


ActXDoc (ActXDoc.vbp)

The ActXDoc is a simple ActiveX document-based application. Two ActiveX documents (FirstDoc.vbd, 
and SecndDoc.vbd) incorporate features such as passing data from one document to another, as well 
as use of the HyperLink object. See Chapter 5, "Creating an ActiveX Document," in "Creating 
ActiveX Components" of the Component Tools Guide.

File Description

FrmAbout.frx Binary data for the frmAbout.frm.

FrmAbout.frm An About Box for the ActiveX document.

FrmAux.frm An auxiliary form shown from the FirstDoc 
ActiveX document.

mGlobal.bas Code module that contains global constants.

Actxdoc.vbp The project file for the application.

FirstDoc.dob The UserDocument object for the FirstDoc 
ActiveX document.

Secnddoc.dob The UserDocument for the SecndDoc ActiveX 
document.

To Run

From the Visual Basic File menu, click Open Project and select the ActXDoc.Vbp file, which is listed 
in the \Samples\CompTool\ActXDoc subdirectory of the main Visual Basic directory. Press F5 to run 
the application.

Run Internet Explorer 3.0 or later, click Address, and type the path of the FirstDoc.vbd file. The file 
will be found in the root directory of Visual Basic. For example, if you have installed Visual Basic in 
the default directory, this path will be "c:\Program Files\MSDevStudio\VB\FirstDoc.vbd")



ATM (ATM.vbp)

The ATM.vbp sample application demonstrates how to use a resource file. This application produces 
the screen for an automated teller machine (ATM) that lets the user perform a bank transaction in one 
of several languages, such as English, French, or German.

Background

The ATM.vbp sample prompts the user to specify the language to conduct the transaction in. 
Depending on the user's choice, the sample loads the appropriate group of resources from the 
ATM.res file to continue the transaction. For more information, see Chapter 4, "Managing Projects," in 
the Programmer's Guide.

File Description

Atm.bas Module containing procedures for the sample.

Atm.rc Resource source file containing all localized 
strings and references to ICO and WAV files, 
which are built into ATM.RES.

Atm.res Resource file containing text, icons, and sound 
(.WAV) data. Results from running a resource 
compiler on the ATM.RC file.

ATM.vbp The project file for this sample.

ATM32.res File containing resources for 32-bit systems.

FrmAmoun.frm Form showing conversion of currencies into 
dollars.

FrmInput.frm Form for input of user information

Openbank.frm Form for selecting a language.

Openbank.frx Binary data for the OPENBANK.FRM.

To Run

From the Visual Basic File menu, choose Open Project and select the ATM.vbp file, which is listed in 
the \Samples\Pguide\ATM subdirectory of the main Visual Basic directory. Press F5 or choose Start 
from the Run menu to run the application.



Biblio (Biblio.vbp)

This sample allows you to browse the Biblio.mdb database, which is located in the main Visual Basic 
directory (\VB). The sample demonstrates the Data control. For more information, see Chapter 12, 
"Accessing Databases with the Data control," in the Programmer's Guide.

File Description

Biblio.bas Module containing Public Sub and Function 
procedures.

Biblio.frm The main form for the sample application.

Biblio.hlp Help file for the sample.

Biblio.vbp Project file for the sample.

Frmabout.frm Form for the About box.

To Run

From the Visual Basic File menu, choose Open Project and select the Biblio.vbp file, which is listed 
in the \Samples\PGuide\Biblio subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the application.



Blanker (Blanker.vbp)

This sample demonstrates some of the graphics techniques found in Chapter 15, "Creating Graphics 
for Applications," of the Programmer's Guide. The sample uses the Image, Line, PictureBox, Shape, 
and Timer controls.

Background

The sample demonstrates several Visual Basic graphic methods, including: Circle, Line, Move, and 
PSet.

File Description

Blanker.frm The main form for the sample.

Blanker.frx Binary data for the Blanker.frm file.

Blanker.vbp The project file for the sample.

To Run

From the Visual Basic File menu, choose Open Project and select the Blanker.vbp file, which is 
listed in the \Samples\PGuide\Blanker subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



BookSale (Booksale.vbg)

This project demonstrates the use of an Automation server to encapsulate the logic of business 
policies and rules and to provide black box services to an external User Interface component. The 
client project is dedicated to delivering a clear and intuitive user interface for the user to select control 
options and view processing results. The client project cares a lot about how the user works and how 
they use the applications results, but it knows nothing about the business or operational rules of the 
application. The server component is dedicated to encapsulating business and data access rules into 
"sanctioned" services that client components use to find the information they need. The server has no 
idea how the user options are selected or how the results are presented to the user. This lack of 
specific user knowledge helps keep the server's functionality general, and as a result should increase 
its reusability potential for other applications. The server also uses class modules to structure the 
logic of its business and data access rules in a manner that aids development, debugging, readability, 
maintainability, and source code reusability.

The component can be run on the same machine as the client component, (which can be a significant 
aid in the development and debugging phases of a project), or it can be run on a remote machine to 
benefit from the distributed processing power and multi-user access features of a shared network 
server. The component does not need to be recompiled or changed in any way to support this 
location independence.

The server in this project uses a visible form purely for demonstration purposes. There is no 
functional need for the server to have any UI, though state information presented through a UI can 
help with debugging or run-time monitoring needs. (State monitoring requirements can also be 
addressed by providing a status method on the server that can be queried by a monitor application.)

File Description

Book_cli.vbp Client component project file.

Book_cli.frm Client main form.

Book_cli.frx Client main dialog graphics file.

Frmchart.frm Client result chart form.

Frmcogs.frm Client cost of goods form.

Book_cli.bas Client main/global utility module.

Book_svr.vbp Server component project file.

Book_svr.frm Server status indicator form.

Book_svr.frx Server status indicator graphics file.

Book_svr.bas Server main/global utility module.

Sales.cls Server main/public class module.

Model.cls Server private business model rule class 
module.

Taxes.cls Server private tax rule class module.

Booksale.mdb Sample Jet database file.

Booksale.ldb Sample database file created at run time by Jet.

Booksale.txt Text file containing overview information on this 
sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the Book_svr.vbp file, which is 
listed in the \Samples\Clisvr\Booksale subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the server project.



Once running, this project temporarily registers its classes in the system registry. You can then start a 
second instance of Visual Basic to run Book_cli.vbp, the user interface component that uses the class 
modules defined in Book_svr.vbp.

