
Resource Localization Manager

Introduction

Usage

Localization Process

Data Files and Formats

Version 1.87

Copyright © 1992-1996 Microsoft Corporation

Introduction

In the past, localization of a software product required the localizer to edit strings and controls embedded in source
code and then rebuild the product in order to test the localized version. Such a process requires at least a rudimentary
knowledge of computer programming and is often prone to human error. The Resource Localization Manager
(hereafter referred to as RLMan) was designed to automate localization of products that make use of the Windows
resource model by allowing the localizer to extract localizable resources directly from the applications that use them,
modify the resources, and use the modified resources to create localized versions of the original applications. All this
can be achieved without rebuilding the product and with minimal knowledge of computer operations.

RLMan was designed with several goals in mind. Some of these goals were:

Allow the product to be localized without re-compilation.
Allow localization to proceed concurrent with development (provide update capability).
Allow localizers to share glossaries of common terms among applications.

The localization model followed by the RLMan is very simple. Localizable resources are extracted from a source
resource file and put into special text file called a token file. Each localizable resource may generate one or more
tokens. Each token is contained on a single line of text and consists of a unique identifier followed by the localizable
data associated with that particular resource. These tokens can then be localized by using a standard text editor.

The localized tokens are then used in conjunction with the source resource file to generate a new localized resource
file. The term "resource file" in this document means "any Windows executable format file (.EXE, .DLL, .CPL, etc.)
or .RES file". The target resource file will contain exactly the same resources as the source resource file, the only
difference is that the data will be localized.

This model has been expanded a little to allow for update tracking. When localization is done in conjunction with
development a target resource file may change after the localizer has tokenized the file and begun translation.
Update tracking allows the localizer to update the localized token file without losing any work that might have been
done. Any resources that may have changed since the most recent update are marked "dirty" and the change is
tracked in the token file so the localizer may see exactly what changed and exactly how it changed.

To allow for update tracking, the source resource file is used to generate a "master token file" which tracks changes.
The master token file is then used to update any number of "language token files" (one for each target language).
These language token files are then localized and used to generate the target resource files.

Usage

Any file name can include a UNC (Unified Naming Convention) share name or drive letter, and a directory path.

The syntax of the 'RLMan' command is as follows:

rlman [-c RDFile] [-p CodePage] [-f ResType] [-{n|o} PriLang    SubLang] [-w] [-x] -{e|t|m|l|r|a|u} files

-e    InputExeFile    OutputResFile

Extract localizable resources from the resource file (.exe, .dll, .cpl, .etc.) InputExeFile and create a Win32 resource
file OutputResFile. This output file can then be used, for example, by the dialog box editor or the bit map editors
that come with the SDK.

-t    InputResOrExeFile    OuputTokenFile

This option will extract the localizable resources from the executable or resource format file InputResOrExeFile and
create a project token file OuputTokenFile. Using this option will circumvent the history-keeping mechanism of
RLMan. It is made available for those times when the user wants to simply see what localizable resources are in the
input file or when the history mechanism is not needed. Using the -o option and the -p option with the -t option will
allow one to extract and tokenize resources of a specific language. The resulting token file will contain only those
resources that have the specified locale and the text will be in the given code page.

-m    MasterProjectFile    [InputResOrExeFile    MasterTokenFile]

When the history mechanism is wanted, the first step when creating a new master project or updating an existing
master project is to use this option. If the MasterProjectFile does not exist, the optional InputResOrExeFile and
MasterTokenFile arguments must be provided. These last two arguments will be ignored if the MasterProjectFile
exists.

-l    LanguageProjectFile    [MasterProjectFile    LanguageTokenFile]

This option is used, when the history mechanism is wanted, to create a new localization project or to update an
existing project. If the LanguageProjectFile does not exist, the optional MasterProjectFile (the one created via the
-m option) and LanguageTokenFile arguments must be provided. These last two arguments will be ignored if the
LanguageProjectFile exists.

-r    InputResOrExeFile    LanguageTokenFile_or_ResFile    OutputResOrExeFile

This option is used to create a localized version of the InputResOrExeFile. The resources in that InputResOrExeFile
will be replaced with the localized resources in LanguageTokenFile_or_ResFile. OutputResOrExeFile is the
localized version.    If the LanguageTokenFile_or_ResFile is a Token file, use the -o option to specifiy what the old
language to be replaced is and use the -n option to specifiy what the new language is.

-a    InputResOrExeFile    LanguageTokenFile_or_ResFile    OutputResOrExeFile

This option is used to create a localized version of the InputResOrExeFile. The resources in the resulting
OutputResOrExeFile will include the original resources from InputResOrExeFile plus the localized resources in
LanguageTokenFile_or_ResFile. If the LanguageTokenFile_or_ResFile is a Token file, use the -n option to specifiy
what the new language is.

