
Contents
EZ-Tab Description

Overview
Components and Installation
How to use EZ-Tab

Properties, Events and Methods

EZ-Tab Properties
EZ-Tab Events and Methods
Tips and Techniques



Overview
With Winword 6.0, Microsoft has introduced a new standard for the Windows user interface, the so called 
tabbed dialogs. This technique allows to present complicated dialogs to the user without placing a great 
number of controls into one window or splitting the dialog into many sub windows. With the EZ-Tab 
custom control, the Visual Basic developer is able to implement tabbed dialogs without any additional 
coding or sub controls.

Related Topics:
EZ-Tab Implementation



EZ-Tab Implementation
EZ-Tab was designed with the objective, that the developer does not have to learn any new technique to 
set-up a tabbed dialog. Here are some of the EZ-Tab highlights:

· The EZ-Tab control is used like the standard Visual Basic Frame control, i.e. each pane of the 
dialog is in a separate control.

· All sibling EZ-Tab controls have the same position and size automatically.

· The 'tab-area' is also active in design mode, i.e. the developer can switch between the different 
panes by double clicking with the right mouse button.

· The first EZ-Tab instance is initially set-up with the BackColor and TabColor set to the BackColor 
property of it's parent control. The second and further instances automatically take the color and 
font properties from their ancestors. Also the 'tab-area' is automatically moved to a reasonable 
position.

· EZ-Tab has an Auto 3-D facility, i.e. depending on the BackColor property, the control is painted 
plain or with a 3-D appearance. You can use the style property to bypass auto 3-D detection.

· EZ-Tab has built-in focus tracking, i.e. when a container is shown for the first time, focus is 
moved to the first control on that container. Any further activation of this pane restores the focus 
to the control that had the focus the last time.

· EZ-Tab supports the standard Caption and Enabled properties. This includes the ability to use 
mnemonic access keys. 

· Multiline Tabs as in the Winword 6.0 Options dialog can be realized without any coding, but 
simply by setting the TabGroup property

· The position of the 'tab-area' can be on top or on the bottom of the control. This is controlled by 
the TabPosition property.

· The TabStyle property is used to choose between chamferred (like in WinWord's option dialog) 
and slanted (like an Excel spread sheet) tabs.

· The 'tab-area' can be colored different from the tab's background. Setting UsePalette to True 
permits the use of up to 256 solid colors for the TabColor property, if this is supported by the 
video driver.



Components and Installation
The following sections describe the different components of the EZ-Tab package and how to install it on 
your computer.

Related Topics:
Contents of the distribution disk
The EZ-Tab demo version
Installation



Contents of the distribution disk
The EZ-Tab distribution disk contains the following files (demo versions may contain fewer or additional 
components, look for a READ.ME file with explanations). For electronically distributed versions, the EZ-
Tab components may be compressed into a single file:

Filename Description

EZTAB.VBX The custom control file.

EZTAB.LIC This file, which should reside in the Windows 
System directory, contains license information. 
It is needed to compile your EZ-Tab application 
to an EXE file. If the license file cannot be 
found or is corrupted, the control is loaded in 
demonstration mode. The information in the 
license file can be displayed by selecting the 
(About) property.

EZTAB.HLP On-line help for EZ-Tab.

PROJECT1.MAK Sample project file.

FORM*.FRM Sample form files.

LICENSE.WRI License agreement in Windows Write format.

You are not allowed to distribute the license information file EZTAB.LIC. Distribution of the control file is 
free of charge.



The EZ-Tab demo version
If you load EZ-Tab into the Visual Basic environment without a valid license file in your Windows System 
Directory, the control switches into demonstration mode.    EZ-Tab is fully functional in the VB 
development environment, and any program you develop in demonstration mode is compatible with the 
registered version, but you should be aware of the following:

If you compile a project without a valid license file, the resulting EXE file will fail to load.



Installation
If the installation is not accomplished by an installation program, simply copy the files from the distribution 
disk to a separate directory on your hard disk. The custom control file EZTAB.VBX should also be copied 
to your Windows system directory to allow access for compiled programs.



How to use EZ-Tab
EZ-Tab is used like any other Visual Basic custom control. For a quick start open a new project and follow 
these instructions:

· Use the Add File Command from the File menu to include the control library EZTAB.VBX into your 
project.

· You can now draw the first EZ-Tab container on a form. You will notice that the control initially has 
the BackColor property of the form. Depending on the control's background color, the EZ-Tab 
border is displayed plain or in 3-D. So if you want a 3-D appearance of the tabbed dialog, set the 
BackColor property of the form and of the EZ-Tab control e.g. to &H8000000F (light gray).

· The easiest technique to add other EZ-Tab instances to the form is to simply double click on the 
toolbox icon. All subsequent containers take the size and position of the existing controls. 
Resizing one control automatically adjusts it's siblings.