Note      The component can be run on the same machine as the user interface component, or it can 
be run on a remote machine to benefit from distributed processing power and support multi-user 
access. The component server does not need to be recompiled or changed in any way to support this 
location independence.



CallDlls (CallDlls.vbp)

This sample demonstrates calling procedures in Dynamic-link libraries (DLLs). For more information, 
see Chapter 26, "Calling Procedures in DLLs," of the Programmer's Guide.

File Description

Calldlls.frm The main form for the application.

Calldlls.frx Binary data for the Calldlls.frm file.

Calldlls.vbp The project file for the application.

Declares.bas Module containing declarations of DLLs used in 
the sample.

Frmmenus.frm Form for showing system information.

To Run

From the Visual Basic File menu, choose Open Project and select the Calldlls.vbp file, which is listed 
in the \Samples\CompTool\CallDlls subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the application.



Coffee (Coffee2.vbp, CoffWat2.vbp, MTCoffee.vbp, XTimers.vbp)

Coffee consists of a client, CoffWat2, and two ActiveX components (OLE servers), Coffee2 and 
MTCoffee. Together, these three projects demonstrate:

· Asynchronous notifications using events (Coffee2).

· Asynchronous notifications using call-back methods (Coffee2).

· Multithreading (MTCoffee).

XTimers.vbp is a helper project that provides a code-only timer used by Coffee2 and MTCoffee.

This is an expanded version of the project developed in the step-by-step procedures in Chapter 3, 
“Creating an ActiveX Exe Component,” of Creating ActiveX Components. For more information on 
asynchronous notifications and multithreading, see Chapter 8, “Building Code Components.”

File Description

CoffWat2.vbp The CoffeeWatch client project.

CWMod1.bas Startup code for the project.

CWForm1.frm The client’s main form.

ICoffNot.cls The ICoffeeNotify interface used for call-back 
methods..

CWNotMe.cls NotifyMe object implements the ICoffeeNotify 
interface, so it can receive call-backs.

CWThread.frm Client form for demonstrating multithreading.

CWCofTrk.cls The CoffeeTracker object is used to wait for 
completion events from the multithreaded 
Coffee object.

AboutCof.txt A copy of this document, demonstrating the 
ability to store related documents in a project.

Coffee2.vbp The Coffee2 component project.

Co2Cmon.cls The CoffeeMonitor class used to demonstrate 
asynchronous notifications using events.

Co2Conn.cls The Connector class that enables multiple 
clients to share a CoffeeMonitor object.

Co2CMon2.cls The CoffeeMonitor2 class used to demonstrate 
asynchronous notifications using call-back 
methods.

Co2Conn2.cls The Connector2 class that enables multiple 
clients to share a CoffeeMonitor2 object.

Co2Mod1.bas Holds a reference to the shared CoffeeMonitor 
and CoffeeMonitor2 objects.

MTCoffee.vbp The MTCoffee component project.

MTCoffee.cls The multithreaded Coffee object.

MTCMod1.bas A standard module for demonstrating instancing 
of global data.

XTimers.vbp The call-back timer project.

XTimer.cls The XTimer object.

XTimerS.bas Support module for XTimer.

To Run



Although there's not a lot of code in it, this is a complex sample to run, because it demonstrates out-
of-process components. For debugging, an out-of-process component must be run in a separate copy 
of Visual Basic.

In addition, the sample demonstrates features — multithreading and code-only timers — that either 
cannot be demonstrated in, or are dangerous to run in, the development environment.

1 Load XTimers.vbp into Visual Basic. On the File menu, select Make XTimers.dll to make the 
project into a .dll file.

DO NOT run XTimers in the development environment at this time. XTimers must be compiled 
because it uses Windows APIs for a code-only timer object.

2 Load MTCoffee into Visual Basic. On the Project menu, select References to open the 
References dialog box. Select XTimers and click OK, to set a reference to the compiled DLL.

3 On the File menu, select Make MTCoffee.exe to make the project into an .exe file.

DO NOT run MTCoffee in the development environment at this time. You need to make the project 
into an executable because the development environment can’t support multiple threads of 
execution — if you run MTCoffee within Visual Basic, it won’t display multithreading behavior.

4 Load Coffee2.vbp into Visual Basic. On the Project menu, select References to open the 
References dialog box. Select XTimers and click OK, to set a reference to the compiled DLL.

5 Press CRTL+F5 to run the Coffee2 project.

Use CRTL+F5 instead F5 of when running an out-of-process component project, to ensure that all 
compile errors are caught before the component is supplying objects to the client. (See "Creating 
an ActiveX Exe Component," in Books Online.)

6 Start another instance of Visual Basic, and load CoffWat2.vbp. On the Project menu, select 
References to open the References dialog box. Select Coffee2 (make sure you get the entry for 
Coffee2.vbp) and MTCoffee (make sure you get the entry for MTCoffee.exe), and then click OK, to 
set references to the components.

7 Press F5 to run the project.

After running the sample application and observing the behavior of MTCoffee when it allocates a 
separate thread for each Coffee object, you may find it instructive to recompile MTCoffee after 
changing the threading to a round-robin thread pool. (You can find this option in the Unattended 
Execution box, on the General tab of the Project Properties dialog box.) When using a round-robin 
thread pool, you can observe blocking and global data sharing between objects on the same thread.

You can also compile Coffee2.exe and CoffWat2.exe, and run multiple clients, to observe sharing of 
the asynchronous notification objects CoffeeMonitor and CoffeeMonitor2. With multiple clients, the 
round-robin thread pool means blocking and data sharing between objects in use by different clients.

To understand what's going on in this sample, see "Building Code Components," in Creating ActiveX 
Components in Books Online.



Control Plus (CtlPlus.vbp)

CtlPlus demonstrates a number of features of Visual Basic-Authored ActiveX Controls.

This is an expanded version of the project developed in the step-by-step procedures in Chapter 4, 
“Creating an ActiveX Control,” in Creating ActiveX Components. For more information control 
creation, see Chapter 9, “Building ActiveX Controls,” in Creating ActiveX Components.

File Description

CtlPlus.vbg The program group.

CtlPlus.vbp The control component project.

CPShapeL.ctl The ShapeLabel control.

CPSLGen.pag The General property page tab for ShapeLabel.

TestCtlP The test program.

TCPForm1.frm The test form for displaying ShapeLabel.

To Run

From the Visual Basic File menu, choose Open Project and select the program group, CtlPlus.vbg 
file, which is listed in the \Samples\CompTool\ActvComp\CtlPlus subdirectory of the main Visual Basic 
directory.

