
Repository Overview
See Also

The repository provides a common place to persist information about relationships between objects.
In doing so, it provides a standard way to describe software tools:

· Software tools are composed of various classes of objects.

· Objects expose interfaces.

· Interfaces are composed of properties, methods, and collections.

· Collections relate interfaces to other interfaces and thus relate objects to other objects.

A software tool is modeled in the repository via a tool information model (TIM). Each TIM is stored in
the repository database as a repository type library.

A significant aspect of the repository is that the database is dynamic and extensible. Very little of the
actual structure is fixed; tables and columns of data are added as new models are defined, and as
existing models are extended. This is significant because it enables any software tool or set of
software tools to be modeled by the repository. It also enables existing models to be extended by a
user.

For example, Visual Basic 5.0 provides a tool information model called the Microsoft Development
Objects (MDO) Model. The MDO Model tracks Visual Basic projects and (their contents) in the
repository. The set of existing Visual Basic projects is represented in the repository by the Contents
collection.

The repository is not limited to software tools developed using Visual Basic. Visual Basic is only one
of many potential clients that can use the repository to model a software system.

Repository Browser Overview
See Also

The Repository Browser represents a joint development effort between Crescent Division of Progress
Software and Microsoft Corporation. The Repository Browser presents a hierarchical view of the
contents of a repository. Crescent also offers an enhanced browser, called the Pro Browser.

One of the key features of the Repository Browser is it’s ability to visualize data. Visualization is key to
locating and working with repository data. Another key feature is dynamic data retrieval. As a
repository database grows, this dynamic data retrieval feature enables optimal performance and
resource utilization.

Repository Browser User Interface
See Also

The Repository Browser is designed to provide a look-and-feel that is similar to the Windows
Explorer. This familiar interface allows a user to easily browse the contents of a repository.

The following tables describe the purpose of some of the browser menus:

File Menu Description

Open Opens a repository.

Properties Displays a dialog to view object properties.

View Menu Description

Toolbar Toggles the display of the toolbar.

Status Bar Toggles the display of the status bar.

Refresh Updates the browser view.

Filters Displays the Repository Filters dialog to
enable you to change the repository view.

Repository Browser Hierarchy
See Also

All objects are normally related to the repository root, either directly, or indirectly through other objects
and relationships. This makes it possible to navigate the repository hierarchically. The browser
visualizes repository data in a hierarchical fashion. The Pro Browser provides an enhancement to this
view as well other representations and visualizations.

Browser data may be thought of as having a set of repeating patterns: interfaces have collections;
collections contain repository objects; repository objects have interfaces. The following figure
illustrates this point.

To reduce the amount of information that is displayed, use the Repository Filter dialog to filter out
interfaces from the browser display.

Tool Information Models in the Repository Browser
See Also

A tool information model (TIM) is an object model for a software tool (or a set of software tools). A TIM
is composed of classes, relationship types, interfaces, property definitions, methods, and collection
types.

Tool information models are stored in the repository. Each TIM describes the types of objects and
relationships that make up a software tool. For example, Visual Basic 5.0 provides a TIM named
“MdoTypeLib”. This TIM describes the forms, controls, and other objects that make up a Visual Basic
project. It also describes the relationships between those objects; projects contain modules and
forms, forms contain controls, and so on.

The Type Information Model is the tool information model that the repository uses to understand all
other tool information models.

Interfaces in the Repository Browser
See Also

A class implements one or more interfaces. A repository object is an instance of a class, and therefore
provides one or more interfaces, as defined by the class to which it conforms. The repository object is
encapsulated and is only accessible through its interfaces. Each interface is composed of properties,
methods, and collections.

By default, the Repository Browser displays interfaces in the repository hierarchy. If you find the
visualization of interfaces distracting, use the Repository Filter dialog to turn off the display of
repository interfaces.

Repository Objects in the Repository Browser
See Also

A repository object is an instance of a class that has been defined in a repository tool information
model. In the following figure “Project1” and “RepVbBrowser” are both instances of the class
“MdoProject”, and they both belong to the collection entitled “MdoProjects”.

A repository object provides one or more interfaces. Each interface defines a set of more properties,
methods, and collections. The definition of a repository object may be extended by adding additional
interfaces to its corresponding class, or by adding additional properties, methods, or collections to an
existing interface.

Relationships in the Repository Browser
See Also

A relationship is a logical connection between one repository object, the origin object, and a second
repository object, the destination object.

The Repository Browser visualizes the repository contents by navigating relationships from the
repository root object (the source object) to all of the target objects in collections that are attached to
the repository root. Each target object can then be the source object of another relationship collection,
and so on.

Relationships themselves are not directly visualized in the Repository Browser. They are implied by
the collections that are displayed in the Repository Browser's hierarchical tree metaphor. When an
object is selected, relationship information for the object can be viewed by selecting the Relationship
toolbar button. This information is also available by selecting the Relationship item on the pop-up
context menu for the selected object.

Collections in the Repository Browser
See Also

A relationship collection is a set of relationships of the same relationship type that are all connected to
a common source object. An object collection is a set of repository objects that are all connected to a
common source object via a relationship collection.

Object collections are displayed in the browser as a node in the browser tree. The objects within a
particular object collection are displayed underneath the collection node, and connected to it. Using
Explorer as an analogy, the contents of a folder on your hard disk can be thought of as a collection of
file and sub-folder objects. In this case, the common source object to which all of the files and sub-
folders are connected is the parent folder object. In this analogy, only one type of collection is defined
for a folder; namely, the collection of files and sub-folders. Consequently, in the Explorer, the actual
collection object is not displayed to you. However, in the repository, multiple collections of different
types can be attached to any single parent object. This is why the Repository Browser displays the
collection between the parent object and the objects within the collection.

A relationship between objects is actually a relationship between the interfaces of two objects. This is
a key point in working with repository data: the repository contains collections of relationships
between interfaces of objects.

Object Properties in the Repository Browser
See Also

There are two kinds of properties that can be viewed by the Repository Browser; properties that are
common to all repository objects, and properties that are specific to a particular class of repository
object.

The Repository Browser displays the properties that are common to all repository objects in a special
tabbed dialog. The table below describes the contents of this dialog.

Properties that are specific to a particular class of object are not displayed in this dialog. They are
represented as members of the Members collection of the interfaces that are implemented by the
object.

Property Name Value

Type The type of repository object as defined
by the appropriate tool information
model.

Location The location of the Access MDB
repository, or SQL Server name.

Contains If viewing properties of an object
collection, this property contains the
count of objects contained within the
collection.

Has If viewing properties of a repository
object, this property contains the count
of members attached to the object.

Repository Browser Filter Dialog
See Also

The Repository Browser provides a simple way to filter data. This dialog is accessible under the View
menu. The Visual tab provides a way to view tree nodes and list items using different types of images.
The Type tab allows you to specify whether or not repository interfaces in the tree are displayed.

· If you change any option in the Type tab and press OK, the entire repository will be closed and
redrawn.

· If you change an option in the Visual tab and press OK, the nodes and list items are merely
redrawn.

Viewing Object Types in the Repository Browser
See Also

Every repository object conforms to a specific class, or object type. The type of an object can be
viewed by selecting the object in the browser tree and viewing the type in the second status panel at
the bottom of the browser, or by viewing the properties dialog. To view the properties dialog, click on
the object using the right mouse button, and select Properties.

Repository Root and the Repository Browser
See Also

The repository root object is the root object for all repository data. The Repository Browser displays
repository data by iterating through all of the interfaces attached to the root object, then iterating
through the collections attached to those interfaces, and so on.

Each tool information model normally adds an interface either to the repository root object, or to some
other object that is ultimately connected to the repository root object. The added interface is then
defined to contain one or more collections that relate to other objects in that tool information model.

Upgrade to Pro Browser
See Also

An enhanced Pro Browser is available from Crescent Division of Progress Software. With the Pro
Browser you can:

· Make use of enhanced filtering

· Perform powerful searches

· Launch multiple instances of the browser

· Create your own Tool Information Models

· Attach bug tracking and test cases to Visual Basic objects

· Display a WebView of repository data

To contact Crescent:

Crescent Division of Progress Software
14 Oak Park
Bedford, Massachusetts    01730

Phone: (617) 280-3000
Fax: (617) 280-4025
BBS: (617) 280-4221
Sales: (800) 35-BASIC

CompuServe: 70662, 2605
Internet Mail: crescent-support@progress.com
Web Site: http://crescent.progress.com
Pro Browser: http://crescent.progress.com/crescent/probrowser.html
FTP: ftp.progress.com/pub/crescent

About Repository Browser

Copyright © 1996 Microsoft Corp. and Progress Software. All rights reserved.

Microsoft, MS, MS-DOS, and Visual Basic are registered trademarks, and Windows and the
Windows logo are trademarks of Microsoft Corporation.

Information in this document is subject to change without notice.    Companies, names, and
data used in examples herein are fictitious unless otherwise noted. No part of this document
may be reproduced or transmitted in any form or by any means, electronic or mechanical, for
any purpose, without express written permission of Microsoft Corporation.

The software and/or databases described in this document are furnished under a license
agreement or nondisclosure agreement. The software and/or databases may be used or
copied only in accordance with the terms of the agreement.    It is against the law to copy the
software except as specifically allowed in the license or nondisclosure agreement.    No part
of this document may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or information storage and retrieval
systems, for any purpose other than the purchaser's personal use, without the express
written permission of Microsoft Corporation.

The Repository Browser is a joint development effort between Microsoft Corporation and Crescent
Division of Progress Software. An upgraded version, the Pro Browser, is available through Crescent.

ObjectCol Object
See Also                  Properties                Methods                  Collections

An object collection is a set of repository objects that can be enumerated. Two kinds of object
collections are supported by the repository:

1. The collection of destination objects that correspond to the relationships in a relationship collection.
Use the RelationshipCol object to manage this kind of collection.

2. The collection of all objects in the repository that conform to a particular class or expose a
particular interface.

When to Use

Use the ObjectCol object to enumerate the collection of repository objects that conform to a
particular class or expose a particular interface. With this object, you can:

· Get a count of the number of objects in the collection.

· Retrieve one of the objects in the collection.

· Refresh the cached image of the object collection.

Properties

Property Description

Count The count of the number of items in
the collection.

Item Retrieves the specified object from the
collection.

Methods

Method Description

Refresh Refreshes the cached image of the
collection.

ObjectCol Count Property
See Also

A long integer that contains the count of the number of items in the collection. This is a read-only
property.

Syntax

object.Count

The Count property syntax has these parts:

Part Description

object The object collection.

ObjectCol Item Property
See Also

Use this property to retrieve an object from the collection. This is a read-only property. There are three
variations of this property.

Syntax

Set variable    =    object.Item(index   )

Set variable    =    object.Item(objName)

Set variable    =    object.Item(objId)

The Item property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the specified repository object.

object The object collection.

index The index of the repository object to be
retrieved from the collection.

objName The name associated with the repository
object to be retrieved from the collection.

objId The object identifier of the repository object to
be retrieved from the collection.

Remarks

An object can only be retrieved by name if it is the destination object of a naming relationship.

ObjectCol Refresh Method
See Also

This method refreshes the cached image of the object collection. Only cache data that has not been
changed by the current process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has these parts:

Part Description

object The object collection.

milliSecs All unchanged data relating to the item that
has been in the cache for longer than millisecs
milliseconds is refreshed. Set to zero to
refresh all unchanged data.

Relationship Object
See Also                  Properties                Methods                  Collections

A relationship connects two repository objects in the repository database. A relationship has an origin
repository object, a destination repository object, and a set of properties. Each relationship conforms
to a particular relationship type.

When to Use

Use the Relationship object to manipulate the properties of a relationship, to delete a relationship, or
to refresh the cached image of a relationship.

Properties

Property Description

Destination The destination object of the relationship.

Interface The specified object interface.

Name The name of the relationship's
destination object.

Origin The origin object of the relationship.

Repository The open repository instance through
which this relationship was instantiated.

Source The source object of the relationship.

Target The target object of the relationship.

Type The type of the relationship.

Methods

Method Description

Delete Deletes a relationship.

Lock Locks the relationship.

Refresh Refreshes the cached image of a
relationship.

Collections

Collection Description

Properties The collection of all of the properties that
are attached to the relationship.

Relationship Delete Method
See Also

This method deletes the relationship from its relationship collection. The target object of the
relationship is deleted, if it is also a destination object, and the relationship type indicates that deletes
are to be propagated.

Syntax

Call    object.Delete

The Delete method syntax has these parts:

Part Description

object An object expression that evaluates to a
Relationship object.

Relationship Destination Property
See Also

This property is the destination object for the relationship. This is a read-only property.

Syntax

Set variable    =    object.Destination

The Destination property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the destination object for the
relationship.

object An object expression that evaluates to a
Relationship object.

Relationship Interface Property
See Also

Use this property to obtain a view of the relationship object that uses an alternate interface as the
default interface. This is a read-only property. There are two variations of this property.

Syntax

Set variable    =    object.Interface(interfaceId)

Set variable    =    object.Interface(objectId)

The Interface property syntax has these parts:

Part Description

variable An object variable. Receives the relationship
object with the specified interface as the
default interface.

object An object expression that evaluates to a
Relationship object.

interfaceId The interface identifier for the interface to be
retrieved.

     objectId The object identifier for the interface definition
to which the interface to be retrieved
conforms.

Relationship Lock Method
See Also

Use this method to lock the relationship. Locking the relationship prevents other processes from
updating the relationship while you are working with it. The lock is released when you end the current
transaction.

Call object.Lock

The Lock method syntax has these parts:

Part Description

object An object expression that evaluates to a
Relationship object.

Relationship Name Property
See Also

A character string that contains the name that the relationship assigns to the destination object.

Syntax

object.Name

The Name property syntax has these parts:

Part Description

object An object expression that evaluates to a
Relationship object.

Relationship Origin Property
See Also

This property is the origin object of the relationship. This is a read-only property.

Syntax

Set variable    =    object.Origin

The Origin property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the origin object for the relationship.

object An object expression that evaluates to a
Relationship object.

Relationship Refresh Method
See Also

This method refreshes the cached image of the relationship. Only cache data that has not been
changed by the current process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has these parts:

Part Description

object An object expression that evaluates to a
Relationship object.

milliSecs All unchanged data relating to the item that
has been in the cache for longer than millisecs
milliseconds is refreshed. Set to zero to
refresh all unchanged data.

Relationship Repository Property
See Also

The Repository property is the open repository instance through which this relationship was
instantiated. This is a read-only property.

Syntax

Set variable    =    object.Repository

The Repository property syntax has these parts:

Part Description

variable A variable declared as an instance of the
Repository class. Receives the object that
represents the open repository instance.

object An object expression that evaluates to a
Relationship object.

Relationship Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The Relationship object exposes two separate Properties collections.
These collections are exposed by:

1. The IRelationship interface (the default).

2. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IRelationship, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

Relationship Source Property
See Also

This property is the source object of the relationship. This is a read-only property.

Syntax

Set variable    =    object.Source

The Source property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the source object for the
relationship.

object An object expression that evaluates to a
Relationship object.

Relationship Target Property
See Also

This property is the target object of the relationship. This is a read-only property.

Syntax

Set variable    =    object.Target

The Target property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the target object for the relationship.

object An object expression that evaluates to a
Relationship object.

Relationship Type Property
See Also

This property specifies the type of the relationship. More specifically, it is the object identifier of the
relationship definition object for the relationship. Type is a read-only property. To copy this property to
another variable, use a variable that is declared as a Variant.

Syntax

object.Type

The Type property syntax has these parts:

Part Description

object An object expression that evaluates to a
Relationship object.

RelationshipCol Object
See Also                  Properties                Methods                  Collections

A relationship collection is the set of relationships that are attached to a particular source repository
object. All of the relationships in the collection must conform to the same relationship type.

When to Use

Use this object to manage the relationships that belong to a particular relationship collection. With this
object, you can:

· Get a count of the number of relationships in the collection.

· Add and remove relationships to and from the collection.

· If the collection is sequenced, place a relationship in a specific spot in the collection sequence.

· Retrieve a specific relationship or target object from the collection.

· Refresh the cached image of the collection.

· Obtain the type of the collection.

Properties

Property Description

Count The count of the number of items in
the collection.

Item Retrieves the specified relationship or
target object from the collection.

Source The source object for the relationship
collection.

Type The object identifier for the collection’s
definition object.

Methods

Method Description

Add Adds a relationship to the collection.

Insert Inserts a relationship into a specific
spot in a sequenced collection.

Move Moves a relationship from one spot to
another in a sequenced collection.

Refresh Refreshes the cached image of the
collection.

Remove Removes a relationship from the
collection.

RelationshipCol Add Method
See Also

This method is used to add a new item to a relationship collection, when the sequencing of
relationships in the collection is not important. The new relationship connects the reposObj object to
the source object of the collection. The new relationship is passed back to the caller.

Syntax

Set variable    =    object.Add(reposObj, objName)

The Add method syntax has these parts:

Part Description

variable A variable declared as a Relationship.
Receives the new relationship that is created
for the reposObj repository object.

object The relationship collection.

reposObj The repository object whose relationship is to
be added to the collection.

objName The name that the new relationship is to use
for the reposObj object. This parameter is
optional.

RelationshipCol Count Property
See Also

A long integer that contains the count of the number of items in the collection. This is a read-only
property.

Syntax

object.Count

The Count property syntax has these parts:

Part Description

object The relationship collection.

RelationshipCol Insert Method
See Also

This method adds a relationship to the collection at a specified point in the collection sequence. The
new relationship connects the reposObj object to the source object of the collection. The new
relationship is passed back to the caller.

Syntax

Set variable    =    object.Insert(reposObj, index, objName)

The Insert method syntax has these parts:

Part Description

variable A variable declared as a Relationship.
Receives the new relationship that is created
for the reposObj repository object.

object The relationship collection.

reposObj The repository object whose relationship is to
be added to the collection.

index The index of the sequence location where the
relationship is to be inserted. If another
relationship is already present at this
sequence location, the new relationship is
inserted before the existing relationship.

objName The name that the new relationship is to use
for the reposObj object. This parameter is
optional.

Remarks

This method can only be used with sequenced collections.

RelationshipCol Item Property
See Also

Use this property to retrieve a target object or relationship from the collection. This is a read-only
property. There are three variations of this property.

Syntax

Set variable    =    object.Item(index   )

Set variable    =    object.Item(objName)

Set variable    =    object.Item(objId)

The Item property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the target object of the specified
relationship. See the Remarks section for an
exception.

object The relationship collection.

index The index of the relationship to be retrieved
from the collection.

objName The name that the relationship uses to refer to
its destination object. This variation can only
be used when the target object is also the
destination object, and when the collection
requires unique names for destination objects.

objId The object identifier for the target object to be
retrieved from the collection.

Remarks

This property is available on two interfaces: the default interface, ITargetObjectCol, and a second
interface, IRelationshipCol. If you choose to access the property that is exposed by the
IRelationshipCol interface, then your variable will receive the specified relationship instead of the
relationship's target object. In this case, you should declare your variable as a Relationship instead of
a RepositoryObject.

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

RelationshipCol Move Method
See Also

This method moves a relationship from one point in the collection sequence to another point.

Syntax

Call object.Move(indexFrom, indexTo)

The Move method syntax has these parts:

Part Description

object The relationship collection.

indexFrom The index of the relationship to be moved in
the collection sequence.

indexTo The index of the sequence location to which
the relationship is to be moved.

Remarks

This method can only be used with sequenced collections.

RelationshipCol Refresh Method
See Also

This method refreshes the cached image of the relationship collection. Only cache data that has not
been changed by the current process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has these parts:

Part Description

object The relationship collection.

milliSecs All unchanged data relating to the item that
has been in the cache for longer than millisecs
milliseconds is refreshed. Set to zero to
refresh all unchanged data.

RelationshipCol Remove Method
See Also

This method removes the specified relationship from the collection. The target object is also deleted,
if it is also a destination object, and the relationship type indicates that deletes are to be propagated.
There are two variations of this method.

Syntax

Call object.Remove(index)

Call object.Remove(objName)

The Remove method syntax has these parts:

Part Description

object The relationship collection.

index The index of the relationship to be removed
from the collection.

objName The relationship that uses this name for its
destination object is to be removed from the
collection.

Remarks

The variation of this method that specifies the relationship by name can only be used for collections
that require unique names for destination objects.

RelationshipCol Source Property
See Also

Use this property to retrieve the source object for the relationship collection. This is a read-only
property.

Syntax

Set variable    =    object.Source

The Source property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the source object of the relationship
collection.

object The relationship collection.

RelationshipCol Type Property
See Also

This property specifies the type of the collection. More specifically, it is the object identifier of the
collection definition object for the collection. Type is a read-only property. To copy this property to
another variable, use a variable that is declared as a Variant.

Syntax

object.Type

The Type property syntax has these parts:

Part Description

object The relationship collection.

Repository Object
See Also                  Properties                Methods                  Collections

When you define a tool information model, the classes, relationships, properties, and collections for
the model are stored in a repository. Multiple tool information models may be stored in the same
repository.

When you access a repository, you do so via a Repository instance.

When to Use

You can use a Repository instance to:

· Create a new repository database.

· Connect to a repository.

· Access the root repository object.

· Retrieve a specific repository object.

· Create new repository objects.

· Refresh cached repository data.

· Manage repository transactions.

Properties

Property Description

ConnectionString The ODBC connection string that the
repository engine uses to obtain an
ODBC connection. This property is not a
default interface member.

Object Retrieves the specified repository object.

ReposConnection The ODBC connection handle that the
repository engine is using to access the
repository database. This property is not
a default interface member.

RootObject The root repository object of the currently
open repository.

Transaction The transaction processing interface.

Methods

Method Description

Create Creates a new repository database.

CreateObject Creates a new repository object in the
currently open repository.

FreeConnection Releases an ODBC connection handle.
This method is not a default interface
member.

GetNewConnection Obtains a new ODBC connection handle
using the same connection settings that
the repository engine is using to access
the repository database. This method is
not a default interface member.

InternalIDToObjectID Converts an internal identifier into an

object identifier.

ObjectIDToInternalID Converts an object identifier into an
internal identifier.

Open Opens the specified repository.

Refresh Refreshes the cached image of all data
for the currently open repository.

Repository ConnectionString Property
See Also

This property contains the ODBC connection string that the repository engine uses to obtain an
ODBC connection to the repository database. This is a read-only property.

This property is not attached to the default interface for the Repository Automation object; it is
attached to the IRepositoryODBC interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Syntax

object.ConnectionString

The ConnectionString property syntax has these parts:

Part Description

object The object that represents the open repository
instance through which this program is
interacting with the repository.

Remarks

The ODBC connection string can contain user identification and password information. Take care to
protect this information from exposure to unauthorized access.

Accessing Automation Object Members
See Also

Microsoft Repository contains a number of Automation objects that support multiple interfaces. With
each Automation object, one interface is defined to be the default interface, and the members (the
properties, methods, and collections) that are attached to that interface are accessible via the
standard Visual Basic mechanisms.

When accessing members that are attached to an interface that is not the default interface for an
Automation object, a different access technique must be used. An additional reference to the object
must be declared that explicitly calls for the non-default interface. The non-default interface members
can then be accessed via the new object reference.

The following example illustrates how to access a property that is attached to an interface that is not
the default interface for an Automation object. In this example, the connection string that is used to
connect to the repository database is retrieved. Repository objects implement the IRepositoryODBC
interface; this interface is not the default interface. The ConnectionString property is attached to the
IRepositoryODBC interface. The ConnectionString property is the ODBC connection string that the
repository uses when connecting to a database server.

Dim myRepos As Repository
Dim nonDefIfc As IRepositoryODBC

' Initialize the myRepos object by opening a
' connection to a repository database.

Set nonDefIfc = myRepos
connect$ = nonDefIfc.ConnectionString

In this example, the nonDefIfc object does not use up additional resources; it is just an alternate view
of the myRepos object.

Repository Create Method
See Also

Use this method to create a new repository database. The fundamental repository tables are
automatically created. The root repository object of the new repository is passed back to the caller.

Syntax

Set variable    =    object.Create(connect, user, password, flags)

The Create method syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the root repository object for the new
repository.

object The instance of the Repository class that you
are using to create the new repository
database.

connect The ODBC connection string to be used for
accessing the database server that will host
your new repository.

user The user name to use for identification to the
database server.

password The password that matches the user input
parameter.

flags Flags that determine database access and
caching behavior for the open repository. For
details, see the ConnectionFlags
Enumeration.

Connecting to a Repository Database

Microsoft Repository can access repository databases that are managed by either Microsoft Jet or
Microsoft SQL Server. The ODBC connection string that is used to specify the location of the
repository database varies, depending upon which database server is managing the repository
database.

The ODBC connection string contains keyword=keyValue pairs, separated by semicolons.

Connecting to a Jet Repository Database

To connect to a Jet repository database, use the DBQ keyword to specify the path to the database
file. The DBQ keyword must be the first keyword in the connection string, if it is present. If the DBQ
keyword is not present, the connection string is assumed to contain only a database path
specification. In this case, the repository will add the DBQ keyword to the front of the ODBC
connection string before passing it on to the database server.

Connecting to a SQL Server Repository Database

To connect to a SQL Server repository database, use the SERVER keyword to specify the SQL
Server name and (optionally) the database name. To specify the database name, use this syntax:

SERVER=serverName;DATABASE=databaseName

If the database name is not specified, the default database for the user performing the open is used.

Note      If you choose to use a SQL Server repository database, you must create an empty database
and specify which users can access the database. The repository engine will not automatically create
this database for you.

Connecting via a Data Source Name

You can use the DSN keyword to specify a Data Source Name (DSN) to connect to either a Jet or
SQL Server repository database. The DSN keyword specifies a Data Source Name that has been
configured via the ODBC Data Source Administrator.

The Default Repository Database

If you do not specify the repository database via any of the mechanisms described above, a
connection will be established to the default repository database. The location of the default
repository database is stored in the system registry in this registry key:

HKEY_LOCAL_MACHINE\
Software\

Microsoft\
Repository\

Current Location

This registry key must contain either a DBQ keyword-value pair, SERVER keyword-value pair, DSN
keyword-value pair, or just the path to a Jet repository database. The default value for this registry key
is:

windowsDirectory\MsApps\Repostry\Repostry.mdb

where windowsDirectory is the path specification for the directory that contains either the Windows
NT or Windows 95 installation. Unless you change this registry key value after installing Microsoft
Repository, your default database server will be Microsoft Jet.

Note      Microsoft Repository will create a default repository database for you when it is installed. This
database is managed by Microsoft Jet. It's location is determined by the default value of the Current

Location registry key.

Repository CreateObject Method
See Also

This method creates a new repository object of the specified type.

Syntax

Set variable    =    object.CreateObject(typeId, objectId)

The CreateObject method syntax has these parts:

Part Description

variable Declared as a RepositoryObject. Receives the
new repository object.

object The object that represents the open repository
instance through which this program is
interacting with the repository.

typeId The type of the new object; that is, the object
identifier of the object definition to which the
new object conforms.

objectId The object identifier to be assigned to the new
object. Either pass in ObjID_NULL or do not
supply this optional parameter to have the
repository assign an object identifier for you.

Repository FreeConnection Method
See Also

This method frees an ODBC connection handle.

