a script's execution both in terms of its functionality and its time limitations. 

· The ability to use Microsoft script debugging tools to debug scripts written with a scripting-enabled 
version of Notepad.





AllowUI Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproAllowUIC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproAllowUIX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproAllowUIA"}

Sets or returns a Boolean value that indicates whether a running script, or the ScriptControl itself, is 
allowed to display user-interface elements. Read/write.

Syntax

object.AllowUI [= value]

The AllowUI property has these parts:

Part Description

object Required. Can be any object in the "Applies To" list or a 
reference to it.

value Optional. Boolean value that is True if display of user-interface 
elements is allowed; False if it is not.

Remarks

The AllowUI property applies to user-interface elements displayed by the ScriptControl itself or 
user-interface elements displayed by the scripting engines.

In VBScript, for example, if AllowUI is False, the MsgBox statement will not work. Note that if 
AllowUI is False, there is no way to notify a user of the occurrence of a TimeOut event



CodeObject Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproCodeObjectC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproCodeObjectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproCodeObjectA"}

Returns an object that is used to call public members of a specified module. Read-only.

Syntax

object.CodeObject

The object is the name of a specific module or reference to it.

Remarks

The names of public members of a module are those provided by a programmer using the 
ScriptControl in an application.



Column Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproColumnC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproColumnX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproColumnA"}

Returns a column location indicating the approximate place in the scripting code where an error 
occurred. Read-only.

Syntax

Error.Column

Remarks

Use the Column property with the Line property to determine the approximate location of the 
scripting code causing an error. If no column information is available, the Column property is set to 
zero.

Note      Not all Error object properties are valid at all times. When a property is not appropriate for a 
specific error, its value will be 0 or a zero-length string ("").



Count Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproCountC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproCountX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scproCountA"}

Returns the number of items in a collection. Read-only

Syntax

object.Count

The object is any collection in the "Applies To" list or a reference to it.



Description Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproDescriptionC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproDescriptionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproDescriptionA"}

Returns the short descriptive string associated with an error. Read-only.

Syntax

Error.Description

Remarks

Use the Description property to alert a user to an error that you either can't or don't want to handle. 
The Description property provides the built-in system error messages.

Note      Not all Error object properties are valid at all times. When a property is not appropriate for a 
specific error, its value will be 0 or a zero-length string ("").



Error Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproErrorC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproErrorX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scproErrorA"}

Returns an Error object containing detailed information about the last error that occurred. Read-only.

Syntax

ScriptControl.Error

Remarks

The returned Error object is used for both compilation and run-time errors.

Note      Not all Error object properties are valid at all times. When a property is not appropriate for a 
specific error, its value will be 0 or a zero-length string ("").



HasReturnValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproHasReturnValueC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproHasReturnValueX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproHasReturnValueA"}

Returns True if a procedure has a return value; False if it does not. Read-only.

Syntax

object.HasReturnValue

The object is the name of a specific Procedure or reference to it.



HelpContext Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproHelpContextC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproHelpContextX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproHelpContextA"}

Returns the context ID number for a topic in a Microsoft Windows Help file. Read-only.

Syntax

Error.HelpContext

Remarks

The HelpContext property is used to automatically display the Help topic specified by the HelpFile 
property.

Note      You should write routines in your application to handle typical errors. When programming with 
an object, you can use the object's Help file to improve the quality of your error handling, or to display 
a meaningful message to your user if the error isn’t recoverable.

Note      Not all Error object properties are valid at all times. When a property is not appropriate for a 
specific error, its value will be 0 or a zero-length string ("").



HelpFile Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproHelpFileC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproHelpFileX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproHelpFileA"}

Returns a string     expression   that is the fully qualified path to a Microsoft Windows Help file. Read-only.

Syntax

Error.HelpFile

Remarks

If a Help file is specified in the HelpFile property, it is automatically called when the user clicks the 
Help button (or presses the F1 key) in the error message dialog box. If the HelpContext property 
contains a valid context ID for the specified file, that topic is automatically displayed. If no HelpFile is 
specified, the Visual Basic Help file is displayed.