Open Form1 in TestCtlP, to view the design-time behavior of ShapeLabel.

Press CTRL+F5 or choose Start With Full Compile from the Run menu to run the program group, and 
view the control's run-time behavior.



Controls (Controls.vbp)

This sample application demonstrates the use of Visual Basic controls such as the TextBox, 
CommandButton, Image and others. The sample illustrates the usage of many standard properties.

Background

The sample is comprised of several forms, each with a control or set of controls on it. Controls 
demonstrated include the following: TextBox, HScrollbar, ListBox, PictureBox, OptionButton, 
CommandButton and Label control. For more information, see Chapter 3, "Creating and Using 
Controls," in the Programmer's Guide.

File Description

Button.frm Form demonstrating the usage of 
CommandButton controls.

Button.frx Binary data file for the Button.frm file.

Check.frm Form demonstrating usage of a CheckButton 
control.

Controls.vbp The project file for the sample application.

Images.frm Form demonstrating usage of the Image and 
Shape controls.

Images.frx Binary data file for the Image.frm file.

Main.frm The main form for the sample application.

Multi.frm Form demonstrating usage of the ListBox 
control.

Options.frm Form demonstrating usage of the OptionButton 
and Frame controls.

Text.frm Form demonstrating usage of the TextBox 
control.

Text.frx Binary data file for the Text.frm file.

Wordwrap.frm Form demonstrating usage of the Label control.

To Run

From the Visual Basic File menu, choose Open Project and select the Controls.vbp file, which is 
listed in the \Samples\PGuide\Controls subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



DataTree (Datatree.vbp)

The DataTree sample application demonstrates how to use the TreeView control and the ListView 
control to view the contents of a small database (Biblio.mdb). The ProgressBar control is also used 
to give the user a visual indication of how long a process is taking.

File Description

TreeView.frx Binary data for the TreeView.frm

TreeView.frx Form containing the TreeView, ListView, and 
Progressbar controls.

Datatree.vbp Main project for the sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the DataTree.vbp file, which is 
listed in the \Samples\CompTool\DataTree subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



Errors (Errors.vbp)

This sample application demonstrates various Visual Basic error handling techniques, including 
examples of inline and centralized error handling.

Background

The sample is comprised of a single form with a set of command buttons to invoke error handling 
procedures, plus a basic module containing a central error handling routine. By stepping through the 
code in the procedures you can see the effects of different error handling methods. For more 
information, see Chapter 13, "Debugging Your Code and Handling Errors," in the Programmer's 
Guide.

File Description

Errors.bas Module containing centralized error handling 
code.

Errors.frm Form demonstrating error handling techniques.

Errors.vbp The project file for the sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the Errors.vbp file, which is listed 
in the \Samples\Pguide\Errors subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the application.



FileCtls (FileCtls.vbp)

This sample application allows the user to search a directory for specific files, or files with a particular 
extension. The sample uses file-system controls such as the File ListBox, Drive ListBox, and 
Directory ListBox controls. 

File Description

Seek.frm The main form for the sample.

Winseek.vbp The project file for the sample.

To Run

From the Visual Basic File menu, choose Open Project and select the Winseek.vbp file, which is 
listed in the \Samples\Misc\FileCts subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the application.



FirstApp (FirstApp.vbp)

This sample application demonstrates the usage of the Data Control with other data aware controls. It 
provides a simple introduction to assigning properties at run-time.

Background

The sample is comprised of a single form with a DBGrid control connected to a Data control. For 
more information, see Chapter 2, "Developing an Application in Visual Basic," in the Programmer's 
Guide.

File Description

Form1.frx Binary data for Form1.frm

Form1.frm

Firstapp.vbp The project file for the application.

To Run

From the Visual Basic File menu, choose Open Project and select the Firstapp.vbp file, which is 
listed in the \Samples\Pguide\Firstapp subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



GeoFacts (GeoFacts.vbp)

The GeoFacts sample application demonstrates how to work with objects provided by other 
applications. In this case, the objects are provided by Microsoft Excel using the GetObject function. 
Using the reference returned by the function, two ComboBox controls and a ListBox control are 
dynamically filled with data from an Excel spreadsheet.

File Description

World.xls Excel spreadsheet that supplies data for the 
application.

Geofacts.frm Form for the application.

Geofacts.bas Code module containing procedures for the 
application.

Geofacts.vbp The project file for the application.

To Run

From the Visual Basic File menu, choose Open Project and select the GeoFacts.vbp file, which is 
listed in the \Samples\PGuide\GeoFacts subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



ListCmbo (ListCmbo.vbp)

This sample program demonstrates data binding to the standard ListBox and ComboBox controls.

Background

Visual Basic 5.0 allows you to bind the standard ListBox and ComboBox controls to a Data control. 
Unlike other bound controls, the ListBox and ComboBox controls require that you populate the List 
portions of the control before binding in order to correctly display the current record's value in the 
control.

When binding to a ComboBox and ListBox control, the Data control selects the current record's 
value from the list of available entries within the control. For example, binding the ListBox control to a 
field within a database which contains state abbreviations, the Data control will search the values 
within the ListBox and select the matching entry. As a result, you must populate the control with all 
possible state abbreviations before binding the control. If the ListBox is not populated, the Data 
control will not be able to find the matching entry and no item will be selected.

This sample application demonstrates this behavior and shows how to populate the ListBox and 
ComboBox controls prior to binding. A single form is used to display the Publishers table contained 
within Biblio.mdb. Publishers has a "state" field which contains the state abbreviation of the current 
Publisher's address. At runtime, the sample performs a query of the Publishers table of all distinct 
values contained within the state field and populates a ListBox and ComboBox control. Then, the 
controls are bound to the Data control.

When the user cycles through the Publishers records using the navigation buttons on the Data 
control, the "state" field value for the current record is selected in the ListBox and ComboBox 
controls. The user can then choose which of these controls to view by clicking on the appropriate 
option buttons.

File Description

Frmpub.frm The main Publishers form, which displays the 
Publishers records.

Frmpub.frx The binary portion of the Publishers form.

Frmabout.frm Standard About form.

Frmabout.frx The binary portion of the About form.

Listcmbo.vbp The project file for the sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the ListCmbo.vbp file, which is 
listed in the \Samples\PGuide\Liscmbo subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.