This property is not attached to the default interface for the Repository Automation object; it is
attached to the IRepositoryODBC interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Syntax

Call    object.FreeConnection(hdbc)

The FreeConnection method syntax has these parts:

Part Description

object The object that represents the open repository
instance through which this program is
interacting with the repository.

hdbc The ODBC connection handle to be released.

Remarks

Use this method to free the handle obtained via either the ReposConnection property or the
GetNewConnection method before releasing your open repository instance.

Repository GetNewConnection Method
See Also

This method obtains a new ODBC connection handle using the same ODBC connection string that
the repository engine is using to access the repository database. Using a new ODBC connection
handle isolates you from changes made by the repository engine.

This property is not attached to the default interface for the Repository Automation object; it is
attached to the IRepositoryODBC interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Syntax

variable    =    object.GetNewConnection

The GetNewConnection method syntax has these parts:

Part Description

variable Receives the new connection handle.

object The object that represents the open repository
instance through which this program is
interacting with the repository.

Remarks

Be sure to free the handle obtained via this method before releasing your open repository instance.
To free the connection handle, use the FreeConnection method.

Repository InternalIDToObjectID Method
See Also

This method translates an internal identifier into an object identifier. Internal identifiers are used by the
repository engine to identify repository objects.

Syntax

variable    =    object.InternalIDToObjectID(internalId)

The InternalIDToObjectID method syntax has these parts:

Part Description

variable Receives the object identifier.

object The object that represents the open repository
instance through which this program is
interacting with the repository.

internalId The internal identifier to be converted.

Remarks

Repository object identifiers are globally unique, and are the same across repositories for the same
object. Internal identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This
enables database queries involving an object or relationship type identifier to be constructed without
having to load the definition object.

Repository Object Property
See Also

Use this property to retrieve a particular repository object. This is a read-only property.

Syntax

Set variable    =    object.Object(objectId)

The Object property syntax has these parts:

Part Description

variable Declared as a RepositoryObject. Receives the
repository object.

object The object that represents the open repository
instance through which this program is
interacting with the repository.

objectId The object identifier for the repository object to
be retrieved.

Repository ObjectIDToInternalID Method
See Also

This method translates an object identifier into an internal identifier. Internal identifiers are used by the
repository engine to identify repository objects.

Syntax

variable    =    object.ObjectIDToInternalID(objectId)

The ObjectIDToInternalID method syntax has these parts:

Part Description

variable Receives the internal identifier.

object The object that represents the open repository
instance through which this program is
interacting with the repository.

objectId The object identifier to be converted.

Remarks

Repository object identifiers are globally unique, and are the same across repositories for the same
object. Internal identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This
enables database queries involving an object or relationship type identifier to be constructed without
having to load the definition object.

Repository Open Method
See Also

Use this method to open (connect to) a repository. The root repository object is passed back to the
caller.

Syntax

Set    variable    =    object.Open(connect, user, password, flags)

The Open method syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the root repository object for the
repository.

object The instance of the Repository class that you
are using to connect to the repository.

connect The ODBC connection string to be used for
accessing the database server that hosts your
repository.

user The user name to use for identification to the
database server.

password The password that matches the user input
parameter.

flags Flags that determine database access and
caching behavior for the open repository. For
details, see the ConnectionFlags
Enumeration.

Repository Refresh Method
See Also

This method refreshes all of the cached data for this open repository instance. Only cached data that
has not been changed by the current process is refreshed.

Syntax

Call    object.Refresh(milliSeconds)

The Refresh method syntax has these parts:

Part Description

object The object that represents the open repository
instance through which this program is
interacting with the repository.

milliSecs All unchanged repository data that has been in
the cache for longer than millisecs
milliseconds is refreshed. Set to zero to
refresh all unchanged data for the repository.

Repository ReposConnection Property
See Also

This property contains the ODBC connection handle that the repository engine is using to access the
repository database. This is a read-only property.

This property is not attached to the default interface for the Repository Automation object; it is
attached to the IRepositoryODBC interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Syntax

object.ReposConnection

The ReposConnection property syntax has these parts:

Part Description

object The object that represents the open repository
instance through which this program is
interacting with the repository.

Remarks

If you use the repository engine's ODBC connection handle, you are not isolated from changes made
by the repository engine. For example, uncommitted changes made by the repository engine will be
visible to your application.

When using the repository engine's ODBC connection handle, you must not change the state of the
handle in a way that is incompatible with the repository engine. Specifically, do not:

· Change any ODBC connection options.

· Perform any accesses concurrent with repository method invocations.

· Directly commit or rollback a database transaction. The IRepositoryTransaction interface must
always be used to manage transactions.

Be sure to free the handle obtained via this method before releasing your open repository instance.
To free the connection handle, use the FreeConnection method.

Repository RootObject Property
See Also

This property is the root repository object for the currently open repository. This is a read-only
property.

Syntax

Set variable    =    object.RootObject

The RootObject property syntax has these parts:

Part Description

variable A variable declared as a RepositoryObject.
Receives the root repository object.

object The object that represents the open repository
instance through which this program is
interacting with the repository.

Repository Transaction Property
See Also

This property is the RepositoryTransaction object for the open repository instance. This is a read-only
property.

Syntax

Set variable    =    object.Transaction

The Transaction property syntax has these parts:

Part Description

variable A variable declared as an Object. Receives
the RepositoryTransaction object for this
repository instance.

object The object that represents the open repository
instance through which this program is
interacting with the repository.

Remarks

You can gain access to the RepositoryTransaction object by using the syntax shown above. Then you
can access the properties and methods of the RepositoryTransaction object via variable.method and
variable.property syntax. You can also access the properties and methods of the
RepositoryTransaction object directly, using syntax like:

Call object.Transaction.method

Or:

variable    =    object.Transaction.property

See the RepositoryTransaction object for details on the methods and properties that it provides.

RepositoryObject Object
See Also                  Properties                Methods                  Collections

A repository object is an object that is stored in the repository database, and is managed by the
repository engine. A repository object is also an Automation object.

When to Use

Use the RepositoryObject object to manipulate the properties of a repository object, to delete a
repository object, or to refresh the cached image of a repository object.

Properties

Property Description

Interface The specified object interface.

InternalID The internal identifier that the repository
uses to refer to the repository object.

Name The name of the repository object.

ObjectID The object identifier for the repository
object.

Repository The open repository instance through
which this repository object was
instantiated.

Type The type of the repository object.

Methods

Method Description

Delete Deletes a repository object.

Lock Locks the repository object.

Refresh Refreshes the cached image of a
repository object.

Collections

Collection Description

Properties The collection of all of the properties that
are attached to the repository object.

RepositoryObject Delete Method
See Also

This method deletes the repository object from the repository. Any relationships that connect the
object to other objects are deleted. If the repository object is an origin object of a relationship
collection, and the relationship type indicates that deletes are to be propagated, then all of the
destination objects are also deleted.

Syntax

Call    object.Delete

The Delete method syntax has these parts:

Part Description

object An object expression that evaluates to a
RepositoryObject object.

RepositoryObject Interface Property
See Also

Use this property to obtain a view of the repository object that uses an alternate interface as the
default interface. This is a read-only property. There are two variations of this property.

Syntax

Set variable    =    object.Interface(interfaceId)

Set variable    =    object.Interface(objectId)

The Interface property syntax has these parts:

Part Description

variable An object variable. Receives the repository
object with the specified interface as the
default interface.

object An object expression that evaluates to a
RepositoryObject object.

interfaceId The interface identifier for the interface to be
retrieved.

 objectId The object identifier for the interface definition
to which the interface to be retrieved
conforms.

RepositoryObject InternalID Property
See Also

This property is the internal identifier that the repository engine uses to refer to this object. The
internal identifier is unique within the repository, but not unique across repositories. This is a read-only
property. To copy this property to another variable, use a variable declared as a Variant.

Syntax

object.InternalID

The InternalID property syntax has these parts:

Part Description

object An object expression that evaluates to a
RepositoryObject object.

RepositoryObject Lock Method
See Also

Use this method to lock the repository object. Locking the object prevents other processes from
updating the object while you are working with it. The lock is released when you end the current
transaction.

Call object.Lock

The Lock method syntax has these parts:

Part Description

object An object expression that evaluates to a
RepositoryObject object.

RepositoryObject Name Property
See Also

A character string that contains the name of the repository object.

The name property is normally a property of the relationship for which this repository object is the
destination object. When the name is retrieved, the name from the first naming relationship found is
returned. If the object is not the destination of any naming relationship, a null name is returned. When
the name is set, the new name is set for all naming relationships for which the object is the
destination.

Syntax

object.Name

The Name property syntax has these parts:

Part Description

object An object expression that evaluates to a
RepositoryObject object.

Remarks

If the repository object exposes the INamedObject interface, then the name that is retrieved is always
the Name property of the INamedObject interface. Likewise, when this property is set, the Name
property of the INamedObject interface and the name associated with all naming relationships are set
to the new value.

RepositoryObject ObjectID Property
See Also

This property is the object identifier for the repository object. The object identifier is unique across all
repositories. This is a read-only property. To copy this property to another variable, use a variable
declared as a Variant.

Syntax

object.ObjectID

The ObjectID property syntax has these parts:

Part Description

object An object expression that evaluates to a
RepositoryObject object.

RepositoryObject Refresh Method
See Also

This method refreshes the cached image of the repository object. Only cached data that has not been
changed by the current process is refreshed.

Syntax

Call object.Refresh(milliSecs)

The Refresh method syntax has these parts:

Part Description

object An object expression that evaluates to a
RepositoryObject object.

milliSecs All unchanged data relating to the item that
has been in the cache for longer than millisecs
milliseconds is refreshed. Set this parameter
to zero to refresh all unchanged data.

RepositoryObject Repository Property
See Also

The Repository property is the open repository instance through which this repository object was
instantiated. This is a read-only property.

Syntax

Set variable    =    object.Repository

The Repository property syntax has these parts:

Part Description

variable A variable declared as an instance of the
Repository class. Receives the object that
represents the open repository instance.

object An object expression that evaluates to a
RepositoryObject object.

RepositoryObject Properties Collection
See Also

The Properties collection contains all of the persistent properties that are attached to the repository
object via the IRepositoryObject interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression that evaluates to a
RepositoryObject object.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

RepositoryObject Type Property
See Also

This property specifies the type of the repository object. More specifically, it is the object identifier of
the object definition object for the repository object. Type is a read-only property. To copy this property
to another variable, use a variable declared as a Variant.

Syntax

object.Type

The Type property syntax has these parts:

Part Description

object An object expression that evaluates to a
RepositoryObject object.

Remarks

An object in the repository is simultaneously a repository object, an Automation object, and an object
of a model-specific type, as defined by a tool information model.

The model-specific type of a repository object is defined by its object definition. Each object definition
is itself a repository object, and consequently has an object identifier assigned to it. In other words,
the value of an object definition object's ObjectID property is used as the value of the Type property
for all repository objects that conform to that object definition.

RepositoryTransaction Object
See Also                  Properties                Methods                  Collections

The repository supports the bracketing of multiple changes within the scope of a transaction.
Changes to a repository that are bracketed within a transaction are either all committed or all undone,
depending upon the way that the transaction is completed. Repository methods that are reading data
from the repository may be executed outside of a transaction, but methods that write data must be
bracketed within a transaction.

You cannot directly instantiate a RepositoryTransaction object. When you connect to a repository, a
RepositoryTransaction object is created for you. It is accessible via the Repository.Transaction
property.

When to Use

Use the RepositoryTransaction object to manage repository transactions.

Properties

Property Description

Status The transaction status of the repository.

Methods

Method Description

Abort Cancels the current transaction.

Begin Begins a new transaction.

Commit Commits the current transaction.

Flush Flushes uncommitted changes to the
repository database.

GetOption Retrieves various transaction options.

SetOption Sets various transaction options.

Remarks

Only one transaction may be active at a time for each opened repository instance. Nesting of
Begin/Commit method invocations is permitted, but no actual nesting of transactions occurs.

RepositoryTransaction Abort Method
See Also

This method cancels the currently active transaction for an open repository. All updates made during
the transaction are undone. The nested transaction count is set to zero.

Syntax

Call    object.Abort

The Abort method syntax has these parts:

Part Description

object The RepositoryTransaction object for the
currently open repository instance.

RepositoryTransaction Begin Method
See Also

This method increments the nested transaction count by one. If there is no active transaction, this
method begins a transaction for the open repository instance.

Syntax

Call    object.Begin

The Begin method syntax has these parts:

Part Description

object The RepositoryTransaction object for the
currently open repository instance.

RepositoryTransaction Commit Method
See Also

This method decrements the nested transaction count for an open repository instance. If the currently
active transaction is not nested, all changes made to repository data within the transaction are
committed to the repository database. A transaction is not nested if the nested transaction count
equals one.

Syntax

Call    object.Commit

The Commit method syntax has these parts:

Part Description

object The RepositoryTransaction object for the
currently open repository instance.

RepositoryTransaction Flush Method
See Also

This method flushes cached changes to the repository database.

Unless you have set the exclusive-write-through-mode transaction option, changes that you make
within the scope of a transaction are cached, and are not written to the database until the transaction
is committed. If a concurrent SQL query is run against the repository database, the result of the query
will not reflect the uncommitted changes (this is normally the desired behavior).

If your repository application must be able to see uncommitted changes in SQL queries, you can use
the Flush method to write uncommitted changes to the repository database. All changes made within
the scope of the current transaction are flushed. Flushing uncommitted changes does not affect your
ability to cancel a transaction via the Abort method.

Syntax

Call    object.Flush

The Flush method syntax has these parts:

Part Description

object The RepositoryTransaction object for the
currently open repository instance.

RepositoryTransaction GetOption Method
See Also

This method is used to retrieve various transaction options. The transaction options are:

1. Whether or not subsequent transactions will execute in non-exclusive write-back mode. Non-
exclusive write-back mode allows transactions for other repository instances to execute
concurrently, and caches updates for this repository instance until a transaction is committed.

2. Whether or not subsequent transactions will execute in exclusive write-back mode. Exclusive write-
back mode does not allow transactions for other repository instances to execute concurrently, and
caches updates for this repository instance until a transaction is committed.

3. Whether or not subsequent transactions will execute in exclusive write-through mode. Exclusive
write-through mode does not allow transactions for other repository instances to execute
concurrently, and writes updates for this repository instance to persistent storage as soon as
possible.

4. What the maximum time is that subsequent transactions will wait to obtain a lock.

5. What the maximum time is that subsequent transactions will wait to begin a transaction.

The first three of these options are mutually exclusive; only one of them can be set at a time. The last
option set is the option that is in effect. The fourth and fifth options are independent of the first three,
and each other.

Syntax

variable    =    object.GetOption(whichOption)

The GetOption property syntax has these parts:

Part Description

object The RepositoryTransaction object for the
currently open repository instance.

whichOption This parameter specifies which option is to be
retrieved or set. For a list of valid values and
their meanings, see the TransactionFlags
Enumeration.

variable A variable declared as a Variant. Receives the
value of the specified option.

RepositoryTransaction SetOption Method
See Also

This method is used to set various transaction options. The transaction options are:

1. Whether or not subsequent transactions will execute in non-exclusive write-back mode. Non-
exclusive write-back mode allows transactions for other repository instances to execute
concurrently, and caches updates for this repository instance until a transaction is committed.

2. Whether or not subsequent transactions will execute in exclusive write-back mode. Exclusive write-
back mode does not allow transactions for other repository instances to execute concurrently, and
caches updates for this repository instance until a transaction is committed.

3. Whether or not subsequent transactions will execute in exclusive write-through mode. Exclusive
write-through mode does not allow transactions for other repository instances to execute
concurrently, and writes updates for this repository instance to persistent storage as soon as
possible.

4. What the maximum time is that subsequent transactions will wait to obtain a lock.

5. What the maximum time is that subsequent transactions will wait to begin a transaction.

The first three of these options are mutually exclusive; only one of them can be set at a time. The last
option set is the option that is in effect. The fourth and fifth options are independent of the first three,
and each other.

Syntax

Call    object.SetOption(whichOption, optionValue)

The SetOption method syntax has these parts:

Part Description

object The RepositoryTransaction object for the
currently open repository instance.

whichOption This parameter specifies which option is to be
retrieved or set. For a list of valid values and
their meanings, see the TransactionFlags
Enumeration.

optionValue The new value for the option.

RepositoryTransaction Status Property
See Also

This property indicates what the current transaction status is for the repository instance. If the value is
zero, no transaction is active. If the value is nonzero, a transaction is active. This is a read-only
property. To copy this property to another variable, use a variable that is declared as a Variant.

Syntax

object.Status

The Status property syntax has these parts:

Part Description

object The RepositoryTransaction object for the
currently open repository instance.

Remarks

A transaction is considered active until the Commit method has successfully executed and the nested
transaction count has been decremented to zero. Depending upon the data-flushing capabilities of the
underlying database server, the data associated with a committed transaction may or may not be
written to the physical storage device when the Commit method returns control to its caller.

ReposProperties Object
See Also                  Properties                Methods                  Collections

A repository properties collection is the set of persistent properties and collections that are attached to
a repository object or relationship via a particular interface.

When to Use

Use the ReposProperties object to enumerate the collection of repository properties that are
attached to a particular repository object or relationship.

Properties

Property Description

Count The count of the number of items in
the collection.

Item Retrieves the specified property from
the collection.

ReposProperties Count Property
See Also

A long integer that contains the count of the number of items in the collection. This is a read-only
property.

Syntax

object.Count

The Count property syntax has these parts:

Part Description

object The repository property collection.

ReposProperties Item Property
See Also

Use Item to retrieve a repository property from the collection. This is a read-only property. There are
two variations of this property.

Syntax

Set variable    =    object.Item(index   )

Set variable    =    object.Item(objName)

The Item property syntax has these parts:

Part Description

variable An object expression that evaluates to a
ReposProperty object. Receives the specified
repository property.

object The repository property collection.

index The index of the repository property to be
retrieved from the collection.

objName The name associated with the repository
property to be retrieved from the collection.

ReposProperty Object
See Also                  Properties                Methods                  Collections

A repository property is a persistent property or collection that is attached to an object.

When to Use

Use the ReposProperty object to retrieve the name, type, or value of a repository property, or to set
the value of a repository property.

Properties

Property Description

Name The name of the property.

Type The type of the property.

Value The value of the property.

ReposProperty Name Property
See Also

The name of the repository property. This is a read-only property.

Syntax

object.Name

The Name property syntax has these parts:

Part Description

object An object expression that evaluates to a
ReposProperty object.

ReposProperty Type Property
See Also

The type of the repository property; that is, the object identifier of the property definition object to
which this repository property conforms. This is a read-only property. Use a Variant variable to receive
the Type property.

Syntax

object.Type

The Type property syntax has these parts:

Part Description

object An object expression that evaluates to a
ReposProperty object.

ReposProperty Value Property
See Also

The value of the repository property. If you do not know the type of the property, use a Variant variable
to receive this property value.

Syntax

object.Value

object.Value    =    newValue

The Value property syntax has these parts:

Part Description

object An object expression that evaluates to a
ReposProperty object.

newValue An expression that evaluates to a value of the
appropriate type for the repository property.

ClassDef Object
See Also                  Properties                Methods                  Collections

The ClassDef object helps you create tool information models, by adding interfaces to a class. To
insert a new class definition into a tool information model, use the ReposTypeLib object.

To complete a class definition, once you have added all of the interfaces, commit the transaction that
brackets your class definition modifications.

A ClassDef object is also a RepositoryObject. In addition to the members described here, ClassDef
objects also provide the members that are defined for repository objects.

When to Use

Use the ClassDef object to:

· Add a new or existing interface to a class definition.

· Retrieve the global identifier for the class.

· Access the collection of interfaces that are part of a class definition.

Properties

Property Description

ClassID The global identifier of the class.

Methods

Method Description

AddInterface Adds an existing interface to the class
definition.

CreateInterfaceDef Creates a new interface and adds it to the
class definition.

ObjectInstances Materializes an object collection
containing all of the objects in the
repository that conform to this class.

Collections

Collection Description

Interfaces The collection of all interfaces that are
implemented by the class.

ItemInCollections This collection is empty for class
definitions. It is reserved for future use.

Properties The collection of all persistent properties
that are attached to the ClassDef object.

ReposTypeLibScopes The collection of all repository type
libraries that contain this definition.

ClassDef ClassID Property
See Also

This property contains the global identifier that is assigned to this class. If you copy this property to a
variable, declare the variable as a Variant.

Syntax

object.ClassID

The ClassID property syntax has these parts:

Part Description

object An object expression that evaluates to a
ClassDef object.

ClassDef AddInterface Method
See Also

The AddInterface method adds an existing interface to the collection of interfaces that are
implemented by a particular class.

Syntax

Call    object.AddInterface(interfaceDef, flag)

The AddInterface method syntax has these parts:

Part Description

object An object expression that evaluates to a
ClassDef object.

interfaceDef The InterfaceDef definition object for the
interface that is to be added to the collection of
interfaces that are implemented by this class.

flag If the interface that you are adding is the
default interface for the class, pass in the
string "Default". Otherwise, pass in a null
string.

ClassDef CreateInterfaceDef Method
See Also

The CreateInterfaceDef method creates a new interface definition, and adds the interface to the
collection of interfaces that are implemented by the class.

Syntax

Set    variable = object.CreateInterfaceDef(sObjId, name, interfaceId, ancestor, flag)

The CreateInterfaceDef method syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the new interface definition.

object An object expression that evaluates to a
ClassDef object.

sObjId The object identifier to be assigned to the new
interface definition object. If this parameter is
set to OBJID_NULL, the repository assigns an
object identifier for you.

name The name of the interface that is to be
created.

interfaceId The interface identifier for this interface. If
there is none, set this parameter to zero.

ancestor The InterfaceDef definition object for the
interface that is the base interface from which
the interface being created is derived.

flag If the interface that you are creating is the
default interface for the class, pass in the
string "Default". Otherwise, pass in a null
string.

ClassDef ObjectInstances Method
See Also

This method materializes an object collection containing all of the objects in the repository that
conform to this class.

Syntax

Set    variable    =    object.ObjectInstances

The ObjectInstances method syntax has these parts:

Part Description

variable A variable declared as an ObjectCol object.
Receives the collection of objects that conform
to this class.

object An object expression that evaluates to a
ClassDef object.

ClassDef Interfaces Collection
See Also

The collection of all interfaces that are implemented by this class.

Collection Descriptor Descriptor Value

Relationship Type Class-Implements-Interface

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

Syntax

Set    variable    =    object.Interfaces(index)

The Interfaces collection syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the specified interface.

object An object expression that evaluates to a
ClassDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Interfaces.Count.

ClassDef Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The ClassDef object exposes four separate Properties collections.
These collections are exposed by:

1. The IClassDef interface (the default).

2. The IReposTypeInfo interface.

3. The IRepositoryObject interface.

4. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IClassDef,

· IReposTypeInfo,

· IRepositoryObject, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

ClassDef ReposTypeLibScopes Collection
See Also

The collection of repository type libraries that contain this definition.

Collection Descriptor Descriptor Value

Relationship Type ReposTypeLib-ScopeFor-
ReposTypeInfo

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.ReposTypeLibScopes(index)

The ReposTypeLibScopes collection syntax has these parts:

Part Description

variable A variable declared as a ReposTypeLib object.
Receives the specified repository type library
object.

object An object expression that evaluates to a
ClassDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.TypeLibScopes.Count.

CollectionDef Object
See Also                  Properties                Methods                  Collections

A collection type (also referred to as a collection definition) defines how instances of a particular type
of collection will behave. The properties of the collection type determine:

· The minimum and maximum number of items in a collection.

· Whether or not the collection type is an origin collection type.

· Whether or not the collection type permits the naming of destination objects, and if so, whether
those names are case sensitive, and required to be unique.

· Whether or not the collection type permits the explicit sequencing of items in the collection.

· What happens to related objects when objects or relationships in the collection are deleted.

The kind of relationship that a particular collection type uses to relate objects to each other is
determined by its CollectionItem collection. The CollectionItem collection associates a single
relationship type to the collection type.

To add a new collection type, use the InterfaceDef object.

A CollectionDef object is also a RepositoryObject. In addition to the members described here,
CollectionDef objects also provide the members that are defined for repository objects.

When to Use

Use the CollectionDef object to retrieve or modify the properties of a collection type, to determine the
kind of relationship that the collection implements, or to determine the interface to which the collection
is attached.

Properties

Property Description

DispatchID The dispatch identifier to use when
accessing an instance of this type of
collection.

Flags Flags that specify details about this
collection definition.

IsOrigin Indicates whether or not collections of this
type are origin collections.

MaxCount The maximum number of target objects
that can be contained in a collection of
this type.

MinCount The minimum number of target objects
that must be contained in a collection of
this type.

Collections

Collection Description

CollectionItem The collection of one relationship type
that defines the relationship between
target objects of this type of collection
and a single source object.

Interface The interface to which this collection
definition is attached.

Properties The collection of all persistent properties

that are attached to the CollectionDef
object.

CollectionDef DispatchID Property
See Also

This property contains the dispatch identifier to use when accessing a collection of this type.

This property is not attached to the default interface for the CollectionDef Automation object; it is
attached to the IInterfaceMember interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Syntax

object.DispatchID

The DispatchID property syntax has these parts:

Part Description

object An object expression; evaluates to an object
that exposes IInterfaceMember as the default
interface.

CollectionDef Flags Property
See Also

The CollectionDef object exposes two separate Flags properties. One of these properties is exposed
by the default interface, and the other is exposed by the IInterfaceMember interface. They are both
described here.

The default Flags property determines:

· Whether or not the collection type permits the naming of destination objects, and if so, whether
those names are case sensitive, and required to be unique.

· Whether or not the collection type permits the explicit sequencing of items in the collection.

· What happens to related objects when objects or relationships in the collection are deleted.

See the CollectionDefFlags Enumeration for a list of values and their specific purposes.

The IInterfaceDef Flags property is a flag that specifies whether or not the interface member should
be visible to Automation queries. See the InterfaceMemberFlags Enumeration for a list of values and
their specific purposes.

Syntax

object.Flags

The Flags property syntax has these parts:

Part Description

object An object expression that evaluates to a
CollectionDef object, for the default Flags
property, or:

an object expression that evaluates to an
object that exposes IInterfaceMember as the
default interface, for the alternate Flags
property.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

CollectionDef IsOrigin Property
See Also

This property indicates whether or not collections of this type are origin collections. If you copy this
property to a variable, declare the variable as a Boolean.

Syntax

object.IsOrigin

The IsOrigin property syntax has these parts:

Part Description

object An object expression that evaluates to a
CollectionDef object.

CollectionDef MaxCount Property
See Also

This property specifies the maximum number of target objects that can be contained in a collection of
this type. This property is maintained for informational purposes, and is not enforced by the repository
engine.

Syntax

object.MaxCount

The MaxCount property syntax has these parts:

Part Description

object An object expression that evaluates to a
CollectionDef object.

CollectionDef MinCount Property
See Also

This property specifies the minimum number of target objects that must be contained in a collection of
this type. This property is maintained for informational purposes, and is not enforced by the repository
engine.