Note      You should write routines in your application to handle typical errors. When programming with 
an object, you can use the object's Help file to improve the quality of your error handling, or to display 
a meaningful message to your user if the error isn’t recoverable.

Note      Not all Error object properties are valid at all times. When a property is not appropriate for a 
specific error, its value will be 0 or a zero-length string ("").



Language Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproLanguageC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproLanguageX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproLanguageA"}

Sets or returns the name of the scripting language being used. Read/write.

Syntax

ScriptControl.Language [= language]

When setting the Language property, language can be VBScript, JScript, or any other suitable 
scripting language.



Line Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproLineC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"scproLineX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"scproLineA"}

Returns a line location indicating the place in scripting code where an error occurred. Read-only.

Syntax

Error.Line

Remarks

Use the Line property with the Column property to determine the approximate location of the 
scripting code causing an error. If no line information is available, the Line property is set to zero.

Note      Not all Error object properties are valid at all times. When a property is not appropriate for a 
specific error, its value will be 0 or a zero-length string ("").



Modules Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproModulesC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproModulesX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproModulesA"}

Returns the collection of modules for the ScriptControl object. Read-only.

Syntax

ScriptControl.Modules

Remarks

There is always at least one module. If a module is not explicitly declared, an implicit Global module 
exists that is used for all added scripting code. The Global module can be accessed using the 
GlobalModule constant as an index to the Modules collection.



Name Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproNameC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproNameX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scproNameA"}

Returns the name of a module, procedure, or object. Read-only.

Syntax

object.Name

The object is any object in the "Applies To" list or a reference to it.

Remarks

The name of object is established at the time object is added to the ScriptControl using Add or 
AddObject methods.



NumArgs Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproNumArgsC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproNumArgsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproNumArgsA"}

Returns the number of arguments required by a procedure. Read-only.

Syntax

object.NumArgs

The object is a Procedure object or a reference to it.



Number Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproNumberC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproNumberX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproNumberA"}

Returns a numeric value specifying a run-time error. Number is the Error object's default property. 
Read-only.

Syntax

Error.Number

Remarks

Error numbers only apply to run-time errors.



Procedures Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproProceduresC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproProceduresX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproProceduresA"}

Returns the collection of the procedures defined in a specified module. Read-only.

Syntax

object.Procedures

The object is a Module object or a reference to it.



SitehWnd Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproSitehWndC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproSitehWndX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproSitehWndA"}

Sets or returns the hWnd of the window used by executing scripting code to display dialog boxes and 
other user-interface elements. Read/Write.

Syntax

ScriptControl.SitehWnd [= value]

The value argument can be 0 or the number of a valid hWnd.

Remarks

If the ScriptControl is being used as a control (rather than an Automation object), the default value of 
the SitehWnd property is the hWnd of the control's container. If ScriptControl is created as an 
Automation object, the default SitehWnd is 0, which indicates the desktop window. In either case, the 
user can change the value to a valid hWnd at any time.



Source Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproSourceC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproSourceX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproSourceA"}

Returns a string     expression   specifying the type of error that occurred. Read-only.

Syntax

Error.Source

Remarks

The string expression returned by the Source property. specifying the kind of error generated can be 
any of the following:

· Microsoft JScript™ compilation error.

· Microsoft JScript run-time error.

· Microsoft VBScript compilation error.

· Microsoft VBScript run-time error.



State Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproStateC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproStateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scproStateA"}

Sets or returns the mode of the ScriptControl object. Read/write.

Syntax

ScriptControl.State [= state]

The state argument can be either of the following constants:

Constant Value Description
  

Initialized 0 The scripting engine will execute the code but 
will not sink any events generated by objects 
added using the AddObject method.

Connected 1 The scripting engine will sink events 
generated by objects added using the 
AddObject method.

Text Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproTextC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"scproTextX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"scproTextA"}

Returns a string containing a snippet of the scripting code surrounding the location where an error 
occurred in code. Read-only.