To cycle through the records, click on the navigation buttons on the Data control. To view either the 
ListBox or ComboBox controls, click on the appropriate option buttons.



MDI (MDINote.vbp)

This sample application demonstrates a Multiple Document Interface (MDI) notepad application. It 
also provides an introduction to menu creation.

Background

The sample is comprised of a parent form, a child form, a modal dialog form, and two basic modules. 
You can use this sample application in conjunction with the SDINote sample application to understand 
the differences between interface styles. For more information, see Chapter 6, "Creating a User 
Interface," in the Programmer's Guide.

File Description

Filopen.bas Module containing common file handling code.

Find.frm Modal dialog form.

Mdi.frm The MDI parent form.

Mdi.frx Binary data file for the Mdi.frm file.

Mdinote.bas Module containing shared code.

MDINote.vbp The MDInote project file.

Notepad.frm The MDI child form.

To Run

From the Visual Basic File menu, choose Open Project and select the Mdinote.vbp file, which is 
listed in the \Samples\Pguide\MDI subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the application.



MSFlexGd (MSFlexGd.vbp)

The MSFlexGd sample application demonstrates the MSFlexGrid control.

File Description

Flex.frx Binary information for the Flex.frm file

Flex.frm The main form which displays the control.

Flex.vbp The project file for the application.

To Run

From the Visual Basic File menu, choose Open Project and select the MSFlexGd.vbp file, which is 
listed in the \Samples\CompTool\MsFlexGd subdirectory of the main Visual Basic directory. Press F5 
or choose Start from the Run menu to run the application.

To cycle through the records, click on the navigation buttons on the Data control. To view either the 
ListBox or ComboBox controls, click on the appropriate option buttons.



OleCont (OleCont.vbp)

This sample application demonstrates the capabilities of the OLE Container control. The sample 
allows you to save or open OLE objects using the SaveToFile and ReadFromFile methods. For more 
information, see Chapter 8, "Using the OLE Container Control," in the Programmer's Guide.

File Description

Contchld.frm. An MDI child form containing the OLE 
Container control

Contmdi.frm The main form.

Olecont.bas Module containing Public Sub and Function 
procedures.

Colecont.vbp The project file for this sample.

To Run

From the Visual Basic File menu, choose Open Project and select the Olecont.vbp file, which is 
listed in the \Samples\PGuide\Olecont subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



Optimize (Optimize.vbp)

This sample application demonstrates several optimization techniques for Visual Basic. Speed 
comparisons are made between various coding techniques to illustrate performance differences.

Background

The sample is comprised of several forms, each demonstrating optimized and non-optimized code. 
When running this sample, it’s a good idea to shut down any other running applications in order to get 
accurate timings. For more information, see Chapter 15, "Designing for Performance and 
Compatibility," in the Programmer's Guide.

File Description

About.frm About box form for application.

About.frx Binary data file for the ABOUT.FRM file.

Algorith.frm Form demonstrating algorithms for drawing.

Code.frm Form demonstrating code optimizations.

Collection.frm Form demonstrating optimizations for 
collections.

Explore.frm The main form for the sample application with 
an Explorer style interface.

Explore.frx Binary data file for the EXPLORE.FRM file.

Frmimage.frm Auxiliary form for the Splash Screen 
demonstration.

Frmimage.frx Binary data file for the FRMIMAGE.FRM file.

FrmPics.frm Form demonstrating optimizations for displaying 
images.

FrmPics.frx Binary data file for the FRMPICS.FRM file.

FrmShow1.frm Form demonstrating optimizations for forms.

FrmShow2.frm Auxiliary form demonstrating optimizations for 
forms.

Global.bas Module containing shared code.

Graphics.frm Form demonstrating optimizations for graphics 
methods.

Graphics.frx Binary data file for the GRAPHICS.FRM file.

Numbers.frm Form demonstrating data type optimizations.

Optimize.vbp Project file for this application.

Paintpic.frm Form demonstrating painting optimizations.

Paintpic.frx Binary data file for the PAINTPIC.FRM file.

Splash.frm Sample splash screen.

Splash.frx Binary data file for the SPLASH.FRM file.

Splshdmo.frm Form demonstrating startup optimizations.

Strings.frm Form demonstrating string handling 
optimizations

To Run

From the Visual Basic File menu, choose Open Project and select the Optimize.vbp file, which is 
listed in the \Samples\Pguide\Optimize subdirectory of the main Visual Basic directory. Press F5 or 



choose Start from the Run menu to run the application.



PalMode (Palettes.vbp)

This sample application demonstrates the effects of different PaletteMode settings on 256 color 
images. It also provides an introduction to the Picture object.

Background

This sample is comprised of a single form for displaying images. In order to see the effects of the 
PaletteMode property, it is necessary to run this sample on a display set to 256 color mode. For more 
information, see Chapter 12, "Working with Text and Graphics," in the Programmer's Guide.

File Description

Banner.gif GIF image file.

Clouds.bmp Bitmap image file.

Forest.jpg JPG image file.

Palettes.frm Main form for application.

Palettes.frx Binary data file for the Palettes.frm file.

Palettes.vbp The Palettes project file.

To Run

From the Visual Basic File menu, choose Open Project and select the Palettes.vbp file, which is 
listed in the \Samples\Pguide\Palmode subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



PicClip (RedTop.vbp)

This sample program demonstrates one of the possible uses of the PictureClip control. This sample 
application uses the PictureClip control to spin a top.

File Description

Infoform.frm The information form.

Infoform.frx The binary portion of the information form.

Redtop.frm The main form.

Redtop.frx The binary portion of the main form.

Redtop.vbp The project file for the sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the Redtop.vbp file, which is listed 
in the \Samples\CompTool\PicClip subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the application.



Programming with Objects (ProgWOb.vbp)

ProgWOb.vbp demonstrates concepts from Chapter 9, “Programming with Objects,” in the Visual 
Basic Programmer’s Guide, including creating collection classes, events, the Implements statement, 
polymorphism, and Friend procedures.

File Description

ProgWOb.vbp The project.

PWOMain.frm The main form, from which you can select 
demos.

PWOFrien.frm First demo: Using Friend procedures to pass 
user-defined types between objects.

PWOTestC.cls Defines the TestClass object used to 
demonstrate Friend procedures.

PWOFrien.bas Defines the user-defined type passed between 
TestClass objects.

PWOCYOCC.frm Second demo: From this form you can run the 
three code examples from Creating Your Own 
Collection Classes.

