
Help Contents
Browse Custom Control version 3.0

developed by Gabriel Oancea
Copyright© Delta Soft Inc. 1992-1993

Description description; features, important tips
Properties list of all properties and the index of the custom properties
Events list of all the events supported and the index of the custom events
Constants values for constants and error messages
Keyboard summary list of all the available keys while in browse at run-time

The Browse control is a shareware application, that means you are free to use and
test it for 30 days.    After this period of time, if you decide you like it you have to
register it with the author (see address and Compuserve ID below).

You are free to distribute the demo version of the control in any way you like, if you
distribute it with all the documentation enclosed.    You are not allowed to sell it.

For inquiries please contact Gabriel Oancea, Compuserve ID: 70404,655, or contact
Delta Soft Inc., 12 Danton Court, Ajax, Ontario, Canada, postal code L1S 3G1.   
Telephone: (416) 619-2018.

Description

The Browse control can be used for viewing the contents of a database (DBF) file in a tabular format.    It
allows you to select the number and content of the data columns to be displayed, select the records you
want to view, the index to be used;    also allows editing of the data in the browse window, with data pre-
and post-validation - if editing for the respective column is enabled.

Please read the sub-chapters listed below in order, if you are new to Browse, vxBase or both.

NOTE: In order to use the control you must initialize the vxBase DLL, see your vxBase documentation.
Include the VXBASE.BAS file provided in your projects, or insert its contents in one of your modules.

Introduction a short introduction to the control
Index Scope what is and how yo use it, example
Pseudo-filter description and example
Editing how to handle editing
Other features goodies

Introduction

Example

The way the control appears to the users is very similar with a browse created with Clipper TBrowse
class, or with the standard xBase BROWSE command: each column has a column header, each row is
a record, the user can scroll horizontally and verically either using scroll bars or with the keyboard.   
Columns can be frozen at the left side of the control window, etc.    There are many improvements
compared to the DOS based browses, all the standard Windows and VB features are available.    There
are new features like index scoping and pseudo-filter, searching and many more.

There is no limit to the number of records in the database (max. is 2 billion), multi-user - multi-instance
capabilities are built in.    For database interface the browse control uses vxBase (a shareware DLL that
can be found on most of the Bulletin Boards that have a VB section, on Compuserve MS-BASIC forum,
etc.)

How it works:
First you have to create a browse on one of your forms: click the Browse icon in the ToolBox then draw
the control.    The default name is Brw1.    At design time you can set properties like colors, placement,
font and style.

At run-time, when you activate the browse you will have to initialize it: set the number of columns, the
width (in characters) of each column, the column headers; Optionally you can set the text alignment
(justification) for both the header and the data, enable or disable editing for each column, set the
number of left frozen columns (columns that will be always visible at the left edge of the control window,
also called nonscrollable), set special (enhanced) colouring for the columns you choose, and so on.

Then you open the DBF and assign the handle of the DBF to the Dbf property, in this moment the
control will start displaying data, namely will fire the GetLine event, asking you to provide it with the data
to be displayed, for the current line.    You will write code for returning the data formatted as desired, in
the cLine argument of the event.    This system allows a maximum of flexibility with a minimum of coding
required as summarized bellow:

1. Define the control at design time: Set colors, font properties, placement and initial
values for standard properties like Visible, Enabled,
Tag etc, if required.

2. Initialize the control at run-time: Set the no of columns, width of each column and
optional: header, column text alignment, column
width in pixels.
Assign the Dbf property and optional: set index,
scope(s), pseudo-filter, enable editing for the
columns you want (if any), set the no of frozen
columns, set the columns with special coloring, etc.

3. Write code for the GetLine event: This event returns a line of data from VB, to be
displayed by the browse; the line consists of the data
for each column added in one string, undelimited.

Introduction Example:

The example below assumes you have a form (Form1) on which there is a Browse control Brw1.    You
should also add the file VXBASE.BAS for the required declarations for the vxBase DLL.

Option Explicit
Dim nD as integer, nI as integer

Sub Form_Load()
vxInit ' initialize vxBase
vxSetLocks FALSE ' set Clipper compatible locking mechanism

' we want to browse 3 fields from the PURCHASE.DBF
Brw1.Cols = 3 ' set the number of columns
' set the data width for each column from 0 to Cols - 1, that is 0 to 2
Brw1.ColWidth(0) = 7 ' Customer no (the field name is CUSTNO, numeric
7.0)
Brw1.ColWidth(1) = 10 ' PO number (the field name is PONO, character
10)
Brw1.ColWidth(2) = 20 ' Cust name(the field name is CUSTNAME,
character, 20)
'Set the header text so that it matches the column widths set above
' 1234567 1234567890 12345678901234567890
Brw1.Header = "Cust.No" + "PO number " + "Customer name "

' open the database PURCHASE.DBF and assign the handle to the Dbf
property
nD = vxUseDbf("PURCHASE")
If nD <= 0 Then MsgBox "Error!": Exit Sub ' if database cannot be
opened
Brw1.Dbf = nD
' open the index PURCHASE.NTX and assign the handle to the Ntx property
nI = vxUseNtx("PURCHASE")
If nI <= 0 Then MsgBox "Error!": Exit Sub ' if database cannot be
opened
Brw1.Ntx = nI
Brw1.SetFocus ' We're done!

End Sub

Sub Brw1_GetLine(cLine as String)
' We must return a line of data, in this case our three fields
' The data will look like this:
' Col 0 Col 1 Col 2
' width=7 width = 10 width = 20
' 1234567 1234567890 12345678901234567890
' "9999999" + "XXXXXXXXXX" + "XXXXXXXXXXXXXXXXXXXX"
cLine = vxField("CUSTNO") + vxField("PONO") + vxField("CUSTNAME")

End Sub

Sub FormUnload(Cancel as integer) ' close all open files and
deallocate
Dim j as integer ' memory in the VXBASE.DLL
j = vxCloseAll() ' !!only at the end of the

program!!
vxDeallocate

End Sub

Index Scope

Example

One of the most important features of the control is the Index Scope, which will allow you to extract a
subset of records from the database browsed without using a filter, which is much faster.

The Index Scope can be used in two ways:
you can extract all the records for which the index key begins with a character string, or
you can extract all records for which the index key falls between two character string expressions.

For example if you have a CUSTOMER database, indexed on the field called CUSTNAME - the
customer name, you can extract all the customers with a name begining with 'SMITH' (that is 'SMITH',
'SMITHER', ...), or you can extract all the customers with a name that falls between 'Bill' and 'Joseph'.

In order to use the Index Scope you must have a database and index file open and the browse control
initialized (see the Introduction on how to do this).    To extract all the records for which the index key
begins with a character string expression (for example 'MyString') you set the IndexExp property to the
desired expression:
Brw.IndexExp = 'MyString', which can be a literal string or an expression which evaluates to
string.
The control will refresh all the visible records and position the record pointer on the first record that
meets your criteria.    If no record is found for which the index key begins with your expression, then the
control window is cleared, the record pointer is moved to EOF and the EmptyFile property is set to True.
To retrieve the current setting for the scope:
If Len(Brw.IndexExp) = 0 then

Label1.Caption = "Current Scope: <None>"
Else

Label1.Caption = "Current Scope: '" + Brw.IndexExp + "'"
End If

You can also extract all the records which fall in a range.    To do this set up your browse as above, then
set the IndexExp property to the upper limit of the range.    Then set the IndexExp2 property to the lower
limit of the range.    For example:
Brw.IndexExp = Trim$(Text1.Text)
Brw.IndexExp2 = Trim$(Text2.Text)
The control will refresh itself, and position the record pointer to the first record in scope.    If no record is
in scope (that is no record falls between Trim$(Text1.Text) and Trim$(Text2.Text) then the
record pointer is moved to the EOF, and the EmptyFile property is set to True.

Notes:
To clear one or both Index Expression properties set them to "" (an empty string), setting IndexExp to

an empty string will also clear the IndexExp2 and FilterExp and will refresh all records in display.
If you use both IndexExp and IndexExp2 properties they must be set in this order.    Subsequent

change of the IndexExp can clear the IndexExp2 (if IndexExp > IndexExp2).
When adding records with a scope set, you should make sure the newly added records fall in scope,

otherwise, after the REFRESHALL, the control can set the EmptyFile to True (the control
resolves a REFRESHALL by maintaining the current record pointer, and if this is out of scope it
will consider the file empty).    If you have to add a record that is not in scope it will NOT be
displayed, and it is recommend that you issue a GOTOP request instead of the REFRESHALL.

Index Scope Example

The following example illustrates how to create a browse in which the user will be able to set a scope.   
It is assumed that you have a form Form1 containing the following controls:
- a Browse control Brw1
- a Text Box: Text1
- a Command Button: Command1 (set the caption to "Set &Scope")
The code in the Form1 is listed below, you should add to the project the VXBASE.BAS module provided,
including the vxBase declare statements required.

Option Explicit
Dim nD as integer, nI as integer

Sub Form_Load()
vxInit
vxSetLocks False

nD = vxUseDbf("MyDbf") ' open database and index
nI = vxUseNtx("MyNtx")

' initialize the browse
Brw1.Cols = 3
Brw1.ColWidth(0) = 10
' set column widths, alignments, header etc....

