
Contents
Overview
Using VB Messenger
VB Messenger Custom Control Reference
VB Messenger API

Overview
What Is VB Messenger?
What Is Subclassing?
What are Windows Messages?
Why Would I Use VB Messenger?
Do I Need to Know Windows Programming?

What Is VB Messenger?
VB Messenger is a custom control to be used in Visual Basic applications.    VB Messenger allows a
programmer to tap into the power of Windows by intercepting Windows messages while still providing the
ease of use of Visual Basic.

VB Messenger allows the Visual Basic programmer to subclass a Visual Basic form or control (or any
Windows control or window) to intercept messages that are intended for the form or control.

What Is Subclassing?
Subclassing is a technique used in Windows programming to programatically add additional functionality
to an existing window or control.

The way it works is you tell Windows that you want your routine to be the first to get messages for a
specific window.    Then, in your routine you can code specifically for messages that you wish to process.
Then you either pass the message on to the actual window you are subclassing or "throw it away."    (The
latter will assume that you did everything that was required to assure the integrity of the window.)

Basically, that is exactly what VB Messenger does.    You specify which form or control to subclass and VB
Messenger takes care of all the complexities of performing the actual subclass.    Instead of having
Windows call a routine in your program to process the message, VB Messenger instructs Windows to call
its own message routine.    VB Messenger then passes the information to you via a Visual Basic custom
event.

Why can't you just instruct Windows to call one of your Visual Basic routines?    Actually, this is impossible
to do with Visual Basic code.    In order for Windows to call your routine, it must have the actual address of
the routine.    Visual Basic does not provide the means for obtaining the address of a Visual Basic routine.
Since VB Messenger is written in C, it can pass the address of its internal function to Windows, since C
provides the means for getting a function address.

What are Windows Messages?
Windows messages are the essence of how the Microsoft Windows Operating Environment works.    Each
form, window or control that you see on the screen can be thought of as an independent extension of
Windows.    Windows knows of the existence of each window or control.    Before the programmer instructs
Windows to create the window, the programmer registers a function within the programmer's code that is
associated with the window.    Windows can then control the behavior and characteristics of the window
when necessary.

For instance, when a window gets overlapped by another window and then comes back into the
foreground, it is not normally the programmer's responsibility to redraw certain window elements such as
the caption, min/max buttons, etc.    The Windows environment actually does all of this.    However, if the
programmer has drawn a graph in the client area of the window, it is now the responsibility of the
programmer to redraw the graph when it has been overwritten.    Windows cannot automatically save all
the graphics or text associated within the client area of a window.

So, how does the programmer know when this has to occur?    Well, that is when Windows messages
comes into play.    Each time an event occurs in Windows, such as the repainting of an overlapped
window, the Windows program is notified.    This is done via a Windows message.    A Windows message
is nothing more that a predefined constant number (defined by Windows, see the Microsoft Windows 3.1
SDK).    Since, as stated before, the programmer told Windows of a function to call when it needs to,
Windows can alert the program by calling this function and passing a message to it.    Windows defines
many messages and some can even be defined by the programmer.    Common messages are
WM_PAINT, WM_SIZE, WM_CREATE, etc.    The WM_PAINT message is the one that is sent to the
programmer when the event as stated above occurs.    The programmer tests to see if the message
equals WM_PAINT, if so the programmer then calls a function to redraw the graph.

Simple?    Although there are many programmers out there that can write Windows programs using C or
C++ with their hands tied behind their backs, Windows programming is still quite complex.    However, with
the advent of Visual Basic, more and more people are starting to develop Windows applications more
easily and more productively.    Visual Basic hides the programmer from many complexities including
intercepting Windows messages.

Visual Basic treats Windows messages as events.    If you have programmed in Visual Basic, you have
undoubtedly had experience using events.    These events are actually Visual Basic's way of presenting
you with Windows messages.    The only problem is that Visual Basic only provides a predefined set of
events (or messages) to intercept.    And furthermore, Visual Basic does not provide a way to return a
value to Windows after the event has been triggered.

How does one overcome this limitation?    We all know that with simplicity comes limitations.    Visual
Basic does not let you create your own custom events unless you write a custom control in C to do so.   
VB Messenger is the control that will help you.    It allows you to provide functionality in your Visual Basic
application that you could not normally do without programming in C.    With it you can specify what
message you want to trap (there are literally hundreds to choose from) and VB Messenger will trigger
your custom event when the message occurs.

Why Would I Use VB Messenger?
VB Messenger extends Visual Basic allowing you to define which messages you would like to intercept
for a given form or control.    VB Messenger can trap a message for any window that is loaded in memory
including those that are not in your Visual Basic application.