Syntax

object.MinCount

The MinCount property syntax has these parts:

Part Description

object An object expression that evaluates to a
CollectionDef object.

CollectionDef CollectionItem Collection
See Also

The collection of one relationship type that defines the relationship between target objects of this type
of collection and a single source object.

Collection Descriptor Descriptor Value

Relationship Type Collection-Contains-Items

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size One

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

Syntax

Set    variable    =    object.CollectionItem(index)

The CollectionItem collection syntax has these parts:

Part Description

variable A variable declared as a RelationshipDef
object. Receives the specified relationship
definition object.

object An object expression that evaluates to a
CollectionDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.CollectionItem.Count.

CollectionDef Interface Collection
See Also

For a particular collection definition, the Interface collection specifies which interface exposes a
member of this type.

This collection is not attached to the default interface for the CollectionDef Automation object; it is
attached to the IInterfaceMember interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Collection Descriptor Descriptor Value

Relationship Type Interface-Has-Members

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size One

Sequenced Collection Yes

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.Interface(index)

The Interface collection syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the specified interface definition.

object An object expression; evaluates to an object
that implements IInterfaceMember as the
default interface.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Interface.Count.

CollectionDef Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The CollectionDef object exposes four separate Properties
collections. These collections are exposed by:

1. The ICollectionDef interface (the default).

2. The IInterfaceMember interface.

3. The IRepositoryObject interface.

4. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· ICollectionDef,

· IInterfaceMember,

· IRepositoryObject, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

InterfaceDef Object
See Also                  Properties                Methods                  Collections

The properties methods, and collections that a class implements are organized into functionally
related groups. Each group is implemented as a repository interface. The properties, methods, and
collections of each interface are members of the interface. An interface definition is the template to
which an interface conforms.

To add a new interface to the repository, use the ClassDef object or the ReposTypeLib object.

An InterfaceDef object is also a RepositoryObject. In addition to the members described here,
InterfaceDef objects also provide the members that are defined for repository objects.

When to Use

Use the InterfaceDef class to:

· Retrieve or modify properties of an interface definition.

· Determine which members are attached to an interface definition.

· Determine which classes implement an interface.

· Determine the base interface from which an interface derives.

· Determine what interfaces derive from a particular interface.

· Determine what repository objects expose a particular interface.

· Add a new property, method or collection type to an interface definition.

Properties

Property Description

Flags Flags that specify whether the
interface is extensible, and whether
the interface should be visible to
Automation interface queries.

InterfaceID The global interface identifier for the
interface.

TableName The name of the SQL table that is
used to store instance information for
the properties of the interface.

Methods

Method Description

CreateMethodDef Creates a new method definition, and
attaches it to the interface definition.

CreatePropertyDef Creates a new property definition, and
attaches it to the interface definition.

CreateRelationshipColDef Creates a relationship collection type.
The collection type is attached to the
interface definition.

ObjectInstances Materializes an ObjectCol collection
of all objects in the repository that
expose this interface.

Collections

Collection Description

Ancestor The collection of one base interface
from which this interface derives.

Classes The collection of classes that
implement the interface.

Descendants The collection of other interfaces that
derive from this interface.

Members The collection of members that are
exposed by the interface.

ItemInCollections This collection is empty for interface
definitions.

Properties The collection of all persistent
properties that are attached to the
InterfaceDef object.

ReposTypeLibScopes The collection of all repository type
libraries that contain this definition.

InterfaceDef Flags Property
See Also

This property contains flags that specify whether the interface is extensible, and whether the interface
should be visible to Automation interface queries. See the InterfaceDefFlags Enumeration for a list of
values and their specific purposes.

Syntax

object.Flags

The Flags property syntax has these parts:

Part Description

object An object expression that evaluates to an
InterfaceDef object.

InterfaceDef InterfaceID Property
See Also

This property is the global interface identifier for the interface. If you copy this property to a variable,
declare the variable as a Variant.

Syntax

object.InterfaceID

The InterfaceID property syntax has these parts:

Part Description

object An object expression that evaluates to an
InterfaceDef object.

InterfaceDef TableName Property
See Also

This character string property contains the name of the SQL table that is used to store instance
information for the properties of the interface. The length of the name must be 30 characters or less.

Syntax

object.TableName

The TableName property syntax has these parts:

Part Description

object An object expression that evaluates to an
InterfaceDef object.

InterfaceDef CreateMethodDef Method
See Also

This method creates a new method definition and attaches it to the interface definition.

Syntax

Set    variable    =    object.CreateMethodDef(sObjId, name, dispId)

The CreateMethodDef method syntax has these parts:

Part Description

object An object expression that evaluates to an
InterfaceDef object.

variable A variable declared as a MethodDef object.
Receives the new method definition.

sObjId The object identifier to be used for the new
method definition object. The repository
engine will assign an object identifier if you set
this parameter to OBJID_NULL.

name The name of the new method.

dispId The dispatch identifier to be used for
accessing the new method.

InterfaceDef CreatePropertyDef Method
See Also

This method creates a new property definition and attaches it to the interface definition.

Syntax

Set    variable    =    object.CreatePropertyDef(sObjId, name, dispId, CType)

The CreatePropertyDef method syntax has these parts:

Part Description

object An object expression that evaluates to an
InterfaceDef object.

variable A variable declared as a PropertyDef object.
Receives the new property definition.

sObjId The object identifier to be used for the new
property definition object. The repository
engine will assign an object identifier if you set
this parameter to OBJID_NULL.

name The name of the new property.

dispId The dispatch identifier to be used for
accessing the new property.

CType The C data type of the property. For a
definition of valid values, see the ODBC
Programmer's Reference.

InterfaceDef CreateRelationshipColDef Method
See Also

This method creates a new collection type, attaches it to this interface, and associates it with the
specified relationship type.

Syntax

Set    variable    =    object.CreateRelationshipColDef(sObjId, name, dispId, isOrigin, flags,
relshipDef)

The CreateRelationshipColDef method syntax has these parts:

Part Description

object An object expression that evaluates to an
InterfaceDef object.

variable A variable declared as a CollectionDef object.
Receives the new collection definition.

sObjId The object identifier for the collection type.
The repository engine will assign an object
identifier if you set this parameter to
OBJID_NULL.

name The name of the new collection type.

dispId The dispatch identifier to be used for
Automation access to collections of this type.

isOrigin Specifies whether collections of this type are
origin collections. This is a Boolean parameter.

flags Flags that specify naming, sequencing, and
delete propagation behavior for the collection
type. See the CollectionDefFlags Enumeration
for a list of values and their specific purposes.

relshipDef The relationship definition object to which this
collection type is connected.

Remarks

By default, the collection definition specifies that zero to many items are permitted in collections of
this type. To specify a different minimum and maximum item count for the new collection type, change
the MinCount and MaxCount properties before committing the transaction that contains this method
invocation.

InterfaceDef ObjectInstances Method
See Also

This method materializes an ObjectCol collection of all objects in the repository that expose this
interface.

Syntax

Set    variable    =    object.ObjectInstances

The ObjectInstances method syntax has these parts:

Part Description

object An object expression that evaluates to an
InterfaceDef object.

variable A variable declared as an ObjectCol object.
Receives the collection of objects that expose
this interface.

InterfaceDef Ancestor Collection
See Also

This collection specifies the one base interface from which this interface derives.

Collection Descriptor Descriptor Value

Relationship Type Interface-InheritsFrom-Interface

Source Is Origin Yes

Minimum Collection Size One

Maximum Collection Size One

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

Syntax

Set    variable    =    object.Ancestor(index)

The Ancestor collection syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the specified base interface
definition.

object An object expression that evaluates to an
InterfaceDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Ancestor.Count.

InterfaceDef Classes Collection
See Also

This collection specifies which classes implement the interface.

Collection Descriptor Descriptor Value

Relationship Type Class-Implements-Interface

Source Is Origin No

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not Applicable

Unique Names Not Applicable

Syntax

Set    variable    =    object.Classes(index)

The Classes collection syntax has these parts:

Part Description

variable A variable declared as a ClassDef object.
Receives the specified class definition.

object An object expression that evaluates to an
InterfaceDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Classes.Count.

InterfaceDef Descendants Collection
See Also

This collection specifies other interfaces that derive from this interface..

Collection Descriptor Descriptor Value

Relationship Type Interface-InheritsFrom-Interface

Source Is Origin No

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

Syntax

Set    variable    =    object.Descendants(index)

The Descendants collection syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the specified interface definition.

object An object expression that evaluates to an
InterfaceDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Descendants.Count.

InterfaceDef Members Collection
See Also

This collection specifies which members are attached to the interface.

Collection Descriptor Descriptor Value

Relationship Type Interface-Has-Members

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection Yes

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.Members(index)

The Members collection syntax has these parts:

Part Description

variable A variable declared as an object. Receives the
specified property definition, method definition,
or collection definition.

object An object expression that evaluates to an
InterfaceDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Members.Count.

InterfaceDef Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The InterfaceDef object exposes four separate Properties collections.
These collections are exposed by:

1. The IInterfaceDef interface (the default).

2. The IReposTypeInfo interface.

3. The IRepositoryObject interface.

4. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IInterfaceDef,

· IReposTypeInfo,

· IRepositoryObject, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

InterfaceDef ReposTypeLibScopes Collection
See Also

The collection of repository type libraries that contain this definition.

Collection Descriptor Descriptor Value

Relationship Type ReposTypeLib-ScopeFor-
ReposTypeInfo

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.ReposTypeLibScopes(index)

The ReposTypeLibScopes collection syntax has these parts:

Part Description

variable A variable declared as a ReposTypeLib object.
Receives the specified repository type library
object.

object An object expression that evaluates to an
InterfaceDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.TypeLibScopes.Count.

MethodDef Object
See Also                  Properties                Methods                  Collections

When you define a class for a tool information model, you specify the interfaces that the class
implements. For each of those interfaces, you specify the members (properties, methods, and
collections) that are attached to the interface.

The definition of a method as a member of an interface does not result in the method's
implementation logic being stored in the repository. However, it does add the method name to the set
of defined member names for that interface. It also reserves the method's dispatch identifier in the set
of defined dispatch identifier values for the interface.

A method definition (a MethodDef object) is also a RepositoryObject. In addition to the members
described here, MethodDef objects also provide the members that are defined for repository objects.

To attach a new method to an interface, use the CreateMethodDef method of the InterfaceDef
object.

When to Use

Use the MethodDef object to access or modify the characteristics of a method definition, or to
determine the interface definition to which a particular method is attached.

Properties

Property Description

DispatchID The dispatch identifier to use when
invoking a method that conforms to
this method definition.

Flags Flags that specify details about this
method definition.

Collections

Collection Description

Interface The interface to which this method
definition is attached.

Properties The collection of all persistent
properties that are attached to the
MethodDef object.

MethodDef DispatchID Property
See Also

This property contains the dispatch identifier that is used to invoke a method that conforms to this
method definition.

Syntax

object.DispatchID

The DispatchID property syntax has these parts:

Part Description

object An object expression that evaluates to a
MethodDef object.

MethodDef Flags Property
See Also

This property is a flag that specifies whether or not the interface member should be visible to
Automation queries. See the InterfaceMemberFlags Enumeration for a list of values and their specific
purposes.

Syntax

object.Flags

The Flags property syntax has these parts:

Part Description

object An object expression that evaluates to a
MethodDef object.

MethodDef Interface Collection
See Also

For a particular method definition, the Interface collection specifies which interface exposes a
member of this type.

Collection Descriptor Descriptor Value

Relationship Type Interface-Has-Members

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size One

Sequenced Collection Yes

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.Interface(index)

The Interface collection syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the specified interface definition.

object An object expression that evaluates to a
MethodDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Interface.Count.

MethodDef Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The MethodDef object exposes three separate Properties collections.
These collections are exposed by:

1. The IInterfaceMember interface (the default).

2. The IRepositoryObject interface.

3. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IInterfaceMember,

· IRepositoryObject, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

PropertyDef Object
See Also                  Properties                Methods                  Collections

When you define a class for a tool information model, you specify the interfaces that the class
implements. For each of those interfaces, you specify the members (properties, methods, and
collections) that are attached to the interface.

In order to attach a property to an interface, a property definition must exist for the property. The
characteristics of the property (it's name, dispatch identifier, data type, and various storage details)
are stored in the property definition object. These characteristics are defined by the properties of the
property definition object.

To create a new property definition:

1. Use the CreatePropertyDef method of the InterfaceDef object.

2. Define any non-default characteristics of your new property definition by manipulating the
properties of the property definition object.

3. Commit your changes to the repository database.

A PropertyDef object is also a RepositoryObject. In addition to the members described here,
PropertyDef objects also provide the members that are defined for repository objects.

When to Use

Use the PropertyDef object to retrieve or modify the characteristics of a property definition, or to
determine which interface exposes a particular property.

Properties

Property Description

APIType The C data type of the property.

ColumnName The name of the column in the SQL
table for this property.

DispatchID The dispatch identifier to use when
accessing an instance of this type of
property.

Flags Flags that specify details about this
property definition.

SQLScale The number of digits to the right of the
decimal point for a numeric property.

SQLSize The size in bytes of the property.

SQLType The SQL data type of the property.

Collections

Collection Description

Interface The interface to which this property
definition is attached.

Properties The collection of all persistent
properties that are attached to the
PropertyDef object.

PropertyDef APIType Property
See Also

The C data type of the property. For a definition of valid values, see the ODBC Programmer's
Reference.

Syntax

object.APIType

The APIType property syntax has these parts:

Part Description

object An object expression that evaluates to a
PropertyDef object.

PropertyDef ColumnName Property
See Also

An SQL table is used to store instance information for the properties of an interface. By default, there
is a column in this table for each property that is defined as a member of the interface. The
ColumnName string property specifies the name of the column in the SQL table for the property
definition. The length of the column name must be 30 bytes or less.

Syntax

object.ColumnName

The ColumnName property syntax has these parts:

Part Description

object An object expression that evaluates to a
PropertyDef object.

PropertyDef DispatchID Property
See Also

This property contains the dispatch identifier to use when accessing an instance of this type of
member.

This property is not attached to the default interface for the PropertyDef Automation object; it is
attached to the IInterfaceMember interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Syntax

object.DispatchID

The DispatchID property syntax has these parts:

Part Description

object An object expression; evaluates to an object
that exposes IInterfaceMember as the default
interface.

PropertyDef Flags Property
See Also

The PropertyDef object exposes two separate Flags properties. One of these properties is exposed
by the default interface, and the other is exposed by the IInterfaceMember interface. They are both
described here.

1. The default Flags property: a flag that specifies whether or not a column is created in the SQL
table for the interface to which this property is attached. If no column is created, then instances of
this property are only attached to individual objects, when the property value is set for that
particular object. By default, a column is created for each property. See the PropertyDefFlags
Enumeration for the symbolic and numeric values of this flag.

2. The IInterfaceDef Flags property: a flag that specifies whether or not the interface member
should be visible to Automation queries. See the InterfaceMemberFlags Enumeration for a list of
values and their specific purposes.

Syntax

object.Flags

The Flags property syntax has these parts:

Part Description

object An object expression that evaluates to a
PropertyDef object, for the default Flags
property, or:

an object expression that evaluates to an
object that exposes IInterfaceMember as the
default interface, for the alternate Flags
property.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

PropertyDef SQLScale Property
See Also

The number of digits to the right of the decimal point for a numeric property. This parameter is ignored
unless the SQLType property specifies an SQL_NUMERIC, SQL_DECIMAL, or SQL_TIME data type.

Syntax

object.SQLScale

The SQLScale property syntax has these parts:

Part Description

object An object expression that evaluates to a
PropertyDef object.

PropertyDef SQLSize Property
See Also

The size in bytes of the property. This parameter is ignored when the data type of the property
inherently specifies the size of the property.

Syntax

object.SQLSize

The SQLSize property syntax has these parts:

Part Description

object An object expression that evaluates to a
PropertyDef object.

PropertyDef SQLType Property
See Also

The SQL data type of the property. For a definition of valid values, see the ODBC Programmer's
Reference.

Syntax

object.SQLType

The SQLType property syntax has these parts:

Part Description

object An object expression that evaluates to a
PropertyDef object.

PropertyDef Interface Collection
See Also

For a particular property definition, the Interface collection specifies which interface exposes a
member of this type.

This collection is not attached to the default interface for the PropertyDef Automation object; it is
attached to the IInterfaceMember interface. For details on how to access a member of an interface
that is not the default interface, see Accessing Automation Object Members.

Collection Descriptor Descriptor Value

Relationship Type Interface-Has-Members

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size One

Sequenced Collection Yes

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.Interface(index)

The Interface collection syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the specified interface definition.

object An object expression; evaluates to an object
that implements IInterfaceMember as the
default interface.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Interface.Count.

PropertyDef Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The PropertyDef object exposes four separate Properties collections.
These collections are exposed by:

1. The IPropertyDef interface (the default).

2. The IRepositoryObject interface.

3. The IInterfaceMember interface.

4. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IPropertyDef,

· IRepositoryObject,

· IInterfaceMember, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

ReposTypeLib Object
See Also                  Properties                Methods                  Collections

There is one repository type library for every tool information model contained in the repository
database. Each tool information model provides a logical grouping of all of the type definitions related
to a particular tool (or tool set). Repository type libraries are represented by ReposTypeLib objects.

A ReposTypeLib object is also a RepositoryObject. In addition to the members described here,
ReposTypeLib objects also provide the members that are defined for repository objects.

To insert a new tool information model into the repository database, use the ReposRoot object.

When to Use

Use a ReposTypeLib object to:

· Define new classes, relationship types, and interfaces for a tool information model.

· Retrieve or modify the global identifier associated with a repository type library.

· Determine which type definitions are associated with a particular repository type library.

Properties

Property Description

TypeLibID The global identifier for the repository
type library.

Methods

Method Description

CreateClassDef Creates a new class definition object.

CreateInterfaceDef Creates a new interface definition
object.

CreateRelationshipDef Creates a new relationship definition
object.

Collections

Collection Description

ReposTypeInfos The collection of all classes,
interfaces, and relationship types that
are defined in the repository type
library.

ReposTypeLibContexts The collection of one repository root
object that is the context for the
repository type library.

Properties The collection of all persistent
properties that are attached to the
ReposTypeLib object.

ReposTypeLib TypeLibID Property
See Also

This property is the global identifier for the repository type library. If you copy this property to a
variable, declare the variable as a Variant.

Syntax

object.TypeLibID

The TypeLibID property syntax has these parts:

Part Description

object An object expression that evaluates to a
ReposTypeLib object.

ReposTypeLib CreateClassDef Method
See Also

This method creates a new class definition object. No interfaces are attached to the class.

Syntax

Set    variable    =    object.CreateClassDef(sObjId, Name, sClsId)

The CreateClassDef method syntax has these parts:

Part Description

variable A variable declared as a ClassDef object.
Receives the new class definition.

object An object expression that evaluates to a
ReposTypeLib object.

sObjId The object identifier to be used for the new
class definition object. The repository engine
will assign an object identifier if you set this
parameter to OBJID_NULL.

Name The name of the new class.

sClsId The global identifier by which this class is
referenced.

ReposTypeLib CreateInterfaceDef Method
See Also

The CreateInterfaceDef method creates a new interface definition object. Use the AddInterface
method of the ClassDef object to attach the interface to a class definition object.

Syntax

Set    variable    =    object.CreateInterfaceDef(sObjId, Name, sIId, Ancestor)

The CreateInterfaceDef method syntax has these parts:

Part Description

variable A variable declared as an InterfaceDef object.
Receives the new interface definition.

object An object expression that evaluates to a
ReposTypeLib object.

sObjId The object identifier to be assigned to the new
interface definition object. If this parameter is
set to OBJID_NULL, the repository assigns an
object identifier for you.

Name The name of the interface that is to be
created.

sIId The interface identifier associated with the
signature for this interface. If there is none, set
this parameter to zero.

Ancestor The base interface from which the new
interface is derived.

ReposTypeLib CreateRelationshipDef Method
See Also

This method creates a relationship definition object for a new relationship type. Once the relationship
definition is created, use the CreateRelationshipColDef method of the InterfaceDef object to create
origin and destination collection definitions for the new relationship type.

Syntax

Set    variable    =    object.CreateRelationshipDef(sObjId, Name)

The CreateRelationshipDef method syntax has these parts:

Part Description

variable A variable declared as a RelationshipDef
object. Receives the new relationship
definition.

object An object expression that evaluates to a
ReposTypeLib object.

sObjId The object identifier for the new relationship
type. The repository engine will assign an
object identifier if you set this parameter to
OBJID_NULL.

Name The name of the new relationship type.

ReposTypeLib ReposTypeInfos Collection
See Also

The collection of all classes, interfaces, and relationship types that are associated with a repository
type library. The repository engine uses this collection to enforce the unique naming of all classes,
interfaces, and relationship types for a repository type library.

Collection Descriptor Descriptor Value

Relationship Type ReposTypeLib-ScopeFor-
ReposTypeInfo

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.ReposTypeInfos(index)

The ReposTypeInfos collection syntax has these parts:

Part Description

variable A variable declared as an Object. Receives
the specified class definition, interface
definition, or relationship definition.

object An object expression that evaluates to a
ReposTypeLib object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.ReposTypeInfos.Count.

ReposTypeLib ReposTypeLibContexts Collection
See Also

The collection of one repository root that is the context for a repository type library.

Collection Descriptor Descriptor Value

Relationship Type TlbManager-ContextFor-ReposTypeLibs

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.ReposTypeLibContexts(index)

The ReposTypeLibContexts collection syntax has these parts:

Part Description

variable A variable declared as a ReposRoot object.
Receives the repository root object.

object An object expression that evaluates to a
ReposTypeLib object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.ReposTypeLibContexts.Count.

ReposTypeLib Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The ReposTypeLib object exposes three separate Properties
collections. These collections are exposed by:

1. The IReposTypeLib interface (the default).

2. The IRepositoryObject interface.

3. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IReposTypeLib,

· IRepositoryObject, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

ReposRoot Object
See Also                  Properties                Methods                  Collections

There is one root object in each repository. The root object is the starting point for navigating to other
objects in the repository. The root object serves as the starting point for both type and instance data
navigations.

· Type data navigation:

When you create a tool information model, the corresponding repository type library is attached to
the root object via the ReposTypeLibs collection. This collection can be used to enumerate all of
the tool information models (type data) that are contained in the repository.

· Instance data navigation:

Once a tool information model is defined, the repository can be populated with instance data. This
instance data consists of objects and relationships that conform to the classes and relationship
types of the tool information model.

Because the objects are connected via relationships, you can navigate through this data. However,
to enable general purpose repository browsers to navigate this data, the first navigational step
must be from the root object of the repository through a root relationship collection to the primary
objects of your tool information model. Primary objects are objects that make a good starting point
for navigating to other objects of your tool information model.

Because this root relationship collection is different for each tool information model, it must be
defined by the tool information model. There are two options for attaching this relationship
collection to the root object:

1. The ReposRoot class implements the IReposRoot interface. This interface is provided to tool
information model creators as a connection point. You can add your connecting relationship
collection to this interface.

2. You can extend the ReposRoot class to implement a new interface that is defined in your tool
information model. This interface implements a relationship collection that attaches the root
object to the primary objects in your tool information model.

To facilitate navigation, the root object in all repositories always has the same object identifier. The
symbolic name for this object identifier is OBJID_ReposRootObj.

A ReposRoot object is also a RepositoryObject. In addition to the members described here,
ReposRoot objects also provide the members that are defined for repository objects.

When to Use

Use the ReposRoot object to:

· Obtain a starting point for navigating to objects in the repository.

· Create a new tool information model.

· Attach a relationship collection to the root object of the repository that connects to the primary
objects of your tool information model.

· Determine what tool information models are currently stored in the repository.

Methods

Method Description

CreateTypeLib Creates a repository type library for a
new tool information model.

Collections

Collection Description

ReposTypeLibs The collection of repository type
libraries that are currently stored in the
repository.

Properties The collection of all persistent
properties that are attached to the
ReposRoot object.

ReposRoot CreateTypeLib Method
See Also

This method creates a new repository type library and attaches it to the root of the repository. Each
repository type library represents a tool information model.

Syntax

Set    variable    =    object.CreateTypeLib(sObjId, Name, TypeLibId)

The CreateTypeLib method syntax has these parts:

Part Description

variable A variable declared as a ReposTypeLib object.
Receives the new repository type library.

object An object expression that evaluates to a
ReposRoot object.

sObjId The object identifier to be used for the new
repository type library object. The repository
engine will assign an object identifier if you set
this parameter to OBJID_NULL.

Name The name of the new repository type library.

TypeLibId The global identifier by which this repository
type library is referenced.

Remarks

This method does not create an external type library; it creates a ReposTypeLib object in the
repository database.

ReposRoot ReposTypeLibs Collection
See Also

The collection of repository type libraries that are currently stored in the repository. Each repository
type library represents a tool information model.

Collection Descriptor Descriptor Value

Relationship Type TlbManager-ContextFor-
ReposTypeLibs

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.ReposTypeLibs(index)

The ReposTypeLibs collection syntax has these parts:

Part Description

variable A variable declared as a ReposTypeLib object.
Receives the specified repository type library.

object An object expression that evaluates to a
ReposRoot object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.ReposTypeLibs.Count.

ReposRoot Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The ReposRoot object exposes four separate Properties collections.
These collections are exposed by:

1. The IManageReposTypeLib interface (the default).

2. The IReposRoot interface.

3. The IRepositoryObject interface.

4. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IManageReposTypeLib,

· IReposRoot,

· IRepositoryObject, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

RelationshipDef Object
See Also                  Properties                Methods                  Collections

When you define a tool information model in the repostory, you define classes of objects, types of
relationships that can exist between objects, and various properties that are attached to these object
classes and relationship types. The relationship types that you define in your tool information model
are represented by instances of the RelationshipDef class.

To add a new relationship type (also referred to as a relationship definition) to a tool information
model, use the CreateRelationshipDef method of the ReposTypeLib object.

A RelationshipDef object is also a RepositoryObject. In addition to the members described here,
RelationshipDef objects also provide the members that are defined for repository objects.

When to Use

Use the RelationshipDef object to:

· Access any persistent properties that are attached to a relationship definition.

· Determine which collection types are associated with a relationship definition.

· Determine which repository type libraries contain a relationship definition.

Properties

Property Description

ClassID This property is reserved for future use.

Collections

Collection Description

Interfaces This collection is empty for relationship
definitions. It is reserved for future use.

ItemInCollections The collection of two collection types that
are associated with this relationship
definition.

Properties The collection of all persistent properties
that are attached to the RelationshipDef
object.

ReposTypeLibScopes The collection of all repository type
libraries that contain this definition.

RelationshipDef ItemInCollections Collection
See Also

A relationship type is associated with two collection types. Origin collections conform to one collection
type (the origin collection type), and destination collections conform to the other collection type (the
destination collection type). The ItemInCollections collection contains the two collection definition
objects that represent the origin and destination collection types.

Collection Descriptor Descriptor Value

Relationship Type Collection-Contains-Items

Source Is Origin No

Minimum Collection Size Zero

Maximum Collection Size Two

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

Syntax

Set    variable    =    object.ItemInCollections(index)

The ItemInCollections collection syntax has these parts:

Part Description

variable A variable declared as a CollectionDef object.
Receives the specified collection definition.

object An object expression that evaluates to a
RelationshipDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.ItemInCollections.Count.