Brw1.Dbf = nD ' set database handle
Brw1.Ntx = nI ' set index handle
Brw1.SetFocus ' start

End Sub

Sub Brw1_GetLine(cLine as String) ' get line event
cLine = vxField("MyField1") + ...' return data to display

End Sub

Sub Command1_Click()
' set the text entered in the Text1 as Index Scope
Brw1.IndexExp = Trim$(Text1.Text)

End Sub

Pseudo-Filter

Another major feature is the Pseudo-Filter, allowed only when a scope is active.    Basically the pseudo-
filter is similar to a normal xBase filter, the only difference being that it is applied only to the records
already in scope, that is sometimes a small sub-set of the whole database.    To set a Pseudo-Filter you
have to have an active Index Scope, then you assign a normal xBase filter expression to the FilterExp
property of the control.    It can be a literal character string:
Brw1.FilterExp = "BALANCE>0 .AND. DATEEXP > ctod('01/01/93')", or an expression
evaluating to a string:
Brw1.FilterExp = Trim$(txtMyText.Text) The expression must evaluate to a logical value.
You can use any valid vxBase expression, including aliased fields ("CUSTOMER->NAME").

You will discover that the Pseudo-Filter can be much faster than a normal filter, especially when the
scope in effect is narrow.    Both the scope and the pseudo-filter respect all the previous settings of the
work area: standard filter, relations, etc. So you can have a filter, set a scope and then set a pseudo-
filter and everything works fine.

Use the Example from the Index Scope and add another text box Text2, then modify the
Command1_Click to look like:

Sub Command1_Click()
' set the text entered in the Text1 as Index Scope
Brw1.IndexExp = Trim$(Text1.Text)

If len(Brw1.IndexExp) = 0 Then
Text2.Text = ""
Exit Sub ' don't bother with the filter, we have no scope

End If

On Error Resume Next
' if the filter expression is not valid the control will issue an error
message
Brw1.FilterExp = Trim$(Text2.Text)
If Brw1.FilterExp <> Trim$(Text2.Text) Then MsgBox "Wrong Pseudo-Filter!"
On Error GoTo 0

End Sub

Editing

Example

One of the most handy features of the control is on-the-spot editing, with data pre-validation and post-
validation and an edit flag for each column.

How does the user see it: while browsing a file he/she can either press ENTER to start editing the
current (highlighted) field, or just simply start entering the text. Press ENTER when done if you
want to save the current field, press ESC to cancel.

All the nice features are there: Cut, Copy and Paste to/from the clipboard, undo, scrolling, etc. -
like any normal text box.    Almost all the normal xBase editing keys are available: press ENTER or
PAGEUP / PAGEDOWN to exit edit mode and save, press ESC or click with the mouse outside the
edit area to cancel changes.    Press UP or DOWN arrows to save and move to the next record up
or down.

How do you program it: very simple: just set the property ColEdit(x) = True, (where x is the column
number for which you want to enable editing; you can enable editing of all columns, of one
column or of none, default is none).    Then you write code for the EditWhen event if you want to
do some data validation and finally in the EditValid event, if everything is fine use one of the
vxReplXXXX vxBase functions to replace data (you might need to do some locking as well - if
required).    This procedure is suitable if you have expressions as column data, rather than fields
(Click on Example above for details).

An alternative way: there is also an easier way to do it: let the control replace the fields for you, if the
columns enabled for edit with this mechanism are database fields.
Set the property ColField(x) = "MyFldName" - for example, for each the column you want to be
edit enabled (setting the ColField(x) to a valid field name will automatically set the ColEdit(x) to
True).
The control will replace the field you supply with the text entered, taking care of all the locking
required.    A EditReplFail event will be fired if the record could not be locked.    Using the
EditWhen and EditValid events, you can check the validity of data.    Returning False will either
not allow the editing, or keep the user in edit until a valid value is entered or the edit is cancelled
(Click on Example above for details).

You can have the 2 ways of editing mixed as you like. Some hints and requirements:
You must set the ColEdit and ColField properties after setting the Dbf property, otherwise the
edit flags and field names will be cleared.
Write data validation routines if you replace the data youself, you can prevent user errors.
Do not enable for editing the key (indexed) fields, only if absolutely required; an alternative is to
set the index order to 0 (natural order) - use vxDeselectNtx().
NEVER move the record pointer in the EditWhen / EditValid events (or if you do so restore it to
where it was), you might overwrite another record's data.    Also do not request any Action from
the browse while in one of this events, there is no need for the REFRESHLINE, this is done for
you.

Editing Example

The following example illustrates how to create a browse in which the user will be able to edit fieds on
the spot.    It is assumed that you have a form Form1 containing the Browse control Brw1.
The code in the Form1 is listed below, you should add to the project the VXBASE.BAS module
provided, including the vxBase declare statements required.

Option Explicit
Dim nD as integer, k as integer, nFld as integer

Sub Form_Load()
Dim cH As String

vxInit: vxSetLocks False
nD = vxUseDbf("MyDbf") ' open database

' initialize the browse
nFld = vxFieldCount()' get no of fields, max BRW_MAX_NO_OF_COLUMNS
If nFld > BRW_MAX_NO_OF_COLUMNS Then nFld = BRW_MAX_NO_OF_COLUMNS
Brw1.Cols = nFld
for k = 1 to nFld
Brw1.ColWidth(k - 1) = vxFieldSize(vxFieldName(k))
cH = cH + Mid$(vxFieldName(k) + Space$(10), 1,
vxFieldSize(vxFieldName(k)))

next k
Brw1.Header = cH
' set column alignments if desired

Brw1.Dbf = nD ' set database handle
Brw1.ColEdit(0) = True ' enable editing for the first field
for k = 2 to nFld
Brw1.ColField(k) = vxFieldName(k + 1) ' enable direct editing for
all

Next k ' the other fields in browse
Brw1.SetFocus ' start

End Sub

Sub Brw1_GetLine(cLine as String) ' get line event
For k = 1 to nFld
cLine = cLine + vxField(vxFieldName(k)) ' return data to display

Next k
End Sub

Sub Brw1_EditWhen(nCol As Integer, cField As String, lCancel As Integer)
' check if editing can proceed, if not set lCancel to True
' default action is to start editing

End Sub

Sub Brw1_EditValid(nCol As Integer, cField As String, lOk As Integer)
' write validation routines for each field, set lOk to False if invalid
data
' set the cField to some valid choice - if you want

' default action is to replace the data if the ColField(nCol) is not empty
' if ColField(nCol) is empty no action is taken, you must replace the field
' with the cField value
If nCol = 0 Then ' for field 1 we must replace data here
If vxLockRecord() Then ' let's suppose it's a Character field
vxReplString (vxFieldName(1)), (cField)
k = vxUnlock()

Else
MsgBox "Cannot lock the record!"

End If
End If

End Sub

Other features of the Browse control

Some other important properties and events are listed below:

Ability to lock one or more columns at the left edge of the control window: by setting the
LeftFrozen property to a number between 1 and Cols, you tell the browse control to 'freeze' the
respective number of columns - that means that they will be visible no matter how the user scrolls the
other columns. You can change the LeftFrozen property dynamically, at run-time - or let the user do it.   
This can be very handy if you would like to keep one / more column(s) always in view.    Frozen columns
can be edited, sized, etc. like any other normal column.

Highlighting columns: you can have selected columns displayed in a special color you can set up, all
you have to do is set the ColorSpecial and ColorTSpecial at design or run-time then set the
SpcColor(nColumn) = True and the column will be displayed using the two special colors as
background / foreground.    Useful for underlining some special column - as totals of some sort, or the
editable columns if you choose.

Run time adjustable column widths: the user can change the column width by dragging the column
separator with the mouse.    For this, move the mouse on the column headers, between two columns:
the cursor shape will change;    press the right mouse button and keep it pressed, the column will
appear delimited with a focus rectangle, size it to the right or left, release the mouse button when done.
You can also set the column width from code using the ColWidthPix property (the width of each column
in pixels).    This can be useful to save and restore settings of a query the user has defined: when the
control is unloaded (for example in the Form_Unload() save the column width in pixels to some
variable(s), then upon exiting the program to a INI file.    In the Form_Load() procedure (after setting the
ColWidth - data width in characters) set the ColWidthPix to the saved values, eventually the location of
the window on screen.

Design-time / run-time adjustable colors: you can set the colors for the header, normal, highlighted
cell, frozen columns and special columns;    the defaults are the Windows system colors.    You can offer
the user the chance of setting them to his/her preferences (use for example the common dialog box
control - Colors), and then you can save and restore them.

Refresh record data displayed on the screen: write code in the Change event, this is fired every time
the row, column, record number or any combination of the above are changing.    You can have a non
modal form displayed with the whole record on one side of the screen and you can refresh it every time
the user moves in another window containing a browse.

Find out when the user tries to move outside the current scope (past EOF or before BOF): the
events HitTop and HitBottom are fired every time when the user tries to move outside the current limits.
Also the HitTop and HitBottom properties are set to True when the user tries to move past EOF of
above BOF.    You can use these events / properties to ask if he wants to add a record, or just simply
beep at him.

Reposition the record pointer / refresh the browse display from code: the Action property allows
you to send requests to the browse control, like: RefreshLine, RefreshAll, GoTop, GoBottom, Up, Down,
Left or Right.    You can look at the Action property as a method, because no custom methods can be
implemented in the actual version of the CDK.
Another important feature is to search for a certain expression, if the file is indexed, set the SearchKey
property to any string, the Action property will be set to True if the expression was found.
You can also force the user to enter Edit mode from code, just set the Action property to
BRW_ACT_EDIT, and the current column from the current record will be edited.

