
Microsoft OLE Messaging Library Programmer's Reference

 Introduction
 Overview
 Programmer's Guide
 Programmer's Reference
 Supplemental Information

Introduction

 Legal Information

 Introduction

 Quick Start

 About Installation

 About This Guide

Overview of OLE Messaging

 Overview
 Introduction to MAPI

 MAPI Programming Interfaces

 MAPI Custom Controls and the OLE Messaging Library

 MAPI Functions and the OLE Messaging Library
 Introduction to Automation
 OLE Messaging Library Object Design

 High-Level Objects

 Child Objects

 Object Collections

Programmer's Guide

 Programming Tasks

 Accessing Folders

 Adding Attachments to a Message

 Changing an Existing Address Entry

 Checking for New Mail

 Copying a Message to Another Folder

 Creating a New Address Book Entry

 Creating and Sending a Message

 Customizing a Folder or Message

 Deleting a Message

 Filtering Messages in a Folder

 Handling Errors

 Improving Application Performance

 Making Sure the Message Gets There

 Moving a Message to Another Folder

 Posting Messages to a Public Folder

 Reading a Message from the Inbox

 Searching for a Folder

 Searching for a Message

 Securing Messages

 Selecting Recipients from the Address Book

 Starting an OLE Messaging Session

 Using Addresses

 Viewing MAPI Properties

 Working With Conversations

Supplemental Information

 Error Codes

 How Programmable Objects Work

 COM Interfaces

 IDispatch

 The OLE Messaging Library: An Automation Server

 The OLE Messaging Library and MAPI

 Additional References

Objects

Methods Properties Summary

 Objects, Properties, and Methods

 Object Model

 Properties Common to All OLE Messaging Library Objects

 AddressEntries Collection Object

 AddressEntry Object

 AddressEntryFilter Object

 AddressList Object

 AddressLists Collection Object

 Attachment Object

 Attachments Collection Object

 Field Object

 Fields Collection Object

 Folder Object

 Folders Collection Object

 InfoStore Object

 InfoStores Collection Object

 Message Object

 MessageFilter Object

 Messages Collection Object

 Recipient Object

 Recipients Collection Object

 Session Object

Methods

Objects Properties Summary

 Add Method (AddressEntries Collection)

 Add Method (Attachments Collection)

 Add Method (Fields Collection)

 Add Method (Folders Collection)

 Add Method (Messages Collection)

 Add Method (Recipients Collection)

 AddressBook Method (Session Object)

 CompareIDs Method (Session Object)

 CopyTo Method (Folder Object)

 CopyTo Method (Message Object)

 Delete Method (AddressEntries Collection)

 Delete Method (AddressEntry Object)

 Delete Method (Attachment Object)

 Delete Method (Attachments Collection)

 Delete Method (Field Object)

 Delete Method (Fields Collection)

 Delete Method (Folder Object)

 Delete Method (Folders Collection)

 Delete Method (Message Object)

 Delete Method (Messages Collection)

 Delete Method (Recipient Object)

 Delete Method (Recipients Collection)

 DeliverNow Method (Session Object)

 Details Method (AddressEntry Object)

 GetAddressEntry Method (Session Object)

 GetFirst Method (AddressEntries Collection)

 GetFirst Method (Folders Collection)

 GetFirst Method (Messages Collection)

 GetFolder Method (Session Object)

 GetInfoStore Method (Session Object)

 GetLast Method (AddressEntries Collection)

 GetLast Method (Folders Collection)

 GetLast Method (Messages Collection)

 GetMessage Method (Session Object)

 GetNext Method (AddressEntries Collection)

 GetNext Method (Folders Collection)

 GetNext Method (Messages Collection)

 GetPrevious Method (AddressEntries Collection)

 GetPrevious Method (Folders Collection)

 GetPrevious Method (Messages Collection)

 IsSameAs Method (AddressEntry Object)

 IsSameAs Method (AddressEntryFilter Object)

 IsSameAs Method (AddressList Object)

 IsSameAs Method (Attachment Object)

 IsSameAs Method (Folder Object)

 IsSameAs Method (InfoStore Object)

 IsSameAs Method (Message Object)

 IsSameAs Method (MessageFilter Object)

 IsSameAs Method (Recipient Object)

 Logoff Method (Session Object)

 Logon Method (Session Object)

 MoveTo Method (Folder Object)

 MoveTo Method (Message Object)

 Options Method (Message Object)

 ReadFromFile Method (Attachment Object)

 ReadFromFile Method (Field Object)

 Resolve Method (Recipient Object)

 Resolve Method (Recipients Collection)

 Send Method (Message Object)

 SetNamespace Method (Fields Collection)

 Sort Method (AddressEntries Collection)

 Sort Method (Folders Collection)

 Sort Method (Messages Collection)

 Update Method (AddressEntry Object)

 Update Method (Folder Object)

 Update Method (Message Object)

 WriteToFile Method (Attachment Object)

 WriteToFile Method (Field Object)

Properties

Methods Objects Summary

 Address Property (AddressEntry Object)

 Address Property (AddressEntryFilter Object)

 Address Property (Recipient Object)

 AddressEntries Property (AddressList Object)

 AddressEntry Property (Recipient Object)

 AddressLists Property (Session Object)

 Application Property (All OLE Messaging Library Objects)

 Attachments Property (Message Object)

 Class Property (All OLE Messaging Library Objects)

 Conversation Property (Message Object)

 Conversation Property (MessageFilter Object)

 ConversationIndex Property (Message Object)

 ConversationTopic Property (Message Object)

 Count Property (AddressEntries Collection)

 Count Property (AddressLists Collection)

 Count Property (Attachments Collection)

 Count Property (Fields Collection)

 Count Property (Folders Collection)

 Count Property (InfoStores Collection)

 Count Property (Messages Collection)

 Count Property (Recipients Collection)

 CurrentUser Property (Session Object)

 DeliveryReceipt Property (Message Object)

 DisplayType Property (AddressEntry Object)

 DisplayType Property (Recipient Object)

 Encrypted Property (Message Object)

 Fields Property (AddressEntry Object)

 Fields Property (AddressEntryFilter Object)

 Fields Property (Attachment Object)

 Fields Property (Folder Object)

 Fields Property (Message Object)

 Fields Property (MessageFilter Object)

 Filter Property (AddressEntries Collection)

 Filter Property (Messages Collection)

 FolderID Property (Folder Object)

 FolderID Property (Message Object)

 Folders Property (Folder Object)

 ID Property (AddressEntry Object)

 ID Property (AddressList Object)

 ID Property (Field Object)

 ID Property (Folder Object)

 ID Property (InfoStore Object)

 ID Property (Message Object)

 ID Property (Recipient Object)

 Importance Property (Message Object)

 Importance Property (MessageFilter Object)

 Inbox Property (Session Object)

 Index Property (AddressList Object)

 Index Property (Attachment Object)

 Index Property (Field Object)

 Index Property (InfoStore Object)

 Index Property (Recipient Object)

 InfoStores Property (Session Object)

 IsReadOnly Property (AddressList Object)

 Item Property (AddressEntries Collection)

 Item Property (AddressLists Collection)

 Item Property (Attachments Collection)

 Item Property (Fields Collection)

 Item Property (Folders Collection)

 Item Property (InfoStores Collection)

 Item Property (Messages Collection)

 Item Property (Recipients Collection)

 MAPIOBJECT Property (Folder Object)

 MAPIOBJECT Property (Message Object)

 MAPIOBJECT Property (Session Object)

 Members Property (AddressEntry Object)

 Messages Property (Folder Object)

 Name Property (AddressEntry Object)

 Name Property (AddressEntryFilter Object)

 Name Property (AddressList Object)

 Name Property (Attachment Object)

 Name Property (Field Object)

 Name Property (Folder Object)

 Name Property (InfoStore Object)

 Name Property (Recipient Object)

 Name Property (Session Object)

 Not Property (AddressEntryFilter Object)

 Not Property (MessageFilter Object)

 OperatingSystem Property (Session Object)

 Or Property (AddressEntryFilter Object)

 Or Property (MessageFilter Object)

 Outbox Property (Session Object)

 Parent Property (All OLE Messaging Library Objects)

 Position Property (Attachment Object)

 ProviderName Property (InfoStore Object)

 ReadReceipt Property (Message Object)

 Recipients Property (Message Object)

 Recipients Property (MessageFilter Object)

 Resolved Property (Recipients Collection)

 RootFolder Property (InfoStore Object)

 Sender Property (Message Object)

 Sender Property (MessageFilter Object)

 Sent Property (Message Object)

 Sent Property (MessageFilter Object)

 Session Property (All OLE Messaging Library Objects)

 Signed Property (Message Object)

 Size Property (Message Object)

 Size Property (MessageFilter Object)

 Source Property (Attachment Object)

 StoreID Property (Folder Object)

 StoreID Property (Message Object)

 Subject Property (Message Object)

 Subject Property (MessageFilter Object)

 Submitted Property (Message Object)

 Text Property (Message Object)

 Text Property (MessageFilter Object)

 TimeFirst Property (MessageFilter Object)

 TimeLast Property (MessageFilter Object)

 TimeReceived Property (Message Object)

 TimeSent Property (Message Object)

 Type Property (AddressEntry Object)

 Type Property (Attachment Object)

 Type Property (Field Object)

 Type Property (Message Object)

 Type Property (MessageFilter Object)

 Type Property (Recipient Object)

 Unread Property (Message Object)

 Unread Property (MessageFilter Object)

 Value Property (Field Object)

 Version Property (Session Object)

Programmer's Reference Summary

- A -

Add Method (AddressEntries Collection)
Add Method (Attachments Collection)
Add Method (Fields Collection)
Add Method (Folders Collection)
Add Method (Messages Collection)
Add Method (Recipients Collection)
Address Property (AddressEntry Object)
Address Property (AddressEntryFilter Object)
Address Property (Recipient Object)
AddressBook Method (Session Object)
AddressEntries Collection Object
AddressEntries Property (AddressList Object)

AddressEntry Object
AddressEntry Property (Recipient Object)
AddressEntryFilter Object
AddressList Object
AddressLists Collection Object
AddressLists Property (Session Object)
Application Property (All OLE Messaging Library Objects)
Attachment Object
Attachments Collection Object
Attachments Property (Message Object)

- B -

- C -

Class Property (All OLE Messaging Library Objects)
CompareIDs Method (Session Object)
Conversation Property (Message Object)
Conversation Property (MessageFilter Object)
ConversationIndex Property (Message Object)
ConversationTopic Property (Message Object)
CopyTo Method (Folder Object)
CopyTo Method (Message Object)
Count Property (AddressEntries Collection)
Count Property (AddressLists Collection)
Count Property (Attachments Collection)
Count Property (Fields Collection)
Count Property (Folders Collection)
Count Property (InfoStores Collection)
Count Property (Messages Collection)
Count Property (Recipients Collection)
CurrentUser Property (Session Object)

- D -

Delete Method (AddressEntries Collection)
Delete Method (AddressEntry Object)
Delete Method (Attachment Object)
Delete Method (Attachments Collection)
Delete Method (Field Object)
Delete Method (Fields Collection)
Delete Method (Folder Object)
Delete Method (Folders Collection)
Delete Method (Message Object)
Delete Method (Messages Collection)
Delete Method (Recipient Object)
Delete Method (Recipients Collection)
DeliverNow Method (Session Object)
DeliveryReceipt Property (Message Object)
Details Method (AddressEntry Object)
DisplayType Property (AddressEntry Object)
DisplayType Property (Recipient Object)

- E -

Encrypted Property (Message Object)

- F -

Field Object
Fields Collection Object
Fields Property (AddressEntry Object)
Fields Property (AddressEntryFilter Object)
Fields Property (Attachment Object)
Fields Property (Folder Object)
Fields Property (Message Object)
Fields Property (MessageFilter Object)
Filter Property (AddressEntries Collection)
Filter Property (Messages Collection)
Folder Object
FolderID Property (Folder Object)
FolderID Property (Message Object)
Folders Collection Object
Folders Property (Folder Object)

- G -

GetAddressEntry Method (Session Object)
GetFirst Method (AddressEntries Collection)
GetFirst Method (Folders Collection)
GetFirst Method (Messages Collection)
GetFolder Method (Session Object)
GetInfoStore Method (Session Object)
GetLast Method (AddressEntries Collection)
GetLast Method (Folders Collection)
GetLast Method (Messages Collection)
GetMessage Method (Session Object)
GetNext Method (AddressEntries Collection)
GetNext Method (Folders Collection)
GetNext Method (Messages Collection)
GetPrevious Method (AddressEntries Collection)
GetPrevious Method (Folders Collection)
GetPrevious Method (Messages Collection)

- H -

- I -

ID Property (AddressEntry Object)
ID Property (AddressList Object)
ID Property (Field Object)
ID Property (Folder Object)
ID Property (InfoStore Object)
ID Property (Message Object)
ID Property (Recipient Object)
Importance Property (Message Object)
Importance Property (MessageFilter Object)

Inbox Property (Session Object)
Index Property (AddressList Object)
Index Property (Attachment Object)
Index Property (Field Object)
Index Property (InfoStore Object)
Index Property (Recipient Object)
InfoStore Object
InfoStores Collection Object
InfoStores Property (Session Object)
IsReadOnly Property (AddressList Object)
IsSameAs Method (AddressEntry Object)
IsSameAs Method (AddressEntryFilter Object)
IsSameAs Method (AddressList Object)
IsSameAs Method (Attachment Object)
IsSameAs Method (Folder Object)
IsSameAs Method (InfoStore Object)
IsSameAs Method (Message Object)
IsSameAs Method (MessageFilter Object)
IsSameAs Method (Recipient Object)
Item Property (AddressEntries Collection)
Item Property (AddressLists Collection)
Item Property (Attachments Collection)
Item Property (Fields Collection)
Item Property (Folders Collection)
Item Property (InfoStores Collection)
Item Property (Messages Collection)
Item Property (Recipients Collection)

- J -

- K -

- L -

Logoff Method (Session Object)
Logon Method (Session Object)

- M -

MAPIOBJECT Property (Folder Object)
MAPIOBJECT Property (Message Object)
MAPIOBJECT Property (Session Object)
Members Property (AddressEntry Object)
Message Object
MessageFilter Object
Messages Collection Object
Messages Property (Folder Object)
MoveTo Method (Folder Object)
MoveTo Method (Message Object)

- N -

Name Property (AddressEntry Object)
Name Property (AddressEntryFilter Object)

Name Property (AddressList Object)
Name Property (Attachment Object)
Name Property (Field Object)
Name Property (Folder Object)
Name Property (InfoStore Object)
Name Property (Recipient Object)
Name Property (Session Object)
Not Property (AddressEntryFilter Object)
Not Property (MessageFilter Object)

- O -

OperatingSystem Property (Session Object)
Options Method (Message Object)
Or Property (AddressEntryFilter Object)
Or Property (MessageFilter Object)
Outbox Property (Session Object)

- P -

Parent Property (All OLE Messaging Library Objects)
Position Property (Attachment Object)
ProviderName Property (InfoStore Object)

- Q -

- R -

ReadFromFile Method (Attachment Object)
ReadFromFile Method (Field Object)
ReadReceipt Property (Message Object)
Recipient Object
Recipients Collection Object
Recipients Property (Message Object)
Recipients Property (MessageFilter Object)
Resolve Method (Recipient Object)
Resolve Method (Recipients Collection)
Resolved Property (Recipients Collection)
RootFolder Property (InfoStore Object)

- S -

Send Method (Message Object)
Sender Property (Message Object)
Sender Property (MessageFilter Object)
Sent Property (Message Object)
Sent Property (MessageFilter Object)
Session Object
Session Property (All OLE Messaging Library Objects)
SetNamespace Method (Fields Collection)
Signed Property (Message Object)
Size Property (Message Object)
Size Property (MessageFilter Object)
Sort Method (AddressEntries Collection)
Sort Method (Folders Collection)

Sort Method (Messages Collection)
Source Property (Attachment Object)
StoreID Property (Folder Object)
StoreID Property (Message Object)
Subject Property (Message Object)
Subject Property (MessageFilter Object)
Submitted Property (Message Object)

- T -

Text Property (Message Object)
Text Property (MessageFilter Object)
TimeFirst Property (MessageFilter Object)
TimeLast Property (MessageFilter Object)
TimeReceived Property (Message Object)
TimeSent Property (Message Object)
Type Property (AddressEntry Object)
Type Property (Attachment Object)
Type Property (Field Object)
Type Property (Message Object)
Type Property (MessageFilter Object)
Type Property (Recipient Object)

- U -

Unread Property (Message Object)
Unread Property (MessageFilter Object)
Update Method (AddressEntry Object)
Update Method (Folder Object)
Update Method (Message Object)

- V -

Value Property (Field Object)
Version Property (Session Object)

- W -

WriteToFile Method (Attachment Object)
WriteToFile Method (Field Object)

- X -

- Y -

- Z -

Legal Information

Microsoft OLE Messaging Library
Programmer’s Reference
Information in this document is subject to change without notice. This document is provided for
informational purposes only and Microsoft Corporation makes no warranties, either express or implied,
in this document. The entire risk of the use or the results of the use of this document remains with the
user. Companies, names, and data used in examples herein are fictitious unless otherwise noted. No
part of this document may be reproduced or transmitted in any form or by any means, electronic or
mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or other intellectual
property rights covering subject matter in this document. The furnishing of this document does not give
you any license to these patents, trademarks, copyrights, or other intellectual property rights except as
expressly provided in any written license agreement from Microsoft.

© 1996 Microsoft Corporation. All rights reserved.

Microsoft, Visual Basic, Visual C++, Windows, Windows NT, and Win32 are registered trademarks of
Microsoft Corporation.

Introduction
The Microsoft® OLE Messaging Library exposes messaging objects for use by Microsoft® Visual
Basic®, Microsoft® C/C++, and Microsoft® Visual C++® applications.

The OLE Messaging Library lets you quickly and easily add to your Visual Basic application the ability
to send and receive mail messages and to interact with folders and address books. You can create
programmable messaging objects, then use their properties and methods to meet the needs of your
application.

When you combine messaging objects with other programmable objects exposed by Microsoft®
Access, Microsoft® Excel, and Microsoft® Word, you can quickly build custom applications that cover
all your business needs. For example, with these powerful building blocks you can build a custom
application that allows your users to extract information from a database, copy it to a spreadsheet for
analysis, then create a report with the results and mail the report to several people.

The Microsoft OLE Messaging Library does not represent a new messaging model. It represents an
additional interface to the Messaging Application Programming Interface (MAPI) model, designed to
handle the most common tasks for client developers using Visual Basic, C/C++, and Visual C++.

This guide assumes that you are familiar with the Microsoft Visual Basic programming model. To help
you use the OLE Messaging Library, this guide provides a short overview of the MAPI architecture. For
complete reference information, see the MAPI Programmer's Reference.

The Microsoft OLE Messaging Library requires installation of MAPI and a tool that supports
Automation. Automation is supported by the following Microsoft applications:

· Microsoft Visual Basic version 3.0 or later

· Microsoft Visual Basic for Applications

· Microsoft Access version 2.0 or later

· Microsoft Excel version 5.0 or later

· Microsoft Project version 4.0 or later

· Microsoft Visual C++ version 1.5 or later

Note    Microsoft Visual Basic version 3.0 does not support multivalued properties.

Quick Start
The following example demonstrates how easy it is to add messaging to your applications when you
use Visual Basic or Visual Basic for Applications.

In this code fragment, we first create a Session object and log on. We then create a Message object
and set its properties to indicate its subject and content. Next we create a Recipient object and call its
Resolve method to obtain a full messaging address. We then call the Message object’s Send method
to transmit the message. Finally, we display a completion message and log off.

' You must install the MAPI SDK, registering the
' OLE Messaging Library, to run this sample code.
' This sample uses Visual Basic 3.0 error handling.
'
Function QuickStart()
Dim objSession As Session ' Session object
Dim objMessage As Message ' Message object
Dim objOneRecip As Recipient ' Recipient object

On Error GoTo error_olemsg

' create a session and log on -- username and password in profile
Set objSession = CreateObject("MAPI.Session")
' change the parameters to valid values for your configuration
objSession.Logon profileName:="Princess Leia"

' create a message and fill in its properties
Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Gift of Droids"
objMessage.Text = "Help us, Obi-Wan. You are our only hope."

' create the recipient
Set objOneRecip = objMessage.Recipients.Add
objOneRecip.Name = "Obi-Wan Kenobi"
objOneRecip.Type = mapiTo
objOneRecip.Resolve ' get MAPI to determine complete e-mail address

' send the message and log off
objMessage.Send showDialog:=False
MsgBox "The message has been sent"
objSession.Logoff
Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Exit Function

End Function

The OLE Messaging Library invalidates the Message object after you call its Send method. This code
fragmnent logs off to end the session after sending the message, but if you were to continue the MAPI
session, you could avoid potential errors by setting the Message object to Nothing.

About Installation
The OLE Messaging Library is installed with the MAPI Software Development Kit (SDK). The MAPI
SDK setup program registers the OLE Messaging Library for subsequent use by tools that support
Automation.

Note    In the current release, the OLE Messaging Library is installed only as part of the MAPI SDK.
No separate setup program is provided.

When you use the OLE Messaging Library with a tool that supports Automation, verify that the tool has
referenced the OLE Messaging Library. For example, when you are using Microsoft Visual Basic
version 4.0, choose the References command from the Tools menu, and select the check box for
OLE/Messaging 1.0 Object Library.

When the OLE Messaging Library is available, the following flag is set in the WIN.INI file:

[Mail]
OLEMessaging=1

The OLEMsgPersistenceTimeout registry setting controls how quickly the OLE Messaging Library
shuts down and unloads from memory after all messaging objects are released by client applications.
On Win32® systems, the setting appears at the following registry location:

HKEY_LOCAL_MACHINE\Software\Microsoft\Windows Messaging Subsystem

For 16-bit Microsoft® Windows® systems, the OLEMsgPersistenceTimeout setting appears within the
[MAPI] section of the WIN.INI file.

About This Guide
Overview defines the MAPI terms used in this guide and compares the OLE Messaging Library with the
other MAPI programming interfaces. It then describes the design of the OLE Messaging Library,
defining the objects and the collections of objects that are available to you with the OLE Messaging
Library. This section also explains the relationships between these objects.

Programming Tasks offers sample Visual Basic code for many common programming tasks, such as
creating and sending a message, posting a message to a public folder, navigating through folders,
searching through address books, and handling errors.

Objects, Properties, and Methods contains comprehensive reference information for the properties and
methods of all objects and collection objects.

The appendixes, Error Codes and How Programmable Objects Work, offer additional background
information about Automation, the technology used by the OLE Messaging Library.

The best way to learn about the OLE Messaging Library is to alternate your reading with hands-on
programming. You can use the sample code that is provided with the OLE Messaging Library.

Overview
This section offers a brief introduction to MAPI and describes how the OLE Messaging Library fits into
the mix of MAPI programming interfaces. It provides a short description of Automation, which is the
basis of the design of the OLE Messaging Library. The section concludes with a conceptual overview of
the OLE Messaging Library.

Introduction to MAPI
MAPI defines a complete architecture for messaging applications. The architecture specifies several
well-defined components. This allows system administrators to mix and match components to support
a broad range of vendors, computing devices, and communication protocols.

The MAPI architecture can be used for e-mail, scheduling, personal information managers, bulletin
boards, and online services that run on mainframes, personal computers, and hand-held computing
devices. The comprehensive architectural design allows MAPI to serve as the basis for a common
information exchange.

The MAPI architecture defines messaging applications, or clients, that interact with various message
services through the MAPI programming interfaces, as shown in the following diagram.

To use the messaging services, a client must first establish a session. A session is a specific
connection between the client and the MAPI interface based on information provided in a profile. The
profile contains configuration and user preference information. For example, the profile contains the
names of various supporting files, the time interval to check for new messages, and other settings,
such as whether to remember the user’s password or to prompt the user for the password during each
logon. A successful logon is required to enable the client’s use of the MAPI system.

After establishing a MAPI session, the client can use the MAPI services. MAPI defines three primary
services: address books, transports, and message stores.

An address book service is similar to a telephone directory or Yellow Pages. The address book can be
thought of as a persistent database that contains valid addressing information. An entry in the address
book is called an address entry and consists of a display name, e-mail type, and e-mail address. The
display name refers to the name, such as a person’s full name, that an application displays to its users.
You can provide a display name, and the address book service looks up the display name and provides
the corresponding messaging system address.

A transport supports communication between different devices and different underlying messaging
systems.

A message store stores messages in a hierarchical structure that consists of one or more folders. A
folder can be a personal folder that contains an individual’s messages, or a public folder, similar to a
bulletin board or online forum, that is accessible to many users. Each folder can contain messages or
other folders.

A message represents a communication that is sent from the sender to one or more recipients or that
gets posted in a public folder. A message can include one or more attachments, which are attached to
and sent with the message. An attachment can be the contents of a file, a link to a file, an OLE object,
or another message embedded in this message.

Several properties can be associated with a message: its subject, its importance, its delivery properties
(such as the time it is sent and received), and whether to notify the sender when the message is
delivered and read. Some message properties identify the message as part of a conversation. The
conversation properties allow you to group related messages and identify the sequence of comments
and replies in the thread of the conversation.

The message can have one or more recipients. A recipient can be an individual or a distribution list. A
distribution list can contain individuals and other distribution lists. For messages that are posted to
public folders, the recipient can also be the public folder itself. Before sending a message, you should
resolve each recipient; this means you should check each recipient against the address book to make
sure its e-mail address is valid.

MAPI Programming Interfaces
Microsoft provides several programming interfaces for MAPI, so that developers working in a wide
variety of development environments can use this common message exchange.

The following figure shows the OLE Messaging Library as a layer that is built on top of MAPI. This is
similar to the way function calls to the Common Messaging Calls (CMC) interface are mapped to the
underlying MAPI interfaces. It also demonstrates that the OLE Messaging Library is the only interface
available to all the concerned languages, namely Visual Basic, Visual Basic for Applications (VBA), and
C/C++.

It is important to recognize that the OLE Messaging Library does not offer access to all of the features
of MAPI. In particular, it is designed primarily for clients and is not suitable for service providers.

The following table summarizes the programming interfaces that Microsoft provides for MAPI.

Programming
interface

Description

MAPI custom controls User interface elements for Visual Basic version
3.0 developers.

Simple MAPI Functions for Visual Basic version 3.0 and C/C++
client developers that allow access to the Inbox
(no access to MAPI properties). Most developers
should probably use either CMC or MAPI rather
than Simple MAPI.

OLE Messaging Library Programmable messaging objects for Visual
Basic/VBA and C/C++ developers.

Common Messaging
Calls (CMC)

Functions for C/C++ client developers; X.400 API
Association (XAPIA) standard.

 MAPI OLE Component Object Model (COM) interfaces
for C/C++ developers. Full access to all MAPI
programming interfaces. Implemented and called
by clients, service providers, and MAPI itself.

MAPI Custom Controls and the OLE Messaging Library
Although both the MAPI custom controls and the OLE Messaging Library are designed for Visual Basic
programmers, they represent significantly different capabilities.

A control is a user interface element that enables you to display data for the user. The custom controls
are usually convenient for offering more specialized capabilities than are provided by the standard user
interface controls such as the list box, combo box, command button, and option button.

A programmable object may offer some user interface capabilities, but that is usually not its primary
purpose. It offers the very powerful ability to interact with existing OLE objects. For a familiar example,
consider the data access objects provided with Microsoft Visual Basic version 3.0 Professional Edition
and subsequent versions. The data access library lets you create and use such database objects as
tables and queries. As the data access library lets you use database objects, the OLE Messaging
Library lets you add messaging to your applications.

MAPI Functions and the OLE Messaging Library
Compared to the function call interfaces of traditional application programming interface (API) libraries,
an Automation object library yields faster development and code that is easier to read, debug, and
maintain.

The OLE Messaging Library also takes care of many programming details for you, such as memory
management and keeping count of the number of objects in collections.

The following table compares a traditional function call interface, such as CMC or Simple MAPI, with
the OLE Messaging Library interface.

Task or code Function call interface OLE Messaging
Library

Dim mFiles() As MapiFile
Dim mRecips() As MapiRecip

Requires arrays of these
structures to be
declared, even if the
developer does not use
them.

Automatically manages
these structures as child
objects of the parent
Message object.

ReDim mRecips(0)
ReDim mFiles(0)

Structures are resized
by redimensioning
arrays.

Objects are added to
collections with the Add
method.

mMessage.RecipCount = 1

Requires developer to
indicate the number of
recipients and
attachments.

Automatically
determines the number
of objects in these
collections.

Error handling

Each function call
returns its own set of
error codes.

Integrated with Visual
Basic error handling
during both design and
run time.

Return values Returned implicitly in the
parameters of the
function call.

Returned as an explicit
result of a method or in
object properties.

As programming tasks grow more complex, the function call approach becomes increasingly unwieldly.
In contrast, the OLE Messaging Library expands gracefully to encompass greater complexity. A well-
planned, thorough framework of collections, objects, methods, and properties can neatly encompass
very complex systems.

Introduction to Automation
The OLE Messaging Library is based on the capabilities provided by Automation. The OLE Messaging
Library allows you to create instances of programmable messaging objects that you can reference with
tools that support Automation, such as Visual Basic.

For the purposes of this document, an object is an Automation object: a software component that
exposes its properties and methods. Such an object follows the Visual Basic programming model and
lets you get properties, set properties, and call methods.

You can think of programmable objects as additions or extensions to the programmable objects that
are offered as part of Visual Basic, such as forms and controls. Forms and controls expose their
properties and methods so that developers can tailor these objects for the needs of their programs. In
addition to the forms and controls, Visual Basic allows for the definition of a wide variety of other
programmable objects by providing the CreateObject and LoadObject functions. Note that these
functions do not have specialized names like “CreateSpreadsheet” or “LoadDatabase”. They are
general-purpose functions that enable an open-ended number of programmable objects, including the
OLE Messaging Library.

Throughout this section, Visual Basic is used as a concrete example of a tool that supports Automation,
but the statements about Visual Basic apply to all such tools.

Visual Basic scripts drive the OLE Messaging Library. The scripts can also drive other libraries that
support Automation, such as the libraries of programmable objects provided by Microsoft Excel version
5.0 and Microsoft Access version 2.0. Visual Basic can call many different programmable object
libraries and can act as the glue that holds all of these objects together.

Each library can create its own objects, set properties, and call methods. The Visual Basic program
coordinates the work of all the libraries. For example, it can direct the Microsoft Access object to find
data in a specific table, direct the Microsoft Excel object to run calculations using that data, and then
direct OLE Messaging Library objects to create a message containing the results of those calculations
and send the message to several recipients.

OLE Messaging Library Object Design
The OLE Messaging Library is designed for ease of use and convenience. It implements the MAPI
functions most used by client applications. The OLE Messaging Library is not designed for
development of service providers. (For more information about service providers, see Introduction to
MAPI.)

Note    The OLE Messaging Library design does not represent a one-to-one correspondence with
MAPI objects. The description of the OLE Messaging Library object design does not always apply to
the MAPI programming interface.

The OLE Messaging Library defines the following objects:

AddressEntries collection

AddressEntry

AddressEntryFilter

AddressList

AddressLists collection

Attachment

Attachments collection

Field

Fields collection

Folder

Folders collection

InfoStore

InfoStores collection

Message

MessageFilter

Messages collection

Recipient

Recipients collection

Session

The objects supported in the OLE Messaging Library can be grouped into three categories:

High-level objects, which can be created directly in a Visual Basic program.

Child objects, which are created automatically when the high-level objects are created.

Collections, or groups of objects of the same type.

High-Level Objects
The high-level, or top-level, objects are the Session, Folder, and Message objects. Other objects are
accessible only through these high-level objects.

You can create a Session object either through early binding:

 Dim objSession as MAPI.Session
 objSession.Logon

or through late binding:

 Dim objSession As Object
 Set objSession = CreateObject (“MAPI.Session”)
 objSession.Logon

and then use the Logon method to initiate a session with MAPI.

Note that early binding is not supported in OLE Messaging Library versions previous to 1.1.

C/C++ programmers use globally unique identifiers (GUIDs) for these objects, defined in the type
library for the OLE Messaging Library. The following C++ code fragment demonstrates how to create a
Session object and call its Logon method:

// create a Session object and log on using IDispatch interface
// to the OLE Messaging library
#include <ole2.h>
#include <stdio.h>
#include <stdlib.h> // for exit
#define dispidM_Logon 119 // get constants for all props, methods
// allows you to save cost of GetIdsFromNames calls
// can generate yourself by calling GetIdsFromNames for all
// properties and methods
// GUID values for Session defined in the type library
static const CLSID GUID_OM_SESSION =
{0x3FA7DEB3, 0x6438, 0x101B, {0xAC, 0xC1, 0, 0xAA, 0, 0x42, 0x33, 0x26}};
void main(void)
{
HRESULT hr;

/* interface pointers */
LPUNKNOWN punk = NULL; // IUnknown *; used to get IDispatch *
DISPPARAMS dispparamsNoArgs = {NULL, NULL, 0, 0};
VARIANT varRetVal;
IDispatch * pSession;

 //Initialize OLE.
 hr = OleInitialize(NULL);
 printf("OleInitialize returned 0x%lx\n", hr);
 VariantInit(&varRetVal);
// Create an instance of the OLE Messaging Library Session object
// Ask for its IDispatch interface.
 hr = CoCreateInstance(GUID_OM_SESSION,
 NULL,
 CLSCTX_SERVER,
 IID_IUnknown,
 (void FAR* FAR*)&punk);

 printf("CoCreateInstance returned 0x%lx\n", hr);
 if (S_OK != hr)
 exit(1);
 hr = punk->QueryInterface(IID_IDispatch, (void FAR* FAR*)&pSession);
 punk->Release(); // no longer needed; release it
 printf("QI for IID_IDispatch returned 0x%lx\n", hr);
 if (S_OK != hr)
 exit(1);
// Logon using the session object; call its Logon method
 hr = pSession->Invoke(dispidM_Logon, // value = 119
 IID_NULL,
 LOCALE_SYSTEM_DEFAULT,
 DISPATCH_METHOD,
 &dispparamsNoArgs,
 &varRetVal,
 NULL,
 NULL);
 printf("Invoke returned 0x%lx\n", hr);
 printf("Logon call returned 0x%lx\n", varRetVal.lVal);
// do other things here...
// when done, release the Session dispatch object and shut down OLE
 pSession->Release();
 OleUninitialize();

The following table lists the GUIDs for the high-level objects accessible to C/C++ programmers. Note
the close relationship; only the fourth of the 16 bytes differs among the GUIDs.

OLE Messaging Library
object

GUID

Session object 3FA7DEB36438101BACC100AA00423326

Folder object 3FA7DEB56438101BACC100AA00423326

Message object 3FA7DEB46438101BACC100AA00423326

Child Objects
All OLE Messaging Library objects can be considered as relative to a Session object. A session’s
immediate child objects are the AddressLists collection object, the InfoStores collection object, and the
Inbox or Outbox Folder object. These provide access, respectively, to the root of the address book
hierarchy for the current session, the set of all message stores available to the session, and the current
default Inbox and Outbox folders.

The session’s child objects have their own child objects, which in turn have child objects, and so on.
This hierarchy permits increasingly detailed levels of access. The AddressLists collection, for example,
contains one or more AddressList child objects, each representing one available address book
container. Each of these has as its child an AddressEntries collection containing AddressEntry child
objects. Each address entry that is a distribution list has a Members property that provides another
AddressEntries collection for the members of the distribution list.

See the Object Model diagram for the logical hierarchy of the OLE Messaging Library.

In addition to the hierarchy of objects, each object has properties and methods. The hierarchy is
important because it determines the correct syntax to use in your Visual Basic applications. In your
Visual Basic code, the relationship between a parent object and a child object is denoted by the left-to-
right sequence of the objects in the Visual Basic statement. For example,

objSession.AddressLists(“Personal Address Book”).AddressEntriesColl(2)

refers to the second AddressEntry object in the AddressEntries collection of the current session’s
personal address book (PAB) AddressList object.

Object Collections
A collection is a group of objects of the same type. In the OLE Messaging Library, the name of the
collection takes the plural form of the individual OLE Messaging Library object. For example, the
Messages collection is the name of the collection that contains Message objects. The OLE Messaging
Library supports the following collections:

AddressEntries

AddressLists

Attachments

Fields

Folders

InfoStores

Messages

Recipients

For purposes of accessing their individual member objects, collections can be characterized as either
large or small.

For a small collection, the service provider maintains an accurate count of the number of objects in the
collection. The AddressLists, Attachments, Fields, InfoStores, and Recipients collections are
considered small collections. You can access individual items using an index into the collection. You
can also add and delete items from the collection (except for the AddressLists and InfoStores
collections, which are read-only for the OLE Messaging Library).

Small collections, with a known number of member objects, can rely on their Count and Item
properties. The Count property holds at all times the current number of member objects, and the Item
property can select any arbitrary member of the collection. A small collection also has an implied
temporary Index property, assigned by the OLE Messaging Library. Index properties are valid only
during the current MAPI session and can change as your application adds and deletes objects. The
Index value for the first member object is 1.

For example, in an Attachments collection with three Attachment objects, the first attachment is
referred to as Attachments.Item(1), the second as Attachments.Item(2), and the third as
Attachments.Item(3). If your application deletes the second attachment, the third attachment becomes
the second and Attachments.Item(3) has the value Nothing. The Count property is always equal to the
highest Index in the collection.

Other applications can add and delete objects while your application is running. The Count property is
not updated until you re-create or refresh the collection, for example by calling the parent Message
object’s Update or Send method. The attachment is saved in the MAPI system when you refresh the
Message object, and the Count properties of its Attachments and Recipients collections are updated.

For a large collection, the service provider cannot always maintain an accurate count of member
objects. The AddressEntries, Folders, and Messages collections are considered large collections. In
preference to using a count, these collections support Get methods that let you get the first, last, next,
or previous item in the collection. Programmers needing to access individual objects in a large
collection are strongly advised to use the Visual Basic For Each statement or the Get methods.

Large collections, with an uncertain number of member objects, support the Count and Item properties
in a limited way. The Count property can tell you if the collection is empty or not, but it cannot be used
as the collection’s exact size if it has a very large value such as mapiMaxCount. The Item property
satisfies syntactical requirements in an indexed loop but cannot select an arbitrary member of the
collection. For more information on using the Count and Item properties in a large collection, see the
example in the Count property.

MAPI assigns a permanent, unique string ID property when an individual member object is created.
These identifiers do not change from one MAPI session to another. You can call the Session object’s
GetAddressEntry, GetFolder, or GetMessage methods, specifying the unique identifier, to obtain the
individual AddressEntry, Folder, or Message objects. You can also use the GetFirst and GetNext
methods to move from one object to the next in these collections.

Note    When you want to use a collection, create a variable that refers to that collection to ensure
correct operation of the GetFirst, GetNext, GetPrevious, and GetLast methods.

For example, the following two code fragments are not equivalent:

' sample 1: the collection returns the same message both times!
Set objMessage = objInBox.Messages.GetFirst
...
Set objMessage = objInBox.Messages.GetNext

' sample 2: use an explicit variable to refer to the collection;
' the Get methods return two different messages
Set objMsgColl = objSession.Inbox.Messages
Set objMessage = objMsgColl.GetFirst
...
Set objMessage = objMsgColl.GetNext

Code fragment 1 causes the OLE Messaging Library to create a new Messages collection and to
reinitialize the value of the collection’s “current message” in each Set statement. The GetFirst and
GetNext method calls return the same value for objMessage.

Code fragment 2 uses the existing collection objMsgColl, so the GetFirst and GetNext calls function
as expected for collections with more than one item.

The collections in the OLE Messaging Library are specifically designed for messaging applications.
The definition of collections in this document may differ slightly from the definitions of collections in the
OLE programming documentation. Where there are differences, the description of the operation of the
OLE Messaging Library supersedes the other documentation.

Programming Tasks
This section describes some of the common programming tasks you can perform with the OLE
Messaging Library. The first task your application must do is obtain a valid Session object as described
in Starting an OLE Messaging Session.

Category Programming tasks

General programming tasks Handling Errors
Improving Application Performance
Starting an OLE Messaging Session
Viewing MAPI Properties

Working with messages Adding Attachments to a Message
Checking for New Mail
Creating and Sending a Message
Customizing a Folder or Message
Deleting a Message
Filtering Messages in a Folder
Making Sure the Message Gets There
Reading a Message from the Inbox
Searching for a Message
Securing Messages

Working with addresses Changing an Existing Address Entry
Creating a New Address Book Entry
Selecting Recipients from the Address Book
Using Addresses

Working with folders Accessing Folders
Copying a Message to Another Folder
Customizing a Folder or Message
Moving a Message to Another Folder
Searching for a Folder

Working with public folders Posting Messages to a Public Folder
Working with Conversations

The following table summarizes the programming procedures that you must use to perform these
tasks. Note that all tasks require a Session object and successful logon.

Programming task Procedure

Accessing Folders 1. Access the Folder object’s Folders
property to obtain its collection of
subfolders.

2. Use the Folders collection’s GetFirst,
GetNext, GetPrevious, and GetLast
methods    to navigate through the
subfolders.

Adding Attachments to a
Message

1. Create or obtain the Message object that
is to include the attachment.

2. Call the Message object’s Attachments
collection’s Add method.

3. Call the Message object’s Update or
Send method.

Changing an Existing 1. Obtain a valid AddressEntry object.

Address Entry 2. Update the Name, Type, or Address
property.

3. Call the AddressEntry object’s Update
method.

Checking for New Mail Count messages in the Inbox folder that
have the Unread property set to True.

 - or -
Count messages received after a specified
time.