Syntax

Error.Text

Remarks

The string of scripting code returned by the Text property serves as the context in which an error 
occurred.



Timeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproTimeOutC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproTimeOutX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproTimeOutA"}

Sets or returns the time, in milliseconds, after which a user is presented with the option to discontinue 
scripting code execution or allow it to continue. Read/write.

Syntax

ScriptControl.Timeout [= value]

If value is specified using the NoTimeout constant (-1), no timeout is used. When value is 0, the 
Timeout event occurs as soon as it is determined that a running script is hung for any reason. 

Remarks

When a timeout occurs, ScriptControl checks the AllowUI property on all running ScriptControl 
objects to see whether it is permitted to display user-interface elements. 

If the AllowUI property is True for any of the running controls, when a timeout occurs, the user is 
alerted with a dialog box. Selecting End causes causes the ScriptControl to stop the execution of all 
scripting engines until all engines have been removed from the call stack. Selecting Continue causes 
scripting code execution to continue for another timeout period based on the minimum value of the 
Timeout property for all currently running scripting engines. At the end of each timeout period, the 
dialog box is displayed, and user action is again required.

If the AllowUI property is False when a timeout occurs, the script execution is immediately ended, 
and the user receives no notification of what happened.



UseSafeSubset Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scproUseSafeSubsetC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scproUseSafeSubsetX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scproUseSafeSubsetA"}

Sets or returns a Boolean value indicating whether the host application is concerned about safety. 
UseSafeSubset is True if the host application cares about safety; False if it does not. Read/write.

Syntax

ScriptControl.UseSafeSubset [=value]

The UseSafeSubset property has these parts:

If value is True, access to some objects and procedures is not allowed.

Remarks

The scripting engine in use determines if, and when, the UseSafeSubset property is set. If no 
language is specified (Language property), the UseSafeSubset can be set at any time.

The objects and procedures that can't be used when UseSafeSubset is True are identical to those 
restricted by the browser's highest security setting.



Add Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthAddC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"scmthAddX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"scmthAddA"}

Adds a new module to the Modules collection.

Syntax

ScriptControl.Modules.Add(name[, object])

The Add method has these parts:

Part Description

name Required. String name of the module being added.

object Optional. The name of an object associated with the 
module.

Remarks

Optionally, an added module can have an object associated with it. If this kind of object is specified, 
event-handling code can be written behind the object and its subordinate objects.



AddCode Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthAddCodeC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scmthAddCodeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scmthAddCodeA"}

Adds specified code to a module.

Syntax

object.AddCode code

The AddCode method has these parts:

Part Description

object Required. The object to which code is being added or a 
reference to it. Can be any object in the "Applies To" list.

code Required. String containing code being added to the object.

Remarks

AddCode may be called multiple times.



AddObject Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthAddObjectC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scmthAddObjectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scmthAddObjectA"}

Makes run-time functionality available to a scripting engine.

Syntax

ScriptControl.AddObject(name, object[, addMembers])

The AddObject method has these parts:

Part Description

name Required. Name by which the added object is to be 
known in ScriptControl code.

object Required. Name of the object exposed at run time.

addMembers Optional. Boolean value. True if members of object are 
globally accessible; False if they are not.

Remarks

Use the AddObject method to make run-time functionality available to a scripting engine. The 
AddObject method enables a ScriptControl user to provide a set of name/object pairs to the 
scripting code. The scripting engines may expose the name in any way. In both VBScript and JScript, 
each name appears as a globally accessible name.



Clear Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthClearC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scmthClearX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scmthClearA"}

Clears all Error object properties.

Syntax

Error.Clear

Remarks

The properties of the Error object are routinely cleared when Reset, AddCode, Eval, or 
ExecuteStatement methods are executed. The Clear method is used in all other circumstances to 
clear Error object properties.



Eval Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthEvalC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scmthEvalX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scmthEvalA"}

Evaluates an expression and returns the result.