Browse Properties

The standard Visual Basic properties supported are:
NAME, INDEX, BORDERSTYLE, DRAGMODE, DRAGICON, ENABLED, FONTBOLD, FONTITALIC,
FONTNAME, FONTSIZE, FONTSTRIKE, FONTUNDER, HEIGHT, HELPCONTEXTID, HWND, LEFT,
MOUSEPOINTER, PARENT, TABINDEX, TABSTOP, TAG, TOP, VISIBLE, WIDTH.    Please see your VB
manual for details about any of these properties.

Custom Properties
Available at design time:
ColorNormal Long Background color of the normal data cells
ColorHeader Long Background color of the column headers
ColorHighlight Long Background color of the highlighted data cell
ColorFrozen Long Background color of the frozen columns
ColorSpecial Long Background color of the special colored columns
ColorTNormal Long Text color of the normal data cells
ColorTHeader Long Text color of the column headers
ColorTHighlight Long Text color of the highlighted data cell
ColorTFrozen Long Text color of the frozen columns
ColorTSpecial Long Text color of the special colored columns

Available at run-time only, read only at run-time
Rows Integer Total no of rows visible in the window
RowHg Integer Row height, in pixels
LineLenPix Integer Total browse line length, in pixels
LineLenChar Integer Total browse data line length, in characters
LeftCol Integer Left-most visible column no (from 0 to Cols-1)
RightCol Integer Right-most visible column
CurrCell String Highlighted cell text
LastLine Integer Last row of data in display
EmptyFile Integer TRUE if the database has no records, or no record matches the scope /
filter
HitTop Integer TRUE if the user has tried to move above BOF
HitBottom Integer TRUE if the user has tried to move past EOF
xPos Integer Current left coordinate of the highlighted cell in pixels
yPos Integer Current top coordinate of the highlighted cell in pixels
HBarDim Integer Height of the horizontal scroll bar in pixels, 0 if no bar is required
VBarDim Integer Width of the vertical scroll bar in pixels, 0 if no bar is required

Available at run time only, read-write at run time
Header String Columns header
Cols Integer Total number of columns in browse
ColWidth() Integer Array of column data width, array index starts at 0 to Cols-1
ColWidthPix() nteger Array of column pixel widths, array index starts at 0 to Cols-1
ColAlign() Integer Columns alignment (left, right or center)
SpcColor() Integer True if you want the column highlighted in the special color
ColEdit() Integer True if you want edit enabled for the column
ColField() Integer Valid field name if you want edit enabled in auto-replace mode
Col Integer Current display column
Row Integer Current display row
LeftFrozen Integer No of columns to freeze to the left edge of the control window

HScroll Integer Nothing, this property is kept for compatibility with previous versions.
VScroll Integer Nothing, this property is kept for compatibility with previous versions.
Dbf Integer Handle of the Dbf work area, returned by vxUseDbf() / vxUseDbfRO()
Ntx Integer Handle of the Ntx, returned by vxUseNtx()
IndexExp String Scope based on the index key (alone or with IndexExp2)
IndexExp2 String Scope based on the index key (with IndexExp only)
FilterExp String Pseudo-filter, must be a valid xBase expression
SearchKey String A character key to search in the selected set of records
Action Integer Tell the Browse control what to do

Browse Colors [Long]

[Var] = [Form!]Brw.ColorHeader [= LongExp] ' header BackColor
[Var] = [Form!]Brw.ColorTHeader [= LongExp] ' header ForeColor
[Var] = [Form!]Brw.ColorNormal [= LongExp] ' normal cell BackColor
[Var] = [Form!]Brw.ColorTNormal [= LongExp] ' normal cell ForeColor
[Var] = [Form!]Brw.ColorHighlight [= LongExp] ' highlighted cell
BackColor
[Var] = [Form!]Brw.ColorTHighlight[= LongExp] ' highlighted cell
ForeColor
[Var] = [Form!]Brw.ColorFrozen [= LongExp] ' frozen columns BackColor
[Var] = [Form!]Brw.ColorTFrozen [= LongExp] ' frozen columns ForeColor
[Var] = [Form!]Brw.ColorSpecial [= LongExp] ' special columns BackColor
[Var] = [Form!]Brw.ColorTSpecial [= LongExp] ' special columns ForeColor

The default values are the Windows standard system colors: caption background and text, window
background and text and selected item background and text.    The ColorFrozen, ColorTFrozen,
ColorSpecial and ColorTSpecial will be the same as ColorNormal and respectively ColorTNormal by
default, you can change them at design stage if you choose to use them.

The colors can be changed at design time by either typing in a hex value, or by selecting the color
from the standard VB color box (click on the '...' button or double-click on the property name to activate
it).

You can also change colors at run time as a response to some user selection - for example selecting
another color from the CommDlg Colors Selection dialog.

NOTE:
when the browse does not have focus or when it is not enabled, the header colors will change to
the standard Windows inactive window caption colors.
if a color is set both to special and frozen status, the frozen color is used.

Example:
' set a flashing background for the current cell in browse
' we create a timer Timer1 and set the interval to 0.3 seconds
' It is nor recommendable to use the timer like this, but this
' is just an example for using the colors
Sub Timer1_Timer()
Static lRed
If lRed Then

lRed = False: Brw.ColorHighlight = &HFF0000& ' Blue
Else

lRed = True: Brw.ColorHighlight = &HFF& ' Red
End If

End Sub

Rows [Integer]

[Var] = [Form!]Brw.Rows

The Rows property is read-only at run time, and represents the no of rows visible currently, including
the blank rows (if any).    The header line is not included.

Example:
' adjust the height of the browse to fit 20 rows of data
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
' some form resizing code here, make sure there is room enough
If Brw.Rows <> 20 Then

nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
' recalc height: 20 rows+1 header line + Horz Bar height
Brw.Height = (20 + 1) * Brw.RowHg + Brw.HBarDim
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End If
End Sub

RowHg [Integer]

[Var] = [Form!]Brw.RowHg

The RowHg property is read-only at run time, and represents the height (in pixels) of one data row, it
will change when the font name or style changes

Example:
' adjust the height of the browse to fit 20 rows of data
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
' some form resizing code here, make sure there is room enough
If Brw.Rows <> 20 Then

nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
' recalc height: 20 rows+1 header line + Horz Bar height
Brw.Height = (20 + 1) * Brw.RowHg + Brw.HBarDim
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End If
End Sub

LineLenPix [Integer]

[Var] = [Form!]Brw.LineLenPix

The LineLenPix property is read-only at run time, and represents the length of one full line of data (if all
columns would be visible).    It will change when the font name or style, no of columns, data width of a
column or column width in pixels are changing.

Example:
' adjust the width of the browse to fit all columns in display
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
If Brw.LineLenPix + Brw.VBarDim <= Me.ScaleWidth Then

Brw.Width = Brw.LineLenPix + Brw.VBarDim ' reset the width
End If
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End Sub

LineLenChar [Integer]

[Var] = [Form!]Brw.LineLenChar

The LineLenChar property is read-only at run time, and represents the length, in characters, of one
line of data.    It will change when the no of columns or data width of a column are changing.

Example:
' pad with spaces the line of data we return to the control
' from the GetLine event
' NOTE: padding is not required, the control will add the required spaces
' This is just an example
Sub Brw_GetLine(cLine As String)
' set data in cLine = MyField + a custom function: MyFunction$
cLine = vxField("MyField") + MyFunction$(vxRecNo())
If len(cLine) < Brw.LineLenChar Then ' check if data length is Ok

cLine = cLine + Space$(Brw.LineLenChar - len(cLine))
End If

End Sub

LeftCol, RightCol [Integer]

[Var] = [Form!]Brw.LeftCol
[Var] = [Form!]Brw.RightCol

The LeftCol and RightCol properties are read-only at run time, and represent the left-most and
respectively the right-most visible columns in the browse.    They change as the user moves using the
left / right arrow keys or the horizontal scroll bar.    Useful when you need to know whether a column is
visible or not, for edit purposes for example.

The LeftCol represents the left-most NOT FROZEN column, if any.

Example:
' we want to count all the empty EXPIRES date fields in a database,
' in a fancy way
' For this we set up a disabled browse Brw and write the function:
Function CountBlanks() As Integer
Dim nCnt As Integer
' select the file and go top, we assume the browse is already setup
' and the EXPIRES field is in column 3, we have 2 columns frozen
Brw.Action = BRW_ACT_GOTOP ' go top
Do While Brw.LeftCol < 3 ' put the EXPIRES column near the frozen
cols

Brw.Action = BRW_ACT_RIGHT ' move one to the right
Loop

Do While Not vxEof() And Not Brw.HitBottom
If vxEmpty("EXPIRES") Then nCnt = nCnt + 1
Brw.Action = BRW_ACT_DOWN ' the use can see the cursor moving down
fast

Loop
End Sub

CurrCell [String]

[Var] = [Form!]Brw.CurrCell

The CurrCell property is read-only at run time, and represents the text in the current cell (that is the
active cell - the one in the highlighted color).    It changes every time the user moves in the browse, you
can use the Change event to find out when it changed, for example in order to update a Label control
caption.    The character string returned by the CurrCell property is what the user gets to edit, if edit is
enabled for the specified column, it will be passed in the EditWhen event to you for pre-validation.