Copying a Message to
Another Folder

1. Obtain the source message that you
want to copy.

2. Call the source Message object’s
CopyTo method.

3. Call the new Message object’s Update
method.

Creating a New Address
Book Entry

1. Obtain the Session object’s AddressLists
collection.

2. Select the AddressList object
corresponding to the desired address book
container.

3. Obtain the address list’s AddressEntries
collection.

4. Call the collection’s Add method.

Creating and Sending a
Message

1. Call the Messages collection’s Add
method to create a Message object.

2. Set the Message object’s Text, Subject,
and other message properties.

3. Call the message’s Recipients
collection’s Add method to add a recipient.

 - or -
3. Copy a Recipients collection from
another message to the new message’s
Recipients property.

4. Set the Recipient object’s Name,
Address, or AddressEntry property.

5. Call the Recipient object’s Resolve
method to validate the address information.

6. Call the Message object’s Send method.

Customizing a Folder or
Message

1. Create or obtain the Folder or Message
object that will have the custom properties.

2. Call the object’s Fields collection’s Add
method.

Deleting a Message 1. Select the message you want to delete.

2. Call the Message object’s Delete
method.

Filtering Messages in a
Folder

1. Access the Folder in which you wish to
filter the messages.

2. Obtain the MessageFilter object for the
Folder.

3. Select and set the desired MessageFilter
properties to specify the filter.

Handling Errors Use the Microsoft Visual Basic On Error
Goto statement to add exception-handling
code just as you would in any Visual Basic
application.

Improving Application
Performance

Each dot in a Visual Basic statement directs
the OLE Messaging Library to create a
temporary internal object. Use explicit
variables when you reuse messaging
objects.

Making Sure the Message
Gets There

1. Set the Message object’s
DeliveryReceipt and/or ReadReceipt
property to True.

2. Call the Message object’s Send method.

Moving a Message to
Another Folder

1. Obtain the source message that you
want to move.

2. Call the source Message object’s
MoveTo method.

3. Call the Message object’s Update
method at its new location.

Posting Messages to a
Public Folder

Use a procedure similar to Creating and
Sending a Message, where you specify the
name of the public folder as the recipient
name.

 - or -
1. Call the public folder’s Messages
collection’s Add method to create a
Message object.

2. Set the Message object’s Text, Subject,
ConversationSubject,
ConversationIndex, TimeSent,
TimeReceived, and other message
properties.

3. Set the Message object’s Unread,
Submitted, and Sent properties to True.

4. Call the Message object’s Send or
Update method to post the message.

Reading a Message from the
Inbox

1. Call the session’s Inbox folder’s GetFirst,
GetNext, GetPrevious, and GetLast
methods to obtain a Message object.

2. Obtain the Message object’s Text
property.

Searching for a Folder Use the Session object’s GetFolder method
to obtain the folder from its known identifier
value.

 - or -
Call the Folders collection’s Get methods to
get individual Folder objects, and compare
properties of each folder with the desired

property values.

Searching for a Message Use the Session object’s GetMessage
method to obtain the message from its
known identifier value.

 - or -
Call the Messages collection’s Get methods
to get individual Message objects, using a
message filter to reduce the number of
messages searched, and if necessary
compare properties of each message with
the desired property values.

Securing Messages 1. Set the Message object’s Encrypted
and/or Signed properties to True.

2. Perform processing on the message’s
Text property to encrypt or sign the
message.

3. Call the Message object’s Send method.

Selecting Recipients from
the Address Book

1. Call the session’s AddressBook method
to use the MAPI address book dialog box.

2. Set a Recipients collection object to the
Recipients collection returned by the
AddressBook method.

3. Use that Recipients collection or copy
individual recipients from it.

Starting an OLE Messaging
Session

1. Create or obtain a Session object.

2. Call the Session object’s Logon method.

Using Addresses 1. Set the message’s Recipient object’s
Address property to a full address.

2. Call the Recipient object’s Resolve
method.

Viewing MAPI Properties Specify a MAPI property tag as the Fields
collection’s Item property.

Working with Conversations 1. Set the message’s ConversationTopic
property.

2. Set the message’s ConversationIndex
property.

3. Send the message by calling the Send
method.

 - or -
3. Post the message in the public folder by
setting the Submitted property to True.

It is important to understand the hierarchy of the OLE Messaging Library objects, because the
hierarchical relationships between objects determine the correct syntax of Visual Basic statements.
The relative positions of these objects in the hierarchy indicate how the objects appear from left to right
in a Visual Basic statement.

In the sample code that appears in this guide, individual statements are often broken across several
lines. The underscore character (_) appears as a line continuation character, indicating that the
statement is continued on the next line. This convention is used in an attempt to make the material
easy to read.

Accessing Folders
Folders can be organized in a hierarchy, allowing you to access folders within folders. Subfolders
appear in the Folders collection returned by the Folders property of the Folder object containing them.

With the OLE Messaging Library version 1.1 and later, you can create a new folder within an existing
folder using the Add method of the Folders collection.

There are two general approaches for accessing folders:

· Obtaining the folder directly by calling the Session object’s GetFolder method.

· Navigating folders using the Folders collection’s Get methods.

To obtain the folder directly using the GetFolder method, you must have the folder’s identifier. In the
following code fragment, the identifier is stored in the variable strFolderID:

Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function
End Function

To navigate through the hierarchy of folders, start with a known or available folder, such as the Inbox or
Outbox, and examine its Folders collection. You can use the collection’s GetFirst and GetNext
methods to get each Folder object in the collection. When you have a subfolder, you can examine its
properties, such as its name, to see whether it is the desired folder. The following code fragment
navigates through all existing subfolders of the Inbox:

Function TestDrv_Util_ListFolders()
 On Error GoTo error_olemsg
 If objFolder Is Nothing Then

 MsgBox "Must select a folder object; see Session menu"
 Exit Function
 End If
 If 2 = objFolder.Class Then ' verify object is a Folder
 ' with OLE Messaging Library 1.1, can use Class value:
 ' If mapiFolder = objFolder.Class Then
 x = Util_ListFolders(objFolder) ' use current global folder
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

' Function: Util_ListFolders
' Purpose: Recursively list all folders below the current folder
' See documentation topic: Folders collection
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Folders ' the child Folders collection
Dim objOneSubfolder As Folder ' a single Folder object
 On Error GoTo error_olemsg
 If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

See Also
Searching for a Folder

Adding Attachments to a Message
You can add one or more attachments to a message. You add each attachment to the Attachments
collection obtained from the Message object’s Attachments property. The relationship between the
Message object and an attachment is shown here:

Message object
Attachments collection

Attachment object
Type property
Source property

The OLE Messaging Library supports several different kinds of attachments: files, links to files, OLE
objects, and embedded messages. An attachment’s type is specified by its Type property. To add an
attachment, use the related Attachment object property or method appropriate for that type, as shown
in the following table:

Attachment type Related Attachment object property or
method

mapiFileData ReadFromFile method

mapiFileLink Source property

mapiOLE ReadFromFile method

mapiEmbeddedMessage ID property of the Message object to be
embedded

The following example demonstrates inserting a file as an attachment. This example assumes that the
application has already created the Session object variable objSession and successfully called the
Session object’s Logon method, as described in Starting an OLE Messaging Session.

' Function: Attachments_Add_Data
' Purpose: Demonstrate the Add method for type = mapiFileData
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add_Data()
Dim objMessage As Message ' local
Dim objRecip As Recipient ' local

 On Error GoTo error_olemsg
 If objSession Is Nothing Then
 MsgBox ("must first log on; use Session->Logon")
 Exit Function
 End If
 Set objMessage = objSession.Outbox.Messages.Add
 If objMessage Is Nothing Then
 MsgBox "could not create a new message in the Outbox"
 Exit Function
 End If
 With objMessage ' message object
 .Subject = "attachment test"
 .Text = "Have a nice day."
 .Text = " " & objMessage.Text ' add placeholder for attachment
 Set objAttach = .Attachments.Add ' add the attachment
 If objAttach Is Nothing Then
 MsgBox "Unable to create new Attachment object"
 Exit Function

 End If
 With objAttach
 .Type = mapiFileData
 .Position = 0 ' render at first character of message
 .Name = "c:\smiley.bmp"
 .ReadFromFile "c:\smiley.bmp"
 End With
 objAttach.Name = "smiley.bmp"
 .Update ' update message to save attachment in MAPI system
 End With
 MsgBox "Created message, added 1 mapiFileData attachment, updated"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

The attachment overwrites the placeholder character at the rendering position specified by the
attachment’s Position property. A space is normally used for the placeholder character.

The OLE Messaging Library does not actually place the attachment within the message; that is the
responsibility of the messaging client application. You can also use the value -1 for the Position
property, which indicates that the attachment should be sent with the message, but should not be
rendered via the Position property.

To insert an attachment of type mapiOLE, use code similar to the mapiFileData type example. Set the
attachment type to mapiOLE and make sure that the specified file is a valid OLE docfile (a file saved
by an OLE-aware application such as Microsoft Word version 7.0 that uses the OLE interfaces
IStorage and IStream).

To add an attachment of type mapiFileLink, set the Type property to mapiFileLink and set the
Source property to the file name. The following sample code demonstrates this type of attachment:

' Function: Attachments_Add
' Purpose: Demonstrate the Add method for type = mapiFileLink
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add()
 On Error GoTo error_olemsg

 If objAttachColl Is Nothing Then
 MsgBox "must first select an attachments collection"
 Exit Function
 End If
 Set objAttach = objAttachColl.Add ' add the attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' render at first character of message
 .Source = "\\server\bitmaps\honey.bmp"
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update message; save attachment in MAPI system
 MsgBox "Added an attachment of type mapiFileLink"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also
Creating and Sending a Message

Changing an Existing Address Entry
The OLE Messaging Library lets you change existing address entries in any address book container for
which you have modification permission. Typically you have such permission only for your personal
address book (PAB).

To change an existing address entry
1. Select the AddressEntry object to modify. You can obtain the AddressEntry object in several ways,

including the following:

· Call the Session object’s AddressBook method to let the user select recipients. The method
returns a Recipients collection. Examine each Recipient object’s AddressEntry property to obtain
its child AddressEntry object.

· Use the Message object’s Sender property to obtain an AddressEntry object.

· Use the Message object’s Recipients property to obtain a Recipients collection. Then obtain an
individual Recipient object and use its AddressEntry property to obtain its child AddressEntry
object.

2. Change individual properties of the AddressEntry object, such as the Address, Name, or Type
property.

3. Call the AddressEntry object’s Update method.

The following sample code demonstrates this procedure:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
' See documentation topic: Update method AddressEntry object
Function AddressEntry_Update()
Dim objRecipColl As Recipients ' Recipients collection
Dim objNewRecip As Recipient ' New recipient object

On Error GoTo error_olemsg
If objSession Is Nothing Then
 MsgBox "must log on first"
 Exit Function
End If
Set objRecipColl = objSession.AddressBook ' let user select
If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"
 Exit Function
End If
Set objNewRecip = objRecipColl.Item(1)
With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can update the type, too ...
 .Update
End With
MsgBox "Updated address entry name: " & objNewRecip.AddressEntry.Name
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

See Also
Using Addresses, Creating a New Address Book Entry, Selecting Recipients from the Address Book

Checking for New Mail
The Inbox contains new messages. When users refer to new messages, they can mean messages that
have arrived after the last time messages were read, or they can mean all unread messages.
Depending on the needs of your application users, your applications can check various Message object
properties to determine whether there is new mail.

You can force immediate delivery of any pending messages by calling the Session object’s
DeliverNow method.

The following sample code tracks new messages by checking for messages in the Inbox with the
Unread property value equal to True:

' Function: Util_CountUnread
' Purpose: Count unread messages in a folder
'
Function Util_CountUnread()
Dim cUnread As Integer ' counter

 On Error GoTo error_olemsg
 If objMessages Is Nothing Then
 MsgBox "must select a Messages collection"
 Exit Function
 End If
 Set objMessage = objMessages.GetFirst
 cUnread = 0
 While Not objMessage Is Nothing ' loop through all messages
 If True = objMessage.Unread Then
 cUnread = cUnread + 1
 End If
 Set objMessage = objMessages.GetNext
 Wend
 MsgBox "Number of unread messages = " & cUnread
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

You can also check for new messages by counting the messages received after a specified time. For
example, your application can maintain a variable that represents the time of the latest message
received, based on the Message object’s TimeReceived property. The application can periodically
check for all messages with a TimeReceived value greater than the saved value. When new
messages are found, the application increments its count of new messages and updates the saved
value.

With the OLE Messaging Library version 1.1 or later, you can use the Messages collection’s Filter
property to obtain a MessageFilter object. Setting the message filter’s TimeFirst or Unread property
reduces the number of messages presented to the loop doing the counting or other processing of new
messages.

See Also
Filtering Messages in a Folder, Reading a Message from the Inbox

Copying a Message to Another Folder
The procedure documented in this section demonstrates, first, the old way to copy message properties
using the Messages collection’s Add method, and then how to take advantage of the newer CopyTo
method of the Message object.

Note    With OLE Messaging Library version 1.0, the Message object’s Sender property and other
read-only properties of the Message object were not preserved during the first part of the procedure in
this section. To preserve these properties using the old procedure, you had to append their text fields
to read/write properties, such as the Message object’s Text property.

With the CopyTo method, every property that is set on a Message object is automatically copied to
the new Message object, regardless of whether it has read-only or read/write access. The access of
every property is also preserved across the copy.

To copy a message from one folder to another folder using the OLE
Messaging Library
1. Obtain the source message that you want to copy.

2. Call the destination folder’s Messages collection’s Add method, supplying the source message
properties as parameters.

 - or -
Call the source Message object’s CopyTo method.

3. Call the new Message object’s Update method to save all new information in the MAPI system.

The hierarchy of objects is as follows:

Session object
        Folder object (Inbox or Outbox)
                Messages collection
                        Message object
        InfoStores collection
                InfoStore object
                        Folder object
                                Messages collection
  Message object

To obtain the source message that you want to copy, first obtain its folder, then obtain the message
within the folder’s Messages collection. For more information about finding messages, see Searching
for a Message.

To obtain the destination folder, you can use the following approaches:

· Use the Folders collection’s Get methods to search for a specific folder.

· Call the Session object’s GetFolder method with a string parameter that specifies the FolderID, a
unique identifier for that folder.

For more information about finding folders, see Searching for a Folder.

The following example copies the first two messages in the given folder to the Inbox. They could as
easily be copied to any folder with a known identifier and therefore accessible using the Session
object’s GetFolder method. The example uses the old procedure to copy the first message and the
new CopyTo method to copy the second.

This code fragment assumes that the application has already created the Session object variable
objSession and successfully called the Session object’s Logon method, as described in Starting an

OLE Messaging Session.

'/********************************/
' Function: Util_CopyMessage
' Purpose: Utility functions that demonstrates code to copy a message
' See documentation topic: Copying A Message To Another Folder
Function Util_CopyMessage()
' obtain the source messages to copy
' for this sample, just copy the first two messages to the Inbox
' assume session object already created, validated, and logged on
Dim objMsgColl As Messages ' given folder’s Messages collection
Dim objThisMsg As Message ' original message from given folder
Dim objInbox As Folder ' destination folder is Inbox
Dim objCopyMsg As Message ' new message that is the copy
Dim objOneRecip As Recipient ' single message recipient being copied
Dim strRecipName As String ' recipient name from original message
Dim i As Integer ' loop counter

On Error GoTo error_olemsg
If objGivenFolder Is Nothing Then
 MsgBox "Must supply a valid folder"
 Exit Function
End If
Set objMsgColl = objGivenFolder.Messages ' will be reused later
' (... then validate the Messages collection before proceeding ...)
Set objThisMsg = objMsgColl.GetFirst() ' filter parameter not needed
If objThisMsg Is Nothing Then
 MsgBox "No valid messages in given folder"
 Exit Function
End If
' Get Inbox as destination folder
Set objInbox = objSession.Inbox
If objInbox Is Nothing Then
 MsgBox "Unable to open Inbox"
 Exit Function
Else
 MsgBox "Copying first message to Inbox"
End If
' Copy first message using old procedure
Set objCopyMsg = objInbox.Messages.Add _
 (Subject:=objThisMsg.Subject, _
 Text:=objThisMsg.Text, _
 Type:=objThisMsg.Type, _
 Importance:=objThisMsg.Importance)
If objCopyMsg Is Nothing Then
 MsgBox "Unable to create new message in Inbox"
 Exit Function
End If
' Copy all the recipients
For i = 1 To objThisMsg.Recipients.Count Step 1
 strRecipName = objThisMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create recipient in message copy"

 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
Next i
' Copy other properties; a few listed here as an example
objCopyMsg.Sent = objThisMsg.Sent
objCopyMsg.Text = objThisMsg.Text
objCopyMsg.Unread = objThisMsg.Unread
' Update new message so all changes are saved in MAPI system
objCopyMsg.Update
' If MOVING a message to another folder, delete the original message:
' objThisMsg.Delete
' Move operation implies that the original message is removed

' Now copy second message using new procedure
Set objThisMsg = objMsgColl.GetNext ()
' (... then validate the second message before proceeding ...)
Set objCopyMsg = objThisMsg.CopyTo (objInbox.ID)
' Then Update and we’re done
objCopyMsg.Update
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Exit Function ' so many steps to succeed; just exit on error

End Function

Note that the old procedure does not preserve all message properties. The CopyTo method copies all
properties with their values and access capabilities (read-only or read/write) unchanged.

See Also
Moving a Message to Another Folder

Creating a New Address Book Entry
You can create new address entries in a collection with the OLE Messaging Library version 1.1 and
later.

You need permission to Add a new entry to an address book container. Usually you only have this
permission for your personal address book (PAB).

For address entries in an address book container, the hierarchy of objects is as follows:

Session object
          AddressLists collection
                    AddressList object
                              AddressEntries collection
  AddressEntry object
  Fields collection
  Field object

The procedure is basically to work down the hierarchy. Once a session is established and logged on,
you use the Session object’s AddressLists property to obtain the AddressLists collection, select the
AddressList object corresponding to the desired address book container, and use the address list’s
AddressEntries property to call the AddressEntries collection’s Add method.

If you have not specified all the parameters in the call to the Add method, you can then supply the
missing values by setting AddressEntry object properties such as Address, Name, and Type. You can
also set MAPI properties and custom properties using the new address entry’s Fields property. To
create a custom property you call the Fields collection’s Add method.

Finally, you commit all the new data to the address book container and to the MAPI system by calling
the new address entry’s Update method.

This code fragment adds a new entry to a user’s personal address book (PAB). Note the use of early
binding and of default properties. The objects are declared using early binding to reduce the amount of
additional code necessary. The Item property is the default property of all collections and so does not
need to be specifically referenced in the statements selecting items from the AddressLists and Fields
collections.

' we assume we have add permission for our PAB
Function AddEntry()

Dim objSession As MAPI.Session ' Session object
Dim objMyPAB As AddressList ' personal address book object
Dim objNewEntry As AddressEntry ' new address entry object

On Error GoTo error_olemsg

' log on to session, supplying username and password
objSession.Logon 'profileName:="MyProfile", _
 'profilePassword:="my_password"

' get PAB AddressList from AddressLists collection of Session
Set objMyPAB = MAPI.Session.AddressLists(“Personal Address Book”)
If objMyPAB Is Nothing Then
 MsgBox "Invalid PAB from session"
 Exit Function
End If

' add new AddressEntry to AddressEntries collection of AddressList
Set objNewEntry = objMyPAB.AddressEntries.Add “SMTP”, “Jane Doe”
objNewEntry.Address = “janed@exchange.microsoft.com”

' set MAPI property in new AddressEntry
' (&H3A08001E is MAPI property tag for PR_BUSINESS_TELEPHONE_NUMBER)
objNewEntry.Fields(&H3A08001E) = “+1-206-555-9901”

' add custom property to new AddressEntry and set its value
objNewEntry.Fields.Add “CellularPhone”, vbString
objNewEntry.Fields(“CellularPhone”) = “+1-206-555-9902”

' commit new entry, properties, fields, and values to PAB AddressList
objNewEntry.Update
MsgBox “New address book entry successfully added”
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Exit Function ' so many steps to succeed; just exit on error

End Function

Creating and Sending a Message
Creating and sending a message is easy when you use the OLE Messaging Library.

To create and send a message
1. Establish a session with the MAPI system.

2. Call the Messages collection’s Add method to create a Message object.

3. Supply values for the Message object’s Subject, Text, and other properties.

4. Call the Recipients collection’s Add method for each recipient, or copy the Recipients property from
an existing message to the new message.

5. If necessary, set each Recipient object’s Address, AddressEntry, and Name properties.

6. Call each Recipient object’s Resolve method to validate the address information.

7. Call the Message object’s Send method.

The following code fragment demonstrates each of these steps for a message sent to a single
recipient:

' This also appears as the "QuickStart" example in "Overview"
Function QuickStart()
Dim objSession As Object ' Session object
Dim objMessage As Object ' Message object
Dim objOneRecip As Object ' Recipient object

 On Error GoTo error_olemsg

' create a session then log on, supplying username and password
Set objSession = CreateObject("MAPI.Session")
' change the parameters to valid values for your configuration
objSession.Logon 'profileName:="Princess Leia", _
 'profilePassword:="go_rebels"

' create a message and fill in its properties
Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Gift of droids"
objMessage.Text = "Help us, Obi-Wan. You are our only hope."

' create the recipient
Set objOneRecip = objMessage.Recipients.Add
objOneRecip.Name = "Obi-Wan Kenobi"
objOneRecip.Type = mapiTo
objOneRecip.Resolve

' send the message and log off
objMessage.Update
objMessage.Send showDialog:=False
MsgBox "The message has been sent"
objSession.Logoff
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

Note    When you edit an object other than the Message object, save your changes using the Update
method before you clear or reuse the variable that refers to the object. If you do not use the Update
method, your changes can be lost without warning.

After calling the Message object’s Send method, you should not try to access the Message object
again. The Send method invalidates the Message object.

See Also
Adding Attachments to a Message, Customizing a Folder or Message

Customizing a Folder or Message
The OLE Messaging Library allows customization and extensibility by offering the Field object and
Fields collection. A Field object includes a name, a data type, and a value property. An object that
supports fields, in effect, lets you add your own custom properties to the object.

The OLE Messaging Library supports the use of fields with the AddressEntry, AddressEntryFilter,
Attachment, Folder, Message and MessageFilter objects. These objects all have a Fields property
through which the Fields collection can be accessed.

For example, consider that you want to add a “Keyword” property to messages so that you can
associate a string with the message. You may wish to use a self-imposed convention that values of the
“Keyword” are restricted to a small set of strings. You can then organize your messages by the
“Keyword” property.

The following code fragment shows how to add the “Keyword” field to a Message object:

' Function: Fields_Add
' Purpose: Add a new Field object to the Fields collection
' See documentation topic: Add method (Fields collection)
Function Fields_Add()
Dim cFields As Integer ' count of fields in the collection
Dim objNewField As Field ' new Field object

On Error GoTo error_olemsg
If objFieldsColl Is Nothing Then
 MsgBox "must first select Fields collection"
 Exit Function
End If
Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
End If
cFields = objFieldsColl.Count
MsgBox "new Fields collection count = " & cFields
' you can now write code that searches for
' messages with this "custom property"
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

That the new field information specified by the Add method is not actually saved until you call the
Message object’s Update method.

MAPI stores all custom properties that represent date and time information using Greenwich Mean
Time (GMT). The OLE Messaging Library converts these properties so that the values appear to the
user in local time.

For more information on the Field object’s data types, see its Type property.

See Also
Creating and Sending a Message

Deleting a Message
The Message object’s Delete method deletes the message.

To delete a message
1. Select the message you want to delete.

2. Call the Message object’s Delete method.

3. Set the Message object to Nothing.

You should not try to access the message after deleting it. Doing so can produce unpredictable results.

See Also
Searching for a Message

Filtering Messages in a Folder
A program sometimes needs to traverse an entire collection in order to take some action on all its
members, such as displaying, sending, or copying them. But traversing a large collection like
AddressEntries or Messages can take an inordinate amount of time. If you are only interested in certain
members of the collection, your code can make efficient use of a filter.

The purpose of filtering is to limit the members of a collection that are presented to a traversing
operation such as the Visual Basic For Each construction or a GetFirst … GetNext loop. The
members are limited based on the values of the properties that you specify for the filter. Only those
members that satisfy every filter property you have set are passed to your loop for processing.

In the case of messages in a folder, the hierarchy of objects is as follows:

Session object
        Folder object (Inbox or Outbox)
                Messages collection
                        Message object
                                Attachments collection
                                Fields collection
                                Recipients collection
                        MessageFilter object
                                Fields collection
  Field object

Suppose, for example, you wish to find all unread messages received before a certain date, and to
display the subject of each one. Before your display loop, you can set the message filter to limit the
messages your loop sees. To do this, you obtain the Inbox folder, the folder’s Messages collection, and
the collection’s MessageFilter. Next you set the filter’s Unread property to True and its TimeLast
property to the desired date. Then your loop deals only with the messages it needs.

This code fragment displays the Subject property of every message in the Inbox received before
September 3, 1996 that has never been read:

Dim objSess, objInbox, objMsgColl, objMsgFilter As Object
Dim objMess As Message ' individual message processed in loop
On Error GoTo error_olemsg
Set objSess = CreateObject (“MAPI.Session”)
objSess.Logon ' assume valid session for this example
Set objInbox = objSess.Inbox
If objInbox Is Nothing Then
 MsgBox "Invalid IPM Inbox from session"
 Exit Function
End If
Set objMsgColl = objInbox.Messages ' get Inbox’s messages collection
' (... then validate the messages collection before proceeding ...)
Set objMsgFilter = objMsgColl.Filter
' (... then validate the message filter before proceeding ...)
objMsgFilter.TimeLast = DateValue ("09/03/96")
objMsgFilter.Unread = True ' filter for unread messages
' Message filter is now specified; ready for display loop
For Each objMess in objMsgColl ' performs loop, Sets each objMess
 MsgBox "Message not read: " & objMess.Subject
Next ' even easier than objMsgColl.GetFirst and .GetNext
error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)

Exit Function ' so many steps to succeed; just exit on error

Handling Errors
The OLE Messaging Library raises exceptions for all errors. When you write Visual Basic applications
that use the OLE Messaging Library, use the same run-time error handling techniques that you use in
all your Visual Basic applications: the Visual Basic On Error GoTo statement.

Note that the error values and error handling techniques vary slightly depending on whether you are
using Visual Basic version 4.0 or older versions of Visual Basic for Applications.

When you use older versions of Visual Basic for Applications, use the Err function to obtain the status
code and the Error$ function to obtain a descriptive error message, as in the following code fragment:

' Visual Basic for Applications error handling
MsgBox "Error number " & Err & " description. " & Error$(Err)

When you use Visual Basic 4.0, use the Err object’s Number property to obtain the status code and its
Description property to obtain the error message, as in the following fragment:

‘' Visual Basic version 4.0 error handling
MsgBox "Error " & Err.Number & " description. " & Err.Description

Depending on your version of Microsoft Visual Basic, the error code is returned as a long integer or as
a short integer, and you should appropriately define the value of the error codes checked by your
program.

When you use Visual Basic 4.0, the error value is returned as the value of the MAPI HRESULT data
type, a long integer error code. When you use Visual Basic for Applications, the error value is returned
as the sum of decimal 1000 and the low-order word of HRESULT. This is because Visual Basic 3.0
reserves all run-time error values below 1000 for its own errors.

This code fragments checks for an error corresponding to the MAPI error code
mapiE_USER_CANCEL, which has the value &H80040113. Visual Basic 4.0 users can check directly
for this value. Visual Basic for Applications users check for the value of the low-order word plus decimal
1000. The low-order word is 0x0113, or 275, so the value returned by Visual Basic for Applications is
1275.

' demonstrates error handling for Logon
' Function: TestDrv_Util_CreateSessionAndLogon
' Purpose: Call the utility function Util_CreateSessionAndLogon
Function TestDrv_Util_CreateSessionAndLogon()
Dim bFlag As Boolean
On Error GoTo error_olemsg
bFlag = Util_CreateSessionAndLogon()
MsgBox "bFlag = " & bFlag
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

' Function: Util_CreateSessionAndLogon
' Purpose: Demonstrate common error handling for Logon
Function Util_CreateSessionAndLogon() As Boolean
On Error GoTo err_CreateSessionAndLogon

Set objSession = CreateObject("MAPI.Session")
objSession.Logon
Util_CreateSessionAndLogon = True
Exit Function

err_CreateSessionAndLogon:
If Err() = 1275 Then ' VB4.0: If Err.Number = mapiE_USER_CANCEL Then
 MsgBox "User pressed Cancel"
Else
 MsgBox "Unrecoverable Error:" & Err
End If
Util_CreateSessionAndLogon = False
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

When an error occurs in the MAPI subsystem, the OLE Messaging Library supplies the error value
returned by MAPI. However, the value can be returned from any of several different levels of software.
The lowest level of software is that which interacts directly with hardware, such as a mouse driver or
video driver. Higher levels of software move toward greater device independence and greater
generality.

The following diagram suggests the different levels of software in Visual Basic applications that use the
OLE Messaging Library. Visual Basic applications reside at the highest level and interact with the OLE
Messaging Library at the next lower level. The OLE Messaging Library interacts with the MAPI system
software, and the MAPI system software interacts with a lower layer of software, the operating system.

Errors can occur at any level or at the interface between any two levels. For example, a user of your
application without security permissions can be denied access to an address book entry. The lowest
level in this diagram, the operating system, returns the error to the next higher level, and so on, until
the error is returned to the highest level in this diagram, the Visual Basic application.

It is often useful to provide a general error handling capability that will display the complete HRESULT
or error code value returned by the OLE Messaging Library.

For more information about run-time error handling and the Err object, see your product’s Visual Basic
documentation. For a listing of OLE Messaging Library and MAPI error values, see Error Codes.

See Also
Starting an OLE Messaging Session

Improving Application Performance
This section describes how your Visual Basic code can operate most efficiently when you use OLE
Messaging Library objects. Note that this section is written primarily for Visual Basic programmers
rather than for C programmers.

To access OLE Messaging Library objects, you create Visual Basic statements that concatenate the
object names in sequence from left to right, separating objects with the period character. For example,
consider the following Visual Basic statement:

Set objMessage = objSession.Inbox.Messages.GetFirst

The OLE Messaging Library creates an internal object for each period that appears in the statement.
For example, the portion of the statement that says objSession.Inbox directs the OLE Messaging Library
to create an internal Folder object that represents the user’s Inbox. The next portion, .Messages, directs
the OLE Messaging Library to create an internal Messages collection object. The final part, .GetFirst,
directs the OLE Messaging Library to create an internal Message object that represents the first
message in the user’s Inbox. The statement contains three periods; the OLE Messaging Library
creates three internal objects.

The best rule of thumb is to remember that periods are expensive. For example, the following two lines
of code are very inefficient:

' warning: do not code this way, this is inefficient
MsgBox "Text: " & objSession.Inbox.Messages.GetFirst.Text
MsgBox "Subj: " & objSession.Inbox.Messages.GetFirst.Subject

While this code generates correct results, it is not efficient. For the first statement, the OLE Messaging
Library creates internal objects that represent the Inbox, its Messages collection, and its first message.
After the application displays the text, these internal objects are discarded. In the next line, the same
internal objects are generated again. A more efficient approach is to generate the internal objects only
once:

With objSession.Inbox.Messages.GetFirst
 MsgBox "Text: " & .Text
 MsgBox "Subj: " & .Subject
End With

When your application needs to use an object more than once, define a variable for the object and set
its value. The following code fragment is very efficient when your application reuses the Folder or
Message objects or the Messages collection:

' efficient when the objects will be reused
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMessage = objInMessages.GetFirst
With objOneMessage
 MsgBox "The Message Text: " & .Text
 MsgBox "The Message Subject: " & .Subject
End With

Now that you understand that a period in a statement directs the OLE Messaging Library to create a
new internal object, you can see that the following two lines of code are not only not optimal but
actually incorrect:

' error: collection returns the same message both times
MsgBox("first message: " & inBoxObj.Messages.GetFirst)

MsgBox("next message: " & inBoxObj.Messages.GetNext)

The OLE Messaging Library creates a temporary internal object that represents the Messages
collection, then discards it after displaying the first message. The second statement directs the OLE
Messaging Library to create another new temporary object that represents the Messages collection.
This Messages collection is new and has no state information, that is, this new collection has not called
GetFirst. The GetNext statement therefore causes it to return its first message again.

Use the Visual Basic With statement or explicit variables to generate the expected results. The
following code fragment shows both approaches:

' Use of the Visual Basic With statement
With objSession.Inbox.Messages
 Set objMessage = .GetFirst
 ' ...
 Set objMessage = .GetNext
End With
' Use of explicit variables to refer to the collection
Set objMsgColl = objSession.Inbox.Messages
Set objMessage = myMsgColl.GetFirst
...
Set objMessage = myMsgColl.GetNext

For more information about improving the performance of your applications, see your Microsoft Visual
Basic programming documentation.

Making Sure the Message Gets There
The Message object contains two properties that can direct the underlying MAPI system to report
successful receipt of the message: DeliveryReceipt and ReadReceipt.

When you set these properties to True and send the message, the underlying MAPI system
automatically tracks the message for you. When you set the DeliveryReceipt property, the MAPI
system automatically generates a message to the sender reporting when the recipient receives the
message. When you set the ReadReceipt property, the MAPI system automatically generates a
message to the sender reporting when the recipient reads the message.

Delivery and read notification may not be supported by all messaging systems.

See Also
Securing Messages

Moving a Message to Another Folder
The procedure documented in this section demonstrates, first, the old way to move message properties
using the Messages collection’s Add method and the Message object’s Delete method, and then how
to take advantage of the newer MoveTo method of the Message object.

Note    With OLE Messaging Library version 1.0, the Message object’s Sender property and other
read-only properties of the Message object were not preserved during the first part of the procedure in
this section. To preserve these properties using the old procedure, you had to append their text fields
to read/write properties, such as the Message object’s Text property.

With the MoveTo method, every property that is set on a Message object is automatically moved to
the new Message object, regardless of whether it has read-only or read/write access. The access of
every property is also preserved across the copy.

To move a message from one folder to another
1. Obtain the source message that you want to move.

2. Call the destination folder’s Messages collection’s Add method, supplying the source message
properties as parameters.

 - or -
2. Call the source Message object’s MoveTo method.

3. Call the new Message object’s Update method to save all new information in the MAPI system.

4. (Only necessary if you used the old Add and copy procedure) Call the source message’s Delete
method to delete the original message from its folder.

For more details on this procedure and a sample code fragment, see Copying a Message to Another
Folder. The comment lines at the end of the first copy procedure contain the call to delete the original
message:

' If MOVING a message to another folder, delete the original message:
objThisMsg.Delete
' Move operation implies that the original message is removed

This Delete call is not necessary if the MoveTo method is used.

Posting Messages to a Public Folder
To post a message to a public folder, create a message within the public folder by adding it to the
folder’s Messages collection. Then add your subject and message text as you would for other
messages.

Note that for messages in public folders, you must also set a few more message properties than you
would when sending a message to a recipient. When you post a message to a public folder, the
components of the MAPI architecture that usually handle a message and set its properties do not
manage the message. Your application must set the Sent, Submitted, and Unread properties to True,
and the TimeReceived and TimeSent properties to the current time.

When you are ready to make the message available, call the Send or Update method.

Note    When posting messages in a public folder, you cannot use the OLE Messaging Library to set
the Sender property. The Sender and related underlying properties are not present for a message
created by the OLE Messaging Library.

For more information on sending messages, see Creating And Sending A Message.

To create a message within a public folder
1. Call the Messages collection’s Add method to create a Message object.

2. Set the Message object’s ConversationIndex, ConversationTopic, Subject, Text, TimeReceived,
TimeSent, and other message properties as desired.

3. Set the Message object’s Sent, Submitted, and Unread properties to True.

4. Call the Message object’s Send or Update method.

Note that when you post a message, you must explicitly set the TimeSent and TimeReceived
properties. When you send a message using the Send method, the MAPI system assigns the values of
these properties for you. However, when you post the message by setting the Submitted property,
your application must set the time properties. Set both time properties to the same value, just before
you set the Submitted property to True.

' Function: Util_New_Conversation
' Purpose: Set properties to start a new conversation in a public folder
Function Util_NewConversation()
Dim objRecipColl As Recipients
Dim i As Integer
Dim objNewMsg As Message ' new message object
Dim strNewIndex As String
On Error GoTo error_olemsg

' objPublicFolder is a global variable that indicates
' the folder in which you want to post the message
Set objNewMsg = objPublicFolder.Messages.Add
If objNewMsg Is Nothing Then
 MsgBox "unable to create a new message for the public folder"
 Exit Function
End If
strConversationFirstMsgID = objNewMsg.ID 'save for reply
With objNewMsg
 .Subject = "Used space vehicle wanted"
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 .ConversationTopic = .Subject

 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .TimeReceived = Time
 .TimeSent = .TimeReceived
 .Sent = True
 .Submitted = True
 .Unread = True
 .Update
 .Send showDialog:=False
End With
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

For more information on the ConversationIndex property, see Working With Conversations.

See Also
Searching for a Folder

Reading a Message from the Inbox
After establishing a Session object and successfully logging on to the system, a user can access the
Inbox. The Inbox is the default folder for mail received by the user.

As described in OLE Messaging Library Object Design, the OLE Messaging Library objects are
organized in a hierarchy. The Session object at the topmost level allows access to a Folder object.
Each folder contains a Messages collection, which contains individual Message objects. The text of the
message appears in its Text property.

Session object
        Folder object
                Messages collection
                        Message object
                                Text property

To obtain an individual message, the application must move down through this object hierarchy to the
Text property. The following example uses the Session object’s Inbox property to obtain a Folder
object, then uses the folder’s Messages property to obtain a Messages collection object, and calls the
collection’s methods to get a specific message.

This code fragment assumes that the application has already created the Session object variable
objSession and successfully called the Session object’s Logon method, as described in Starting an
OLE Messaging Session:

Dim objSession As Session ' Session object
Dim objInboxFolder As Folder ' Folder object
Dim objInMessages As Messages ' Messages collection
Dim objOneMsg As Message ' Message object
...
' move down through the hierarchy
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMsg = objInMessages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

Note    Use the Visual Basic keyword Set whenever you initialize a variable that represents an object.
When you attempt to set an object variable without using the Set keyword, Visual Basic generates an
error message.

The preceding code fragment declares several object variables. However, it is also possible to access
the message with fewer variables. The following code fragment is equivalent to the preceding code,
and is preferable if you have no subsequent need for the Inbox folder or its Messages collection:

Set objOneMsg = objSession.Inbox.Messages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

You should declare an individual variable when the application needs to access an object more than
once. When an object is accessed repeatedly, variables can help make your code efficient. For more
information, see Improving Application Performance.

See Also
Creating and Sending a Message, Searching for a Message

Searching for a Folder
Two frequently used folders, the Inbox and the Outbox, are available through Session object
properties. To access these folders, simply set a Folder object to the corresponding property.

To access other folders, search for the folder using one of the following techniques:

· Call the Session object’s GetFolder method with a string parameter that specifies the FolderID, a
unique identifier for the folder.

· Use the Get methods to navigate through the Folders collection. Search for a specific folder by
comparing each folder’s properties with the desired properties.

Using the Session Object’s GetFolder Method
When you know the unique identifier for the folder you are looking for, you can call the Session object’s
GetFolder method.

The unique identifier for the folder, established at the time the folder is created, is stored in its ID
property. The ID property is a string representation of the MAPI entry identifier and its value is
determined by the service provider.

The following code fragment contains code that saves the identifier for the folder, then uses it in a
subsequent GetFolder call:

' Function: Session_GetFolder
' Purpose: Demonstrate how to set a folder object
' See documentation topic: Session object GetFolder method
Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 'equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function
End Function

Using the Get Methods
When you are looking for a folder within a Folders collection, you can navigate through the collection,
examining properties of each Folder object to determine whether it is the folder you want.

The OLE Messaging Library supports the GetFirst, GetNext, GetLast, and GetPrevious methods for
the Folders collection object.

The following code fragment demonstrates how to use the Get methods to search for the specified
folder:

' Function: TestDrv_Util_GetFolderByName
' Purpose: Call the utility function Util_GetFolderByName
' See documentation topic: Item property (Folder object)
Function TestDrv_Util_GetFolderByName()
Dim fFound As Boolean
 fFound = Util_GetFolderByName("Junk mail")
 If fFound Then
 MsgBox "Folder named 'Junk mail' found"
 Else
 MsgBox "Folder named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetFolderByName
' Purpose: Use Get* methods to search for a folder
' See documentation topic: Searching For a Folder
Function Util_GetFolderByName(strSearchName As String) As Boolean
Dim objOneFolder As Object ' local; temp version of folder object

 On Error GoTo error_olemsg
 Util_GetFolderByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "Must first select a folder such as Session->Inbox"
 Exit Function
 End If
 Set objFoldersColl = objFolder.Folders ' Folders collection
 If objFoldersColl Is Nothing Then
 MsgBox "no subfolders; not found"
 Exit Function
 End If
 ' get the first folder in the collection
 Set objOneFolder = objFoldersColl.GetFirst
 ' loop through all the folders in the collection
 Do While Not objOneFolder Is Nothing
 If objOneFolder.Name = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching
 Set objOneFolder = objFoldersColl.GetNext
 End If
 Loop

 ' exit from the Do While loop comes here
 ' if objOneFolder is valid, the folder is found
 If Not objOneFolder Is Nothing Then ' went off end of loop
 Util_GetFolderByName = True ' success
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

You can also navigate upward through the folder hierarchy by using each Folder object’s Parent
property.

See Also
Searching for a Message

Searching for a Message
To access a message, you can search for it using one of the following techniques:

· Call the Session object’s GetMessage method with a string parameter that specifies the
MessageID, a unique identifier for the message.

· Use the Get methods to navigate through the folder’s Messages collection. Search for a specific
message by comparing the current Message object’s properties with the desired properties.

