
TurboDXF
TurboDXF is a Windows Dynamic Link Library for creating industry standard DXF files from
any Windows development tool. The DXF files created by your application and TurboDXF can
then be imported into many popular Windows applications such as Corel Draw, Micrografx
Designer and Word for Windows. In addition the DXF files are fully compatible with all CAD
applications such as AutoCAD.

Features
1) Dynamic link library callable from many compilers and development tools

2) Includes routines for drawing lines, arcs, circles, filled blocks, polylines, text, points

3) Includes routines for creating multiple layers

Supported Applications
TurboDXF is the ideal addition to Visual Basic, Microsoft Excel, ObjectVision, Turbo Pascal for
Windows and any Windows C compiler:

1) Create DXF graphics in Visual Basic and export them to other applications, like Corel
Draw, for touch up and printing.

2) Create an ObjectVision application to view a record in a data base, click a button and
have that record added to the DXF file. When all the records needed in the graphic have
been added, lose the DXF file. Open Corel Draw (or another supported application) to
view the graphic. TurboDXF includes simplified charting commands.

3) From C and C++ create applications that generate maps from data bases. Viewing results
of computer simulations graphically is much more productive than pouring over pages of
printed output.

All DXF files created by TurboDXF can be viewed in AutoCAD, MicroStation and most
otherCAD applications capable of importing DXF files.

Demonstration Version
The DLL included with this demonstration package is limited to creating 25 entities per drawing.
The full version of the DLL will create an unlimited number of elements and layers. The sample
DXF files were created with the full version of the DLL. When you run the demonstration
applications you will see only part of the sample DXF files.

TurboDXF
The TurboDXF DLL is written completely in Turbo Pascal for Windows. A TurboDXF TPU (for
DOS) is also available for Turbo Pascal v.6 and earlier . In addition the DOS version includes

TurboDXF 1 Ideal Engineering Software

full AutoCAD block and attribute support.

Pricing
Both TurboDXF libraries (DOS and Windows) are priced at $50US ($60CDN) each. Both
libraries can be ordered together for $80US ($90CDN). The libraries each include a printed
manual and a disk with the library, sample programs and sample output. Include $5 for shipping
and handling.

Ordering
Turbo DXF is available from Ideal Engineering Software.
Ideal Engineering Software
#105 1280 Fir Street
White Rock, British Columbia
Canada
V4B 4B1

As mentioned the cost is US$50 (CDN$65) for the Windows version of TurboDXF. You
will receive a full version of the TurboDXF DLL with which you can create an unlimited
number of entities. In addition you will receive a printed manual and runtime versions of
the Visual Basic and ObjectVision applications.

Sample Applications
I have included five sample applications with this demo. The sample applications included with
this demonstration version of the TurboDXF DLL are intended to highlight probable Windows
applications as opposed to CAD applications. Most Windows applications do not support layers,
polylines, three dimensional drawings, blocks and attributes. This DLL includes full support of
these DXF commands so you can easily create DXF files for AutoCAD use.

To view the files that are produced by these applications you will need an application that
supports DXF imports. The software has been tested with the following applications:

1) AutoCAD (DOS)
2) Drawing Librarian (DOS)
3) Drawing Librarian (Windows version)
4) Corel Draw (Windows)
5) Micrografx Designer (Windows)
6) Microsoft Word for Windows 2.0 (Windows)

TurboDXF 2 Ideal Engineering Software

The Sample Applications

1. A Microsoft Visual Basic program that creates the demo DXF file on disk. This
application includes the VBDEMO.BAS file with the SUB declarations. When running
the applications simply click the "Create DXF file" button to make the sample DXF file.
As noted above only part of the DXF file will be created due to the 25 entity limit in the
demonstration DLL. Look at the file VBDEMO.DXF for the full output from this
program. In addition to the source files, a compiled EXE file is and the Visual Basci
runtime included.

2. A Turbo Pascal for Windows program that creates the same sample DXF file. Compile
the TPDEMO1.PAS file with Turbo Pascal for Windows. Run the application and then
double click to close the window. Again the full sample file will not be created due to the
25 entity limit in the demonstration DLL. Check the file TPDEMO1.DXF for the full
results of this run (it is similar to the drawing created by the Visual Basic example). This
application is included in source (.PAS) and compiled form. No extra software (other than
Windows) is required to run this application.