-u    MasterProjectFile    LangProjectFile    InputResOrExeFile    OutputMasterTokFile    OutputLanguTokFile

This option is used to convert RLToolset version 1.0 format files, MasterProjectFile, LangProjectFile, MasterTokFile
and OutputLanguTokFile to the version 1.85 format. You only need to do it once. Once these files are converted, you
can use    RLMan normally.

-n    PriLang    SubLang

Specifies what the language the tokens in the token file are in and consequently what language the new resources are
in. Used when setting up a new Language Project (-l) and with the -r and -a options. Can also be used with the -m
option when the resources in the original resource file are not in U.S. English. PriLang    SubLang are decimal
values from the list of allowed values in the SDK.

-o    PriLangID    SubID

Specifies what the language the    resources being replaced in, or extracted from, the source resource file are in.

Used with the -r and -a options when the resources being replaced, or added to, in the original resource file are not
in U.S. English. PriLang    SubLang are decimal values from the list of allowed values in the SDK. For example, if
the U.S. English resources had been replaced with German resources and now you wanted to add French resources
to that German file, use the -o option (with arguments 7 1) to indicate that the original resources are in German not
U.S English together with the -a option. Or, if you had created a file with U.S. English plus German resources in it,
and now you wanted to replace the German resources with French (thus making a U.S English plus French file), you
would use the -r option with the -o option (with arguments 7 1) and the -n option (with arguments 12 1) to indicate
that the old German resources are to be replaced with the new ones in the given French token file.

Used with the -t option, this identifies the language of the resources that are to be tokenized. You should also use the
-p option to specifiy the code page the text in the token file is to be written in.

-c    RDFile

Use custom resources defined in the resource description file RDFile.

-p    CodePage

The default code page used in converting between the Unicode resources and the text in the token files is the
Windows ANSI code page. To change the code page, use this option and use the IBM code page number as the
CodePage argument. For example; -p 932.

-f    ResourceType

By default, all localizable resources are extracted. To extract a single resource type, use this option with
ResourceType set to the resource type's numeric value (1-16 for Windows resources).

-w

Print warnings about unknown custom resource types (-c option not given or resource type is not in the RDFile), and
about resources that are not tokenized because their language is not the language requested (-o    option, or US
English by default). It will also warn of any zero-length resources found.

-x

Use extended token file format. This option enables the location infonation of text box style type and extracts the
font face name and size information into the token file.