· Obtain a MessageFilter object from the Filter property of the Messages collection. Set the desired
properties for filtering, and then use the Get methods, which return only the messages matching the
filter settings.

Using the Session Object’s GetMessage Method
When you know the unique identifier for the message you are looking for, you can call the Session
object’s GetMessage method.

The message identifier specifies a unique identifier that is created for the Message object at the time it
is created. The identifier is accessible through the Message object’s ID property.

The following code fragment contains code that saves the identifier for the message, then uses it in a
subsequent GetMessage call:

' Function: Session_GetMessage
' Purpose: Demonstrate how to set a message object using GetMessage
' See documentation topic: GetMessage method (Session object)
Function Session_GetMessage()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strMessageID = "" Then
 MsgBox ("Must first set Message ID variable; see Message->ID")
 Exit Function
 End If
 Set objOneMsg = objSession.GetMessage(strMessageID)
 If objOneMsg Is Nothing Then
 MsgBox "Unable to retrieve message with specified ID"
 Exit Function
 End If
 MsgBox "GetMessage returned msg with subject: " & objOneMsg.Subject
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objOneMsg = Nothing
 MsgBox "Message is no longer available; no active message"
 Exit Function
End Function

Using the Get Methods
When you are looking for a message within a Messages collection, you can navigate through the
collection, examining properties of each Message object to determine if it is the message you want.

The OLE Messaging Library supports the GetFirst, GetNext, GetLast, and GetPrevious methods for
the Messages collection object. You can also use the Visual Basic For Each construction to traverse
the collection.

Note that, with the OLE Messaging Library version 1.1 and later, you can use a MessageFilter object to
restrict a search with the Get methods. Obtain the message filter through the Messages collection’s
Filter property, set the filter’s properties to the values desired for the search, and then proceed with the
Get methods. Only the messages passing the filter criteria are returned for your inspection. For more
information on message filtering, see Filtering Messages in a Folder.

The following sample demonstrates how to use the Get methods to search for the specified message:

' Function: TestDrv_Util_GetMessageByName
' Purpose: Call the utility function Util_GetMessageByName
' See documentation topic: Item property (Message object)
Function TestDrv_Util_GetMessageByName()
Dim fFound As Boolean
 On Error GoTo error_olemsg

 fFound = Util_GetMessageByName("Junk mail")
 If fFound Then
 MsgBox "Message named 'Junk mail' found"
 Else
 MsgBox "Message named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetMessageByName
' Purpose: Use Get* methods to search for a message
' See documentation topic: Searching for a message
' Search through the messages for one with a specific subject
Function Util_GetMessageByName(strSearchName As String) As Boolean
Dim objOneMessage As Message ' local; temp version of message object

 On Error GoTo error_olemsg
 Util_GetMessageByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "Must first select a folder such as Session->Inbox"
 Exit Function
 End If
 Set objMessages = objFolder.Messages
 Set objOneMessage = objMessages.GetFirst
 If objOneMessage Is Nothing Then
 MsgBox "No messages in the folder"
 Exit Function
 End If
 ' loop through all the messages in the collection
 Do While Not objOneMessage Is Nothing
 If objOneMessage.Subject = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching

 Set objOneMessage = objMessages.GetNext
 End If
 Loop
 ' exit from the Do While loop comes here
 ' if objOneMessage is valid, the message was found
 If Not objOneMessage Is Nothing Then
 Util_GetMessageByName = True ' success
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also
Searching for a Folder

Securing Messages
A Message object contains two properties that specify security for the message: the Encrypted and
Signed properties. When you want to request that your message be secured, set one or both of these
flags to True.

These flags simply represent a request to the underlying messaging service. Whether the message
gets encrypted or digitally signed depends on whether these security measures are implemented by
your messaging service.

Neither MAPI nor the OLE Messaging Library performs encryption or digital signing. The OLE
Messaging Library simply sets the appropriate MAPI properties so that the proper request for security
is delivered to the messaging service. For more information about the capabilities of your messaging
service, contact your server administrator.

Dim objMessage As Message ' assume valid Message object
' ...
objMessage.Encrypted = True ' can also set objMessage.Signed = True
objMessage.Send

See Also
Making Sure the Message Gets There

Selecting Recipients from the Address Book
After establishing a Session object and successfully logging on to the system, the user can access the
address book to select recipients. You can select recipients from any address book, such as the global
address list (GAL) or your personal address book (PAB).

As described in OLE Messaging Library Object Design, the OLE Messaging Library objects are
organized in a hierarchy. The Session object at the topmost level contains an AddressBook method
that lets your application users select recipients from an address book. The method returns a
Recipients collection, which contains individual Recipient objects. The Recipient object in turn specifies
an AddressEntry object. This hierarchy is shown in the following diagram.

Recipients collection
        Recipient object
                Address property (full address)
                AddressEntry object
                        Address property (e-mail address, no type)
                        Type property

To obtain an individual Address property that can be used to address and send messages, the
application must move down through this object hierarchy. The following code fragment uses the
Recipients collection returned by the Session object’s AddressBook method.

This code fragment assumes that the application has already created the Session object variable
objSession and successfully called the Session object’s Logon method, as described in Starting an
OLE Messaging Session:

' Function: Session_AddressBook
' Purpose: Set the global variable that contains the current recipients
' collection to that returned by the Session AddressBook method
' See documentation topic: AddressBook method (Session object)
Function Session_AddressBook()
 On Error GoTo err_Session_AddressBook

 If objSession Is Nothing Then
 MsgBox "Must first create MAPI session and logon"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=1, _
 toLabel:="&OLE Messaging") ' appears on button
 ' Note: first parameter (“recipients”) not used in this call
 ' recipients:=objInitRecipColl initializes recipients for dialog
 MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
 Exit Function

err_Session_AddressBook:
 If (Err = 91) Then ' MAPI dlg-related function that sets an object
 MsgBox "No recipients selected"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Exit Function
End Function

See Also
Changing an Existing Address Entry, Using Addresses

Starting an OLE Messaging Session
As described in OLE Messaging Library Object Design, all messaging objects are relative to the
Session object. One of the first tasks of every application is to create a valid Session object and call its
Logon method.

The Session object is created using the Visual Basic function CreateObject. The following code
demonstrates how to perform this common startup task:

Function Util_CreateSessionAndLogon() As Boolean
On Error GoTo err_CreateSessionAndLogon

Set objSession = CreateObject("MAPI.Session")
objSession.Logon
Util_CreateSessionAndLogon = True
Exit Function

err_CreateSessionAndLogon:
If (Err = 1275) Then ' VB4.0: If Err.Number = mapiE_USER_CANCEL Then
 MsgBox "User pressed Cancel"
Else
 MsgBox "Unrecoverable Error:" & Err
End If
Util_CreateSessionAndLogon = False
Exit Function

End Function

The way you deal with errors depends on your version of Visual Basic. For more information, see
Handling Errors.

When no parameters are supplied to the Logon method, as in the example above, the OLE Messaging
Library displays an application-modal logon dialog box that prompts the application user to select a
user profile. Based on the characteristics of the selected profile, the underlying MAPI system logs on
the user or prompts for password information.

You can also choose to use your own application’s dialog box to obtain the parameters needed to log
on, rather than using the MAPI logon dialog box. The following example obtains the profile name and
password information and directs the Logon method not to display a logon dialog box:

' Function: Session_Logon_NoDialog
' Purpose: Call the Logon method, set parameter to show no dialog
' See documentation topic: Logon Method (Session object)
Function Session_Logon_NoDialog()
On Error GoTo error_olemsg
' can set strProfileName, strPassword from a custom form
' adjust these parameters for your configuration
If objSession Is Nothing Then
 Set objSession = CreateObject("MAPI.Session")
End If
If Not objSession Is Nothing Then
 objSession.Logon profileName:=strProfileName, _
 showDialog:=False
End If
Exit Function

error_olemsg:
If 1273 = Err Then ' VB4.0: If Err.Number = mapiE_LOGON_FAILED Then
 MsgBox "Cannot logon: incorrect profile name or password"
 Exit Function
End If
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next
End Function

Note    Your Visual Basic application should be able to handle cases that occur when a user provides
incorrect profile or password information, or when a user cancels from the Logon dialog box. For
more information, see Handling Errors. For a listing of OLE Messaging Library and MAPI error values,
see Error Codes.

After establishing a Session object and successfully logging on to the system, the user has access to
several default objects provided by the Session object, including the Inbox and Outbox folders. For
more information, see Reading a Message from the Inbox.

See Also
Creating and Sending a Message

Using Addresses
In general, MAPI supports two kinds of addressing:

· Addresses that the MAPI system looks up for you in your address book, based on a display name
that you supply

· Addresses that represent custom addresses, that are used as supplied without lookup

The OLE Messaging Library supports both kinds of addresses with its Recipient object. To look up an
address for a name, you supply the Name property only. To use custom addresses, you supply the full
address in the Address property.

The address book can be thought of as a database in persistent storage, managed by the MAPI
system, that contains valid addressing information that is associated with a display name. The display
name represents the way that a person’s name might be displayed for your application users, using
that person’s full name, rather than the e-mail address that the messaging system uses to transmit the
message. For example, the display name “John Doe” could be mapped to the e-mail address “johnd”.

In contrast to the address book, the objects that you create with the OLE Messaging Library are
temporary objects that reside in memory. When you fill in the Recipient object’s Name property with a
display name, you must then resolve the address. To resolve the address means that you ask the
MAPI system to look up the display name in the database and supply the corresponding address.
When the display name is ambiguous, or can match more than one entry in the address book, the
MAPI system prompts the user to select from a list of possible matching names.

The Recipient object’s Name property represents the display name. Call the Recipient object’s
Resolve method to resolve the display name.

After the Recipient object is resolved, it has a child AddressEntry object that contains a copy of the
valid addressing information from the database. The child AddressEntry object is accessible from the
Recipient object’s AddressEntry property. The Recipient and AddressEntry object properties are
related as follows:

OLE Messaging Library
object and property

MAPI property Description

Recipient.Address Combination of
PR_ADDRTYPE and
PR_EMAIL_ADDRESS

Full address;
AddressEntry
object’s Type and
Address properties

Recipient.Name PR_DISPLAY_NAME Display name

Recipient.AddressEntry.Addr
ess

PR_EMAIL_ADDRESS E-mail address

Recipient.AddressEntry.ID PR_ENTRYID Unique identifier for
the address entry

Recipient.AddressEntry.Nam
e

PR_DISPLAY_NAME Display name

Recipient.AddressEntry.Type PR_ADDRTYPE E-mail type

The Recipient object’s Address property represents a full address, that is, the combination of address
type and e-mail address that MAPI uses to send a message. The full address represents information
that appears in the AddressEntry Address and Type properties.

You can also supply a complete recipient address. By manipulating the address yourself, you direct the
MAPI system to send the message to the full address that you supply without using the database. In
this case, you must also supply the display name. When you supply a custom address, the Recipient

object’s Address property must use the following syntax:

AddressType:AddressValue

There is also a third method of working with addresses. You can directly obtain and use the Recipient
object’s child AddressEntry object from messages that have already been successfully sent through
the messaging system.

For example, to reply to a message, you can use the Message object’s Sender property to get a valid
AddressEntry object. When you work with valid AddressEntry objects, you do not have to call the
Resolve method.

Note    When you use existing AddressEntry objects, do not try to modify them. In general, do not
write directly to the Recipient object’s child AddressEntry object properties.

In summary, you can provide addressing information in three different ways:

· Obtain the correct addressing information for a known display name. Set the Recipient object’s
Name property and call its Resolve method. Note that the Resolve method can display a dialog
box.

· Use an existing valid address entry, such as the Message object’s Sender property, when you are
replying to a message. Set the Recipient object’s AddressEntry property to an existing
AddressEntry object that is known to be valid. You do not need to call the Resolve method.

· Create a custom address. Set the Recipient object’s Address property, using the correct syntax as
described earlier, with the colon character (:) separating the address type from the address, and call
the Resolve method.

The following code fragment demonstrates these three kinds of addresses:

' Function: Util_UsingAddresses
' Purpose: Set addresses three ways
' See documentation topic: Using Addresses
Function Util_UsingAddresses()
Dim objNewMessage As Message ' new message to add recipients to
Dim objNewRecips As Recipients ' recipients of new message
Dim strAddrEntryID As String ' ID value from AddressEntry object
Dim strName As String ' Name from AddressEntry object

On Error GoTo error_olemsg
If objOneMsg Is Nothing Then
 MsgBox "Must select a message"
 Exit Function
End If
With objOneMsg.Recipients.Item(1).AddressEntry
 strAddrEntryID = .ID
 strName = .Name
End With
Set objNewMessage = objSession.Outbox.Messages.Add
If objNewMessage Is Nothing Then
 MsgBox "Unable to add a new message"
 Exit Function
End If
Set objNewRecips = objNewMessage.Recipients

' Add three recipients
' 1. look up entry in address book specified by profile
Set objOneRecip = objNewRecips.Add(_

 Name:=strName, _
 Type:=mapiTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using display name"
 Exit Function
End If
objOneRecip.Resolve ' this looks up the entry

' 2. add a custom recipient
Set objOneRecip = objNewRecips.Add(_
 Address:="SMTP:davidhef@microsoft.com", _
 Type:=mapiTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom addressing"
 Exit Function
End If
objOneRecip.Resolve

' 3. add a valid address entry object
Set objOneRecip = objNewRecips.Add(_
 entryID:=strAddrEntryID, _
 Name:=strName, _
 Type:=mapiTo)
If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using existing address entry"
 Exit Function
End If

objNewMessage.Text = "Expect 3 different recipients"
MsgBox ("Count = " & objNewRecips.Count)
' you can also call resolve for the whole collection
' objNewRecips.Resolve (True) ' resolve all; show dialog

objNewMessage.Subject = "Addressing test"
objNewMessage.Update ' commit the message to storage in MAPI system
objNewMessage.Send(showDialog:=False)
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Exit Function

End Function

See Also
Changing an Existing Address Entry

Viewing MAPI Properties
You can use a feature of the OLE Messaging Library’s Fields collection collection to view the values of
MAPI properties.

The Fields collection’s Item property allows you to specify the actual property tag value as an identifier.
The MAPI property tag is a 32-bit unsigned integer that contains the property identifier in its high-order
16 bits and the property type (its underlying data type) in the low-order 16 bits.

Note    You can only use the MAPI property tag on 32-bit platforms. This method of access is not
available on any other platform.

The OLE Messaging Library also supports multivalued properties, or properties that represent arrays of
values. A multivalued property appears to the Visual Basic application as a variant array. You can use
the For ... Next construction or For Each statement to access individual array entries.

Note    Do not mix data types within an OLE variant array that you are going to use with the OLE
Messaging Library. Unlike variant array members, every member of a MAPI multivalued property
must be of the same type. Setting mixed types in a variant array and presenting it to MAPI as a
multivalued property results in MAPI errors.

The OLE Messaging Library works with three types of message properties:

· Standard MAPI properties with property tags defined as constants by the OLE Messaging Library,
such as mapiPR_MESSAGE_CLASS.

· Standard MAPI properties not defined by the OLE Messaging Library. The Object Browser can tell
you if the property you want to access is defined.

· Custom properties created and named by the application.

The Fields collection collection exposes standard MAPI properties not defined by the OLE Messaging
Library and custom properties created and named by the application. The Item property selects an
individual Field object either by its MAPI property tag or by its custom name.

Although the Field object provides a Delete method, some standard MAPI properties, such as those
created by MAPI system components, cannot be deleted.

MAPI stores all properties that represent date and time information using Greenwich Mean Time
(GMT). The OLE Messaging Library converts these properties so that the values appear to the user in
local time.

For definitions and details on all standard MAPI properties, see the MAPI Programmer's Reference.

' Function: Fields_Selector
' Purpose: View a MAPI property by supplying a property tag value as
' the Item value
' See: Item property (Fields collection)
Function Fields_Selector()
Dim lValue As Long
Dim strMsg As String

On Error GoTo error_olemsg

If objFieldsColl Is Nothing Then
 MsgBox "Must first select a Fields collection"
 Exit Function
End If

' you can provide a dialog here so users enter MAPI proptags,
' or select property names from a list; for now, hard-coded value
lValue = &H001A001E ' VB4.0: lValue = mapiPR_MESSAGE_CLASS
' &H001A = PR_MESSAGE_CLASS; &H001E = PT_TSTRING
' high-order 16 bits = property ID, low-order = property type
Set objOneField = objFieldsColl.Item(lValue)
If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
Else
 strMsg = "Used the value " & lValue & " to access the property "
 strMsg = strMsg & "PR_MESSAGE_CLASS: type = " & objOneField.Type
 strMsg = strMsg & "; value = " & objOneField.Value
 MsgBox strMsg
End If
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Resume Next

End Function

See Also
Customizing a Folder or Message

Working with Conversations
Two Message object properties let you show relationships among messages by defining them as part
of a conversation. A conversation is a series of messages, consisting of an initial message and all
messages sent in reply to the initial message. When the initial message or a reply elicits additional
messages, the resulting messages are called a conversation thread. A thread represents a subset of
messages in the conversation.

The Message object properties ConversationIndex and ConversationTopic give you an easy way to
organize and display messages. Rather than simply grouping messages by subject, time received, or
sender, you can show conversational relationships among messages. The ConversationTopic
property is a string that describes the overall subject of the conversation. All messages within the same
conversation use the same value for the ConversationTopic property. The ConversationIndex
property is a hexadecimal string that you can use to represent the relationships between the messages
in the thread. Each message in the conversation should have a different ConversationIndex property.

When you start an initial message, set the ConversationTopic property to an appropriate value that
will apply to all messages within the conversation. For many applications, the message’s Subject
property is appropriate.

You can use your own convention to decide how to use the ConversationIndex property. However, it
is recommended that you adopt the same convention used by the Microsoft Exchange Client message
viewer, so that you can use that viewer’s user interface to show the relationships between messages in
a conversation. This convention uses concatenated time stamp values. The first time stamp in the
ConversationIndex string represents the original message. Whenever a message replies to a
conversation message, it appends a time stamp value to the end of the string. The new string value is
used as the ConversationIndex value of the new message. Using this convention, you can easily see
relationships among messages when you sort the messages by ConversationIndex values.

The following code fragment provides a utility function, Util_GetEightByteTimeStamp, which can be
used to build Microsoft Exchange Server compatible ConversationIndex values. The utility function
calls the OLE function CoCreateGuid to obtain the time stamp value from a GUID data structure. The
GUID value is composed of a time stamp and a machine identifier; the utility function saves the part
that contains the time stamp.

' declarations for the Util_GetEightByteTimeStamp function
Type GUID
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
' Note: Use "OLE32.DLL" for Windows NT, Win95 platforms
Global Const S_OK = 0
' end declarations section

' Function: Util_GetEightByteTimeStamp
' Purpose: Generate a time stamp for use in conversations
' See documentation topic: Working With Conversations
Function Util_GetEightByteTimeStamp() As String
Dim lResult As Long
Dim lGuid As GUID
' Exchange conversation is a unique 8-byte value
' Exchange client viewer sorts by concatenated properties
On Error GoTo error_olemsg

lResult = CoCreateGuid(lGuid)
If lResult = S_OK Then
 Util_GetEightByteTimeStamp = Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
Else
 Util_GetEightByteTimeStamp = "00000000" ' zeroes
End If
Exit Function

error_olemsg:
MsgBox "Error " & Str(Err) & ": " & Error$(Err)
Util_GetEightByteTimeStamp = "00000000"
Exit Function

End Function

When you start a new conversation, set the ConversationIndex property to the value returned by this
function, as follows:

' new conversation
objMessage.ConversationIndex = Util_GetEightByteTimeStamp()

When you are replying to a message in an existing conversation, append the time stamp value to that
message’s ConversationIndex value, as follows:

' reply within an existing conversation
Dim objOriginalMsg As Message ' assume valid
Dim objNewMessage As Message ' new message in conversation
Dim strNewIndex As String
' ...
' copy the original topic and append
' the current time stamp to the original time stamp
objNewMessage.ConversationTopic = objOriginalMsg.ConversationTopic
strNewIndex = objOriginalMsg.ConversationIndex _
 & Util_GetEightByteTimeStamp()
objNewMessage.ConversationIndex = strNewIndex

For additional sample code dealing with conversations, see Posting Messages to a Public Folder.

Objects, Properties, and Methods
This reference contains property and method information for the OLE Messaging Library objects.

The following table summarizes each object’s properties and methods.

Object

Available
in version

Properties

Methods

AddressEntries
collection

1.1 Application, Class,
Count, Filter, Item,
Parent, Session

Add, Delete,
GetFirst, GetLast,
GetNext,
GetPrevious, Sort

AddressEntry 1.0.a Address,
Application, Class,
DisplayType,
Fields, ID,
Members, Name,
Parent, Session,
Type

Delete, Details,
IsSameAs, Update

AddressEntryFilter 1.1 Address,
Application, Class,
Fields, Name, Not,
Or, Parent,
Session

IsSameAs

AddressList 1.1 AddressEntries,
Application, Class,
ID, Index,
IsReadOnly,
Name, Parent,
Session

IsSameAs

AddressLists
collection

1.1 Application, Class,
Count, Item,
Parent, Session

(none)

Attachment 1.0.a Application, Class,
Fields, Index,
Name, Parent,
Position, Session,
Source, Type

Delete, IsSameAs,
ReadFromFile,
WriteToFile

Attachments
collection

1.0.a Application, Class,
Count, Item,
Parent, Session

Add, Delete

Field 1.0.a Application, Class,
ID, Index, Name,
Parent, Session,
Type, Value

Delete,
ReadFromFile,
WriteToFile

Fields collection 1.0.a Application, Class,
Count, Item,
Parent, Session

Add, Delete,
SetNamespace

Folder 1.0.a Application, Class,
Fields, FolderID,
Folders, ID,
MAPIOBJECT1,

CopyTo, Delete,
IsSameAs,
MoveTo, Update

Messages, Name,
Parent, Session,
StoreID

Folders collection 1.0.a Application, Class,
Count, Item,
Parent, Session

Add, Delete,
GetFirst, GetLast,
GetNext,
GetPrevious, Sort

InfoStore 1.0.a Application, Class,
ID, Index, Name,
Parent,
ProviderName,
RootFolder,
Session

IsSameAs

InfoStores
collection

1.0.a Application, Class,
Count, Item,
Parent, Session

(none)

Message 1.0.a Application,
Attachments,
Class,
Conversation,
ConversationIndex
,
ConversationTopic
, DeliveryReceipt,
Encrypted, Fields,
FolderID, ID,
Importance,
MAPIOBJECT*,
Parent,
ReadReceipt,
Recipients,
Sender, Sent,
Session, Signed,
Size, StoreID,
Subject,
Submitted, Text,
TimeReceived,
TimeSent, Type,
Unread

CopyTo, Delete,
IsSameAs,
MoveTo, Options,
Send, Update

MessageFilter 1.1 Application, Class,
Conversation,
Fields,
Importance, Not,
Or, Parent,
Recipients,

IsSameAs

Sender, Sent,
Session, Size,
Sort, Subject, Text,
TimeFirst,
TimeLast, Type,
Unread

Messages
collection

1.0.a Application, Class,
Count, Filter, Item,
Parent, Session

Add, Delete,
GetFirst, GetLast,
GetNext,
GetPrevious, Sort

Recipient 1.0.a Address,
AddressEntry,
Application, Class,
DisplayType, ID,
Index, Name,
Parent, Session,
Type

Delete, IsSameAs
Resolve

Recipients
collection

1.0.a Application, Class,
Count, Item,
Parent, Resolved,
Session

Add, Delete,
Resolve

Session 1.0.a AddressLists,
Application, Class,
CurrentUser,
Inbox, InfoStores,
MAPIOBJECT1,
Name,
OperatingSystem,
Outbox, Parent,
Session, Version

AddressBook,
CompareIDs,
DeliverNow,
GetAddressEntry,
GetFolder,
GetInfoStore,
GetMessage,
Logoff, Logon

1    The MAPIOBJECT property is not available to Visual Basic applications. For more information, see the reference for the
MAPIOBJECT property.

This reference is organized by object. For each object there is a summary topic, followed by reference
documentation for each property or method that belongs to the object. The properties and methods are
organized alphabetically.

Each property or method topic in the reference displays a Group button following the topic title.
Clicking this button displays the summary topic for the object to which the property or method belongs.
The summary topic includes tables of the object’s properties and methods.

To avoid duplication, the section Properties Common to All OLE Messaging Library Objects describes
the properties that have the same meaning for all OLE Messaging Library objects. These are:

· Application

· Class

· Parent

· Session

Object Model
The object model for the OLE Messaging Library is a hierarchical model. In the following table, each
indented object is considered a child of the object under which it is indented. An object is the parent of
every object at the next level of indentation under it. For example, an Attachments collection and a
Recipients collection are both child objects of a Message object, and a Messages collection is a parent
object of a Message object. However, a Messages collection is not a parent object of a Recipients
collection.

Session
          AddressLists collection
                    AddressList
                              AddressEntries collection
  AddressEntry
  Fields collection
  Field
  AddressEntryFilter
  Fields collection
  Field
          Folder (Inbox or Outbox)
                    Fields collection
                              Field
                    Folders collection
                              Folder
  … Folder …
                    Messages collection
                              Message
  Attachments collection
  Attachment
  Fields collection
  Field
  Recipients collection
  Recipient
  AddressEntry
  Fields collection
  Field
                              MessageFilter
  Fields collection
  Field
          InfoStores collection
                    InfoStore
                              Folder
  … Folder …

The notation “… Folder …” signifies that a folder can contain other folders, which in turn can contain
more folders, nested to an indefinite level.

Properties Common to All OLE
Messaging Library Objects
All OLE Messaging Library objects contain the properties Application, Class, Parent, and Session.
The Application and Session properties have the same values for all objects within a given session.
The Parent property indicates the immediate parent of the object, and the Class property is an integer
value that identifies the OLE Messaging Library object.

All four of these common properties have read-only access in all objects. Note that for the Session
object, the Parent and Session properties are assigned the value Nothing. The Session object
represents the highest level in the OLE Messaging Library object hierarchy and has no parent.

To reduce duplication, the detailed reference for these properties appears only once, in this section.
The following table lists the properties that are common to all OLE Messaging Library objects and that
have the same meaning for all objects.

Properties
Name Type Access

Application String Read-only

Class Long Read-only

Parent Object Read-only

Session Session object Read-only

Application Property   

The Application property returns the name of the active application, namely the OLE Messaging
Library. Read-only.

Syntax
object.Application

Data Type
String

Remarks
The Application property always contains the string “OLE/Messaging”.

By always returning the same string, Microsoft OLE Messaging Library differs from other
implementations of Automation servers. Many Automation servers are based on executable files, which
take the extension .EXE and return an object value. The OLE Messaging Library, being part of the
MAPI subsystem, is implemented with dynamic-link libraries, which take the extension .DLL.

As of version 1.1, the OLE Messaging Library is an in-process server, residing in a .DLL file and linking
directly with the calling modules. In comparison with the former local server architecture, this removes
the need for RPCs across process boundaries and greatly improves the performance of OLE
Messaging Library calls.

The version number of the OLE Messaging Library is available through the Session object’s Version
property.

Example
' Function: Session_Application
' Purpose: Display the Application property of the Session object
' See documentation topic: Application property
Function Session_Application()
Dim objSession As Object
' error handling ...
Set objSession = CreateObject("MAPI.Session")
If Not objSession Is Nothing Then
 MsgBox "Session’s Application property = " & objSession.Application
End If
' error handling
End Function

Class Property   

The Class property returns the object class of the object. Read-only.

Syntax
object.Class

Data Type
Long

Remarks
The Class property contains a numeric constant that identifies the OLE Messaging Library object. The
following values are defined:

OLE Messaging Library
object

Class ID
value

Value

AddressEntries collection 21 mapiAddressEntries

AddressEntry 8 mapiAddressEntry

AddressEntryFilter 9 mapiAddressFilter

AddressList 7 mapiAddressList

AddressLists collection 20 mapiAddressLists

Attachment 5 mapiAttachment

Attachments collection 18 mapiAttachments

Field 6 mapiField

Fields collection 19 mapiFields

Folder 2 mapiFolder

Folders collection 15 mapiFolders

InfoStore 1 mapiInfoStore

InfoStores collection 14 mapiInfoStores

Message 3 mapiMsg

MessageFilter 10 mapiMessageFilter

Messages collection 16 mapiMessages

Recipient 4 mapiRecipient

Recipients collection 17 mapiRecipients

Session 0 mapiSession

The OLE Messaging Library also defines mapiUnknown, with value -1, for an object implementing the
OLE IUnknown interface.

Example
' Function: Util_DecodeObjectClass

' Purpose: Decode the long integer class value,
' show the related object name
' See documentation topic: Class property
Function Util_DecodeObjectClass(lClass As Long)
' error handling here ...
Select Case (lClass)
 Case mapiSession:
 MsgBox ("Session object; Class = " & lClass)
 Case mapiMsg:
 MsgBox ("Message object; Class = " & lClass)
End Select
' error handling ...
End Function

' Function: TestDrv_Util_DecodeObjectClass
' Purpose: Call the utility function DecodeObjectClass for Class values
' See documentation topic: Class property
Function TestDrv_Util_DecodeObjectClass()
' error handling here ...
If objSession Is Nothing Then
 MsgBox "Need to set the Session object: Session->Logon"
 Exit Function
End If
' expect type mapiSession = 0 for Session object
Util_DecodeObjectClass (objSession.Class)
Set objMessages = objSession.Inbox.Messages
Set objOneMsg = objMessages.GetFirst
If objOneMsg Is Nothing Then
 MsgBox "Inbox is empty"
 Exit Function
End If
' expect type mapiMessage = 3 for Message object
Util_DecodeObjectClass (objOneMsg.Class)
' error handling here ...
End Function

Parent Property   

The Parent property returns the parent of the object. Read-only.

Syntax
Set objParent = object.Parent

Data Type
Object

Remarks
The Parent property in the OLE Messaging Library returns the immediate parent of an object. The
immediate parent for each object is shown in the following table.

OLE Messaging Library object Immediate parent in object
hierarchy

AddressEntries collection AddressList

AddressEntry (returned by
Session.CurrentUser)

AddressEntries collection

AddressEntry (all others) Recipient

AddressEntryFilter AddressEntries collection

AddressList AddressLists collection

AddressLists collection Session

Attachment Attachments collection

Attachments collection Message

Field Fields collection

Fields collection AddressEntry, AddressEntryFilter,
Folder (Inbox or Outbox), Message,
or MessageFilter

Folder (Inbox or Outbox) Session

Folder (all others) Folders collection or InfoStore

Folders collection Folder (Inbox or Outbox)

InfoStore InfoStores collection

InfoStores collection Session

Message Messages collection

MessageFilter Messages collection

Messages collection Folder (Inbox or Outbox)

Recipient Recipients collection

Recipients collection Message

Session Set to Nothing

The Parent property represents the immediate parent of the object, rather than the logical parent. For
example, a folder contains a Messages collection, which contains Message objects. The Parent
property for a message is the immediate parent, the Messages collection, rather than the logical
parent, the Folder object.

The Session object represents the highest level in the hierarchy of OLE Messaging Library objects and
its Parent property is set to Nothing.

For more information on the OLE Messaging Library object hierarchy, see Object Model.

Example
This code fragment displays the Class of the parent Messages collection of a Message object:

' Function: Message_Parent
Function Message_Parent()
' error handling here ...
If objOneMsg Is Nothing Then
 MsgBox "Need to select a message; see Messages->Get*"
 Exit Function
End If
' Immediate parent of message is the Messages collection
MsgBox "Message immediate parent class = " & objOneMsg.Parent.Class
' error handling code ...
End Function

To get to the Folder object, you have to take the parent of the Messages collection:

' Function: Messages_Parent
' Purpose: Display the Messages collection Parent class value
' See documentation topic: Parent property
Function Messages_Parent()
Set objMessages = objOneMsg.Parent
' error handling here ...
If objMessages Is Nothing Then
 MsgBox "No active Messages collection"
 Exit Function
End If
MsgBox "Messages collection parent class = " & objMessages.Parent.Class
Exit Function
' error handling here ...
End Function

Session Property   

The Session property returns the top-level Session object associated with the specified OLE
Messaging Library object. Read-only.

Syntax
Set objSession = object.Session

Data Type
Object

Remarks
The Session object represents the highest level in the OLE Messaging Library object hierarchy. Its
Session property is set to Nothing.

Example
' Function: Folder_Session
' Purpose: Access the Folder's Session property and display its name
' See documentation topic: Session property
Function Folder_Session()
Dim objSession2 As Session ' Session object to get the property
' error handling here ...
If objFolder Is Nothing Then
 MsgBox "No active folder; please select Session->Inbox"
 Exit Function
End If
Set objSession2 = objFolder.Session
If objSession2 Is Nothing Then
 MsgBox "Unable to access Session property"
 Exit Function
End If
MsgBox "Folder's Session property’s Name = " & objSession2.Name
Set objSession2 = Nothing
' error handling here ...
End Function

AddressEntries Collection Object
The AddressEntries collection object contains one or more AddressEntry objects.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.1

Parent objects: AddressList

Child objects: AddressEntry
AddressEntryFilter

Default property: Item

An AddressEntries collection is considered a large collection, which means that the Count and Item
properties have limited validity, and your best option is to use an AddressEntry object identifier value or
the Get methods to access an individual AddressEntry object within the collection.

Properties

Name

Available
in version

Type

Access

Application 1.1 String Read-only

Class 1.1 Long Read-only

Count 1.1 Long Read-only

Filter 1.1 AddressEntryFilter
object

Read/write

Item 1.1 AddressEntry object Read-only

Parent 1.1 AddressList object Read-only

Session 1.1 Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 emailtype as String,
(optional) name as String,
(optional) address as String

Delete 1.1 (none)

GetFirst 1.1 (none)

GetLast 1.1 (none)

GetNext 1.1 (none)

GetPrevious 1.1 (none)

Sort 1.1 (optional) SortOrder as Long,
(optional) PropTag as Long,
(optional) PropID as String

Remarks

Each AddressEntry object in the collection holds information representing a person or process to which
the messaging system can deliver messages. An AddressEntries collection provides access to the
entries in a MAPI address book.

Large collections, such as the AddressEntries collection, cannot always maintain an accurate count of
the number of objects in the collection. It is strongly recommended that you use the GetFirst, GetNext,
GetLast, and GetPrevious methods to access individual items in the collection. You can access one
specific address entry by using the Session object’s GetAddressEntry method, and you can access all
the items in the collection with the Visual Basic For Each construction.

The order that items are returned by GetFirst, GetNext, GetLast, and GetPrevious depends on
whether the address entries are sorted or not. The AddressEntry objects within a collection can be
sorted on a MAPI property of your choice, either ascending or descending, using the Sort method.
When the items are not sorted, you should not rely on these methods to return the items in any
specified order. The best programming approach to use with unsorted collections is to assume that the
access functions are able to access all items within the collection, but that the order of the objects is
not defined.

Add Method (AddressEntries Collection)   

The Add method creates and returns a new AddressEntry object in the AddressEntries collection.

Syntax
Set objAddressEntry = objAddrEntriesColl.Add(emailtype [, name, address])

Parameters
objAddressEntry

On successful return, contains the new AddressEntry object.

objAddrEntriesColl
Required. The AddressEntries collection object.

emailtype
Required. String. The address type of the address entry.

name
Optional. String. The display name or alias of the address entry.

address
Optional. String. The full messaging address of the address entry.

Remarks
The emailtype parameter corresponds to the PR_ADDRTYPE property and qualifies the address
parameter by specifying which messaging system the address is valid in. Typical values are SMTP,
FAX, and X400.

The emailtype, name, and address parameters correspond to the Type, Name, and Address
properties of the AddressEntry object.

The DisplayType property of the new AddressEntry object is set to mapiUser, indicating a local
messaging user has been created. The DisplayType property is read-only and cannot subsequently be
changed.

The user must have permission to Add or Delete an AddressEntry object. Most users have this
permission only for their personal address book (PAB).

The new AddressEntry object is saved in the MAPI system when you call its Update method.

Example
This code fragment adds a new entry to a user’s personal address book (PAB). Note the use of the
Item property as the default property of both the AddressLists and Fields collections.

' get PAB AddressList from AddressLists collection of Session
Set myList = MAPI.Session.AddressLists(“Personal Address Book”)
' add new AddressEntry to AddressEntries collection of AddressList
Set newEntry = myList.AddressEntries.Add “FAX”, “John Doe”
' add FaxNumber field to new AddressEntry and give it a value
newEntry.Fields.Add “FaxNumber”, vbString
newEntry.Fields(“FaxNumber”) = “+1-206-555-7069”
' commit new entry, field, and value to PAB AddressList
newEntry.Update

Count Property (AddressEntries Collection)   

The Count property returns the number of AddressEntry objects in the collection, or a very large
number if the exact count is not available. Read-only.

Syntax
objAddrEntriesColl.Count

Data Type
Long

Remarks
The Count property is useful for determining whether an AddressEntries collection is empty or not.

A large collection cannot always maintain an accurate count of its members, and the Count property
cannot be used as the collection’s size when it has a very large value such as mapiMaxCount.
Programmers needing to access individual objects in a large collection are strongly advised to use the
Visual Basic For Each statement or the Get methods.

The recommended procedures for traversing a large collection are, in decreasing order of preference:

1. Global selection, such as the Visual Basic For Each statement.

2. The Get methods, particularly GetFirst and GetNext

3. An indexed loop, such as the Visual Basic For ... Next construction.

If the address book provider cannot supply the precise number of AddressEntry objects, the OLE
Messaging Library returns a very large number for the Count property. On 32-bit platforms, this value
is mapiMaxCount, which equals 2^31 - 1, or 2147483647. On other platforms, mapiMaxCount is not
defined, and the OLE Messaging Library returns -1. A program on such a platform must ensure that -1
does not prematurely terminate any iteration based on the Count property.

Programmers using an indexed loop terminating on the Count property must also check each returned
object for a value of Nothing. The loop must proceed forward from the beginning of the collection, and
the index must have initial and increment values of 1. Results are undefined for any other procedure.

The use of the Item property in conjunction with the Count property in a large collection can be seen in
the following example.

Example
This code fragment counts the AddressEntry objects in a user’s personal address book (PAB):

Dim i As Integer ' loop index / object counter
Dim myPAB as AddressList ' personal address book AddressList
Dim myPABColl as AddressEntries ' AddressEntries collection of PAB
' select PAB from AddressLists collection of Session
Set myPAB = MAPI.Session.AddressLists.Item(“Personal Address Book”)
' .Item could have been omitted above since it is default property
' make sure returned AddressList object is valid
If myPAB Is Nothing Then
 ' MsgBox "PAB object is invalid"
 ' Exit
End If
' get AddressEntries collection of PAB AddressList
Set myPABColl = myPAB.AddressEntries
' see if PAB is empty
i = myPABColl.Count ' valid if not a “very large number”
If 0 = i Then ' collection empty; 0 is correct count

 MsgBox "No AddressEntry items in PAB"
ElseIf mapiMaxCount = i Then ' .Count is not valid; get exact count
 For i = 0 To myPABColl.Count Step 1
 If myPABColl.Item(i) Is Nothing Then
 Exit For ' end of collection; members are 0, ... , i - 1
 End If
 Next i
End If

Delete Method (AddressEntries Collection)   

The Delete method deletes all the address entries in the AddressEntries collection.

Syntax
objAddrEntriesColl.Delete()

Parameters
objAddrEntriesColl

Required. The AddressEntries collection object.

Remarks
The Delete operation invalidates all the AddressEntry objects in the collection but does not remove
them from memory. The programmer should set the invalidated objects to Nothing to remove them
from memory, or reassign them to other address entries. Attempted access to a deleted object results
in a return of mapiE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one AddressEntry object, use the Delete method specific to that object.

The Delete method on a large collection takes effect immediately and is permanent. A deleted member
cannot be recovered. However, the collection itself it still valid, and you can Add new members to it.

Filter Property (AddressEntries Collection)   

The Filter property returns an AddressEntryFilter object for the AddressEntries collection. Read/write.

Syntax
objAddrEntriesColl.Filter

Data Type
Object

Remarks
An AddressEntryFilter object with no criteria is created by default for every AddressEntries collection.
When you specify criteria by setting properties in the filter’s Fields collection, the filter restricts any
subsequent search on the AddressEntries collection. For more information, see the AddressEntryFilter
Object and Filtering Messages in a Folder.

GetFirst Method (AddressEntries Collection)   

The GetFirst method returns the first AddressEntry object in the AddressEntries collection. It returns
Nothing if no first object exists.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetFirst()

Parameters
objAddressEntry

On successful return, represents the first AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetLast Method (AddressEntries Collection)   

The GetLast method returns the last AddressEntry object in the AddressEntries collection. It returns
Nothing if no last object exists.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetLast()

Parameters
objAddressEntry

On successful return, represents the last AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetNext Method (AddressEntries Collection)   

The GetNext method returns the next AddressEntry object in the AddressEntries collection. It returns
Nothing if no next object exists, for example if already positioned at the end of the collection.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetNext()

Parameters
objAddressEntry

On successful return, represents the next AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetPrevious Method (AddressEntries
Collection)   

The GetPrevious method returns the previous AddressEntry object in the AddressEntries collection. It
returns Nothing if no previous object exists, for example if already positioned at the beginning of the
collection.

Syntax
Set objAddressEntry = objAddrEntriesColl.GetPrevious()

Parameters
objAddressEntry

On successful return, represents the previous AddressEntry object in the collection.

objAddrEntriesColl
Required. The AddressEntries collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

Item Property (AddressEntries Collection)   

The Item property returns a single AddressEntry object from the AddressEntries collection. Read-only.

Syntax
objAddrEntriesColl.Item(index) or objAddrEntriesColl(index)

objAddrEntriesColl.Item(prefix) or objAddrEntriesColl(prefix)

index
A long integer ranging from 1 to the size of the AddressEntries collection.

prefix
A string representing a prefix substring of an AddressEntry object’s Name property.