3. A Turbo Pascal for Windows program that creates a bar chart. Enter 10 "Y" values as
prompted. The sample program TPDEMO2.PAS will create a scaled bar chart with your
values.

4. A Borland ObjectVision (OV) application (OVDEMO1.OVD) that creates a sample
DXF file similar to the previous two applications. Simply click on the button to create the
file. You will require either the runtime or full version of ObjectVision for this demo.

5. A Borland OV application (OVDEMO2.OVD) connected to a Paradox data base to
create a drawing of lines and text. There are about 20 records in the data base each
consisting of two X,Y pairs (the end points of the line) and a text string. You can change
or add to the little data base using the OV application. There are also "Open DXF", "Add
to DXF" and "Close DXF" buttons. Open the DXF file first (if you don't the application
will crash). Next scroll through the data base with the "Previous" and "Next" buttons.
When you see a record you like press either (or both) "Add" buttons to add the text string
and/or the line. When finished press the "Close DXF" button and exit OV. Load the DXF
file into a supported application to see the graphic you created from the data base. You
will require either the runtime or full version of ObjectVision for this demo. A DXF file
created with this application is in OVDEMO2.DXF.

TurboDXF 3 Ideal Engineering Software

6. I have started work on adding the DXF commands to Microsoft Excel. Excel can register
DLLs for its use. A future sample application could allow the user to highlight a block of
X,Y pairs and use TurboDXF to create a polyline from the data.

To run the sample applications, copy the TURBODXF.DLL from the distribution disk to your
main Windows directory. Copy the applications from the two diskettesto sub-directories on your
hard disk. I have included the Visual Basic runtime on Disk 1. To run the ObjectVision demos
you will have to use Disk 2 and PKUNZIP to decompress the runtime files. You will require
about 1Mb of disk space for the ObjectVision runtime. To view the source code for either of
these demos you have to install the respective distribution software for those systems.

To run the Turbo Pascal applications you don't need any extra software. To view the Pascal
source code use Turbo Pascal for Windows or any text editor.
To view the DXF results created by these programs you will need a DXF aware program. See the
above list for tested software.

TurboDXF 4 Ideal Engineering Software

Mini Manual
This section briefly describes the routines in this sample DLL. When you purchase the full
version you will receive a complete detailed manual. The data types for all the calls are
PChar,double and integer. Most applications seem to support these data types. I had to use
"double" because that is the only floating point type that ObjectVision supports. If your
development tool has trouble with these data types let me know and I will do my best to change
the DLL.

The general format of a DXF file is:

1. Create and open the DXF file (ASCII)
2. Add some header information (drawing limits, layer names and colours etc.)
3. Add all the entities (lines, arcs, polygons, text etc.)
4. Close the DXF file

The following procedures are included in the DLL. As these are Turbo Pascal procedures (as
opposed to functions) they don't return a value. See the respective applications for the required
code to register the DLL in each environment.

DXFOpen(FileName:PChar)
This must be the first command issued. This opens the DXF file and adds some house
keeping information. The filename should include the .DXF extension so other
applications will recognize the file.

DXFHeader(X1,Y1,X2,Y2:double)
The X's and Y's are the corners of the drawing. The X1,Y1 pair defines the lower left
corner while the other pair defines the upper right corner. Most Windows applications
ignore these numbers and scale the drawing to fit their working area but all CAD
applications use it. You must include this call in your application because while the
application may not use the values they have places to fill in the DXF file.

DXFStartTables(NumLayers : integer)
Again most Windows applications don't support layers the same way CAD packages do.
(Designer has layers but doesn't make the translation from the DXF file - don't ask me
why). The NumLayers parameter is the number of DXFAddLayer calls you will be
making. Most Windows applications aren't sensitive to this number (ie you set
NumLayers=5 and call DXFAddLayer 10 times). CAD applications are very sensitive
to this parameter. If you are careless here you could create a DXF file that will load into
Corel Draw but not AutoCAD. This may or may not be important. Just so you know.