Example:
' we want to show the contents of the current cell in the Label1 control
Sub Brw_Change(nRowCol As Integer)
Label1.Caption = "Current Cell: " & Brw.CurrCell
If nRowCol <> BRW_CHANGE_COL Then ' if RecNo has changed

RedisplayRecord ' refresh the display
End If

End Sub

Sub Brw_EditWhen(nCol As Integer, cField As String, lCancel As Integer)
' for example allow editing only for blank fields
' the cField is actually the same with CurrCell
If Trim$(cField) <> "" Then lCancel = True ' setting lCancel to True
will

End Sub ' prevent entering in edit
mode

LastLine [Integer]

[Var] = [Form!]Brw.LastLine

The LastLine property is read-only at run time, and represents the last line of data in the browse
control window.    If there is enough data (records) in the database to fill all the rows, LastLine = Rows
and a vertical scroll bar is present (VBarDim > 0), otherwise LastLine is smaller and no vertical bar is
displayed (also VBarDim will be set to 0).    It can be smaller, although there are enough records to be
displayed, if you use the vertical scroll bar by dragging the thumb near the end of the file.    In this case
the control will position the file on the new record, and will place it on the first line in the browse;    if
there are less records to EOF than lines visible, then LastLine will be smaller than Rows.

If the file is empty (no records, or no records in scope / filter), then LastLine is 0, and EmptyFile will be
set to True.    It is recommendable to use EmptyFile to test for the empty file condition.

Example:
' shrink the browse if less records than no of lines visible in browse,
' so that we do not display blank lines
Sub Form_Load()
' Initialize the browse, set the Dbf and Ntx, scopes etc.
If Brw.LastLine < Brw.Rows Then

' Set the new browse Height
Brw.Height = Brw.LastLine * Brw.RowHg + Brw.HBarDim + 1

End If
End Sub

EmptyFile [Integer]

[Var] = [Form!]Brw.EmptyFile

The EmpyFile property is read-only at run time, and is set to True if the database file is empty - has no
records or if there are no records meeting the criteria you set with index scope: IndexExp, IndexExp2
and eventually pseudo-filter: FilterExp.    Also if the filter set with vxFilter Sub (vxBase) can determine
the file to appear empty.    If the EmptyFile is set to True, the LastLine is set to 0 and the data lines are
cleared, no vertical bar is displayed, the current cell is set to "" (an empty string) and cursor (active
cell) will not be allowed to move except on row 0 (the first row).    The GetLine event is NOT fired when
EmptyFile is True.

It is useful to check for empty file before writing a record to file, you should append a blank record if
the file is empty before the replace statements.

Example:
' save a set of values entered by the user, if the file is empty add a
record
Function MyRecSave() As Integer
Dim lOk As Integer

If Brw.EmptyFile Then
lOk = vxAppendBlank() ' add a blank record

Else
lOk = vxLockRecord ' lock current record

End If

If Not lOk Then
MsgBox "Cannot lock/append record!" ' lock/append failed
MyRecSave = lOk ' return FALSE
Exit Function

End If

' replace data...
lOk = vxWrite() ' commit changes
lOk = vxUnlock() ' release lock
If Brw.EmptyFile Then ' EmptyFile is still True, if file was empty,

' we did no refresh yet
Brw.Action = BRW_ACT_REFRESHLINE

Else
Brw.Action = BRW_ACT_REFRESHALL 'refresh all after append

End If
MyRecSave = True

End Function

HitTop, HitBottom [Integer]

[Var] = [Form!]Brw.HitTop
[Var] = [Form!]Brw.HitBottom

The HitTop, HitBottom properties are read-only at run time, and they are set to True if the user has
tried to move up before the beginning of file or before the first record in scope and, respectively past
end of file or down past the last record in scope.    In both cases first the HitTop / HitBottom events are
fired, and then the two properties are set.
The two properties are useful if you use the BRW_ACT_DOWN / BRW_ACT_UP actions from code to
move the record pointer, for example if you want to print all records in scope at any time - as in the
example below.

Example:
' print all the records in scope, without knowing what the scope is, for
example
' if the scope can be set by the user for a generic query
Function PrintMyQuery() As Integer
If Brw.EmptyFile Then
MsgBox "Nothing to print"
PrintMyQuery = False
Exit Function

End If

Brw.Action = BRW_ACT_GOTOP
' print some headers
Do While Not Brw.HitBottom
PrintOneLine ' print one data line
Brw.Action = BRW_ACT_DOWN ' skip one record and refresh the display

Loop
Printer.EndDoc
PrintMyQuery = True

End Function

xPos, yPos [Integer]

[Var] = [Form!]Brw.xPos
[Var] = [Form!]Brw.yPos

The xPos, yPos properties are read-only at run time, and they are the coordinates, in pixels, of the
current highlighted cell's upper-left corner, relative to the browse control's upper-left corner.
NOTE: the two properties are always in pixels, no matter what the ScaleMode of the container of the
browse control is.    If you use a different ScaleMode, and you plan to use them, you should transform
the coordinates from pixels to your mapping mode.

The width and height of the current cell are the width of the current column in pixels:
Brw.ColWidthPix(Brw.Col) and the row height: Brw.RowHg respectively.

Example:
The following example shows how to change the cursor (MousePointer) shape when it is above the
highlighted cell.    Create a label control Label1, set the caption to "" (an empty string), set BorderStyle
to None, BorderStyle to TRANSPARENT, and bring it to front (above) the Brw control, that will make
the control invisible.    Set the MousePointer property to a special shape, for example 2 (Cross).    At
run time we will change the position of this control every time the Brw current cell changes position, so
that the control will be exactly above the current cell, that will make the mouse pointer to change to our
new shape.    The code in the Change event bellow is doing the repositioning.

DefType MYRECT ' add this in a module
left As Integer
top As Integer
width As Integer
height As Integer

End Type

Sub Brw_Change(nRowCol As Integer)
Dim r as MYRECT
' we assume the form has the ScaleMode set to 3 (PIXELS)
r.left = Brw.Left + Brw.xPos
r.top = Brw.Top + Brw.yPos
r.width = Brw.ColWidthPix(Brw.Col)
r.height = Brw.RowHg
Label1.Move r.left, r.top, r.width, r.height

End Sub

HBarDim, VBarDim [Integer]

[Var] = [Form!]Brw.HBarDim
[Var] = [Form!]Brw.VBarDim

The HBarDim, VBarDim properties are read-only at run time, and they represent the height of the
horizontal scroll bar and the width of the vertical scroll bar of the browse control, respectively.    They
are 0 if the respective scroll bar is not required.
NOTE: the two properties are always in pixels, no matter what the ScaleMode of the container of the
browse control is.    If you use a different ScaleMode, and you plan to use them, you should transform
the coordinates from pixels to your mapping mode.

The two properties can be used as an indicator of the presence of the scroll bars, and also they are
useful for run-time resizing of the browse.

Example:
' adjust the height of the browse to fit 20 rows of data
Sub Form_Resize()
' if iconic don't bother
If Me.WindowState = MINIMIZED Then Exit Sub
' some form resizing code here, make sure there is enough room
If Brw.Rows <> 20 Then

nOldScaleMode = Me.ScaleMode ' save old scale mode
Me.ScaleMode = PIXELS ' defined in CONSTANT.TXT = 3
' recalc height: 20 rows+1 header line + Horz Bar height
Brw.Height = (20 + 1) * Brw.RowHg + Brw.HBarDim
Me.ScaleMode = nOldScaleMode ' and restore scale mode

End If
End Sub

Header [String]

[Var] = [Form!]Brw.Header [= StringExp]

The Header property is a string made from the concatenation of all the column headers.    You have to
assign the Header only after you have defined the number of columns in the browse Cols and the data
width of each column ColWidth.    The header can be very easily made up by concatenating all the
column headers, padded with spaces or trimmed to the data width of the respective column.    Normally
you would do this in the Form_Load sub, or in the function which starts the browse.

If the number of columns in browse, or the column data width for any column changes, the header is
automatically adjusted (padded or trimmed).    However, if the column contents changes, you should
re-asssign the Header.

NOTES:
If you do not trimm / padd with spaces each column header to be exactly the size of the data width
of the column, the header will be displayed erroneously.    A simple pad function is presented
below, it is included in the VXBASE.BAS module if you want to use it.
The last column does not need to be padded.
If you assign a string longer than LineLenChar characters, it will be trimmed, no error is generated.

Example:
simple function to padd a var with spaces or to trimm it to a given length
' it works both for strings and numbers, normally should return string, but
' who knows what we might use it for, so let's return a Variant
Function pad(ByVal cString As Variant, ByVal nLength As Integer) As
Variant

pad = Mid(cString & space$(nLength), 1, nLength)
End Function

Sub Form_Load()
' a simple database: CUSTOMER, 3 fields: CUSTNAME - Char 30,
' CUSTADDR - Char 30, CUSTNO - Numeric 10.0
' set the number of columns to 3, and column width as above
Brw.Cols = 3
Brw.ColWidth(0) = 30 ' CUSTNAME
Brw.ColWidth(1) = 30 ' CUSTADDR
Brw.ColWidth(2) = 10 ' CUSTNO

' and now set the header
Brw.Header = pad("Customer name", 30) + pad("Address", 30) + "Number"

' continue with intitialization, set the Dbf, Ntx, ...
End Sub

Cols [Integer]

[Var] = [Form!]Brw.Cols [= IntegerExp]

The Cols property is an integer, available only at run-time, which sets the number of data columns
displayed by the browse.    It must be a positive number and no bigger then
BRW_MAX_NO_OF_COLS (see Constants).