Data Type
Object

Remarks
The Item property is useful for satisfying syntax requirements when obtaining a member of an
AddressEntries collection.

A large collection cannot support true integer indexing, and the Item(index) syntax cannot be used for
arbitrary selection of members of the collection. Programmers needing to access individual objects in a
large collection are strongly advised to use the Visual Basic For Each statement or the Get methods,
particularly GetFirst and GetNext.

The Item(index) syntax is provided solely as a placeholder in an indexed loop, such as the For ... Next
construction in Visual Basic. Such a loop must proceed forward from the beginning of the collection,
and the index must have initial and increment values of 1. Results are undefined for any other
procedure.

For more information on using the Count and Item properties in a large collection, see the example in
the Count property.

The Item(prefix) syntax returns the first AddressEntry object whose Name property begins with the
string specified by prefix.

The Item property is the default property of an AddressEntries collection, meaning that
objAddrEntriesColl(prefix) is syntactically equivalent to objAddrEntriesColl.Item(prefix) in Visual Basic
code.

Sort Method (AddressEntries Collection)   

The Sort method sorts the address entries in the collection on the specified property according to the
specified sort order.

Syntax
objAddrEntriesColl.Sort([SortOrder, PropTag])

objAddrEntriesColl.Sort([SortOrder, PropID])

Parameters
objAddrEntriesColl

Required. The AddressEntries collection object.

SortOrder
Optional. Long. The specified sort order, one of the following values:

Value Numeric value Description

mapiNone 0 No sort

mapiAscending 1 Ascending sort (default)

mapiDescending 2 Descending sort

PropTag
Optional. Long. The property tag value for the MAPI property to be used for the sort. PropTag is the
32-bit MAPI property tag associated with the property, such as mapiPR_EMAIL_ADDRESS.

PropID
Optional. String. The custom property name of a MAPI named property.

Remarks
Both parameters are optional. If SortOrder is not specified, ascending order is used. If neither PropTag
nor PropID is specified, the property used in the previous call to Sort is used again. If Sort has never
been called on this collection during this session, the MAPI property mapiPR_DISPLAY_NAME is
used for the sort.

AddressEntry Object
The AddressEntry object defines addressing information valid for a given messaging system. An
address usually represents a person or process to which the messaging system can deliver messages.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: AddressEntries collection
Recipient

Child objects: Fields collection

Default property: Name

When an AddressEntry object is used as a child object of a Recipient object, it represents a copy of
valid addressing information that is obtained from the address book during a call to the Recipient
object’s Resolve method. When you obtain the AddressEntry object in this context, you should not
modify its properties.

Properties

Name

Available
in version

Type

Access

Address 1.0.a String Read/write

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

DisplayType 1.0.a Long Read-only

Fields 1.0.a Field object or Fields
collection object

Read-only

ID 1.0.a String Read-only

Members 1.0.a AddressEntries
collection object

Read-only

Name 1.0.a String Read/write

Parent 1.0.a AddressEntries
collection object or
Recipient object

Read-only

Session 1.0.a Session object Read-only

Type 1.0.a String Read/write

Methods

Name

Available
in version

Parameters

Delete 1.0.a (none)

Details 1.0.a (optional) parentWindow as Long

IsSameAs 1.1 (required) object as Object

Update 1.0.a (optional) makePermanent as
Boolean,

(optional) refreshObject as Boolean

Address Property (AddressEntry Object)   

The Address property specifies the messaging address of an address entry or message recipient.
Read/write.

Syntax
objAddressEntry.Address

Data Type
String

Remarks
The AddressEntry object’s Address property contains a unique string that identifies a message
recipient and provides routing information for messaging systems. The format of the address string is
specific to each messaging system.

The AddressEntry object’s Address and Type properties can be combined to form the full address, the
complete messaging address that appears in the Recipient object’s Address property using the
following syntax:

AddressType:AddressValue

The AddressEntry object’s Address property corresponds to the MAPI property
PR_EMAIL_ADDRESS.

Example
' Set up a series of object variables
' Set the Folder and Messages variables from Session_Inbox
Set objFolder = objSession.Inbox
Set objMessages = objFolder.Messages
' Set the Message object variable from Messages_GetFirst()
Set objOneMsg = objMessages.GetFirst
' Set the Recipients collection variable from Message_Recipients()
Set objRecipColl = objOneMsg.Recipients
' Set the Recipient object variable from Recipients_Item()
If 0 = objRecipColl.Count Then
 MsgBox "No recipients in the list"
 Exit Function
End If
iRecipCollIndex = 1
Set objOneRecip = objRecipColl.Item(iRecipCollIndex)
' could also be objRecipColl(iRecipCollIndex) since .Item is default

' set the AddressEntry object variable from Recipient_AddressEntry()
Set objAddrEntry = objOneRecip.AddressEntry
' from Util_CompareFullAddressParts()
' display the values
strMsg = "Recipient full address = " & objOneRecip.Address
strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
MsgBox strMsg

Delete Method (AddressEntry Object)   

The Delete method deletes the AddressEntry object.

Syntax
objAddressEntry.Delete()

Parameters
objAddressEntry

Required. The AddressEntry object.

Remarks
The action of the Delete method is permanent, and the AddressEntry object cannot be recovered.
Before calling the Delete method, the application can prompt the user to verify whether the address
entry should be permanently deleted.

The Delete operation invalidates the AddressEntry object but does not remove it from memory. The
programmer should set the invalidated object to Nothing to remove it from memory, or reassign it to
another address entry. Attempted access to a deleted object results in a return of
mapiE_INVALID_OBJECT.

You can delete all the address entries in the AddressEntries collection by calling the collection’s Delete
method. The ability to delete any address entry depends on the permissions granted to the user. The
Delete method returns an error code if called with insufficient permissions.

Example
Function AddressEntry_Delete()
If objAddrEntry Is Nothing Then
 MsgBox "Must select an AddressEntry object"
 Exit Function
End If
objAddrEntry.Delete
Set objAddrEntry = Nothing
Exit Function
' error handling here ...
End Function

See Also
Add Method (Recipients Collection)

Details Method (AddressEntry Object)   

The Details method displays a modal dialog box that provides detailed information about an
AddressEntry object.

Syntax
objAddressEntry.Details([parentWindow])

Parameters
objAddressEntry

Required. The AddressEntry object.

parentWindow
Optional. Long. The parent window handle for the details dialog box. A value of 0 (the default)
specifies that the dialog should be application-modal.

Remarks
The Details dialog is always modal, meaning the parent window is disabled while the dialog is active. If
the parentWindow parameter is set to 0 or is not set, all windows belonging to the application are
disabled while the dialog is active. If the parentWindow parameter is supplied but is not valid, the call
returns mapiE_INVALID_PARAMETER.

The dialog box must always contain at least the display name and messaging address of the address
entry. The Details method fails if either the Name or Address property is empty.

The following methods can invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object), Resolve
method (Recipients collection), AddressBook and Logon methods (Session object).

DisplayType Property (AddressEntry Object)   

The DisplayType property returns the display type of the address entry. Read-only.

Syntax
objAddressEntry.DisplayType

Data Type
Long

Remarks
The DisplayType property enables special processing based on its value, such as displaying an
associated icon. You can also use the display type to sort or filter address entries.

The following values are defined:

DisplayType value Description

mapiUser Local user

mapiDistList Distribution list

mapiForum Public folder

mapiAgent Agent

mapiOrganization Organization

mapiPrivateDistList Private distribution list

mapiRemoteUser Remote user

The DisplayType property is always set to mapiUser when you Add a new address entry to an
AddressEntries collection. It cannot subsequently be changed.

Fields Property (AddressEntry Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objAddressEntry.Fields

objAddressEntry.Fields(index)

objAddressEntry.Fields(proptag)

objAddressEntry.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object

Remarks
The Fields property returns one or more of the fields associated with an AddressEntry object. Each
field typically corresponds to a MAPI property.

The Fields property provides a generic access mechanism that allows Visual Basic and Visual C++
programmers to retrieve the value of any MAPI property using either a name or a MAPI property tag.
For access with the property tag, use objAddressEntry.Fields(proptag), where proptag is the 32-bit
MAPI property tag associated with the property, such as mapiPR_MESSAGE_CLASS. To access a
named property, use objAddressEntry.Fields(name), where name is a string that represents the
custom property name.

ID Property (AddressEntry Object)   

The ID property returns the unique identifier of the AddressEntry object as a string. Read-only.

Syntax
objAddressEntry.ID

Data Type
String

Remarks
You can use the AddressEntry object’s ID property as a parameter to the Recipient object’s Add
method.

MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example
This code fragment copies information from an AddressEntry object to a Recipient object:

' Function: Recipients_Add_EntryID
' Purpose: Add a new recipient to the collection using AddressEntry ID
Function Recipients_Add_EntryID()
Dim strID As String ' ID from Message.Sender
Dim strName As String ' Name from Message.Sender
Dim objNewMsg As Message ' new msg; set its recipient using ID
Dim objNewRecip As Recipient ' new msg recipient; set from ID, Name
' error handling
strID = objOneMsg.Sender.ID 'Address Entry object ID
strName = objOneMsg.Sender.Name
Set objNewMsg = objSession.Outbox.Messages.Add
If objNewMsg Is Nothing Then
 MsgBox "Could not create a new message"
 Exit Function
End If
objNewMsg.Subject = "Sample message from OLE Messaging Library"
objNewMsg.Text = "Called Recipients.Add method w/ entryID parameter"
Set objNewRecip = objNewMsg.Recipients.Add(_
 entryID:=strID, _
 Name:=strName)
If objNewRecip Is Nothing Then
 MsgBox "Could not create a new recipient"
 Exit Function
End If
objNewMsg.Update ' make sure new data get saved in MAPI
objNewMsg.Send showDialog:=False
MsgBox "Created a new message in the Outbox and sent it"
Exit Function
' error handling
End Function

IsSameAs Method (AddressEntry Object)   

The IsSameAs method returns True if the AddressEntry object is the same as the AddressEntry object
being compared against.

Syntax
objAddressEntry.IsSameAs(objAddrEntry2)

Parameters
objAddressEntry

Required. This AddressEntry object.

objAddrEntry2
Required. The AddressEntry object being compared against.

Remarks
Two AddressEntry objects are considered to be the same if and only if they are instantiations of the
same physical (persistent) object. Two objects with the same value are still considered different if they
do not instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

Members Property (AddressEntry Object)   

The Members property returns an AddressEntries collection that contains the members of a
distribution list. Read-only.

Syntax
objAddressEntry.Members

Data Type
Object

Remarks
The Members property returns a collection of all the members of the AddressEntry object if it is a
distribution list. You can browse the returned AddressEntries collection, and you can add and delete
entries if you have change access.

If the AddressEntry object is not a distribution list, the Members property returns Nothing.

Name Property (AddressEntry Object)   

The Name property returns or sets the display name or alias of the AddressEntry object as a string.
Read/write.

Syntax
objAddressEntry.Name

Data Type
String

Remarks
The AddressEntry object is typically used as a copy of valid addressing information obtained from the
address book after you have called the Recipient object’s Resolve method. When you obtain the
AddressEntry object in this context, you should not modify its properties. To request resolution of a
display name, use the Recipient object’s Name property and Resolve method.

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

The Name property is the default property of an AddressEntry object, meaning that objAddressEntry is
syntactically equivalent to objAddressEntry.Name in Visual Basic code.

Example
' for values of variables, see AddressEntry Address property
' Recipient and AddressEntry display names are the same
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg

See Also
Using Addresses

Type Property (AddressEntry Object)   

The Type property specifies the address type, such as SMTP, fax, or X.400. Read/write.

Syntax
objAddressEntry.Type

Data Type
String

Remarks
The address type is usually a tag referring to the messaging system that routes messages to this
address, such as SMTP or fax.

The AddressEntry object’s Address and Type properties can be combined to form the full address, the
complete messaging address that appears in the Recipient object’s Address property using the
following syntax:

AddressType:AddressValue

The Type property corresponds to the MAPI property PR_ADDRTYPE.

Example
See the example for the AddressEntry object’s Address property.

Update Method (AddressEntry Object)   

The Update method saves changes to the AddressEntry object in the MAPI system.

Syntax
objAddressEntry.Update([makePermanent, refreshObject])

Parameters
objAddressEntry

Required. The AddressEntry object.

makePermanent
Optional. Boolean. A value of True indicates that the property cache is flushed and all changes are
committed in the underlying address book. False indicates that the property cache is flushed but not
committed to persistent storage. The default value is True.

refreshObject
Optional. Boolean. A value of True indicates that the property cache is reloaded from the values in
the underlying address book. False indicates that the property cache is not reloaded. The default
value is False.

Remarks
Changes to objects are not permanently saved in the MAPI system until you call the Update method
with the makePermanent parameter set to True.

For improved performance, the OLE Messaging Library caches property changes in private storage
and updates either the object or the underlying persistent storage only when you explicitly request such
an update. For efficiency, you should make only one call to Update with its makePermanent parameter
set to True.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject = True refreshObject = False

makePermanent =
True

Commit all changes,
flush the cache, and
reload the cache from
the address book.

Commit all changes and
flush the cache (default
combination).

makePermanent =
False

Flush the cache and
reload the cache from
the address book.

Flush the cache.

Call Update(False, True) to flush the cache and then reload the values from the address book.

Example
The following code fragment changes the display name for a valid AddressEntry address:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
Function AddressEntry_Update()
Dim objRecipColl As Recipients ' Recipients collection
Dim objNewRecip As Recipient ' New recipient

' error handling omitted ...
Set objRecipColl = objSession.AddressBook
If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"

 Exit Function
End If
Set objNewRecip = objRecipColl.Item(1)
' above could be objRecipColl(1) since .Item is default property
With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can also change the Type
 .Update ' defaults to makePermanent = True
End With
MsgBox "Updated address entry name: " & objNewRecip.AddressEntry.Name
Exit Function
' error handling omitted
End Function

AddressEntryFilter Object
The AddressEntryFilter object specifies criteria for restricting a search on an AddressEntries collection.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.1

Parent objects: AddressEntries collection

Child objects: Fields collection

Default property: Name

Properties

Name

Available
in version

Type

Access

Address 1.1 String Read/write

Application 1.1 String Read-only

Class 1.1 Long Read-only

Fields 1.1 Field object or Fields
collection object

Read-only

Name 1.1 String Read/write

Not 1.1 Boolean Read/write

Or 1.1 Boolean Read/write

Parent 1.1 AddressEntries
collection object

Read-only

Session 1.1 Session object Read-only

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 object as Object

Remarks
An AddressEntryFilter object with no criteria is created by default for every AddressEntries collection.
This means that initially the filter’s properties are unset and its child Fields collection is empty. You
specify the filter by setting values for its properties, and by adding fields to its Fields collection and
setting a value for each added field.

The filter is invoked when the AddressEntries collection is traversed with the Get methods. Each field
participates in a MAPI search restriction comparing the field’s Value property against the value of the
AddressEntry property specified by the field’s ID property.

For fields of data type other than String, the MAPI search restriction type is RES_PROPERTY with
relational operator RELOP_EQ. For fields of data type String, the restriction type is RES_CONTENT
with fuzzy level options FL_SUBSTRING, FL_IGNORECASE, and FL_LOOSE.

The results of the individual restrictions are normally ANDed together to form the final filter value. You
can change this by setting the Or property, which causes all the results to be ORed instead of ANDed.
You can also set the Not property to specify that the result of each individual restriction is to be
negated before being ANDed or ORed into the final filter value.

The AddressEntryFilter object is persistent within its parent AddressEntries collection. It is not deleted
even when it is released, and it remains attached to the AddressEntries collection until the collection’s
Filter property is set to Nothing or the collection is itself released.

Address Property (AddressEntryFilter Object)   

The Address property specifies the full address for the AddressEntry object being filtered. Read/write.

Syntax
objAddressEntryFilter.Address

Data Type
String

Remarks
The AddressEntryFilter object’s Address property is a concatenation of the address type and
messaging address in the following format:

AddressType:AddressValue

where AddressType and AddressValue represent the AddressEntry object’s Type and Address
properties.

The AddressEntryFilter object’s Address property corresponds to a combination of the MAPI
properties PR_ADDRTYPE and PR_EMAIL_ADDRESS. It represents the full address, that is, the
complete messaging address used by the MAPI system.

The Address property can be copied from the Address property of a Recipient. The advantage of
doing this is that the value of the Recipient object’s Address property has already been computed by
the OLE Messaging Library from its Name property and the Resolve method.

Fields Property (AddressEntryFilter Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objAddressEntryFilter.Fields

objAddressEntryFilter.Fields(index)

objAddressEntryFilter.Fields(proptag)

objAddressEntryFilter.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object

Remarks
The Fields property returns one or more of the fields associated with an AddressEntryFilter object.
Each field typically corresponds to a MAPI property, and together the fields that have been added to
the collection specify the filter.

The Fields property provides a generic access mechanism that allows Visual Basic and Visual C++
programmers to retrieve the value of a MAPI property using either its name or its MAPI property tag.
For access with the property tag, use objAddressEntryFilter.Fields(proptag), where proptag is the 32-
bit MAPI property tag associated with the property, such as mapiPR_MESSAGE_CLASS. To access a
named property, use objAddressEntryFilter.Fields(name), where name is a string that represents the
custom property name.

IsSameAs Method (AddressEntryFilter object)   

The IsSameAs method returns True if the AddressEntryFilter object is the same as the
AddressEntryFilter object being compared against.

Syntax
objAddressEntryFilter.IsSameAs(objAddrEntryFilter2)

Parameters
objAddressEntryFilter

Required. This AddressEntryFilter object.

objAddrEntryFilter2
Required. The AddressEntryFilter object being compared against.

Remarks
Two AddressEntryFilter objects are considered to be the same if and only if they are instantiations of
the same physical (persistent) object. Two objects with the same value are still considered different if
they do not instantiate the same physical object, for example if one is a copy of the other. In such a
case IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

Name Property (AddressEntryFilter Object)   

The Name property specifies a value for use in an ANR (ambiguous name resolution) restriction on an
AddressEntry object. Read/write.

Syntax
objAddressEntryFilter.Name

Data Type
String

Remarks
The Name property contains an ambiguous name resolution (ANR) string that can be compared
against each AddressEntry object using a provider-defined algorithm. The property or properties used
in the comparison are chosen by the provider as part of the algorithm; the PR_DISPLAY_NAME
property is the most commonly used.

The Name property corresponds to the MAPI property PR_ANR.

The Name property is the default property of an AddressEntryFilter object, meaning that
objAddressEntryFilter is syntactically equivalent to objAddressEntryFilter.Name in Visual Basic code.

Not Property (AddressEntryFilter Object)   

The Not property specifies that all restriction values are to be negated before being ANDed or ORed to
specify the address entry filter. Read/write.

Syntax
objAddressEntryFilter.Not

Data Type
Boolean

Remarks
If the Not property is False, the restriction values are treated normally. If it is True, each value is
toggled (between True and False) before being used.

Or Property (AddressEntryFilter Object)   

The Or property specifies that the restriction values are to be ORed instead of ANDed to specify the
address entry filter. Read/write.

Syntax
objAddressEntryFilter.Or

Data Type
Boolean

Remarks
If the Or property is False, all the restriction values are ANDed together. If it is True, the values are
ORed together.

AddressList Object
The AddressList object supplies a list of address entries to which a messaging system can deliver
messages.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.1

Parent objects: AddressLists collection

Child objects: AddressEntries collection

Default property: Name

Properties

Name

Available
in version

Type

Access

AddressEntries 1.1 AddressEntries
collection object

Read-only

Application 1.1 String Read-only

Class 1.1 Long Read-only

ID 1.1 String Read-only

Index 1.1 Long Read-only

IsReadOnly 1.1 Boolean Read-only

Name 1.1 String Read-only

Parent 1.1 AddressLists collection
object

Read-only

Session 1.1 Session object Read-only

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 object as Object

Remarks
An AddressList object represents one address book container available under the MAPI address book
hierarchy for the current session. The entire hierarchy is available through the parent AddressLists
collection.

AddressEntries Property (AddressList Object)   

The AddressEntries property returns a single AddressEntry object or an AddressEntries collection
object. Read-only.

Syntax
Set objAddrEntriesColl = objAddressList.AddressEntries

Set objOneAddrEntry = objAddressList.AddressEntries(index)

objAddrEntriesColl
Object. An AddressEntries collection object.

objAddressList
Object. The AddressList object.

objOneAddrEntry
Object. A single AddressEntry object.

index
Long. Specifies the number of the address entry within the AddressEntries collection. Ranges from 1
to the size of the collection.

Data Type
Object

Remarks
An AddressEntries collection is a large collection, and its size cannot necessarily be determined from
its Count property. It is not safe to use the index parameter with the AddressEntries property unless
an indexed loop has determined that an address entry at that position in the collection actually exists.

ID Property (AddressList Object)   

The ID property returns the unique identifier of the AddressList object as a string. Read-only.

Syntax
objAddressList.ID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example
This code fragment displays the value of the AddressList object’s permanent identifier:

Dim strAddressListID as String ' hex string version of ID
Dim objAddressList as AddressList ' assume valid for this example
strAddressListID = objAddressList.ID ' global variable
MsgBox "Address Book ID = " & strAddressListID

Index Property (AddressList Object)   

The Index property returns the index number for the AddressList object within the AddressLists
collection. Read-only.

Syntax
objAddressList.Index

Data Type
Long

Remarks
The Index property indicates this object’s position within the parent AddressLists Collection.

Example
Function AddressListsGetByIndex()
Dim rqIndex As Long ' requested index value within collection
Dim svIndex As Long ' saved index value within collection
Dim objOneAddressList As AddressList
 ' set error handler here
 If objAddressListsColl Is Nothing Then
 MsgBox "must select a valid AddressLists collection"
 Exit Function
 End If
 If 0 = objAddressListsColl.Count Then
 MsgBox "must select collection with 1 or more address lists"
 Exit Function
 End If
 ' prompt user for rqIndex
 Set objOneAddressList = objAddressListsColl.Item(rqIndex)
 MsgBox "Selected address list: " & objOneAddressList.Name
 svIndex = objOneAddressList.Index ' save index for later
 ' get same AddressList object later
 Set objOneAddressList = objAddressListsColl.Item(svIndex)
 If objOneAddressList Is Nothing Then
 MsgBox "Error: could not reselect the address list"
 Else
 MsgBox "Reselected address list (" & svIndex & _
 ") using saved index: " & objOneAddressList.Name
 End If
 Exit Function

IsReadOnly Property (AddressList Object)   

The IsReadOnly property indicates that the AddressList object cannot be modified. Read-only.

Syntax
objAddressList.IsReadOnly

Data Type
Boolean

Remarks
The IsReadOnly property refers to adding and deleting the entries in the address book container
represented by the AddressList object. The property is True if no entries can be added or deleted, and
False if the container can be modified, that is, if address entries can be added to and deleted from the
container.

IsReadOnly refers to the address book entries in the context of the address book container. It does not
indicate whether the contents of the individual entries themselves can be modified.

IsSameAs Method (AddressList Object)   

The IsSameAs method returns True if the AddressList object is the same as the AddressList object
being compared against.

Syntax
objAddressList.IsSameAs(objAddrList2)

Parameters
objAddressList

Required. This AddressList object.

objAddrList2
Required. The AddressList object being compared against.

Remarks
Two AddressList objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object. Two objects with the same value are still considered different if they do not
instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

Name Property (AddressList Object)   

The Name property returns the name of the AddressList object as a string. Read-only.

Syntax
objAddressList.Name

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_DISPLAY_NAME for the address book
container represented by the AddressList object.

The Name property is the default property of an AddressList object, meaning that objAddressList is
syntactically equivalent to objAddressList.Name in Visual Basic code.

Example
Dim objAddressList As Object ' assume valid address list object
MsgBox "Address book container name = " & objAddressList.Name

AddressLists Collection Object
The AddressLists collection object contains one or more AddressList objects.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.1

Parent objects: Session

Child objects: AddressList

Default property: Item

An AddressLists collection is considered a small collection, which means that it supports count and
index values that let you access an individual AddressList object through the Item property. The
AddressLists collection supports the Visual Basic For Each statement.

Properties

Name

Available
in version

Type

Access

Application 1.1 String Read-only

Class 1.1 Long Read-only

Count 1.1 Long Read-only

Item 1.1 AddressList object Read-only

Parent 1.1 Session object Read-only

Session 1.1 Session object Read-only

Methods
(None.)

Remarks
The AddressLists collection provides access to the root of the MAPI address book hierarchy for the
current session. You can obtain the collection through the parent Session object’s AddressLists
property.

You can use the Count and Item properties to traverse the hierarchy for all available address books, or
you can use the Item property to select a particular AddressList object. The type of access you obtain
depends on the access granted to you by each available address book provider.

Each AddressList object represents one MAPI address book container. The AddressLists collection
contains only those AddressList objects that contain recipients, and not those containing only
subcontainers. For more information on the different types of containers, see the description of the
PR_CONTAINER_FLAGS property in the MAPI Programmer’s Reference.

Count Property (AddressLists Collection)   

The Count property returns the number of AddressList objects in the collection. Read-only.

Syntax
objAddrListsColl.Count

Data Type
Long

Example
This code fragment uses the Count and Item properties to determine how many AddressList objects
are available in the collection:

Dim i As Integer ' loop counter
Set hierarchy = MAPI.Session.AddressLists
' make sure returned collection object is valid
If hierarchy Is Nothing Then
 ' Exit "Address book hierarchy is invalid"
End If
' see if hierarchy is empty
i = hierarchy.Count ' count of address books in hierarchy
If 0 = i Then
 ' Exit "No available address books"
End If
' precautionary loop to make sure address books are all valid
For i = 1 To hierarchy.Count Step 1
 If Nothing = hierarchy.Item(i) Then
 ' Exit "Address book is invalid"
 End If
Next i

Item Property (AddressLists Collection)   

The Item property returns a single AddressList object from the AddressLists collection. Read-only.

Syntax
objAddrListsColl.Item(index)

objAddrListsColl.Item(name)

index
A long integer ranging from 1 to objAddrListsColl.Count.

name
A string representing the value of the Name property of an AddressList object.

Data Type
Object

Remarks
The Item property works like an accessor property for small collections.

The Item(index) syntax selects an arbitrary AddressList object within the AddressLists collection. The
example in the Count property shows how these two properties can be used together to traverse the
collection.

The Item(name) syntax returns the first AddressList object whose Name property matches the string
specified by name.

The Item property is the default property of an AddressLists collection, meaning that
objAddrListsColl(index) is syntactically equivalent to objAddrListsColl.Item(index) in Visual Basic code.

Attachment Object
The Attachment object represents a document that is an attachment of a message.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Attachments collection

Child objects: (none)

Default property: Name

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Fields 1.1 Field object or Fields
collection object

Read-only

Index 1.0.a Long Read-only

Name 1.0.a String Read/write

Parent 1.0.a Attachments collection
object

Read-only

Position 1.0.a Long Read/write

Session 1.0.a Session object Read-only

Source 1.0.a String or Message
object

Read/write

Type 1.0.a Long Read/write

Methods

Name

Available
in version

Parameters

Delete 1.0.a (none)

IsSameAs 1.1 object as Object

ReadFromFile 1.0.a fileName as String

WriteToFile 1.0.a fileName as String

Delete Method (Attachment Object)   

The Delete method deletes the Attachment object.

Syntax
objAttachment.Delete()

Parameters
objAttachment

Required. The Attachment object.

Remarks
The Attachment object is invalidated in memory, but the change is not permanent until you use the
Update, Send, or Delete method on the Message object to which this attachment belongs.

The Delete operation invalidates the Attachment object but does not remove it from memory. The
programmer should set the invalidated object to Nothing to remove it from memory, or reassign it to
another attachment. Attempted access to a deleted object results in a return of
mapiE_INVALID_OBJECT.

The immediate parent of this Attachment object is an Attachments collection, which is a child of the
message. You can delete all the message’s attachments by calling the collection’s Delete method.

Fields Property (Attachment Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objAttachment.Fields

objAttachment.Fields(index)

objAttachment.Fields(proptag)

objAttachment.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object

Remarks
The Fields property returns one or more of the fields associated with an Attachment object. Each field
typically corresponds to a MAPI property.

The Fields property provides a generic access mechanism that allows Visual Basic and Visual C++
programmers to retrieve the value of a MAPI property using either its name or its MAPI property tag.
For access with the property tag, use objAttachment.Fields(proptag), where proptag is the 32-bit MAPI
property tag associated with the property, such as mapiPR_MESSAGE_CLASS. To access a named
property, use objAttachment.Fields(name), where name is a string that represents the custom property
name.

Index Property (Attachment Object)   

The Index property returns the index number for the Attachment object within the Attachments
collection. Read-only.

Syntax
objAttachment.Index

Data Type
Long

Remarks
The Index property indicates this attachment’s position within the parent Attachments collection. It can
later be used to reselect this attachment with the collection’s Item property.

An index value should not be considered a static value that remains constant for the duration of a
session. It can be affected when other attachments are added and deleted. The index value is changed
following an update to the Message object to which the Attachments collection belongs.

Example
Function Attachments_GetByIndex()
Dim lIndex As Long
Dim objOneAttach As Object ' assume valid attachment
 ' set error handler here
 If objAttachColl Is Nothing Then
 MsgBox "must select an Attachments collection"
 Exit Function
 End If
 If 0 = objAttachColl.Count Then
 MsgBox "must select collection with 1 or more attachments"
 Exit Function
 End If
 ' prompt user for index; for now, use 1
 Set objOneAttach = objAttachColl.Item(1)
 MsgBox "Selected attachment 1: " & objOneAttach.Name
 lIndex = objOneAttach.Index ' save index to retrieve this later
 ' ... get same attachment object later
 Set objOneAttach = objAttachColl.Item(lIndex)
 If objOneAttach Is Nothing Then
 MsgBox "Error: could not reselect the attachment"
 Else
 MsgBox "Reselected attachment " & lIndex & _
 " using index: " & objOneAttach.Name
 End If
 Exit Function

IsSameAs Method (Attachment Object)   

The IsSameAs method returns True if the Attachment object is the same as the Attachment object
being compared against.

Syntax
objAttachment.IsSameAs(objAttach2)

Parameters
objAttachment

Required. This Attachment object.

objAttach2
Required. The Attachment object being compared against.

Remarks
Two Attachment objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object. Two objects with the same value are still considered different if they do not
instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

Name Property (Attachment Object)   

The Name property returns or sets the display name of the Attachment object as a string. Read/write.

Syntax
objAttachment.Name

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_ATTACH_FILENAME.

The Name property is the default property of an Attachment object, meaning that objAttachment is
syntactically equivalent to objAttachment.Name in Visual Basic code.

Example
See the example for the Attachment object’s Index property.

Position Property (Attachment Object)   

The Position property returns or sets the position of the attachment within the text of the message.
Read/write.

Syntax
objAttachment.Position

Data Type
Long

Remarks
The Position property is a long integer describing where the attachment should be placed in the
message text. The attachment overwrites the character present at that position. Applications cannot
place two attachments in the same location within a message, and attachments cannot be placed
beyond the end of the message text.

The OLE Messaging Library does not manage rendering of the attachment within the message. The
Position property simply provides directions for the rendering application.

The value -1 indicates that the attachment is not rendered using the Position property. The value 0,
and all positive values, indicate an index to the text character within the message.

The Position property corresponds to the MAPI property PR_RENDERING_POSITION.

Example
' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at beginning of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also
Add Method (Attachments Collection) , Text Property (Message Object)

ReadFromFile Method (Attachment Object)   

The ReadFromFile method loads the contents of an attachment from a file.

Syntax
objAttachment.ReadFromFile(fileName)

Parameters
objAttachment

Required. The Attachment object.

fileName
Required. String. The full path and file name to read from, for example C:
\DOCUMENT\BUDGET.XLS.

Remarks
The ReadFromFile method replaces the existing contents of the Attachment object, if any.

The ReadFromFile method operates differently, depending on the value of the Attachment object’s
Type property. The following table describes its operation:

Attachment Type
property

ReadFromFile operation

mapiFileData Copies the contents of the specified file to the
attachment.

mapiFileLink (Not supported)

mapiOLE The specified file must be a valid OLE docfile,
such as a file previously written by the
WriteToFile method with a mapiOLE type
setting.

mapiEmbeddedMessage (Not supported)

The term “OLE docfile” indicates that the file is written by an application such as Microsoft Word
version 6.0 or later that writes files using the OLE IStorage and IStream interfaces.

Note    OLE Messaging Library versions 1.0.a and 1.1 do not support ReadFromFile for
mapiFileLink or mapiEmbeddedMessage attachments. These calls generate the run-time error
mapiE_NO_SUPPORT.

You can load the contents of an attachment when you first create it by specifying the type and source
parameters when you call the Add of the Attachments collection.

Source Property (Attachment Object)   

The Source property returns or sets the full path and file name, OLE class name, or unique message
identifier for the attachment. Read/write.

Syntax
objAttachment.Source

Data Type
String

Remarks
The Source property returns or sets the full path and file name of the attachment data file for
mapiFileData and mapiFileLink attachments. It returns or sets the OLE class name of the attachment
for mapiOLE attachments. For mapiEmbeddedMessage attachments, the Source property is set with
the ID property of the message to be embedded, and it returns the Message object itself. An embedded
message is copied into the attachment at creation time.

The OLE Messaging Library does not synchronize the Source property and the ReadFromFile
method. For mapiFileData and mapiOLE attachments, when you change the Source property to
indicate a different file, you must also explicitly call the ReadFromFile method to update the object
data. Similarly, when you call ReadFromFile with data from a different file, you must change the
Source property.

The return value of the Source property depends on the value of the Type property, as described in
the following table:

Type property Source property

mapiFileData Not used; contains an empty string.

mapiFileLink Specifies a full path name in a universal
naming convention (UNC) format, such as \
\SALES\INFO\PRODUCTS\NEWS.DOC.

mapiOLE Specifies the registered OLE class name of
the attachment, such as “Word.Document” or
“PowerPoint.Show.”

mapiEmbeddedMessage Specifies the unique identifier of the
embedded message; returns the embedded
Message object.

The UNC format is suitable for sending attachments to recipients who have access to a common file
server.

The Source property can be set at the time of creation of the attachment by supplying the source
parameter to the Add method of the Attachments collection.

The Source property corresponds to the MAPI property PR_ATTACH_PATHNAME.

Example
' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at beginning of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With

 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also
WriteToFile Method (Attachment Object)

Type Property (Attachment Object)   

The Type property describes the attachment type. Read/write.

Syntax
objAttachment.Type

Data Type
Long

Remarks
The following attachment types are supported:

Type property Value Description

mapiFileData 1 Attachment is the contents of a file.
(Default value.)

mapiFileLink 2 Attachment is a link to a file.

mapiOLE 3 Attachment is an OLE object.

mapiEmbeddedMessage 4 Attachment is an embedded
message.

The value of the Type property determines the valid values for the Source property.

The Type property can be set at the time of creation of the attachment by supplying the type parameter
to the Add method of the Attachments collection.

The Type property corresponds to the MAPI property PR_ATTACH_METHOD.

Example
' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at beginning of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also
ReadFromFile Method (Attachment Object) , WriteToFile Method (Attachment Object)

WriteToFile Method (Attachment Object)   

The WriteToFile method saves the attachment to a file in the file system.

Syntax
objAttachment.WriteToFile(fileName)

Parameters
objAttachment

Required. The Attachment object.

fileName
Required. String. The full path and file name for the saved attachment, for example C:
\DOCUMENT\BUDGET.XLS.

Remarks
The WriteToFile method overwrites the file without warning if a file of that name already exists. Your
application should check for the existence of the file before calling WriteToFile.

The WriteToFile method operates differently, depending on the value of the Attachment object’s Type
property. The following table describes its operation:

Attachment Type
property

WriteToFile operation

mapiFileData Copies the contents of the specified file to the
attachment.

mapiFileLink (Not supported)

mapiOLE Writes the file as an OLE docfile format.

mapiEmbeddedMessage (Not supported)

The term “OLE docfile” indicates that the file is written by an application such as Microsoft Word 6.0 or
later that writes files using the OLE IStorage and IStream interfaces.

Note    OLE Messaging Library version 1.1 does not support WriteToFile for mapiFileLink or
mapiEmbeddedMessage attachments. These calls generate the run-time error
mapiE_NO_SUPPORT.

See Also
ReadFromFile Method (Attachment Object)

Attachments Collection Object
The Attachments collection object contains one or more Attachment objects.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Message

Child objects: Attachment

Default property: Item

An Attachments collection is considered a small collection, which means that it supports count and
index values that let you access an individual Attachment objects through the Item property. The
Attachments collection supports the Visual Basic For Each statement.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Count 1.0.a Long Read-only

Item 1.0.a Attachment object Read-only

Parent 1.0.a Message object Read-only

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a (optional) name as String,
(optional) position as Long,
(optional) type as Long,
(optional) source as String

Delete 1.0.a (none)

Add Method (Attachments Collection)   

The Add method creates and returns a new Attachment object in the Attachments collection.

Syntax
Set objAttachment = objAttachColl.Add([name, position, type, source])

Parameters
objAttachment

On successful return, contains the new Attachment object.

objAttachColl
Required. The Attachments collection object.

name
Optional. String. The display name of the attachment. The default value is an empty string. To allow
a user to click on the attachment that appears in the message and activate an associated
application, supply the full file name, including the file extension.

position
Optional. Long. The position of the attachment within the body text of the message. The default
value is zero.

type
Optional. Long. The type of attachment; either mapiFileData, mapiFileLink, mapiOLE, or
mapiEmbeddedMessage. The default value is mapiFileData.

source
Optional. String. The path and file name of the file containing the data for the attachment, or the
unique identifier of the message to be embedded. The path and file name must be in the appropriate
format for the attachment type, specified by the type parameter. The default value is an empty string.

Remarks
The Add method parameters correspond to the Name, Position, Type, and Source properties of the
Attachment object. The source parameter is also closely related to the ReadFromFile method’s
fileName parameter.

You can supply the data for the attachment at the same time that you add the attachment to the
collection. The Add method operates differently, depending on the value of the type parameter. The
following table describes its operation.

Value of type parameter Value of source parameter

mapiFileData Specifies a full path and file name that
contains the data for the attachment, for
example C:\DOCUMENT\BUDGET.XLS. The
data is read into the attachment.

mapiFileLink Specifies a full path and file name in a
universal naming convention (UNC) format,
such as \
\SALES\INFO\PRODUCTS\NEWS.DOC. The
attachment is a link, so the Add method does
not read the data.

mapiOLE Specifies a full path and file name to a valid
OLE docfile, for example C:
\DOCUMENT\BUDGET2.XLS. The data is
read into the attachment.

mapiEmbeddedMessage Specifies the ID property of the message to

be embedded. The message is copied into
the attachment.

When the type parameter has the value mapiFileLink, the source parameter is a full path and file
name in a UNC format. This is suitable for sending attachments to recipients who have access to a
common file server. Note that when you use the type mapiFileLink, the OLE Messaging Library does
not validate the file name.

If you do not specify the type and source parameters when you call the Add method, you must later
explicitly set these properties. For mapiFileData and mapiOLE types, you must also call the
ReadFromFile method on the new Attachment object to load the attachment’s content.

The Index property of the new Attachment object equals the new Count property of the Attachments
collection.

The attachment is saved in the MAPI system when you Update or Send the parent Message object.

Count Property (Attachments Collection)   

The Count property returns the number of Attachment objects in the collection. Read-only.

Syntax
objAttachColl.Count

Data Type
Long

Example
This code fragment stores in an array the names of all Attachment objects in the collection. It shows
the Count and Item properties working together.

' from the sample function, TstDrv_Util_SmallCollectionCount
' objAttachColl is an Attachments collection
x = Util_SmallCollectionCount(objAttachColl)

Function Util_SmallCollectionCount(objColl As Object)
Dim strItemName(100) As String ' Names of objects in collection
Dim i As Integer ' loop counter
 On Error GoTo error_olemsg
 If objColl Is Nothing Then
 MsgBox "Must supply a valid collection object as a parameter"
 Exit Function
 End If
 If 0 = objColl.Count Then
 MsgBox "No items in the collection"
 Exit Function
 End If
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i
 ' error handling here...
End Function

Delete Method (Attachments Collection)   

The Delete method deletes all the attachments in the Attachments collection.

Syntax
objAttachColl.Delete()

Parameters
objAttachColl

Required. The Attachments collection object.

Remarks
The Delete operation invalidates all the Attachment objects in the collection but does not remove them
from memory. The programmer should set the invalidated objects to Nothing to remove them from
memory, or reassign them to other attachments. Attempted access to a deleted object results in a
return of mapiE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Attachment object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Update, Send, or Delete method
on the parent Message object containing the Attachments collection. Any member once permanently
deleted cannot be recovered. However, the collection itself it still valid, and you can Add new members
to it.

Item Property (Attachments Collection)   

The Item property returns a single Attachment object from the Attachments collection. Read-only.

Syntax
objAttachColl.Item(index)

index
A long integer that ranges from 1 to objAttachColl.Count, or a string that specifies the name of the
object.

Data Type
Object

Remarks
The Item property works like an accessor property for small collections.

The Item property is the default property of an Attachments collection, meaning that
objAttachColl(index) is syntactically equivalent to objAttachColl.Item(index) in Visual Basic code.

Example
This code fragment shows the Count and Item properties working together:

' from Util_SmallCollectionCount(objColl As Object)
' This sample obtains the collection as a variable
' so it *must* use the Item property
Dim strItemName(100) as String
Dim i As Integer ' loop counter
 ' error handling omitted from this fragment ...
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i

Field Object
A Field object represents a MAPI property on an OLE Messaging Library object.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Fields collection

Child objects: (none)

Default property: Value

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

ID 1.0.a Long Read-only

Index 1.0.a Long Read-only

Name 1.0.a String Read-only

Parent 1.0.a Fields collection object Read-only

Session 1.0.a Session object Read-only

Type 1.0.a Integer Read-only

Value 1.0.a Variant Read/write

Methods

Name

Available
in version

Parameters

Delete 1.0.a (none)

ReadFromFile 1.0.a fileName as String

WriteToFile 1.0.a fileName as String

Remarks
The Field object gives you the ability to add or access MAPI properties of an AddressEntry,
AddressEntryFilter, Folder, Message, or MessageFilter object.