VB Messenger can be used for a countless number of reasons.    One practical use may be to display a
Dynamic Information Line (DIL) on a status bar.    A DIL is a line that reports context sensitive help when
the mouse moves over a portion of the screen.    For example, as seen in many Windows applications,
while the user is selecting a menu item, your application can detect this and display a message on your
status bar.

VB Messenger can also be used as a diagnostic tool.    For instance, if you wanted to create a program
that prints the literal form of a message (i.e., "WM_PAINT") for a specific window to see what it is doing,
you can use VB Messenger to trap that window and report back each message.    You can then translate
the message to a string by using VB Messenger's built in message decoder, which translates the
message number to a literal.

Or, a more complicated use could be to synchronize two or more list boxes.    For instance, if you have a
requirement to display column headings for a list of columnar data in a list box and allow horizontal
scrolling, you cannot do this with a standard list box because when the list box scrolls horizontally, the
column headings are no longer above the correct columns.    However, you could stack two list boxes
vertically, one on top for column headings and one on the bottom for the data.    Using VB Messenger, you
can detect when one list box scrolls and then programatically scroll the other one the same amount and
direction.

Your VB Messenger disk comes with several samples of Visual Basic code that perform a variety of
different functions using the VB Messenger Custom Control.

Do I Need to Know Windows Programming?
To answer this question, first you must realize that if you program in Visual Basic, you are a fully qualified
Windows programmer.    More and more, as with each new release of Visual Basic, Windows
programming is becoming easier and easier.    You no longer have to program in C or C++ to take full
advantage of the Windows environment.

Visual Basic does shield you from much of the complexities of programming in the Windows environment.
But nobody ever said that a Visual Basic programmer cannot access the same functionality in Windows
as a C or C++ programmer can.    You can go beyond the scope of Visual Basic and access the Windows
APIs directly.    And now since you have VB Messenger, there is nothing in your way of writing a robust,
killer application using Visual Basic.

To find out about which Windows messages you can trap and what they all mean, browse through the on-
line Windows SDK help file that comes with Visual Basic.    It will tell you exactly which messages are out
there.    With a little exploring (and alot of courage) you can discover new ways to increase the
functionality of your applications and have them behave like any of the best Windows programs you can
find.

One word of caution is necessary.    Accessing the Windows API directly is always a dangerous process if
you are not careful.    Since Windows is not a protected operating environment, you can easily hang your
system if you pass the wrong parameters with a message or as a return value from a message.    Visual
Basic shields you from most of these possibilities the best it can.    But if you go around this shield, do it
carefully.    And remember, SAVE YOUR WORK OFTEN!

Using VB Messenger
Adding VB Messenger to Your Application
How Do I Use VB Messenger? - A Guided Tour

Adding VB Messenger to Your Application
All Visual Basic custom controls are loaded into your project from within the Visual Basic environment.   
Once a custom control is added to your project and your project is saved, it will always load whenever
you load that project.

To add the VB Messenger custom control to your project, choose 'Add File' from the 'File' menu in Visual
Basic.    Then, enter the name of the design time VB Messenger custom control, and its fully qualified path
if necessary.    The VB Messenger icon should now appear in your Visual Basic Toolbox.

To use VB Messenger, you must first add it to a form in your project.    When you add the VB Messenger
custom control to your form, it will appear on your form as an icon similar to the one that appears in the
Toolbox.    Although you can reposition the icon anywhere you like on the form, the position of the icon is
not important.    When you run your application, the custom control becomes invisible and therefore
cannot be seen by the user.

Refer to the 'Loading Custom Controls' section in the Visual Basic Programmer's Guide for a detailed
explanation of adding controls to your project.

How Do I Use VB Messenger? - A Guided Tour
VB Messenger is used to subclass a form or control in Visual Basic to intercept the Windows messages
that are associated with the form or control.

Once added to your form, VB Messenger is ready to use.    Most of VB Messenger's properties can be set
via the property window in design mode of Visual Basic.

The following instructions provide you with a sample walk through on using VB Messenger with your
application.    It walks you through the creation of a sample program that illustrates the fundamental usage
of the VB Messenger Custom Control.    The program uses VB Messenger to trap the
WM_MENUSELECT message that is sent to the main form when the user highlights a menu item in a
drop down menu.    Then the program will display information about the menu item selected on a message
line at the bottom of the screen in a status bar.

Step 1.
First create the following form with the following drop down menu.    The bottom of the form contains a 3D
Panel control with the Align property set to Align Bottom.    You may substitute a standard Visual Basic
Label if you wish.