Assigning the Cols of the control is the first logical step of initialization, although is not preemptive.   
But when you change the Cols everything is resized / changed so it is a good practice to set the Cols
first, and when you change it, change the others related properties as well.    The next step would be to
assign the columns data width (ColWidth) and then the columns Header.

For a detailed explanation about the browse initialization see Introduction and the example there.

ColWidth [Array of Integers]

[Var] = [Form!]Brw.ColWidth(n%) [= IntegerExp]

The ColWidth property is an array of integers, available only at run-time, which sets the width of the
data displayed in each column, from 0 to Cols - 1, in characters.    It must be positive and less than
BRW_MAX_COL_WIDTH for each column (see Constants).

After assigning the Cols (number of columns) of the control, the next logical step of initialization is to
assign the columns data width for each column and then the columns Header.

The value assigned for each column tells the control how much space to allocate for each column's
data, and also for the column header.    You should use these values also when assigning the Header
and when writing code for the GetLine event.    Data returned to the browse will be assigned to each
column using the values in the ColWidth array.

The ColWidth property can be dynamically changed, this will resize the internal buffer maintained by
the control, and will also resize the ColWidthPix property for the respective column.    Please note that
changing the ColWidthPix() or resizing the columns with the mouse will NOT affect the ColWidth!

For a detailed explanation about the browse initialization see Introduction and the example there.

ColWidthPix [Array of Integers]

[Var] = [Form!]Brw.ColWidthPix(n%) [= IntegerExp]

The ColWidthPix property is an array of integers, available only at run-time, which sets the width of
each column (the displayed width in pixels not the data width in characters as ColWidth does), valid
indexes are from 0 to Cols - 1.    This property changes when the ColWidth changes and also when the
user resizes the column with the mouse, or when the font changes.    Changing this property will not
affect how many characters are stored in the internal buffer for each column.

The default value is the column width in characters multiplied by the average character width for the
selected font.

You would have no reason to set this property from code, except one case: you want to restore a
previous state of a user defined query window, see the example below.

Example:
The following example stores the last position and other settings of a user defined query into a user
type, which is in turn saved to a disk file or INI file when the user exits the application.    We will just
show the code to save the last status of the window and restore it from the sStatus variable.    Saving
and restoring to/from file are not shown, you can use either a random file or some WinAPI calls like
Get/SetProfileString.
DefType MYSTATUS
left As Integer
top As Integer
width As Integer
height As Integer
ColWdt(0 to BRW_MAX_NO_OF_COLS) As Integer
' other data as DBF name, index name, scope, ...

End Type
Global sStatus As MYSTATUS

Sub Form_Unload(Cancel As Integer)
' save form position and browse column widths
sStatus.left = Me.Left
sStatus.top = Me.Top
sStatus.width = Me.Width
sStatus.height = Me.Height
For k = 0 to Brw.Cols - 1

sStatus.ColWdt(k) = Brw.ColWidthPix(k)
Next k
' save other data to sStatus

End Sub

Sub Form_Load()
' initialize the browse, ...
' then restore status, or start with default values if no status saved
If sStatus.height = 0 Then Exit Sub ' no previously saved status, exit
Me.Left = sStatus.left
Me.Top = sStatus.top
Me.Width = sStatus.width
Me.Height = sStatus.height
For k = 0 to Brw.Cols - 1

Brw.ColWidthPix(k) = sStatus.ColWdt(k)
Next k

End Sub

ColAlign [Array of Integers]

[Var] = [Form!]Brw.ColAlign(n%) [= IntegerExp]

The ColAlign property is an array of integers, available only at run-time, which sets the way the column
headers and data are aligned (justified) within the display rectangle.    The headers and data can have
different alignments (header left justified, data right justified for example).    By default both the headers
and the data are left aligned.

Available alignments are left (default), center and right.

You can set the column alignments to a combination of data + header alignment constants, for
example BRW_ALIGN_LEFT + BRW_ALIGNH_RIGHT (see Constants for the values).

After assigning the number of columns (Cols) of the control and the column widths (ColWidth), you can
set the column alignment for each column, as required.

Example:
Sub Form_Load()
' a simple database: CUSTOMER, 3 fields: CUSTNAME - Char 30,
' CUSTADDR - Char 30, CUSTNO - Numeric 10.0
' set the number of columns to 3, and column width as above
Brw.Cols = 3
Brw.ColWidth(0) = 30 ' CUSTNAME
Brw.ColWidth(1) = 30 ' CUSTADDR
Brw.ColWidth(2) = 10 ' CUSTNO

Brw.ColAlign(0) = BRW_ALIGN_CENTER + BRW_ALIGNH_CENTER ' both centered
Brw.ColAlign(1) = BRW_ALIGN_LEFT + BRW_ALIGNH_CENTER ' left, header
right
Brw.ColAlign(2) = BRW_ALIGN_RIGHT + BRW_ALIGNH_RIGHT ' both right

' and now set the header
Brw.Header = pad("Customer name", 30) + pad("Address", 30) + "Number"

' continue with intitialization, set the Dbf, Ntx, ...
End Sub

SpcColor [Array of Integers]

[Var] = [Form!]Brw.SpcColor(n%) [= IntegerExp]

The SpcColor property is an array of integers (valid values are True and False).    This property, in
conjunction with ColorSpecial and ColorTSpecial, is used to display the selected column(s) in a
different color.    You can set the background and foreground color of the special colored columns at
design time or run time, then after initializing the browse, set the SpcColor to True for all the columns
you want displayed in the special color.    By default no column is specially colored and the two special
color are the same as the normal colors.

You can use this property to display the editable columns in a different color, or to highlight a
calculated column, for example.

If editing is enabled for the special columns, the color of the edit window is the same as the columns
color.

Example:
Sub Form_Load()
' a simple database: CUSTOMER, 3 fields: CUSTNAME - Char 30,
' CUSTADDR - Char 30, CUSTNO - Numeric 10.0
' set the number of columns to 3, and column width as above
Brw.Cols = 3
Brw.ColWidth(0) = 30 ' CUSTNAME
Brw.ColWidth(1) = 30 ' CUSTADDR
Brw.ColWidth(2) = 10 ' CUSTNO

' set color combination for the special columns
Brw.ColorSpecial = QBColor(12) ' intense red background
Brw.ColorTSpecial = QBColor(10) ' intense blue text
Brw.SpcColor(0) = True ' Display CUSTNAME in the special col.
combination

Brw.Header = pad("Customer name", 30) + pad("Address", 30) + "Number"

' continue with intitialization, set the Dbf, Ntx, ...
End Sub

ColEdit [Array of Integers]

[Var] = [Form!]Brw.ColEdit(n%) [= IntegerExp]

The ColEdit property is an array of integers (valid values are True and False).    This property, when
set to True, will enable editing for the specified column.    By default editing is disabled for all columns.
If you set this property to True for a column, but the ColField() property for the same column is empty,
you have to replace the user edited value yourself in the EditValid event.

At run-time the EditWhen event will be fired prior to enter Edit mode, then an EditValid event is fired
when the user leaves the Edit mode with intention to save.

You can prevent the user to enter Edit mode by setting the lCancel argument of the EditWhen
event to True, if for any reason you do not want edit for current record.
You can force data saved to be valid by setting the lOk argument of the EditValid event to False,
you can even return a suggested value in the cField string argument.
See Editing for more details.

If the data entered by the user (the cField argument of EditValid) is Ok, you can replace it, the locking
is your responsibility.

NOTES:
Do not issue a BRW_ACT_REFRESHLINE in the EditValid, refreshing is done for you.    Do not
change the record pointer while in the events, or if you do, then restore it.
The number of characters allowed in Edit mode is equal to the ColWidth() - the data width for the
respective column.

Example:
Sub Form_Load()
' a simple database: CUSTOMER, 3 fields: CUSTNAME - Char 30,
' CUSTADDR - Char 30, CUSTNO - Numeric 10.0
' set the number of columns to 3, and column width as above
Brw.Cols = 3
Brw.ColWidth(0) = 30 ' CUSTNAME
Brw.ColWidth(1) = 30 ' CUSTADDR
Brw.ColWidth(2) = 10 ' CUSTNO

Brw.ColEdit(0) = True ' enable edit for the CUSTNAME

Brw.Header = pad("Customer name", 30) + pad("Address", 30) + "Number"

' continue with intitialization, set the Dbf, Ntx, ...
End Sub

Sub Brw_EditValid(nCol As Integer, cField As String, lOk As Integer)
' nCol indicates what column is in edit mode, we have only one
If Trim$(cField) = "" Then ' avoid empty customer names

MsgBox "Customer name cannot be blank!"
lOk = False: Exit Sub

End If
If vxLockRecord() Then ' lock the record

vxReplString "CUSTNAME", (cField) ' replace the field
j = vxUnlock() ' unlock

Else

' Lock failed, let the user know, eventually more elegant recovery
MsgBox "Cannot lock the record, try later please"

End If
End Sub

ColField [Array of Strings]

[Var] = [Form!]Brw.ColField(n%) [= StringExp]

The ColField property is an array of strings (valid field names from the current work area).    If you
assign the ColField property for a column, editing will be enabled for this column, and the control will
be in charge of replacing the data in the database as entered by the user.    The ColEdit() property for
the respective column is automatically set to True.    The EditWhen and EditValid events will be fired as
usual, but you do not have to write any code for data replacing, just for data validation, compare the
example at ColEdit() with the one bellow.