You can add additional properties tailored for your specific application to the Fields collection. Before
adding a field for an eligible object, please review the properties that are already provided by the OLE
Messaging Library. Many of the most common attributes are already offered. For example, Subject
and Priority are already defined as Message object properties.

Note that the predefined MAPI properties are unnamed when they are accessed through Field objects.
For these MAPI properties, the Name property is an empty string.

The Field object also supports multivalued MAPI properties. The multivalued property appears to the

Visual Basic application as a variant array; that is, you can use the For ... Next statement to access
individual array entries, as shown in the following sample program.

 Dim rgstr(0 To 9) As String
 ' Build array of values for MV prop
 For i = 0 To 9
 rgstr(i) = "String" + Str(i)
 Next

 ' Create MV field on the message (note that we don't specify
 ' the array as third argument to Fields.Add, but add separately)
 Set f = msg.Fields.Add("FancyName", vbString + vbArray)
 f.Value = rgstr ' Set value of the new field
 ' Save/send the message, logoff, etc.

 ' later: code that reads the multivalued properties
 Dim rgstr As Variant
 Set f = msg.Fields.Item("FancyName") ' Get MV Field
 rgstr = f.Value ' Get array of values into a variant
 For i = LBound(rgret) To UBound(rgret)
 MsgBox rgret(i)
 Next I

For more information on MAPI properties, see the reference documentation for the Fields collection
and the MAPI Programmer’s Reference.

Delete Method (Field Object)   

The Delete method deletes the user-defined or optional Field object.

Syntax
objField.Delete

Parameters
objField

Required. The Field object.

Remarks
This method only deletes user-defined fields and fields that represent properties considered optional by
the underlying provider.

The field is invalidated in memory, but the change is not permanent until you use the Update, Send, or
Delete method on the parent AddressEntry, AddressEntryFilter, Folder, Message, or MessageFilter
object of the Fields collection.

The Delete operation invalidates the Field object but does not remove it from memory. The
programmer should set the invalidated object to Nothing to remove it from memory, or reassign it to
another field. Attempted access to a deleted object results in a return of mapiE_INVALID_OBJECT.

See Also
Add Method (Fields Collection)

ID Property (Field Object)   

The ID property returns the MAPI tag for the Field object as a long integer. Read-only.

Syntax
objField.ID

Data Type
Long

Remarks
The Field object ID property is unique among identifier properties supported in the OLE Messaging
Library. The Field object identifier is a long integer that corresponds to a MAPI property tag value. All
other ID properties are hexadecimal strings corresponding to the MAPI PR_ENTRYID property.

A MAPI property tag is a 32-bit unsigned integer. Its high-order 16 bits contain the MAPI property
identifier, and its low-order 16 bits contain the MAPI property type. For more information, see “About
Property Tags” in the MAPI Programmer’s Reference.

Note    The MAPI property type is not the same as the OLE Messaging Library Type property. There
is a correspondence between the two entities, but their value sets are not the same. The Field object
ID property contains the MAPI property type; its Type property contains the OLE Messaging Library
Visual Basic data type.

Example
' The Field.ID property is a long value, not a string
' fragment from the function Field_ID()
' verify that objOneField is valid, then access
 MsgBox "MAPI ID in high-order word, MAPI type in low-order: 0x" _
 & Hex(objOneField.ID)

Index Property (Field Object)   

The Index property returns the index number of the Field object within the Fields collection. Read-only.

Syntax
objField.Index

Data Type
Long

Remarks
An index value should not be considered a static value that remains constant for the duration of a
session. It can be affected when other fields are added and deleted. The index value is changed
following an update to the object to which the Fields collection belongs.

Example
This code fragment shows the Fields collection’s Count property and the Index property working
together:

' set up a variable as an index to access a small collection
' fragment from the functions Fields_FirstItem, Fields_NextItem
 If objFieldsColl Is Nothing Then
 MsgBox "must first select a Fields collection"
 Exit Function
 End If
 If 0 = objFieldsColl.Count Then
 MsgBox "No fields in the collection"
 Exit Function
 End If
' Fragment from Fields_FirstItem
 iFieldsCollIndex = 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid ...
' Fragment from Fields_NextItem
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid, then loop back ...

Name Property (Field Object)   

The Name property returns the name of the field as a string. Read-only.

Syntax
objField.Name

Data Type
String

Remarks
The Name property is read-only. You set the name of the Field object at the time you create it, when
you call the Fields collection’s Add method.

Field objects used to access MAPI properties do not have names. Names can appear only on the
custom properties that you create. For more information, see the Item property documentation for the
Fields collection.

Example
' fragment from Fields_Add
Dim objNewField As Object ' new Field object
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
 If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
 End If
 cFields = objFieldsColl.Count
 MsgBox "new Fields collection count = " & cFields
' later: fragment from Field_Name; modified to use objNewField
 If "" = objNewField.Name Then
 MsgBox "Field has no name; ID = " & objNewField.ID
 Else
 MsgBox "Field name = " & objNewField.Name
 End If

ReadFromFile Method (Field Object)   

The ReadFromFile method loads the value of a string or binary field from a file.

Syntax
objField.ReadFromFile(fileName)

Parameters
objField

Required. The Field object.

fileName
Required. String. The full path and file name to read, for example C:\DOCUMENT\BUDGET.XLS.

Remarks
The ReadFromFile method reads the string or binary value from the specified file and stores it as the
value of the Field object. It replaces any previously existing value for the field.

Note that ReadFromFile is not supported for simple types, such as vbInteger, vbLong, and
vbBoolean. Visual Basic provides common functions to read and write these base types to and from
files. The ReadFromFile method fails if the Type property of the Field object is not vbString or
vbBlob.

Note that some binary types are converted to a hexadecimal string format when they are stored as
Field values. Comparison operations on the Value property and the actual contents of the file can
return “not equal” even when the values are equivalent.

In addition, support for types can vary among providers. Not all providers support both the vbString
and vbBlob property types.

ReadFromFile returns mapiE_INTERFACE_NOT_SUPPORTED for Field objects obtained from a
Folder object’s Fields collection.

See Also
WriteToFile Method (Field Object)

Type Property (Field Object)   

The Type property returns or sets the data type of the Field object. Read/write.

Syntax
objField.Type

Data Type
Integer

Remarks
The Type property specifies the data type of the Field object and determines the range of valid values
that can be supplied for the Value property. You can set the value of the Type property by calling the
Fields collection’s Add method.

Valid data types are as follows:

Type

Descripti
on

Decimal
value

OLE variant
type

MAPI property
type

vbNull Null 1 VT_NULL PT_NULL

vbInteger Integer 2 VT_I2 PT_I2

vbLong Long
integer

3 VT_I4 PT_LONG

vbSingle 4-byte
real
(floating
point)

4 VT_R4 PT_R4

vbDouble Double
(8-byte
real)

5 VT_R8 PT_DOUBLE,
PT_I8

vbCurrency Scaled
integer (8
bytes)

6 VT_CY PT_CURRENC
Y

vbDate Date/time
(8 bytes)

7 VT_DATE PT_APPTIME,
PT_SYSTIME

vbString String 8 VT_BSTR PT_TSTRING,
PT_BINARY

vbBoolean Boolean 11 VT_BOOL PT_BOOLEAN

vbDataObje
ct

Data
object

13 VT_UNKNOWN PT_OBJECT

vbBlob Binary
(unknown
format)

65 VT_BLOB PT_BINARY

vbArray Multivalue
d type

8192 VT_ARRAY PT_MV_(type)

Note that the types vbNull and vbDataObject are not supported in version 1.0.a.

The vbArray data type must always be used in conjunction with one of the other types, for example
vbArray + vbInteger. When you use a multivalued type, to avoid a mapiE_INVALID_TYPE error you

must also declare the array to be of the appropriate type:

Dim Words(10) As String ' NOT just Dim Words(10)
' ...
Set objKeysField = objFieldsColl.Add("Keywords", vbArray + vbString)
objKeysField.Value = Words

Note that MAPI stores all custom properties that represent date and time information using Greenwich
Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

Example
' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object
' Fragment from Field_Type; display the decimal type value
 MsgBox "Field type = " & objOneField.Type

Value Property (Field Object)   

The Value property returns or sets the value of the Field object. Read/write.

Syntax
objField.Value

Data Type
Variant

Remarks
The Value property of the Field object represents a value of the type specified by the Type property.
For example, when the Field object has the Type property vbBoolean, the Value property can take the
values True or False. When the Field object has the Type property vbInteger, the Value property can
contain a short integer.

The Value property is the default property of a Field object, meaning that objField is syntactically
equivalent to objField.Value in Visual Basic code.

Example
' fragment from function Field_Type()
' after validating the Field object objOneField
 MsgBox "Field type = " & objOneField.Type
' fragment from function Field_Value() ...
 MsgBox "Field value = " & objOneField.Value

WriteToFile Method (Field Object)   

The WriteToFile method saves the field value to a file in the file system.

Syntax
objField.WriteToFile(fileName)

Parameters
objField

Required. The Field object.

fileName
Required. String. The full path and file name for the saved field, for example C:
\DOCUMENT\BUDGET.XLS.

Remarks
The WriteToFile method writes the string or binary value of the Field object to the specified file name.
It overwrites any existing information in that file.

Note that WriteToFile is not supported for simple types, such as vbInteger, vbLong, and vbBoolean.
Visual Basic provides common functions to read and write these base types to and from files. The
WriteToFile method fails if the Type property of the Field object is not vbString or vbBlob.

Note that some binary types are represented in hexadecimal string format by the OLE Messaging
Library but written to persistent storage in binary format. Comparison operations on the Value property
and the actual contents of the file can return “not equal” even when the values are equivalent.

In addition, support for types can vary among providers. Not all providers support both the vbString
and vbBlob property types.

See Also
ReadFromFile Method (Field Object)

Fields Collection Object
The Fields collection object contains one or more Field objects.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: AddressEntry
AddressEntryFilter
Folder (Inbox or Outbox)
Message
MessageFilter

Child objects: Field

Default property: Item

A Fields collection is considered a small collection, which means that it supports count and index
values that let you access an individual Field object through the Item property. The Fields collection
supports the Visual Basic For Each statement.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Count 1.0.a Long Read-only

Item 1.0.a Field object Read-only

Parent 1.0.a AddressEntry object,
Inbox or Outbox folder
object, or Message
object

Read-only

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a name as String,
Class as Long,
PropTag as Long,
(optional) value as Variant,
(optional) PropsetID as String

Delete 1.0.a (none)

SetNamespace 1.0.a (optional) PropsetID as String

Remarks
Field objects give you the ability to access MAPI properties on the parent object of the Fields collection.
These include the predefined underlying MAPI properties and your own custom user-defined
properties.

MAPI defines a set of properties with identifiers less than the value 0x8000. These are known as
unnamed properties because they are usually accessed using the MAPI property tag rather than a

name. You can access these MAPI-defined properties using the Fields collection. All MAPI properties
are accessible except those of types PT_OBJECT and PT_CLSID.

You can also extend the properties available through MAPI by defining your own properties. These
user-defined properties, defined using a name and automatically assigned an identifier greater than
0x8000 by the OLE Messaging Library, are known as named properties. (C++ programmers can
access the property name in the MAPI structure MAPINAMEID and convert it to the property tag
value.)

All named properties are defined as part of a property set, which is also known in the context of the
OLE Messaging Library as a namespace.

A property set is defined by a GUID, or globally unique identifier. The OLE Messaging Library
represents this GUID as a string of hexadecimal characters. Such identifiers are usually referenced
using a constant that starts with the characters PS_, such as PS_PUBLIC_STRINGS, the default
property set for all properties created using the OLE Messaging Library.

You can also choose to organize your custom properties within their own semantic space by defining
your own property set. The Add and SetNamespace methods and the Item property let you specify
the property set identifier to be used for named property access.

When creating your own property set, you should be aware that MAPI reserves several property set
identifiers for specific purposes. The following table lists reserved property sets:

Reserved Property Set Description

PS_MAPI Allows providers to supply names for
the unnamed properties (properties
with identifiers less than 0x8000).

PS_PUBLIC_STRINGS Default property set for custom
properties added using the OLE
Messaging Library.

PS_ROUTING_ADDRTYPE E-mail address types that are
translated between messaging
domains.

PS_ROUTING_DISPLAY_NAME Display name properties that are
translated    between messaging
domains.

PS_ROUTING_EMAIL_ADDRESS
ES

E-mail addresses that are translated
between messaging domains.

PS_ROUTING_ENTRYID Long-term entry identifiers that are
translated between messaging
domains.

PS_ROUTING_SEARCH_KEY Search keys that are translated
between messaging domains.

To create your own GUID that identifies your property set, you can either use the Win32 command-line
utility UUIDGEN or you can call the OLE function CoCreateGuid to supply one for you, as
demonstrated in the following code fragment:

' declarations required for the call to CoCreateGuid
Type GUID
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
Declare Function CoCreateGuid Lib "OLE32.DLL" (pGuid As GUID) As Long

Global Const S_OK = 0
Dim strPropID As String
Dim lResult As Long
Dim lGuid As GUID

' call CoCreateGuid, then convert the result to a hex string
 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 strPropID = Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 strPropID = myHexString & Hex$(lGuid.Guid3)
 strPropID = myHexString & Hex$(lGuid.Guid4)
 Else
 ‘ ... handle error ...
 End If

For more information on named properties and property sets, see “Named Properties” in the MAPI
Programmer’s Reference. For more information on UUIDGEN and CoCreateGuid, see the Win32 SDK
documentation.

Note that MAPI stores all custom properties that represent date and time information using Greenwich
Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

Example
To uniquely identify a Field object in the Fields collection, use the Field object’s Name or Index
property:

Set objOneField = objFolder.Fields.Item("BalanceDue")
Set objAnotherField = objMessage.Fields.Item("Keyword")
Set objThirdField = objMessage.Fields.Item(3)

See Also
Object Collections

Add Method (Fields Collection)   

The Add method creates and returns a new Field object in the Fields collection.

Syntax
Set objField = objFieldsColl.Add (name, Class [, value, PropsetID])

Set objfield = objFieldsColl.Add (PropTag [, value])

Parameters
objField

On successful return, contains the new Field object.

objFieldsColl
Required. The Fields collection object.

name
Required. A string that represents the display name of the field.

Class
Required. A constant long integer that represents the data type for the field, such as string or integer.
The Class parameter represents the same values as the Field object’s Type property. The following
types are allowed:

Type property
Description

Numeric
value

OLE variant type

vbNull Null 1 VT_NULL

vbInteger Integer 2 VT_I2

vbLong Long integer 3 VT_I4

vbSingle 4-byte real (floating
point)

4 VT_R4

vbDouble Double (8-byte real) 5 VT_R8

vbCurrency Scaled integer (8
bytes)

6 VT_CY

vbDate Date/time (8 bytes) 7 VT_DATE

vbString String 8 VT_BSTR

vbBoolean Boolean 11 VT_BOOL

vbDataObject Data object 13 VT_UNKNOWN

vbBlob Blob (unknown
format)

65 VT_BLOB

vbArray Multivalued type 8192 VT_ARRAY

PropTag
Required. Long. The MAPI property tag for the corresponding MAPI property.

value
Optional. Variant. The value of the field, of the data type specified in the Class parameter. When no
value is supplied, no data is present for the object. You must make subsequent calls to the Field
object’s ReadFromFile method.

PropsetID
Optional. String. Specifies the identifier of the property set, represented as a string of hexadecimal
characters. When the identifier is not present, the property is created within the default property set.
The default property set is either the property set specified to the SetNamespace method, or the
initial default property set value, PS_PUBLIC_STRINGS.

Remarks
Support for the Add method is provider-dependent. The second syntax should be used when adding a
MAPI property to the Fields collection.

The name, Class, and value parameters in the first syntax correspond to the Name, Type, and Value
properties of the Field object.

The PropTag parameter in the second syntax contains the 32-bit MAPI property tag associated with the
property and corresponds to the ID property of the Field object. The property tag contains the MAPI
property identifier in its high-order 16 bits and the MAPI property type in its low-order 16 bits. All MAPI
properties are accessible except those of MAPI type PT_OBJECT or PT_CLSID.

The Index property of the new Field object equals the new Count property of the Fields collection.

The field is saved in the MAPI system when you Update the parent object, or Send it if the Fields
collection’s parent is a Message object.

The vbArray data type must always be used in conjunction with one of the other types, for example
vbArray + vbInteger. When you use a multivalued type, to avoid a mapiE_INVALID_TYPE error you
must also declare the array to be of the appropriate type:

Dim Words(10) As String ' NOT just Dim Words(10)
' ...
Set objKeysField = objFieldsColl.Add("Keywords", vbArray + vbString)
objKeysField.Value = Words

When you use the vbBlob type for binary data, you supply the value in the form of a hexadecimal
string that contains the hexadecimal representation of the bytes in the binary object (such as a
hexadecimal dump of the object).

Note that MAPI stores all custom properties that represent date and time information using Greenwich
Mean Time (GMT). The OLE Messaging Library converts these properties so that the values appear to
the user in local time.

The OLE Messaging Library does not support MAPI properties of types PT_OBJECT and PT_CLSID.
All others, however, are available through the Fields collection.

Example
' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object
' Fragment from Field_Type; display the integer type value
 MsgBox "Field type = " & objOneField.Type

Count Property (Fields Collection)   

The Count property returns the number of Field objects in the collection. Read-only.

Syntax
objFieldsColl.Count

Data Type
Long

Example
This code fragment maintains a global variable as an index into the small collection, and uses the
Count property to check its validity:

' from Fields_NextItem
' iFieldsCollIndex is an integer used as an index
' check for empty collection ...
' check index upper bound
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 If objOneField Is Nothing Then
 MsgBox "Error, cannot get this Field object"
 Exit Function
 Else
 MsgBox "Selected field # " & iFieldsCollIndex
 End If

Delete Method (Fields Collection)   

The Delete method deletes all user-defined fields in the Fields collection object.

Syntax
objFieldsColl.Delete

Parameters
objFieldsColl

Required. The Fields collection object.

Remarks
The Delete method deletes all user-defined fields and all fields considered optional by the underlying
provider.

The Delete operation invalidates all the Field objects in the collection but does not remove them from
memory. The programmer should set the invalidated objects to Nothing to remove them from memory,
or reassign them to other fields. Attempted access to a deleted object results in a return of
mapiE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Field object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Update method on the parent
object containing the Fields collection, or the Send or Delete method if the parent is a Message object.
Any member once permanently deleted cannot be recovered. However, the collection itself it still valid,
and you can Add new members to it.

Item Property (Fields Collection)   

The Item property returns a single Field object from the Fields collection. Read-only.

Syntax
objFieldsColl.Item(index)

objFieldsColl.Item(proptag)

objFieldsColl.Item(name [, propsetID])

objFieldsColl
Required. Specifies the Fields collection object.

index
Short integer (less than or equal to 65535 = 0xFFFF). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the user-defined property.

propsetID
Optional. String. Contains the unique identifier for the property set, represented as a string of
hexadecimal characters. When propsetID is not supplied, the property set used for the access is the
default property set value set by this collection’s SetNamespace method, or the initial default
property set value, PS_PUBLIC_STRINGS.

Data Type
Object

Remarks
The Item property works like an accessor property for small collections. In the Fields collection object it
allows access to the predefined MAPI properties and to your own custom user-defined properties.

The proptag parameter in the second syntax contains the 32-bit MAPI property tag associated with the
property and corresponds to the ID property of the Field object. The property tag contains the MAPI
property identifier in its high-order 16 bits and the MAPI property type in its low-order 16 bits. All MAPI
properties are accessible except those of MAPI type PT_OBJECT or PT_CLSID.

Several macros for C/C++ programmers are available in the MAPI SDK to help manipulate the MAPI
property tag data structure. The macros PROP_TYPE and PROP_ID extract the property type and
property identifer from the property tag. The macro PROP_TAG builds the property tag from the type
and identifier components.

For example, you can use the following function to access a custom user-defined property using its
property name:

' from the function Fields_ItemByName()
 ' error handling here ...
 If objFieldsColl Is Nothing Then
 MsgBox "must first select Fields collection"
 Exit Function
 End If
 Set objOneField = objFieldsColl.Item("Keyword")
 If objOneField Is Nothing Then
 MsgBox "could not select Field object"
 Exit Function

 End If
 If "" = objOneField.Name Then
 MsgBox "Field has no name; ID = " & objOneField.ID
 Else
 MsgBox "Field name = " & objOneField.Name
 End If

You can also use the Item property to access MAPI properties. Note that the built-in MAPI properties
are unnamed properties that can only be accessed using the numeric proptag value. They cannot be
accessed using a string that represents the name. The following code fragment accesses the MAPI
property PR_MESSAGE_CLASS:

' from the function Fields_Selector()
 ' ... error handling here
 ' you can provide a dialog to allow entry for MAPI proptags
 ' or select property names from a list; for now, hard-coded
 lValue = mapiPR_MESSAGE_CLASS
 ' high-order 16 bits is property id; low-order is property type
 Set objOneField = objFieldsColl.Item(lValue)
 If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
 Else
 strMsg = "Used " & lValue _
 & " to access the MAPI property " _
 & "PR_MESSAGE_CLASS: type = " _
 & objOneField.Type _
 & "; value = " _
 & objOneField.Value
 MsgBox strMsg
 End If

The OLE Messaging Library also supports multivalued MAPI properties.

You can also choose to access properties from other property sets, including your own, by either
setting the propsetID parameter or by calling the SetNamespace method to set that property set’s
unique identifier.

The Item property is the default property of a Fields collection, meaning that objFieldsColl(index) is
syntactically equivalent to objFieldsColl.Item(index) in Visual Basic code.

See Also
Customizing a Folder or Message, Viewing MAPI Properties

SetNamespace Method (Fields Collection)   

The SetNamespace method selects the property set that is to be used for accessing MAPI named
properties in the Fields collection.

Syntax
objFieldsColl.SetNamespace PropsetID

Parameters
objFieldsColl

Required. The Fields collection object.

PropsetID
Required. String. Contains a unique identifier that identifies the property set, represented as a string
of hexadecimal characters. The PropsetID parameter identifies the property set to be used for
subsequent named property accesses to a Field object in this Fields collection. An empty string
resets the default to the property set PS_PUBLIC_STRINGS.

Remarks
Every MAPI named property belongs to a property set, each member of which uses the same GUID for
the first part of its name. The set of all possible names within a property set is called its name space.
The SetNameSpace method specifies which property set is to be in effect until changed by another
call to this method. The MAPI named properties are accessed using the Fields collection’s Add method
and Item property.

The initial default value for the property set is PS_PUBLIC_STRINGS. To create your own property set
for your named properties, supply a unique property set identifier to SetNamespace. This property set
then replaces PS_PUBLIC_STRINGS as the default property set for all subsequent named property
accesses using this object. The default property set is used unless explicitly overridden by the optional
PropsetID parameter. The value is set only for the current object; to continue using the same property
set for all objects, you must call SetNamespace for each object.

To define a new property set, obtain a string that contains hexadecimal characters representing a
unique identifier. You can obtain this identifier using either the Win32 command-line utility UUIDGEN or
by calling the Win32 function CoCreateGuid.

For more information on named properties and property sets, see “Named Properties” in the MAPI
Programmer’s Reference. For more information on UUIDGEN and CoCreateGuid, see the Win32 SDK
documentation.

Folder Object
The Folder object represents a folder or container within the MAPI system. A folder can contain
subfolders and messages.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Folders collection
InfoStore

Child objects: Folder

Default property: Messages

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Fields 1.0.a Field object or Fields
collection object

Read-only

FolderID 1.0.a String Read-only

Folders 1.0.a Folders collection
object

Read-only

ID 1.0.a String Read-only

MAPIOBJECT 1.0.a Object Read/write
(Note: Not
available
to Visual
Basic
application
s)

Messages 1.0.a Messages collection
object

Read-only

Name 1.0.a String Read/write

Parent 1.0.a Folders collection
object or InfoStore
object

Read-only

Session 1.0.a Session object Read-only

StoreID 1.0.a String Read-only

Methods

Name

Available
in version

Parameters

CopyTo 1.1 folderID as String,
(optional) storeID as String,
(optional) name as String,
(optional) copySubfolders as

Boolean

Delete 1.0.a (none)

IsSameAs 1.1 object as Object

MoveTo 1.1 folderID as String,
(optional) storeID as String

Update 1.0.a (optional) makePermanent as
Boolean,
(optional) refreshObject as Boolean

Remarks
A Folder object is considered a top-level object, meaning it can be created directly from a Visual Basic
program, through either late binding or early binding.

Changes to the folder are not saved by MAPI until you call its Update method.

CopyTo Method (Folder Object)   

The CopyTo method makes a copy of the Folder object at another folder hierarchy location.

Syntax
Set objCopiedFolder = objFolder.CopyTo(folderID [, storeID, name, copySubfolders])

Parameters
objCopiedFolder

On successful return, contains the copied Folder object.

objFolder
Required. This Folder object.

folderID
Required. String. The unique identifier of the new parent Folder object, that is, the Folder object
under which the copy of this folder is to appear as a subfolder.

storeID
Optional. String. The unique identifier of the InfoStore object in which the folder copy is to appear, if
different from this folder’s InfoStore.

name
Optional. String. The name to be assigned to the folder copy, if different from this folder’s name.

copySubfolders
Optional. Boolean. If True, all subfolders contained within this folder are to be copied along with the
folder.

Remarks
All Message objects contained within this folder are copied along with the folder itself. This also applies
to messages contained in the subfolders if the copySubfolders parameter is True.

The copy operation takes effect immediately. This Folder object, together with all its contents, remains
unchanged by the CopyTo method.

Delete Method (Folder Object)   

The Delete method deletes the Folder object from its parent Folders collection or InfoStore object.

Syntax
objFolder.Delete()

Parameters
objFolder

Required. This Folder object.

Remarks
The action of the Delete method is permanent, and the Folder object cannot be recovered. Before
calling the Delete method, the application can prompt the user to verify whether the folder should be
permanently deleted.

The Delete operation invalidates the Folder object but does not remove it from memory. The
programmer should set the invalidated object to Nothing to remove it from memory, or reassign it to
another folder. Attempted access to a deleted object results in a return of mapiE_INVALID_OBJECT.

You can delete all the folders in the Folders collection by calling the collection’s Delete method. The
ability to delete any folder depends on the permissions granted to the user. The Delete method returns
an error code if called with insufficient permissions.

Example
Function Folder_Delete()
 ' error handling here
 If objFolder Is Nothing Then
 MsgBox "must select a valid Folder object"
 Exit Function
 End If
 objFolder.Delete ()
 Set objFolder = Nothing
 Exit Function
End Function

Fields Property (Folder Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objFolder.Fields

objFolder.Fields(index)

objFolder.Fields(proptag)

objFolder.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object

Remarks
The Fields property returns one or more of the fields associated with a Folder object. Each field
typically corresponds to a MAPI property.

The Fields property provides a generic access mechanism that allows Visual Basic and Visual C++
programmers to retrieve the value of a MAPI property using either its name or its MAPI property tag.
For access with the property tag, use objFolder.Fields(proptag), where proptag is the 32-bit MAPI
property tag associated with the property, such as mapiPR_MESSAGE_CLASS. To access a named
property, use objFolder.Fields(name), where name is a string that represents the custom property
name.

Example
This code fragment displays the field name or identifier value of all Field Object objects within the
collection:

' many properties are MAPI properties and have no names
' for those properties, display the ID
' fragment from Field_Name
' assume objFieldColl, objOneField are valid objects
For i = 1 to objFieldColl.Count Step 1
 Set objOneField = objFieldColl.Index(i)
 If "" = objOneField.Name Then
 MsgBox "Field has no name; ID = " & objOneField.ID
 Else
 MsgBox "Field name = " & objOneField.Name
 End If
Next i

FolderID Property (Folder Object)   

The FolderID property returns the unique identifier of the subfolder’s parent folder as a string. Read-
only.

Syntax
objFolder.FolderID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

Note that MAPI does not require identifier values to be binary comparable. Accordingly, two identifier
values can be different, yet refer to the same object. You can compare identifiers using the MAPI
CompareEntryIDs method. For more information, see the MAPI Programmer’s Reference.

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID, converted to a
string of hexadecimal characters.

Example
' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
 strFolderID = objFolder.FolderID
 MsgBox "Parent Folder ID = " & strFolderID
' later: obtain parent folder
' fragment from Session_GetFolder
 If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' error checking here ...

See Also
ID Property (Folder Object) , GetFolder Method (Session Object) , StoreID Property (Folder Object)

Folders Property (Folder Object)   

The Folders property returns a Folders collection of subfolders within the folder. Read-only.

Syntax
objFolder.Folders

Data Type
Object

Example
This code fragment uses a recursive function to list the names of all subfolders of the specified folder:

' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' from TstDrv_Util_ListFolders
 If mapiFolder = objFolder.Class Then ' verify it’s a Folder object
 x = Util_ListFolders(objFolder) ' use current global folder
 End If

' complete function for Util_ListFolders
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Object ' the child Folders collection
Dim objOneSubfolder As Object 'a single Folder object
 ' set up error handler here
 If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 Exit Function
 End If
 ' error handler here
End Function

ID Property (Folder Object)   

The ID property returns the unique identifier of the Folder object as a string. Read-only.

Syntax
objFolder.ID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example
' save the current ID and restore using Session.GetFolder
' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
 strFolderID = objFolder.ID
 MsgBox "Current Folder ID = " & strFolderID
' later: restore folder using objSession.GetFolder(strFolderID)
' fragment from Session_GetFolder
 If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' error checking here ...

See Also
FolderID Property (Folder Object) , GetFolder Method (Session Object) , StoreID Property (Folder
Object)

IsSameAs Method (Folder Object)   

The IsSameAs method returns True if the Folder object is the same as the Folder object being
compared against.

Syntax
objFolder.IsSameAs(objFolder2)

Parameters
objFolder

Required. This Folder object.

objFolder2
Required. The Folder object being compared against.

Remarks
Two Folder objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object. Two objects with the same value are still considered different if they do not
instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

MAPIOBJECT Property (Folder Object)   

The MAPIOBJECT property returns an IUnknown pointer to the Folder object. Not available to Visual
Basic applications. Read/write.

Syntax
objFolder.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see Introduction to Automation and How Programmable Objects Work. Also see the Microsoft OLE
Programmer’s Reference.

Messages Property (Folder Object)   

The Messages property returns a Messages collection object within the folder. Read-only.

Syntax
objFolder.Messages

Data Type
Object

Remarks
The Messages property is the default property of a Folder object, meaning that objFolder is
syntactically equivalent to objFolder.Messages in Visual Basic code.

Example
' from the QuickStart sample
' use the Messages property of the Outbox folder to add a new message
 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Set objMessage = objSession.Outbox.Messages.Add

MoveTo Method (Folder Object)   

The MoveTo method relocates the Folder object to another folder hierarchy location.

Syntax
Set objMovedFolder = objFolder.MoveTo(folderID [, storeID])

Parameters
objMovedFolder

On successful return, contains the moved Folder object.

objFolder
Required. This Folder object.

folderID
Required. String. The unique identifier of the new parent Folder object, that is, the Folder object
under which this folder is to appear as a subfolder.

storeID
Optional. String. The unique identifier of the InfoStore object in which this folder is to appear, if
different from its current InfoStore.

Remarks
All subfolders of this folder, together with all Message objects contained within this folder and its
subfolders, are moved along with the folder itself.

The move operation takes effect immediately. This Folder object is no longer accessible at its former
location after the MoveTo method returns.

Name Property (Folder Object)   

The Name property returns or sets the name of the Folder object as a string. Read/write.

Syntax
objFolder.Name

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example
Dim objFolder As Object ' assume valid folder
MsgBox "Folder name = " & objFolder.Name

StoreID Property (Folder Object)   

The StoreID property returns the unique identifier of the InfoStore object in which the Folder object
resides. Read-only.

Syntax
objFolder.StoreID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

Note that MAPI does not require identifier values to be binary comparable. Accordingly, two identifier
values can be different, yet refer to the same object. You can compare identifiers using the MAPI
method CompareEntryIDs. For more information, see the MAPI Programmer’s Reference.

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID, converted to a string
of hexadecimal characters.

Example
' from the sample function Folder_ID
 strFolderID = objFolder.ID
' from the sample function Folder_StoreID
 strFolderStoreID = objFolder.StoreID
' later: can use these IDs with Session.GetFolder()
' from the sample function Session_GetFolder
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)

See Also
FolderID Property (Folder Object) , GetFolder Method (Session Object) , ID Property (Folder Object)

Update Method (Folder Object)   

The Update method saves changes to the Folder object in the MAPI system.

Syntax
objFolder.Update([makePermanent, refreshObject])

Parameters
objFolder

Required. The Folder object.

makePermanent
Optional. Boolean. A value of True indicates that the property cache is flushed and all changes are
committed in the underlying message store. False indicates that the property cache is flushed but
not committed to persistent storage. The default value is True.

refreshObject
Optional. Boolean. A value of True indicates that the property cache is reloaded from the values in
the underlying message store. False indicates that the property cache is not reloaded. The default
value is False.

Remarks
Changes to Folder objects are not permanently saved in the MAPI system until you call the Update
method with the makePermanent parameter set to True.

For improved performance, the OLE Messaging Library caches property changes in private storage
and updates either the object or the underlying persistent storage only when you explicitly request such
an update. For efficiency, you should make only one call to Update with its makePermanent parameter
set to True.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject = True refreshObject = False

makePermanent =
True

Commit all changes,
flush the cache, and
reload the cache from
the message store.

Commit all changes and
flush the cache (default
combination).

makePermanent =
False

Flush the cache and
reload the cache from
the message store.

Flush the cache.

Call Update(False, True) to flush the cache and then reload the values from the message store.

Folders Collection Object
The Folders collection object contains one or more Folder objects.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Folder (Inbox or Outbox)

Child objects: Folder

Default property: Item

A Folders collection is considered a large collection, which means that the Count and Item properties
have limited validity, and your best option is to use a Folder object identifier value or the Get methods
to access an individual Folder object within the collection.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Count 1.1 Long Read-only

Item 1.1 Folder object Read-only

Parent 1.0.a Inbox or Outbox folder
object

Read-only

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.1 name as String

Delete 1.1 (none)

GetFirst 1.0.a (none)

GetLast 1.0.a (none)

GetNext 1.0.a (none)

GetPrevious 1.0.a (none)

Sort 1.1 (optional) SortOrder as Long,
(optional) PropTag as Long,
(optional) PropID as String

Remarks
Large collections, such as the Folders collection, cannot always maintain an accurate count of the
number of objects in the collection. It is strongly recommended that you use the GetFirst, GetNext,
GetLast, and GetPrevious methods to access individual items in the collection. You can access one
specific folder by using the Session object’s GetFolder method, and you can access all the items in the
collection with the Visual Basic For Each construction.

The order that items are returned by GetFirst, GetNext, GetLast, and GetPrevious depends on

whether the folders are sorted or not. The Folder objects within a collection can be sorted on a MAPI
property of your choice, either ascending or descending, using the Sort method. When the items are
not sorted, you should not rely on these methods to return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that the access functions are able
to access all items within the collection, but that the order of the objects is not defined.

Example
To refer to a unique Folder object within the Folders collection, use the collection’s GetFirst and
GetNext methods or use the folder’s ID value as an index.

The following code sample demonstrates the Get methods. The sample assumes that you have exactly
three subfolders within your Inbox and exactly three subfolders within your Outbox. After this code
runs, the three folders in the Inbox are named Blue, Red, and Orange (in that order), and the three
folders in the Outbox are named Gold, Purple, and Yellow (in that order).

Dim objSession As Object
Dim objMessage As Object
Dim objFolder As Object

Set objSession = CreateObject("MAPI.Session")
objSession.Logon "User", "", True
With objSession.Inbox.Folders
 Set objFolder = .GetFirst
 objFolder.Name = "Blue"
 Set objFolder = .GetNext
 objFolder.Name = "Red"
 Set objFolder = .GetLast
 objFolder.Name = "Orange"
End With
With objSession.Outbox.Folders
 Set objFolder = .GetFirst
 objFolder.Name = "Gold"
 Set objFolder = .GetNext
 objFolder.Name = "Purple"
 Set objFolder = .GetLast
 objFolder.Name = "Yellow"
End With
objSession.Logoff

See Also
Object Collections

Add Method (Folders Collection)   

The Add method creates and returns a new Folder object in the Folders collection.

Syntax
Set objFolder = objFoldersColl.Add(name)

Parameters
objFolder

On successful return, contains the new Folder object.

objFoldersColl
Required. The Folders collection object.

name
Required. String. The display name of the folder.

Remarks
The name parameter corresponds to the Name property of the Folder object.

The user must have permission to Add or Delete a Folder object. Most users have this permission only
for their personal folders.

The new Folder object is saved in the MAPI system when you call its Update method.

Example
This code fragment adds a new folder to a user’s Inbox:

Dim myInbox, newFolder As Object
Set myInbox = MAPI.Session.Inbox
' add new folder to Inbox
Set newFolder = myInbox.Add “Personal Messages”
' commit new folder to collection
myInbox.Update

Count Property (Folders Collection)   

The Count property returns the number of Folder objects in the collection, or a very large number if the
exact count is not available. Read-only.

Syntax
objFoldersColl.Count

Data Type
Long

Remarks
The Count property is useful for determining whether a Folders collection is empty or not.

A large collection cannot always maintain an accurate count of its members, and the Count property
cannot be used as the collection’s size when it has a very large value such as mapiMaxCount.
Programmers needing to access individual objects in a large collection are strongly advised to use the
Visual Basic For Each statement or the Get methods.

The recommended procedures for traversing a large collection are, in decreasing order of preference:

1. Global selection, such as the Visual Basic For Each statement

2. The Get methods, particularly GetFirst and GetNext

1. An indexed loop, such as the Visual Basic For ... Next construction

If the message store provider cannot supply the precise number of Folder objects, the OLE Messaging
Library returns a very large number for the Count property. On 32-bit platforms, this value is
mapiMaxCount, which equals 2^31-1, or 2147483647. On other platforms, mapiMaxCount is not
defined, and the OLE Messaging Library returns -1. A program on such a platform must ensure that -1
does not prematurely terminate any iteration based on the Count property.

Programmers using an indexed loop terminating on the Count property must also check each returned
object for a value of Nothing. The loop must proceed forward from the beginning of the collection, and
the index must have initial and increment values of 1. Results are undefined for any other procedure.

The use of the Item property in conjunction with the Count property in a large collection can be seen in
the following example.

Example
This code fragment searches for a Folder object called “Resumes”:

Dim i As Integer ' loop index / object counter
Dim collFolders as Object ' folders collection; assume already given
If collFolders Is Nothing Then
 ' MsgBox "Folders collection object is invalid"
 ' Exit
End If
' see if collection is empty
If 0 = collFolders.Count Then
 ' MsgBox "No folders in collection"
 ' Exit
End If
' look for folder called “Resumes” in collection
For i = 1 To collFolders.Count Step 1
 If collFolders.Item(i) Is Nothing Then
 ' MsgBox "No such folder found in collection"

 ' Exit ' no more folders in collection
 End If
 If collFolders.Item(i).Name = “Resumes” Then
 ' MsgBox "Desired folder is at index " & i
 ' Exit
 End If
Next i

Delete Method (Folders Collection)   

The Delete method deletes all the folders in the Folders collection.

Syntax
objFoldersColl.Delete()

Parameters
objFoldersColl

Required. The Folders collection object.

Remarks
The Delete operation invalidates all the Folder objects in the collection but does not remove them from
memory. The programmer should set the invalidated objects to Nothing to remove them from memory,
or reassign them to other folders. Attempted access to a deleted object results in a return of
mapiE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Folder object, use the Delete method specific to that object.

The Delete method on a large collection takes effect immediately and is permanent. A deleted member
cannot be recovered. However, the collection itself it still valid, and you can Add new members to it.

GetFirst Method (Folders Collection)   

The GetFirst method returns the first Folder object in the Folders collection. It returns Nothing if no
first object exists.

Syntax
Set objFolder = objFoldersColl.GetFirst()

Parameters
objFolder

On successful return, represents the first Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetLast Method (Folders Collection)   

The GetLast method returns the last Folder object in the Folders collection. It returns Nothing if no last
object exists.

Syntax
Set objFolder = objFoldersColl.GetLast()

Parameters
objFolder

On successful return, represents the last Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetNext Method (Folders Collection)   

The GetNext method returns the next Folder object in the Folders collection. It returns Nothing if no
next object exists, for example if already positioned at the end of the collection.

Syntax
Set objFolder = objFoldersColl.GetNext()

Parameters
objFolder

On successful return, represents the next Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetPrevious Method (Folders Collection)   

The GetPrevious method returns the previous Folder object in the Folders collection. It returns
Nothing if no previous object exists, for example if already positioned at the beginning of the collection.

Syntax
Set objFolder = objFoldersColl.GetPrevious()

Parameters
objFolder

On successful return, represents the previous Folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

Item Property (Folders Collection)   

The Item property returns a single Folder object from the Folders collection. Read-only.

Syntax
objFoldersColl.Item(index)

objFoldersColl.Item(prefix)

index
A long integer ranging from 1 to the size of the Folders collection.

prefix
A string representing a prefix substring of a Folder object’s Name property.

Data Type
Object

Remarks
The Item property is useful for satisfying syntax requirements when obtaining a member of a Folders
collection.