Remarks

If the relationship type has not yet been connected to its origin and destination collection types, then
this collection can contain less than two collection types.

RelationshipDef Properties Collection
See Also

A Properties collection contains all of the persistent properties and collections that are attached to an
object via a particular interface. The RelationshipDef object exposes three separate Properties
collections. These collections are exposed by:

1. The IReposTypeInfo interface (the default).

2. The IRepositoryObject interface.

3. The IAnnotationalProps interface.

Syntax

Set    variable    =    object.Properties(index)

The Properties collection syntax has these parts:

Part Description

variable A variable declared as a ReposProperty
object. Receives the specified property.

object An object expression; evaluates to an object
that exposes:

· IReposTypeInfo,

· IRepositoryObject, or

· IAnnotationalProps

as the default interface.

index An integer index that identifies which property
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.Properties.Count.

Remarks

For details on how to access a member of an interface that is not the default interface, see Accessing
Automation Object Members.

RelationshipDef ReposTypeLibScopes Collection
See Also

The collection of repository type libraries that contain this definition.

Collection Descriptor Descriptor Value

Relationship Type ReposTypeLib-ScopeFor-
ReposTypeInfo

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

Syntax

Set    variable    =    object.ReposTypeLibScopes(index)

The ReposTypeLibScopes collection syntax has these parts:

Part Description

variable A variable declared as a ReposTypeLib object.
Receives the specified repository type library
object.

object An object expression that evaluates to a
RelationshipDef object.

index An integer index that identifies which element
in the collection is to be addressed. The valid
range is from one to the number of elements
in the collection. The number of elements in
the collection is specified by
object.TypeLibScopes.Count.

Repository Engine Classes

Repository engine classes are used to add, retrieve, and change tool information model data in the
repository. To create a new tool information model, or extend an existing one, use the Type
Information Model classes.

All repository classes expose the standard IUnknown and IDispatch interfaces that provide
fundamental COM and Automation support.

Classes

ObjectCol

Relationship

RelationshipCol

Repository

RepositoryObject

ReposProperties

ReposProperty

ObjectCol Class
See Also                  Interfaces

An object collection is a set of repository objects that can be enumerated. Two kinds of object
collections are supported by the repository:

1. The collection of destination objects that correspond to the relationships in a relationship collection.
Use the RelationshipCol class to manage this kind of collection.

2. The collection of all objects in the repository that implement a particular interface. Use the
ObjectCol class to enumerate objects in this kind of object collection.

Use the IInterfaceDef::ObjectInstances method to materialize an instance of this class.

When to Use

Use the ObjectCol class to access the collection of repository objects that expose a particular
interface.

Interfaces

Interface Description

IObjectCol Manages objects in a collection.

IRepositoryDispatch Provides enhanced dispatch support.

Relationship Class
See Also                  Interfaces

A relationship connects two repository objects in the repository database.    A relationship has an
origin repository object, a destination repository object, and a set of properties.

When to Use

Use the Relationship class to manipulate a relationship, or to retrieve the source, target, origin, or
destination object for a relationship.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

IRelationship Retrieves information about a
relationship.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

In each repository relationship, there is an origin and a destination. Consider this relationship
example: Fred drives a black truck. "Person drives vehicle" is the relationship type, Fred is the origin
of the relationship, and the black truck is the destination of the relationship.

Don't confuse the terms origin and destination with the terms source and target. For any particular
relationship, the source and target are dependent upon whether you are navigating via the collection
of origin objects or the collection of destination objects. The origin and destination for the relationship
are not dependent upon which collection is being navigated.

When navigating into or out of a repository collection, the source object is the one object to which all
objects in the collection are related. The target object can be any one of the objects in the collection.

Don't confuse the terms source and target with the terms origin and destination. For any particular
relationship, the source and target are dependent upon whether you are navigating via the collection
of origin objects or the collection of destination objects. The origin and destination for the relationship
are not dependent which collection is being navigated.

RelationshipCol Class
See Also                  Interfaces

A relationship collection is the set of repository relationships that connect a particular source
repository object to a set of one or more target objects. All of the relationships in the collection must
conform to the same relationship type.

When to Use

Use the RelationshipCol class to manage a collection of relationships in the repository database.

Interfaces

Interface Description

IRelationshipCol Manages a collection of relationships.

IRepositoryDispatch Provides enhanced dispatch support.

ITargetObjectCol Manages objects in a target object
collection.

Repository Class
See Also                  Interfaces

When you populate a tool information model, the objects and relationships that conform to the model
are stored in a repository. Multiple tool information models may be stored in the same repository. The
Repository class represents your connection to a particular repository.

When to Use

You can use the Repository class to connect to a repository, retrieve the root object of the repository,
create new repository objects, and manage repository transactions and error handling.

Interfaces

Interface Description

IRepository Creates and populates a
repository.

IRepositoryDispatch Provides enhanced dispatch
support.

IRepositoryErrorQueueHandler Creates and assigns error
queues.

IRepositoryODBC Provides access to repository
database connection
information.

IRepositoryTransaction Controls repository transactions.

RepositoryObject Class
See Also                  Interfaces

When you define a tool information model in the repostory, you define classes of objects, types of
relationships that can exist between objects, and various properties that are attached to these object
classes and relationship types. The object classes that you define in your tool information model
derive their fundamental characteristics from the RepositoryObject class.

When to Use

Use the RepositoryObject class to access, modify, or delete objects in the repository.

Interfaces

Interface Description

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStora
ge

Creates and loads repository objects.

ReposProperties Class
See Also                  Interfaces

The ReposProperties class provides access to the Properties collection. The Properties collection
gives you a convenient mechanism to enumerate through all of the persistent properties and
collections of an interface. The ReposProperty class can be used to access the individual members
in the Properties collection.

When to Use

Use the ReposProperties class to access the properties and collections of a repository object, when
no custom implementation is available, and you do not already know what members are exposed by
the object's interface.

Interfaces

Interface Description

IReposProperties Provides access to the members that
are attached to an interface.

IRepositoryDispatch Provides enhanced dispatch support.

ReposProperty Class
See Also                  Interfaces

The ReposProperty class provides access to a persistent member (a property or collection) of a tool
information model interface.

When to Use

Use the ReposProperty class to access a persistent interface member, when no custom
implementation is available, and you do not already know the type or name of the member.

Interfaces

Interface Description

IReposProperty Provides access to the members that
are attached to an interface.

IRepositoryDispatch Provides enhanced dispatch support.

Type Information Model Classes

The Type Information Model is the object model the repository uses to store tool information models.
Use the Type Information Model classes to create or extend a tool information model. These classes
build upon the fundamental Repository Engine Classes.

All repository classes expose the standard IUnknown and IDispatch interfaces that provide
fundamental COM and Automation support.

Classes

ClassDef

CollectionDef

InterfaceDef

MethodDef

PropertyDef

RelationshipDef

ReposRoot

ReposTypeLib

ClassDef Class
See Also                  Interfaces

When you define a tool information model in the repository, you define classes of objects, types of
relationships that can exist between objects, and various properties that are attached to these object
classes and relationship types. The object classes that you define in your tool information model are
represented by instances of the ClassDef class.

To insert a new class definition into a tool information model, use the ReposTypeLib class.

When to Use

Use the ClassDef class to complete the definition of a new repository class. You can define new
interfaces and attach them to the class definition. You can also attach existing interfaces to the class
definition.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

IClassDef Manages class definitions.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStora
ge

Creates and loads repository objects.

IReposTypeInfo Contains the collection of definition
objects that are associated with a tool
information model's repository type
library.

CollectionDef Class
See Also                  Interfaces

Repository objects are related to each other via relationships. The set of relationships, all of the same
type, that relate one object to zero or more other objects, is a relationship collection.

A collection type (also referred to as a collection definition) defines how instances of a particular
collection type will behave. The characteristics of the collection type determine:

· The minimum and maximum number of items in a collection.

· Whether or not the collection type is an origin collection type.

· Whether or not the collection type permits the naming of destination objects, and if so, whether
those names are case sensitive, and required to be unique.

· Whether or not the collection type permits the explicit sequencing of items in the collection.

· What happens to related objects when objects or relationships in the collection are deleted.

· The kind of relationship that a particular collection type uses to relate objects to each other.

A collection is attached to an interface as a member of the interface. To add a new collection type to
an interface definition, use the InterfaceDef class.

When to Use

Use the CollectionDef class to retrieve or modify the properties of a collection type, or to determine
the kind of relationship that the collection implements.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

ICollectionDef Manages collection definitions.

IInterfaceMember Relates a member to an interface.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStora
ge

Creates and loads repository objects.

InterfaceDef Class
See Also                  Interfaces

The properties methods, and collections that a class implements are organized into functionally
related groups. Each group is implemented as a COM interface. The properties, methods, and
collections of each interface are members of the interface. An interface definition is the template to
which an interface conforms. Interface definitions are instances of the InterfaceDef class.

To create a new interface definition, use the ClassDef class or the ReposTypeLib class.

When to Use

Use the InterfaceDef class to:

· Retrieve or modify properties of an interface definition.

· Determine which members are attached to an interface definition.

· Determine which classes implement an interface.

· Determine the base interface from which an interface derives.

· Determine what interfaces derive from a particular interface.

· Determine what repository objects expose a particular interface.

· Add a new property, method or collection type to an interface definition.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

IInterfaceDef Manages interface definitions.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStora
ge

Creates and loads repository objects.

IReposTypeInfo Contains the collection of definition
objects that are associated with a tool
information model's repository type
library.

MethodDef Class
See Also                  Interfaces

When you define a class for a tool information model, you specify the interfaces that the class
implements. For each of those interfaces, you specify the members (properties, methods, and
collections) that are attached to the interface.

The definition of a method as a member of an interface does not result in the method's
implementation logic being stored in the repository. However, it does add the method name to the set
of defined member names for that interface. It also reserves the method's dispatch identifier in the set
of defined dispatch identifier values for the interface.

Instances of the MethodDef class represent method definitions.

To attach a new method to an interface, use the InterfaceDef class.

When to Use

Use the MethodDef class to access or modify the characteristics of a method definition, or to
determine the interface definition to which a particular method is attached.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

IInterfaceMember Relates a member to an interface.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStorage Creates and loads repository objects.

PropertyDef Class
See Also                  Interfaces

When you define a class for a tool information model, you specify the interfaces that the class
implements. For each of those interfaces, you specify the members (properties, methods, and
collections) that are attached to the interface.

In order to attach a property to an interface, a property definition must exist for the property. The
characteristics of the property (it's name, dispatch identifier, data type, and various storage details)
are stored in the property definition. Property definitions are instances of the PropertyDef class.

To attach a new property to an interface, use the InterfaceDef class.

When to Use

Use the PropertyDef class to access or modify the characteristics of a property definition, or to
determine the interface definition to which a particular property is attached.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

IInterfaceMember Relates a member to an interface.

IPropertyDef Retains property characteristics.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStora
ge

Creates and loads repository objects.

RelationshipDef Class
See Also                  Interfaces

When you define a tool information model in the repository, you define classes of objects, types of
relationships that can exist between objects, and various properties that are attached to these object
classes and relationship types. The relationship types that you define in your tool information model
are represented by instances of the RelationshipDef class.

When to Use

Use the RelationshipDef Class to access the properties of a relationship definition (also referred to
as a relationship type).

To insert a new relationship type into a tool information model, use the ReposTypeLib class.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational
properties.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStorage Creates and loads repository objects.

IReposTypeInfo Contains the collection of definition
objects that are associated with a tool
information model's repository type
library.

ReposRoot Class
See Also                  Interfaces

There is one root object in each repository. The root object is the starting point for navigating to other
objects in the repository. The root object serves as the starting point for both type and instance data
navigations.

· Type data navigation:

When you create a tool information model, the corresponding repository type library is attached to
the root object via the ReposTypeLibs collection. This collection can be used to enumerate all of
the tool information models (type data) that are contained in the repository.

· Instance data navigation:

Once a tool information model is defined, the repository can be populated with instance data. This
instance data consists of objects and relationships that conform to the classes and relationship
types of the tool information model.

Because the objects are connected via relationships, you can navigate through this data. However,
to enable general purpose repository browsers to navigate this data, the first navigational step
must be from the root object of the repository through a root relationship collection to the primary
objects of your tool information model. Primary objects are objects that make a good starting point
for navigating to other objects of your tool information model.

Because this root relationship collection is different for each tool information model, it must be
defined by the tool information model. There are two options for attaching this relationship
collection to the root object:

1. The ReposRoot class implements the IReposRoot interface. This interface is provided to tool
information model creators as a connection point. You can add your connecting relationship
collection to this interface.

2. You can extend the ReposRoot class to implement a new interface that is defined in your tool
information model. This interface implements a relationship collection that attaches the root
object to the primary objects in your tool information model.

To facilitate navigation, the root object in all repositories always has the same object identifier. The
symbolic name for this object identifier is OBJID_ReposRootObj.

When to Use

Use the ReposRoot class to:

· Obtain a starting point for navigating to objects in the repository.

· Create a new tool information model.

· Attach a relationship collection to the root object of the repository that connects to the primary
objects of your tool information model.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

IManageReposTypeLib Adds tool information models (repository
type libraries) to a repository.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStora Creates and loads repository objects.

ge

IReposRoot Provides an attachment point for tool
information model instance data.

ReposTypeLib Class
See Also                  Interfaces

There is one repository type library for every tool information model contained in the repository
database. Each tool information model provides a logical grouping of all of the type definitions related
to a particular tool (or tool set). Repository type libraries are instances of the ReposTypeLib class.

To insert a new tool information model into the repository database, use the ReposRoot class.

When to Use

Use the ReposTypeLib class to:

· Define new classes, relationship types, and interfaces for a tool information model.

· Retrieve or modify the global identifier associated with a repository type library.

· Determine which type definitions are associated with a particular repository type library.

Interfaces

Interface Description

IAnnotationalProps Gets and sets annotational properties.

IRepositoryDispatch Provides enhanced dispatch support.

IRepositoryItem Manages repository objects and
relationships.

IRepositoryObject Retrieves repository object identifiers.

IRepositoryObjectStora
ge

Creates and loads repository objects.

IReposTypeLib Creates class, interface, and
relationship definitions for a repository
type library.

IAnnotationalProps Interface
See Also                  Properties                  Methods                  Collections

Annotational properties are repository properties that can be associated with individual    repository
objects or relationships. When a normal property is defined as a member of a repository interface, it is
defined for all objects that implement that interface. Normal properties cannot be associated with
repository relationships.

In order to be able to attach an annotational property value to a particular repository object, two
requirements must be met:

1. The object must conform to an object class that exposes the IAnnotationalProps interface.

2. A property definition object must exist for an IAnnotationalProps interface property with a name that
matches the name of your annotational property.

If these two requirements are met, then you can attach an annotational property value to an object by
using the IReposProperty::put_Value method to set the value of the annotational property for that
particular object.

When to Use

Use the IAnnotationalProps interface to access the annotational properties of a repository object or
relationship.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
Properties collection.

Remarks

Annotational properties are maintained by the repository as string data. The creator and users of the
annotational property must get and set the property value using the appropriate data type via the
VARIANT structure. If a data type other than string is used, the repository will perform the appropriate
data conversion.

Since all annotational properties in the repository must be defined as interface members of the
IAnnotationalProps interface, all annotational property names share the same name space. When you
choose a name for an annotational property, make the name as specific and unique as possible.

INamedObject Interface
See Also                  Properties                  Methods                  Collections

Normally, a name is associated with a repository object via a naming relationship. The collection for
such a relationship provides the scope for the name, and can require that all names in the collection
be unique. This is the preferred method for naming objects, when a given object will be the
destination of only one naming relationship.

If your tool information model contains a class that is not the destination of a naming relationship type,
or is the destination of multiple relationship types, but no single relationship type is the obvious choice
to be the naming relationship type, then you can attach the name property to the class. This is
accomplished by defining your class to implement the INamedObject interface. If your class
implements the INamedObject interface, the repository engine will use that interface when asked to
retrieve or set an object name.

When to Use

Use the INamedObject interface to access the Name property of a repository object that exposes this
interface.

Properties

Property Description

Name The name of the object.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
persistent members exposed by the
INamedObject interface.

Remarks

None of the standard repository engine or Type Information Model classes implement the
INamedObject interface. However, the repository engine does use the INamedObject interface, if it is
exposed by a repository object.

When the IRepositoryItem::get_Name method is invoked for a repository object, the repository
engine will perform these steps to retrieve the name:

1. If the object exposes the INamedObject interface, the repository engine returns the value of the
Name property.

2. Otherwise, the repository engine searches for a naming relationship for which the current object is
the destination object.

3. If such a relationship is found, the repository engine returns the name associated with that
relationship.

4. If the object is not the destination of a naming relationship, then the repository engine returns a null
name.

When the IRepositoryItem::put_Name method is invoked for a repository object, the repository
engine will perform these steps to set the name:

1. The repository engine sets the value of the Name property of all naming relationships for which the
object is the destination.

2. If the object exposes the INamedObject interface, the repository engine also sets the value of the
Name property attached to that interface.

INamedObject Name Property
See Also

This property contains the name of an object that exposes the INamedObject interface. The name
can be up to 200 bytes in length.

Dispatch Identifier: DISPID_ObjName (68)

Property Data Type: String

ISummaryInformation Interface
See Also                  Properties                  Methods                  Collections

The ISummaryInformation interface maintains Comments and ShortDescription properties for
objects that expose this interface.

When to Use

Use the ISummaryInformation interface to access the Comments and ShortDescription properties
of a repository object.

Properties

Property Description

Comments General comments about the object.

ShortDescription Brief description of the object.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
properties exposed by the
ISummaryInformation interface.

ISummaryInformation Comments Property
See Also

This property contains general comments about an object. Up to 65,536 bytes of information may be
stored in this property.

Dispatch Identifier: DISPID_Comments (66)

Property Data Type: Long varchar

ISummaryInformation ShortDescription Property
See Also

This property contains a short description of an object. Up to 255 bytes of information may be stored
in this property.

Dispatch Identifier: DISPID_ShortDesc (67)

Property Data Type: varchar

IEnumRepositoryErrors Interface
See Also                  Properties                  Methods                  Collections

This interface provides enumeration capabilities for the set of errors that have been placed on the
repository error queue.

When to Use

Use the IEnumRepositoryErrors interface to access the queue of repository errors.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IEnumRepositoryErrors
Method

Description

Clone Clones the current enumerator.

Next Returns the next one or more elements.

Reset Resets the enumerator to the beginning.

Skip Skips over the next one or more
elements.

IEnumRepositoryErrors::Clone
See Also

Use this method to create a clone of the COM enumerator object. After cloning, the two enumerators
operate independently of each other.

HRESULT Clone(IEnumRepositoryErrors      **ppIEnum);

Parameters

*ppIEnum [out]
The interface pointer for the new enumerator object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IEnumRepositoryErrors::Next
See Also

Use this method to retrieve the next one or more elements from the enumeration. There are two
variations of this method.

HRESULT Next(
ULONG                    iCount,
REPOSERR      *psErrors,
ULONG                    *piFetched

);

HRESULT Next(IErrorInfo      **ppIErrorInfo);

Parameters

iCount [in]
The number of elements the caller is requesting.

*psErrors [out]
The array of repository error information structures for the retrieved items.

*ppIErrorInfo [out]
The interface pointer to the error information object for the first element in the error queue.

*piFetched [out]
The number of elements actually fetched for the caller.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IEnumRepositoryErrors::Reset
See Also

Use this method to reset the enumerator to the beginning of the enumeration sequence.

HRESULT Reset(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IEnumRepositoryErrors::Skip
See Also

Use this method to skip over the next one or more elements in the enumeration.

HRESULT Skip(ULONG            iCount);

Parameters

iCount [in]
The number of elements to be skipped.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IObjectCol Interface
See Also                  Properties                  Methods                  Collections

An object collection is a set of repository objects that can be enumerated. Two kinds of object
collections are supported by the repository:

1. The collection of destination objects that correspond to the relationships in a relationship collection.
Use the ITargetObjectCol interface to manage this kind of collection.

2. The collection of all objects in the repository that conform to a particular class or expose a
particular interface.

When to Use

Use the IObjectCol interface to enumerate the collection of repository objects that conform to a
particular class or expose a particular interface. With this interface, you can:

· Get a count of the number of objects in the collection.

· Enumerate the objects in the collection.

· Retrieve an IRepositoryObject pointer to one of the objects in the collection.

· Refresh the cached image of the object collection.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IObjectCol Method Description

get_Count Retrieves a count of the number of
objects in the collection.

get_Item Retrieves an IRepositoryObject interface
pointer for the specified collection
object.

_NewEnum Retrieves an enumeration interface
pointer for the collection.

 Refresh Refreshes the cached image of the

object collection.

IObjectCol::get_Count
See Also

This method is used to retrieve a count of the number of repository objects that are in the object
collection.

HRESULT get_Count(    long        *piCount   );

Parameters

*piCount [out]
The number of objects in the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IObjectCol::_NewEnum
See Also

This method retrieves an enumeration interface pointer for the object collection. This interface is a
standard Automation enumeration interface. It supports the Clone, Next, Reset, and Skip methods.
You can use the enumeration interface to step through the objects in the collection.

HRESULT _NewEnum(
IUnknown        **ppIEnumObjects

);

Parameters

*ppIEnumObjects [out]
The enumeration interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IObjectCol::get_Item
See Also

This method retrieves the specified object from the collection.

HRESULT get_Item(
VARIANT                                    sItem,
IRepositoryObject      **ppIReposObj

);

Parameters

sItem [in]
Identifies the item to be retrieved from the collection. This parameter can be either the index, the
name, or the object identifier of the item.

*ppIReposObj [out]
The IRepositoryObject interface pointer for the specified object from the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

An object can only be retrieved by name if it is the destination object of a naming relationship.

IObjectCol::Refresh
See Also

This method refreshes the cached image of the collection. All unchanged data for objects in the
collection is flushed from the cache.

HRESULT Refresh(long        iMilliseconds);

Parameters

iMilliseconds [in]
All unchanged data relating to the collection that has been in the cache for longer than
iMilliseconds milliseconds is refreshed. Set to zero to refresh all unchanged data.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

ITargetObjectCol Interface
See Also                  Properties                  Methods                  Collections

A target object collection is the set of repository objects that are attached to a particular source
repository object via a relationship collection.

When to Use

Use the ITargetObjectCol Interface to manage the repository objects that belong to a particular
relationship collection. With this interface, you can:

· Get a count of the number of objects in the collection.

· Enumerate the objects in the collection.

· Add and remove objects to and from the collection.

· If the collection is sequenced, place an object in a specific spot in the collection sequence.

· Retrieve an IRepositoryObject pointer to one of the objects in the collection.

· Obtain the type of the collection.

· Retrieve an interface pointer for the collection’s source object.

· Refresh the cached image of the target object collection.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IObjectCol Method Description

Count Retrieves a count of the number of
objects in the collection.

_NewEnum Retrieves an enumeration interface
pointer for the collection. This interface
is a standard Automation enumeration
interface. It supports the Clone, Next,
Reset, and Skip methods.

Item Retrieves an IRepositoryObject interface

pointer for the specified collection
object.

Refresh Refreshes the cached image of the
target object collection.

ITargetObjectCol
Method

Description

Add Adds an object to the collection.

get_Source Retrieves an interface pointer for the
collection’s source object.

get_Type Retrieves the object identifier for the
collection’s definition object.

Insert Inserts an object into a specific spot in a
sequenced collection.

Move Moves an object from one spot to
another in a sequenced collection.

Remove Removes an object from the collection.

Remarks

The ITargetObjectCol Interface is very similar to the IRelationshipCol Interface. Use the
ITargetObjectCol Interface when you are primarily interested in working with objects. Use the
IRelationshipCol Interface when you are primarily interested in working with relationships between
objects.

ITargetObjectCol::Add
See Also

This method is used to add a new item to a repository object collection, when the sequencing of
objects in the collection is not important. An interface pointer for the new relationship is passed back
to the caller.

HRESULT Add(
IDispatch                  *plReposObj,
BSTR                              Name,
IRelationship      **pplRelship

);

Parameters

*plReposObj [in]
The repository object to be added to the collection.

Name [in]
The name to be assigned to the object that is being added to the collection.

*pplRelship [out]
The newly added object’s relationship interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Objects may only be added to a collection when the collection’s source object is also the collection’s
origin object.

ITargetObjectCol::get_Source
See Also

This method retrieves the IRepositoryObject interface pointer for the collection’s source object.

HRESULT get_Source(IRepositoryObject      **ppIInterface);

Parameters

*ppIInterface [out]
The interface pointer of the IRepositoryObject interface for the source object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

ITargetObjectCol::get_Type
See Also

This method retrieves the type of the collection; that is, it returns the object identifier for the
collection’s definition object.

HRESULT get_Type(VARIANT      *pColDefObjId);

Parameters

*pColDefObjId [out]
The object identifier of the collection’s definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

ITargetObjectCol::Insert
See Also

This method adds an object to the collection at a specified point in the collection sequence. An
interface pointer for the new relationship is passed back to the caller.

HRESULT Insert(
IDispatch                *pIReposObj,
long                                  iIndex,
BSTR                              Name,
IRelationship    **ppIRelship

);

Parameters

*pIReposObj [in]
The repository object to be inserted into the collection sequence.

iIndex [in]
The index of the sequence location where the object is to be inserted. If another object is already
present at this sequence location, the new object is inserted before the existing object.

Name [in]
The name of the object. Set this parameter to a null string if the object is not referred to by name.

*ppIRelship [out]
The IRelationship interface pointer for the new object’s relationship with the collection’s origin
object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Objects may only be inserted into a collection when the collection’s source object is also the
collection’s origin object.

This method can only be used for collections that are sequenced.

ITargetObjectCol::Move
See Also

This method moves an object from one point in the collection sequence to another point.

HRESULT Move(long      iIndexFrom, long      iIndexTo);

Parameters

iIndexFrom [in]
The index of the object to be moved in the collection sequence.

iIndexTo [in]
The index of the sequence location to which the object is to be moved.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method can only be used for collections that are sequenced.

ITargetObjectCol::Remove
See Also

This method removes the specified object from the collection. The relationship instance for the object
is deleted.

HRESULT Remove(VARIANT        sItem);

Parameters

sItem [in]
Identifies the item to be retrieved from the collection. This parameter can be either the index, the
name, or the object identifier of the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

An object can only be removed by name if it is the destination object of a naming relationship.

IRelationship Interface
See Also                  Properties                  Methods                  Collections

A relationship connects two repository objects in the repository database. A relationship has an origin
repository object, a destination repository object, and a set of properties. Each relationship conforms
to a particular relationship type.

When to Use

Use the IRelationship Interface to manipulate a relationship, or to retrieve the source, target, origin, or
destination object for a relationship.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
Properties collection.

IRepositoryItem Method Description

Delete Deletes a repository item.

get_Interface Retrieves an interface pointer to the
specified item interface.

get_Name Retrieves the name associated with an
item.

get_Repository Retrieves the IRepository interface
pointer for an item's open repository
instance.

get_Type Retrieves the type of an item.