Languages Supported By Windows NT

Primary Language IDs Sub Language IDs

Neutral 0x00 Neutral 0x00

Albanian 0x1c Default 0x01

Arabic 0x01 System Default 0x02

Bahasa 0x21 Arabic (Saudia Arabia) 0x04

Bulgarian 0x02 Arabic (Iraq) 0x08

Byelorussian 0x23 Arabic (Egypt) 0x0C

Catalan 0x03 Arabic (Libya) 0x10

Chinese 0x04 Arabic (Algeria) 0x14

Czech 0x05 Arabic (Morocco) 0x18

Danish 0x06 Arabic (Tuinisa) 0x1C

Dutch 0x13 Arabic (Oman) 0x20

English 0x09 Arabic (Yemen) 0x24

Estonian 0x25 Arabic (Syria) 0x28

Farsi 0x29 Arabic (Jordan) 0x2C

Finnish 0x0b Arabic (Lebanon) 0x30

French 0x0c Arabic (Kuwait) 0x34

German 0x07 Arabic (U.A.E.) 0x38

Greek 0x08 Arabic (Bahrain) 0x3C

Hebrew 0x0d Arabic (Qatar) 0x40

Hungarian 0x0e Chinese (Traditional) 0x01

Icelandic 0x0f Chinese (Simplified) 0x02

Italian 0x10 Chinese (Taiwan) 0x04

Japanese 0x11 Chinese (PRC) 0x08

Kampuchean 0x2c Chinese (Hong Kong) 0x0C

Korean 0x12 Chinese (Singapore) 0x10

Laotian 0x2b Dutch 0x01

Latvian 0x26 Dutch (Belgian) 0x02

Lithuanian 0x27 English (US) 0x01

Maori 0x28 English (UK) 0x02

Norwegian 0x14 English (Australian) 0x03

Polish 0x15 English (Canadian) 0x04

Portuguese 0x16 English (New Zealand) 0x05

Rhaeto Roman 0x17 English (Ireland) 0x06

Romanian 0x18 French 0x01

Russian 0x19 French (Belgian) 0x02

Serbo Croatian 0x1a French (Canadian) 0x03

Slovak 0x1b French (Swiss) 0x04

Spanish 0x0a German 0x01

Swedish 0x1d German (Swiss) 0x02

Thai 0x1e German (Austrian) 0x03

Turkish 0x1f Hebrew (Israel) 0x04

Ukrainian 0x22 Italian 0x01

Urdu 0x20 Italian (Swiss) 0x02

Vietnamese 0x2a Japanese (Japan) 0x04

Korean (Korea) 0x04

Norwegian (Bokmal) 0x01

Norwegian (Nynorsk) 0x02

Portuguese (Brazilian) 0x01

Portuguese 0x02

Serbo Croatian (Latin) 0x01

Serbo Croatian (Cyrillic) 0x02

Spanish (Traditional Sort) 0x01

Spanish (Mexican) 0x02

Spanish (Modern Sort) 0x03

Thai (Thailand) 0x04

Localization Process

There are two basic types of localization. The first is when a product is correctly enabled for localization
("globalized"), the product development is finished, and all that is needed is to modify the localizable resources.
We'll call this the "One-Shot Process". The second is when a product is being localized in parallel with the
development process and the localization work is to be preserved across new builds of the original (typically
English) file. We'll call this the "Parallel Process". It is done in parallel with product development so the localized
versions are ready as soon as possible after the domestic version is.

A GUI version of RLMan makes the various steps invisible to the user and incorporates an editor that hides the
token ID part of the lines in the token file.

One-Shot Process

To simplify the file names on the command line, change directories to the place where the localized files are to be
kept. Leave the source executable (typically the English version) in some other directory    anywhere on the network
or on the local machine. In the sample command lines, the executable is called "prog.exe".

If you have a localized .RES file, simply skip to step 4 and use the .RES file in place of the .TOK file name shown
in that steps example.

1. Create the project token file "prog.tok".
rlman -t prog.exe    prog.tok

2. Translate the text in the "prog.tok" file with your favorite text editor. Assume German in this example.

3. If dialog boxes are to be resized, create the file "tmpprog.exe" which will contain the translated text.
rlman -n 7 1 -r prog.exe    prog.tok    tmpprog.exe

Create the .RES file, in German, needed by the dialog editor in the SDK.
rlman -e tmpprog.exe    prog.res

Resize the dialog boxes as appropriate to account for the different lengths of the translated text.
dlgedit prog.res

Update the project token file with the revised dialog box coordinates and sizes.
rlman -t prog.res    prog.tok

4. Create the final, localized, executable.
rlman -n 7 1 -r prog.exe    prog.tok    newprog.exe

This completes the process. The German file "newprog.exe" is now ready to be tested.

See also Parallel Process

Languages Supported By Windows NT

Parallel Process

This process maintains the localization work from one build of the source executable (typically the English version)
to the next. With this version of RLMan there is one caveat    if the developers change the ID number of a localizable
item, the previous translation will be lost. This is being addressed and a solution will be available in a future release
of RLMan. New items can be added or old ones deleted but an item with a changed ID will show up as a new item.
In the sample command lines, the executable is called "prog.exe".

See also Project Creation

Maintaining the Master Project

Maintaining Each Locale Project

and One-Shot Prosess

Project Creation

1. Create a directory for the master files and a separate directory for the project files. These directories may be
anywhere on the net. The master project directory may contain any number of master projects, one need not create a
new directory for each project as long as the base name for each master project in unique. There should be a separate
directory for each localized version of the executable file. Typically this means one directory for each language.

2. Move to the master directory.

3. Copy the source executable to the master directory.

4. Create the master project file and the master token file.
rlman -m prog.mpj    prog.exe    prog.mtk

5. Move to the project directory (for German in this example).

6. Create the project file and the project token file.
rlman -n 7 1 -l prog.prj    prog.mpj    prog.tok

7. Steps 5 and 6 need to be repeated for each project directory (language). The resulting prog.tok files can then
be translated to the appropriate language.

See also Maintaining the Master Project

Languages Supported By Windows NT

Maintaining the Master Project

1. Copy the newly built source executable to the master directory.

2. Move to the master directory, then update the master project file and the master token file.
rlman -m prog.mpj

See also Project Creation

Maintaining Each Locale Project

1. Follow steps 2 and 3 of the "one-shot process" (previous page) as often as desired until the resources are
localized satisfactorily.

2. Every time the master project is been updated (step 2 in the "Maintaining the Master Project" section), update
the project file and project token file.

rlman -l prog.prj

Repeat step 1 as needed to catch new or changed resource items.