· Now you can draw the child controls of the different containers in the same way as you do for a 
Frame control. A right mouse button double click can be used to switch between the panes in 
design mode.

That's all to implement tabbed dialogs! If you look at the demo application, you will see that the only code 
there is to demonstrate some of the EZ-Tab capabilities and not to support the dialog behavior. You might 
want to include in the Form_Load event a call to the ZOrder method of the EZ-Tab control that you want 
to be on top initially.

You should not draw a new EZ-Tab instance within an existing one as long as you do not want to display 
sort of a 'hierarchical tabbed dialog'.

For more information on how to use the EZ-Tab control see Tips and Techniques.



EZ-Tab Properties
EZ-Tab supports the same properties as the Visual Basic Frame control. These can be used as 
documented in the VB Programmer's Reference. The only specialty is that all siblings controls 
automatically have the same size and position. There are only few additional properties.

Starting with version 1.25 the Visible property is supported. See Tips and Techniques for an example.

Related Topics:
EZ-Tab non-standard properties



EZ-Tab non-standard properties
Here is a list of EZ-Tab's non standard properties. See Tips and Techniques for more information on how 
to use these properties.

Related Topics:
(About)
AlignTabs
OnTop
Style
TabLeft, TabWidth
TabPosition
TabStyle
TabColor
TabGroup
UsePalette



(About)

Displays a dialog box with copyright and version information.



AlignTabs

Displays a dialog box to adjust the size and position of the 'tab-area'. The tabs are arranged starting from 
left to right. You can decide to

· let the TabWidth property unchanged.

· set the TabWidth of all controls to the current maximum value.

· let the Tabs fill the complete border area.

It is recommended that you experiment a little with this property to get a feeling on how it can be used.



OnTop

This property, which is available only at runtime, determines if the corresponding container is currently 
active (True/False).



Style

Use this property to bypass the automatic 3-D detection. The value of this property is automatically copied 
to all sibling controls.

· Style 0: automatic 3-D detection (default).

· Style 1: the control is always painted flat.

· Style 2: the control is always painted 3-D.

This property cannot be changed at runtime.



TabLeft, TabWidth

These properties determine the position and width of the 'tab-area'. The height is automatically adjusted 
to the font size.



TabPosition

Determines the placement of the tab area.

· 0 - Top (default)

· 1 - Bottom



TabStyle

Determines the style of the tab area.

· 0 - Chamferred (default)

· 1 - Slanted



TabColor

This property allows to give the tab area a background color different from the control's pane.



TabGroup

This property allows to group different containers to set-up a Multiline tabbed dialog.



UsePalette

This property allows to use up to 256 solid colors for the TabColor property, if this is supported by the 
video driver.



EZ-Tab Events and Methods
EZ-Tab supports the same events as the Visual Basic Frame control. You should notice that the Click and 
DblClick events are only fired, if the mouse button is pressed within the 'control-area'. This is the 
combination of the control's 'tab-area' and 'pane'. Though EZ-Tab controls appear to be non-rectangular, 
the 'out-of-bounds' area is part of the control's window. Therefore the other mouse events are also fired, if 
the mouse is over this region. You can even draw a child window in the out-of-bounds area (but you 
certainly won't like to do so).

You will also notice that the Click event is only fired, if the control is currently on top, and not when the 
control is activated. This is intentional and allows to distinguish these situations in the code (The Activate 
event described below is fired in the latter situation).

Related Topics:
EZ-Tab non-standard events
EZ-Tab methods



EZ-Tab non-standard events
There are only few non-standard events for EZ-Tab. Here is a list of these events.

Related Topics:
Activate, Deactivate
QueryDeactivate



Activate, Deactivate
Sub EZTab_Activate ()

Sub EZTab_Deactivate ()

These events are fired, when a control is brought to the top or put into the background respectively.



QueryDeactivate
Sub EZTab_QueryDeactivate (Cancel As Integer)

This event is called before a control is put into the background (either through user action or 
programatically with the ZOrder method. Setting the Cancel parameter to True aborts that operation and 
leaves the corresponding container on top.



EZ-Tab methods
There are no non-standard methods for the EZ-Tab control.

The ZOrder method is the preferred way to bring a specific container to the front.



Tips and Techniques
The following sections contain some commonly used techniques used with the EZ-Tab control.

Related Topics:
Bringing a specific control to the front
Finding the active control
Inserting a new Tab before an existing one
Using control arrays
Multiline Tabbed Dialogs
Putting EZ-Tab controls in a container
Switching between panes in design mode
Permanent child controls
The ClipControls property
Unsing the Visible Property



Bringing a specific control to the front
Switching controls is normally user controlled either by clicking in the tab area or by using shortcuts. If you 
want to change the active control programatically, e.g. to start with a specific part of the dialog, you can 
simply use the VB standard ZOrder method:

EZTab(Index).ZOrder

This brings the corresponding control to the front.