Lock Locks the item.

put_Name Sets the name associated with an item.

Refresh Refreshes the cached image of the item.

IRelationship Method Description
get_Destination Retrieves an interface pointer to the

destination object.

get_Origin Retrieves an interface pointer to the
origin object.

get_Source Retrieves an interface pointer to the
source object.

get_Target Retrieves an interface pointer to the
target object.

IRelationship::get_Destination
See Also

Retrieves an IRepositoryObject interface pointer to the destination object of a relationship.

HRESULT get_Destination(
IRepositoryObject    **ppIReposObj

);

Parameters

*ppIRepObj [out]
The IRepositoryObject interface pointer for the destination repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationship::get_Origin
See Also

Retrieves an IRepositoryObject interface pointer to the origin object of a relationship.

HRESULT get_Origin(
IRepositoryObject    **ppIRepObj

);

Parameters

*ppIRepObj [out]
The IRepositoryObject interface pointer for the origin repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationship::get_Source
See Also

Retrieves an IRepositoryObject interface pointer to the source object of a relationship.

HRESULT get_Source(
IRepositoryObject    **ppIRepObj

);

Parameters

*ppIRepObj [out]
The IRepositoryObject interface pointer for the source repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationship::get_Target
See Also

Retrieves an IRepositoryObject interface pointer to the target object of a relationship.

HRESULT get_Target(
IRepositoryObject    **ppIRepObj

);

Parameters

*ppIRepObj [out]
The IRepositoryObject interface pointer for the target repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationshipCol Interface
See Also                  Properties                  Methods                  Collections

A relationship collection is the set of repository relationships that connect a particular source
repository object to a set of one or more target objects. All of the relationships in the collection must
conform to the same relationship type.

When to Use

Use the IRelationshipCol interface to manage the repository relationships that belong to a particular
relationship collection. With this interface, you can:

· Get a count of the number of relationships in the collection.

· Enumerate the relationships in the collection.

· Add and remove relationships to and from the collection.

· If the collection is sequenced, place a relationship in a specific spot in the collection sequence.

· Retrieve an IRelationship pointer to one of the relationships in the collection.

· Obtain the identifier of the collection’s definition object.

· Retrieve an interface pointer for the collection’s source object.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRelationshipCol
Method

Description

Add Adds a relationship to the collection.

get_Count Retrieves a count of the number of
relationships in the collection.

_NewEnum Retrieves an enumeration interface
pointer for the collection.

get_Source Retrieves an interface pointer for the
collection’s source object.

get_Type Retrieves the object identifier for the

collection’s definition object.

Insert Inserts a relationship into a specific spot
in a sequenced collection.

get_Item Retrieves an IRelationship interface
pointer for the specified relationship.

Move Moves a relationship from one spot to
another in a sequenced collection.

Refresh Refreshes the cached image of the
relationship collection.

Remove Removes a relationship from the
collection.

Remarks

The IRelationshipCol interface is very similar to the ITargetObjectCol interface. Use the
IRelationshipCol interface when you are primarily interested in working with relationships. Use the
ITargetObjectCol interface when you are primarily interested in working with objects.

IRelationshipCol::Add
See Also

This method is used to add a new item to a repository relationship collection, when the sequencing of
relationships in the collection is not important. An interface pointer for the new relationship is passed
back to the caller.

HRESULT Add(
IDispatch                  *plReposObj,
BSTR                                Name,
IRelationship      **pplRelship

);

Parameters

*plReposObj [in]
The object for which a relationship is to be added to the relationship collection.

Name [in]
The name to be attached to the object via the new relationship.

*pplRelship [out]
The newly added relationship’s IRelationship interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Relationships may only be added to a collection when the collection’s source object is also the
collection’s origin object.

IRelationshipCol::get_Count
See Also

This method is used to retrieve a count of the number of relationships that are in the relationship
collection.

HRESULT get_Count(
long      *piCount

);

Parameters

*piCount [out]
The number of relationships in the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationshipCol::_NewEnum
See Also

This method retrieves an enumeration interface pointer for the relationship collection. This interface is
a standard Automation enumeration interface. It supports the Clone, Next, Reset, and Skip methods.
You can use the enumeration interface to step through the relationships in the collection.

HRESULT _NewEnum(
IUnknown        **ppIEnumRelships

);

Parameters

*ppIEnumRelships [out]
The enumeration interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationshipCol::get_Source
See Also

This method retrieves an interface pointer for the collection’s source object.

HRESULT get_Source(
IRepositoryObject      **ppIInterface

);

Parameters

*ppIInterface [out]
The interface pointer of the desired interface for the source object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationshipCol::get_Type
See Also

This method retrieves the type of the collection; that is, it returns the object identifier for the
collection’s definition object.

HRESULT get_Type(
VARIANT        *pColDefObjId

);

Parameters

*pColDefObjId [out]
The object identifier of the collection’s definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationshipCol::Insert
See Also

This method adds a relationship to the collection at a specified point in the collection sequence. An
interface pointer for the new relationship is passed back to the caller.

HRESULT Insert(
IDispatch                 *pIReposObj,
long                                    iIndex,
BSTR                                Name,
IRelationship      **ppIRelship

);

Parameters

*pIReposObj [in]
The repository object to be inserted into the collection sequence via the new relationship.

iIndex [in]
The index of the sequence location where the relationship is to be inserted. If another relationship
is already present at this sequence location, the new relationship is inserted before the existing
relationship.

Name [in]
The name to be associated with the object that is connected by the new relationship.

*ppIRelship [out]
The IRelationship interface pointer for the new relationship.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Relationships may only be inserted into a collection when the collection’s source object is also the
collection’s origin object.

This method can only be used for collections that are sequenced.

IRelationshipCol::get_Item
See Also

This method retrieves the specified relationship from the collection.

HRESULT get_Item(
VARIANT                    sItem,
IRelationship      **ppIRelship

);

Parameters

sItem [in]
Identifies the item to be retrieved from the collection. This parameter can be either the index, the
name, or the object identifier of the item.

*ppIRelship [out]
The IRelationship interface pointer for the specified relationship from the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The variation of this method that specifies the relationship by destination object name can only be
used for collections that require unique names.

IRelationshipCol::Move
See Also

This method moves a relationship from one point in the collection sequence to another point.

HRESULT Move(
long        iIndexFrom,
long        iIndexTo

);

Parameters

iIndexFrom [in]
The index of the relationship to be moved in the collection sequence.

iIndexTo [in]
The index of the sequence location to which the relationship is to be moved.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

This method can only be used for collections that are sequenced.

IRelationshipCol::Refresh
See Also

This method refreshes the cached image of the collection. All unchanged data for relationships in the
collection is flushed from the cache.

HRESULT Refresh(long        iMilliseconds);

Parameters

iMilliseconds [in]
All unchanged data relating to the collection that has been in the cache for longer than
iMilliseconds milliseconds is refreshed. Set to zero to refresh all unchanged data.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRelationshipCol::Remove
See Also

This method removes the specified relationship from the collection. The destination object of the
relationship is not deleted.

HRESULT Remove(VARIANT        sItem);

Parameters

sItem [in]
Identifies the item to be retrieved from the collection. This parameter can be either the index or the
name associated with the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

A relationship can only be removed by name if it is a unique-naming relationship.

IRepository Interface
See Also                  Properties                  Methods                  Collections

When you define a tool information model, the classes, relationships, properties, and collections for
the model are stored in a repository. Multiple tool information models may be stored in the same
repository.

When to Use

Use the Repository Interface to create and access repository databases. You can also use the
Repository Interface to create and access repository objects in a repository database.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepository Method Description

Create Creates a repository database.

CreateObject Creates a new repository object.

get_Object Retrieves the IRepositoryObject
interface pointer for a repository object.

get_RootObject Retrieves the IRepositoryObject
interface pointer for the root repository
object.

get_Transaction Retrieves the IRepositoryTransaction
interface pointer for this repository
instance.

InternalIDToObjectID Translate an internal identifier to an
object identifier.

ObjectIDToInternalID Translate an object identifier to an
internal identifier.

Open Opens a repository database.

Refresh Refreshes unchanged cached repository
data.

IRepository::Create
See Also

Use this method to create a new repository. The fundamental repository tables are automatically
created in the new repository. An IRepositoryObject interface pointer to the root repository object is
passed back to the caller.

HRESULT Create(
BSTR  Connect,
BSTR  User,
BSTR  Password,
long  fFlags,
IRepositoryObject    **ppIRootObj

);

Parameters

Connect [in]
The ODBC connection string to be used for accessing the database server that will host your new
repository.

User [in]
The user name to use for identification to the database server.

Password [in]
The password that matches the User input parameter.

fFlags [in]
Flags that determine database access and caching behavior for the open repository. For details,
see the ConnectionFlags Enumeration.

*ppIRootObj [out]
The IRepositoryObject interface pointer for the new repository's root repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepository::CreateObject
See Also

Creates a new repository object. The specified COM interface pointer to the new object is passed
back to the caller.

HRESULT CreateObject(
VARIANT                                  sTypeId,
VARIANT                                  sObjId,
IRepositoryObject    *ppIReposObj

);

Parameters

sTypeId [in]
The type of the new object; that is, the object identifier of the class definition to which the new
object conforms.

sObjId [in]
The object identifier to be assigned to the new object. Pass in OBJID_NULL to have the repository
assign an object identifier for you.

*ppIReposObj [out]
The IRepositoryObject interface pointer for the new repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The new object will automatically create persistent storage for itself.

IRepository::get_Object
See Also

Retrieves an IRepositoryObject interface pointer to the specified repository object.

HRESULT get_Object(
VARIANT                                  sObjectId,
IRepositoryObject    **ppIReposObj

);

Parameters

sObjectId [in]
The object identifier of the repository object to be retrieved.

*ppIReposObj [out]
The IRepository interface pointer for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepository::get_RootObject
See Also

Use this method to obtain a pointer to the currently open repository's root object. The root object is
the repository object to which all other repository objects are (either directly or indirectly) connected.

HRESULT get_RootObject(
IRepositoryObject        **ppIRootObj

);

Parameters

*ppIRootObj [out]
The IRepositoryObject interface pointer for the root repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepository::get_Transaction
See Also

Retrieves the IRepositoryTransaction interface pointer for this repository instance. Use the
IRepositoryTransaction interface to manage repository transactions for this repository instance.

HRESULT get_Transaction(
IRepositoryTransaction        **ppIRepTrans

);

Parameters

*ppIRepTrans [out]
The IRepositoryTransaction interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepository::InternalIDToObjectID
See Also

This method translates an internal identifier into an object identifier. Internal identifiers are used by the
repository engine to identify repository objects.

HRESULT InternalIDToObjectID(
VARIANT      sInternalID,
VARIANT      *sObjectId

);

Parameters

sInternalID [in]
The internal identifier for the repository object.

*sObjectId [out]
The object identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Repository object identifiers are globally unique, and are the same across repositories for the same
object. Repository internal identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This
enables database queries involving an object or relationship type identifier to be constructed without
having to load the definition object.

IRepository::ObjectIDToInternalID
See Also

This method translates an object identifier into an internal identifier. Internal identifiers are used by the
repository engine to identify repository objects.

HRESULT ObjectIDToInternalID(
VARIANT      sObjectID,
VARIANT      *sInternalId

);

Parameters

sObjectID [in]
The object identifier for the repository object.

*sInternalId [out]
The internal identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Repository object identifiers are globally unique, and are the same across repositories for the same
object. Repository internal identifiers are unique only within the scope of a single repository.

The translation performed by this method is performed without loading the object in question. This
enables database queries involving an object or relationship type identifier to be constructed without
having to load the definition object.

IRepository::Open
See Also

Use this method to open a repository. An IRepositoryObject interface pointer to the root repository
object is passed back to the caller.

HRESULT Open(
BSTR  Connect,
BSTR  User,
BSTR  Password,
long  fFlags,
IRepositoryObject    **ppIRootObj

);

Parameters

Connect [in]
The ODBC connection string to be used for accessing the database server that hosts your
repository.

User [in]
The user name to use for identification to the database server.

Password [in]
The password that matches the User input parameter.

fFlags [in]
Flags that determine database access and caching behavior for the open repository. For details,
see the ConnectionFlags Enumeration.

*ppIRootObj [out]
The IRepositoryObject interface pointer for the open repository's root repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepository::Refresh
See Also

This method refreshes all of the cached data for this repository instance. Only cached data that has
not been changed by the current process is refreshed.

HRESULT Refresh(long      iMilliseconds);

Parameters

iMilliseconds [in]
All unchanged data that has been in the cache for longer than iMilliseconds milliseconds is
refreshed. Set this parameter to zero to refresh all unchanged data.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryDispatch Interface
See Also                  Properties                  Methods                  Collections

The IRepositoryDispatch interface is an enhanced IDispatch interface; in addition to all of the
standard IDispatch methods, IRepositoryDispatch also provides access to the Properties collection.
The Properties collection gives you a convenient mechanism to enumerate through all of the
persistent properties and collections of an interface.

When you instantiate an Automation object that represents an object from your tool information
model, and that object conforms to a class for which there is no custom implementation (in other
words, you have provided no software implementation of the class), the repository will provide an
interface implementation for you. This interface implementation uses IRepositoryDispatch as its
dispatch interface.

When to Use

Use the IRepositoryDispatch Interface to access the properties and collections of a repository object,
when no custom implementation is available.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
Properties collection.

Remarks

The repository engine will only supply an interface implementation for you if your interface is defined
to inherit from IDispatch or IRepositoryDispatch.

IRepositoryDispatch::get_Properties
See Also

This method retrieves the IReposProperties interface pointer. The IReposProperties interface
provides methods to access the Properties collection. The Properties collection gives you a
convenient mechanism to enumerate through all of the persistent properties and collections of an
interface.

HRESULT get_Properties(IReposProperties      **ppIReposProps);

Parameters

*ppIReposProps [out]
The IReposProperties interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryErrorQueue Interface
See Also                  Properties                Methods                  Collections

Errors that occur while accessing a repository are saved on a repository error queue. A repository
error queue is a collection of REPOSERROR structures. Individual elements on a repository error
queue can be managed in much the same way that elements can be managed in other repository
collections. This interface provides those management capabilities.

When to Use

Use the IRepositoryErrorQueue Interface to manage the errors that belong to a particular repository
error queue. With this interface, you can:

· Get a count of the number of error elements in the collection.

· Enumerate the elements in the collection.

· Insert and remove error elements to and from the collection.

· Retrieve one of the error elements in the collection.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IRepositoryErrorQueue
Method

Description

Count Returns a count of the number of errors
on the queue.

Insert Inserts a new error onto the error queue,
in the specified location.

Item Retrieves the specified error from the
error queue.

Remove Removes the specified error from the
error queue.

_NewEnum Creates an enumerator object for the
error queue.

IRepositoryErrorQueue::Count
See Also

This method returns the number of errors that are currently on the error queue.

ULONG Count(void);

Return Value

The number of error elements on the queue.

IRepositoryErrorQueue::Insert
See Also

This method inserts a new element into the error queue. The element can either be inserted at a
specific location in the queue, or it can be appended to the end of the queue.

HRESULT Insert(
ULONG                              iIndex,
REPOSERROR      *psError

);

Parameters

iIndex [in]
The index of the location in the error queue where this element is to be inserted. To insert an
element at the beginning of the error queue, set this parameter to one. Set this parameter to zero
to append the element to the end of the error queue.

*psError [in]
The error information for the element to be inserted. The information from this structure is copied
and the copy is placed on the error queue.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryErrorQueue::Item
See Also

This method retrieves the specified element from the error queue. There are two variations of this
method.

HRESULT Item(
ULONG                              iIndex,
REPOSERROR      *psError

);

HRESULT Item(
ULONG                iIndex,
IErrorInfo        **ppIErrorInfo

);

Parameters

iIndex [in]
The index of the location in the error queue of the element to be retrieved.

*ppError [out]
The repository error information structure with information from the retrieved element.

*ppIErrInfoObj [out]
The interface pointer to an error information object for the retrieved element.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryErrorQueue::Remove
See Also

This method removes the specified element from the error queue.

HRESULT Remove(
ULONG        iIndex

);

Parameters

iIndex [in]
The index of the location in the error queue of the element to be removed.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryErrorQueue::_NewEnum
See Also

This method creates an enumeration object for the error queue. An interface pointer for the
enumeration object is passed back to the caller.

HRESULT _NewEnum(
IEnumRepositoryErrors        **ppIEnum

);

Parameters

*ppIEnum [out]
The interface pointer to the enumeration object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryErrorQueueHandler Interface
See Also                  Properties                Methods                  Collections

Errors that occur while accessing a repository are saved on a repository error queue. A repository
error queue is a collection of REPOSERROR structures. Each thread of execution with an open
repository instance can access one active error queue at a time.

When to Use

Use the IRepositoryErrorQueueHandler Interface to create a repository error queue, assign an error
queue to a thread of execution, or retrieve an interface pointer to a thread's currently assigned error
queue.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IRepositoryErrorQueueHan
dler Method

Description

CreateErrorQueue Creates a new repository error
queue.

SetErrorQueue Sets the active error queue for a
thread.

GetErrorQeueue Retrieves an interface pointer to the
currently active error queue for a
thread.

IRepositoryErrorQueueHandler::CreateErrorQueue
See Also

This method creates a repository error queue. Once created, the error queue is available to be
assigned to a thread context.

HRESULT CreateErrorQueue(
IRepositoryErrorQueue        **ppIErrorQueue

);

Parameters

*ppIErrorQueue [out]
The interface pointer for the newly created repository error queue.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryErrorQueueHandler::GetErrorQueue
See Also

This method retrieves the repository error queue that is assigned to the current thread.

HRESULT GetErrorQueue(
IRepositoryErrorQueue        **ppIErrorQueue

);

Parameters

*ppIErrorQueue [out]
The interface pointer for the error queue that is currently assigned to this thread.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryErrorQueueHandler::SetErrorQueue
See Also

This method assigns the specified repository error queue to the current thread context.

HRESULT SetErrorQueue(
IRepositoryErrorQueue        *pIErrorQueue

);

Parameters

pIErrorQueue [in]
The interface pointer for the error queue to be assigned to this thread.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryItem Interface
See Also                  Properties                  Methods                  Collections

The IRepositoryItem interface contains methods that are common to both repository objects and
repository relationships.    It contains all of the general purpose methods that are used to manage
repository items.

When to Use

Use the IRepositoryItem Interface to:

· Retrieve an item's type or name.

· Obtain a lock on an item.

· Change the name of an item.

· Refresh the cached image of an item.

· Delete an item.

· Get a pointer to an alternate interface that the item exposes.

· Get the open repository instance through which the item is accessed.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
Properties collection.

IRepositoryItem Method Description

Delete Deletes a repository item.

get_Interface Retrieves an interface pointer to the
specified item interface.

get_Name Retrieves the name associated with an

item.

get_Repository Retrieves the IRepository interface
pointer for an item's open repository
instance.

get_Type Retrieves the type of an item.

Lock Locks the item.

put_Name Sets the name associated with an item.

Refresh Refreshes the cached image of the item.

IRepositoryItem::Delete
See Also

This method deletes a repository item. If the item is a repository object, any relationships involving
this object are also deleted. If the item is a repository relationship, it is removed from its origin and
destination collections.

HRESULT Delete(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryItem::get_Interface
See Also

This method retrieves the interface pointer for an alternate interface that the item exposes. The
specified interface must be an Automation interface; that is, it must support the methods of the
IDispatch interface.

HRESULT get_Interface(
VARIANT          whichInterface,
IDispatch        **ppInterface

);

Parameters

whichInterface [in]
Specifies the interface you wish to access. This parameter can be the name of the interface, the
interface identifier, or the object identifier of the interface definition object in the repository.

*ppInterface [out]
The interface pointer for the Automation interface.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Some objects expose multiple interfaces. This method is provided as a mechanism for the Automation
programmer to be able to easily access alternate interfaces, when no type library is available for the
item's class.

IRepositoryItem::get_Name
See Also

Retrieves the name associated with a repository item. For repository relationships, this is the name
defined by the relationship. For repository objects, this is either:

1. The Name property of the INamedObject interface, if the object exposes that interface.

2. The name defined by a relationship for which the object is the destination object.

HRESULT get_Name(BSTR      *pName);

Parameters

*pName [out]
The name associated with the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

A repository object can be the destination of multiple naming relationships, and each relationship can
use a different name to refer to the object. If this is the case for the current item, the name returned by
this method is the name from the first naming relationship that is found. However, if the repository
object exposes the INamedObject interface, then the name that is returned is always the value of the
Name property of that interface.

IRepositoryItem::get_Repository
See Also

Retrieves an IRepository interface pointer for the open repository instance through which this
repository item was instantiated.

HRESULT get_Repository(IRepository      **ppIRepository);

Parameters

*ppIRepository [out]
The IRepository interface pointer for the open repository instance.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryItem::get_Type
See Also

Use this method to obtain the object identifier of the repository definition object to which the repository
item conforms. This is the type of the repository item.

HRESULT get_Type(VARIANT      *psTypeId);

Parameters

*psTypeId [out]
The object identifier of this repository item's definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryItem::Lock
See Also

Use this method to lock a particular repository item. Locking the item prevents other processes from
updating the item while you are working with it. The lock is released when you end the current
transaction.

HRESULT Lock(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryItem::put_Name
See Also

Sets the name associated with a repository item. For repository relationships, this is the name defined
by the relationship. For repository objects, this is either or both of:

1. The Name property of the INamedObject interface, if the object exposes that interface.

2. The name defined by a relationship for which the object is the destination object.

HRESULT put_Name(BSTR      Name);

Parameters

Name [in]
The name to be associated with the item.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

A repository object can be the destination of multiple relationships, and each relationship can use a
different name to refer to the object. If this is the case for the current item, then all names for the item
are set to the new name. Furthermore, if the repository object exposes the INamedObject interface,
then the Name property of that interface is also set to the new name value.

IRepositoryItem::Refresh
See Also

Use this method to refresh the cached image of a particular repository item. Only unchanged cache
data is refreshed.

HRESULT Refresh(long      iMilliseconds);

Parameters

iMilliseconds [in]
All unchanged data relating to the item that has been in the cache for longer than iMilliseconds
milliseconds is refreshed. Set to zero to refresh all unchanged data.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryObject Interface
See Also                  Properties                  Methods                  Collections

The IRepositoryObject interface provides methods to manage repository objects.

When to Use

Use the IRepositoryObject Interface to:

· Retrieve the object identifier or the internal identifier for a repository object.

· Retrieve a repository object's type or name.

· Obtain a lock on a repository object.

· Change the name of a repository object.

· Refresh the cached image of a repository object.

· Delete a repository object.

· Get a pointer to an alternate interface that the object exposes.

· Get the open repository instance through which the object is accessed.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
Properties collection.

IRepositoryItem Method Description

Delete Deletes a repository item.

get_Interface Retrieves an interface pointer to the
specified item interface.

get_Name Retrieves the name associated with an

item.

get_Repository Retrieves the IRepository interface
pointer for an item's open repository
instance.

get_Type Retrieves the type of an item.

Lock Locks the item.

put_Name Sets the name associated with an item.

Refresh Refreshes the cached image of the item.

IRepositoryObject
Method

Description

get_InternalID Retrieves the internal identifier for a
repository object.

get_ObjectID Retrieves the object identifier for a
repository object.

IRepositoryObject::get_InternalID
See Also

Use this method to obtain the internal identifier for a repository object.

HRESULT get_InternalID(VARIANT      *psInternalId);

Parameters

*psInternalId [out]
The internal identifier of this repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryObject::get_ObjectID
See Also

Use this method to retrieve the object identifier for a repository object.

HRESULT get_ObjectID(VARIANT      *psObjectId);

Parameters

*psObjectId [out]
The object identifier of this repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryObjectStorage Interface
See Also                  Properties                  Methods                  Collections

The IRepositoryObjectStorage interface initializes the memory image for a repository object. New
repository objects are initialized as empty objects. For existing repository objects, the state of the
object is retrieved from the repository database.

When to Use

The IRepositoryObjectStorage Interface is used by the repository engine to materialize repository
objects in memory. It is not intended for use by repository applications.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryObjectStora
ge Method

Description

get_PropertyInterface Retrieves an IRepositoryDispatch
interface pointer for accessing the
persistent members of one of the item's
supported interfaces.

InitNew Initializes memory for a new repository
object.

Load Initializes memory for an existing
repository object.

IRepositoryObjectStorage::get_PropertyInterface
See Also

This method retrieves an IRepositoryDispatch interface pointer for accessing the persistent
members of one of the object's supported Automation interfaces.

The IRepositoryDispatch interface can be used to get and set member values for the interface
specified by the InterfaceId input parameter. The interface must be one that is exposed by this object.

HRESULT get_PropertyInterface(
REFIID  InterfaceId,
IRepositoryDispatch    **ppInterface

);

Parameters

InterfaceId [in]
The interface identifier of the interface whose properties are to be accessed.

*ppInterface [out]
The IRepositoryDispatch interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

IRepositoryDispatch does not perform any parameter validation, and cannot be used to access
custom methods or non-persistent properties. It is intended for use by custom class implementers.

IRepositoryObjectStorage::InitNew
See Also

The repository engine uses this method to initialize a new repository object in memory.

HRESULT InitNew(
IRepository        *pIRepository,
INTID                            sInternalId

);

Parameters

*pIRepository [in]
The repository that contains this object.

sInternalId [in]
The internal identifier for the new object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryObjectStorage::Load
See Also

The repository engine uses this method to load a repository object's state into memory from the
repository database.

HRESULT Load(
IRepository      *pIRepository,
INTID                          sInternalId

);

Parameters

*pIRepository [in]
The repository that contains this object.

sInternalId [in]
The internal identifier for the repository object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryTransaction Interface
See Also                  Properties                  Methods                  Collections

The repository supports transactional processing. Repository methods that are reading data from the
repository may be executed outside of a transaction, but methods that write data must be bracketed
within a transaction. Only one transaction may be active at a time for each opened repository
instance. Nesting of Begin/Commit method invocations is permitted, but no actual nesting of
transactions occurs.

When to Use

Use the Repository Transaction Interface to begin, commit, or abort a repository transaction. You can
also use this interface to retrieve the information about the transactional state of an opened repository
instance, and to set transaction options.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryTransaction
Method

Description

Abort Cancels a currently active transaction.

Begin Begins a new transaction.

Commit Commits an active transaction.

Flush Flushes uncommitted changes to the
repository database.

GetOption Retrieves a transaction option.

get_Status Tells whether or not there is a currently
active transaction.

SetOption Sets a transaction option.

IRepositoryTransaction::Abort
See Also

This method cancels the currently active transaction for an open repository. All updates made during
the transaction are undone. The nested transaction count is set to zero.

HRESULT Abort(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryTransaction::Begin
See Also

This method increments the nested transaction count by one. If there is no active transaction, this
method begins a transaction for the open repository instance.

HRESULT Begin(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryTransaction::Commit
See Also

This method decrements the nested transaction count for an open repository instance. If the currently
active transaction is not nested, all changes made to repository data within the transaction are
committed to the repository database. A transaction is not nested if the nested transaction count
equals one.