TurboDXF 5 Ideal Engineering Software

DXFAddLayer(LayerName : PChar; LayerColor : integer);
This procedure adds layers to the drawing. If you are using AutoCAD (or another
application that truly supports layers) you will be able to selectively turn the layers on
and off. This is fundamental to CAD drawings. Most Windows applications (Corel
Draw and Micrografx Designer for example) do not properly support DXF layers. Each
entity that is added to a layer is given that layers color. The LayerColor is an integer as
follows:
1. red
2. blue
3. yellow
4. cyan
5. black
6. white
7. magenta

DXFStartViewTable(NumViews:integer)
AutoCAD supports named views. In AutoCAD you can call up a named view. This will
zoom to a pre-defined view. Most Windows applications don't support these named
views. A call to this procedure must be included for the DXF file to be read by any
application. Even if your intended application doesn't support named views you must
include this procedure. Simply set NumViews to 0.

DXFAddView(ViewName: PChar;Height,Width,CentreX,CentreY : double);
If NumViews in the above (DXFStartTable) is "n" (non-zero) then include "n" calls to
this procedure. Note that this is really only useful if you will be using AutoCAD to view
your DXF drawings. The ViewName is a string. The other parameters are self
explanatory.

DXFEndTables
No parameters. A call to this procedure is always required. This closes the
"housekeeping" section of the DXF file and prepares the file to accept entity data.

TurboDXF 6 Ideal Engineering Software

DXFAddText10(X1,Y1,Z1,Height,Rotate : double;Txt,LayerName : PChar)
This is the standard command to add text to the DXF file. The "10" suffix indicates it is
AutoCAD rel. 10 compatible. There is another more sophisticated command in the full
version of TurboDXF that supports the richer AutoCAD rel. 11 text command. The Z1
value is only required in AutoCAD since most Windows applications force all the
elements to zero. Experiment with the Z1 to see if your application supports it. The
height is the text height. In AutoCAD it is in the units of the drawing (feet or meters for
example). Windows applications tend to scale the drawing to fit their drawing space so
again experimentation is required. Rotate is the angular rotation in degrees.Txt is the
text string you want to add. Line breaks are not supported. To do a paragraph of text you
will need multiple DXFAddText10 calls.

DXFAddPoint(X1,Y1,Z1 : double; Layer : PChar);
Adds a point to a drawing at the X,Y,Z coordinates. Points are very small (their size is
not a parameter) and I have never really found an application for them. I suppose if you
had enough of them you could create some sort of scatter diagram. I think it would be
better to add small circles instead. Included for completeness.

DXFAddArc(X1,Y1,Z1,Radius,StartAngle,EndAngle : double;Layer : PChar)
X,Y,Z is the centre point for the arc. Radius is self explanatory. The two angle
parameters are in degrees (positive counter-clockwise from parallel). Note that a
StartAngle of -10 is the same as 350. See any of the demo applications.

DXFAddSolid(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4 : double;Layer : PChar)
A four point filled polygon. The fill colour is the layer colour. Set the "4" series
parameters equal to the "3" series to get a triangle. There is a DXFAddBlock command
that makes creating bar charts easier. It calls this procedure.

DXFAddLine(X1,Y1,Z1,X2,Y2,Z2: double;LayerName : PChar);
Very simple. Adds a line from the first point to the second. The colour of the line is set
by the layer the line is on. These lines are always hairlines (very thin).

DXFAddPoly(Layer : PChar)
The DXF format supports polylines. Polylines are multi-segment lines that can have
varying thicknesses. The lines are filled with the colour of the layer. To create a polyline
call this procedure once. For each segment of the polyline call the DXFAddVertex
procedure with the point (vertex) data. Add as many vertices as required then finish
with a DXFEndPoly.

TurboDXF 7 Ideal Engineering Software

DXFAddVertex
Call this procedure after a single call to DXFAddPoly. Call it as many times as required
for each vertex. True DXF aware applications support different start and end widths for
a line segment. On the other hand Windows applications support of polylines is very
variable. Corel Draw ignores the line thickness. Micrografx Designer makes each
segment the same thickness as the StartWidth. Load one of the demo drawings into
AutoCAD to see the variable width polyline. For multi segment lines this is easier than
multiple calls to the DXFAddLine procedure.