The ColField property must be set after assigning the Dbf property, so that the control can check if the
field names assigned are valid.

At run-time the EditWhen event will be fired prior to enter Edit mode, then an EditValid event is fired
when the user leaves the Edit mode with intention to save.

You can prevent the user to enter Edit mode by setting the lCancel argument of the EditWhen
event to True, if for any reason you do not want edit for current record.
You can force data saved to be valid by setting the lOk argument of the EditValid event to False,
you can even return a suggested value in the cField string argument.
See Editing for more details.

NOTES:
Do not issue a BRW_ACT_REFRESHLINE in the EditValid, refreshing is done for you.    Do not
change the record pointer while in the events, or if you do, then restore it.
The number of characters allowed in Edit mode is equal to the ColWidth() - the data width for the
respective column.
If the control cannot lock the record a FireReplFail event is fired, and the edit is cancelled

Example:
Sub Form_Load()
' a simple database: CUSTOMER, 3 fields: CUSTNAME - Char 30,
' CUSTADDR - Char 30, CUSTNO - Numeric 10.0
' set the number of columns to 3, and column width as above
Brw.Cols = 3
Brw.ColWidth(0) = 30 ' CUSTNAME
Brw.ColWidth(1) = 30 ' CUSTADDR
Brw.ColWidth(2) = 10 ' CUSTNO
Brw.Header = pad("Customer name", 30) + pad("Address", 30) + "Number"
' continue with intitialization, set the Dbf, Ntx, ...
' after
Brw.ColField(0) = "CUSTNAME" ' enable edit for the CUSTNAME column

End Sub

Sub Brw_EditValid(nCol As Integer, cField As String, lOk As Integer)
' nCol indicates what column is in edit mode, we have only one
If Trim$(cField) = "" Then ' avoid empty customer names

MsgBox "Customer name cannot be blank!"
lOk = False

End If
End Sub

Col, Row [Integer]

[Var] = [Form!]Brw.Col [= IntegerExp]
[Var] = [Form!]Brw.Row [= IntegerExp]

The Col and Row properties represent the current column and row in the browse (where the
highlighted cell is).    The user can change any of them by moving with the arrows, clicking with the
mouse, etc.

If you assign them, Col must be between 0 and Cols - 1, Row must be between 0 and LastLine - 1,
otherwise a run-time error is generated.

By assigning Row and / or Col you force the control to move the highlighted cell there.

Example:
' this example shows a way to keep the user out of the frozen columns
Sub Brw_Change(nRowCol As Integer)
If Brw.Col < Brw.LeftFrozen Then Brw.Col = Brw.LeftFrozen

End Sub

LeftFrozen [Integer]

[Var] = [Form!]Brw.LeftFrozen [= IntegerExp]

The LeftFrozen property sets the no of columns to be visible all the time, these columns start with
column 0 to LeftFrozen - 1.    The frozen columns will be excluded from the horizontal scroll, when the
user moves to the right or left, either with the mouse or using the keyboard.

The LeftFrozen columns will be displayed in the ColorFrozen / ColorTFrozen combination, by default
these colors are the same with the normal colors.    Increasing / decreasing the LeftFrozen will
dynamically add / remove fixed columns to the left edge.    If a column is both Special color and Frozen
the Frozen colors will take precedence.

If the combined width of all the frozen columns exceeds the control width, then the control cannot be
scrolled horizontally.    The LeftCol is the number of the left-most visible column excluding the frozen
columns.

Example:
' freeze 2 columns to the left
Brw.LeftFrozen = 2

Dbf [Integer]

[Var] = [Form!]Brw.Dbf [= IntegerExp]

The Dbf property is a valid handle to an open database, the one you want to browse.    You obtain this
handle from one of the vxUseDbf() or vxUseDbfRO() vxBase functions.    After initializing the browse:
number of columns, column data width, alignment, header, the next step is to open the database file
and assign the handle to the Dbf property.

If you want to set a standard filter, set it before assigning the handle to the Dbf property, in this way
you will avoid a useless refresh.

When you set this property, all the database related properties like Ntx, IndexExp, etc., and most of the
array properties (like ColField, etc.) are reset to the default values.    After this the control will start to
retrieve data, that is, it will fire a GetLine event for each row of data required;    if the control is visible
the data will be displayed as well.

Example: (for another example see also the Introduction and the example there)
Sub Form_Load()
' a simple database: CUSTOMER, 3 fields: CUSTNAME - Char 30,
' CUSTADDR - Char 30, CUSTNO - Numeric 10.0
' set the number of columns to 3, and column width as above
Brw.Cols = 3
Brw.ColWidth(0) = 30 ' CUSTNAME
Brw.ColWidth(1) = 30 ' CUSTADDR
Brw.ColWidth(2) = 10 ' CUSTNO

Brw.Header = pad("Customer name", 30) + pad("Address", 30) + "Number"

nD = vxUseDbf("CUSTOMER") ' open the database
If nD = 0 Then

MsgBox "Cannot open CUSTOMER.DBF!"
Else

vxFilter ".NOT.DELETED()"
j = vxTop()
Brw.Dbf = nD' assign the handle and start the browse

End If
End Sub

Ntx [Integer]

[Var] = [Form!]Brw.Ntx [= IntegerExp]

The Ntx property is a valid handle to an open index file, the one you want to use in the browse.    You
obtain this handle from the vxUseNtx() vxBase function.    After initializing the browse: number of
columns, column data width, alignment, header, and the Dbf assign the Ntx property.

When you set this property, all the database related properties like IndexExp, FilterExp, etc. are reset
to the default values.    After setting or changing the Ntx property the control will refresh itself, and
reposition to the first record in the new index order.    The Index Scope and Pseudo-Filter are cleared.

Example: (for another example see also the Introduction and the example there)
Sub Form_Load()
' a simple database: CUSTOMER, 3 fields: CUSTNAME - Char 30,
' CUSTADDR - Char 30, CUSTNO - Numeric 10.0
' indexed on CUSTNAME to CUSTOMER.NTX
' set the number of columns to 3, and column width as above
Brw.Cols = 3
Brw.ColWidth(0) = 30 ' CUSTNAME
Brw.ColWidth(1) = 30 ' CUSTADDR
Brw.ColWidth(2) = 10 ' CUSTNO

Brw.Header = pad("Customer name", 30) + pad("Address", 30) + "Number"

nD = vxUseDbf("CUSTOMER") ' open the database
If nD = 0 Then

MsgBox "Cannot open CUSTOMER.DBF!"
Else

Brw.Dbf = nD ' assign the DBF handle
nI = vxUseNtx("CUSTOMER") ' open the index file
If nI = 0 Then

MsgBox "Cannot open CUSTOMER.NTX"
Else

Brw.Ntx = nI ' assign the NTX handle
End If

End If
End Sub

IndexExp, IndexExp2 [String]

[Var] = [Form!]Brw.IndexExp [= StringExp]
[Var] = [Form!]Brw.IndexExp2 [= StringExp]

The IndexExp and IndexExp2 properties are used to define a Index Scope at run time.    For a detailed
description please see the Index Scope and the example there.    An index must be open and active,
and the handle of the index assigned to the Ntx property, in order to have an Index Scope, otherwise a
run-time error is generated.

Setting the IndexExp will clear the IndexExp2, if the former is before the the later in index order.    In
this case the FilterExp will be also cleared.    In any case the database will be positioned on the first
record in Scope, you do not have to refresh all records in view.

In order to extract all the records for which the string resulting from the index key evaluation (shortly
called the index key) begins with a certain expression (for example all invoices begining with "1993")
you would set the IndexExp to that expression ("1993" for example), and IndexExp2 to "" (empty
string).

To extract all the records for which the index key is between two string expressions, set IndexExp to
the first (upper limit) expression, and IndexExp2 to the second (lower limit) expression.    For example
to see all names between "RANSOME" and "SMITH" set IndexExp to "RANSOME" and IndexExp2 to
"SMITH".

To reset the index scope set IndexExp to "" - an empty string.    If no records fall into the Scope then
the EmptyFile property is set to True, and the control window cleared.

Example:
The following example presents a Sub in one of your modules to set a Index Scope, the Sub can be
called from a menu item's or from a command button's click event, for example, and can be used for
any active browse control.    You would probably want to replace the InputBox$ with something less
ugly.
Sub SetScope(Brw As Control)
Dim cI As String

' display the current index key
cI = "Current index expression: " & vxNtxExpr(vxNtxCurrent())
' get the IndexExp
Brw.IndexExp = InputBox$(cI, "Enter index scope", (Brw.IndexExp))

' if this one is empty, then exit
If Brw.IndexExp = "" Then Exit Sub

' show also IndexExp, and get the IndexExp2
cI = cI & chr$(13) & chr$(10) & "First scope: " & Brw.IndexExp
Brw.IndexExp2 = InputBox$(cI, "Enter index scope", (Brw.IndexExp2))

End Sub

FilterExp [String]

[Var] = [Form!]Brw.FilterExp [= StringExp]

The FilterExp property is used to extract a subset of the records in the Index Scope at run time.    For a
detailed description please see the Pseudo-Filter and the example there.    An index must be open and
active, and the handle of the index assigned to the Ntx property, and also a Index Scope must be
active in order to have a Pseudo-Filter, otherwise a run-time error is generated.