A large collection cannot support true integer indexing, and the Item(index) syntax cannot be used for
arbitrary selection of members of the collection. Programmers needing to access individual objects in a
large collection are strongly advised to use the Visual Basic For Each statement or the Get methods,
particularly GetFirst and GetNext.

The Item(index) syntax is provided solely as a placeholder in an indexed loop, such as the For ... Next
construction in Visual Basic. Such a loop must proceed forward from the beginning of the collection,
and the index must have initial and increment values of 1. Results are undefined for any other
procedure.

For more information on using the Count and Item properties in a large collection, see the example in
the Count property.

The Item(prefix) syntax returns the first Folder object whose Name property begins with the string
specified by prefix.

The Item property is the default property of a Folders collection, meaning that objFoldersColl(prefix) is
syntactically equivalent to objFoldersColl.Item(prefix) in Visual Basic code.

Sort Method (Folders Collection)   

The Sort method sorts the folders in the collection on the specified property according to the specified
sort order.

Syntax
objFoldersColl.Sort([SortOrder, PropTag])

objFoldersColl.Sort([SortOrder, PropID])

Parameters
objFoldersColl

Required. The Folders collection object.

SortOrder
Optional. Long. The specified sort order, one of the following values:

Value Numeric value Description

mapiNone 0 No sort

mapiAscending 1 Ascending sort (default)

mapiDescending 2 Descending sort

PropTag
Optional. Long. The property tag value for the MAPI property to be used for the sort. PropTag is the
32-bit MAPI property tag associated with the property, such as mapiPR_STORE_ENTRYID.

PropID
Optional. String. The custom property name of a MAPI named property.

Remarks
Both parameters are optional. If SortOrder is not specified, ascending order is used. If neither PropTag
nor PropID is specified, the property used in the previous call to Sort is used again. If Sort has never
been called on this collection during this session, the MAPI property mapiPR_DISPLAY_NAME is
used for the sort.

InfoStore Object
The InfoStore object provides access to the folder hierarchy of a message store.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: InfoStores collection

Child objects: Folder

Default property: Name

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

ID 1.0.a String Read-only

Index 1.0.a Long Read-only

Name 1.0.a String Read-only

Parent 1.0.a InfoStores collection
object

Read-only

ProviderName 1.0.a String Read-only

RootFolder 1.0.a Folder object Read-only

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 object as Object

Remarks
The InfoStore object provides access to its interpersonal message folder hierarchy through the
RootFolder property, which returns the Folder object that represents the root of the IPM subtree. To
access the root folder of the entire message store, first obtain its identifier with the FolderID property of
the IPM root folder, and then call the Session object’s GetFolder method.

You can obtain any InfoStore object available to this session with the Item property of the InfoStores
collection. You can also retrieve an InfoStore object with a known identifier by calling the session’s
GetInfoStore method.

Example
Dim objInfoStore, objIPMRoot, objStoreRoot as Object
Dim rootID as String
Set objInfoStore = objSession.InfoStores.Item(1)
Set objIPMRoot = objInfoStore.RootFolder
rootID = objIPMRoot.FolderID
Set objStoreRoot = objSession.GetInfoStore (rootID)

ID Property (InfoStore Object)   

The ID property returns the unique identifier of the InfoStore object as a string. Read-only.

Syntax
objInfoStore.ID

Data Type
String

Remarks
MAPI systems assign a permanent, unique identifier when an object is created. This identifier does not
change from one MAPI session to another, nor from one messaging domain to another. The InfoStore
identifier can be used in subsequent calls to the Session object’s GetInfoStore method.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example
Dim strInfoStoreID as String ' hex string version of ID
Dim objInfoStore as Object ' assume valid
 strInfoStoreID = objInfoStore.ID ' global variable
 MsgBox "InfoStore ID = " & strInfoStoreID
' ... this ID can be used as the parameter to the Session method
 Set objInfoStore = objSession.GetInfoStore(strInfoStoreID)

Index Property (InfoStore Object)   

The Index property returns the index number for the InfoStore object within the parent InfoStores
collection. Read-only.

Syntax
objInfoStore.Index

Data Type
Long

Remarks
The Index property indicates this object’s position within the parent InfoStores collection. It can be
used later as the index parameter to the collection’s Item property to access this message store again.

Example
Function InfoStoresGetByIndex()
Dim lIndex As Long
Dim objOneInfoStore As Object ' assume valid InfoStore
 ' set error handler here
 If objInfoStoreColl Is Nothing Then
 MsgBox "must select an InfoStores collection"
 Exit Function
 End If
 If 0 = objInfoStoreColl.Count Then
 MsgBox "must select collection with 1 or more InfoStores"
 Exit Function
 End If
 ' prompt user for index; for now, use 1
 Set objOneInfoStore = objInfoStoreColl.Item(1)
 MsgBox "Selected InfoStore 1: " & objOneInfoStore.Name
 lIndex = objOneInfoStore.Index ' save index to retrieve this later
 ' ... get same InfoStore object later
 Set objOneInfoStore = objInfoStoreColl.Item(lIndex)
 If objOneInfoStore Is Nothing Then
 MsgBox "Error, could not reselect the InfoStore"
 Else
 MsgBox "Reselected InfoStore " & lIndex & _
 " using index: " & objOneInfoStore.Name
 End If
 Exit Function

IsSameAs Method (InfoStore Object)   

The IsSameAs method returns True if the InfoStore object is the same as the InfoStore object being
compared against.

Syntax
objInfoStore.IsSameAs(objInfoStore2)

Parameters
objInfoStore

Required. This InfoStore object.

objInfoStore2
Required. The InfoStore object being compared against.

Remarks
Two InfoStore objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object. Two objects with the same value are still considered different if they do not
instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

Name Property (InfoStore Object)   

The Name property returns the name of the InfoStore object as a string. Read-only.

Syntax
objInfoStore.Name

Data Type
String

Remarks
The string “Public Folders” is the name of the InfoStore object that contains the public folders.

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

The Name property is the default property of an InfoStore object, meaning that objInfoStore is
syntactically equivalent to objInfoStore.Name in Visual Basic code.

Example
Dim objInfoStore As Object ' assume valid InfoStore object
MsgBox "InfoStore name = " & objInfoStore.Name

ProviderName Property (InfoStore Object)   

The ProviderName property returns the name of the InfoStore’s message store provider as a string.
Read-only.

Syntax
objInfoStore.ProviderName

Data Type
String

Remarks
A message store provider is a MAPI object that manages one or more MAPI message stores. Each
message store is accessibe as an OLE Messaging Library InfoStore object.

The ProviderName property corresponds to the MAPI property PR_PROVIDER_DISPLAY.

Example
Dim objInfoStore As Object ' assume valid InfoStore object
MsgBox "Message store provider name = " & objInfoStore.ProviderName

RootFolder Property (InfoStore Object)   

The RootFolder property returns a Folder object representing the root of the IPM subtree for the
InfoStore object. Read-only.

Syntax
Set objFolder = objInfoStore.RootFolder

Data Type
Object (Folder object)

Remarks
The RootFolder property provides a convenient way to get to this commonly used Folder object.

In addition to the general ability to navigate through the formal collection and object hierarchy, the OLE
Messaging Library supports properties that allow your application to directly access the most common
Folder objects:

· The InfoStore object’s RootFolder property for the IPM subtree root folder

· The Session object’s Inbox property for the Inbox folder

· The Session object’s Outbox property for the Outbox folder

Some message stores also support a direct way to obtain the root folder of the message store. For
more information, see the Session object’s GetFolder method.

Example
' from InfoStores_RootFolder
 If objInfoStore Is Nothing Then
 MsgBox "must first select an InfoStore object"
 Exit Function
 End If
 Set objFolder = objInfoStore.RootFolder
 If objFolder Is Nothing Then
 MsgBox "Unable to retrieve IPM root folder"
 Set objMessages = Nothing
 Exit Function
 End If
 If objFolder.Name = "" Then
 MsgBox "Folder set to folder with no name, ID = " _
 & objFolder.ID
 Else
 MsgBox "Folder set to: " & objFolder.Name
 End If
 Set objMessages = objFolder.Messages
 Exit Function

InfoStores Collection Object
The InfoStores collection object contains one or more InfoStore objects.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Session

Child objects: InfoStore

Default property: Item

An InfoStores collection is considered a small collection, which means that it supports count and index
values that let you access an individual InfoStore object through the Item property. The InfoStores
collection supports the Visual Basic For Each statement.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Count 1.0.a Long Read-only

Item 1.0.a InfoStore object Read-only

Parent 1.0.a Session object Read-only

Session 1.0.a Session object Read-only

Methods
(None.)

Remarks
An InfoStores collection provides access to all InfoStore objects available to this session. Each
InfoStore object in turn offers access to the folder hierarchy of that message store. This is used
primarily to obtain access to the public folders.

The OLE Messaging Library does not support methods to add or remove InfoStore objects from the
collection.

In general, you cannot assume that the InfoStore object’s Name property is unique. This means that
you cannot rely on the name to retrieve the InfoStore from the collection. However, you can iterate
through all objects in the collection using the InfoStores collection object’s Item property, and then
examine properties of the individual InfoStore objects. You can also rely on the InfoStore object’s ID
property, which is guaranteed to be unique.

Count Property (InfoStores Collection)   

The Count property returns the number of InfoStore objects in the collection. Read-only.

Syntax
objInfoStoresColl.Count

Data Type
Long

Example
This code fragment maintains a global variable to loop through the small collection, and uses the
Count property to keep it from getting too large:

' from InfoStores_NextItem
' iInfoStoresCollIndex is an integer used as an index
' check for empty collection ...
' check index upper bound
 If iInfoStoresCollIndex >= objInfoStoresColl.Count Then
 iInfoStoresCollIndex = objInfoStoresColl.Count
 MsgBox "Already at end of InfoStores collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iInfoStoresCollIndex = iInfoStoresCollIndex + 1
 Set objInfoStore = objInfoStoresColl.Item(iInfoStoresCollIndex)
 If objInfoStore Is Nothing Then
 MsgBox "Error, cannot get this InfoStore object"
 Exit Function
 Else
 MsgBox "Selected InfoStore " & iInfoStoresCollIndex
 End If

Item Property (InfoStores Collection)   

The Item property returns a single InfoStore object from the InfoStores collection. Read-only.

Syntax
objInfoStoresColl.Item(index)

index
A long integer that ranges from 1 to objInfoStoresColl.Count.

Data Type
Object

Remarks
The Item property works like an accessor property for small collections.

The Item property is the default property of an InfoStores collection, meaning that
objInfoStoresColl(index) is syntactically equivalent to objInfoStoresColl.Item(index) in Visual Basic
code.

Example
' from InfoStores_NextItem
' iInfoStoresCollIndex is an integer used as an index
' check for empty collection ...
' check index upper bound
 If iInfoStoresCollIndex >= objInfoStoresColl.Count Then
 iInfoStoresCollIndex = objInfoStoresColl.Count
 MsgBox "Already at end of InfoStores collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iInfoStoresCollIndex = iInfoStoresCollIndex + 1
 Set objInfoStore = objInfoStoresColl.Item(iInfoStoresCollIndex)
 If objInfoStore Is Nothing Then
 MsgBox "Error, cannot get this InfoStore object"
 Exit Function
 Else
 MsgBox "Selected InfoStore " & iInfoStoresCollIndex
 End If

Message Object
The Message object represents a single message, item, document, or form in a folder.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Messages collection

Child objects: Attachments collection
Fields collection
Recipients collection

Default property: Subject

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Attachments 1.0.a Attachments collection
object

Read-only

Class 1.0.a Long Read-only

Conversation 1.0.a (Obsolete. Do not
use.)

Read/write

ConversationIndex 1.0.a String Read/write

ConversationTopic 1.0.a String Read/write

DeliveryReceipt 1.0.a Boolean Read/write

Encrypted 1.0.a Boolean Read/write

Fields 1.0.a Field object or Fields
collection object

Read-only

FolderID 1.0.a String Read-only

ID 1.0.a String Read-only

Importance 1.0.a Long Read/write

MAPIOBJECT 1.0.a (Not for use with
Visual Basic.)

Read/write
(Note: Not
available
to Visual
Basic
application
s)

Parent 1.0.a Attachments collection
object, Fields
collection object, or
Recipients collection
object

Read-only

ReadReceipt 1.0.a Boolean Read/write

Recipients 1.0.a Recipients object or
Recipients collection

Read/write

object

Sender 1.0.a AddressEntry object Read-only

Sent 1.0.a Boolean Read/write

Session 1.0.a Session object Read-only

Signed 1.0.a Boolean Read/write

Size 1.0.a Long Read-only

StoreID 1.0.a String Read-only

Subject 1.0.a String Read/write

Submitted 1.0.a Boolean Read/write

Text 1.0.a String Read/write

TimeReceived 1.0.a Variant (vbDate
format)

Read/write

TimeSent 1.0.a Variant (vbDate
format)

Read/write

Type 1.0.a String Read/write

Unread 1.0.a Boolean Read/write

Methods

Name

Available
in version

Parameters

CopyTo 1.1 folderID as String,
(optional) storeID as String

Delete 1.0.a (none)

IsSameAs 1.1 object as Object

MoveTo 1.1 folderID as String,
(optional) storeID as String

Options 1.0.a (optional) parentWindow as Long

Send 1.0.a (optional) saveCopy as Boolean,
(optional) showDialog as Boolean,
(optional) parentWindow as Long

Update 1.0.a (optional) makePermanent as
Boolean,
(optional) refreshObject as Boolean

Remarks
A Message object is considered a top-level object, meaning it can be created directly from a Visual
Basic program, through either late binding or early binding.

Visual Basic programmers can create new message objects using the Messages collection’s Add
method.

C/C++ programmers can create new message objects using the OLE function CoCreateInstance.

See Also

GetMessage Method (Session Object) , Messages Property (Folder Object)

Attachments Property (Message Object)   

The Attachments property returns a single Attachment object or an Attachments collection collection
object. Read-only.

Syntax
Set objAttachColl = objMessage.Attachments

Set objOneAttach = objMessage.Attachments(index)

objAttachColl
Object. An Attachments collection object.

objMessage
Object. The Message object.

objOneAttach
Object. A single Attachment object.

index
Long. Specifies the number of the attachment within the Attachments collection. Ranges from 1 to
the value specified by the Attachments collection’s Count property.

Remarks
You can change individual Attachment objects within the Attachments collection, Add them to the
collection, and Delete them from the collection.

Example
This code fragment uses the Attachments property to retrieve an attachment of the message:

' from the sample function Message_Attachments
 Set objAttachColl = objOneMsg.Attachments
 If objAttachColl Is Nothing Then
 MsgBox "unable to set Attachments collection"
 Exit Function
 Else
 MsgBox "Attachments count for this msg: " & objAttachColl.Count
 iAttachCollIndex = 0 ' reset global index variable
 End If
' from the sample function Attachments_FirstItem
 iAttachCollIndex = 1
 Set objAttach = objAttachColl.Item(iAttachCollIndex)

Conversation Property (Message Object)   

The Conversation property is obsolete. It has been replaced by the ConversationIndex and
ConversationTopic properties.

For more information on conversations, see Working With Conversations.

ConversationIndex Property (Message Object)   

The ConversationIndex property specifies the index to the conversation thread of the message.
Read/write.

Syntax
objMessage.ConversationIndex

Data Type
String

Remarks
The ConversationIndex property is a string that represents a hexadecimal number. Valid characters
within the string include the numbers 0 through 9 and the letters A through F (uppercase or lowercase).

A conversation is a group of related messages that have the same ConversationTopic property value.
In a discussion application, for example, users can save original messages and response messages.
Messages can be tagged with the ConversationIndex property so that users can order the messages
within the conversation.

You can use your own convention to decide how this index should be used. However, it is
recommended that you adopt the same convention that is used by the Microsoft Exchange Client
message viewer, so that you can use that viewer’s user interface to show the relationships between
messages in a conversation.

By convention, Microsoft Exchange Server uses ConversationIndex values that represent
concatenated time stamp values. The first time stamp in the string represents the original message.
When a new message represents a reply to a conversation message, it copies the ConversationIndex
string of the message it is replying to, and then appends a time stamp value to the end of the string.
The new string value is used as the ConversationIndex value of the new message.

When you use this convention, you can see relationships among messages when you sort the
messages by ConversationIndex values.

For more information on conversations, see Working With Conversations.

The ConversationIndex property corresponds to the MAPI property PR_CONVERSATION_INDEX.

Example
This code fragment takes advantage of an OLE function that is available on computers that run the
OLE Messaging Library. The CoCreateGUID function returns a value that consists of a time stamp and
a machine identifier; this sample code saves the part that contains the time stamp.

' declarations section
Type GUID ' global unique identifier; contains a time stamp
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
' function appears in OLE32.DLL on Windows NT and Windows 95
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
Global Const S_OK = 0 ' return value from CoCreateGuid

Function Util_GetEightByteTimeStamp() As String

Dim lResult As Long
Dim lGuid As GUID
 ' Exchange conversation is a unique 8-byte value
 ' Exchange client viewer sorts by concatenated properties
 On Error GoTo error_olemsg

 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 Util_GetEightByteTimeStamp = _
 Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 Else
 Util_GetEightByteTimeStamp = "00000000" ' zero time stamp
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Util_GetEightByteTimeStamp = "00000000"
 Exit Function
End Function

Function Util_NewConversation()
Dim i As Integer
Dim objNewMsg As Object ' new message object
Dim strNewIndex As String ' value for ConversationIndex
' ... error handling ...
 Set objNewMsg = objSession.Outbox.Messages.Add
' ... error handling ...
 With objNewMsg
 .Subject = "used space vehicle wanted"
 .ConversationTopic = .Subject
 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", Type:=mapiTo)
 ' or you could pick the public folder from the address book
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve
 .Update ' save everything in the MAPI system
 .Send showDialog:=False
 End With
End Function

A subsequent reply to this message should copy the ConversationTopic property and append its own
time stamp to the original message’s time stamp, as shown in the following code fragment:

Function Util_ReplyToConversation()
Dim objPublicFolder As Object
Dim i As Integer
Dim objOriginalMsg As Object ' original message in public folder
Dim objNewMsg As Object ' new message object for reply
Dim strPublicFolderID As String ' ID for public folder

 Set objNewMsg = objSession.Outbox.Messages.Add
' error checking ... obtain objOriginalMsg and check that it is valid
 With objNewMsg
 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 .ConversationIndex = objOriginalMsg.ConversationIndex & _
 Util_GetEightByteTimeStamp() ' new stamp
 ' message was sent to a public folder so can copy recipient
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=mapiTo)
 ' ... more error handling
 .Recipients.Resolve
 .Update ' save everything in the MAPI system
 .Send showDialog:=False
 End With
' ... error handling
End Function

ConversationTopic Property (Message Object)   

The ConversationTopic property specifies the subject of the conversation thread of the message.
Read/write.

Syntax
objMessage.ConversationTopic

Data Type
String

Remarks
A conversation is a group of related messages. The ConversationTopic property is the string that
describes the overall topic of the conversation. To be defined as messages within the same
conversation, the messages must have the same value in their ConversationTopic property. The
ConversationIndex property represents an index that indicates a sequence of messages within that
conversation.

When you start an initial message, set the ConversationTopic property to an appropriate value that
will apply to all messages within the conversation. For many applications, the message’s Subject
property is appropriate.

Note that the OLE Messaging Library does not automatically copy the ConversationTopic property to
other messages. When your application manages messages that represent replies to an original
message, you should set the ConversationTopic property to the same value as that of the original
message.

To change the ConversationTopic for all messages in a conversation thread, you must change the
property within each message in that thread.

For more information on conversations, see Working With Conversations.

The ConversationTopic property corresponds to the MAPI property PR_CONVERSATION_TOPIC.

Example
See the example for the ConversationIndex property.

CopyTo Method (Message Object)   

The CopyTo method makes a copy of the Message object in another folder.

Syntax
Set objCopiedMessage = objMessage.CopyTo(folderID [, storeID])

Parameters
objCopiedMessage

On successful return, contains the copied Message object.

objMessage
Required. This Message object.

folderID
Required. String. The unique identifier of the destination Folder object in which the copy of this
message is to appear.

storeID
Optional. String. The unique identifier of the InfoStore object in which the message copy is to
appear, if different from this message’s InfoStore.

Remarks
All properties that have been set on this message are copied, whether they have read-only or
read/write access. Each property is copied with its value and access unchanged.

The copy operation takes effect when you call the Update method on the copied Message object. This
allows you to change, for example, the Sent property on the message copy before committing the
transaction.

This Message object remains unchanged by the CopyTo method.

Delete Method (Message Object)   

The Delete method deletes the Message object.

Syntax
objMessage.Delete

Parameters
objMessage

Required. The Message object.

Remarks
The action of the Delete method is permanent, and the Message object cannot be recovered. Before
calling the Delete method, the application can prompt the user to verify whether the message should
be permanently deleted.

The Delete operation invalidates the Message object but does not remove it from memory. The
programmer should set the invalidated object to Nothing to remove it from memory, or reassign it to
another message. Attempted access to a deleted object results in a return of
mapiE_INVALID_OBJECT.

You can delete all the messages in the Messages collection by calling the collection’s Delete method.
The ability to delete any message depends on the permissions granted to the user. The Delete method
returns an error code if called with insufficient permissions.

DeliveryReceipt Property (Message Object)   

The DeliveryReceipt property is True if a delivery-receipt notification message is requested.
Read/write.

Syntax
objMessage.DeliveryReceipt

Data Type
Boolean

Remarks
Set the DeliveryReceipt property to True to obtain a notification message when the recipients receive
your message. The default setting for the OLE Messaging Library is False.

Each transport provider that handles your message sends you a single delivery notification containing
the names and addresses of all recipients it was delivered to. Note that delivery does not imply that the
message has been read.

Notification requests include the DeliveryReceipt and ReadReceipt properties. For more information,
see Making Sure The Message Gets There.

The DeliveryReceipt property corresponds to the MAPI property
PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED.

Encrypted Property (Message Object)   

The Encrypted property is True if the message has been encrypted. Read/write.

Syntax
objMessage.Encrypted

Data Type
Boolean

Remarks
The Encrypted property is dependent upon the message store provider. The OLE Messaging Library
does not encrypt or digitally sign the message.

Security features include the Encrypted and Signed properties. For more information, see Securing
Messages.

The Encrypted property corresponds to the SECURITY_ENCRYPTED flag of the MAPI property
PR_SECURITY.

Fields Property (Message Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objMessage.Fields

objMessage.Fields(index)

objMessage.Fields(proptag)

objMessage.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object

Remarks
The Fields property returns one or more of the fields associated with a Message object. Each field
typically corresponds to a MAPI property.

The Fields property provides a generic access mechanism that allows Visual Basic and Visual C++
programmers to retrieve the value of a MAPI property using either its name or its MAPI property tag.
For access with the property tag, use objMessage.Fields(proptag), where proptag is the 32-bit MAPI
property tag associated with the property, such as mapiPR_MESSAGE_CLASS. To access a named
property, use objMessage.Fields(name), where name is a string that represents the custom property
name.

Example
' get the message’s Fields collection
 Set objFieldsColl = objOneMsg.Fields
' get the first field of the Fields collection of the message
 i = 1
 Set objOneField = objFieldsColl.Item(i)
 If objOneField Is Nothing Then
 MsgBox "error; cannot get this Field object"
 Else
 MsgBox "Selected Field " & i
 End If

FolderID Property (Message Object)   

The FolderID property returns the unique identifier of the folder in which the message resides. Read-
only.

Syntax
objMessage.FolderID

Data Type
String

Remarks
Save the folder identifier to retrieve the Folder object at a later time using the Session object’s
GetFolder method.

MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID, converted to a
string of hexadecimal characters.

ID Property (Message Object)   

The ID property returns the unique identifier of the Message object as a string. Read-only.

Syntax
objMessage.ID

Data Type
String

Remarks
The ID property can be used to retrieve this message at a later time, using the Session object’s
GetMessage method.

MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Example
' Save ID of last message accessed; use at startup
' from the sample function Message_ID
 strMessageID = objOneMsg.ID

' ... on shutdown, save the ID to storage
' ... on startup, get the ID from storage and restore
' from the sample function Session_GetMessage
 Set objOneMsg = objSession.GetMessage(strMessageID)

Importance Property (Message Object)   

The Importance property returns or sets the importance of the message as mapiNormal (the default),
mapiLow, or mapiHigh. Read/write.

Syntax
objMessage.Importance

Data Type
Long

Remarks
The following values are defined:

Constant Value Description

mapiLow 0 Low importance

mapiNormal 1 Normal importance (default)

mapiHigh 2 High importance

The Importance property corresponds to the MAPI property PR_IMPORTANCE.

Example
This code fragment sets the importance of a message as high:

' from the sample function QuickStart:
 Set objMessage = objSession.Outbox.Messages.Add
 ' ... check here to verify the message was created ...
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."
 objMessage.Importance = mapiHigh
 objMessage.Send

See Also
Send Method (Message Object)

IsSameAs Method (Message Object)   

The IsSameAs method returns True if the Message object is the same as the Message object being
compared against.

Syntax
objMessage.IsSameAs(objMessage2)

Parameters
objMessage

Required. This Message object.

objMessage2
Required. The Message object being compared against.

Remarks
Two Message objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object. Two objects with the same value are still considered different if they do not
instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

MAPIOBJECT Property (Message Object)   

The MAPIOBJECT property returns an IUnknown pointer to the Message object. Not available to
Visual Basic applications. Read/write.

Syntax
objMessage.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see Introduction to Automation and How Programmable Objects Work. Also see the Microsoft OLE
Programmer’s Reference.

MoveTo Method (Message Object)   

The MoveTo method relocates the Message object to another folder.

Syntax
Set objMovedMessage = objMessage.MoveTo(folderID [, storeID])

Parameters
objMovedMessage

On successful return, contains the moved Message object.

objMessage
Required. This Message object.

folderID
Required. String. The unique identifier of the destination Folder object in which this message is to
appear.

storeID
Optional. String. The unique identifier of the InfoStore object in which the message is to appear, if
different from this current InfoStore.

Remarks
All properties that have been set on this message are moved, whether they have read-only or
read/write access. Each property is moved with its value and access unchanged.

The move operation takes effect immediately. This Message object is no longer accessible at its former
location after the MoveTo method returns.

Options Method (Message Object)   

The Options method displays a modal dialog box where the user can change the submission options
for a message.

Syntax
objMessage.Options([parentWindow])

Parameters
objMessage

Required. The Message object.

parentWindow
Optional. Long. The parent window handle for the options dialog box. A value of zero (the default)
specifies that the dialog should be application-modal.

Remarks
The Options dialog is always modal, meaning the parent window is disabled while the dialog is active.
If the parentWindow parameter is set to zero or is not set, all windows belonging to the application are
disabled while the dialog is active. If the parentWindow parameter is supplied but is not valid, the call
returns mapiE_INVALID_PARAMETER.

The options are provider-specific and are registered by the provider. Providers are not required to
register option sheets. When providers do not register options, the Options method returns the error
code mapiE_NOT_FOUND.

Per-message options are properties of a message that control its behavior after submission. The per-
message options are part of the message envelope, not its content.

The following methods can invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object), Resolve
method (Recipients collection), AddressBook and Logon methods (Session object).

ReadReceipt Property (Message Object)   

The ReadReceipt property is True if a read-receipt notification message is requested. Read/write.

Syntax
objMessage.ReadReceipt

Data Type
Boolean

Remarks
Set the ReadReceipt property to True to obtain a notification message when each recipient reads your
message. The default setting for the OLE Messaging Library is False.

Each message store that receives your message sends you an individual read notification each time
one of the recipients sets the read flag on the message. Note that the read flag being set does not
imply that the recipient has physically read the message. Move and copy operations, for example,
typically set the read flag.

Notification requests include the DeliveryReceipt and ReadReceipt properties. For more information,
see Making Sure The Message Gets There.

The ReadReceipt property corresponds to the MAPI property PR_READ_RECEIPT_REQUESTED.

Recipients Property (Message Object)   

The Recipients property returns a single Recipient object or a Recipients collection object. Read/write.

Syntax
Set objRecipColl = objMessage.Recipients

Set objOneRecip = objMessage.Recipients(index)

objRecipColl
Object. A Recipients collection object.

objMessage
Object. The Message object.

objOneRecip
Object. A single Recipient object.

index
Long. Specifies the number of the recipient within the Recipients collection. Ranges from 1 to the
value specified by the Recipients collection’s Count property.

Data Type
Object

Remarks
You can change individual Recipient objects within the Recipients collection, Add them to the
collection, and Delete them from the collection. You can also manipulate the Recipients collection as a
whole with a single Visual Basic instruction. For example, you can copy the complete recipient list of a
received message, with all their properties, to a reply message:

 Set objReplyMessage.Recipients = objReceivedMessage.Recipients

Note that the Attachments property cannot be copied as a whole; attachments must be dealt with in
the manner of the following example.

Example
This code fragment copies each of the recipients from the original message objOneMsg to the copy
objCopyMsg:

' from the sample function Util_CopyMessage
 For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName ' now copy the name
 End If
 Next i

Send Method (Message Object)   

The Send method sends the message to the recipients through the MAPI system.

Syntax
objMessage.Send([saveCopy, showDialog, parentWindow])

Parameters
objMessage

Required. The Message object.

saveCopy
Optional. Boolean. If True or omitted, saves a copy of the Message in a user folder, such as the
Sent Items folder.

showDialog
Optional. Boolean. If True, displays a Send Message dialog box where the user can change the
message contents or recipients. The default value is False.

parentWindow
Optional. Long. The parent window handle for the Send Message dialog box. A value of zero (the
default) specifies that the dialog should be application-modal. The parentWindow parameter is
ignored unless showDialog is True.

Remarks
The Send method is similar to the Update method, except Send ignores the parent Folder object of
the message and saves the message in the current user’s default Outbox folder. Messaging systems
retrieve messages from the Outbox and transport them to the recipients.

Note that the Send method invalidates the composed Message object. Attempts to access the original
Message object result in an error. The original Message object does not have to be set to Nothing, but
it should not be used for subsequent operations. Use a new Message object to obtain the message
from the Outbox or from the Sent Items folder.

The Send dialog is always modal, meaning the parent window is disabled while the dialog is active. If
the parentWindow parameter is set to zero or is not set, all windows belonging to the application are
disabled while the dialog is active. If the parentWindow parameter is supplied but is not valid, the call
returns mapiE_INVALID_PARAMETER.

Note that even if showDialog is set to True, the OLE Messaging Library does not display the dialog box
if the recipient has a null display name. The dialog box is, however, displayed for a null recipient (when
the Recipient object is set to Nothing).

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

The following methods can invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object), Resolve
method (Recipients collection), AddressBook and Logon methods (Session object).

See Also
Sent Property (Message Object) , Submitted Property (Message Object)

Sender Property (Message Object)   

The Sender property returns the sender of a message as an AddressEntry object. Read-only.

Syntax
Set objAddrEntry = objMessage.Sender

objAddrEntry
Object. The returned AddressEntry object that represents the messaging user that sent the
message.

objMessage
Object. The Message object.

Data Type
Object

Remarks
The Sender property corresponds to the MAPI property PR_SENDER_ENTRYID.

Example
This code fragment displays the name of the sender of a message:

' from the sample function Message_Sender
 Set objAddrEntry = objOneMsg.Sender
 If objAddrEntry Is Nothing Then
 MsgBox "Could not set the address entry object from the Sender"
 Exit Function
 End If
 MsgBox "Message was sent by " & objAddrEntry.Name

See Also
TimeReceived Property (Message Object)

Sent Property (Message Object)   

The Sent property is True if the message has been sent through the MAPI system. Read/write.

Syntax
objMessage.Sent

Data Type
Boolean

Remarks
In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting.

For all three kinds of message, you use the Submitted, Sent, and Unread properties and the Send or
Update methods.

The following table summarizes the use of the message properties and methods for these three kinds
of messages:

Kind of
message

Method Submitted
property

Sent
property

Unread
property

Sent Send Send method
sets True

Spooler sets
True

Spooler sets
True

Posted Update Application sets
False

Application
sets True

Application
sets True

Saved Update Application sets
False

Application
sets False

Application
sets True

For sent messages, the Sent property can be written until the time that you call the Send or Update
method. Note that changing the Sent property to True does not cause the message to be sent. Only
the Send method actually causes the message to be transmitted. After you call the Send method, the
messaging system controls the Sent property and changes it to a read-only property.

For posted messages, you create the message directly within a public folder and call Update. When
you create the message within the public folder, some viewers do not allow the message to become
visible to others until you set the Submitted property to True.

A common use for writing a value to the Sent property is to set the property to False so that an
electronic mail system can save pending, unsent messages in an Outbox folder, or to save work-in-
progress messages in a pending folder before committing the messages to a public information store.
Note that you can cause an error if you set the property incorrectly.

The Sent property is changed using the following sequence. When you call the Send method to send a
message to a recipient, the message is moved to the Outbox and the Message object’s Submitted
property is set to True. When the messaging system spooler actually starts transporting the message,
the Sent property is set to True.

When the message is not sent using the Send method, the MAPI system does not change the Sent
property. For posted and saved messages that call the Update method, you should set the value of the
Sent property to True just before you post the message.

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

The Sent property corresponds to the MSGFLAG_UNSENT flag not being set in the MAPI property

PR_MESSAGE_FLAGS.

Signed Property (Message Object)   

The Signed property is True if the message has been tagged with a digital signature. Read/write.

Syntax
objMessage.Signed

Data Type
Boolean

Remarks
The Signed property is dependent upon the message store provider. The OLE Messaging Library does
not encrypt or digitally sign the message.

Security features include the Encrypted and Signed properties. For more information, see Securing
Messages.

The Signed property corresponds to the SECURITY_SIGNED flag of the MAPI property
PR_SECURITY.

Size Property (Message Object)   

The Size property returns the approximate size in bytes of the message. Read-only.

Syntax
objMessage.Size

Data Type
Long

Remarks
The Size property contains the sum, in bytes, of the sizes of all properties on this Message object,
including in particular the Attachments property. It can be considerably greater than the size of the
Text property alone.

The Size property is computed by the message store and is not valid until after the first Update or
Send operation. Note that not all message stores support this property.

The Size property corresponds to the MAPI property PR_MESSAGE_SIZE.

StoreID Property (Message Object)   

The StoreID property represents the unique identifier for the message store that contains the
message. Read-only.

Syntax
objMessage.StoreID

Data Type
String

Remarks
You can save the ID and StoreID properties of this message in order to recall it later with the Session
object’s GetMessage method.

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID, converted to a string
of hexadecimal characters.

Subject Property (Message Object)   

The Subject property returns or sets the subject of the message as a string. Read/write.

Syntax
objMessage.Subject

Data Type
String

Remarks
In a conversation thread, the Subject property is often used to set the ConversationTopic property.

The Subject property corresponds to the MAPI property PR_SUBJECT.

The Subject property is the default property of a Message object, meaning that objMessage is
syntactically equivalent to objMessage.Subject in Visual Basic code.

Example
This code fragment sets the subject of a message:

Dim objMessage As Object ' assume valid message
objMessage.Subject = "Microsoft Bob: Check It Out"

See Also
Text Property (Message Object)

Submitted Property (Message Object)   

The Submitted property is True when the message has been submitted. Read/write.

Syntax
objMessage.Submitted

Data Type
Boolean

Remarks
In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting.

For all three kinds of message, you use the Submitted, Sent, and Unread properties and the Send or
Update methods.

The following table summarizes the use of the message properties and methods for these three kinds
of messages:

Kind of
message

Method Submitted
property

Sent
property

Unread
property

Sent Send Send method
sets True

Spooler sets
True

Spooler sets
True

Posted Update Application sets
False

Application
sets True

Application
sets True

Saved Update Application sets
False

Application
sets False

Application
sets True

For sent messages, the Sent property can be written until the time that you call the Send or Update
method. Note that changing the Sent property to True does not cause the message to be sent. Only
the Send method actually causes the message to be transmitted. After you call the Send method, the
messaging system controls the Sent property and changes it to a read-only property.

For posted messages, you create the message directly within a public folder and call Update. When
you create the message within the public folder, some viewers do not allow the message to become
visible to others until you set the Submitted property to True.

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

The Submitted property corresponds to the MSGFLAG_SUBMIT flag not being set in the MAPI
property PR_MESSAGE_FLAGS.

Text Property (Message Object)   

The Text property returns or sets the text of the message as a string. Read/write.

Syntax
objMessage.Text

Data Type
String

Remarks
The message text is the principal content of an interpersonal message, typically displayed to each
recipient as an immediate result of opening the message. The Text property specifically excludes
various other message properties such as Subject, Attachments, and Recipients.

Note that the Text property is a plain text representation of the message text and does not support
formatted text.

The maximum size of the text can be limited by the tool that you use to manipulate string variables
(such as Microsoft Visual Basic).

The Text property corresponds to the MAPI property PR_BODY.

Example
This code fragment sets the text of a message:

Dim objMessage As Object ' assume valid message
objMessage.Text = "Thank you for buying Microsoft Home(TM) products."

TimeReceived Property (Message Object)   

The TimeReceived property sets or returns the date and time the message was received as a vbDate
variant data type. Read/write.

Syntax
objMessage.TimeReceived

Data Type
Variant (vbDate format)

Remarks
The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user’s system.

When you send messages using the Message object’s Send method, MAPI sets the TimeReceived
and TimeSent properties for you. However, when you post messages in a public folder, you must first
explicitly set these properties. For a message posted to a public folder, set both properties to the same
time value.

Note that the TimeReceived and TimeSent properties represent local time. However, when you
access MAPI time properties through the Fields collection’s Item property, the time values represent
Greenwich Mean Time.

The TimeReceived property corresponds to the MAPI Property PR_MESSAGE_DELIVERY_TIME.

Example
This code fragment displays the date and time a message was sent and received:

' from the sample function Message_TimeSentAndReceived
 ' verify that objOneMsg is valid, then ...
 With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
 End With

TimeSent Property (Message Object)   

The TimeSent property sets or returns the date and time the message was sent as a vbDate variant
data type. Read/write.

Syntax
objMessage.TimeSent

Data Type
Variant (vbDate format)

Remarks
The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user’s system.

When you send messages using the Message object’s Send method, MAPI sets the TimeReceived
and TimeSent properties for you. However, when you post messages in a public folder, you must first
explicitly set these properties. For a message posted to a public folder, set both properties to the same
time value.

Note that the TimeReceived and TimeSent properties represent local time. However, when you
access MAPI time properties through the Fields collection’s Item property, the time values represent
Greenwich Mean Time.

The TimeSent property corresponds to the MAPI Property PR_CLIENT_SUBMIT_TIME.

Example
This code fragment displays the date and time a message was sent and received:

' from the sample function Message_TimeSentAndReceived
 ' verify that objOneMsg is valid, then ...
 With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
 End With

Type Property (Message Object)   

The Type property returns or sets the MAPI message class for the message. Read/write.

Syntax
objMessage.Type

Data Type
String

Remarks
The Type property contains the MAPI message class, which determines the set of properties defined
for the message, the kind of information it conveys, and how it is to be handled. The message class
consists of ASCII strings concatenated with periods, each string representing a level of subclassing. A
standard interpersonal message has message class IPM.Note, which is a subclass of IPM and a
superclass of IPM.Note.Private.

For more information about MAPI message classes, see the MAPI Programmer’s Reference.

The OLE Messaging Library does not impose any restrictions on this value except that it be a valid
string value. You can set the value to any string that is meaningful for your application. By default, the
OLE Messaging Library sets the Type value of new messages to the MAPI message class IPM.Note.

The Type property corresponds to the MAPI property PR_MESSAGE_CLASS.

Unread Property (Message Object)   

The Unread property is True if the message has not been read by the current user. Read/write.

Syntax
objMessage.Unread

Data Type
Boolean

Remarks
In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting.

For all three kinds of message, you use the Submitted, Sent, and Unread properties and the Send or
Update methods.

The following table summarizes the use of the message properties and methods for these three kinds
of messages:

Kind of
message

Method Submitted
property

Sent
property

Unread
property

Sent Send Send method
sets True

Spooler sets
True

Spooler sets
True

Posted Update Application sets
False

Application
sets True

Application
sets True

Saved Update Application sets
False

Application
sets False

Application
sets True

For sent messages, the Sent property can be written until the time that you call the Send or Update
method. Note that changing the Sent property to True does not cause the message to be sent. Only
the Send method actually causes the message to be transmitted. After you call the Send method, the
messaging system controls the Sent property and changes it to a read-only property.

For posted messages, you create the message directly within a public folder and call Update. When
you create the message within the public folder, some viewers do not allow the message to become
visible to others until you set the Submitted property to True.

For more information on sending and posting messages, see Creating and Sending a Message and
Posting Messages to a Public Folder.

The Unread property corresponds to the MSGFLAG_READ flag not being set in the MAPI property
PR_MESSAGE_FLAGS.

Update Method (Message Object)   

The Update method saves the message in the MAPI system.

Syntax
objMessage.Update([makePermanent, refreshObject])

Parameters
objMessage

Required. The Message object.

makePermanent
Optional. Boolean. A value of True indicates that the property cache is flushed and all changes are
committed in the underlying message store. False indicates that the property cache is flushed but
not committed to persistent storage. The default value is True.

refreshObject
Optional. Boolean. A value of True indicates that the property cache is reloaded from the values in
the underlying message store. False indicates that the property cache is not reloaded. The default
value is False.

Remarks
Changes to Message objects are not permanently saved in the MAPI system until you call the Update
method with the makePermanent parameter set to True.

For improved performance, the OLE Messaging Library caches property changes in private storage
and updates either the object or the underlying persistent storage only when you explicitly request such
an update. For efficiency, you should make only one call to Update with its makePermanent parameter
set to True.

The makePermanent and refreshObject parameters combine to cause the following changes:

refreshObject = True refreshObject = False

makePermanent =
True

Commit all changes,
flush the cache, and
reload the cache from
the message store.

Commit all changes and
flush the cache (default
combination).

makePermanent =
False

Flush the cache and
reload the cache from
the message store.