PWOEmpl.cls Employee class used by all three examples.

PWOStraw.frm House of Straw example: Using a public 
Collection object.

PWOSBus1.cls SmallBusiness1 class used in House of Straw 
example.

PWOStick.frm House of Sticks example: Using a private 
Collection object.

PWOSBus2.cls SmallBusiness2 class used in House of Sticks 
example.

PWOBrick.frm House of Bricks example: Creating your own 
collection class.

PWOEmpls.cls Employees collection class used in House of 
Bricks example. Can be used with For Each.

PWOSBus3.cls SmallBusiness3 class used in House of Bricks 
example.

PWOEvent.frm Third demo: Shows two things: (1) an object 
performing a long task can raise events to notify 
the caller of its progress, and (2) events can be 
broadcast to multiple receivers.

PWOWidg Widget object uses events to notify caller of 
progress during a long task.

PWOEvRec.frm Receiver form handles an event, and shows 
what happens when ByRef arguments of an 
event are modified by receivers.

PWOImple Fourth demo: Shows how polymorphism allows 
early binding with multiple classes of objects, 
and illustrates the performance impact.

PWOIShap Defines the IShape interface implemented by all 
other classes in the demo.

PWOPoly Polygon is a very crude object for drawing 



polygons. Implements IShape for drawing.

PWORect Rectangle object implements IShape for 
drawing. It also implements the Polygon 
interface, and uses an inner Polygon object to 
store its data.

PWOTrngl Triangle object implements IShape and Polygon. 
It delegates to an inner Polygon object for both 
IShape and most Polygon functions.

To Run

From the Visual Basic File menu, choose Open Project and select the ProgWOb.vbp file, which is 
listed in the \Samples\Pguide\ProgWOb subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



Sdi (SdiNote.vbp)

This sample application demonstrates a Single Document Interface (SDI) notepad application. It also 
provides an introduction to menu creation and toolbars.

Background

The sample is comprised of a main form, a modal dialog form, and two basic modules. You can use 
this sample application in conjunction with the MDINote sample application to understand the 
differences between interface styles.For more information, see Chapter 6, "Creating a User Interface," 
in the Programmer's Guide.

File Description

Filopen.bas Module containing common file handling code.

Find.frm Modal dialog form.

FrmSDI.frm The main notepad form.

Frmsdi.frx Binary data file for the Frmsdi.frm file.

SDInote.bas Module containing shared code.

SDINote.vbp The SDINote project file.

To Run

From the Visual Basic File menu, choose Open Project and select the Sdinote.vbp file, which is 
listed in the \Samples\Pguide\SDI subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the application.



TabOrder (TabOrder.vbp)

The TabOrder sample application uses the VB5 extensibility model, as well as traditional VB 
techniques, to reset the tab order of a given form. Many times when creating forms in VB, the controls 
end up in an odd tab order. The TabOrder application allows you to reset the tab order to top to 
bottom, or left to right order. You can also move items in the TabOrder's list up or down, then apply the 
changes to the form. See Chapter 3, "How to Build an Add-In," in "Extending the Visual Basic 
Environment Using Add-Ins," of the Component Tools Guide.

File Description

Tab.bmp Bitmap for the TabOrder application.

Tab.ico Icon for the TabOrder application.

TabOrder.rc Resource file for the TabOrder application.

TaOrder.cls Class file for the TabOrder application.

TabOrder.frx Binary data for the TabOrder.frm file.

Taborder.frm The main for for the application.

Taborder.bas Code module for the application.

Taborder.vbp The project file for the application.

To Run

From the Visual Basic File menu, choose Open Project and select the Taborder.vbp file, which is 
listed in the \Samples\CompTool\AddIns\Taborder subdirectory of the main Visual Basic directory. 
Press F5 or choose Start from the Run menu to run the application.



UnBndGrd (UnBndGrd.vbp)

The UnBound DBGrid sample application is a simple program that illustrates how to use the DBGrid 
control in unbound mode (DataMode = 1).

Background

In most cases, the DBGrid control can be bound to the Data control. Some situations, however, may 
require you to use DBGrid in unbound mode, such as with proprietary database formats or simple 
data sets which aren't supported by the Data control. This sample makes use of the UnBound events 
to display sample data which is stored in an array.

File Description

UnBndGrd.frm The main form with the DBGrid control on it.

UnBndGrd.frx The binary portion of the UnBndGrd.frm file.

UnBndGrd.vbp The project file for the sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the UnBndGrd.VBP file, which is 
listed in the \Samples\Misc\UnBndGrd subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



VBMail (VBMail.vbp)

This sample program demonstrates the use of the MAPI controls by sending and receiving electronic 
mail. It uses the messaging application programming interface (MAPI) controls: MAPI messages and 
MAPI session.

Note      To run this sample, you need a MAPI-compliant messaging system. If you are using Windows 
95, you will need Microsoft Exchange.

Background

The MAPI session control establishes a MAPI session and signs off from a MAPI session. The MAPI 
messages control allows you to perform a variety of messaging systems functions after a messaging 
session has been established. These functions include accessing, downloading, and sending 
messages, displaying the details and address book dialog boxes, accessing data attachments, 
resolving recipient names during addressing, and performing compose, reply, reply-all, forward, and 
deleting actions on messages.

File Description

Maillst.frm Form for displaying the list of mail messages.

Mailst.frx Contains binary data for the sample.

Mailoptf.frm Form for setting options.

Mailsup.bas Module of support procedures for the example.

MsgView.frm Form in which a viewed message is displayed.

Newmsg.frm Form for creating a new message.

Vbmail.frm The main form.

Vbmail.vbp The project file for this sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the VBMAIL.VBP file, which is 
listed in the \Samples\CompTool\VBTerm subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



VBTerm (VBTerm.vbp)

VBTerm is a terminal emulation program using the MSComm control. The sample demonstrates how 
to use the MSComm control with a serial port.

Background

The MSComm control allows you to open a serial port, change its settings, send and receive data 
through the port, and monitor and set many of the different data lines. Its dual-method access allows 
for both polling and event-driven communications.

File Description

Cansend.frm Dialog box used during file transfer.

Termset.frm Form used to change the serial port settings.

Termset.frx Binary portion of TERMSET.FRM.

Vbterm.frm The main form.

Vbterm.frx Binary portion of VBTERM.FRM.

Vbterm.glo Public declarations.

Vbterm.vbp The project file for the sample application.