HRESULT Commit(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryTransaction::Flush
See Also

This method flushes cached changes to the repository database.

Unless you have set the exclusive-write-through-mode transaction option, changes that you make
within the scope of a transaction are cached, and are not written to the database until the transaction
is committed. If a concurrent SQL query is run against the repository database, the result of the query
will not reflect the uncommitted changes (this is normally the desired behavior).

If your repository application must be able to see uncommitted changes in SQL queries, you can use
the Flush method to write uncommitted changes to the repository database. All changes made within
the scope of the current transaction are flushed. Flushing uncommitted changes does not affect your
ability to cancel a transaction via the Abort method.

HRESULT Flush(void);

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryTransaction::GetOption
See Also

Use this method to retrieve the value of a transaction option for an open repository instance.

HRESULT GetOption(
long                      iOption,
VARIANT    *psValue

);

Parameters

iOption [in]
The transaction option to retrieve. For a list of valid values and their meanings, see the
TransactionFlags Enumeration.

*psValue [out]
The value of the specified transaction option.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryTransaction::get_Status
See Also

Use this method to determine whether or not there is a currently active transaction.

HRESULT get_Status(long        *piStatus);

Parameters

*piStatus [out]
The current transaction status. If the value is zero, no transaction is active. If the value is nonzero,
a transaction is active.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

A transaction is considered active until the Commit method has successfully executed and the nested
transaction count has been decremented to zero. Depending upon the data-flushing capabilities of the
underlying database server, the data associated with a committed transaction may or may not be
written to the physical storage device when the Commit method returns control to its caller.

IRepositoryTransaction::SetOption
See Also

Use this method to set one of the transaction options for an open repository instance. You cannot set
a transaction option while a transaction is active.

HRESULT SetOption(
ULONG            iOption,
VARIANT      sValue

);

Parameters

iOption [in]
The transaction option to set. For a list of valid values and their meanings, see the
TransactionFlags Enumeration.

sValue [in]
The value of the specified transaction option.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IRepositoryODBC Interface
See Also                  Properties                  Methods                  Collections

The repository engine stores information in a SQL database. The repository engine connects to the
database server via an ODBC connection. The IRepositoryODBC interface provides you with access
to the database through the same (or a similar) ODBC connection.

Care should be taken when accessing the repository database directly, especially when sharing the
repository's ODBC connection. Specific restrictions are defined in the detailed information for each
interface method. Directly accessing the repository database in a read-only manner is generally
considered safe; however, if you tune your repository application to be dependent upon specific
features of your database server, you limit the portability of your application.

When to Use

Use the IRepositoryODBC Interface to obtain or release an ODBC connection handle, or to retrieve
the ODBC connection string used by the repository engine.

To obtain a pointer to this interface, use the IRepository::QueryInterface method.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryODBC
Method

Description

FreeConnection Releases an ODBC connection handle.

get_ConnectionString Retrieves the ODBC connection string
that the repository engine uses to obtain
an ODBC connection.

GetNewConnection Obtains a new ODBC connection handle
using the same connection settings that
the repository engine is using to access
the repository database.

get_ReposConnection Retrieves the ODBC connection handle
that the repository engine is using to

access the repository database.

IRepositoryODBC::FreeConnection
See Also

This method frees an ODBC connection handle.

HRESULT FreeConnection(long      Hdbc);

Parameters

Hdbc [in]
The ODBC connection handle to be released.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Use this method to free the handle obtained via either the get_ReposConnection method or the
GetNewConnection method before releasing your open repository instance.

IRepositoryODBC::get_ConnectionString
See Also

This method retrieves the ODBC connection string that the repository engine uses to obtain an ODBC
connection to the repository database.

HRESULT get_ConnectionString(BSTR        szString);

Parameters

szString [out]
The ODBC connection string.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

The ODBC connection string can contain user identification and password information. Take care to
protect this information from exposure to unauthorized access.

IRepositoryODBC::GetNewConnection
See Also

This method obtains a new ODBC connection handle using the same ODBC connection string that
the repository engine is using to access the repository database. Using a new ODBC connection
handle isolates you from changes made by the repository engine.

HRESULT GetNewConnection(long      *pHdbc);

Parameters

*pHdbc [out]
A new ODBC connection handle.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

Be sure to free the handle obtained via this method before releasing your open repository instance.
To free the connection handle, use the FreeConnection method.

IRepositoryODBC::get_ReposConnection
See Also

This method retrieves the ODBC connection handle that the repository engine is using to access the
repository database.

HRESULT get_ReposConnection(long      *pHdbc);

Parameters

*pHdbc [out]
A copy of the repository engine's ODBC connection handle.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

If you use the repository engine's ODBC connection handle, you are not isolated from changes made
by the repository engine. For example, uncommitted changes made by the repository engine will be
visible to your application.

When using the repository engine's ODBC connection handle, you must not change the state of the
handle in a way that is incompatible with the repository engine. Specifically, do not:

· Change any ODBC connection options.

· Perform any accesses concurrent with repository method invocations.

· Directly commit or rollback a database transaction. The IRepositoryTransaction interface must
always be used to manage transactions.

Be sure to free the handle obtained via this method before releasing your open repository instance.
To free the connection handle, use the FreeConnection method.

IReposProperties Interface
See Also                  Properties                  Methods                  Collections

The IReposProperties interface provides access to the Properties collection. The Properties
collection gives you a convenient mechanism to enumerate through all of the persistent properties
and collections of an interface, when you don't already know the names of all of the interface
members.

When you instantiate an Automation object that represents an object from your tool information
model, and that object conforms to a class for which there is no custom implementation (in other
words, you have provided no software implementation of the class), the repository will provide an
interface implementation for you. This interface implementation uses IRepositoryDispatch as its
dispatch interface. This dispatch interface contains one additional method, the get_Properties
method, that returns an IReposProperties interface pointer.

This support enables the Automation programmer to use syntax like:

Dim firstProperty As ReposProperty
Set firstProperty = repObject.Properties(1)

The second statement is resolved like this:

1. In this example, repObject is an Automation instantiation of a repository object where the default
implementation has been used.

2. The Properties term is the Automation level name for the get_Properties method that is supplied
by the IRepositoryDispatch dispatch interface.

3. The get_Properties method returns the interface pointer to the IReposProperties interface.

4. The default method of the IReposProperties interface is the get_Item method, which returns an
IReposProperty interface pointer for the specified property object in the Properties collection.

At this point, the Automation programmer has access to the first property in the collection via the
firstProperty object variable.

When to Use

Use the IReposProperties interface to access the properties and collections of a repository object,
when no custom implementation is available, and you do not already know what members are
exposed by the object's interface. With the IReposProperties interface, you can:

· Get a count of the number of members in the collection.

· Retrieve an IReposProperty interface pointer to one of the members in the collection.

· Enumerate the members in the collection.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type

information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IReposProperties
Method

Description

get_Count Retrieves the count of the number of
members in the collection.

get_Item Retrieves the IReposProperty interface
pointer for the specified member of the
collection.

_NewEnum Retrieves a standard Automation
enumeration interface pointer for the
collection.

Remarks

Only persistent members (that is, members that are stored in the repository) are represented in the
Properties collection.

IReposProperties::get_Count
See Also

This method is used to retrieve a count of the number of persistent members (properties and
collections) that are in the Properties collection.

HRESULT get_Count(long        *piCount);

Parameters

*piCount [out]
The number of members in the collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposProperties::get_Item
See Also

This method retrieves the specified member from the Properties collection.

HRESULT get_Item(
VARIANT                            sItem,
IReposProperty      **ppIReposProperty

);

Parameters

sItem [in]
Identifies the item to be retrieved from the collection. This parameter can be either the index or the
name of the member.

*ppIReposProperty [out]
The IReposProperty interface pointer for the specified collection member.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposProperties::_NewEnum
See Also

This method retrieves an enumeration interface pointer for the Properties collection. This interface is
a standard Automation enumeration interface. It supports the Clone, Next, Reset, and Skip methods.
You can use the enumeration interface to step through the members in the collection.

HRESULT _NewEnum(IUnknown      **ppIEnumProps);

Parameters

*ppIEnumProps [out]
The enumeration interface pointer.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposProperty Interface
See Also                  Properties                  Methods                  Collections

The IReposProperty interface provides access to a persistent member (a property or collection) of a
tool information model interface.

When you instantiate an Automation object that represents an object from your tool information
model, and that object conforms to a class for which there is no custom implementation (in other
words, you have provided no software implementation of the class), the repository will provide an
interface implementation for you. This interface implementation uses IRepositoryDispatch as its
dispatch interface.

The IRepositoryDispatch interface is an enhanced IDispatch interface; in addition to all of the
standard IDispatch methods, IRepositoryDispatch also provides access to the Properties collection.
The Properties collection gives you a convenient mechanism to enumerate through all of the
persistent properties and collections of an interface. The IReposProperty interface can be used to
access the individual members in the Properties collection.

This support enables the Automation programmer to use syntax like:

Dim firstPropName As String
Let firstPropName = repObject.Properties(1).Name

The second statement resolves like this:

1. In this example, repObject is an Automation instantiation of a repository object where the default
implementation has been used.

2. The Properties term is the Automation level name for the get_Properties method that is supplied
by the IRepositoryDispatch dispatch interface.

3. The get_Properties method returns the interface pointer to the IReposProperties interface.

4. The default method of the IReposProperties interface is the get_Item method, which returns an
IReposProperty interface pointer for the specified property object in the Properties collection.

5. The Name term is the Automation level name for the get_Name method that is supplied by the
IReposProperty interface.

At this point, the Automation programmer has access to the name of the first property in the collection
via the firstPropName variable.

When to Use

Use the IReposProperty interface to access a persistent interface member, when no custom
implementation is available, and you do not already know the type or name of the member. With this
interface, you can:

· Retrieve the name of a property or collection.

· Retrieve the type of a property or collection.

· Get or set the value of a property.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of

argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IReposProperty Method Description

get_Type Retrieves the type of a persistent
interface member.

get_Name Retrieves the name of a persistent
interface member.

get_Value Retrieves the value of a persistent
interface member.

put_Value Sets the value of a persistent property.

Remarks

Only persistent members (that is, members that are stored in the repository) can be accessed by the
IReposProperty interface.

IReposProperty::get_Name
See Also

This method is used to retrieve the name of a persistent interface member (a property or collection).

HRESULT get_Name(BSTR        *pName);

Parameters

*pName [out]
The name of the member.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposProperty::get_Type
See Also

This method retrieves the type of a persistent property or collection; that is, it returns the object
identifier of the definition object to which the member conforms.

HRESULT get_Type(VARIANT      *psTypeId);

Parameters

*psTypeId [out]
The object identifier of the member's definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposProperty::get_Value
See Also

This method retrieves the value of a persistent interface member (a property or collection). If the
member is a collection, the retrieved value is a pointer to the interface that supports that type of
collection.

HRESULT get_Value(VARIANT      *psValue);

Parameters

*psValue [out]
The property value.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposProperty::put_Value
See Also

This method sets the value of a persistent interface property. The type of the input parameter is
converted to the storage data type of the property. If the type of the input parameter cannot be
successfully converted to the storage data type, this method will return an error.

HRESULT put_Value(VARIANT      sValue);

Parameters

sValue [in]
The property value to be set.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

You cannot set the value of a read-only property or a collection.

IClassDef Interface
See Also                  Properties                  Methods                  Collections

The IClassDef interface helps you create tool information models, by adding interfaces to a class. To
insert a new class definition into a tool information model, use the IReposTypeLib interface.

To complete a class definition, once you have added all of the interfaces, commit the transaction that
brackets your class definition modifications.

When to Use

Use the IClassDef interface to:

· Add a new or existing interface to a class definition.

· Retrieve the global identifier for the class.

· Access the collection of interfaces that are part of a class definition.

Properties

Property Description

ClassID The global identifier of the class.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
Properties collection.

IClassDef Method Description

AddInterface Adds an existing interface to the class
definition.

CreateInterfaceDef Creates a new interface and adds it to
the class definition.

ObjectInstances Materializes an IObjectCol interface
pointer for the collection of all objects in
the repository that conform to this class.

Collections

Collection Description

Interfaces The collection of all interfaces that are
implemented by a class.

IClassDef::AddInterface
See Also

The AddInterface method adds an existing interface to the collection of interfaces that are
implemented by a particular class.

HRESULT AddInterface(
IInterfaceDef    *plInterfaceDef,
BSTR                          Flags

);

Parameters

plInterfaceDef [in]
The interface pointer for the interface that is to be added to the collection of interfaces that are
implemented by this class.

Flags [in]
If the interface that you are adding is the default interface for the class, pass in the string "Default".
Otherwise, pass in a null string.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IClassDef ClassID Property
See Also

The global identifier that is assigned to this class.

Dispatch Identifier: DISPID_ClassID

Property Data Type: GUID

IClassDef::CreateInterfaceDef
See Also

The CreateInterfaceDef method creates a new interface definition, and adds the interface to the
collection of interfaces that are implemented by the class.

HRESULT CreateInterfaceDef(
VARIANT                sObjId,
BSTR                            Name,
VARIANT                sIID,
IInterfaceDef    *pIAncestor,
BSTR                            Flags,
IInterfaceDef    **ppIInterfaceDef

);

Parameters

sIObjId [in]
The object identifier to be assigned to the new interface definition object. If this parameter is set to
OBJID_NULL, the repository assigns an object identifier for you.

Name [in]
The name of the interface that is to be created.

sIID [in]
The global identifier associated with the signature for this interface. If there is none, set this
parameter to zero.

*pIAncestor [in]
The interface pointer to the base interface from which the interface being added is derived.

Flags [in]
If the interface that you are adding is the default interface for the class, pass in the string "Default".
Otherwise, pass in a null string.

*pplInterfaceDef [out]
The interface pointer for the new interface.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IClassDef Interfaces Collection
See Also

The collection of all interfaces that are implemented by this class.

Dispatch Identifier: DISPID_Ifaces (32)

Collection Descriptor Descriptor Value

Relationship Type Class-Implements-Interface

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

IClassDef::ObjectInstances
See Also

This method materializes an IObjectCol interface pointer for the collection of all objects in the
repository that conform to this class.

HRESULT ObjectInstances(IObjectCol    **ppIObjectCol);

Parameters

*ppIObjectCol [out]
The interface pointer for the object collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

ICollectionDef Interface
See Also                  Properties                  Methods                  Collections

A collection type (also referred to as a collection definition) defines how instances of a particular type
of collection will behave. The properties of the collection type determine:

· The minimum and maximum number of items in a collection.

· Whether or not the collection type is an origin collection type.

· Whether or not the collection type permits the naming of destination objects, and if so, whether
those names are case sensitive, and required to be unique.

· Whether or not the collection type permits the explicit sequencing of items in the collection.

· What happens to related objects when objects or relationships in the collection are deleted.

The kind of relationship that a particular collection type uses to relate objects to each other is
determined by its CollectionItem collection. The CollectionItem collection associates a single
relationship type to the collection type.

To add a new collection type, use the IInterfaceDef interface.

When to Use

Use the ICollectionDef interface to retrieve or modify the properties of a collection type, or to
determine the kind of relationship that the collection implements.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding set
of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The IReposProperties
interface provides access to the
Properties collection.

Properties

Property Description

Flags Flags that determine the behavior of this
type of collection.

IsOrigin Indicates whether or not collections of
this type are origin collections.

MaxCount The maximum number of target objects
that can be contained in a collection of
this type.

MinCount The minimum number of target objects
that must be contained in a collection of
this type.

Collections

Collection Description

CollectionItem The collection of one relationship type
that defines the relationship between
target objects of this type of collection
and a single source object.

ICollectionDef Flags Property
See Also

For a particular type of collection, the Flags property determines:

· Whether or not the collection type permits the naming of destination objects, and if so, whether
those names are case sensitive, and required to be unique.

· Whether or not the collection type permits the explicit sequencing of items in the collection.

· What happens to related objects when objects or relationships in the collection are deleted.

See the CollectionDefFlags Enumeration for a list of values and their specific purposes.

Dispatch Identifier: DISPID_ColFlags (54)

Property Data Type: long

ICollectionDef IsOrigin Property
See Also

This property indicates whether or not collections of this type are origin collections.

Dispatch Identifier: DISPID_IsOrigin (57)

Property Data Type: Boolean

ICollectionDef MaxCount Property
See Also

This property specifies the maximum number of target objects that can be contained in a collection of
this type. This property is maintained for informational purposes, and is not enforced by the repository
engine.

Dispatch Identifier: DISPID_MaxCount (56)

Property Data Type: short

ICollectionDef MinCount Property
See Also

This property specifies the minimum number of target objects that must be contained in a collection of
this type. This property is maintained for informational purposes, and is not enforced by the repository
engine.

Dispatch Identifier: DISPID_MinCount (55)

Property Data Type: short

ICollectionDef CollectionItem Collection
See Also

The collection of one relationship type that defines the relationship between target objects of this type
of collection and a single source object.

Dispatch Identifier: DISPID_CollectionItem (38)

Collection Descriptor Descriptor Value

Relationship Type Collection-Contains-Items

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size One

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

IInterfaceDef Interface
See Also                  Properties                  Methods                  Collections

The properties, methods, and collections that a class implements are organized into functionally
related groups. Each group is implemented as a COM interface. The properties, methods, and
collections of each interface are members of the interface. An interface definition is the template to
which an interface conforms.

To add a new interface to the repository, use the IClassDef interface or the IReposTypeLib interface.

When to Use

Use the IInterfaceDef interface to:

· Retrieve or modify properties of an interface definition.

· Determine which members are attached to an interface definition.

· Determine which classes implement an interface.

· Determine the base interface from which an interface derives.

· Determine what interfaces derive from a particular interface.

· Determine what repository objects expose a particular interface.

· Add a new property, method or collection type to an interface definition.

Properties

Property Description

Flags Flags that specify whether the
interface is extensible, and whether
the interface should be visible to
Automation interface queries.

InterfaceID The global interface identifier for the
interface.

TableName The name of the SQL table that is
used to store instance information for
the properties of the interface.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding
set of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The
IReposProperties interface provides
access to the Properties collection.

IInterfaceDef Method Description

CreateMethodDef Creates a new method definition, and
attaches it to the interface definition.

CreatePropertyDef Creates a new property definition, and
attaches it to the interface definition.

CreateRelationshipColDef Creates a relationship collection type.
The collection type is attached to the
interface definition.

ObjectInstances Materializes an IObjectCol interface
pointer for the collection of all objects
in the repository that expose this
interface.

Collections

Collection Description

Ancestor The collection of one base interface
from which this interface derives.

Classes The collection of classes that
implement the interface.

Descendants The collection of other interfaces that
derive from this interface.

Members The collection of members that are
attached to the interface definition.

IInterfaceDef Flags Property
See Also

This property contains flags that specify whether the interface is extensible, and whether the interface
should be visible to Automation interface queries. See the InterfaceDefFlags Enumeration for a list of
values and their specific purposes.

Dispatch Identifier: DISPID_IfaceFlags (50)

Property Data Type: long

IInterfaceDef InterfaceID Property
See Also

This property is the global interface identifier for the interface.

Dispatch Identifier: DISPID_InterfaceID (48)

Property Data Type: GUID

IInterfaceDef TableName Property
See Also

The name of the SQL table that is used to store instance information for the properties of the
interface. The length of the name must be 30 characters or less.

Dispatch Identifier: DISPID_TableName (49)

Property Data Type: string

IInterfaceDef::CreateMethodDef
See Also

This method creates a new method definition and attaches it to the interface definition.

HRESULT CreateMethodDef(
VARIANT                              sObjId,
BSTR  Name,
long  iDispId,
IInterfaceMember    **ppIMethodDef

);

Parameters

sObjId [in]
The object identifier to be used for the new method definition object. The repository engine will
assign an object identifier if you set this parameter to OBJID_NULL.

Name [in]
The name of the new method.

iDispId [in]
The dispatch identifier to be used for accessing the new method.

*ppIMethodDef [out]
The interface pointer for the newly created method definition.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IInterfaceDef::CreatePropertyDef
See Also

This method creates a new property definition and attaches it to the interface definition.

HRESULT CreatePropertyDef (
VARIANT                sObjId,
BSTR                            Name,
long                                iDispId,
short                              iCType,
IPropertyDef    **ppIPropertyDef

);

Parameters

sObjId [in]
The object identifier to be used for the new property definition object. The repository engine will
assign an object identifier if you set this parameter to OBJID_NULL.

Name [in]
The name of the new property.

iDispId [in]
The dispatch identifier to be used for accessing the new property.

iCType [in]
The C data type of the property. For a definition of valid values, see the ODBC Programmer's
Reference.

*ppIPropertyDef [out]
The interface pointer for the newly created property definition.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IInterfaceDef::CreateRelationshipColDef
See Also

This method creates a new collection type, attaches it to this interface, and associates it with the
specified relationship type.

HRESULT CreateRelationshipColDef(
VARIANT                            sObjId,
BSTR  Name,
long  iDispId,
boolean                                IsOrigin,
short  fFlags,
IReposTypeInfo    *pIRelshipDef,
ICollectionDef          **pICollectionDef

);

Parameters

sObjId [in]
The object identifier for the collection type. The repository engine will assign an object identifier if
you set this parameter to OBJID_NULL.

Name [in]
The name of the new collection type.

iDispId [in]
The dispatch identifier to be used for Automation access to collections of this type.

IsOrigin [in]
Specifies whether collections of this type are origin collections.

fFlags [in]
Flags that specify naming, sequencing, and delete propagation behavior for the collection type.
See the CollectionDefFlags Enumeration for a list of values and their specific purposes.

*pIRelshipDef [in]
The interface pointer for the relationship definition object to which this collection type is connected.

*ppICollectionDef [out]
The interface pointer for the new collection definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

Remarks

By default, the collection definition specifies that zero to many items are permitted in collections of
this type. To specify a different minimum and maximum item count for the new collection type, change
the MinCount and MaxCount properties before committing the transaction that contains this method
invocation.

IInterfaceDef::ObjectInstances
See Also

This method materializes an IObjectCol interface pointer for the collection of all objects in the
repository that expose this interface.

HRESULT ObjectInstances(IObjectCol    **ppIObjectCol);

Parameters

*ppIObjectCol [out]
The interface pointer for the object collection.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IInterfaceDef Classes Collection
See Also

This collection specifies which classes implement the interface.

Dispatch Identifier: DISPID_Classes (33)

Collection Descriptor Descriptor Value

Relationship Type Class-Implements-Interface

Source Is Origin No

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not Applicable

Unique Names Not Applicable

IInterfaceDef Members Collection
See Also

This collection specifies which members are attached to the interface.

Dispatch Identifier: DISPID_Members (36)

Collection Descriptor Descriptor Value

Relationship Type Interface-Has-Members

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection Yes

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

IInterfaceDef Ancestor Collection
See Also

This collection specifies the one base interface from which this interface derives.

Dispatch Identifier: DISPID_Ancestor (34)

Collection Descriptor Descriptor Value

Relationship Type Interface-InheritsFrom-Interface

Source Is Origin Yes

Minimum Collection Size One

Maximum Collection Size One

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

IInterfaceDef Descendants Collection
See Also

This collection specifies other interfaces that derive from this interface..

Dispatch Identifier: DISPID_Descendants (35)

Collection Descriptor Descriptor Value

Relationship Type Interface-InheritsFrom-Interface

Source Is Origin No

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not applicable

Unique Names Not applicable

IInterfaceMember Interface
See Also                  Properties                  Methods                  Collections

The properties, methods, and collections that a class implements are organized into functionally
related groups. Each group is implemented as a COM interface. The properties, methods, and
collections of each interface are members of the interface.

The IInterfaceMember interface maintains this information for an interface member:

· The member dispatch identifier.

· Information about member visibility.

· The relationship to the interface that exposes a particular interface member.

This information is common to properties, methods, and collection types. The PropertyDef,
MethodDef, and CollectionDef classes all implement this interface.

When to Use

Use the IInterfaceMember interface to access the common properties of an interface member, or to
determine which interface definition has a member of a particular property, method, or collection type.

Properties

Property Description

DispatchID The dispatch identifier to use when
accessing an instance of this type of
member.

Flags Flags that specify details about this
type of member.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding
set of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties

interface pointer. The
IReposProperties interface provides
access to the Properties collection.

Collections

Collection Description

Interface The collection of one interface that
exposes this type of member.

IInterfaceMember DispatchID Property
See Also

This property contains the dispatch identifier to use when accessing an instance of this type of
member.

Dispatch Identifier: DISPID_DispID (51)

Property Data Type: long

IInterfaceMember Flags Property
See Also

This property contains a flag that specifies whether or not the interface member should be visible to
Automation queries. See the InterfaceMemberFlags Enumeration for a list of values and their specific
purposes.

Dispatch Identifier: DISPID_IfaceMemFlags (52)

Property Data Type: long

IInterfaceMember Interface Collection
See Also

For a particular property, method, or collection definition, the Interface collection specifies which
interface exposes a member of this type.

Dispatch Identifier: DISPID_Iface (37)

Collection Descriptor Descriptor Value

Relationship Type Interface-Has-Members

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size One

Sequenced Collection Yes

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

IManageReposTypeLib Interface
See Also                  Properties                  Methods                  Collections

Each tool information model that is stored in the repository is represented by a repository type library.

When to Use

Use the IManageReposTypeLib interface to:

· Create a repository type library for a new tool information model.

· Determine what tool information models are currently stored in the repository.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding
set of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The
IReposProperties interface provides
access to the Properties collection.

IManageReposTypeLib
Method

Description

CreateTypeLib Creates a repository type library for a
new tool information model.

Collections

Collection Description

ReposTypeLibs The collection of repository type
libraries that are currently stored in the
repository.

IManageReposTypeLib::CreateTypeLib
See Also

This method creates a new repository type library and attaches it to the root of the repository. Each
repository type library represents a tool information model.

HRESULT CreateTypeLib(
VARIANT                          sObjId,
BSTR                                      Name,
VARIANT                          TypeLibId,
IReposTypeLib      **ppIRepTypeLib

);

Parameters

sObjId [in]
The object identifier to be used for the new repository type library object. The repository engine will
assign an object identifier if you set this parameter to OBJID_NULL.

Name [in]
The name of the new repository type library.

TypeLibId [in]
The global identifier by which this repository type library is referenced.

*ppIRepTypeLib [out]
The IReposTypeLib interface pointer to the new repository type library object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IManageReposTypeLib ReposTypeLibs Collection
See Also

The collection of repository type libraries that are currently stored in the repository. Each repository
type library represents a tool information model.

Dispatch Identifier: DISPID_ReposTypeLibs (40)

Collection Descriptor Descriptor Value

Relationship Type TlbManager-ContextFor-
ReposTypeLibs

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

IPropertyDef Interface
See Also                  Properties                  Methods                  Collections

A property definition object specifies the characteristics of a particular type of property. These
characteristics are defined by the properties of the property definition object.

To create a new property definition:

1. Use the CreatePropertyDef method of the IInterfaceDef interface.

2. Define any non-default characteristics of your new property definition by manipulating the
properties of the property definition object.

3. Commit your changes to the repository database.

When to Use

Use the IPropertyDef interface to retrieve or modify the characteristics of a property definition.