Step 2.
Add the VB Messenger Custom Control to the new form.

Step 3.
Bring up the property window for the new VB Messenger Custom Control.    Select the (Message
Selector) property from the property window.    Click once on the ellipses ('...') button next to the text in
the property window.    The following dialog box will appear:

Scroll through the Messages list box and search for WM_MENUSELECT.    Select this message by
double clicking on it with the mouse or by pressing the Add-> button.    The message will then appear in
the Selected Messages list box.    Click on OK to save the selection and close the Message Selector
dialog box.

Step 4.
Add the following code to the Form1's Form_Load procedure:

VBMsg1.SubClasshWnd = Form1.hWnd

When the form is loaded, this code will be executed instructing VB Messenger to subclass the main form.

VB Messenger immediately starts intercepting messages at this point.    To turn off the message
processing, just set the SubclasshWnd property to zero.

Step 5.
Now add the following code to the VBMsg1_WindowMessage procedure:
Panel3D1.Caption = "wParam =" & Str$(wParam)

wParam is passed to this procedure by VB Messenger.

Step 6.
Run the program.    Use the mouse to select through the different menu items and watch how VB
Messenger intercepts the message and allows you to display the information about the menu item on the
status bar.

This example detects when the user is selecting a menu item and displays the wParam parameter
associated with the message (WM_MENUSELECT) at the bottom of the screen.    You can use this
number in your program to reference a line of text that may be used to describe the particular function on
the menu.    Then you can display this text on the bottom of the screen, very similarly to other Windows
programs.

See the sample project MENU.MAK.

VB Messenger Custom Control Reference
Description The VB Messenger Custom Control allows you to subclass a form or

control to receive and/or intercept its messages.

File Name VBMSG.VBX

Object Type VBMsg

Related Topics:
Properties, Events, and Methods
Properties Reference
Events Reference

Properties, Events, and Methods
All of the properties, events, and methods for VB Messenger are listed in the tables below.    All standard
Visual Basic properties, events, and methods are denoted with an asterisk(*) and can be found
documented in the Visual Basic Language Reference that comes with Visual Basic.

Properties

About AddMessage ClearMessages

*Height HiWord *hWnd

*Index *Left LoWord

lParam lParam2String MessageCount

MessageList MessageSelector MessageText

MessageTypes *Name *Parent

PostDefault PostMessage RemoveMessage

ReturnVal SendMessage String

SubclasshWnd *Tag *Top

*Width wParam

Events

WindowMessage WindowDestroyed

Methods

VB Messenger does not support any methods.

Properties Reference
The following is a detailed reference of all the properties supported by VB Messenger.

Related Topics:
About Property
AddMessage Property
ClearMessages Property
HiWord Property
LoWord Property
lParam Property
lParam2String Property
MessageCount Property
MessageList Property
MessageSelector Property
MessageText Property
MessageTypes Property
PostMessage Property
PostDefault Property
RemoveMessage Property
SendMessage Property
ReturnValue Property
String Property
SubclasshWnd Property
wParam Property

About Property

Description Displays version information about the VB Messenger Custom Control.

Usage Double click on the ellipses ('...') button next to the property text to
activate the about dialog box.

Remarks Available only at design time.

Data Type N/A

AddMessage Property

Description Adds a message to the MessageList property.

Usage [form.]VBMsg.AddMessage[= message&]

Remarks To specify which messages are intercepted by VB Messenger at
runtime, you must use this property.    Each time you set the
AddMessage property to a message, a new message gets appended
to the end of the MessageList property array.

Example:

VBMsg.AddMessage = WM_PAINT
VBMsg.AddMessage = WM_SIZE
VBMsg.AddMessage = WM_CLOSE

Available only at runtime and is write only.

Data Type Long

See Also MessageSelector, RemoveMessage, ClearMessages

ClearMessages Property

Description Clears all messages from the MessageList property.

Usage [form.]VBMsg.ClearMessages = True

Remarks Setting this property to True (or any integer value) clears all the
messages from the MessageList property.    This is the equivalent of
using RemoveItem for all messages in the MessageList.

Only available at runtime and is write only.

Data Type Boolean

See Also RemoveMessage, AddMessage, MessageSelector

HiWord Property

Description Returns or sets the high-order word of the 32-bit long integer value in
the lParam property.

Usage [form.]VBMsg.HiWord[= value%]

Remarks This property is used primarily in conjunction with the LoWord property
to create the lParam property.    This property is useful when you need
to send the lParam parameter with a message to a window that calls
for the high-order word to be a certain value.