Syntax

object.Eval(expression)

The Eval method has these parts:

Part Description

object Required. The object in which the expression is being 
evaluated or a reference to it. Can be any object in the 
"Applies To" list.

expression Required. String containing the expression being evaluated.

Remarks

The context of the Eval method is determined by the object argument. If object is a module, the 
context is restricted to the named module. If object is the ScriptControl, the context is global.



ExecuteStatement Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthExecuteStatementC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scmthExecuteStatementX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scmthExecuteStatementA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"scmthExecuteStatementS"}

Executes a specified statement.

Syntax

object.ExecuteStatement statement

The ExecuteStatement method has these parts:

Part Description

object Required. The object providing the context in which the 
statement is being evaluated or a reference to it. Can be 
any object in the "Applies To" list.

statement Required. String containing the statement being executed.

Remarks

The context of the ExecuteStatement method is determined by the object argument. If object is a 
module, the context is restricted to the named module. If object is the ScriptControl, the context is 
global.



Item Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthItemC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scmthItemX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scmthItemA"}

Returns a specific member of a collection either by position or by key.

Syntax

object.Item(index)

The Item method has these parts:

Part Description

object Required. Can be any collection in the "Applies To" list or a 
reference to it.

index Required. An expression that specifies the position of a member 
of the collection. If a numeric expression, index must be a 
number from 1 to the value of the collection's Count property. If a 
string     expression  , index must correspond to the name of the 
member as specified when the member was added to the 
collection. Use the GlobalModule constant to access the special 
Global module that is always present in the Modules collection.

Remarks

In general, the order of members of a collection can't be relied on to be static. However, between 
additions and deletions, members do not move around.



Reset Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthResetC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scmthResetX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"scmthResetA"}

Discards all scripting code and objects that have been added to the ScriptControl.

Syntax

ScriptControl.Reset

Remarks

The State property of the ScriptControl is reset to Initialized (0).



Run Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scmthRunC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"scmthRunX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"scmthRunA"}

Runs a specified procedure.

Syntax

object.Run(procedureName, parameters())

The Run method has these parts:

Part Description

object Required. The object in which the procedure is being 
run or a reference to it. Can be any object in the 
"Applies To" list.

procedureName Required. String name of the procedure to run.

parameters() Required. An array containing any parameters for the 
procedure being run.

Remarks

There are two ways to run a procedure:

· Use the Run method. To do this, specify the procedure name as a string. This is useful when the 
names of the procedures are not known in advance.

· Use the CodeObject and call it directly. This is useful when you know the names of all procedures 
ahead of time.



Error Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scevtErrorC"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"scevtErrorX":1} 
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"scevtErrorA"}

Occurs in response to a run-time error.

Syntax

Sub Error(error)

The error argument is the number of the run-time error that occurred.

Remarks

An Error event can occur during event sinking or during a direct call to the scripting engine when 
calling into an object returned by the CodeObject property.



Timeout Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scevtTimeOutC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Example":"scevtTimeoutX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies 
To":"scevtTimeOutA"}

Occurs when the time specified in the Timeout property has elapsed, and a user has selected End 
from the resulting dialog box.

Syntax

Sub Timeout

Remarks

If several ScriptControl objects are present, the Timeout event will only occur for the initial 
ScriptControl object.



ScriptControl Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"sccstScriptControlC"}

The ScriptControl Object uses two different categories of constants: constants that apply to the 
ScriptControl library and constants that define ScriptControl states.

ScriptControl Constants

The constants used by the ScriptControl object library are defined as follows:

Constant Value Description 
GlobalModule Global Scripting engines support at least one module 

called the Global module, which is created 
when the ScriptControl Language property is 
set to a valid language.GlobalModule is used 
as an index into the ScriptControl Modules 
collection to retrieve this special module.

NoTimeout -1 Used to set the ScriptControl Timeout 
property so that scripting engine execution 
never times out.

ScriptControl States

The constants used to indicate ScriptControl states are defined as follows:

Constant Value Description 
Initialized 0 The scripting engine is initialized. The scripting 

engine will execute code but will not sink 
events generated by any objects added using 
the AddObject method.