The string expression is a xBase expression which can be evaluated to a logical value.    If the
expression evaluates to .T. (True) then the record is shown, otherwise is skipped.    For example the
expression can be something like "BALANCE>=0 .AND. .NOT. PAID".    The database will be
positioned on the first record matching the criteria (no need to refresh), if none is found EmptyFile is
set to True and the control window is cleared.

To reset the pseudo filter set FilterExp to "" - an empty string.

Example:
The following example presents a Sub in one of your modules to set a Pseudo-Filter, the Sub can be
called from a menu item's or from a command button's click event, for example, and can be used for
any active browse control.    You would probably want to replace the InputBox$ with something better.
Sub SetPseudoFilter(Brw As Control)
Dim cI As String

' display the current index key and scope
cI = "Current index expression: " & vxNtxExpr(vxNtxCurrent()) + CRLF
If Brw.IndexExp2 = "" Then

cI = cI & "Index scope: " & Brw.IndexExp
Else

cI = cI & "Index scope from: " & Brw.IndexExp & " to " & Brw.IndexExp2
End If
' set error handler and get the new FilterExp, the control will validate
it
On Error Resume Next
Brw.FilterExp = InputBox$(cI, "Enter filter", (Brw.FilterExp))
On Error GoTo 0

End Sub

SearchKey [String]

[Var] = [Form!]Brw.SearchKey [= StringExp]

The SearchKey is a handy way to do a fast search on an indexed file, using the index key.    An index
must be opened and the Ntx property must be set to a valid index handle before you can use the
SearchKey.    You set the SearchKey property to the expression to search for and check the Action
property to see if it is True - that means the expression is found, the database is positioned on the
found record, and all records displayed are refreshed.

The way the SearchKey works depends upon the Index Scope setting:
1. no Index Scope: simple SEEK
2. single SCOPE (all records begining with "1993" for example): the control performs a relative SEEK

within the scope, for example: SEEK "1993" + SearchKey.
3. double SCOPE (all record begining with: from "1991" to "1993" for example) the SEEK is absolute,

and should NOT fall outside the scope and eventually the pseudo-filter, otherwise the refresh will
generate an EmptyFile = True.    It is your responsibility to make sure the search key falls between
the two scopes.

The SearchKey remains unchanged until you reset it, so you can remember what was the user looking
for last time.

Example:
The following example presents a Function in one of your modules to serch for something.    You would
probably want to replace the InputBox$ with something better.
Function MySearch(Brw As Control) As Integer
Dim cI As String, cS As String

' display the current index key and scope
cI = "Current index expression: " & vxNtxExpr(vxNtxCurrent()) + CRLF
If Brw.IndexExp2 = "" Then

cI = cI & "Index scope: " & Brw.IndexExp
Else

cI = cI & "Index scope from: " & Brw.IndexExp & " to " & Brw.IndexExp2
End If
' Get the new search key
cS = InputBox$(cI, "Enter filter", (Brw.SearchKey))
If Brw.IndexExp2 <> "" Then

' check if cS is in scope
If Brw.IndexExp <= cS And cS <= Brw.IndexExp2 Then

Brw.SearchKey = cS
If Brw.Action = True Then MsgBox "Found!" Else MsgBox "Not found!"
MySearch = (Brw.Action = True)

Else
MsgBox "Search criteria out of scope!"

End If
Else

Brw.SearchKey = cS
If Brw.Action = True Then MsgBox "Found!" Else MsgBox "Not found!"
MySearch = (Brw.Action = True)

End If
End Sub

Action [Integer]

[Var] = [Form!]Brw.Action [= IntegerExp]

The Action property is probably the one you will use most, and it is very important to understand what
it does.    This is the way you can send messages to the control, requiring it to perform some action.    It
does not hold any meaningful value - it is 0, except for one case: when you are searching for an
expression it will hold True (-1) if it is found, and False otherwise (see SearchKey for details).

To request the control to perform a refresh line action - that is for example if you have edited the
current record, set the Action property to BRW_ACT_REFRESHLINE.    All the BRW_ACT_* constants are
defined in the include file BRW_INC.TXT and shown in the Constants section.    You can merge this file
with one of your modules, it is recommendable to use the constants, not the numeric values.

Available actions:
BRW_ACT_REFRESHLINE: Refresh the current line of data.    It is required after EDIT one record.    Not

required if editing was done in the browse.    It will fire one GetLine event.    IMPORTANT NOTE: if
the database is indexed and there is an active index handle assigned to the Ntx property you
should check if the index key was not modified by the current record edit, because if it was you
might need to refresh ALL records.    A simple algorithm for this is presented below:

store the current value of the index key to a variable before replacing the data:
cOldIndKey = Space$(255)
j = vxEvalString(vxNtxExpr(vxNtxCurrent()), cOldIndKey)
replace data (perform all the vxReplXXXX you need)
compare the new index key with the variable stored before and if they are different a
refresh all is required, otherwise the index key was not affected by the edit / replace:
cNewIndKey = Space$(255)
j = vxEvalString(vxNtxExpr(vxNtxCurrent()), cNewIndKey)
If cNewIndKey <> cOldIndKey Then

Brw.Action = BRW_ACT_REFRESHALL
Else

Brw.Action = BRW_ACT_REFRESHLINE
End If

BRW_ACT_REFRESHALL: Refresh the lines visible in the control.    It is required after APPEND,
DELETE, or whenever you change the record pointer (position) outside the browse.    Not
required when you set any of the controls database properties line Dbf, Ntx, IndexExp,
IndexExp2, FilterExp, SearchKey, in this case the refresh all is automatic.    Refresh all also
executes the refresh Vertical Bar, see next.

BRW_ACT_REFRESHBAR: Refresh the data of the vertical scroll bar, it is not normally required, you
should use the refresh all (above) instead.    Maintained for compatibility with previous versions of
the control.

BRW_ACT_GOTOP: Move to the first record in the database or in scope, and refresh all visible records.

BRW_ACT_GOBOTTOM: Move to the last record in the database or in scope, and refresh all visible
records.

BRW_ACT_UP: Move one record up (if posible), respects the scope and pseudo-filter.

BRW_ACT_DOWN: Move one record down (towards the end of file, if posible).    Respects the scope

and pseudo-filter, you should use this instead of SKIP 1, when performing some action (like
printing, copying to another file) on a user selected sub-set of records.

BRW_ACT_LEFT: Move one column to the left, if posible.

BRW_ACT_RIGHT: Move one column to the right, if posible.

BRW_ACT_EDIT: Enter edit mode for the current cell (Row and Col), if editing is enabled for the
column.    You should postion the cursor using the Row and Col properties before entering edit
mode.

Browse Events

The standard Visual Basic events supported are:
DRAGDROP, DRAGOVER, GOTFOCUS, KEYDOWN, KEYPRESS, KEYUP and LOSTFOCUS.    Please
see your VB manual for details about any of these events.

Custom Events
Change(nRowCol as Integer) - row, col or record no has
changed
GetLine(cLine as String) - data line required
HitBottom() - the user hits the end of file
HitTop() - the user hits the beginning of
file
EditWhen(nCol As Integer, cField As String, lCancel As Integer) - data edit pre-validation
EditValid(nCol As Integer, cField As String, lOk As Integer) - data edit post-validation
EditReplFail(nCol As Integer, cField As String) - data replace failed

Change(nRowCol As Integer)

Sub Brw_Change([Index As Integer,] nRowCol As Integer)

This event is fired whenever the user changes the position of the highlighted cell, using the mouse or
the keyboard (for example moving up, down, left, right, page up, page down, top of file, bottom of file,
etc.).

The Index argument uniquely identifies the browse control from an array of browse controls; the
nRowCol argument holds information about what has changed and can be one of the constants below
(see Constants for values):

The record no has changed, the Row and Col are the same BRW_CHANGE_REC
The record no and the Row have changed BRW_CHANGE_ROW
The column no has changed, the same record no BRW_CHANGE_COL
Both the row and column no have changed BRW_CHANGE_BOTH

Example:
The following example shows how to refresh data displayed from the current record in a set of controls
(like labels and text boxes, etc.), so that it is actual at all times.
Sub Brw_Change(nRowCol As Integer)
If nRowCol <> BRW_CHANGE_COL Then

' if the record number has changed then redisplay data in different
' controls like labels, text, list, etc.
Label1.Caption = vxField("FIELD1")
Text1.Text = vxFieldTrim("FIELD2")
Select Case (vxInteger("FIELD3"))

Case 1 To 5
List1.ListIndex = vxInteger("FIELD3") - 1

Otherwise
List1.ListIndex = -1: List.Enabled = False

End Select
' ..., and so on

End If
End Sub

GetLine(cLine As String)

Sub Brw_GetLine([Index As Integer,] cLine As String)

This event is fired when the control requires a line (row) of data to be displayed, from the current
record.    The data for one row (record) is made from the concatenation of the data for each column
padded with spaces / trimmed to the data width defined in the ColWidth property, in other words in the
way you have defined it when you initialized the control last time.    The concatenated string must be
assigned to the cLine argument.

Data for each column would be normally database fields, but can be anything, including variables,
arrays, etc, transformed to a string.

No delimiters are required between two succesive column's data, for example, if we define the column
width of the first two columns to the width of the fields CUSTNAME and CUSTADDR in the
CUSTOMER database then we should use:

' in Form_Load()
Brw.ColWidth(0) = vxFieldSize("CUSTNAME")
Brw.ColWidth(1) = vxFieldSize("CUSTADDR")
'....