Setting this value to an integer causes VB Messenger to combine this
value with the LoWord property and set the lParam property to the
result.    VB Messenger performs a concatenation of the two 2-byte
integer values to produce the 4-byte integer lParam property.

Setting the lParam property to a long integer causes VB Messenger to
parse out two 2-byte values and place the results in LoWord and
HiWord respectively.

Example:
VBMsg1.LoWord = Form1.hWnd
VBMsg1.HiWord = 100
Print "The resulting lParam is:"; VBMsg1.lParam

Available only at runtime.

Data Type Integer

See Also LoWord, lParam, SendMessage, PostMessage

LoWord Property

Description Returns or sets the low-order word of the 32-bit long integer value in
the lParam property.

Usage [form.]VBMsg.LoWord[= value%]

Remarks This property is used primarily in conjunction with the HiWord property
to create the lParam property.    This property is useful when you need
to send the lParam parameter with a message to a window that calls
for the low-order word to be a certain value.

Setting this value to an integer causes VB Messenger to combine this
value with the HiWord property and set the lParam property to the
result.    VB Messenger performs a concatenation of the two 2-byte
integer values to produce the 4-byte integer lParam property.

Setting the lParam property to a long integer causes VB Messenger to
parse out two 2-byte values and place the results in LoWord and
HiWord respectively.

Example:
VBMsg1.LoWord = Form1.hWnd
VBMsg1.HiWord = 100
Print "The resulting lParam is:"; VBMsg1.lParam

Available only at runtime.

Data Type Integer

See Also HiWord, lParam, SendMessage, PostMessage

lParam Property

Description This property represents the 32-bit long value of the Windows
message structure.

Usage [form.]VBMsg.lParam[= value&]

Remarks This property is used primarily in conjunction with the SendMessage
and PostMessage properties as a parameter for sending messages
directly to a subclassed window.

This property can also be used to parse out the low-order and high-
order word values of any 32-bit long integer.    The results can be found
in the HiWord and LoWord properties respectively.

Example:
' select a range of items in a multi-select list box
VBMsg1.wParam = True
VBMsg1.LoWord = 0
VBMsg1.HiWord = List1.ListCount

'The concatenated value is now in lParam property
VBMsg1.SendMessage = LB_SELITEMRANGE

Available only at runtime.

Data Type Integer

See Also wParam, SendMessage, PostMessage

lParam2String Property

Description This property converts a 32-bit address to a Visual Basic string.

Usage [form.]VBMsg.lParam2String[= value&]

Remarks Setting this value to a valid 32-bit far segment address (stored in a
long integer) causes VB Messenger to place the data pointed to by the
address into the String property.    The length of the resulting String
property is determined by the first occurrence of an ASCII 0 in the
data.

WARNING!    Use this property very carefully.    Setting this to an
invalid pointer could result in undesirable results such as a GPF or
loss of data.    Do not set this property to anything else except a valid
pointer.

Generally this property is used to convert the lParam message
parameter passed from within the WindowMessage event procedure to
a Visual Basic string.

Available only at runtime and is write only.

Example:

'... from within the VBMsg1_WindowMessage proc ...
 .
 .
VBMsg1.lParam2String = lParam
Print "The resulting string is: " & VBMsg1.String

Data Type Long

See Also lParam

MessageCount Property

Description Returns the number of messages in the MessageList property array.

Usage [form.]VBMsg.MessageCount

Remarks Available only at runtime and is read only.

Data Type Integer

See Also MessageList

MessageList Property

Description Contains a list of all messages to be intercepted by VB Messenger.

Usage [form.]VBMsg.MessageList(index)[= message&]

Remarks This property array contains all the messages set by either
AddMessage or at design time by the MessageSelector dialog.    Each
time a new message is added, the message gets appended to the end
of this list, increasing the count by one.    To access any message in
the list, you must specify the index of the array.

You can also change messages in the list by assigning the specific
element in the property array.

Example:

' changes the 3rd message (0 based) in the list
' to WM_CLOSE
VBMsg.MessageList(2) = WM_CLOSE

Available only at runtime.    The first element in the array is at index 0.

Data Type Long

See Also MessageCount, MessageSelector, AddMessage, RemoveMessage,
ClearMessages

MessageSelector Property

Description Displays a dialog box from which you can manage the list of messages
to be intercepted by VB Messenger.

Usage Double click on the ellipses ('...') button next to the property text to
activate the about dialog box.

Remarks Clicking on the ellipses in the property window display the Message
Selector dialog box.    The Message Selector allows you to add and
remove standard and custom messages to the MessageList Property
array at design time.