DXFEndPoly
Required once after all the calls to DXFAddVertex are made. This finishes the polyline.
No parameters are required.

DXFAdd3DFace(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4:double;Layer:PChar)
Adds a 3D polygon to the DXF file. Parameters as before. This is a 3D command so
Windows support is variable (typically non-existent). Use DXFAddSolid. AutoCAD
supports this command. Very useful for creating surfaces etc.

DXFAddCircle(X1,Y1,Z1,Radius,Extrusion:double;LayerName:PChar)
Adds a circle centred at X,Y,Z. Radius is self-explanatory. The extrusion makes the
circle into a tube in 3D. Typically not supported in Windows applications but you
should experiment with your application.

DXFClose
When all the entities have been added a single call to this procedure will close the DXF
file. One and only one call is required

DXFAddBar(X1,Y1,Width,Height:double; Layer:PChar)
Adds a bar to the DXF file. This is a very simple and useful way of creating bar charts.
Simplifies the use of the DXFAddSolid procedure. The X,Y pair is the lower left corner
of the bar. The width and height are self-explanatory. The colour of the bar will be
controlled by the layer. See the sample program GRAFDEMO.PAS.

TurboDXF 8 Ideal Engineering Software

DXFAddXAxis(X1, Y1, X2 : double; NumTicks : integer; Layer : PChar)
This procedure adds an X axis to the DXF file. This is intended to be used with
DXFAddBar above to create DXF bar charts. The X1,Y1 pair is the start point of the
axis (usually 0,0). X2 is the ending X value (ie Max X). The number of ticks is
controlled with NumTicks -- text labels will be printed just below the axis at all ticks.
See the sample program GRAFDEMO.PAS.

DXFAddYAxis(X1, Y1, Y2 : double; NumTicks : integer; Layer : PChar)
This procedure adds an Y axis to the DXF file. This is intended to be used with
DXFAddBar above to create DXF bar charts. The X1,Y1 pair is the start point of the
axis (usually 0,0). Y2 is the ending Y value (ie Max Y). The number of ticks is
controlled with NumTicks -- text labels will be printed just below the axis at all ticks.
See the sample program GRAFDEMO.PAS.

TurboDXF 9 Ideal Engineering Software

Turbo Pascal Sample Program TPDEMO1.PAS

Program TPDemo1;
uses WinCrt;

Procedure DXFOpen(FileName:PChar); far; external 'TURBODXF' index 1;
Procedure DXFHeader(X1,Y1,X2,Y2:double); far; external 'TURBODXF' index 2;
Procedure DXFStartTables(NumLayers : integer); far; external 'TURBODXF' index 3;
Procedure DXFAddLayer(LayerName : PChar; LayerColor : integer); far; external 'TURBODXF' index 4;
Procedure DXFStartViewTable(NumViews:integer); far; external 'TURBODXF' index 5;
Procedure DXFAddView(ViewName: PChar;

 Height,Width,CentreX,CentreY : double);far; external 'TURBODXF' index 6;
Procedure DXFEndTables; far; external 'TURBODXF' index 7;
Procedure DXFAddText10(X1,Y1,Z1,Height,Rotate : double; Txt,LayerName : PChar); far; external

 'TURBODXF'index 9;
Procedure DXFAddPoint(X1,Y1,Z1 : double; Layer : PChar); far; external 'TURBODXF' index 10;
Procedure DXFAddArc(X1,Y1,Z1,Radius,StartAngle,EndAngle : double;Layer : PChar); far; external

'TURBODXF' index 11;
Procedure DXFAddSolid(X1,Y1,Z1,
 X2,Y2,Z2,
 X3,Y3,Z3,
 X4,Y4,Z4 : double;
 Layer : PChar);far; external 'TURBODXF' index 12;
Procedure DXFAddLine(X1,Y1,Z1,X2,Y2,Z2: double;LayerName : PChar); far;

external 'TURBODXF' index 13;
Procedure DXFAddPoly(Layer : PChar);far; external 'TURBODXF' index 14;
Procedure DXFAddVertex(X1, Y1, Z1, StartWidth, EndWidth : double;
 Layer : PChar);far; external 'TURBODXF' index 15;
Procedure DXFEndPoly; far; external 'TURBODXF' index 16;
Procedure DXFAdd3DFace(X1,Y1,Z1,X2,Y2,Z2,X3,Y3,Z3,X4,Y4,Z4:double;
 Layer:PChar);far; external 'TURBODXF' index 17;
Procedure DXFAddCircle(X1,Y1,Z1,Radius,Extrusion:double; LayerName:PChar); far; external