To Run

From the Visual Basic File menu, choose Open Project and select the VBTerm.vbp file, which is 
listed in the \Samples\CompTool\VBterm subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the application.



VCR (Vcr.vbp)

This sample application demonstrates how Visual Basic classes can be modeled after real-world 
objects such as a VCR.

Background

This sample is comprised of a main form used to represent a VCR, and two supporting classes 
representing the tape transport and recorder objects. For more information, see Chapter 5, 
"Programming Fundamentals," in the Programmer's Guide.

File Description

Recorder.cls Class module for recorder object.

Set.frm Modal form for setting recorder properties.

Tape.cls Class module for tape transport object.

Vcr.bas Module with shared code.

Vcr.frm Main form for application.

Vcr.frx Binary data file for the VCR.frm file.

Vcr.vbp The VCR project file.

To Run

From the Visual Basic File menu, choose Open Project and select the Vcr.vbp file, which is listed in 
the \Samples\Pguide\Vcr subdirectory of the main Visual Basic directory. Press F5 or choose Start 
from the Run menu to run the application.



VisData (Visdata.vbp)

This sample program demonstrates various programming techniques used to access data through the 
Data Access Object (DAO) layer built into the Visual Basic Professional Edition.

Note      To access ODBC data sources with this sample, you must first install ODBC using the ODBC 
setup program provided with Visual Basic, Professional Edition.

VisData behaves like a general purpose database utility, capable of the following functions:

Database and table creation.

· Table modification (adding and deleting fields and indexes).

· Data browsing/modifying using the three recordset types (table, dynaset, and snapshot) and three 
form types (single record, data control, and data grid).

· Property browsing on all objects.

· Form demonstrating the new data-bound list and data-bound combo box controls.

· Import/export to all supported data types.

· Direct SQL statement execution for any SQL supported functions such as Insert, Update, Delete, 
Drop, Create, Dump, and so forth.

· AdHoc Query builder that helps users unfamiliar with SQL to create complex queries with Where 
clauses, Joins, Order By, and Group By expressions while limiting output to selected columns.

· Transaction processing.

· Copying table structures and data to the same or different database.

· Support of Jet MDB, Dbase III and IV, FoxPro 2.x, Paradox 3.x and 4.x, Btrieve, Text, Excel, and 
SQL Server, both DDL and DML.

· QueryDef creation, modification, and execution.

· JET security creation/modification.

· Relation/referential Integrity creation and modification.

· Management of attached tables.

· Use as an add-in to Visual Basic (see VISDATA.TXT).

The code contains comments to help explain the use of the various methods in the data access layer. 
Code and forms may be copied from this application to other applications with minimal modification.

File Description

Aboutbox.frm Standard About box for the application.

Addfield.frm Form to add fields to tables.

Addindex.frm Form used to add indexes to Tables.

Attach.frm Attached table list.

Cpystru.frm Form to copy table structures.

Database.frm Form to select a database.

Dataform.frm Data control form.

Datagrid.frm Form used to display data in a data-bound grid control.

Datatype.frm Data type selector for import/export utility.

Dbpwd.frm Form to enter a password.

Dcprop.frm Data control property form.

Dfd.frm Data Form Designer add-in form.

Dynasnap.frm Form to display data in single-record mode.

Errors.frm Errors collection form.



Expname.frm Export name prompt.

Find.frm Form used to find records in a Dynaset.

Grpsusrs.frm Jet security form.

Imptbls.frm Import tables list.

Join.frm Form used to add joins to the Query Builder.

Loginfrm.frm Jet WorkSpace logon dialog box.

Newattch.frm New attachment form.

Newpw.frm New password dialog.

Newug.frm New User/Group dialog.

Odbclogn.frm ODBC logon form.

Property.frm Property browser.

Query.frm Form used to build queries.

Replace.frm Form to perform global replace operations on a table.

Seek.frm Form used to get input for the Seek function.

Sql.frm Form to enter and execute SQL statements.

Tableobj.frm Form used to display data in a Table object.

Tblstru.frm Form to display and modify table structures.

Vbimex.frm Import/export form.

Vdclass.cls Class module for VisData.

Vdmdi.frm Main MDI form for the application.

Visdata.bas Support functions for the application.

Visdata.vbp Project file for the application.

Zoom.frm Form to zoom in on character data.

Vb5.hlp VisData Help File.

*.frx files Contains binary data for the associated .frm File.

*.ico files Supplied for modification by user.

To Run

On the File menu, click Open Project, and select the Visdata.vbp file, which is located in the 
\Samples\Visdata subdirectory of the main Visual Basic directory.

If you want to open a local database, you simply need to choose the type of database, and a File 
Open dialog box will be displayed with the file type set to the requested data file type.

If you choose ODBC on the Open Database submenu, you will then see the Open DataBase form. 
Since you probably have no servers entered, you will need to enter a name for an existing SQL server 
on your network. If you already know the user ID and password, you can add them as well. The 
Database name is optional. Once you have entered this data, choose OK, and you should be able to 
log on to the server. You may get some more dialogs in the process. Answer any questions you can 
and ask the SQL administrator for help if you run into problems or don't know some of the 
parameters.

Once a database is open, double-clicking a table name will open the table in the selected form type 
and recordset type. Use the Query Builder to create dynasets with selected data from one or more 
tables at a time.

The table-type Recordset is always updatable. The dynaset-type Recordset will be updatable in most 
cases except on ODBC with no unique index, certain multiple table joins, and other SQL Select 
statements, such as count(*), max(), and so forth. The snapshot-type Recordset is never updatable.



Callback Sample Application (Clbk_Svr.vbp and Clbk_Cli.vbp), 
Enterprise Edition

This sample demonstrates the use of an ActiveX object pointer being passed to an external (and 
optionally remote) ActiveX server component. The server then periodically calls a method on this 
object pointer. This has the effect of a server-initiated callback to the client, which can be a much 
better application model than the polling a client application might have to do otherwise to find the 
status of a server. Although this demo simply returns the time to the client, it could just as easily return 
data, news, or other information it has been told the client wants to know. The benefit here is that the 
server does all the work looking for data the client might need and the client does other work, only 
being interrupted when the server actually has something that interests it.

The server in this project uses a visible form purely for demonstration purposes. There is no 
functional need for the server to have any UI, though state information presented through a UI can 
help with debugging or run-time monitoring needs. (Note, state monitoring requirements could also be 
addressed by providing a status method on the server that could be queried by a monitor application.)

File Description

Clbk_cli.vbp Client component project file.