The Messages list box contains all available standard messages.   
The Selected Messages list box on the right contains your selected
messages to be intercepted.    Clicking on the Add, Remove or Clear
button allows you to manage the selected messages.
You can filter the types of standard messages to be displayed in the
Messages list box by selecting from the Message Types drop down
list.
You can specify a custom message that does not appear in the
Messages list of standard messages by entering the message value
(in hex) into the Custom Message edit box.    Optionally, you can
check the WM_USER + check box to add the value of WM_USER to
the entered custom message.
Available only at design time.

Data Type N/A

See Also MessageList, MessageCount, AddMessage, RemoveMessage,
ClearMessages

MessageText Property

Description Converts a message value to the corresponding text (i.e.,
"WM_PAINT") as defined by the Windows 3.1 SDK.

Usage [form.]VBMsg.MessageText(message&)

Remarks This property array contains all the messages in literal form.    You can
specify the message description to retrieve by indicating the message
value as the index to the property array.

Example:

Const WM_CLOSE = &H10

X$ = VBMsg.MessageList(WM_CLOSE)
' X$ now equals "WM_CLOSE"

Available only at runtime and is read only.

Data Type String

MessageTypes Property

Description Allows you to specify how VB Messenger interprets the MessageList
property.

Usage [form.]VBMsg.MessageTypes[= setting%]

Remarks Use the MessageTypes property to instruct VB Messenger when to fire
an event in accordance to when the messages in the MessageList
property array are detected.

The MessageTypes settings are as follows:

Setting Description

0 Intercept selected messages in the MessageList
property only.

1 Intercept all messages (ignore MessageList property).

2 Do not intercept any messages.

3 Intercept all messages except those selected in the
MessageList property array.

Data Type Integer (Enumerated)

PostMessage Property

Description Posts a message to the Windows message queue for the subclassed
window.

Usage [form.]VBMsg.PostMessage[= message&]

Remarks Setting this property will cause VB Messenger to post the specified
message for the subclassed window to the Windows message queue.
VB Messenger uses the properties wParam and lParam as the 16-bit
word and 32-bit long parameters for the message.    The return value
of the posted message can be obtained in the ReturnVal property.

If the SubclasshWnd property is not set, no message will be posted.

Example:

Const WM_CLOSE = &H10

VBMsg1.wParam = 0
VBMsg1.lParam = 0
VBMsg1.PostMessage = WM_CLOSE

Available only at runtime and is write only.

Data Type Long

PostDefault Property

Description Determines whether VB Messenger should send the messages to your
application before or after Windows default processing.

Usage [form.]VBMsg.PostDefault[= {True|False}]

Remarks Setting this property to True causes VB Messenger to call the
Windows default processing for all messages before the message is
sent to your application.    Setting this to False will cause VB
Messenger to call the Windows default processing for all messages
after the message is sent to your application.

If you plan on returning a value to Windows after processing a
message in you WindowMessage event procedure, you must set this
property to True or the return value will be ignored.

Data Type Boolean (Integer)

See Also WindowMessage Event

RemoveMessage Property

Description Removes a message from the MessageList property.

Usage [form.]VBMsg.RemoveMessage[= index%]

Remarks Setting this property to the message value of a message in the
MessageList property array will remove the message from the list.

Example:

' Remove message from the MessageList property
VBMsg1.RemoveMessage = WM_CLOSE

Available only at runtime and is write only.

Data Type Long

See Also ClearMessages, AddMessage

SendMessage Property

Description Sends a message directly to the subclassed window bypassing the
message queue.

Usage [form.]VBMsg.PostMessage[= message&]

Remarks Setting this property will cause VB Messenger to send the specified
message directly to the subclassed window.    VB Messenger uses the
properties wParam and lParam as the 16-bit word and 32-bit long
parameters for the message.    The return value of the message can be
obtained in the ReturnVal property.

If the SubclasshWnd property is not set, no message will be sent.

Example:
' select a range of items in a multi-select list box
VBMsg1.wParam = True
VBMsg1.LoWord = 0
VBMsg1.HiWord = List1.ListCount
'The concatenated value is now in lParam property

VBMsg1.SendMessage = LB_SELITEMRANGE

Available only at runtime and is write only.

Data Type Long

ReturnValue Property

Description This property is set with the return value of the SendMessage or
PostMessage property.

Usage [form.]VBMsg.ReturnVal

Remarks Example:
' This example sends an EM_GETLINECOUNT message to
' retrieve the number of lines in a multiline edit
' control and then sends an EM_LINESCROLL message
' to scroll the edit control so that the last line
' is displayed at the top of the edit control.