' in Brw_GetLine
cLine = vxField("CUSTNAME") + vxField("CUSTADDR")
' cLine = cLine + ... (the rest of columns)

The Index argument uniquely identifies the browse control from an array of browse controls; the cLine
argument will return the data to the control.    If left blank no information will be displayed, although the
database is open and the record pointer correctly positioned.

Please see the Introduction and the example there.

HitTop(), HitBottom()

Sub Brw_HitTop ([Index As Integer])
Sub Brw_HitBottom([Index As Integer])

This events are fired when the user has tried to move before BOF or past EOF, either using the mouse
or the keyboard.    Both events can be ignored, you can set a Beep statement in the event procedure,
or ask the user if he/she wants to add a new record (in HitBottom) to emulate the standard xBase
BROWSE command.

The Index argument uniquely identifies the browse control from an array of browse controls.

Example:
Sub Brw_HitBottom()
If MsgBox("Add new record?", MB_ICONQUESTION + MB_YESNO) = IDYES Then

' add a blank record and reposition the browse
If vxAppendBlank() Then Brw.Action = BRW_ACT_REFRESHALL

End If
End Sub

Sub Brw_HitTop()
Beep

End Sub

EditWhen(nCol As Integer, cField As String, lCancel As Integer)

Sub Brw_EditWhen(nCol As Integer, cField As String, lCancel As Integer)

This event is fired whenever the user tries to edit a field from column nCol, where nCol is a column
enabled for editing.    The cField argument is the current value of the field - the one that will be edited.
The lCancel argument is a boolean flag (set to False by default), which tells the control if edit should
be allowed;    setting lCancel to True will not allow the user to enter in edit mode.

The Index argument uniquely identifies an element of a control array.

This event allows you to make a data pre-validation, before the user enters edit mode, and cancel the
edit if you decide so, even if the column is enabled for edit.
See also Editing for details.

Example:
The following example will allow editing of the date field DUEDATE, in column 3, enabled for editing,
only if the field DUEAMOUNT is greater than 0.
Sub Brw_EditWhen(nCol As Integer, cField As String, lCancel As Integer)
If nCol <> 3 Then Exit Sub ' check only column 3, DUEDATE
If Val(vxField("DUEAMOUNT")) <= 0 Then

' no edit allowed
Beep: MsgBox "The DUEAMOUNT must be positive!"
lCancel = True

End If
End Sub

EditValid(nCol As Integer, cField As String, lCancel As Integer)

Sub Brw_EditValid(nCol As Integer, cField As String, lOk As Integer)

This event is fired whenever the user tries to save an edited value for column nCol, where nCol is a
column enabled for editing, and in this respect is much like a VALID clause in a standard xBase GET
command.    The cField argument is the value entered by the user - the one that will be eventually
replaced.    The lOk argument is a boolean flag (set to True by default), which tells the control if the
value is Ok;    setting lOk to False will prevent the control to exit edit mode, until a valid value is
entered or the edit is cancelled.

You can set the cField to a string expression, for example as a default value, if the user has entered a
wrong value in edit mode.

Depending on the way the edit for the nCol column is defined, you should:
1. If the editing mode is enabled with auto-replace, that is the control will replace the field for you -

the ColField property must be assigned a valid field name for this, you should just check the
data validity.
You should use this edit mode whenever posible, that is when the column expressions are
database fields and not expressions, it is faster and does not require so much coding.

2. If the editing mode is enabled without auto-replace, that is you are responsible for replacing the
data in the database file - the ColEdit property is set to True, but the ColField is empty, you
should check the data validity, and if Ok replace the value in the database.

In either case you do not need to send a REFRESHLINE message, this is done automatically if you
return True in the lOk argument.

The Index argument uniquely identifies an element of a control array.
See also Editing for details.

Example:
In the following example we have two columns enabled for editing, one is the DUEAMOUNT, column
2, enabled directly, the browse control will replace the entered amount.    The second one is the
DUEDATE, column 3, for which we do the replace ourselfs.
Sub Brw_EditValid(nCol As Integer, cField As String, lOk As Integer)

If nCol = 2 Then ' edit DUEAMOUNT
If Val(cField) < 0 Then ' no negative numbers allowed

MsgBox "Please enter a positive value!"
lOk = False

End If
ElseIf nCol = 2 Then ' edit DUEDATE

If IsDate((cField)) Then ' Ok, replace data
If vxLockRecord() Then ' lock record

vxReplDateString "DUEDATE", (cField) ' and replace if lock Ok
j = vxWrite()
j = vxUnlock()

Else
MsgBox "Cannot lock the record, try later please!"

End If
Else

MsgBox cField & " is not a valid date!"
lOk = False

End If

End If
End If

End Sub

EditReplFail(nCol As Integer, cField As String)

Sub Brw_EditReplFail(nCol As Integer, cField As String)

This event is fired when the edit for this column is in auto-replace mode (the control is responsible for
data replacement) and for some reason the replace of the data failed.    The most probable cause is
that the record could not be locked, or the data format is invalid.    In both cases the edit was cancelled.

nCol is the column beeing edited.    The cField argument is the value entered by the user.    You can
try a recovery in this event procedure, eventually.

The Index argument uniquely identifies an element of a control array.
See also Editing for details.

Example:
The following example will try to recover a replace failed for the DUEAMOUNT column 2.
Sub Brw_EditReplFail(nCol As Integer, cField As String)
If nCol <> 2 Then Exit Sub ' check only column 2, DUEAMOUNT
If vxLockRecord() Then ' lock record

vxReplDouble "DUEAMOUNT", Val(cField) ' and replace if lock Ok
j = vxWrite()
j = vxUnlock()

Else
MsgBox "Cannot lock the record, try later please!"

End If
End Sub

Browse Constants

All the constants listed bellow are available as text in the include file BRW_INC.TXT provided.

Limitative Constants
Maximum number of columns in the browse BRW_MAX_NO_OF_COLS 64
Maximum column width (in characters) BRW_MAX_COL_WIDTH 256

Error Codes
Invalid index referrence to one of the array properties BRW_ERR_BADINDX 81
Invalid number of columns BRW_ERR_NO_OF_COLS 2700
Invalid column no BRW_ERR_COL_NO 32702
Invalid row number BRW_ERR_ROW_NO 32703
Invalid data column width (characters) BRW_ERR_COL_WIDTH 32704
Invalid column width (pixels) BRW_ERR_COL_WIDTHX 32705
Invalid database handle BRW_ERR_DBF_AREA 32706
Invalid index handle BRW_ERR_NTX_AREA 32707
Invalid index SCOPE expression BRW_ERR_INDEX_EXP 32708
Invalid pseudo-filter expression BRW_ERR_FILTER_EXP 32709
Invalid search expression BRW_ERR_DBF_SEARCH 32710
Invalid field name for the ColField property BRW_ERR_FIELDNAME 32711

Available actions (for the Action property)
Refresh current line (will trigger one GetLine event) BRW_ACT_REFRESHLINE 1
Refresh all visible lines / records (impl. RefreshBar) BRW_ACT_REFRESHALL 2
Refresh the vertical scroll bar (not needed normally) BRW_ACT_REFRESHBAR 3
Go to the last record in file / scope and refresh all BRW_ACT_GOBOTTOM 4
Go to the first record in file / scope and refresh all BRW_ACT_GOTOP 5
Skip one record up, if not posible a HitTop is fired BRW_ACT_UP 6
Skip one record down, if not pos. a HitBottom is fired BRW_ACT_DOWN 7
Move to the next column to the right (if any) BRW_ACT_RIGHT 8
Move to the next column to the left (if any) BRW_ACT_LEFT 9
Edit current cell, if editing is enabled BRW_ACT_EDIT 10

Possible values of the nRowCol argument of the Change event:
The record no has changed BRW_CHANGE_REC 0
The record no and the Row have changed BRW_CHANGE_ROW 1
The column no has changed BRW_CHANGE_COL 2
Both the row and column no have changed BRW_CHANGE_BOTH 3

Column text display alignment for the ColAlign propriety
The column text is left justified (default): BRW_ALIGN_LEFT 0
The column text is centered BRW_ALIGN_CENTER 1
The column text is right justified BRW_ALIGN_RIGHT 2
The column header text is left justified (default): BRW_ALIGNH_LEFT 4
The column header text is centered BRW_ALIGNH_CENTER 8
The column header text is right justified BRW_ALIGNH_RIGHT 16

Keyboard Summary

Vertical movement:
UP UP
DOWN DOWN
CTRL-UP FIRST LINE IN WINDOW
CTRL-DOWN LAST LINE ON WINDOW
PAGEUP PAGE UP
PAGEDOWN PAGE DOWN
CTRL-PAGEUP TOP OF FILE
CTRL-PAGEDOWN BOTTOM OF FILE

Horizontal movement:
LEFT ARROW LEFT
RIGHT ARROW RIGHT
HOME LEFT-MOST VISIBLE COLUMN
END RIGHT-MOST VISIBLE COLUMN
CTRL-LEFT PAGE LEFT
CTRL-RIGHT PAGE RIGHT
CTRL-HOME LEFT-MOST COLUMN
CTRL-END RIGHT-MOST COLUMN

Edit keys:
ENTER Enter edit mode, if edit for current column enabled
Any alphanumeric key Same as Enter + replace field contents with the entered

character
ESC Cancel edit
PAGEUP / PAGEDOWN,
ENTER Exit edit mode with saving, stay on the same row
UP / DOWN ARROW Save field and move to previous / next row (record) - same

column