Flush the cache.

Call Update(False, True) to flush the cache and then reload the values from the message store.

Example
This code fragment changes the subject of the first message in the Inbox:

Set objMessage = objSession.Inbox.GetFirst
' ... verify message
objMessage.Subject = "This is the new subject"
objMessage.Update ' commit changes to MAPI system

To add a new Message object, use the Messages collection’s Add method followed by the message’s
Update method. This code fragment saves a new message in the Outbox:

Dim objMessage As Object ' message object
'

Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Microsoft Bob(TM)"
objMessage.Text = "This is incredible; you've got to see it!"
objMessage.Update makePermanent:=True ' redundant parameter (default)

See Also
Send Method (Message Object)

MessageFilter Object
The MessageFilter object specifies criteria for restricting a search on a Messages collection.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.1

Parent objects: Messages collection

Child objects: Fields collection

Default property: Subject

Properties

Name

Available
in version

Type

Access

Application 1.1 String Read-only

Class 1.1 Long Read-only

Conversation 1.1 String Read/write

Fields 1.1 Field object or Fields
collection object

Read-only

Importance 1.1 Long Read/write

Not 1.1 Boolean Read/write

Or 1.1 Boolean Read/write

Parent 1.1 Messages collection
object

Read-only

Recipients 1.1 Recipient object or
Recipients collection
object

Read/write

Sender 1.1 AddressEntry object Read/write

Sent 1.1 Boolean Read/write

Session 1.1 Session object Read-only

Size 1.1 Long Read/write

Subject 1.1 String Read/write

Text 1.1 String Read/write

TimeFirst 1.1 Variant (vbDate
format)

Read/write

TimeLast 1.1 Variant (vbDate
format)

Read/write

Type 1.1 String Read/write

Unread 1.1 Boolean Read/write

Methods

Name

Available
in version

Parameters

IsSameAs 1.1 object as Object

Remarks
A MessageFilter object with no criteria is created by default for every Messages collection. This means
that initially the filter’s properties are unset and its child Fields collection is empty. You specify the filter
by setting values for its properties, and by adding fields to its Fields collection and setting a value for
each added field.

The filter is invoked when the Messages collection is traversed with the Get methods. Each field
participates in a MAPI search restriction comparing the field’s Value property against the value of the
Message property specified by the field’s ID property.

For fields of data type other than String, the MAPI search restriction type is RES_PROPERTY with
relational operator RELOP_EQ. For fields of data type String, the restriction type is RES_CONTENT
with fuzzy level options FL_SUBSTRING, FL_IGNORECASE, and FL_LOOSE.

The results of the individual restrictions are normally ANDed together to form the final filter value. You
can change this by setting the Or property, which causes all the results to be ORed instead of ANDed.
You can also set the Not property to specify that the result of each individual restriction is to be
negated before being ANDed or ORed into the final filter value.

The MessageFilter object is persistent within its parent Messages collection. It is not deleted even
when it is released, and it remains attached to the Messages collection until the collection’s Filter
property is set to Nothing or the collection is itself released.

Conversation Property (MessageFilter Object)   

The Conversation property sets filtering on a message’s conversation topic. Read/write.

Syntax
objMessageFilter.Conversation

Data Type
String

Remarks
The Conversation property specifies that the message filter should pass only messages whose
conversation topic exactly matches the value of Conversation. That is,
objMessageFilter.Conversation sets filtering on objMessage.ConversationTopic.

A conversation is a group of related messages. The Message object’s ConversationTopic property is
the string that describes the overall topic of the conversation. To be defined as messages within the
same conversation, the messages must have the same value in their ConversationTopic property.
The ConversationIndex property represents an index that indicates a sequence of messages within
that conversation.

For more information on conversations, see Working With Conversations.

The Conversation property corresponds to the MAPI property PR_CONVERSATION_TOPIC.

Fields Property (MessageFilter Object)   

The Fields property returns a single Field object or a Fields collection object. Read-only.

Syntax
objMessageFilter.Fields

objMessageFilter.Fields(index)

objMessageFilter.Fields(proptag)

objMessageFilter.Fields(name)

index
Short integer (less than or equal to 65535). Specifies the index within the Fields collection.

proptag
Long integer (greater than or equal to 65536). Specifies the property tag value for the MAPI property
to be retrieved.

name
String. Specifies the name of the custom MAPI property.

Data Type
Object

Remarks
The Fields property returns one or more of the fields associated with a MessageFilter object. Each
field typically corresponds to a MAPI property, and together the fields that have been added to the
collection specify the filter.

The Fields property provides a generic access mechanism that allows Visual Basic and Visual C++
programmers to retrieve the value of a MAPI property using either its name or its MAPI property tag.
For access with the property tag, use objMessageFilter.Fields(proptag), where proptag is the 32-bit
MAPI property tag associated with the property, such as mapiPR_MESSAGE_CLASS. To access a
named property, use objMessageFilter.Fields(name), where name is a string that represents the
custom property name.

Importance Property (MessageFilter Object)   

The Importance property sets filtering on a message’s importance to mapiNormal (the default),
mapiLow, or mapiHigh. Read/write.

Syntax
objMessageFilter.Importance

Data Type
Long

Remarks
The following values are defined:

Constant Value Description

mapiLow 0 Low importance

mapiNormal 1 Normal importance (default)

mapiHigh 2 High importance

The Importance property corresponds to the MAPI property PR_IMPORTANCE.

IsSameAs Method (MessageFilter Object)   

The IsSameAs method returns True if the MessageFilter object is the same as the MessageFilter
object being compared against.

Syntax
objMessageFilter.IsSameAs(objMsgFilter2)

Parameters
objMessageFilter

Required. This MessageFilter object.

objMsgFilter2
Required. The MessageFilter object being compared against.

Remarks
Two MessageFilter objects are considered to be the same if and only if they are instantiations of the
same physical (persistent) object. Two objects with the same value are still considered different if they
do not instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

Not Property (MessageFilter Object)   

The Not property specifies that all restriction values are to be negated before being ANDed or ORed to
specify the message filter. Read/write.

Syntax
objMessageFilter.Not

Data Type
Boolean

Remarks
If the Not property is False, the restriction values are treated normally. If it is True, each value is
toggled (between True and False) before being used.

Or Property (MessageFilter Object)   

The Or property specifies that the restriction values are to be ORed instead of ANDed to specify the
message filter. Read/write.

Syntax
objMessageFilter.Or

Data Type
Boolean

Remarks
If the Or property is False, all the restriction values are ANDed together. If it is True, the values are
ORed together.

Recipients Property (MessageFilter Object)   

The Recipients property sets filtering on whether a message’s recipients include a particular Recipient
object. Read/write.

Syntax
Set objOneRecip = objMessageFilter.Recipients(index)

objOneRecip
Object. A single Recipient object.

objMessageFilter
Object. This MessageFilter object.

index
Long. Specifies the number of the recipient within the Recipients collection. Ranges from 1 to the
value specified by the Recipients collection’s Count property.

Data Type
Object

Remarks
Although the Recipients property nominally deals with a Recipients collection, only the first member
participates in message filtering. You should not maintain more than one Recipient object in the
collection.

The Recipients property specifies that the message filter should pass only messages with a recipient
corresponding to the Recipients property. The comparison uses the Name property of both Recipient
objects. The filter passes the message if the Name property of any of its recipients contains the filter
recipient’s Name property as a substring.

Example
This code fragment copies the first valid recipient from an original message to a message filter in order
to restrict the Messages collection to messages containing that recipient:

Dim objOneRecip as Object
' assume objMessage and objMessageFilter are valid
objMessageFilter.Recipients.Delete ' remove any filter recipients
For i
 strRecipName = objMessage.Recipients.Item(1).Name
 If strRecipName <> "" Then
 Set objOneRecip = objMessageFilter.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message filter"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 objOneRecip.Address = objMessage.Recipients.Item(i).Address
 objOneRecip.Type = objMessage.Recipients.Item(i).Type
 End If
Next i

Sender Property (MessageFilter Object)   

The Sender property sets filtering on a message’s sender to an AddressEntry object. Read/write.

Syntax
Set objAddrEntry = objMessageFilter.Sender

objAddrEntry
Object. The AddressEntry object that represents the messaging user that sent the message.

objMessageFilter
Object. The MessageFilter object.

Data Type
Object

Remarks
The Sender property corresponds to the MAPI property PR_SENDER_ENTRYID.

Sent Property (MessageFilter Object)   

The Sent property sets filtering on whether or not a message was sent through the MAPI system.
Read/write.

Syntax
objMessageFilter.Sent

Data Type
Boolean

Remarks
A message’s Sent property is True if it was sent through the MAPI system and False if it was posted or
saved.

In general, there are three different kinds of messages: sent, posted, and saved. Sent messages are
traditional e-mail messages sent to a recipient or public folder. Posted messages are created in a
public folder. Saved messages are created and saved without either sending or posting. For more
information, see the Message object’s Sent property.

Size Property (MessageFilter Object)   

The Size property sets filtering on a message’s approximate total size in bytes. Read/write.

Syntax
objMessageFilter.Size

Data Type
Long

Remarks
The Size property specifies that the message filter should pass only messages with approximate total
size greater than the value of Size.

The Size property represents the sum of all the message’s MAPI properties, including the Subject,
Text, Attachments, and Recipients.

The Size property corresponds to the MAPI property PR_MESSAGE_SIZE.

Subject Property (MessageFilter Object)   

The Subject property sets filtering on a message’s subject. Read/write.

Syntax
objMessageFilter.Subject

Data Type
String

Remarks
The Subject property specifies that the message filter should pass only messages having a Subject
that contains the string in this Subject property as a substring.

The Subject property corresponds to the MAPI property PR_SUBJECT.

The Subject property is the default property of a MessageFilter object, meaning that objMessageFilter
is syntactically equivalent to objMessageFilter.Subject in Visual Basic code.

Text Property (MessageFilter Object)   

The Text property sets filtering on a message’s main content. Read/write.

Syntax
objMessageFilter.Text

Data Type
String

Remarks
The Text property specifies that the message filter should pass only messages having a Text that
contains the string in this Text property as a substring.

Note that the Text property is a plain text representation of the main portion of the message’s content,
and does not support formatted text.

The Text property corresponds to the MAPI property PR_BODY.

TimeFirst Property (MessageFilter Object)   

The TimeFirst property sets filtering on whether a message was received at or since the specified date
and time. Read/write.

Syntax
objMessageFilter.TimeFirst

Data Type
Variant (vbDate format)

Remarks
If the TimeFirst property is not set, the message filter passes all messages received at or before the
date and time in the TimeLast property. If neither property is set, the filter passes messages regardless
of their date and time of reception.

Note that the TimeFirst and TimeLast properties represent local time. However, when you access
MAPI time properties through a Fields collection’s Item property, the time values represent Greenwich
Mean Time (GMT).

The TimeFirst property corresponds to the MAPI Property PR_MESSAGE_DELIVERY_TIME.

TimeLast Property (MessageFilter Object)   

The TimeLast property sets filtering on whether a message was received at or before the specified
date and time. Read/write.

Syntax
objMessageFilter.TimeLast

Data Type
Variant (vbDate format)

Remarks
If the TimeLast property is not set, the message filter passes all messages received at or since the
date and time in the TimeFirst property. If neither property is set, the filter passes messages
regardless of their date and time of reception.

For more information and an example using the TimeLast property, see Filtering Messages in a
Folder.

Note that the TimeFirst and TimeLast properties represent local time. However, when you access
MAPI time properties through a Fields collection’s Item property, the time values represent Greenwich
Mean Time (GMT).

The TimeLast property corresponds to the MAPI Property PR_MESSAGE_DELIVERY_TIME.

Type Property (MessageFilter Object)   

The Type property sets filtering on a message’s MAPI message class. Read/write.

Syntax
objMessageFilter.Type

Data Type
String

Remarks
The Type property specifies that the message filter should pass only messages with a Type exactly
matching a particular MAPI message class. By default, the OLE Messaging Library sets the Type value
of new messages to the MAPI message class IPM.Note.

The Type property corresponds to the MAPI property PR_MESSAGE_CLASS.

Unread Property (MessageFilter Object)   

The Unread property sets filtering on whether or not a message has been read. Read/write.

Syntax
objMessageFilter.Unread

Data Type
Boolean

Remarks
A message’s Unread property is True if it has not been read by the current user.

For more information and an example using the Unread property, see Filtering Messages in a Folder.

The Unread property corresponds to the MSGFLAG_READ flag not being set in the MAPI property
PR_MESSAGE_FLAGS.

Messages Collection Object
The Messages collection object contains one or more Message objects.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Folder (Inbox or Outbox)

Child objects: Message
MessageFilter

Default property: Item

A Messages collection is considered a large collection, which means that the Count and Item
properties have limited validity, and your best option is to use a Message object identifier value or the
Get methods to access an individual Message object within the collection.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Count 1.1 Long Read-only

Filter 1.1 MessageFilter object Read/write

Item 1.1 Message object Read-only

Parent 1.0.a Inbox or Outbox folder
object

Read-only

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a (optional) subject as String,
(optional) text as String,
(optional) type as String,
(optional) importance as Long

Delete 1.0.a (none)

GetFirst 1.0.a (optional) filter as String

GetLast 1.0.a (optional) filter as String

GetNext 1.0.a (none)

GetPrevious 1.0.a (none)

Sort 1.0.a (optional) SortOrder as Long,
(optional) PropTag as Long,
(optional) PropID as String

Remarks
Large collections, such as the Messages collection, cannot always maintain an accurate count of the
number of objects in the collection. It is strongly recommended that you use the GetFirst, GetNext,
GetLast, and GetPrevious methods to access individual items in the collection. You can access one

specific message by using the Session object’s GetMessage method, and you can access all the items
in the collection with the Visual Basic For Each construction.

The order that items are returned by GetFirst, GetNext, GetLast, and GetPrevious depends on
whether the messages are sorted or not. The Message objects within a collection can be sorted on a
MAPI property of your choice, either ascending or descending, using the Sort method. When the items
are not sorted, you should not rely on these methods to return the items in any specified order. The
best programming approach to use with unsorted collections is to assume that the access functions are
able to access all items within the collection, but that the order of the objects is not defined.

A message and most of its attachments, fields, properties, and recipients are read from the message
store when the application first accesses the Message object. For performance reasons, attachment
data and field values greater than 1,000 bytes are read from the store only when the application
explicitly accesses the Attachment or Field objects. All other properties of the Attachment and Field
objects are read when the parent message is read.

See Also
Object Collections

Add Method (Messages Collection)   

The Add method creates and returns a new Message object in the Messages collection.

Syntax
Set objMessage = objMsgColl.Add([subject, text, type, importance])

Parameters
objMessage

On successful return, represents the new Message object added to the collection.

objMsgColl
Required. The Messages collection object.

subject
Optional. String. The subject of the message. When this parameter is not supplied, the default value
is an empty string.

text
Optional. String. The body text of the message. When this parameter is not supplied, the default
value is an empty string.

type
Optional. String. The message class of the message, such as the default, IPM.Note.

importance
Optional. Long. The importance of the message. The following values are defined:

Constant Value Description

mapiLow 0 Low importance

mapiNormal 1 Normal importance (default)

mapiHigh 2 High importance

Remarks
The method parameters correspond to the Subject, Text, Type, and Importance properties of the
Message object.

You should create new messages in the Outbox folder.

The user must have permission to Add or Delete a Message object. Most users have this permission
in their mailbox and their Personal Folders.

The new Message object is saved in the MAPI system when you call its Update method.

Example
This code fragment adds a new message to a folder:

' from the sample function Util_ReplyToConversation
Set objNewMsg = objSession.Outbox.Messages.Add
' verify objNewMsg created successfully...then supply properties
With objNewMsg
 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=mapiTo)
 .Recipients.Resolve

 .Update
 .Send showDialog:=False
End With

Count Property (Messages Collection)   

The Count property returns the number of Message objects in the collection, or a very large number if
the exact count is not available. Read-only.

Syntax
objMsgColl.Count

Data Type
Long

Remarks
The Count property is useful for determining whether a Messages collection is empty or not.

A large collection cannot always maintain an accurate count of its members, and the Count property
cannot be used as the collection’s size when it has a very large value such as mapiMaxCount.
Programmers needing to access individual objects in a large collection are strongly advised to use the
Visual Basic For Each statement or the Get methods.

The recommended procedures for traversing a large collection are, in decreasing order of preference:

1. Global selection, such as the Visual Basic For Each statement

2. The Get methods, particularly GetFirst and GetNext

1. An indexed loop, such as the Visual Basic For ... Next construction

If the message store provider cannot supply the precise number of Message objects, the OLE
Messaging Library returns a very large number for the Count property. On 32-bit platforms, this value
is mapiMaxCount, which equals 2^31 - 1, or 2147483647. On other platforms, mapiMaxCount is not
defined, and the OLE Messaging Library returns -1. A program on such a platform must ensure that -1
does not prematurely terminate any iteration based on the Count property.

Programmers using an indexed loop terminating on the Count property must also check each returned
object for a value of Nothing. The loop must proceed forward from the beginning of the collection, and
the index must have initial and increment values of 1. Results are undefined for any other procedure.

The use of the Item property in conjunction with the Count property in a large collection can be seen in
the following example.

Example
This code fragment searches for a Message object with subject “Bonus”:

Dim i As Integer ' loop index / object counter
Dim collMessages as Object ' Messages collection; assume already given
If collMessages Is Nothing Then
 ' MsgBox "Messages collection object is invalid"
 ' Exit
End If
' see if collection is empty
If 0 = collMessages.Count Then
 ' MsgBox "No messages in collection"
 ' Exit
End If
' look for message about “Bonus” in collection
For i = 1 To collMessages.Count Step 1
 If collMessages.Item(i) Is Nothing Then
 ' MsgBox "No such message found in collection"

 ' Exit ' no more messages in collection
 End If
 If collMessages.Item(i).Subject = “Bonus” Then
 ' MsgBox "Desired message is at index " & i
 ' Exit
 End If
Next i

Delete Method (Messages Collection)   

The Delete method deletes all the messages in the Messages collection.

Syntax
objMsgColl.Delete()

Parameters
objMsgColl

Required. The Messages collection object.

Remarks
The Delete method moves all the Message objects in the collection to the Deleted Items folder, if the
user has enabled this option. If the option is not enabled, or if the Messages collection is already in the
Deleted Items folder, the Delete method permanently deletes the messages, and they cannot be
recovered.

Deleted messages are invalidated but not removed from memory. The programmer should set the
invalidated objects to Nothing to remove them from memory, or reassign them to other messages.
Attempted access to a deleted object results in a return of mapiE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Message object, use the Delete method specific to that object.

The Delete method on a large collection takes effect immediately and is permanent. A deleted member
cannot be recovered. However, the collection itself it still valid, and you can Add new members to it.

For example, this code fragment deletes all of the messages in a folder:

objFolder.Messages.Delete

Filter Property (Messages Collection)   

The Filter property returns a MessageFilter object for the Messages collection. Read/write.

Syntax
objMsgColl.Filter

Data Type
Object

Remarks
A MessageFilter object with no criteria is created by default for every Messages collection. When you
specify criteria by setting properties in the filter’s Fields collection, the filter restricts any subsequent
search on the Messages collection. For more information, see Filtering Messages in a Folder and the
MessageFilter Object.

GetFirst Method (Messages Collection)   

The GetFirst method returns the first Message object in the Messages collection. It returns Nothing if
no first object exists.

Syntax
Set objMessage = objMsgColl.GetFirst([filter])

Parameters
objMessage

On successful return, represents the first Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. String. Specifies the message class of the object, such as the default value, IPM.Note.
Corresponds to the Type property of the Message object.

Remarks
If the filter parameter is set, the GetFirst method returns the first message in the collection with a Type
property matching the value of filter.

The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetLast Method (Messages Collection)   

The GetLast method returns the last Message object in the Messages collection. It returns Nothing if
no last object exists.

Syntax
Set objMessage = objMsgColl.GetLast([filter])

Parameters
objMessage

On successful return, represents the last Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. String. Specifies the message class of the object, such as the default value, IPM.Note.
Corresponds to the Type property of the Message object.

Remarks
If the filter parameter is set, the GetFirst method returns the last message in the collection with a Type
property matching the value of filter.

The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetNext Method (Messages Collection)   

The GetNext method returns the next Message object in the Messages collection. It returns Nothing if
no next object exists, for example if already positioned at the end of the collection.

Syntax
Set objMessage = objMsgColl.GetNext()

Parameters
objMessage

On successful return, represents the next Message object in the collection.

objMsgColl
Required. The Messages collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

GetPrevious Method (Messages Collection)   

The GetPrevious method returns the previous Message object in the Messages collection. It returns
Nothing if no previous object exists, for example if already positioned at the beginning of the collection.

Syntax
Set objMessage = objMsgColl.GetPrevious()

Parameters
objMessage

On successful return, represents the previous Message object in the collection.

objMsgColl
Required. The Messages collection object.

Remarks
The Get methods are similar to the Find and Move methods used with Microsoft Access, but they use
a different syntax.

Item Property (Messages Collection)   

The Item property returns a single Message object from the Messages collection. Read-only.

Syntax
objMsgColl.Item(index)

objMsgColl.Item(prefix)

index
A long integer ranging from 1 to the size of the Messages collection.

prefix
A string representing a prefix substring of a Message object’s Subject property.

Data Type
Object

Remarks
The Item property is useful for satisfying syntax requirements when obtaining a member of a
Messages collection.

A large collection cannot support true integer indexing, and the Item(index) syntax cannot be used for
arbitrary selection of members of the collection. Programmers needing to access individual objects in a
large collection are strongly advised to use the Visual Basic For Each statement or the Get methods,
particularly GetFirst and GetNext

The Item(index) syntax is provided solely as a placeholder in an indexed loop, such as the For ... Next
construction in Visual Basic. Such a loop must proceed forward from the beginning of the collection,
and the index must have initial and increment values of 1. Results are undefined for any other
procedure.

For more information on using the Count and Item properties in a large collection, see the example in
the Count property.

The Item(prefix) syntax returns the first Message object whose Subject property begins with the string
specified by prefix.

The Item property is the default property of a Messages collection, meaning that objMsgColl(index) is
syntactically equivalent to objMsgColl.Item(index) in Visual Basic code.

Sort Method (Messages Collection)   

The Sort method sorts the messages in the collection on the specified property according to the
specified sort order.

Syntax
objMsgColl.Sort([SortOrder, PropTag])

objMsgColl.Sort([SortOrder, PropID])

Parameters
objMsgColl

Required. The Messages collection object.

SortOrder
Optional. Long. The specified sort order, one of the following values:

Value Numeric value Description

mapiNone 0 No sort

mapiAscending 1 Ascending sort (default)

mapiDescending 2 Descending sort

PropTag
Optional. Long. The property tag value for the MAPI property to be used for the sort. PropTag is the
32-bit MAPI property tag associated with the property, such as mapiPR_MESSAGE_CLASS.

PropID
Optional. String. The custom property name of a MAPI named property.

Remarks
Both parameters are optional. If SortOrder is not specified, ascending order is used. If neither PropTag
nor PropID is specified, the property used in the previous call to Sort is used again. If Sort has never
been called on this collection during this session, the MAPI property
mapiPR_MESSAGE_DELIVERY_TIME is used for the sort.

Recipient Object
The Recipient object represents a recipient of a message.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Recipients collection

Child objects: AddressEntry

Default property: Name

Properties

Name

Available
in version

Type

Access

Address 1.0.a String Read/write

AddressEntry 1.0.a AddressEntry object Read/write

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

DisplayType 1.0.a Long Read-only

ID 1.1 String Read/write

Index 1.0.a Long Read-only

Name 1.0.a String Read/write

Parent 1.0.a Recipients collection
object

Read-only

Session 1.0.a Session object Read-only

Type 1.0.a Long Read/write

Methods

Name

Available
in version

Parameters

Delete 1.0.a (none)

IsSameAs 1.1 object as Object

Resolve 1.0.a (optional) showDialog as Boolean

Address Property (Recipient Object)   

The Address property specifies the full address for the recipient. Read/write.

Syntax
objRecipient.Address

Data Type
String

Remarks
Sets the value of the Recipient object’s Address property to specify a custom address. The Recipient
Address uses the following syntax:

AddressType:AddressValue

where AddressType and AddressValue correspond to the values of the AddressEntry object’s Type
and Address properties.

The Recipient object’s Address property represents the full address, the complete messaging address
used by the MAPI system.

The OLE Messaging Library sets the value of the Recipient object’s Address property for you when
you supply the Name property and call the recipient’s Resolve method.

The Address property corresponds to the MAPI properties PR_ADDRTYPE and
PR_EMAIL_ADDRESS.

Example
' from the sample function Util_CompareAddressParts
' assume valid Recipient object
 Set objAddrEntry = objOneRecip.AddressEntry
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & _
 objAddrEntry.Address
 MsgBox strMsg ' compare address components

AddressEntry Property (Recipient Object)   

The AddressEntry property contains the AddressEntry object representing the recipient. Read/write.

Syntax
objRecipient.AddressEntry

Data Type
Object (AddressEntry object)

Remarks
For a complete description of the relationship between the AddressEntry object and the Recipient
object, see Using Addresses.

Accessing the AddressEntry property forces resolution of an unresolved recipient name. If the name
cannot be resolved, the OLE Messaging Library reports an error. For example, when the recipient
contains an empty string, the resolve operation returns mapiE_AMBIGUOUS_RECIP.

Example
This code fragment compares the Address property of the Recipient object with the Address and
Type properties of its child AddressEntry object, accessible through the recipient’s AddressEntry
property, to demonstrate the relationships between these properties.

' from the sample function Session_AddressEntry
 If objOneRecip Is Nothing Then
 MsgBox "must select a recipient"
 Exit Function
 End If
 Set objAddrEntry = objOneRecip.AddressEntry
 If objAddrEntry Is Nothing Then
 MsgBox "no valid AddressEntry for this recipient"
 Exit Function
 End If
' from the sample function Util_CompareAddressParts
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & _
 objAddrEntry.Address
 MsgBox strMsg ' compare display names
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
' Note - the Type properties are NOT the same:
' AddressEntry.Type is the address type, such as SMTP
' Recipient.Type is the recipient type, such as To: or Cc:

Delete Method (Recipient Object)   

The Delete method deletes the Recipient object.

Syntax
objRecipient.Delete()

Parameters
objRecipient

Required. The Recipient object.

Remarks
The Recipient object is invalidated in memory, but the change is not permanent until you use the
Update, Send, or Delete method on the Message object to which this recipient belongs.

The Delete operation invalidates the Recipient object but does not remove it from memory. The
programmer should set the invalidated object to Nothing to remove it from memory, or reassign it to
another recipient. Attempted access to a deleted object results in a return of
mapiE_INVALID_OBJECT.

The immediate parent of this Recipient object is a Recipients collection, which is a child of the
message. You can delete all the message’s recipients by calling the collection’s Delete method.

DisplayType Property (Recipient Object)   

The DisplayType property identifies the nature of the recipient. This property enables special
processing based on the type, such as displaying an icon associated with that type. Read-only.

Syntax
objRecipient.DisplayType

Parameters
objRecipient

Required. The Recipient object.

Data Type
Long

Remarks
You can use the display type to sort or filter recipients.

The following values are defined:

DisplayType value Description

mapiUser Local user

mapiDistList Distribution list

mapiForum Public folder

mapiAgent Agent

mapiOrganization Organization

mapiPrivateDistList Private distribution list

mapiRemoteUser Remote user

ID Property (Recipient Object)   

The ID property returns the unique identifier of the Recipient object as a string. Read-write.

Syntax
objRecipient.ID

Data Type
String

Remarks
MAPI assigns a permanent, unique identifier when an object is created. This identifier does not change
from one MAPI session to another, nor from one messaging domain to another.

The ID property corresponds to the MAPI property PR_ENTRYID, converted to a string of hexadecimal
characters.

Index Property (Recipient Object)   

The Index property returns the index number of the Recipient object within the Recipients collection.
Read-only.

Syntax
objRecipient.Index

Data Type
Long

Remarks
The Index property indicates this object’s position within the parent Recipients collection. It can later be
used to reselect this attachment with the collection’s Item property.

An index value should not be considered a static value that remains constant for the duration of a
session. It can be affected when other recipients are added and deleted. The index value is changed
following an update to the Message object to which the Recipients collection belongs.

Example
' from the sample function Recipients_NextItem
' after some similar validation ...
 If iRecipCollIndex >= objRecipColl.Count Then
 iRecipCollIndex = objRecipColl.Count
 MsgBox "Already at end of recipient list"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iRecipCollIndex = iRecipCollIndex + 1
 Set objOneRecip = objRecipColl.Item(iRecipCollIndex)
' from the sample function Recipient_Index
 If objOneRecip Is Nothing Then
 MsgBox "must first select a recipient"
 Exit Function
 End If
 MsgBox "Recipient index = " & objOneRecip.Index

IsSameAs Method (Recipient Object)   

The IsSameAs method returns True if the Recipient object is the same as the Recipient object being
compared against.

Syntax
objRecipient.IsSameAs(objRecip2)

Parameters
objRecipient

Required. This Recipient object.

objRecip2
Required. The Recipient object being compared against.

Remarks
Two Recipient objects are considered to be the same if and only if they are instantiations of the same
physical (persistent) object. Two objects with the same value are still considered different if they do not
instantiate the same physical object, for example if one is a copy of the other. In such a case
IsSameAs returns False.

The IsSameAs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. A generic comparison of any two object identifiers is also available with the
Session object’s CompareIDs method.

Name Property (Recipient Object)   

The Name property returns or sets the name of the Recipient object as a string. Read/write.

Syntax
objRecipient.Name

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

The Name property is the default property of a Recipient object, meaning that objRecipient is
syntactically equivalent to objRecipient.Name in Visual Basic code.

Example
' from the sample function Util_CompareFullAddressParts()
Dim strMsg As String
 Set objAddrEntry = objOneRecip.AddressEntry
' validate objects ... then display
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & _
 objAddrEntry.Address
 MsgBox strMsg ' compare address parts
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg ' compare display names (should be same)

Resolve Method (Recipient Object)   

The Resolve method resolves a recipient’s address information into a full messaging address.

Syntax
objRecipient.Resolve([showDialog])

Parameters
objRecipient

Required. The Recipient object.

showDialog
Optional. Boolean. If True (the default value), displays a modal dialog box to prompt the user to
resolve ambiguous names.

Remarks
The Resolve method operates when the AddressEntry property is set to Nothing. Its operation
depends on whether you supply the Recipient’s Name or Address property.

When you supply the Name property, Resolve looks it up in the address book. When a recipient is
resolved, the Recipient object’s Address property is set to the full address and its AddressEntry
property is set to the child AddressEntry object that represents a copy of information in the address
book.

Note that the Resolve method does not validate the Recipient object’s Type property.

When you specify a custom address by supplying only the Recipient object’s Address property, the
Resolve method does not attempt to compare the address against the address book.

To avoid delivery errors, clients should always resolve recipients before submitting a message to the
MAPI system. Resolving the recipient name means either finding a matching address in an address list
or having the user select an address from a dialog box.

The Resolve method uses the address list specified in the profile, such as the global address list
(GAL) or the personal address book (PAB).

The Recipients collection’s Resolved property is set to True when every recipient in the collection has
its address resolved.

The following methods can invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object), Resolve
method (Recipients collection), AddressBook and Logon methods (Session object).

See Also
Resolved Property (Recipients Collection)

Type Property (Recipient Object)   

The Type property specifies the type of the Recipient object, either To, Cc, or Bcc. Read/write.

Syntax
objRecipient.Type

Data Type
Long

Remarks
The Type property applies to all Recipient objects in the Recipients collection. The property has the
following defined values:

Recipient type Value Description

mapiTo 1 The recipient is on the To line (default).

mapiCc 2 The recipient is on the Cc line.

mapiBcc 3 The recipient is on the Bcc line.

The Type property corresponds to the MAPI property PR_RECIPIENT_TYPE.

See Also
Address Property (Recipient Object) , Resolve Method (Recipient Object)

Recipients Collection Object
The Recipients collection object contains one or more Recipient objects and specifies the recipients of
a message.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: Message

Child objects: Recipient

Default property: Item

A Recipients collection is considered a small collection, which means that it supports count and index
values that let you access an individual Recipient object through the Item property. The Recipients
collection supports the Visual Basic For Each statement.

Properties

Name

Available
in version

Type

Access

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

Count 1.0.a Long Read-only

Item 1.0.a Recipient object Read-only

Parent 1.0.a Message object Read-only

Resolved 1.0.a Boolean Read-only

Session 1.0.a Session object Read-only

Methods

Name

Available
in version

Parameters

Add 1.0.a (optional) name as String,
(optional) address as String,
(optional) type as Long,
(optional) entryID as String

Delete 1.0.a (none)

 Resolve 1.0.a (optional) showDialog as Boolean

See Also
Object Collections

Add Method (Recipients Collection)   

The Add method creates and returns a new Recipient object in the Recipients collection.

Syntax
Set objRecipient = objRecipColl.Add([name, address, type] | [entryID])

Parameters
objRecipient

On successful return, represents the new Recipient object added to the collection.

objRecipColl
Required. The Recipients collection object.

name
Optional. String. The display name of the recipient. When this parameter is not present, the new
Recipient object’s Name property is set to an empty string.

address
Optional. String. The messaging address of the recipient. When this parameter is not present, the
new Recipient object’s Address property is set to an empty string.

type
Optional. Long. The type of recipient; the initial value for the new Recipient object’s Type property.
The following values are valid:

Recipient type Value Description

mapiTo 1 The recipient is on the To line (default).

mapiCc 2 The recipient is on the Cc line.

mapiBcc 3 The recipient is on the Bcc line.

When this parameter is not present, the object is given the default value mapiTo.

entryID
Optional. String. The unique identifier of a valid AddressEntry object for this recipient. No default
value is supplied for the entryID parameter. When it is present, the other parameters are not used.
When it is not present, the method uses the name, address, and type parameters to determine the
recipient.

Remarks
The name, address, and type parameters correspond to the Recipient object’s Name, Address, and
Type properties, respectively. The entryID parameter corresponds to an AddressEntry object’s ID
property. When the entryID parameter is present, the other parameters are not used.

When no parameters are present, an empty Recipient object is created.

Call the Resolve method after you add a recipient. After the recipient is resolved, you can access the
child AddressEntry object through the Recipient object’s AddressEntry property.

The Index property of the new Recipient object equals the new Count property of the Recipients
collection.

The recipient is saved in the MAPI system when you Update or Send the parent Message object.

Example
This code fragment adds three recipients to a message. The address for the first recipient is resolved
using the display name. The second recipient is a custom address, so the Resolve operation does not
modify it. The third recipient is taken from an existing valid AddressEntry object. The Resolve
operation does not affect this recipient.

' from the sample function "Using Addresses"
' add 3 recipient objects to a valid message object

' 1. look up entry in address book
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Name:=strName, _
 Type:=mapiTo)
 ' error handling ... verify objOneRecip
 objOneRecip.Resolve

' 2. add a custom recipient
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Address:="SMTP:davidhef@microsoft.com", _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom addressing"
 Exit Function
 End If
 objOneRecip.Resolve

' 3. add a valid address entry object, such as Message.Sender
 ' assume valid address entry ID, name from an existing message
 Set objOneRecip = objNewMessage.Recipients.Add(_
 entryID:=strAddrEntryID, _
 Name:=strName, _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add existing AddressEntry using ID"
 Exit Function
 End If

 objNewMessage.Text = "expect 3 different recipients"
 MsgBox ("count = " & objNewMessage.Recipients.Count)

Count Property (Recipients Collection)   

The Count property returns the number of Recipient objects in the collection. Read-only.

Syntax
objRecipColl.Count

Data Type
Long

Example
This code fragment uses the Count property as a loop terminator to copy all Recipient objects from
one Recipients collection to another. It shows the Count and Item properties working together.

' from the sample function Util_CopyMessage
' Copy all Recipient objects from one collection to another
' ... verify valid message object objOneMsg
For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 objOneRecip.Address = objOneMsg.Recipients.Item(i).Address
 objOneRecip.Type = objOneMsg.Recipients.Item(i).Type
 End If
Next i

Delete Method (Recipients Collection)   

The Delete method deletes all the recipients in the Recipients collection.

Syntax
objRecipColl.Delete()

Parameters
objRecipColl

Required. The Recipients collection object.

Remarks
The Delete operation invalidates all the Recipient objects in the collection but does not remove them
from memory. The programmer should set the invalidated objects to Nothing to remove them from
memory, or reassign them to other recipients. Attempted access to a deleted object results in a return
of mapiE_INVALID_OBJECT.

Be cautious using the Delete method with a collection, because it deletes all the collection’s member
objects. To delete only one Recipient object, use the Delete method specific to that object.

The effect of the Delete method is not permanent until you use the Update, Send, or Delete method
on the parent Message object containing the Recipients collection. Any member once permanently
deleted cannot be recovered. However, the collection itself it still valid, and you can Add new members
to it.

Item Property (Recipients Collection)   

The Item property returns a single Recipient object from the Recipients collection. Read-only.

Syntax
objRecipColl.Item(index)

index
A long integer that ranges from 1 to objRecipColl.Count, or a string that specifies the name of the
object.

Data Type
Object

Remarks
The Item property works like an accessor property for small collections.

The Item property is the default property of a Recipients collection, meaning that objRecipColl(index) is
syntactically equivalent to objRecipColl.Item(index) in Visual Basic code.

Example
This code fragment shows the Count and Item properties working together:

' list all recipient names in the collection
strRecips = "" ' initialize string
Set objRecipsColl = objOriginalMsg.Recipients
Count = objRecipsColl.Count
For i = 1 To Count Step 1
 Set objOneRecip = objRecipsColl.Item(i) ' or objRecipsColl(i)
 strRecips = strRecips & objOneRecip.Name & "; "
Next i
MsgBox "Message recipients: " & strRecips

Resolve Method (Recipients Collection)   

The Resolve method traverses the Recipients collection to resolve every recipient’s address
information into a full messaging address.

Syntax
objRecipColl.Resolve([showDialog])

Parameters
objRecipColl

Required. The Recipients collection object.

showDialog
Optional. Boolean. If True (the default value), displays a modal dialog box to prompt the user to
resolve ambiguous names.

Remarks
Calling the Recipients collection’s Resolve method is similar to calling the Resolve method for each
Recipient object in the collection, except that it also forces an update to the Count and Item properties
and to all Recipient objects in the collection. Any Recipient variable previously set to an object in the
collection is invalidated by the collection’s Resolve method and should be retrieved again from the
collection. Note that the individual recipient’s Resolve method does not invalidate the object.

The Resolved property is set to True when every recipient in the collection has its address resolved.

The following methods can invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object), Resolve
method (Recipients collection), AddressBook and Logon methods (Session object).

Example
' from the sample function Util_NewConversation
' create a valid new message object in the Outbox
 With objNewMsg
 .Subject = "used space vehicle wanted"
 ' ... set other properties here ...
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve ' resolve and update everything
 End With

Resolved Property (Recipients Collection)   

The Resolved property contains True if all of the recipients in the collection have their address
information resolved. Read-only.

Syntax
objRecipColl.Resolved

Data Type
Boolean

Remarks
A Recipient object is considered resolved when it has a valid AddressEntry object in its AddressEntry
property.

You should resolve all addresses. Whenever you obtain an address from the address book or supply a
custom address, you should call the Resolve method to ensure that the AddressEntry property is
valid.

When the Resolved property is not True, use either the collection’s Resolve method or each individual
recipient’s Resolve method to resolve all the addresses.

When you use existing valid AddressEntry objects, you do not need to explicitly call the Resolve
method.

Session Object
The Session object contains session-wide settings and options. It also contains properties that return
top-level objects, such as CurrentUser.

Quick Info
Specified in header file: MDISP.ODL

First available in: OLE Messaging Library version 1.0.a

Parent objects: (none)

Child objects: AddressLists collection
Folder (Inbox or Outbox)
InfoStores collection

Default property: Name

Properties

Name

Available
in version

Type

Access

AddressLists 1.1 AddressList object or
AddressLists collection
object

Read-only

Application 1.0.a String Read-only

Class 1.0.a Long Read-only

CurrentUser 1.0.a AddressEntry object Read-only

Inbox 1.0.a Folder object Read-only

InfoStores 1.0.a InfoStores object Read-only

MAPIOBJECT 1.0.a Object Read/write
(Note: Not
available
to Visual
Basic
application
s.)

Name 1.0.a String Read-only

OperatingSystem 1.0.a String Read-only

Outbox 1.0.a Folder object Read-only

Parent 1.0.a Object; set to Nothing Read-only

Session 1.0.a Object; set to Nothing Read-only

Version 1.0.a String Read-only

Methods

Name

Available
in version

Parameters

AddressBook 1.0.a (optional) recipients as Object,
(optional) title as String,
(optional) oneAddress as Boolean,
(optional) forceResolution as

Boolean,
(optional) recipLists as Long,
(optional) toLabel as String,
(optional) ccLabel as String,
(optional) bccLabel as String,
(optional) parentWindow as Long

CompareIDs 1.1 ID1 as Object,
ID2 as Object

DeliverNow 1.1 (none)

GetAddressEntry 1.0.a entryID as String

GetFolder 1.0.a folderID as String,
storeID as String

GetInfoStore 1.0.a storeID as String

GetMessage 1.0.a messageID as String,
storeID as String

Logoff 1.0.a (none)

Logon 1.0.a (optional) profileName as String,
(optional) profilePassword as
String,
(optional) showDialog as Boolean,
(optional) newSession as Boolean,
(optional) parentWindow as Long

Remarks
A Session object is considered a top-level object, meaning it can be created directly from a Visual
Basic program. The following sample code fragment creates a Session object through early binding:

Dim objSession as MAPI.Session
objSession.Logon

The following sample code fragment creates a Session object through late binding:

Dim objSession As Object
Set objSession = CreateObject (“MAPI.Session”)
objSession.Logon

After you create a new Session object, use the Logon method to initiate a session with MAPI.