Clbk_cli.frm Client main form.

Clbk_cli.bas Client main/global utility module.

Clbk_cli.cls Client class module.

Clbk_svr.vbp Server component project file.

Clbk_svr.frm Server status indicator form.

Clbk_svr.bas Server main/global utility module.

Clbk_svr.cls Server class module.

Callback.txt A text file containing a project overview and description.

To Run

From the Visual Basic File menu, choose Open Project and select the Clbk_svr.vbp file, which is 
listed in the \Samples\CliSrv\Callback subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the server project.

Once running, this project temporarily registers its classes in the system registry. You can then start a 
second instance of Visual Basic to run Clbk_cli.vbp, the client that uses the class modules defined in 
Clbk_svr.vbp.

Note      The Automation server can be run on the same machine as the client, or it can be run on a 
remote machine to benefit from distributed processing power and support multi-user access. The 
Automation server does not need to be recompiled or changed in any way to support this location 
independence.



Hello World Remote Automation Sample Application (Helo_Svr.vbp 
and Helo_Cli.vbp), Enterprise Edition

This 6-line Hello World sample demonstrates one of the simplest possible examples of Remote 
Automation and DCOM. The application runs on both a single machine and in a 2-machine distributed 
configuration without needing to be recompiled.

The server in this project uses a visible form purely for demonstration purposes. There is no 
functional need for the server to have any UI, though state information presented through a UI can 
help with debugging or run-time monitoring needs. (Note, state monitoring requirements could also be 
addressed by providing a status method on the server that could be queried by a monitor application.)

File Description

Helo_cli.vbp Client component project file.

Helo_cli.frm Client main form.

Helo_svr.vbp Server component project file.

Helo_svr.frm Server status indicator form.

Helo_svr.cls Server class module.

To Run

From the Visual Basic File menu, choose Open Project and select the Helo_svr.vbp file, which is 
listed in the \Samples\CliSrv\Hello subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the server project.

Once running, this project temporarily registers its classes in the system registry. You can then start a 
second instance of Visual Basic to run Helo_cli.vbp, the client that uses the class modules defined in 
Helo_svr.vbp.

Note      The Automation server can be run on the same machine as the client, or it can be run on a 
remote machine to benefit from distributed processing power and support multi-user access. The 
Automation server does not need to be recompiled or changed in any way to support this location 
independence.



Interface Sample Application (Intr_Svr.vbp and Intr_Cli.vbp), 
Enterprise Edition

This sample demonstrates a way to make more efficient user of COM's "apartment model" resource 
allocation algorithm when the context of an entire project needs to be preserved for a specific client.

The server in this project does not have a form module, and as such, will not be visible on the 
machine it is running on. (When a client has an active reference to it, however, it can be seen in the 
running task list.)

File Description

Intr_cli.vbp Client component project file.

Intr_cli.frm Client main form.

Intr_svr.bas Server main/global utility module.

Intr_svr.cls A public interface class module that clients use to 
access the private classes of this component.

Getdate.cls A private class that returns the current date.

Gettime.cls A private class that returns the current time.

Intrface.txt A text file with a project overview and description.

To Run

From the Visual Basic File menu, choose Open Project and select the Intr_svr.vbp file, which is listed 
in the \Samples\CliSrv\Intrface subdirectory of the main Visual Basic directory. Press F5 or choose 
Start from the Run menu to run the server project.

Once running, this project temporarily registers its classes in the system registry. You can then start a 
second instance of Visual Basic to run Intr_cli.vbp, the client that uses the class modules defined in 
Intr_svr.vbp.

Note      The Automation server can be run on the same machine as the client, or it can be run on a 
remote machine to benefit from distributed processing power and support multi-user access. The 
Automation server does not need to be recompiled or changed in any way to support this location 
independence.



Passthrough Server Sample Application (Pass_Svr.vbp and 
Pass_Cli.vbp), Enterprise Edition

This sample application is an example of a simple pass-through server. It has one method called 
RunServer, which takes a ProgID parameter of the server that is to be started. The server specified 
by the ProgID is run on the same machine that the pass-through server is running on. If the server 
specified by ProgID is an in-process server, it is run in the same process space as the pass-through 
server.

RunServer returns the handle of the started server so that the client can talk directly to the requested 
server. Because the pass-through server is a single-use server, every client that uses it will get its 
own instance of the pass-through server, along with its own process space and thread of execution.

By using the pass-through server, client applications can create their own independent execution 
context on a remote server and then start and stop in-process servers within that context as needed. 
Because in-process servers can be started very quickly and because they are run within the pass-
through server's process space, this is a much more efficient execution model than solely using out-
of-process servers.

The server in this project uses a visible form purely for demonstration purposes. There is no 
functional need for the server to have any UI, though state information presented through a UI can 
help with debugging or run-time monitoring needs. (State monitoring requirements can also be 
addressed by providing a status method on the server that can be queried by a monitor application.)

File Description

Pass_cli.vbp Client component project file.

Pass_cli.frm Client main form.

Pass_svr.vbp Server component project file.

Pass_svr.frm Server status indicator form.

Pass_svr.bas Server main/global utility module.

Pass_svr.cls Server class module.

Passthru.txt A text file containing a project overview and description.

To Run

From the Visual Basic File menu, choose Open Project and select the Pass_svr.vbp file, which is 
listed in the \Samples\CliSrv\Passthru subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the server project.

Once running, this project temporarily registers its classes in the system registry. You can then start a 
second instance of Visual Basic to run Pass_cli.vbp, the client that uses the class modules defined in 
Pass_svr.vbp.

Note      The Automation server can be run on the same machine as the client, or it can be run on a 
remote machine to benefit from distributed processing power and support multi-user access. The 
Automation server does not need to be recompiled or changed in any way to support this location 
independence.



Pool Manager Sample Application (Pmgr_Svr.vp and 
Pmgr_Cli.vbp), Enterprise Edition

This sample app is an example of a simple pool manager that could be used to maintain open 
instances of Automation servers for client applications. Using this scheme, client applications ask the 
pool manager for a pointer to an object they want to use. The pool manager checks the pool, and 
either grants or denies the request. This approach has a number of benefits:

· It avoids the lengthy Automation server creation costs associated with each client request. This is 
because the pool is typically created before a client needs a server.