Connected 1 The scripting engine will sink events generated 
by objects added using the AddObject method.



Adding Run-time Functionality to the Script Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scconAddingRuntimeFunctionalityToScriptControlC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"scconAddingRuntimeFunctionalityToScriptControlS"}

A major feature of the Script Control is the ability to add the run-time functionality of an ActiveX 
component to the control. Run-time functionality includes the public methods and properties of an 
object. The object can be any ActiveX component, such as an ActiveX DLL that has such public 
methods and properties. In other words, the Script Control can behave as a macro engine to invoke 
the methods of a component or set the component's properties. 

The following figure shows a simple implementation of this concept.

An application containing the Script Control runs a script contained on the form named frmScript. 
The script, written in VBScript, invokes the Multiply function which is defined in the component 
named MyObject.dll. The script assigns the result of the function to a variable, adds 2, and 
displays the final result. 

Using the AddObject Method

The syntax of the AddObject method requires a string and the object to be added. The string is the 
name of object when the object is invoked in a script. For example, the following code fragment adds 
a class module named MyClass to the Script Control. The name of the object is set to 
MyScriptObject:

Option Explicit
' Declare the object variable for the MyClass object.
Private objMyClass As New MyClass

Private Sub Form_Load()
' The Name of the Script Control is scDemo.

scDemo.AddObject "MyScriptObject", objMyClass
End Sub

When you subsequently write a script that invokes the object's methods or properties, the script must 
use the name MyScriptObject. For example, if the class module has a public function named 
TaxIt, and a public property named Rate, the script might contain the following code:

' This is VBScript code.
Sub RunObject() 

Dim NewRate
NewRate = InputBox("New rate:",,.09)
' Set the object's property.
MyScriptObject.Rate = NewRate
Dim price



price = InputBox("Price:",,100)
' Perform an operation using the TaxIt function.
MsgBox MyScriptObject.TaxIt(price)

End Sub

Use the Run method to run the script:

scDemo.Run "RunObject"



Creating a Simple Script Project
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scconCreatingSimpleScriptProjectC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"scconCreatingSimpleScriptProjectS"}

To demonstrate the addition of run-time functionality to the Script Control, use the following steps to 
construct a sample Visual Basic project named SimpleScript.

 Create the SimpleScript Project
1 On the File Project, click New Project.

2 In the New Project dialog box, double-click the Standard Exe icon.

3 Press F4 to open the Properties window. Double-click the Name property and change the form 
name to frmSimpleScript.

4 Double-click the Caption property and set it to "Simple Script Demo."

5 On the Project menu, click Add Class Module. 

6 In the Add Class Module dialog box, double-click the Class Module icon. You will add the run-
time functionality of this object to the Control.

7 In the Properties window, double-click Name and change the name to "MyClass."

8 Add the following code to the class module:

Option Explicit
Private ObjRate As Double

Public Property Get Rate() As Double
    Rate = ObjRate
End Property

Public Property Let Rate(newRate As Double)
    ObjRate = newRate
End Property

Public Function TaxIt(price) As Double
    TaxIt = price + (price * ObjRate)
End Function

9 Add the following controls to the form, and set their properties to the values listed in the following 
tables.

CommandButton1 

Property Value

Name cmdAddCode

Caption AddCode

Height 255

Left 0

Top 240

Width 1215

TextBox1 

Property Value

Name txtScript

MultiLine True

ScrollBars 2 - Vertical

Height 1575

Left 1320



Top 240

Width 4335

ListBox1

Property Value

Name lstProcedures

Height 645

Left 1320

Top 2160

Width 4335

10Right-click the Toolbox and click Components to display the Add Component dialog box. Double-
click Microsoft Script Control 5.0, and then click OK.

11On the Toolbox, double-click the ScriptControl icon to add it to the form.

12Rename the Script Control scDemo.