Properties

Property Description

APIType The C data type of the property.

ColumnName The name of the column in the SQL
table for this property.

Flags Specifies details about the property.

SQLScale The number of digits to the right of the
decimal point for a numeric property.

SQLSize The size in bytes of the property.

SQLType The SQL data type of the property.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding
set of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The
IReposProperties interface provides
access to the Properties collection.

IPropertyDef APIType Property
See Also

The C data type of the property. For a definition of valid values, see the ODBC Programmer's
Reference.

Dispatch Identifier: DISPID_APIType (59)

Property Data Type: short

IPropertyDef ColumnName Property
See Also

An SQL table is used to store instance information for the properties of an interface. By default, there
is a column in this table for each property that is defined as a member of the interface. The
ColumnName property specifies the name of the column in the SQL table for the property definition.
The length of the column name must be 30 bytes or less.

Dispatch Identifier: DISPID_ColumnName (58)

Property Data Type: string

IPropertyDef Flags Property
See Also

A flag that specifies whether or not a column is created in the SQL table for the interface to which this
property is attached. If no column is created, then instances of this property are only attached to
individual objects, when the property value is set for that particular object. By default, a column is
created for each property.

See the PropertyDefFlags Enumeration for the symbolic and numeric values of this flag.

Dispatch Identifier: DISPID_PropFlags (63)

Property Data Type: long

IPropertyDef SQLScale Property
See Also

The number of digits to the right of the decimal point for a numeric property. This parameter is ignored
unless the SQLType property specifies an SQL_NUMERIC, SQL_DECIMAL, or SQL_TIME data type.

Dispatch Identifier: DISPID_SQLScale (62)

Property Data Type: short

IPropertyDef SQLSize Property
See Also

The size in bytes of the property. This parameter is ignored when the data type of the property
inherently specifies the size of the property.

Dispatch Identifier: DISPID_SQL_Size (61)

Property Data Type: short

IPropertyDef SQLType Property
See Also

The SQL data type of the property. For a definition of valid values, see the ODBC Programmer's
Reference.

Dispatch Identifier: DISPID_SQLType (60)

Property Data Type: short

IReposTypeInfo Interface
See Also                  Properties                  Methods                  Collections

This interface relates class, interface, and relationship definition objects to repository type libraries.

When to Use

Use the IReposTypeInfo interface to:

· Determine which repository type libraries contain a particular class, interface, or relationship type.

· Determine what collection types are associated with a particular relationship type.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding
set of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The
IReposProperties interface provides
access to the Properties collection.

Collections

Collection Description

ItemInCollections The origin and destination collection
types that are connected to a
relationship definition object.

ReposTypeLibScopes The collection of repository type
libraries that contain a particular class,
interface, or relationship type.

IReposTypeInfo ItemInCollections Collection
See Also

This collection contains the origin and destination collection types that are associated with a particular
relationship type. This collection is empty for definition objects that are not relationship definitions.

Dispatch Identifier: DISPID_Collection (39)

Collection Descriptor Descriptor Value

Relationship Type Collection-Contains-Items

Source Is Origin No

Minimum Collection Size Zero

Maximum Collection Size Two

Sequenced Collection No

Deletes Propagated No

Destinations Named No

Case Sensitive Names Not Applicable

Unique Names Not Applicable

IReposTypeInfo ReposTypeLibScopes Collection
See Also

The collection of repository type libraries that contain a particular class, interface, or relationship type.

Dispatch Identifier: DISPID_ReposTypeLibScopes (43)

Collection Descriptor Descriptor Value

Relationship Type ReposTypeLib-ScopeFor-
ReposTypeInfo

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

IReposTypeLib Interface
See Also                  Properties                  Methods                  Collections

There is one repository type library for every tool information model contained in the repository. Each
tool information model provides a logical grouping of all of the type definitions related to a particular
tool (or tool set).

To add a new repository type library to the repository, use the IManageReposTypeLib interface.

When to Use

Use the IReposTypeLib interface to:

· Define new classes, relationship types, and interfaces for a tool information model.

· Retrieve or modify the global identifier associated with a repository type library.

· Determine which type definitions are associated with a particular repository type library.

Properties

Property Description

TypeLibID The global identifier for the
repository type library.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a
corresponding set of dispatch
identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an
Automation object.

IRepositoryDispatch Method Description

get_Properties Retrieves the IReposProperties
interface pointer. The
IReposProperties interface
provides access to the Properties
collection.

IReposTypeLib Method Description

CreateClassDef Creates a new class definition
object.

CreateInterfaceDef Creates a new interface definition
object.

CreateRelationshipDef Creates a new relationship
definition object.

Collections

Collection Description

ReposTypeInfos The collection of all classes,
interfaces, and relationship types
that are defined in the repository
type library.

ReposTypeLibContexts The collection of one repository
root object that is the context for
the repository type library.

IReposTypeLib TypeLibID Property
See Also

This property is the global identifier for the repository type library.

Dispatch Identifier: DISPID_TypeLibID (64)

Property Data Type: GUID

IReposTypeLib::CreateClassDef
See Also

This method creates a new class definition object. No interfaces are attached to the class.

HRESULT CreateClassDef(
VARIANT      sObjId,
BSTR                  Name,
VARIANT      sClsId,
IClassDef    **ppIClassDef

);

Parameters

sObjId [in]
The object identifier to be used for the new class definition object. The repository engine will assign
an object identifier if you set this parameter to OBJID_NULL.

Name [in]
The name of the new class.

sClsId [in]
The global identifier by which this class is referenced.

*ppIClassDef [out]
The interface pointer to the new class definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposTypeLib::CreateInterfaceDef
See Also

The CreateInterfaceDef method creates a new interface definition object. Use the
IClassDef::AddInterface method to attach the interface to a class definition object.

HRESULT CreateInterfaceDef(
VARIANT                  sObjId,
BSTR                              Name,
VARIANT                  sIId,
IInterfaceDef      *pIAncestor,
IInterfaceDef      **ppIInterfaceDef

);

Parameters

sObjId [in]
The object identifier to be assigned to the new interface definition object. If this parameter is set to
OBJID_NULL, the repository assigns an object identifier for you.

Name [in]
The name of the interface that is to be created.

sIId [in]
The interface identifier associated with the signature for this interface. If there is none, set this
parameter to zero.

*pIAncestor [in]
The IInterfaceDef interface pointer for the base interface from which the new interface is derived.

*pplInterfaceDef [out]
The interface pointer for the new interface.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposTypeLib::CreateRelationshipDef
See Also

This method creates a relationship definition object for a new relationship type. Once the relationship
definition is created, use the IInterfaceDef::CreateRelationshipColDef method to create origin and
destination collection definitions for the new relationship type.

HRESULT CreateRelationshipDef(
VARIANT                          sObjId,
BSTR                                      Name,
IReposTypeInfo    **ppIRelshipDef

);

Parameters

sObjId [in]
The object identifier for the new relationship type. The repository engine will assign an object
identifier if you set this parameter to OBJID_NULL.

Name [in]
The name of the new relationship type.

*ppIRelshipDef [out]
The COM interface pointer to the new relationship definition object.

Return Value

S_OK

The method completed successfully.

Error Values

This method failed to complete successfully.

IReposTypeLib ReposTypeLibContexts Collection
See Also

The collection of one repository root that is the context for a repository type library.

Dispatch Identifier: DISPID_ReposTLBContexts (41)

Collection Descriptor Descriptor Value

Relationship Type TlbManager-ContextFor-ReposTypeLibs

Source Is Origin No

Minimum Collection Size One

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

IReposTypeLib ReposTypeInfos Collection
See Also

The collection of all classes, interfaces, and relationship types that are associated with a repository
type library. The repository engine uses this collection to enforce the unique naming of all classes,
interfaces, and relationship types for a repository type library.

Dispatch Identifier: DISPID_ReposTypeInfos (42)

Collection Descriptor Descriptor Value

Relationship Type ReposTypeLib-ScopeFor-
ReposTypeInfo

Source Is Origin Yes

Minimum Collection Size Zero

Maximum Collection Size Many

Sequenced Collection No

Deletes Propagated Yes

Destinations Named Yes

Case Sensitive Names No

Unique Names Yes

IReposRoot Interface
See Also                  Properties                  Methods                  Collections

The IReposRoot interface is a placeholder interface; it contains no properties, methods, or
collections beyond Automation dispatch methods. It is provided as a convenient connection point to
the root object. When you create a tool information model, you can attach a relationship collection to
this interface that provides a navigational connection to the primary objects of your tool information
model.

When to Use

Use the IReposRoot interface as a starting point to navigate to other objects in the repository.

Methods

IUnknown Method Description

QueryInterface Returns pointers to supported
interfaces.

AddRef Increments the reference count.

Release Decrements the reference count.

IDispatch Method Description

GetIDsOfNames Maps a single member and a set of
argument names to a corresponding
set of dispatch identifiers.

GetTypeInfo Retrieves a type information object,
which can be used to get the type
information for an interface.

GetTypeInfoCount Retrieves the number of type
information interfaces that an object
provides (either 0 or 1).

Invoke Provides access to properties and
methods exposed by an Automation
object.

IRepositoryDispatch
Method

Description

get_Properties Retrieves the IReposProperties
interface pointer. The
IReposProperties interface provides
access to the Properties collection.

Relationship Type Descriptor

The type of relationship by which all items of the collection are connected to a common source
object.

Source Is Origin Descriptor

Specifies whether or not the source object for the collection is also the origin object. Value can be
set to Yes or No.

Maximum Collection Size Descriptor

The maximum number of items that can be contained in the collection. Value can be set to Zero,
One, a specific numeric value, or Many. The repository engine does not enforce this maximum.

Minimum Collection Size Descriptor

The minimum number of items that must be contained in the collection. Value can be set to Zero,
One, a specific numeric value, or Many. The repository engine does not enforce this minimum.

Deletes Propagated Descriptor

Specifies whether or not the deletion of an origin object or deletion of a relationship in the collection
will cause the deletion of the corresponding destination object. Value can be set to Yes or No.

Sequenced Collection Descriptor

Specifies whether or not the items in the destination collection have an explicitly defined sequence.
Collections of origin objects are never sequenced. Value can be set to Yes or No.

Destinations Named Descriptor

Specifies whether or not the relationship type for the collection permits the naming of destination
objects. Value can be set to Yes or No.

Case Sensitive Names Descriptor

Specifies whether or not the relationship type for the collection permits the use of case sensitive
names for destination objects. This descriptor is meaningful only for collections whose relationship
type permits destination objects to be named. Value can be set to Yes, No, or Not Applicable.

Unique Names Descriptor

Specifies whether or not the relationship type for the collection requires that the name of a
destination object be unique within the collection of destination objects. This descriptor is
meaningful only for collections whose relationship type permits destination objects to be named.
Value can be set to Yes, No, or Not Applicable.

Repository Data Structures and Constants

The various declarations and definitions for Microsoft Repository can be found in these files:

· The REPAPI.H source file contains C++ definitions specific to the repository engine.

· The REPTIM.H source file contains the constant definitions specific to the Type Information Model.
Most of the various identifiers (class, interface, object, local, internal, and dispatch) that you may
find useful are defined in this file.

· The REPAUTO.H file contains the definitions of the external enumerations, classes, and interfaces
of the repository engine and the Type Information Model. All of the interfaces found in this file
support Automation level access.

Repository Constants
See Also

These constants are defined for the Microsoft Repository application programming interface.

Constant Value Description
CARD_NOLIMIT 0xFFFF The maximum count value

for a collection with an
unlimited number of items.

COLUMNNAMESIZE 32 Maximum length, in bytes, of
an SQL column name.

INTID_NULL 0xFFFFFFFF The null internal identifier.

MEMBERNAMESIZE 64 Maximum length, in bytes, of
a property, method, or
collection type name.

OBJID_NULL See reptim.h The null object identifier. Use
this value when you want the
repository to assign an object
identifier for you.

PASSWORDSIZE 64 Maximum length, in bytes, of
the password string that is
used to connect to the
repository database.

PROPVALSIZE 255 Maximum length, in bytes, of
an annotational property
string.

RELSHIPNAMESIZE 260 Maximum length, in bytes, of
a name that a relationship
assigns to its destination
object.

REPOSERROR_OBJKNOWN 0x00000001L Returned in the fFlags field of
the REPOSERROR
structure. Indicates that the
object identifier is known.

REPOSERROR_SQLINFO 0x00000002L Returned in the fFlags field of
the REPOSERROR
structure. Indicates that the
SQL error information is
valid.

REPOSERROR_HELPAVAIL 0x00000004L Returned in the fFlags field of
the REPOSERROR
structure. Indicates that the
rcHelpFile and
dwHelpContext fields are
valid.

REPOSERROR_MSG_SIZE 256 Maximum length, in bytes, of
the message in the rcMsg
field of the REPOSERROR
structure.

TABLENAMESIZE 32 Maximum length, in bytes, of
an SQL table name.

TYPEINFONAMESIZE 64 Maximum length, in bytes, of
a class, interface, or
relationship type name.

TYPELIBNAMESIZE 64 Maximum length, in bytes, of
a repository type library
name.

USERSIZE 64 Maximum length, in bytes, of
the user name that is used to
connect to the repository
database.

CollectionDefFlags Enumeration
See Also

These values are used to define the behavior of a relationship collection. These flags are bit flags,
and may be combined to set multiple options. The absence of a flag signifies that the option is not set.

enum { COLLECTION_NAMING = 1,
 COLLECTION_UNIQUENAMING = 2,
 COLLECTION_CASESENSITIVE = 4,
 COLLECTION_SEQUENCED = 8
 COLLECTION_PROPAGATEDELETE = 16
} CollectionDefFlags;

Value Description
COLLECTION_CASESENSITIVE Specifies that the relationship type for

the collection permits the use of case
sensitive names for destination
objects. This descriptor is meaningful
only for collections whose
relationship type permits destination
objects to be named.

COLLECTION_NAMING Specifies that the relationship type for
the collection permits the naming of
destination objects.

COLLECTION_SEQUENCED Specifies that the items in the
collection have an explicitly defined
sequence. Collections of origin
objects are never sequenced.

COLLECTION_UNIQUENAMING Specifies that the relationship type for
the collection requires that the name
of a destination object be unique
within the collection of destination
objects. This descriptor is meaningful
only for collections whose
relationship type permits destination
objects to be named.

COLLECTION_PROPAGATEDELE
TE

Specifies that the relationship type for
the collection requires that deletes be
propagated to destination objects.
The destination object is only deleted
if this is the last relationship of this
type that is connected to the object.

ConnectionFlags Enumeration
See Also

These values are used to define the characteristics of a connection to a repository database. These
flags are bit flags, and may be combined to set multiple options. The absence of a flag signifies that
the option is not set.

enum { REPOS_CONN_EXCLUSIVE = 1,
 REPOS_CONN_NEWCACHE = 2
} ConnectionFlags;

Value Description
REPOS_CONN_EXCLUSIVE Open the repository database in

exclusive mode. No other users will
be allowed access to the database.

REPOS_CONN_NEWCACHE Create a new cache for this open
repository instance. This will
consume additional resources.

InterfaceDefFlags Enumeration
See Also

These values are used to define specific characteristics of an interface definition. These flags are bit
flags, and may be combined to set multiple options. The absence of a flag signifies that the option is
not set.

enum { INTERFACE_EXTENSIBLE = 1,
 INTERFACE_HIDDEN = 2
} InterfaceDefFlags;

Value Description
INTERFACE_EXTENSIBLE Specifies that the interface will

support extensions.
INTERFACE_HIDDEN Specifies that the interface is not to

be visible to Automation queries.

InterfaceMemberFlags Enumeration
See Also

This enumeration is used to define specific characteristics of an interface member. The absence of
the flag signifies that the option is not set.

enum { INTERFACEMEMBER_HIDDEN = 1
} InterfaceMemberFlags;

Value Description
INTERFACEMEMBER_HIDDEN Specifies that the interface member is

not to be visible to Automation
queries.

PropertyDefFlags Enumeration
See Also

This enumeration is used to define specific characteristics of a property definition. The absence of the
flag signifies that the option is not set.

enum { PROPERTY_INVERTED = 1
} PropertyDefFlags;

Value Description
PROPERTY_INVERTED Specifies that the property is to be

stored in inverted form; that is, a
column is not reserved in the SQL
table that contains the properties for
the implementing interface. Instances
of this property will only exist for
objects that have a value set for the
property. The property is restricted to
the string data type.

TransactionFlags Enumeration
See Also

This enumeration is used to specify which transaction option is to be retrieved or set.

enum { TXN_RESET_OPTIONS = 1,
 TXN_NORMAL = 2,
 TXN_EXCLUSIVE_WRITEBACK = 3,
 TXN_EXCLUSIVE_WRITETHROUGH = 4,
 TXN_TIMEOUT_DURATION = 5,
 TXN_START_TIMEOUT = 6
} TransactionFlags;

Value Description
TXN_RESET_OPTIONS Valid only for setting transaction

options. Specifies that all options
are to be reset to their default
values. Any associated option value
is ignored.

TXN_NORMAL Specifies the non-exclusive write-
back mode transaction option.

TXN_EXCLUSIVE_WRITEBACK Specifies the exclusive write-back
mode transaction option.

TXN_EXCLUSIVE_WRITETHROUGH Specifies the exclusive write-
through mode transaction option.

TXN_TIMEOUT_DURATION Specifies the transaction option that
determines the maximum time to
wait for a lock.

TXN_START_TIMEOUT Specifies the transaction option that
determines the maximum time to
wait before starting a transaction.

Repository Data Types
See Also

The following structures and data types are defined for the Microsoft Repository application
programming interface.

Internal Identifier

struct INTID
{
 ULONG iSiteID;
 ULONG iLocalID;
};

typedef const INTID &REFINTID;

An INTID or a REFINTID variable is an internal identifier for a    specific repository object that uniquely
identifies the object within a particular repository database. It is not unique across all repositories.
This is not the same thing as the interface identifier for an interface, or the class identifier that is used
to create an instance of a class.

The internal identifier is composed of an internal site identifier (iSiteID), and an internal local identifier
(iLocalID).

Object Identifier

typedef const OBJECTID OBJID;
typedef const OBJID& REFOBJID;

An OBJID or a REFOBJID variable is an object identifier for a    specific repository object in a
particular repository database. An object identifier is unique across all repositories. An object identifier
is not the same thing as the interface identifier for an interface, or the class identifier that is used to
create an instance of a class.

An object identifier is composed of a global identifier (GUID) and a four byte local identifier appended
to the GUID. The GUID portion of the object identifier specifies where the object identifier was
created, and the local identifier has a value that is unique within the repository database.

REPOSERROR Data Structure
See Also

Repository methods return an HRESULT value that indicates whether or not the method completed
successfully. If a repository method fails to complete successfully, an error object is created that
contains details about the failure. The REPOSERR data structure contains these details.

struct REPOSERROR
{
 ULONG iSize;
 ULONG fFlags;
 HRESULT hr;
 TCHAR rcMsg[REPOSERROR_MSG_SIZE];
 TCHAR rcHelpFile[_MAX_PATH];
 ULONG dwHelpContext;
 long iNativeError;
 TCHAR rcSqlState[6];
 short iReserved;
 OBJID sObjID;
 GUID clsid;
 GUID iid;
};

iSize
The size in bytes of this data structure.

fFlags
Bit flags that define the validity of certain members of this data structure. Valid values are
REPOSERROR_OBJKNOWN, REPOSERROR_SQLINFO, and REPOSERROR_HELPAVAIL.
See Repository Constants for the meaning of these constants.

hr
The HRESULT return value that was returned from the method that logged this error.

rcMsg
The text message that is associated with this error.

rcHelpFile
The name of the help file that contains more information about this error.

dwHelpContext
The help context identifier that is associated with this error.

iNativeError
The error code that was returned from the database engine. The value of this member is only valid
if the fFlags member indicates that SQL information is present.

rcSqlState
SQL state information supplied by the database engine. The value of this member is only valid if
the fFlags member indicates that SQL information is present.

iReserved
Reserved for use by the repository engine.

sObjID
The object identifier of the object that is associated with this error. The value of this member is only
valid if the fFlags member indicates that the object is known.

clsid
The class identifier of the object that is associated with this error. The value of this member is only
valid if the fFlags member indicates that the object is known.

iid
The interface identifier of the interface that is associated with this error. If the interface is not

known, or not applicable, the value of this member is set to GUID_NULL.

Repository Errors
See Also

Nearly all repository methods return an HRESULT value that indicates whether or not the method
succeeded in performing its function. The facility field of these HRESULT values is always set to
FACILITY_ITF, which indicates that the meaning for any given error code value is specific to the
interface from which the error is being reported. All of the standard repository interfaces (that is,
interfaces that are automatically supplied with the repository) use the same set of error codes. These
codes are listed in numerical order, and in alphabetical order.

Repository Errors (Numerical Order)
See Also

The error codes that can be returned as a part of the HRESULT return value by repository methods
are listed in numerical order below. These codes are also listed in alphabetical order.

 (0x1000)    EREP_BADPARAMS

(0x1001)    EREP_BADNAME

(0x1002)    EREP_BADDRIVER

(0x1011)    EREP_NOROWSFOUND

(0x1012)    EREP_ODBC_CERROR

(0x1013)    EREP_ODBC_MDBNOTFOUND

 (0x1015)    EREP_ODBC_UNKNOWNDRIVER

(0x1030)    EREP_DB_EXISTS

(0x1031)    EREP_DB_NOTCONNECTED

(0x1032)    EREP_DB_ALREADYCONNECTED

(0x1033)    EREP_DB_DBMSONETHREAD

(0x1034)    EREP_DB_CORRUPT

(0x1035)    EREP_DB_NOSCHEMA

 (0x1041)    EREP_TXN_NOTXNACTIVE

(0x1042)    EREP_TXN_AUTOABORT

(0x1043)    EREP_TXN_TOOMANY

(0x1044)    EREP_TXN_TIMEOUT

(0x1045)    EREP_TXN_NODATA

(0x1046)    EREP_TXN_NOSETINTXN

(0x1070)    EREP_REPOS_CACHEFULL

(0x1071)    EREP_REPOS_NONEXTDISPID

(0x1100)    EREP_RELSHIP_EXISTS

(0x1101)    EREP_RELSHIP_INVALID_PAIR

(0x1102)    EREP_RELSHIP_NOTFOUND

 (0x1105)    EREP_RELSHIP_ORGONLY

(0x1106)    EREP_RELSHIP_OUTOFDATE

(0x1107)    EREP_RELSHIP_INVALIDFLAGS

(0x1108)    EREP_RELSHIP_NAMEINVALID

(0x1109)    EREP_RELSHIP_DUPENAME

(0x1120)    EREP_TYPE_TABLEMISMATCH

(0x1121)    EREP_TYPE_COLMISMATCH

(0x1122)    EREP_TYPE_NOTNULLABLE

(0x1123)    EREP_TYPE_MULTIDEFIFACES

(0x1124)    EREP_TYPE_INVERTEDNOTALLOWED

(0x1125)    EREP_TYPE_INVALIDSCALE

(0x1200)    EREP_LOCK_TIMEOUT

(0x1300)    EREP_OBJ_NOTINITIALIZED

(0x1301)    EREP_OBJ_NOTFOUND

(0x1302)    EREP_OBJ_NONAMINGRELSHIP

(0x1303)    EREP_OBJ_EXISTS

(0x1400)    EREP_PROP_MISMATCH

(0x1401)    EREP_PROP_SETINVALID

(0x1402)    SREP_PROP_TRUNCATION

(0x1403)    EREP_PROP_CANTSETREPTIM

(0x1404)    EREP_PROP_READONLY

Repository Errors (Alphabetical Order)
See Also

The error codes that can be returned as a part of the HRESULT return value by repository methods
are listed below in alphabetical order, according to the symbolic name for each error code. These
codes are listed in numerical order.

EREP_BADDRIVER    (0x1002)

EREP_BADNAME    (0x1001)

EREP_BADPARAMS    (0x1000)

EREP_DB_ALREADYCONNECTED    (0x1032)

EREP_DB_CORRUPT    (0x1034)

EREP_DB_DBMSONETHREAD    (0x1033)

EREP_DB_EXISTS    (0x1030)

EREP_DB_NOSCHEMA    (0x1035)

EREP_DB_NOTCONNECTED    (0x1031)

EREP_LOCK_TIMEOUT    (0x1200)

EREP_NOROWSFOUND    (0x1011)

EREP_OBJ_EXISTS    (0x1303)

EREP_OBJ_NONAMINGRELSHIP    (0x1302)

EREP_OBJ_NOTFOUND    (0x1301)

EREP_OBJ_NOTINITIALIZED    (0x1300)

EREP_ODBC_CERROR    (0x1012)

EREP_ODBC_MDBNOTFOUND    (0x1013)

EREP_ODBC_UNKNOWNDRIVER    (0x1015)

EREP_PROP_CANTSETREPTIM    (0x1403)

EREP_PROP_MISMATCH    (0x1400)

EREP_PROP_READONLY    (0x1404)

EREP_PROP_SETINVALID    (0x1401)

EREP_RELSHIP_DUPENAME    (0x1109)

EREP_RELSHIP_EXISTS    (0x1100)

EREP_RELSHIP_INVALIDFLAGS    (0x1107)

EREP_RELSHIP_INVALID_PAIR    (0x1101)

EREP_RELSHIP_NAMEINVALID    (0x1108)

EREP_RELSHIP_NOTFOUND    (0x1102)

EREP_RELSHIP_ORGONLY    (0x1105)

EREP_RELSHIP_OUTOFDATE    (0x1106)

EREP_REPOS_CACHEFULL    (0x1070)

EREP_REPOS_NONEXTDISPID    (0x1071)

EREP_TXN_AUTOABORT    (0x1042)

EREP_TXN_NODATA    (0x1045)

EREP_TXN_NOSETINTXN    (0x1046)

EREP_TXN_NOTXNACTIVE    (0x1041)

EREP_TXN_TIMEOUT    (0x1044)

EREP_TXN_TOOMANY    (0x1043)

EREP_TYPE_COLMISMATCH    (0x1121)

EREP_TYPE_INVALIDSCALE    (0x1125)

EREP_TYPE_INVERTEDNOTALLOWED    (0x1124)

EREP_TYPE_MULTIDEFIFACES    (0x1123)

EREP_TYPE_NOTNULLABLE    (0x1122)

EREP_TYPE_TABLEMISMATCH    (0x1120)

SREP_PROP_TRUNCATION    (0x1402)

EREP_BADPARAMS    (0x1000)

One or more invalid parameters have been passed to a repository method. Correct the input
parameters and try again.

EREP_BADNAME    (0x1001)

The name that you have supplied for a table or column name either contains invalid characters, or is
a reserved word for the database management system. Change the name and try your request again.

EREP_BADDRIVER    (0x1002)

The currently installed ODBC driver is too old, and is incompatible with Microsoft Repository. Update
your ODBC driver.

EREP_NOROWSFOUND    (0x1011)

A query operation against the repository database yielded no rows. If you expected data to be
returned, verify that your query is properly constructed.

EREP_ODBC_CERROR    (0x1012)

An database error has occurred; check the error queue for more information. Determine the source of
the problem, and correct it, then try again.