VBMsg1.SendMessage = EM_GETLINECOUNT

' Number of lines returned can be found in the
' ReturnVal property.
VBMsg1.wParam = 0
VBMsg1.LoWord = VBMsg1.ReturnVal - 1
VBMsg1.HiWord = 0
VBMsg1.SendMessage = EM_LINESCROLL

Available only at runtime and is read only.

Data Type Long

See Also SendMessage, PostMessage

String Property

Description This property is set with the resulting string after setting the
lParam2String property.    Setting this property returns an address
which can be found in the lParam property.

Usage [form.]VBMsg.String

Remarks If you set this property to a string, VB Messenger will return an
address of the string in the lParam property.    The address of the string
will be valid for as long as VB Messenger is active or the string is
replaced with a new string.

Example:
'... from within the VBMsg1_WindowMessage proc ...
 .
 .
VBMsg1.lParam2String = lParam
Print "The resulting string is: " & VBMsg1.String

Available only at runtime.

Data Type String

See Also lParam2String, lParam

SubclasshWnd Property

Description Set this property to the window handle (hWnd) of the form or control to
subclass.

Usage [form.]VBMsg.SubclasshWnd = [handle%]

Remarks Setting this property to a valid window handle immediately activates
VB Messenger.    All messages sent to the window associated with the
handle from that point onward will be filtered by VB Messenger and the
event WindowMessage will be fired for each.

Setting this property to zero will automatically disable the subclassing.
Upon the destruction of the window (WM_DESTROY), this property is
cleared and subclassing will terminate.

Available only at runtime.

Data Type Integer

wParam Property

Description This property represents the 16-bit integer value of the Windows
message structure.

Usage [form.]VBMsg.wParam[= value%]

Remarks This property is used primarily in conjunction with the SendMessage
and PostMessage properties as a parameter for sending messages
directly to a subclassed window.

Available only at runtime.

Data Type Integer

See Also lParam, SendMessage, PostMessage

Events Reference
The following is a detailed reference of all the events supported by VB Messenger.

Related Topics:
WindowMessage Event
WindowDestroyed Event

WindowMessage Event

Description VB Messenger fires this event each time one of the selected
messages is detected for the subclassed window.

Syntax Sub VBMsg_WindowMessage (hWindow As Integer, Msg As
Integer, wParam As Integer, lParam As Long, RetVal As Long,
CallDefProc As Integer)

Remarks When a message that you wish to intercept is detected for the
subclassed form, VB Messenger fires this event passing the
message's parameters to the event procedure.

Parameter Description

hWindow Identifies the subclassed window.

Msg The message that was detected.

wParam The 16-bit word value associated with the message.

lParam The 32-bit long value associated with the message.

RetVal After you process the message, use this parameter if
you wish to return a value to VB Messenger and
bypass the default windows procedure.    VB
Messenger will then use this value as the return value.

CallDefProc If this value is True, VB Messenger will call the default
windows procedure for the subclassed control.    If it is
False, VB Messenger will not call the default
procedure and return the specified return value in
RetVal.

See Also WindowDestroyed Event

WindowDestroyed Event

Description VB Messenger fires this event unconditionally if the subclassed
window is sent a WM_DESTROY message.

Syntax Sub VBMsg_WindowDestroyed (hWindow As Integer)

Remarks This event is fired when the subclassed window is destroyed.    This is
useful for code to clean up memory that you may have associated with
the subclassed window.    The window is automatically unhooked after
this event is fired.

Parameter Description

hWindow Identifies the subclassed window.

See Also WindowDestroyed Event

VB Messenger API
Overview
API Reference

Overview
VB Messenger comes with a set of API functions that you will    need to process certain messages.

Several Windows messages require the programmer to be able to access data via pointers.    Although in
languages like C it is possible to provide pointers, it is not possible using Visual Basic.    These API
functions allow you to access data while "faking" pointers.    VB Messenger uses long integers to
represent the pointers.    Since pointers are actually just 32-bit numbers (i.e., long integers), you can
actually "fake" Windows by sending certain Windows API functions the long integer equivalent of a pointer
as supplied by the VB Messenger API.

CAUTION: These routines require the use of pointers.    Take care when using such routines as they may
cause unpredictable results if used improperly.    Do not pass invalid addresses to these routines.    Doing
so may cause a GPF or potential loss of data.

Special Note: You may notice that the Lib in the Declare statements below refer VBMSG.VBX.    Why is
this not referencing a DLL?    Since a custom control (VBX) is really a DLL (with special routines in it so
that Visual Basic can access it), functions can be called externally from them.    So rather than supplying a
separate DLL that you would need to include with your distribution, VB Messenger comes with a full set of
functions built right into itself.    All of the following functions can be called directly from the file
VBMSG.VBX.