13Paste the following code into the Declaration section of the form.
Option Explicit
Private MyObject As New MyClass

Private Sub Form_Load()
' Add MyObject to the Script Control. This adds 
' the run-time functionality of the object to the
' control.
scDemo.AddObject "objScript", MyObject
' Add script to Textbox control.
txtScript.Text = _
"Sub SetRate()" & vbCrLf & _
"  Dim Rate" & vbCrLf & _
"  Rate = InputBox(""TaxRate:"",,.086)" & _
vbCrLf & _
"  objScript.Rate = Rate" & vbCrLf & _
"End Sub" & vbCrLf & vbCrLf & _
"Sub TotalPrice()" & vbCrLf & _
"  Dim price, ttl" & vbCrLf & _
"  price = InputBox(""Price:"",,100)" & _
vbCrLf & _
"  ttl =objScript.TaxIt(price)" & vbCrLf & _
"  MsgBox ttl" & vbCrLf & _
"End Sub"

End Sub

Private Sub cmdAddCode_Click()
' Add the code in the TextBox to the control.
scDemo.AddCode txtScript.Text

' Clear the ListBox, and add the name of each
' procedure in the Procedures collection.
lstProcedures.Clear
Dim p As Procedure
For Each p In scDemo.Procedures

lstProcedures.AddItem p.Name
Next



End Sub

Private Sub lstProcedures_Click()
' Run the procedure in the ListBox.
scDemo.Run lstProcedures.Text

End Sub

 Run the SimpleScript Project
1 Press F5 to run the project.

2 Click AddCode to add the code to the control. The ListBox control is filled with the names of the 
procedures that were just added.

3 In the ListBox control, click SetRate. A dialog box displays the default value 8.6. Change the rate 
or just click OK.

4 In the ListBox control, click TotalPrice. A dialog box displays the default value 100. Change the 
value and click OK. The total of the value plus the tax rate will then be displayed.

Editing Code in the Textbox Control

You can also change the code before adding it to the control again. 

1 In the TextBox control, change the SetRate default value for the MsgBox to 4.2.

2 Click AddCode.

3 In the ListBox control, click SetRate. The default has now changed.

Adding a Procedure in the TextBox Control

Experiment by inserting your own code into the Textbox control. 

1 In the Textbox control, paste the following code:
Sub VariableTax()
   Dim Years, results, ttlInterest
   Dim i, principal, payment, interest, mortgage
   principal = InputBox("Borrow:",,100000)
   Years = InputBox("How long:",,15)
   results = "Payment" & vbtab & "Interest" & vbcrlf
   For i = 1 to Years * 12
    interest =  (principal * objScript.Rate) / 12
    principal = principal - interest
    ttlInterest = ttlInterest + interest
    results = results & i & vbtab & formatNumber(interest,2) & vbcrlf
    Next 
    MsgBox results
    MsgBox "Total Interest Paid:" & "$" & formatNumber(ttlInterest,2)
  End Sub

2 Click AddCode.

3 Click SetRate, change the rate, and then click OK.

4 Click VariableTax to run the new procedure.



Using the Microsoft Script Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scconUsingMicrosoftScriptControlC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"scconUsingMicrosoftScriptControlS"}

The Microsoft Script Control allows the user to write and run scripts for a any scripting engine, such 
as VBScript or JScript, both of which are included with the Script Control. You can add the run-time 
functionality of any Automation object that exposes methods and properties to the Script Control. By 
combining the run-time functionality of an application with a scripting engine, you can create a 
scripting application that runs macros to control the application.

Overview

The Microsoft Script Control allows you to create an application that runs a scripting language such 
as VBScript or JScript. For example, the following diagram illustrates a simple implementation. When 
the user clicks the Run NameMe button, the NameMe procedure on the MyScript form is executed by 
the VBScript scripting engine.

The Run NameMe button uses the Script Control's Run method to execute the script.