EREP_ODBC_MDBNOTFOUND    (0x1013)

You have specified a repository database that does not exist or is not accessible. Make sure the
database exists, that the name is correct, and try again.

EREP_ODBC_UNKNOWNDRIVER    (0x1015)

The specified ODBC driver is not a valid driver, or is not known to the repository engine. Obtain an
ODBC driver that is compatible with Microsoft Repository. See the product release notes for
information about compatible drivers.

EREP_DB_EXISTS    (0x1030)

You have requested that a repository database be created with a name that is the name of an already
existing database. If you can use the existing database, then use the Open method instead of the
Create method. If the existing database is no longer needed, delete it. Otherwise, choose a different
name, and try again.

EREP_DB_NOTCONNECTED    (0x1031)

You have requested an operation that requires a connection to an open repository database, and you
do not currently have such a connection. Open the appropriate repository, and try your request again.

EREP_DB_ALREADYCONNECTED    (0x1032)

You have attempted to connect to a repository database when you are already connected. Skip the
redundant Open method invocation and proceed with the repository interactions that follow that Open
invocation.

EREP_DB_DBMSONETHREAD    (0x1033)

The repository database that you have attempted to access is managed by a database server that
does not support multi-threaded access. The thread attempting the access is not the same as the
thread that currently has the open repository instance for the database. Either move your repository
database to a database server that supports multi-threaded access, or modify the logic of your
program to use a single thread for repository database access.

EREP_DB_CORRUPT    (0x1034)

The repository database has been damaged. See your database server documentation to determine
what facilities are available for restoring or rebuilding the database.

EREP_DB_NOSCHEMA    (0x1035)

The repository database does not contain the Type Information Model schema. If your repository has
not yet been populated with data, install the Type Information Model schema by using the Create
method to open the repository database. If your repository has been populated with data, restore the
database from a backup copy.

EREP_TXN_NOTXNACTIVE    (0x1041)

You have attempted to update the repository database, but there is no transaction active. Bracket
your repository updates between Begin and Commit transaction method invocations.

EREP_TXN_AUTOABORT    (0x1042)

You have released the resources for an open repository instance, and that repository instance had a
transaction active. The transaction has been canceled; all changes associated with the transaction
will be undone. You should always complete an active transaction (via either the Commit or the
Abort method) before releasing an open repository instance.

EREP_TXN_TOOMANY    (0x1043)

A new transaction cannot be started because the maximum number of concurrent transactions has
been exceeded. Reduce the number of concurrently executing transactions (within the same
process).

EREP_TXN_TIMEOUT    (0x1044)

Your transaction has timed out while waiting to begin. Either increase the start transaction time-out
value and retry the transaction, or wait for the item to become available and then retry the transaction.
For details on how to change the start transaction time-out value, see the SetOption method.

EREP_TXN_NODATA    (0x1045)

You have attempted to retrieve the value of a property that is null, or does not exist. The corrective
action that you must take is dependent upon the requirements of your task. Consider handling this
exception, with special processing for the case where a property has a null value.

EREP_TXN_NOSETINTXN    (0x1046)

You have attempted to modify the current transaction option settings while a transaction is active.
Either complete the current transaction and then modify the transaction options, or set the transaction
options prior to beginning the transaction.

EREP_REPOS_CACHEFULL    (0x1070)

The repository cache is full. If you are writing new and changed data to the repository, and you cannot
reduce the number of steps in the transaction, consider setting either the
TXN_EXCLUSIVE_WRITEBACK or the TXN_EXCLUSIVE_WRITETHROUGH transaction option to
avoid this problem.

EREP_REPOS_NONEXTDISPID    (0x1071)

You have attempted to add a member to an interface that is defined in the repository, but there are no
more dispatch identifier values available. Factor the interface into several smaller interfaces.

EREP_RELSHIP_EXISTS    (0x1100)

You have attempted to create a relationship that already exists in the repository. Either ignore this
error, or eliminate the redundant Add or Insert method invocation from your program.

EREP_RELSHIP_INVALID_PAIR    (0x1101)

An attempt to add a new relationship between two objects has failed. One or both of the classes to
which these objects conform does not support this type of relationship. Verify that the relationship
type and the object classes are correct. Check your tool information model to verify that it supports
the type of relationship that you are trying to create.

EREP_RELSHIP_NOTFOUND    (0x1102)

You have attempted to retrieve a specific relationship that does not exist, or you have attempted to
retrieve a relationship from an empty collection. If multiple users are accessing the repository
concurrently, this error can occur if one user deletes a relationship while a second user is attempting
to retrieve the relationship. Consider handling this exception, with special processing for the case
where a collection is empty, or a specific relationship no longer exists.

EREP_RELSHIP_ORGONLY    (0x1105)

An attempt to move or insert a relationship in a sequenced collection has failed because the Move or
Insert method was invoked via the destination object instead of the origin object. Use the origin object
to move or insert a relationship in a sequenced collection.

EREP_RELSHIP_OUTOFDATE    (0x1106)

Your request has failed because the sequenced relationship collection that you are attempting to
update has been changed by another process. Refresh the collection and try the update again.

EREP_RELSHIP_INVALIDFLAGS    (0x1107)

Your attempt to add or modify a relationship collection has failed. Either the combination of flags are
invalid, or you are attempting to set flag values on a destination collection. Verify that the origin
collection is being used for the operation, and that the flag combinations are valid. See
CollectionDefFlags for details on relationship collection flags.

EREP_RELSHIP_NAMEINVALID    (0x1108)

You have attempted to add a relationship that has an invalid name specified for the destination object.
Verify that the name is non-null, and is not longer than the maximum allowed length. For details about
repository text string lengths, see Repository Constants.

EREP_RELSHIP_DUPENAME    (0x1109)

You have attempted to add a relationship with a name that is not unique within the collection, and the
collection requires unique names. Either choose a different name for the relationship, or delete the
existing relationship with the same name, if it is no longer needed.

EREP_TYPE_TABLEMISMATCH    (0x1120)

An attempt to extend an interface for a tool information model has failed. The SQL table that is
designated as the table to be used for storing property values for the interface does not contain the
expected columns. Check the table to determine if it has been damaged or if columns have been
dropped from the table. Restore the table to its prior state and try the request again.

EREP_TYPE_COLMISMATCH    (0x1121)

The conversion of a property value between the stored data type and the data type as specified by
the caller has failed. Check the caller-specified data type to verify that it can be converted to the
storage data type, as defined by the associated property definition object.

EREP_TYPE_NOTNULLABLE    (0x1122)

You have attempted to set a property value to the null value, and the property definition does not
allow this. Choose one of the permitted property values and try the update operation again.

EREP_TYPE_MULTIDEFIFACES    (0x1123)

You have attempted to set more than one interface as the default interface for a class definition.
Choose one of the interfaces to be the default interface.

EREP_TYPE_INVERTEDNOTALLOWED    (0x1124)

You have attempted to add a property to an interface using the PROPERTY_INVERTED option, and
the option is not permitted for the interface. Correct either the property definition or the interface
definition.

EREP_TYPE_INVALIDSCALE    (0x1125)

You have attempted to set the SQLScale property of a property definition to an invalid value. Correct
the value that you are using and try the operation again.

EREP_LOCK_TIMEOUT    (0x1200)

An attempt to obtain a lock on a repository item has timed out. Either increase the lock time-out value
and try again, or wait for the item to become available and then try again. For details on how to
change the lock time-out value, see the SetOption method.

EREP_OBJ_NOTINITIALIZED    (0x1300)

An attempt has been made to interact with a repository object that has not been initialized with valid
data from the repository database. Ensure that all repository objects in your program are initialized
before attempting to interact with them.

EREP_OBJ_NOTFOUND    (0x1301)

You have attempted to retrieve a repository object that does not exist. If multiple users are accessing
the repository concurrently, this error can occur if one user deletes a repository object while a second
user is attempting to retrieve the object. It can also occur if you are using an object identifier that has
been saved from prior interactions with the repository, and the object has been deleted between the
time that you obtained the object identifier and the time that you attempted to retrieve the repository
object. Consider handling this exception with special processing for the case where a repository
object no longer exists.

EREP_OBJ_NONAMINGRELSHIP    (0x1302)

The retrieval of the name associated with a repository item has failed because the item is not a
participant in a naming relationship. Check your tool information model to see if the relationship type
is correctly defined. If it is, and the relationship type does not specify that destination objects are to be
named, consider adding logic to your program to check for the presence of a naming relationship
before requesting the repository item name.

EREP_OBJ_EXISTS    (0x1303)

You have attempted to create a repository object that already exists in the repository. This situation
can occur if multiple users are attempting to add the same object to the repository concurrently. If this
is not the case, eliminate the redundant Add, CreateObject, or Insert method invocation from your
program.

EREP_PROP_MISMATCH    (0x1400)

An attempt to update a property value in the repository has failed. The data type of the input property
cannot be converted to the storage data type. Correct the data type of the input property and try the
update again.

EREP_PROP_SETINVALID    (0x1401)

You have attempted to modify a collection as if it were a property. This type of operation is not
supported by Microsoft Repository.

SREP_PROP_TRUNCATION    (0x1402)

Your request to set the value of a property has succeeded; however, the value of the property has
been truncated because the input property value was too long.

EREP_PROP_CANTSETREPTIM    (0x1403)

You have attempted to modify a property of a definition object that is part of the Type Information
Model. Modification of Type Information Model properties is not supported.

EREP_PROP_READONLY    (0x1404)

Your request to set the value of a property has failed because the property is a read-only property.

Repository SQL Schema
See Also

The repository SQL schema consists of a standard schema and an extended schema. The standard
schema consists of tables that contain the core information that is needed to manage all repository
objects, relationships, and collections. The standard schema also contains tables that are used by the
repository to store the definition information for tool information models.

SQL schema extensions are automatically generated by the repository engine when you create or
extend a tool information model. Normally, one table is created for each interface that is defined in the
repository. The table contains the instance data for persistent properties that are attached to the
interface. One column in the table is created for each property. If an interface is defined that has no
member properties, a table is not created.

Although the extended schema is automatically generated, you can tune the extended schema to
optimize performance and data retrieval, if you are an experienced SQL administrator. For example,
by default, the properties of each interface are stored in a separate SQL table. You can map the
properties of multiple interfaces to a single table, or you can map the properties of a single interface
to multiple tables. You can also specify the column names and data types to be used for property
data. You can add indexes to tables, but you must not remove indexes that have been automatically
defined by the repository.

You can construct a SQL query to extract specific information from the repository. You need to be
familiar with the SQL schema to build such a query. The set of SQL tables that comprise the standard
schema are shown below.

SQL Table Name Description

RTblClassDefs Contains information about classes that are
defined in the repository.

RTblIfaceDefs Contains information about interfaces that
are defined in the repository.

RTblObjects Contains information about repository
objects.

RTblPropDefs Contains information about property
definitions.

RTblProps Contains property values for annotational
properties that are attached to repository
objects.

RTblRelshipProps Contains property values for annotational
properties that are attached to relationships.

RTblRelships Contains information about relationships.

RTblRelColDefs Contains information about collection types.

RTblRelColPairs Defines which types of objects can assume
origin and destination roles for any given
relationship type.

RTblSites Translates local site identifiers to global site
identifiers.

RTblTypeLibs Contains information about repository type
libraries.

Microsoft Repository can access repository databases that are managed by either Microsoft Jet or
Microsoft SQL Server. Since the underlying database management system (DBMS) can vary, the
utilities and tools that you use to administer the repository database (at the database level) also vary.
For example, if your repository database is damaged due to a power outage or system failure, you
should use the recovery tools that are provided with your DBMS to repair the damage. Similarly, if

your repository database requires periodic defragmentation, you should use the defragmentation tools
that are provided with your DBMS.

Repository SQL Data Types
See Also

Because data types can vary between database management systems, the repository engine maps
its own set of repository data types to the SQL data types that are supported by the underlying
database server.

This table translates repository data types into SQL data types known by the database server. For
data types that vary between different database servers, the data type used for each database server
is shown. In these cases, the Microsoft SQL Server data type is shown with (S) appended to it, and
the Jet server data type is shown with (J) appended to it.

Repository
Data Type

Database
Data Type Description

RTBoolean bit (S)
boolean (J)

A true / false value.

RTCount 2 byte integer The count, or cardinality of
a collection.

RTDispID 4 byte integer An Automation dispatch
identifier.

RTFlags 2 byte integer Flag bits that define the
behavior of an entity.

RTGUID 16 byte binary A globally unique identifier.

RTIntID 8 byte binary An internal identifier.

RTLocalID 4 byte binary A local identifier; part of an
internal identifier.

RTLongBinary image (S)
longbinary (J)

A long binary stream of
data.

RTLongString text (S)
memo (J)

A string with a maximum
length of approximately 1
gigabyte.

RTNameString 200 byte varchar A special truncated name
string used for indexing.

RTScale 2 byte integer Scale for numeric data; the
number of digits after the
decimal point.

RTShortString 240 byte varchar A special shortened string
value used for indexing.

RTSiteID 4 byte binary A site identifier; part of an
object identifier.

RTSize 2 byte integer The size of a data type, in
bytes.

RTSQLName 30 byte varchar A SQL identifier; a table or
column name.

RTSQLType 2 byte integer The ODBC representation
of a SQL data type.

RTblClassDefs SQL Table
See Also

This SQL table contains one row for each class that is defined in the repository. The IntID column is
the primary key for this table. A unique index is defined on the Class ID column.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
class object.

ClassID RTGUID The global identifier of the
class, as recorded in the
system registry.

PropDescs RTLongBinary Definition information for the
class. Reserved for
proprietary usage by the
repository engine. This field
can be null.

RTblIfaceDefs SQL Table
See Also

This SQL table contains one row for each interface that is defined in the repository. The IntID column
is the primary key for this table. A unique index is defined on the InterfaceID column.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
class object.

InterfaceID RTGUID The global identifier of the
interface, as recorded in the
system registry.

SQLTableN
ame

RTSQLName The name of the SQL table
used to store property
instance data for the
interface. This field can be
null.

RTblIfaceMem SQL Table
See Also

This SQL table contains one row for each property definition, method definition, and collection
definition that is stored in the repository. The information contained in this table is used by the
repository to create interface-specific SQL tables when an interface is added to the repository. The
IntID column is the primary key for this table.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
property definition object.

DispID RTDispID The Automation dispatch
identifier for the member.
This field can be null.

Flags RTFlags Flags that determine
member behavior. For a list
of valid values and their
meanings, see the
InterfaceMemberFlags
Enumeration.

RTblObjects SQL Table
See Also

This SQL table contains a row for every repository object in the repository. The IntID column is the
primary key for this table.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
object.

TypeID RTIntID The internal identifier for the
class definition object to
which this object conforms.

RTblPropDefs SQL Table
See Also

This SQL table contains one row for each property definition object that is stored in the repository.
The information contained in this table is used by the repository to create interface-specific SQL
tables when an interface is added to the repository. The IntID column is the primary key for this table.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
property definition object.

SQLType RTSQLType The SQL data type for the
property.

APIType RTSQLType The C language data type
for the property. This is the
type of the property when it
is passed through a
repository programming
interface.

SQLSize RTSize The length in bytes of the
property in terms of its SQL
data type.

SQLColNa
me

RTSQLName The name of the column in
the SQL table for this
property. This field can be
null.

SQLScale RTScale The scale for a numeric
property; the number of
digits after the decimal point.
This field can be null.

Flags RTFlags Flags that determine
property behavior. See the
PropertyDefFlags
Enumeration for a list of
values and their specific
purposes.

RTblProps SQL Table
See Also

An annotational property is a property that is associated with an individual repository object or
relationship, and is not required to exist for all repository objects or relationships of a particular type.
This SQL table contains one row for each annotational property instance that is attached to a
repository object. The IntID and PropID columns comprise the primary key for this table. A single non-
unique index is defined on the concatenation of the PropID and PropValue columns.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
object to which this
annotational property is
attached.

PropID RTIntID The internal identifier for the
inverted property definition
object to which this
annotational property
instance conforms.

PropValue RTShortString The value of the
annotational property
instance.

RTblRelshipProps SQL Table
See Also

An annotational property is a property that is associated with an individual repository object or
relationship, and is not required to exist for all repository objects or relationships of a particular type.
This SQL table contains one row for each annotational property instance that is attached to a
relationship. The OrgID, RelTypeID, DstID, and PropID columns comprise the primary key for this
table. A single non-unique index is defined on the concatenation of the PropID and PropValue
columns.

Column
Name

Data Type Description

OrgID RTIntID The internal identifier for the
origin object of the
relationship.

RelTypeID RTIntID The internal identifier for the
relationship type.

DstID RTIntID The internal identifier for the
destination object of the
relationship.

PropID RTIntID The internal identifier for the
inverted property definition
object to which this
annotational property
instance conforms.

 PropValue RTShortString The value of the
annotational property
instance.

RTblRelships SQL Table
See Also

This SQL table contains one row for each relationship that is stored in the repository. The OrgID,
RelTypeID, and DstID columns comprise the primary key for this table.

Column
Name

Data Type Description

OrgID RTIntID The internal identifier for the
origin object of the
relationship.

RelTypeID RTIntID The internal identifier for the
relationship type.

DstID RTIntID The internal identifier for the
destination object of the
relationship.

OrgTypeID RTIntID The internal identifier for the
class to which the origin
object conforms.
Redundantly stored in this
table for performance
reasons.

DstTypeID RTIntID The internal identifier for the
class to which the
destination object conforms.
Redundantly stored in this
table for performance
reasons.

PrevDstID RTIntID For sequenced relationship
collections, this field
contains the internal
identifier of the previous
relationship in the collection
sequence. If the relationship
is not a sequencing
relationship, then this field is
null.

DstName RTNameString The name of the destination
object, as defined by this
relationship. If the
relationship is not a naming
relationship, then this field is
null.

DstNameLo
ng

RTLongString If the name of the
destination object is longer
than what can be fit into the
DstName field, then this field
contains the full name.
Otherwise, this field is null.

RTblRelColDefs SQL Table
See Also

Each relationship in the repository is associated with two relationship collections: an origin collection
and a destination collection. Each relationship collection conforms to a collection type (also referred to
as a collection definition). The collection type defines the role that the collection plays in the
relationship. This SQL table contains one row for each collection type that is defined in the repository.
The IntID column is the primary key for this table. A non-unique index is defined for the RelTypeID
column.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
collection definition object.

RelTypeID RTIntID Internal identifier of the
relationship definition object.

IsOrigin RTBoolean Determines whether or not
collections that conform to
this collection type are origin
collections (True), or
destination collections
(False).

Flags RTFLAGS Flags that determine the
behavior of collections that
conform to this collection
type. See
CollectionDefFlags for a list
of values and their specific
purposes.

MinCount RTCount The minimum number of
repository items that are
expected for this type of
collection. This field can be
null.

MaxCount RTCount The maximum number of
repository items that are
expected for this type of
collection. This field can be
null.

RTblRelColPairs SQL Table
See Also

Each relationship in the repository is associated with two repository objects: an origin object and a
destination object. The RTblRelcolPairs table is used by the repository engine to determine, for any
given relationship type, which object classes can assume the origin and destination roles.

This SQL table contains one row for each pair of object classes that are valid participants in a
particular relationship type. Since relationships are actually attached to interfaces, and since multiple
classes can implement a particular interface, more than one type of object can potentially assume the
role of origin or destination for a particular relationship type. Consequently, there can be multiple rows
in the table for a single relationship type.

The RelTypeID, OrgTypeID, and DstTypeID columns comprise the primary key for this table.

Column
Name

Data Type Description

RelTypeID RTIntID The internal identifier for the
relationship definition object.

OrgTypeID RTIntID The internal identifier for the
class whose instances can
assume the role of origin in
this type of relationship.

DstTypeID RTIntID The internal identifier for the
class whose instances can
assume the role of
destination in this type of
relationship.

RTblSites SQL Table
See Also

This SQL table contains one row for each repository site that is known to this repository. The table
provides a translation capability between the global site identifier that uniquely identifies a site across
all repositories and the local site identifier, which is unique only within the current repository. The
smaller local site identifier is a part of the internal identifier that is used to identify a repository object
within the repository.

The SiteID column is the primary key for this table. There is a unique index defined on the SiteGUID
column.

Column
Name

Data Type Description

SiteID RTSiteID The site identifier for a
repository site that is known
to this repository.

SiteGUID RTGUID The global identifier for the
site.

NextLocalI
D

RTLocalID Reserved for proprietary
usage by the repository
engine.

RTblTypeLibs SQL Table
See Also

This SQL table relates the internal object identifiers for repository type libraries (tool information
models) to their corresponding global identifiers. The IntID column is the primary key for this table.

Column
Name

Data Type Description

IntID RTIntID The internal identifier for the
repository type library.

TypeLibID RTGUID The global identifier for the
repository type library, as
recorded in the system
registry.

Repository Glossary

A C

annotational property

class

collection

collection type

COM object

D F

default interface

definition

destination collection

destination collection type

destination object

G I

global identifier

instance

interface

interface definition

internal identifier

inverted property

item

J M

MDO Model

member

metadata

method

Microsoft Development Objects Model

N

naming collection

naming relationship

O

object

object identifier

origin collection

origin collection type

origin object

P Q

populate

property

property value

R

relationship

relationship type

repository

repository database

repository engine

repository instance

repository item

repository object

repository type library

RepVB

S

sequenced collection

sequenced relationship

source object

T

target object

tool information

tool information model

type

type information model

type library

U Z

unique-naming collection

unique-naming relationship

annotational property

A special class of repository property that can be associated with individual repository objects or
relationships.    Properties that are not annotational are defined for all objects of a class, and cannot
be associated with relationships.

class

The definition of a COM object. The class is the template from which an object instance is created.
The class specifies which interfaces the object implements.

collection

1. A set of repository relationships of the same relationship type that are all connected to a common
source object.

2. A set of repository objects that are all connected via instances of the same relationship type to a
common source object. See origin collection, destination collection.

3. A set of items returned from a query to a repository.

collection type

The type of a collection. It is determined by the relationship type associated with the collection relative
to the role that the objects in the collection play; that is, whether the objects are origin objects or
destination objects. See origin collection type, destination collection type.

COM object

An object that conforms to the Component Object Model. A COM object implements the COM
interfaces that support object interaction, as well as interfaces that are specific to that class of object.
All repository objects are instantiated as COM objects.

default interface

The primary interface of a class.    Visual Basic allows programmers to refer to the members of the
default interface directly, without having to specify the interface by name.

definition

Sometimes used as a synonym for type; for example relationship definition is a synonym for
relationship type.

destination collection

A collection of repository items that all have a common destination object.

destination collection type

The type of a collection of repository items that all have a common destination object.

destination object

A repository object that is the destination of a relationship. Consider the relationship: Project-Has-
Component. Project is the origin of the relationship, and Component is the destination of the
relationship.

global identifier

A globally unique identifier, or GUID. Used to uniquely identify COM classes and interfaces.

instance

An item that conforms to a particular definition, class, or template. For example, the instance of a
class is an object; the instance of a relationship type is a relationship.

interface

A defined set of properties, methods, and collections that form a logical grouping of behaviors and
data. Classes are defined by the interfaces that they implement. An interface may be implemented by
many different classes.

interface definition

A synonym for interface; used when the perspective is manipulating the definition of an interface in
the repository, as opposed to conforming to an interface during the execution of a program.

internal identifier

Internal identifier of an object within the repository.    The internal identifier represents a more compact
form of an object identifier.    An internal identifier is only guaranteed to be unique within a single
repository. An object identifier is guaranteed to be unique across all repositories.

inverted property

Synonym for annotational property.

item

A repository object or relationship. More specifically, any instance of a repository-supplied class that
implements the IRepositoryItem interface.

MDO Model

The Microsoft Development Objects Model.

member

A property, method, or collection type that has been defined to be a part of an interface.

metadata

Metadata is data about data.

method

An invocable function that is defined to be a member of an interface.

Microsoft Development Objects Model

A tool information model provided with the repository that models Visual Basic projects.

naming relationship

A repository relationship that provides a name for its destination object.

naming collection

A collection of repository items whose associated relationship type requires the naming of destination
objects.

object

An instance of a class.    The term object is not a synonym for the term repository object. While all
repository objects are indeed objects, all objects are not repository objects. See COM object,
repository object.

object identifier

The identifier of an object within the repository.    An object identifier is guaranteed to be unique across
all repositories. See internal identifier.

origin collection

A collection of repository items that all have a common origin object.

origin collection type

The type of a collection of repository items that all have a common    origin object.

origin object

A repository object that is the origin of a relationship. Consider the relationship: Project-Has-
Component. Project is the origin of the relationship, and Component is the destination of the
relationship.

populate

To provide with instances. For example, you populate the MDO Model with projects, components, and
references.

property

A scalar attribute that is defined as a member of an interface. A property has an assigned data type;
for example, string, or 32 bit integer. A property is a part of the definition of an interface.    A property
value is an instance of a property.

property value

The value stored for a particular instance of an interface property.

relationship

A logical connection between one object, the origin object,    and a second object, the destination
object. Relationships are instantiated by the repository as COM objects.

relationship type

The definition of a kind of relationship.

repository

A database containing tool information models, in conjunction with the executable software that
manages the database. An installation of the Microsoft Repository.

repository database

A database used as persistent storage for tool information. The type information model is also stored
in the repository database.

repository engine

The object-oriented Microsoft Repository software that provides management support for and
customer access to a repository database.

repository instance

An instance of the Repository class. A repository instance represents an open connection to a specific
repository database.

Note      An instance of the Repository class is typically not referred to as a repository object to avoid
confusion between instances of the Repository class and instances of the RepositoryObject class.

repository item

A repository object or a repository relationship.

repository object

An instance of the RepositoryObject class. All repository objects are COM objects; however, not all
COM objects are repository objects. See object, COM object.

repository type library

A repository type library groups together the various definition objects that comprise a tool information
model. Repository type libraries are used by the repository engine to provide Automation support. Not
the same as a type library; see type library.

RepVB

The Microsoft Repository Add-in module for Visual Basic. It populates and maintains the MDO Model
with tool information about the customer's Visual Basic projects.

sequenced relationship

A repository relationship that provides an explicitly specified position for its destination object among
the collection of destination objects.

sequenced collection

A collection of repository items whose associated relationship type supports the explicit sequencing of
destination objects.

source object

The single object to which all objects in a particular collection are connected via relationships that are
all of the same relationship type. For destination collections, the source object is the destination
object. For origin collections, the source object is the origin object.

target object

One of the objects in a particular collection to which a source object is connected via a relationship.
For destination collections, the target objects are origin objects. For origin collections, the target
objects are destination objects.

tool information

Instance data for a tool information model.

tool information model

An object model that is stored in a repository. Built using the basic elements of the type information
model: relationship types, classes, interfaces, properties, methods,    and collection types.

type

The definition of a particular kind of data.

type information model

The object model that the repository uses to store tool information models.

type library

A file (or component within another file) that contains Automation standard descriptions of exposed
objects, properties, methods, and collections. Object library (.OLB) files contain type libraries. Type
libraries that are shipped as stand-alone files use the extension .TLB

unique-naming collection

A collection of repository items whose associated relationship type requires the unique naming of
destination objects.

unique-naming relationship

A repository relationship that provides a name for its destination object that is unique among the
collection of destination objects.