As with all DLLs and VBXs, the executable file must be either in the path, the current directory, or the
Windows SYSTEM directory in order for Visual Basic to find and load them.    See the Chapter 22,
"Calling Procedures in DLLs" in the Microsoft Visual Basic Programmer's Guide for a further description
on calling external procedures.

API Reference
The following section details the API functions available within VB Messenger.

Related Topics:
ptConvertUShort
ptCopyTypeToAddress
ptGetControlModel
ptGetControlName
ptGetIntegerAddress, ptGetLongAddress, ptGetStringAddress
ptGetIntegerFromAddress
ptGetLongFromAddress
ptGetStringFromAddress
ptGetTypeFromAddress
ptGetVariableAddress
ptHiWord
ptLoWord
ptMakelParam
ptMakeUShort
ptMessageToText
ptSetControlModel

ptConvertUShort

Description This function converts an unsigned integer value returned from a DLL
to an long integer.

Declaration Declare Function ptConvertUShort Lib "VBMSG.VBX" (ByVal
ushortVal As Integer) As Long

Remarks Since Visual Basic cannot represent an unsigned value, the value
returned from the DLL may be negative.    This function will convert it to
a positive long integer value.    If the number is already positive, its
value will be copied directly.

Parameter Description

ushortVal The integer value to convert.

Return Value The function returns a long integer value representing the unsigned
integer.

ptCopyTypeToAddress

Description This function copies the contents of a type variable to an area of
memory.

Declaration Declare Sub ptCopyTypeToAddress Lib "VBMSG.VBX" (ByVal
lAddress As Long, lpType As Any, ByVal cbBytes As Integer)

Remarks Since Visual Basic does not allow you to access memory directly,
there is no way to change the contents of a structure passed as a
pointer in a Windows API.    You can use this function and
ptGetTypeFromAddress to write the contents of a Type to an area of
memory.

Parameter Description

lAddress A long integer representing the far address of the area
of memory to write to.

lpType The Type variable to write to memory.

cbBytes The length of the Type variable.    This can be
determined using the Visual Basic Len function, i.e.,
cbBytes = Len(lpType).

CAUTION: This routine requires the use of a pointer.    Do not pass an
invalid address to this routine.    Doing so may cause a GPF or
potential loss of data.

ptGetControlModel

Description Fills the MODEL control model structure for a control.

Declaration Declare Function ptGetControlModel Lib "VBMSG.VBX" (ctl As
Control, lpmodel As MODEL) As Long

Remarks By examining fields of this structure you can determine how a controls
flags are set, and you also have access to its property and event
information tables.    You can also set values in this structure and
change the behavior or style of a control.

Parameter Description

ctl The name of the control.

lpmodel The MODEL type (structure) to fill.

Return Value The function returns a long integer value representing the far address
of the control model structure.

ptGetControlName

Description Returns a string containing the name of a specified control.

Declaration Declare Function ptGetControlName Lib "VBMSG.VBX" (ctl As
Control) As String

Remarks Visual Basic does not allow you to access the name of a control during
runtime.    This function allows you to get the name of a control
dynamically at runtime.

Parameter Description

ctl The name of the control.

Return Value The function returns a string representing the name of the control.

ptGetIntegerAddress, ptGetLongAddress, ptGetStringAddress

Description Returns the address of a Visual Basic variable with stricter type
checking.

Declarations Declare Function ptGetIntegerAddress Lib "VBMSG.VBX" Alias
"ptGetVariableAddress" (ByVal var As Integer) As Long

Declare Function ptGetLongAddress Lib "VBMSG.VBX" Alias
"ptGetVariableAddress" (ByVal var As Long) As Long

Declare Function ptGetStringAddress Lib "VBMSG.VBX" Alias
"ptGetVariableAddress" (ByVal var As String) As Long

Remarks Each of these functions return a 32 bit address of a variable.    These
function declarations are provided to give better parameter checking
when using this function.

Parameter Description

var The variable to get the address of.    Can either be an
integer, long, or string depending upon the declaration
used.    For Types, use the ptGetVariableAddress API.

Return Value These functions returns a 32-bit address of the variable.

ptGetIntegerFromAddress

Description Returns the 16-bit integer value from the data at the address specified.

Declaration Declare Function ptGetIntegerFromAddress Lib "VBMSG.VBX"
(ByVal address As Long) As Integer

Remarks Parameter Description

address The 32-bit far address of the integer.