' The name of the Script Control is ScriptControl1.
Private Sub RunNameMe_Click()

ScriptControl1.Run "NameMe"
End Sub

You can use the following steps to create the rest of the code required for this script:

1 Select a scripting language.

2 Add code to a procedure.

3 Run the procedure.

Select a Scripting Language

The first step is to configure the Script Control for the correct scripting language. By default, the Script 
Control uses VBScript. Use the Properties window to set the language property JScript, if that is 
appropriate. You can also use the Language property in code, as shown below:

ScriptControl1.Language = "JScript"

Other scripting languages can be used by the Script Control.

Add Code to a Procedure

Before you can run the NameMe procedure, use the AddCode method to add the complete procedure 
to the Script Control. If you try to add an incomplete procedure (one with no End Sub or End 
Function), an error will occur. The following example adds procedure code to the Script Control:

' When the ScriptRun app loads, the following code
' adds the NameMe procedure to the Control.
Private Sub Form_Load()

Dim strCode As String
strCode = _

   "Sub NameMe()" & vbCrLf & _
" Dim strName As String" & vbCrLf & _



" strName = InputBox(""Name?"")" & vbCrLf & _
   " MsgBox ""Your name is "" & strName" & vbcrLf & _

"End Sub"
ScriptControl1.AddCode strCode

End Sub

Alternatively, you can add procedure code using a TextBox control:

Private Sub Form_Load()
' The code is contained in the Textbox named 
' txtScript on the form named frmScript.
ScriptControl1.AddCode frmScript.txtScript.Text

End Sub

You can add arguments to a procedure or function.

Private Sub EvalFunc()
' Create the function.
Dim strFunction As String
strFunction = _
"Function ReturnThis(x, y)" & vbCrLf & _
" ReturnThis = x * y" & vbCrLf & _
"End Function"
' Add the code, then run the function.
ScriptControl1.AddCode strFunction
MsgBox ScriptControl1.Run("ReturnThis", 3, 25)

End Sub

Once code has been added using the AddCode method, you can then use the Run method to run 
the procedure.

Run the Procedure

The Run method runs any complete procedure that has been added to the Script Control. The 
following code fragment runs three defined procedures:

ScriptControl1.Run "FindName"
ScriptControl1.Run "AddName"
ScriptControl1.Run "Quit"

Executing Scripting Statements

To execute scripting code, the Script Control features the ExecuteStatement method. For example, 
the following code executes a MsgBox statement:

Private Sub Command1_Click()
' Create a message box with the word Hello in it. 
ScriptControl1.ExecuteStatement "MsgBox ""Hello"""

End Sub

Evaluating Scripting Statements

You can also evaluate lines of scripting code using the Eval method. The Eval method simply tests a 
line of scripting code, as shown in the following example:

Private Sub TryThis()
    ScriptControl1.ExecuteStatement "x = 100"
    MsgBox ScriptControl1.Eval("x = 100")  ' True
    MsgBox ScriptControl1.Eval("x = 100/2")  ' False
End Sub

In the preceding code, the ExecuteStatement method executes the statement and assigns the value 
100 to the variable x. The next two lines use the Eval method to test the statements x = 100 and x = 



100/2. The second line returns True, and the third returns False.

Creating an Instance of the Script Control

The Microsoft Script Control can be created as either a control or a standalone Automation object. 
This feature allows the Script Control to be used by any host, using any scripting language. The 
following example can be placed in any form. Note that the variable sc is not declared as type 
ScriptControl because the Control is not—and doesn't need to be—referenced in the project. As 
long as the Script Control is present and registered, the following code will work:

Private Sub Command1_Click()
Dim sc ' This can't be early-bound!
Dim strProgram As String
strProgram = "Sub Main" & vbCrLf & _
"MsgBox ""Hello World""" & vbCrLf & _
"End Sub"
Set sc = CreateObject("ScriptControl")
sc.language = "VBScript"
sc.addcode strProgram
sc.run "Main"

End Sub

Using the AllowUI Property

The AllowUI property determines if the scripting engine is permitted to display user interface 
elements. This can apply to the Script Control itself, such as when it displays timeout messages. It 
can also apply to scripting engines that use ActiveX scripting interfaces. For example, the following 
code will generate an error:

ScriptControl1.AllowUI = False
Dim strX As String
strX = "Sub Hello" & vbCrLf & _
"MsgBox ""Hello, World""" & vbCrLf & _
"End Sub"
ScriptControl1.AddCode strX
ScriptControl1.Run "Hello" ' No UI allowed!