· Based on the frequency of client requests, the potential number of clients, and the duration of 
server tasks, a pool size can be created (or even adjusted as demand dictates at various times) 
that is significantly smaller than a one-to-one allocation scheme for clients and servers. For 
example: if the number of clients is 60, the average frequency of requests is one per minute per 
client, and the average duration of a server task is one second. A linear allocation plan would 
suggest that one server is needed to meet the needs of 60 clients. Realistically, requests will not be 
perfectly spaced; therefore, a reasonable level of redundancy, for instance a pool size of 5 
Automation servers, could be used to meet the normal needs of the 60 clients.

· It limits the number of servers that can be created of a specific type to a threshold that has been 
determined by the server administrator. This can be a very useful tuning parameter, and can also 
be useful in preventing the server from being abused by a peak request of a low priority server.

The server in this project uses a visible form purely for demonstration purposes. There is no 
functional need for the server to have any UI, though state information presented through a UI can 
help with debugging or run-time monitoring needs. (State monitoring requirements can also be 
addressed by providing a status method on the server that can be queried by a monitor application.)

File Description

Pmgr_cli.vbp Client component project file.

Pmgr_cli.frm Client main form.

Pmgr_svr.vbp Server component project file.

Pmgr_svr.frm Server status indicator form.

Pmgr_svr.bas Server main/global utility module.

Pmgr_svr.cls Server class module.

Poolmngr.txt A text file containing a project overview and description.

To Run

From the Visual Basic File menu, choose Open Project and select the Pmgr_svr.vbp file, which is 
listed in the \Samples\CliSrv\Poolmgr subdirectory of the main Visual Basic directory. Press F5 or 
choose Start from the Run menu to run the server project.

Once running, this project temporarily registers its classes in the system registry. You can then start a 
second instance of Visual Basic to run Pmgr_cli.vbp, the client that uses the class modules defined in 
Pmgr_svr.vbp.

Note      The Automation server can be run on the same machine as the client, or it can be run on a 
remote machine to benefit from distributed processing power and support multi-user access. The 
Automation server does not need to be recompiled or changed in any way to support this location 
independence.



Application Performance Explorer (APE) Sample Application Suite, 
Enterprise Edition

This sample application suite demonstrates a number of COM and distributed application features in 
Visual Basic 5.0.    It also models distributed application performance characteristics.    Detailed 
information about all the components in this sample suite can be found in Building Client/Server 
Applications With Visual Basic.

AEClient

File Description

modClnt.bas Client main/global utility module

clsPooTl.cls Client class for pooled tests

clsQueTl.cls Client class for queued tests

clsCalbk.cls Client class for callback notification

clsCntSv.cls Client class for service request callback information

clsDrtTl.cls Client class for direct instantiation tests

Client.cls Client class

frmClnt.frm Client main form

frmClnt.frx Client main form binary information

client.ico Client form icon

AEClient.rc String resources source file

AEClient.res String resource file

AEClient.vbp Client component project file

AEExpdtr

File Description

modExpdt.bas Expeditor main/global utility module

SyncRtrn.cls Expeditor notification class for client event source

CallBkRf.cls Expeditor result information class

Expeditr.cls Class of main expeditor interface

frmExpdt.frm Expeditor main form

frmexpdt.frx Expeditor main form binary information

expetitr.ico Expeditor main form icon

AEExpdtr.rc String resources source file

AEExpdtr.res String resource file

AEExpdtr.vbp Expeditor component project file

AEInstnr

File Description

modInstr.bas Process instancer main/global utility module

Instncer.cls Process instancer main class

AEInstnr.vbp Process instancer component project file

AELogger

File Description



modLoggr.bas Logger main/global utility module

Logger.cls Logger primary class

frmLoggr.frm Logger main form

frmloggr.frx Logger main form binary information

logger.ico Logger main form icon

AELogger.rc String resources source file

AELogger.res String resource file

AELogger.vbp String component project file

AEPool

File Description

modPool.bas Pool manager main/global utility module

PoolMgr.cls Pool manager main class

Pool.cls Pool manager client interface class

frmPool.frm Pool manager main form

frmpool.frx Pool manager main form binary information

pool.ico Pool manager main form icon

AEPool.rc String resources source file

AEPool.res String resource file

AEPool.vbp Pool manager component project file

AEQueue

File Description

modQueue.bas Queue manager main/global utility module

Queue.cls Queue client interface class

clsQueDl.cls Queue handoff/polling class

clsServc.cls Queue service request class

QueueMgr.cls Queue manager primary class

frmQueue.frm Queue manager main form

frmQueue.frx Queue manager main form binary information

qmanager.ico Queue manager main form icon

AEQueue.rc String resources source file

AEQueue.res String resource file

AEQueue.vbp Queue manager component project file

AEServic

File Description

modServc.bas Service main/global utility module

Service.cls Service class implementation

AEServic.mdb Service sample data file

AEServic.rc String resources source file

AEServic.res String resource file

AEServic.vbp Service component project file

AEWorker

File Description



modWorkr.bas Worker main/global utility module

Worker.cls Worker class implementation

AEWorker.rc String resources source file

AEWorker.res String resource file

AEWorker.vbp Worker component project file

AEWrkPvd

File Description

basWrkPd.bas Worker provider main/global utility module

clsWrkPd.cls Worker provider class for worker threads on remote 
machines

AEWrkPvd.rc String resources source file

AEWrkPvd.res String resource file

AEWrkPvd.vbp Worker provider component project file

AEIntrfc

File Description

AEIntrfc.ODL COM Interface specification for the Worker extensibility 
interface

Include

File Description

modAECon.bas Global APE constants

modWinEr.bas Global Win32 error constants

modVBErr.bas Global VB error constants

modAEGlb.bas Global APE utlity module

clsWkMac.cls Worker remote machine information class

clsPosFm.cls Form position/persistence class

clsWorkr.cls Worker instance information class

Server

File Description

AEExpdtr.cmp Expeditor compatible server implementation

AEInstnr.cmp Process instancer compatible server implementation

AELogger.cmp Logger compatible server implementation

AEClient.cmp Client compatible server implementation

AEPool.cmp Pool manager compatible server implementation

AEQueue.cmp Queue manager compatible server implementation

AEServic.cmp Service compatible server implementation

AEWorker.cmp Worker compatible server implementation

AEWrkPvd.cmp Worker provider compatible server implementation

Note      APE can be run entirely on one machine, or various components can be distributed to remote 
machines using Remote Automation or DCOM to benefit from distributed processing power and 
support for multi-user access.    APE does not have to be altered to take advantage of this -- it is 
completely configurable.