Return Value Returns the integer value associated with the address.

ptGetLongFromAddress

Description Returns the 32-bit long integer value from the data at the address
specified.

Declaration Declare Function ptGetLongFromAddress Lib "VBMSG.VBX" (ByVal
address As Long) As Long

Remarks Parameter Description

address The 32-bit far address of the long integer.

Return Value Returns the long integer value associated with the address.

ptGetStringFromAddress

Description Returns a string from the data at the address specified.

Declaration Declare Function ptGetStringFromAddress Lib "VBMSG.VBX"
(ByVal address As Long) As String

Remarks The string located at the address specified must end with a terminating
zero.

Parameter Description

address The 32-bit far address of the string.

Return Value Returns the string associated with the address.

ptGetTypeFromAddress

Description Returns a Type structure from the data at the address specified.

Declaration Declare Sub ptGetTypeFromAddress Lib "VBMSG.VBX" (ByVal
address As Long, typevar As Any, cbBytes As Integer)

Remarks The data located at the address specified will be copied into the Type
structure variable defined by the calling program.    Only the number of
bytes specified will be copied.    Do not specify more bytes then are
actually allocated.    Doing so may produce unpredictable results such
as a GPF or loss of data.

Parameter Description

address The 32-bit far address of the data.

typevar The user defined Type variable to copy the data into.

cbBytes The number of bytes to copy.

ptGetVariableAddress

Description Returns the address of a Visual Basic variable.

Declaration Declare Function ptGetVariableAddress Lib "VBMSG.VBX" (variable
As Any) As Long

Remarks This function returns a 32 bit address of any variable or Type.    Any
type of variable can be used.

Parameter Description

variable The variable or Type to get the address of.

Return Value This function returns a 32-bit address of the variable or Type.

ptHiWord

Description This function parses out the high-order 16-bit word value of a 32-bit
long integer.

Declaration Declare Function ptHiWord Lib "VBMSG.VBX" (ByVal lParam As
Long) As Integer

Remarks This API provides the same functionality as the property HiWord.

Parameter Description

lParam The 32-bit long integer value to parse.

Return Value Returns a 16-bit integer representing the high-order of the 32-bit long
value.

ptLoWord

Description This function parses out the low-order 16-bit word value of a 32-bit
long integer.

Declaration Declare Function ptLoWord Lib "VBMSG.VBX" (ByVal lParam As
Long) As Integer

Remarks This API provides the same functionality as the property LoWord.

Parameter Description

lParam The 32-bit long integer value to parse.

Return Value Returns a 16-bit integer representing the low-order of the 32-bit long
value.

ptMakelParam

Description This functions creates an unsigned long integer for use as an lParam
parameter in a message by concatenating two integer values,
specified by the wLow and wHigh parameters.

Declaration Declare Function ptMakelParam Lib "VBMSG.VBX" (ByVal wLow As
Integer, wHigh As Integer) As Long

Remarks Parameter Description

wLow Specifies the low-order word of the new long value.

wHigh Specifies the high-order word of the new long value.
addressThe 32-bit far address of the data.

Return Value The return value specifies a long-integer value.

ptMakeUShort

Description This function converts a signed long integer value to an unsigned
integer value.

Declaration Declare Function ptMakeUShort Lib "VBMSG.VBX" (ByVal longVal As

Long) As Integer

Remarks The value that is returned can be sent to a Windows API function that
requires a USHORT or an unsigned int parameter.    Upon inspection
of the return value you may see that it is negative.    Visual Basic does
not have a means to represent an unsigned value, it therefore appears
negative.    When passed to function in a DLL, the number will be
converted to unsigned.

Parameter Description

longVal The long integer value to convert.

Return Value The function returns an integer value.

ptMessageToText

Description Returns the literal description of a message number as define by the
Windows SDK.

Declaration Declare Function ptMessageToText Lib "VBMSG.VBX" (ByVal
message As Long) As String

Remarks This routine translates the message number to the literal text
description of the message.    This function is useful in developing a
diagnostic program that detects all messages for a specific window
and displays the message as text (i.e., WM_PAINT instead of &H10).

Parameter Description

message The message number.

Return Value The message string.

ptSetControlModel

Description Writes the contents of a modified MODEL control model structure to a
control.

Declaration Declare Sub ptSetControlModel Lib "VBMSG.VBX" (ctl As Control,
lpmodel As MODEL)

Remarks By examining fields of this structure you can determine how a controls
flags are set, and you also have access to its property and event
information tables.    You can also set values in this structure and
change the behavior or style of a control.

Parameter Description

ctl The name of the control.

lpmodel The MODEL type (structure) to write to the control.