Using the Error Property

With the Script Control, errors may come from two sources: the Script Control itself, or the script the 
Control is attempting to run. In the latter case, to debug scripting code, the Script Control features the 
Error property, which returns a reference to the Error object. Using the Error object, the Script 
Control can return the number and description of the error, and also the the line number where the 
error occurs in the script. 

Run the following code to see an example of the Control finding an error:

Private Sub MyError()
' The scripting code below divides by zero raising
' an error. 
Dim strCode As String
strCode = _
"Sub DivideByZero()" & vbCrLf & _
"Dim prime" & vbCrLf & _
"prime = 3" & vbCrLf & _
"MsgBox prime/0" & vbCrLf & _
"End Sub"
On Error GoTo scError
With ScriptControl1

.AddCode strCode



.Run "DivideByZero"
End With
Exit Sub

scError:
' Use the Error object to inform the user of the
' error, and what line it occured in.
Debug.Print ScriptControl1.Error.Number & _
":" & ScriptControl1.Error.Description & _
" in line " & ScriptControl1.Error.Line
Exit Sub

End Sub



Using the Modules Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"scconUsingModulesCollectionC"}                  {ewc 
HLP95EN.DLL,DYNALINK,"Specifics":"scconUsingModulesCollectionS"}

One way to manage your scripts is to use the Module object and the Modules collection.

Using Modules and Procedures

In Visual Basic, code is written in modules. Each module contains a set of functions and procedures 
that are related in a logical manner. Each Module object in the Modules collection has a one-to-one 
correlation to each script that you want to manage. Each Module object contains a collection of 
Procedure objects, each of which can be run using the Run method.

Adding Procedures to the Global Module

By default, the Script Control contains one Module, the Global module. All procedures contained in 
the Global module can be invoked by other modules. For example, the following code will return the 
name of the default module (Global):

' The Script Control is named scDemo.
MsgBox scDemo.Modules(1).Name ' returns "Global"

If you are working with only one Module, you can simply add code to the Global module by invoking 
the AddCode method without specifying a module, as shown below:

' Add the code contained in a textbox control named
' txtMyScript.
scDemo.AddCode txtMyScript.Text

Similarly, you can run any code that you added to the default module by invoking the Run method on 
the Script Control:

' Run a procedure named RunThis.
scDemo.Run "RunThis"

Adding Modules and Procedures

As with any collection object, you can use the Add method to add to the collection, giving each 
Module a name as you add it. Subsequently, you can use that name to specify the Module object, and 
call its procedures.

The following example first adds a module to the collection naming it Numbers. The code then adds 
the procedures found in a Textbox control to the Module object in the collection. Finally, a procedure 
from the module is run.

scDemo.Modules.Add "Numbers"
scDemo.Modules("Numbers").Procedures.Add _

txtMyScript.Text
' Run a procedure named Factors.
scDemo.Run scDemo.Modules("Numbers"). _
Procedures("Factors")

Clearing the Modules Collection

To clear all Module objects from the Modules collection, use the Reset method. The collection's 
Count property will be reset to 1, with only the Global module object remaining. All procedures 
(including those stored in the Global module) will also be cleared.

Using the CodeObject Property

After you have populated a Module object with procedures, you can use the CodeObject property to 
directly invoke a procedure instead of using the Run method. The following code shows an example 



of this:

Dim modX As Module
Set modX = scDemo.Modules.Add("myMod")
Dim strX As String
strX = "Sub Hello" & vbCrLf & _
"MsgBox ""Hello, World""" & vbCrLf & _
"End Sub"

modX.AddCode strX
Dim objX As Object
' Set the variable to the CodeObject, then 
' invoke the procedure.
Set objX = modX.CodeObject
objX.Hello