Finding the active control
If you want to know, if a specific control is currently in front of its siblings, you have to query the OnTop 
property of that control.

If EZTab(Index).OnTop Then
        'Action
End If



Inserting a new Tab before an existing one
The common technique to add an EZ-Tab instance to a form is to simply double click on the control 
bitmap in the Toolbar and let the control take care of its size and position. This method also puts the tab 
area of the new instance at the end of the control cluster. But under certain circumstances, you might 
want to insert a new pane with its tab area between two existing controls (or to reorder the current 
panes). This can be achieved by changing the TabLeft property after control creation to a value between 
that of those controls where the new instance shall be inserted. The AlignTabs dialog can then be used 
to automatically rearrange the complete dialog.



Using control arrays
It is highly recommended to put all EZ-Tab controls, that set-up one tabbed dialog, together to one control 
array (i.e. to use the same control name). This reduces the code in response to the various EZ-Tab 
events, because each pane of the dialog can be addressed by an index value.

If you want to load additional EZ-Tab instances at runtime, you have to set the position of each control 
after it has been loaded. Here is a short code fragment that shows, how a new instance can be set-up:

Sub LoadEZTab ()
        Static i As Integer

        i = i + 1 :    If i > 4 Then Exit Sub

        Load EZTab(i)

        EZTab(i).Caption = "TAB &" + Format$(i)
        EZTab(i).TabLeft = i * EZTab(0).TabWidth

        ' Don't forget this !!!
        EZTab(i).Visible = True
        EZTab(i).Enabled = True
Exit Sub



Multiline Tabbed Dialogs
If you have to set-up a dialog with many different panes, a single line tab area will result in very small tabs 
(though you could decide to use overlapping tabs). The way out of this problem is to group panes 
together to build a Multiline Tabbed Dialog. Here is how this can be done.

Start setting up your EZ-Tab controls as usual. Don't care about the size and position of the tabs. After 
you have created the instances which will constitute the first 'tab line', create the next container and set its 
TabGroup property to a value different from the default '0'. You should reset the TabLeft property of this 
control to '0' to let the new group start at the left border of the control cluster. Now create the other 
controls for the second line (eventually create a third or even a fourth line with a different TabGroup 
property). If you are finished use the AlignTabs dialog to bring the tab areas to their final position (Fill 
Border Area is the preferred alignment for multiline dialogs).



Putting EZ-Tab controls in a container
Normally, EZ-Tab controls are directly drawn on a form, but there might be situations, where you have to 
put a tabbed dialog into another container control (e.g. a picture box). In this case you cannot use the 
double click technique to add a new control instance, but you have to draw each control on the container. 
Remember to draw outside and not within an existing EZ-Tab control, as this would make the new 
instance a child of the old one.



Switching between panes in design mode
To switch between different EZ-Tab instances in design mode, you can

· double click with the right mouse button in the tab area of the control you want to make active.

· select a control in the Properties Window, activate the form and use the 'Bring to Front' or 'Send 
To Back' commands of the VB menu.



Permanent child controls
To reduce code size and resource consumption, you may want to appear some controls on any EZ-Tab 
instance in a tabbed dialog. You can use the following techniques to achieve this:

· Draw the controls (e.g. OK and Cancel buttons) on one EZ-Tab instance, and use the SetParent 
API to move them to the active control .

· Create the controls outside the tabbed dialog, then move them over the EZ-Tab controls. Use the 
ZOrder method bring these controls to the front of the dialog.

For both techniques, the Activate event is the place to move the child controls.



The ClipControls property
The recommended setting for the ClipControls property is 'True' for the containing form and 'False' for any 
EZ-Tab instance.



Unsing the Visible Property
To change the Visible property at runtime it is necessary that the container in question is on top of its 
sibling controls. Here are 2 procedures that can be used to show and hide EZ-Tab controls:

Sub HideTab (ctl As EZTab)
      ' do nothing if already hidden
        If Not ctl.Visible Then
                Exit Sub
        End If

        ' bring control to the front
        ctl.ZOrder
        ' ... hide ...
        ctl.Visible = False
        ' and force into background
        ctl.ZOrder 1
End Sub

Sub Showtab (ctl As EZTab, iBringToTop As Integer)
        ' bring control to the front if invisible or especially requested
        If iBringToTop Or ctl.Visible = False Then
                ctl.ZOrder
        End If

        '    That's all if the control is already visible
        If ctl.Visible Then
                Exit Sub
        End If

        ' show the control ...
        ctl.Visible = True

        ' ... and force into background if necessary
        If Not iBringToTop Then
                ctl.ZOrder 1
        End If
End Sub