AddressBook Method (Session Object)   

The AddressBook method displays a modal dialog box that allows the user to select entries from the
address book. The selections are returned in a Recipients collection object.

Syntax
Set objRecipients = objSession.AddressBook([recipients, title, oneAddress, forceResolution,
recipLists, toLabel, ccLabel, bccLabel, parentWindow])

Parameters
objRecipients

On successful return, the Recipients collection object. When the user does not select any names
from the dialog box, AddressBook returns Nothing.

objSession
Required. The Session object.

recipients
Optional. Object. A Recipients collection object that provides the initial values for the recipient list
boxes in the address book. (Note: This initial Recipient collection is ignored in the OLE Messaging
Library.)

title
Optional. String. The title or caption of the address book dialog box. The default value is an empty
string.

oneAddress
Optional. Boolean. Allows the user to enter or select only one address entry. The default value is
False.

forceResolution
Optional. Boolean. If True, attempts to resolve all names before closing the address book. Prompts
the user to resolve any ambiguous names. The default value is True.

recipLists
Optional. Long. The number of recipient list boxes to display in the address book dialog box:

recipLists Action

0 Displays no list boxes. The user can interact with the
address book dialog box but no recipients are
returned by this method.

1 Displays one list box for mapiTo recipients (default).

2 Displays two list boxes for mapiTo and mapiCc
recipients.

3 Displays three list boxes for mapiTo, mapiCc, and
mapiBcc recipients.

toLabel
Optional. String. The caption for the button associated with the first list box. Ignored if recipLists is
less than 1. If omitted, the default value “To:” is displayed.

ccLabel
Optional. String. The caption for the button associated with the second list box. Ignored if recipLists
is less than 2. If omitted, the default value “Cc:” is displayed.

bccLabel
Optional. String. The caption for the button associated with the third list box. Ignored if recipLists is
less than 3. If omitted, the default value “Bcc:” is displayed.

parentWindow

Optional. Long. The parent window handle for the address book dialog box. A value of zero (the
default) specifies that the dialog should be application-modal.

Remarks
The AddressBook dialog is always modal, meaning the parent window is disabled while the dialog is
active. If the parentWindow parameter is set to zero or is not set, all windows belonging to the
application are disabled while the dialog is active. If the parentWindow parameter is supplied but is not
valid, the call returns mapiE_INVALID_PARAMETER.

The AddressBook method returns Nothing if the user cancels the dialog box.

To provide an access key for the list boxes, include an ampersand (&) character in the label argument
string, immediately before the character that serves as the access key. For example, if toLabel is “Local
&Attendees:”, users can press ALT+A to move the focus to the first recipient list box.

When you use the AddressBook method to let the user select recipients for a new message, you must
use two different Recipients collection collections. Use the following procedure:

1. Call AddressBook, which returns a new Recipients collection.

2. Call Add in a Messages collection collection to create a new message.

3. Copy the Recipients collection returned by AddressBook to the Recipients property of the new
message:

 Set objNewMessage.Recipients = objRecipients
 objNewMessage.Recipients.Resolve ‘ also updates everything

The following methods can invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object), Resolve
method (Recipients collection), AddressBook and Logon methods (Session object).

Note    The initial Recipients collection, as specified in the recipients parameter, is not used in the
OLE Messaging Library.

Example
The following code fragment displays an address book dialog box labeled “Select Attendees” with three
recipient lists:

 If objSession Is Nothing Then
 MsgBox "must first create MAPI session and logon"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=3, _
 toLabel:="&Very Important People", _ ' on button
 ccLabel:="&Carbon Recipients", _
 bccLabel:="&Secret Recipients")
 ' parameter not used in call: Recipients:=objInitRecipColl
 MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
 Exit Function

AddressLists Property (Session Object)   

The AddressLists property returns a single AddressList object or an AddressLists collection object.
Read-only.

Syntax
Set objAddrListsColl = objSession.AddressLists

Set objOneAddrList = objSession.AddressLists(index)

objAddrListsColl
Object. An AddressLists collection object.

objSession
Object. The Session object.

objOneAddrList
Object. A single AddressList object.

index
Long. Specifies the number of the address list within the AddressLists collection. Ranges from 1 to
the value specified by the AddressLists collection’s Count property.

Data Type
Object

Remarks
The AddressLists collection represents the root of the MAPI address book hierarchy for the current
session. A particular AddressList object represents one of the available address books. The type of
access you obtain depends on the access granted to you by each individual address book provider.

CompareIDs Method (Session Object)   

The CompareIDs method determines whether two OLE Messaging Library objects are the same
object.

Syntax
objSession.CompareIDs(ID1, ID2)

Parameters
objSession

Required. The Session object.

ID1
Required. The identifier of the first object to be compared.

ID2
Required. The identifier of the second object to be compared.

Remarks
The CompareIDs method compares the identifiers of two arbitrary OLE Messaging Library objects and
returns True if they are the same object. Two objects are considered to be the same if and only if they
are instantiations of the same physical (persistent) object. Two objects with the same value are still
considered different if they do not instantiate the same physical object, for example if one is a copy of
the other. In such a case CompareIDs returns False.

The CompareIDs method ultimately calls one of the MAPI CompareEntryIDs methods to determine if
two objects are the same. Several OLE Messaging Library objects also provide the IsSameAs method
for a comparison of two identifiers of that particular object type.

CurrentUser Property (Session Object)   

The CurrentUser property returns the active user as an AddressEntry object. Read-only.

Syntax
objSession.CurrentUser

Data Type
Object

Remarks
The CurrentUser property returns Nothing when no user is logged on.

Example
This code fragment checks for logon, then displays the full messaging address of the current user:

 If objSession Is Nothing Then
 MsgBox ("Must log on first")
 Exit Function
 End If
 Set objAddrEntry = objSession.CurrentUser
 If objAddrEntry Is Nothing Then
 MsgBox "Could not set the address entry object"
 Exit Function
 Else
 MsgBox "Full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address
 End If

DeliverNow Method (Session Object)   

The DeliverNow method requests immediate delivery of all undelivered messages submitted in the
current session.

Syntax
objSession.DeliverNow()

Parameters
objSession

Required. The Session object.

Remarks
The DeliverNow method ultimately calls the MAPI spooler’s IMAPIStatus::FlushQueues method to
request that all messages in all inbound and outbound queues be received or delivered immediately.
FlushQueues is invoked synchronously, and performance degradation is possible during the
processing of this request.

GetAddressEntry Method (Session Object)   

The GetAddressEntry method returns an AddressEntry object.

Syntax
Set objAddressEntry = objSession.GetAddressEntry(entryID)

Parameters
objAddressEntry

On successful return, represents the AddressEntry object specified by entryID.

objSession
Required. The Session object.

entryID
Required. String. Specifies the unique identifier of the address entry.

Remarks
For more information, see Using Addresses.

Example
This code fragment displays the name of a user from a MAPI address list:

' from the function Session_GetAddressEntry
 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If "" = strAddressEntryID Then
 MsgBox ("Must first set string variable to address entry ID")
 Exit Function
 End If
 Set objAddrEntry = objSession.GetAddressEntry(strAddressEntryID)
 MsgBox "Full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address

GetFolder Method (Session Object)   

The GetFolder method returns a Folder object from a MAPI message store.

Syntax
Set objFolder = objSession.GetFolder(folderID [, storeID])

Parameters
objFolder

On successful return, contains the Folder object with the specified identifier. When the folder does
not exist, GetFolder returns Nothing.

objSession
Required. The Session object.

folderID
Required. String that specifies the unique identifier of the folder. When you provide an empty string,
some providers return the root folder.

storeID
Optional. String that specifies the unique identifier of the message store containing the folder. The
default value is an empty string, which corresponds to the default message store.

Remarks
The GetFolder method allows you to obtain any Folder object for which you know the identifier, that is,
the folder’s ID property.

For some message stores, you can obtain the store’s root folder by supplying an empty string as the
value for folderID. If the message store does not support returning its root folder, the call returns the
error value mapiE_NOT_FOUND.

Note that the store’s root folder differs from the IPM root folder. The store’s root folder is the parent of
the root folder of the the IPM subtree. The IPM subtree contains all interpersonal messages in a
hierarchy of folders. Interpersonal messages are those whose message class starts with IPM, such as
IPM.Note.

You can obtain the IPM root folder with the InfoStore object’s RootFolder property. You can obtain the
store’s root folder through the IPM root folder’s FolderID property.

Example
This code fragment uses the GetFolder method to obtain a specific folder from a MAPI message store:

' from the function Session_GetFolder
' requires a global variable that contains the folder ID
' uses a global variable that contains the message store ID if present
 If strFolderID = "" Then
 MsgBox ("Must first set string variable to folder ID")
 Exit Function
 End If
 If strFolderStoreID = "" Then ' maybe get root folder
 Set objFolder = objSession.GetFolder(strFolderID)
 Else
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)
 End If
 If objFolder Is Nothing Then
 Set objMessages = Nothing

 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 Else
 Set objMessages = objFolder.Messages
 MsgBox "Folder set to " & objFolder.Name
 End If

GetInfoStore Method (Session Object)   

The GetInfoStore method returns an InfoStore object that can be used to navigate through both public
folders and the user’s personal folders.

Syntax
Set objInfoStore = objSession.GetInfoStore(storeID)

Parameters
objInfoStore

On successful return, contains the InfoStore object with the specified identifier. When the InfoStore
object does not exist, GetInfoStore returns Nothing.

objSession
Required. The Session object.

storeID
Required. String. Specifies the unique identifier of the InfoStore object to retrieve.

Remarks
The GetInfoStore method allows you to obtain any message store for which you know the ID property.
Within the message store you can then obtain any child Folder Object object for which you know the ID
property.

Example
This code fragment uses the GetInfoStore method to obtain a specific message store:

' from the function Session_GetInfoStore
' requires a global variable that contains the InfoStore ID
Dim strInfoStoreID as String ' ID as hex string
Dim objInfoStore As Object ' InfoStore object
 If strInfoStoreID = "" Then
 MsgBox ("Must first set string variable to InfoStore ID")
 Exit Function
 End If
 Set objInfoStore = objSession.GetInfoStore(_
 storeID:=strInfoStoreID)
 ' error handling ...
 MsgBox "InfoStore set to " & objInfoStore.Name

GetMessage Method (Session Object)   

The GetMessage method returns a Message object from a MAPI message store.

Syntax
Set objMessage = objSession.GetMessage(messageID [, storeID])

Parameters
objMessage

On successful return, contains the Message object with the specified identifier. When the specified
messageID does not exist, GetMessage returns Nothing.

objSession
Required. The Session object.

messageID
Required. String. Specifies the unique identifier of the message.

storeID
Optional. String. Specifies the unique identifier of the message store. The default value is an empty
string, which corresponds to the default message store.

Remarks
The GetMessage method allows you to obtain directly any Message Object object for which you know
the ID property. You do not have to find and open the folder containing the message or the InfoStore
containing the folder.

Example
This code fragment displays the subject of a message from a MAPI message store:

' fragment from Session_GetMessage
' requires the parameter strMessageID;
' also uses strMessageStoreID if it is defined
If strMessageID = "" Then
 MsgBox ("Must first set string variable to message ID")
 Exit Function
End If
If strMessageStoreID = "" Then ' not present
 Set objOneMsg = objSession.GetMessage(strMessageID)
Else
 Set objOneMsg = objSession.GetMessage(messageID:=strMessageID, _
 storeID:=strMessageStoreID)
End If

Inbox Property (Session Object)   

The Inbox property returns a Folder object representing the current user’s Inbox folder. Read-only.

Syntax
objSession.Inbox

Data Type
Object (Folder object)

Remarks
The Inbox property returns Nothing if the current user does not have an Inbox folder.

In addition to the general ability to navigate through the formal collection and object hierarchy, the OLE
Messaging Library supports properties that allow your application to directly access the most common
Folder objects:

· The InfoStore object’s RootFolder property for the IPM subtree root folder

· The Session object’s Inbox property for the Inbox folder

· The Session object’s Outbox property for the Outbox folder

Example
This code fragment uses the Session object’s Inbox property to initialize a Folder Object object:

' from the function Session_Inbox
 ' make sure the Session object is valid ...
 Set objFolder = objSession.Inbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Inbox"
 Exit Function
 End If
 MsgBox "Inbox folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages
 If objMessages Is Nothing Then
 MsgBox "Failed to open folder's Messages collection"
 Exit Function
 End If

InfoStores Property (Session Object)   

The InfoStores property returns an InfoStores collection available to this session. Read-only.

Syntax
objSession.InfoStores

Data Type
Object (InfoStores collection)

Remarks
The InfoStores property returns a collection of available message stores. Each InfoStore object in the
collection represents an individual message store and provides access to its folder hierarchy.

You can access public folders through the InfoStores collection. The public folders are maintained in
their own InfoStore object, which is distinct from the InfoStore object that contains the user’s personal
messages.

When you know the unique identifier for a particular InfoStore object, you can obtain it directly with the
Session object’s GetInfoStore method.

Example
' from the functions Session_InfoStores, InfoStores_FirstItem,
' and InfoStore.Name
Dim objSession as Object ' Session object
Dim objInfoStoresColl as Object ' InfoStores collection
Dim objInfoStore as Object ' InfoStore object
' assume valid Session object
 Set objInfoStoresColl = objSession.InfoStores
 If objInfoStoresColl Is Nothing Then
 MsgBox "Could not set InfoStores collection"
 Exit Function
 End If
 If 0 = objInfoStoresColl.Count Then
 MsgBox "No InfoStores in the collection"
 Exit Function
 End If
 iInfoStoresCollIndex = 1
 Set objInfoStore = objInfoStoresColl.Item(iInfoStoresCollIndex)
 If objInfoStore Is Nothing Then
 MsgBox "Error, cannot get this InfoStore object"
 Exit Function
 Else
 MsgBox "Selected InfoStores " & iInfoStoresCollIndex
 End If
 If "" = objInfoStore.Name Then
 MsgBox "Active InfoStore has no name; ID = " & objInfoStore.Id
 Else
 MsgBox "Active InfoStore has name: " & objInfoStore.Name
 End If

Logoff Method (Session Object)   

The Logoff method logs off from the MAPI system.

Syntax
objSession.Logoff()

Parameters
objSession

Required. The Session object.

Example
This code fragment logs off from the MAPI system:

' from the function Session_Logoff
 If Not objSession Is Nothing Then
 objSession.Logoff
 MsgBox "Logged off; reset global variables"
 Else
 MsgBox "No active session"
 End If

See Also
Logon Method (Session Object)

Logon Method (Session Object)   

The Logon method logs on to the MAPI system.

Syntax
objSession.Logon([profileName, profilePassword, showDialog, newSession, parentWindow])

Parameters
objSession

Required. The Session object.

profileName
Optional. String. Specifies the user’s logon name. To prompt the user to enter a logon name, omit
profileName and set showDialog to True. The default value is an empty string.

profilePassword
Optional. String. Specifies the user’s logon password. To prompt the user to enter a logon password,
omit profilePassword and set showDialog to True. The default value is an empty string.

showDialog
Optional. Boolean. If True, displays a logon dialog box. The default value is True.

newSession
Optional. Boolean. Determines whether the application opens a new MAPI session or uses the
current shared MAPI session (the default). If a shared MAPI session does not exist, newSession is
ignored and a new session is opened. If a shared MAPI session does exist, this parameter causes
the following action:

Value Action

True Opens an new MAPI session.

False Uses the current shared MAPI session (default).

parentWindow
Optional. Long. Specifies the parent window handle for the logon dialog box. A value of 0 (the
default) specifies that the dialog should be application-modal. The parentWindow parameter is
ignored unless showDialog is True.

Remarks
The user must log on before your application can use most MAPI objects.

The Logon dialog is always modal, meaning the parent window is disabled while the dialog is active. If
the parentWindow parameter is set to 0 or is not set, all windows belonging to the application are
disabled while the dialog is active. If the parentWindow parameter is supplied but is not valid, the call
returns mapiE_INVALID_PARAMETER.

The common MAPI dialog boxes automatically handle many of the error cases that can be
encountered during logon. When you call Logon and do not supply the optional profile name
parameter, the Choose Profile dialog box appears, asking the user to select a profile. When the
profileName parameter is supplied but is not valid, common dialog boxes indicate the error and prompt
the user to enter a valid name from the Choose Profile dialog box. When no profiles are defined, the
Profile Wizard takes the user through the creation of a new profile.

If your application calls the Logon method after the user has already successfully logged on, the OLE
Messaging Library generates the error mapiE_LOGON_FAILURE.

For more information, see Starting an OLE Messaging Session.

The following methods can invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object), Resolve

method (Recipients collection), AddressBook and Logon methods (Session object).

Example
The first code fragment displays a logon dialog box that prompts the user to enter a logon password.
The second code fragment supplies the profileName parameter and does not display the dialog box:

' from the function Session_Logon
 Set objSession = CreateObject("MAPI.Session")
 If Not objSession Is Nothing Then
 objSession.Logon showDialog:=True
 End If

' from the function Session_Logon_NoDialog
Function Session_Logon_NoDialog()
 On Error GoTo error_olemsg
 ' can set strProfileName, strPassword from a custom form
 ' adjust these parameters for your configuration
 ' create a Session object if necessary here ...
 If Not objSession Is Nothing Then
 ' configure these parameters for your needs ...
 objSession.Logon profileName:=strProfileName, _
 showDialog:=False
 End If
 Exit Function

error_olemsg:
 If 1273 = Err Then
 MsgBox "Cannot log on: incorrect profile name or password; " _
 & "change global variable strProfileName in Util_Initialize"
 Exit Function
 End If
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

See Also
Logoff Method (Session Object)

MAPIOBJECT Property (Session Object)   

The MAPIOBJECT property returns an IUnknown pointer to the Session object. Not available to
Visual Basic applications. Read/write.

Syntax
objSession.MAPIOBJECT

Data Type
Variant (vbDataObject format)

Remarks
The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see Introduction to Automation and How Programmable Objects Work. Also see the Microsoft OLE
Programmer’s Reference.

Name Property (Session Object)   

The Name property returns the display name of the profile logged on to this session. Read-only.

Syntax
objSession.Name

Data Type
String

Remarks
The Name property corresponds to the MAPI property PR_PROFILE_NAME.

The Name property is the default property of a Session object, meaning that objSession is syntactically
equivalent to objSession.Name in Visual Basic code.

Examples
' from the function Session_Name
 If objSession Is Nothing Then
 MsgBox "Must log on first: see Session menu"
 Exit Function
 End If
 MsgBox "Profile name for this session = " & objSession.Name

OperatingSystem Property (Session Object)   

The OperatingSystem property returns the name and version number of the current operating system.
Read-only.

Syntax
objSession.OperatingSystem

Data Type
String

Remarks
The OLE Messaging Library returns strings in the following formats:

Operating system String value

Microsoft Windows for Workgroups Microsoft® Windows™ N.kk

Microsoft Windows NT Microsoft® Windows NT™ N.kk

The N.kk values are replaced with the actual version numbers. Note that Microsoft Windows for
Workgroups version 3.11 returns the string “Microsoft® Windows™ 3.10”. This is a feature of that
operating system rather than a feature of the OLE Messaging Library.

The version number returned in the OperatingSystem property is not related to the version number
returned in the Version property.

Example
This code fragment displays the name and version of the operating system:

' from the function Session_OperatingSystem
' assume objSession is a valid Session object
 MsgBox "Operating system = " & objSession.OperatingSystem

Outbox Property (Session Object)   

The Outbox property returns a Folder object representing the current user’s Outbox folder. Read-only.

Syntax
objSession.Outbox

Data Type
Object

Remarks
The Outbox property returns Nothing if the current user does not have or has not enabled the Outbox
folder.

In addition to the general ability to navigate through the formal collection and object hierarchy, the OLE
Messaging Library supports properties that allow your application to directly access the most common
Folder objects:

· The InfoStore object’s RootFolder property for the IPM subtree root folder

· The Session object’s Inbox property for the Inbox folder

· The Session object’s Outbox property for the Outbox folder

Example
' from the function Session_Outbox
Dim objFolder As Object
'
 Set objFolder = objSession.Outbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Outbox"
 Exit Function
 End If
 MsgBox "Outbox folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages

Version Property (Session Object)   

The Version property returns the version number of the OLE Messaging Library as a string, for
example “1.1”. Read-only.

Syntax
objSession.Version

Data Type
String

Remarks
The version number for the OLE Messaging Library is represented by a string in the form N.kk, where
N represents a major version number and kk represents a minor version number.

The version number returned in the Version property is not related to the version number returned in
the OperatingSystem property.

Example
' see the function Session_Version
 Dim objSession As Object
 Set objSession = CreateObject("MAPI.Session")
 ' error handling here ...
 MsgBox "Version number is " & objSession.Version
 MsgBox "Welcome to OLE Messaging Library version " & _
 objSession.Version

Error Codes
The desired return value from OLE Messaging Library calls to MAPI is zero, meaning the call was
successful and produced the expected results. MAPI can also return either a warning value or an error
value to the OLE Messaging Library. A warning means the call was at least partially successful but may
have produced an unexpected result or side effect. An error means the call was not successful.

All warning and error return codes are nonzero. Warning values have the high-order bit zero, while
error values set it to one. For the convenience of the Visual Basic programmer, the OLE Messaging
Library defines type values for all relevant warning and error codes. These are provided here in
alphabetic and then in numeric order.

The following table lists the return values from MAPI in alphabetic order:

Warning or error code value

HRESULT

(VB4 error
value)

(hexadecim
al)

Low-order
word
+ 1000

(VBA error
value)

(decimal)

mapiE_ACCOUNT_DISABLED 0x80040124 1292

mapiE_AMBIGUOUS_RECIP 0x80040700 2792

mapiE_BAD_CHARWIDTH 0x80040103 1259

mapiE_BAD_COLUMN 0x80040118 1280

mapiE_BAD_VALUE 0x80040301 1769

mapiE_BUSY 0x8004010B 1267

mapiE_CALL_FAILED 0x80004005 17389

mapiE_CANCEL 0x80040501 2281

mapiE_COLLISION 0x80040604 2540

mapiE_COMPUTED 0x8004011A 1282

mapiE_CORRUPT_DATA 0x8004011B 1283

mapiE_CORRUPT_STORE 0x80040600 2536

mapiE_DECLINE_COPY 0x80040306 1774

mapiE_DISK_ERROR 0x80040116 1278

mapiE_END_OF_SESSION 0x80040200 1512

mapiE_EXTENDED_ERROR 0x80040119 1281

mapiE_FAILONEPROVIDER 0x8004011D 1285

mapiE_FOLDER_CYCLE 0x8004060B 2547

mapiE_HAS_FOLDERS 0x80040609 2545

mapiE_HAS_MESSAGES 0x8004060A 2546

mapiE_INTERFACE_NOT_SUPPORTED 0x80004002 17386

mapiE_INVALID_ACCESS_TIME 0x80040123 1291

mapiE_INVALID_BOOKMARK 0x80040405 2029

mapiE_INVALID_ENTRYID 0x80040107 1263

mapiE_INVALID_OBJECT 0x80040108 1264

mapiE_INVALID_PARAMETER 0x80070057 1087

mapiE_INVALID_TYPE 0x80040302 1770

mapiE_INVALID_WORKSTATION_ACCOUNT 0x80040122 1290

mapiE_LOGON_FAILED 0x80040111 1273

mapiE_MISSING_REQUIRED_COLUMN 0x80040202 1514

mapiE_NETWORK_ERROR 0x80040115 1277

mapiE_NO_ACCESS 0x80070005 1005

mapiE_NO_RECIPIENTS 0x80040607 2543

mapiE_NO_SUPPORT 0x80040102 1258

mapiE_NO_SUPPRESS 0x80040602 2538

mapiE_NON_STANDARD 0x80040606 2542

mapiE_NOT_ENOUGH_DISK 0x8004010D 1269

mapiE_NOT_ENOUGH_MEMORY 0x8007000E 1014

mapiE_NOT_ENOUGH_RESOURCES 0x8004010E 1270

mapiE_NOT_FOUND 0x8004010F 1271

mapiE_NOT_IN_QUEUE 0x80040601 2537

mapiE_NOT_INITIALIZED 0x80040605 2541

mapiE_NOT_ME 0x80040502 2282

mapiE_OBJECT_CHANGED 0x80040109 1265

mapiE_OBJECT_DELETED 0x8004010A 1266

mapiE_PASSWORD_CHANGE_REQUIRED 0x80040120 1288

mapiE_PASSWORD_EXPIRED 0x80040121 1289

mapiE_SESSION_LIMIT 0x80040112 1274

mapiE_STRING_TOO_LONG 0x80040105 1261

mapiE_SUBMITTED 0x80040608 2544

mapiE_TABLE_EMPTY 0x80040402 2026

mapiE_TABLE_TOO_BIG 0x80040403 2027

mapiE_TIMEOUT 0x80040401 2025

mapiE_TOO_BIG 0x80040305 1773

mapiE_TOO_COMPLEX 0x80040117 1279

mapiE_TYPE_NO_SUPPORT 0x80040303 1771

mapiE_UNABLE_TO_ABORT 0x80040114 1276

mapiE_UNABLE_TO_COMPLETE 0x80040400 2024

mapiE_UNCONFIGURED 0x8004011C 1284

mapiE_UNEXPECTED_ID 0x80040307 1775

mapiE_UNEXPECTED_TYPE 0x80040304 1772

mapiE_UNKNOWN_CPID 0x8004011E 1286

mapiE_UNKNOWN_ENTRYID 0x80040201 1513

mapiE_UNKNOWN_FLAGS 0x80040106 1262

mapiE_UNKNOWN_LCID 0x8004011F 1287

mapiE_USER_CANCEL 0x80040113 1275

mapiE_VERSION 0x80040110 1272

mapiE_WAIT 0x80040500 2280

mapiW_APPROX_COUNT 0x00040482 2154

mapiW_CANCEL_MESSAGE 0x00040580 2408

mapiW_ERRORS_RETURNED 0x00040380 1896

mapiW_NO_SERVICE 0x00040203 1515

mapiW_PARTIAL_COMPLETION 0x00040680 2664

mapiW_POSITION_CHANGED 0x00040481 2153

The following table lists the return values from MAPI in numeric order:

HRESULT

(VB4 error
value)

(hexadecim
al)

Low-order
word
+ 1000

(VBA error
value)

(decimal)

Warning or error code value

0x00040203 1515 mapiW_NO_SERVICE

0x00040380 1896 mapiW_ERRORS_RETURNED

0x00040481 2153 mapiW_POSITION_CHANGED

0x00040482 2154 mapiW_APPROX_COUNT

0x00040580 2408 mapiW_CANCEL_MESSAGE

0x00040680 2664 mapiW_PARTIAL_COMPLETION

0x80004002 17386 mapiE_INTERFACE_NOT_SUPPORTED

0x80004005 17389 mapiE_CALL_FAILED

0x80040102 1258 mapiE_NO_SUPPORT

0x80040103 1259 mapiE_BAD_CHARWIDTH

0x80040105 1261 mapiE_STRING_TOO_LONG

0x80040106 1262 mapiE_UNKNOWN_FLAGS

0x80040107 1263 mapiE_INVALID_ENTRYID

0x80040108 1264 mapiE_INVALID_OBJECT

0x80040109 1265 mapiE_OBJECT_CHANGED

0x8004010A 1266 mapiE_OBJECT_DELETED

0x8004010B 1267 mapiE_BUSY

0x8004010D 1269 mapiE_NOT_ENOUGH_DISK

0x8004010E 1270 mapiE_NOT_ENOUGH_RESOURCES

0x8004010F 1271 mapiE_NOT_FOUND

0x80040110 1272 mapiE_VERSION

0x80040111 1273 mapiE_LOGON_FAILED

0x80040112 1274 mapiE_SESSION_LIMIT

0x80040113 1275 mapiE_USER_CANCEL

0x80040114 1276 mapiE_UNABLE_TO_ABORT

0x80040115 1277 mapiE_NETWORK_ERROR

0x80040116 1278 mapiE_DISK_ERROR

0x80040117 1279 mapiE_TOO_COMPLEX

0x80040118 1280 mapiE_BAD_COLUMN

0x80040119 1281 mapiE_EXTENDED_ERROR

0x8004011A 1282 mapiE_COMPUTED

0x8004011B 1283 mapiE_CORRUPT_DATA

0x8004011C 1284 mapiE_UNCONFIGURED

0x8004011D 1285 mapiE_FAILONEPROVIDER

0x8004011E 1286 mapiE_UNKNOWN_CPID

0x8004011F 1287 mapiE_UNKNOWN_LCID

0x80040120 1288 mapiE_PASSWORD_CHANGE_REQUIRED

0x80040121 1289 mapiE_PASSWORD_EXPIRED

0x80040122 1290 mapiE_INVALID_WORKSTATION_ACCOUNT

0x80040123 1291 mapiE_INVALID_ACCESS_TIME

0x80040124 1292 mapiE_ACCOUNT_DISABLED

0x80040200 1512 mapiE_END_OF_SESSION

0x80040201 1513 mapiE_UNKNOWN_ENTRYID

0x80040202 1514 mapiE_MISSING_REQUIRED_COLUMN

0x80040301 1769 mapiE_BAD_VALUE

0x80040302 1770 mapiE_INVALID_TYPE

0x80040303 1771 mapiE_TYPE_NO_SUPPORT

0x80040304 1772 mapiE_UNEXPECTED_TYPE

0x80040305 1773 mapiE_TOO_BIG

0x80040306 1774 mapiE_DECLINE_COPY

0x80040307 1775 mapiE_UNEXPECTED_ID

0x80040400 2024 mapiE_UNABLE_TO_COMPLETE

0x80040401 2025 mapiE_TIMEOUT

0x80040402 2026 mapiE_TABLE_EMPTY

0x80040403 2027 mapiE_TABLE_TOO_BIG

0x80040405 2029 mapiE_INVALID_BOOKMARK

0x80040500 2280 mapiE_WAIT

0x80040501 2281 mapiE_CANCEL

0x80040502 2282 mapiE_NOT_ME

0x80040600 2536 mapiE_CORRUPT_STORE

0x80040601 2537 mapiE_NOT_IN_QUEUE

0x80040602 2538 mapiE_NO_SUPPRESS

0x80040604 2540 mapiE_COLLISION

0x80040605 2541 mapiE_NOT_INITIALIZED

0x80040606 2542 mapiE_NON_STANDARD

0x80040607 2543 mapiE_NO_RECIPIENTS

0x80040608 2544 mapiE_SUBMITTED

0x80040609 2545 mapiE_HAS_FOLDERS

0x8004060A 2546 mapiE_HAS_MESSAGES

0x8004060B 2547 mapiE_FOLDER_CYCLE

0x80040700 2792 mapiE_AMBIGUOUS_RECIP

0x80070005 1005 mapiE_NO_ACCESS

0x8007000E 1014 mapiE_NOT_ENOUGH_MEMORY

0x80070057 1087 mapiE_INVALID_PARAMETER

How Programmable Objects Work
How do programmable objects work? How does the OLE Messaging Library offer its powerful ability to
create and manage messaging objects?

This appendix provides a very short introduction to the Microsoft Component Object Model,
Automation, and the OLE programmability interface IDispatch. For complete details, see the OLE
Programmer’s Reference.

You do not need to understand this material in order to use the OLE Messaging Library.

COM Interfaces
With the combination of Microsoft RPC (Remote Procedure Call) and Microsoft OLE technology,
Microsoft began to shift the C/C++ programming model from individual API functions, such as those
offered in the Windows 3.1 SDK and Win32 SDK, to a distributed object model that is based on
interfaces. An interface is simply a group of logically related functions. Note that the interface consists
only of functions (called methods). There are no facilities for directly accessing data within an interface,
except through the methods.

The benefit of such a distributed object model is that it allows developers to create small, independent,
self-managing software objects. This modular approach allows software functionality to be developed
in small “building blocks” that are then fitted together. Your application no longer has to handle every
possible data format or possible application feature, as long as it can be integrated with other objects
that can handle the desired formats and features.

The notion of objects is very familiar to Visual Basic developers. Many software industry analysts have
noted that the most visible success of object-oriented programming to date is the widespread use of
Microsoft Visual Basic custom controls.

One of the benefits of the modular, interface-based approach to software development is that individual
interfaces usually contain significantly fewer functions than libraries, with the promise of more efficient
use of memory. Whenever you want to use one function in a library, the entire library must be loaded
into memory. Splitting function libraries into smaller interfaces makes it more likely that you load only
the functions that you actually need, or at least fewer that you don’t.

By convention, interface names start with the letter “I”. The methods are given a specific ordering within
the interface. Knowing the order of the methods is important for developers who must define their own
vtables, or function dispatch tables. The C++ compiler creates vtables for you, but if you are writing in
C, you must create your own.

The methods of an interface still physically reside in an .EXE or .DLL file, but Microsoft has defined
new rules for how these files are registered on the system and how they are loaded and unloaded from
memory. Microsoft refers to the new rules as the Component Object Model, or COM.

According to the rules, the first three methods in all interfaces are always QueryInterface (which
developers call “QI”), AddRef, and Release. These methods provide a pointer to the interface when
someone asks for it, keep track of the number of programs that are being served by the interface, and
control how the physical .DLL or .EXE file gets loaded and unloaded. Any other methods in the
interface are defined by the person who creates the interface. The interface that consists of these three
common methods, QueryInterface, AddRef, and Release, is called IUnknown. Developers can
always obtain a pointer to an IUnknown object.

The Component Object Model, like RPC before it, makes a strong distinction between the definition of
the interface and its implementation. The interface methods and the data items (called properties) that
make up the parameters are defined in a very precise way, using a special language designed
specifically for defining interfaces. These languages (such as MIDL, the Microsoft Interface Definition
Language, and ODL, the Object Definition Language) do not allow you to use indefinite type names,
such as void *, or types that change from computer to computer, such as int. The goal is to force you
to specify the exact size of all data. This makes it possible for one person to define an interface, a
second person to implement the interface, and a third person to write a program that calls the interface.

Developers who write C and C++ code that use these types of interfaces read the object’s interface
definition language (IDL) files. They know exactly what methods are present in the interface and what
properties are required. They can call the interfaces directly.

For developers who are not writing in C and C++, or do not have access to the object’s interface
definition language files, Microsoft’s Component Object Model defines another way to use software
components. This is based on an interface named IDispatch.

IDispatch
IDispatch is a COM interface that is designed in such a way that it can call virtually any other COM
interface. Developers working in Visual Basic often cannot call COM interfaces directly, as they would
from C or C++. However, when their tool supports IDispatch, as Visual Basic does, and when the
object they want to call supports IDispatch, they can call its COM interfaces indirectly.

The main method offered by IDispatch is called Invoke. This method adds a level of indirection to the
control flow of the Component Object Model. In the standard model, an object obtains a pointer to an
interface and then calls a member method of the interface. IDispatch adds a level of indirection.
Instead of directly calling the member method of the interface, the program calls IDispatch::Invoke,
and IDispatch::Invoke calls the member method for you.

Invoke is a general method-calling machine. Its parameters include a value that identifies the method
that is to be called and the parameters that are to be sent to it. In order to be able to handle the wide
variety of parameters that other COM methods use, Invoke uses a self-describing data structure called
a VARIANTARG.

The VARIANTARG structure contains two parts: a type field, which represents the data type, and a
data field, which represents the actual value of the data. The values such as VT_I2, VT_I4, and so on,
are the constants that define valid values for the data types.

Associated with IDispatch is the notion of a type library. The type library publishes information about
an interface so that it is available to Visual Basic programs. The type library, or typelib, contains the
same kind of information that C or C++ programmers would obtain from a header file: the name of the
method and the sequence and types of its parameters.

An executable file or DLL that exposes IDispatch and its type library is known as an Automation
server. The OLE Messaging Library is such a server.

The OLE Messaging Library: An Automation
Server
So, let’s put it all together, from the bottom up, to see how the OLE Messaging Library works.

· Service providers implement COM interfaces¾specifically, the MAPI interfaces¾as described in the
MAPI documentation.

· The OLE Messaging Library implements several objects (Session, Message, and so on) that act as
clients to these MAPI interfaces. That is, the OLE Messaging Library objects obtain pointers to the
MAPI interfaces and call methods.

· The OLE Messaging Library implements IDispatch and acts as an Automation server so that it can
be called by tools that can use IDispatch, such as Visual Basic. That is, the OLE Messaging Library
allows other programs to call its IDispatch interface. It provides its own registration (.REG) file so
that it can be registered on a computer as an Automation server.

· The OLE Messaging Library publishes a type library that contains information about the objects that
it makes available through IDispatch.

· Your Visual Basic application acts as a client to the OLE Messaging Library. It reads the OLE
Messaging Library’s type library to obtain information about the objects, methods, and properties.
When your Visual Basic application declares a variable as an object (with code such as “Dim
objSession as Object”) and uses that object’s properties and methods (with code such as “MsgBox
objSession.Class”), Visual Basic makes calls to IDispatch on your behalf.

The relationships between these programs are shown in the following diagram. Visual Basic is a client
to the Automation server, the OLE Messaging Library. The OLE Messaging Library, in turn, acts as a
client to the MAPI services.

The OLE Messaging Library and MAPI
The OLE Messaging Library calls Microsoft COM and MAPI interfaces for you. The following table
describes the MAPI interfaces that the OLE Messaging Library calls when you manipulate an OLE
Messaging Library object.

OLE Messaging
Library object

COM or MAPI interface called by the OLE
Messaging Library

AddressEntry IABContainer, IMAPIProp

AddressEntryFilter IMAPITable

AddressList IAddrBook

Attachment IAttach

Field IStream, IMAPIProp

Folder IMAPIFolder

InfoStore IMsgStore

Message IMessage

MessageFilter IMAPITable

Recipient IMAPIProp

Session IMAPISession

For collection objects, the OLE Messaging Library calls the MAPI interface IMAPITable.

The OLE Messaging Library also calls the MAPI interface IMAPIProp. Many of the properties exposed
by the OLE Messaging Library are based on MAPI properties. The following table describes the
mapping between these OLE Messaging Library properties and the underlying MAPI properties.

OLE
Messaging
Library
object

Property MAPI property MAPI
property type

AddressEntry Address PR_EMAIL_ADDRESS PT_TSTRING

AddressEntry DisplayType PR_DISPLAY_TYPE PT_LONG

AddressEntry ID PR_ENTRYID PT_BINARY

AddressEntry Name PR_DISPLAY_NAME PT_TSTRING

AddressEntry Type PR_ADDRTYPE PT_TSTRING

AddressList ID PR_ENTRYID PT_BINARY

AddressList Name PR_DISPLAY_NAME PT_TSTRING

Attachment Index PR_ATTACH_NUM PT_LONG

Attachment Name PR_ATTACH_
FILENAME

PT_TSTRING

Attachment Position PR_RENDERING_
POSITION

PT_LONG

Attachment Source PR_ATTACH_
PATHNAME

PT_TSTRING

Attachment Type PR_ATTACH_
METHOD

PT_LONG

Folder FolderID PR_PARENT_
ENTRYID

PT_BINARY

Folder ID PR_ENTRYID PT_BINARY

Folder Name PR_DISPLAY_NAME PT_TSTRING

Folder StoreID PR_STORE_ENTRYID PT_BINARY

InfoStore ID PR_ENTRYID PT_BINARY

InfoStore Name PR_DISPLAY_NAME PT_TSTRING

InfoStore ProviderNam
e

PR_PROVIDER_DISPL
AY

PT_TSTRING

Message Conversation PR_CONVERSATION_
KEY

PT_BINARY

Message Conversation
Index

PR_CONVERSATION_
INDEX

PT_BINARY

Message Conversation
Topic

PR_CONVERSATION_
TOPIC

PT_STRING

Message Delivery
Receipt

PR_ORIGINATOR_
DELIVERY_REPORT_
REQUESTED

PT_BOOLEAN

Message Encrypted PR_SECURITY PT_LONG

Message FolderID PR_PARENT_ENTRYID PT_BINARY

Message ID PR_ENTRYID PT_BINARY

Message Importance PR_IMPORTANCE PT_LONG

Message ReadReceipt PR_READ_RECEIPT_
REQUESTED

PT_BOOLEAN

Message Sender PR_SENDER_
ENTRYID

PT_BINARY

Message Sent PR_MESSAGE_FLAGS PT_LONG

Message Signed PR_SECURITY PT_LONG

Message Size PR_MESSAGE_SIZE PT_LONG

Message StoreID PR_STORE_ENTRYID PT_BINARY

Message Subject PR_SUBJECT PT_TSTRING

Message Submitted PR_MESSAGE_FLAGS PT_LONG

Message Text PR_BODY PT_TSTRING

Message Time
Received

PR_MESSAGE_
DELIVERY_TIME

PT_SYSTIME

Message TimeSent PR_CLIENT_SUBMIT_
TIME

PT_SYSTIME

Message Type PR_MESSAGE_CLASS PT_TSTRING

Message Unread PR_MESSAGE_FLAGS PT_LONG

Recipient DisplayType PR_DISPLAY_TYPE PT_LONG

Recipient Name PR_DISPLAY_NAME PT_TSTRING

Recipient Type PR_RECIPIENT_TYPE PT_LONG

Session Name PR_DISPLAY_NAME PT_TSTRING

For more information about MAPI properties, see the MAPI Programmer’s Reference.

Additional References
The following references provide additional information about OLE and Automation:

· OLE Programmer’s Reference in the Microsoft Win32 Software Development Kit.

· Automation in the Win32 SDK.

· Inside OLE, Second Edition, by Kraig Brockschmidt, published by Microsoft Press.

Note that this document contains the latest known information about the Microsoft OLE Messaging
Library at the time of publication. Where terms in this document differ from other Visual Basic, OLE, or
Component Object Model (COM) terms, this document should be viewed as the definition of the
specific implementation represented by the OLE Messaging Library.