'TURBODXF' index 18;
Procedure DXFClose; far; external 'TURBODXF' index 19;
Procedure DXFAddBar(X1,Y1,Width,Height:double; Layer:PChar);far; external 'TURBODXF' index 20;
Procedure DXFAddXAxis(X1,Y1,X2:double;NumTicks:integer;Layer:PChar);far; external 'TURBODXF'

 index 21;
Procedure DXFAddYAxis(X1,Y1,Y2:double;NumTicks:integer;Layer:PChar);far; external 'TURBODXF'

 index 22;
{===}

var
 i : integer;
 DXFFileName : PChar;

begin
 DXFFileName := 'TPDEMO1.DXF';
 Writeln('Testing TURBODXF DLL. Creating DXF file: ',DXFFileName);
 DXFOpen(DXFFileName); Create and open the ASCII file

 DXFHeader(1,1,10,10); Define the drawing limits. Lower left at
1,1. Upper right at 10,10

 DXFStartTables(5); 5 layers

 DXFADDLayer('LINES',1); Add the layers, The number is the
colour code.

 DXFADDLayer('TEXT',7);
 DXFADDLayer('ARC',1);
 DXFADDLayer('SOLID',5);
 DXFADDLayer('POLY',7);

 DXFStartViewTable(0); No defined views. Call needed for DXF
compatibility.

 DXFEndTables; Required. No parameters.

TurboDXF 10 Ideal Engineering Software

 DXFAddBar(-2,-2,15,16,'POLY'); The first entity. On layer 'POLY'. This
makes the background.

 for I := 1 to 5 do
 DXFAddBar(I*2,1,1,I*2,'SOLID'); Add 5 bars on layer SOLID.

 for I := 1 to 5 do Add 5 bars on layer LINES
 DXFAddBar(I*2-1,1,1,I*2-1,'LINES');

 DXFAddPoly('POLY'); Add a polyline. Applications vary in
their support of this entity.

 DXFAddVertex(3,1,0,0.5,0.25,'POLY');
 DXFAddVertex(4,3,0,0.35,0.5,'POLY');
 DXFAddVertex(5,3,0,0.75,0.15,'POLY');
 DXFAddVertex(7,5,0,0.25,0.25,'POLY');
 DXFEndPoly; End the polyline.

 DXFAddLine(0,0.5,0,10,0.5,0,'LINES'); Add a line.

 DXFAddLine(0,0.5,0,0,8,0,'LINES');

 DXFAddText10(2,12,0,0.5,0,'TurboDXF! from Ideal','TEXT'); Add some text. This is the
title

 DXFAddCircle(3,3,0,2,0,'ARC'); Add a circle. X,Y,Z,Thickness,Radius.

 for I := 1 to 8 do
 DXFAddText10(3,7,0,0.25,I*45,'TurboDXF!','TEXT'); Add the text "spokes"

 DXFAddArc(6,5,0,5,-10,110,'ARC'); Add an arc. X,Y,Z,Radius,Start angle,
end angle

 DXFAddSolid(7.5,1,0,9.5,1,0,9.5,6,0,7.5,3,0,'TEXT'); Add a filled solid

 DXFAddXAxis(0,0,10,10,'TEXT'); Add an x axis...

 DXFAddYAxis(0,0,10,10,'TEXT'); and a y axis.

 DXFClose; Close the DXF file.

 Writeln('Test Complete. DXF file closed.');
 writeln('Use Corel Draw, Micrografx Designer etc to view.');

end.

When compiled and run this Pascal program creates the TPDEMO1.DXF file.. The source code
for this program can be found in TPDEMO1.PAS.

TurboDXF 11 Ideal Engineering Software