See also Maintaining the Master Project

Project Creation

Data Files and Formats

RLMan uses a variety of special file types. All of the file formats described below are a special form of text file.
Each file is human-readable and can be edited with any standard text file editor (such as Notepad).

As a general rule, all text in these files follows the C escape convention when dealing with non-displayable
characters. This convention uses escape characters to represent non-displayable characters. For example, \n is
newline and \t is tab.

Master Project Files (MPJ)

Project Files (PRJ)

Master Token Files (MTK)

Language Token Files (TOK)

Resource Description Files (RDF)

Master Project Files (MPJ)

Master project files consist of five lines of text:

The first line contains the path to the source resource file. This may be either a .RES file, or an .EXE
format file.

The second line contains the path to the master token file (MTK).
The third line contains zero, one or more paths to resource description files (RDFs) separated by spaces.
The fourth line contains a date stamp indicating the date of the source resource file as of the last update.
The fifth line contains a date stamp indicating the date of the master token file as of the last update of the

master project.
The sixth line contains the Language ID of the resources in the master token file (.MTK).
The seventh line contains the code page used when reading/writing the master project token file. A zero (0)

means the system's Windows ANSI code page. A one (1) means the syetem's default OEM code page.

See also Project Files (PRJ)

Project Files (PRJ)

Project files consist of seven lines of text:

The first line contains the path to the master project file (MPJ).
The second line contains the path to the language token file (TOK).
The third line may be left blank or it may contain the path to a glossary file. (Not used in this release.)
The fourth line contains a date stamp indicating the date of the master token file (MTK) as of the last

update of the project.
The fifth line contains the code page used when reading/writing the project token file. A zero (0) means the

system's Windows ANSI code page. A one (1) means the syetem's default OEM code page.
The sixth line contains the Language ID of the resources in the language token file (.TOK).
The seventh line contains the path to the target resource file. This may be either a .RES file or (if the source

resource in the MTK is an .EXE file) an .EXE format file.
The eighth line contains the flag to replace the existing resources in the language token file or append to the

file.

See also Master Project Files (MPJ)

Master Token Files (MTK)

Master token files are text files which contain tokenized resources taken from some source resource file. Each token
consists of a unique identifier followed by the text form of the resource data. Tokens are delimited by end-of-line
characters.

Master token files are used for update tracking. They contain no localized resource data and should not be changed
except by RLMan.

An example of what one token might look like is shown below:

[[5|255|1|32|5|"FOO"]]=Localizable string containing text in C format.

The token ID is surrounded by double square brackets and divided into 6 fields delimited by the vertical pipe '|'
symbol:

The first field indicates the type of the resource
The second field is the resource name in the case of an enumerated resource, or it is 65535 if the name is a

label (string) in which case the label itself is stored in the sixth field.
The third field is the internal resource id number taken from the resource header.
The fourth field is made up of a combination of data taken from the resource header and generated by the

tools. This value is used in conjunction with the other values in the token ID to uniquely identify the resource.
The fifth field is a status field used by the update tools to determine the status of the current token.
The sixth field contains the name of the resource if the resource is identified by a label. Otherwise it

contains a null string.

A token ID is followed by an equal sign which is in turn followed by the resource data. The data extends from after
the equal sign to the end of the line (exclusive). Non printing characters (such as new-line and control characters)
are represented using C escape sequences. Two of the most common are \n for new-line and \t for tab. Some
characters are shown in the form '\nnn' where nnn is the decimal value of that character.

A token's status field is made up of combinations (bitwise OR'ing) of three basic flags:

CHANGED 4 indicates that the token has changed since the last update
READONLY 2 indicates that the token should not be localized.
NEW 1 used in conjunction with the CHANGED flag to indicate that this is the new version of

the token.

For example, if a token has changed during an update, the current text would be stored in a token with a status of
CHANGED+NEW (4 + 1) = 5. The previous text is also stored in the token file using the same token ID but the
status field would contain a 4 (CHANGED). This way both the current and the previous text are retained.

When you extract the token file with -x option, some tokens contain the location of    text box have text style type
and font face name and font size.    You can change the style of the current text control using Dlgedit.exe. An
example of what one token might look like is shown below:

[[5|255|1|48|5|"FOO"]]=    10    154      79        8 (LEFT)

A token has a text style type of LEFT, CENTER and RIGHT.

LEFT locates the text to the left of text control.
CENTER locates the text in the middle of    text control.
RIGHT locates the text to the right of text control.

[[5|255|0|8|5|"FOO"]]=8

[[5|255|0|4|5|"FOO"]]=MS Shell Dlg

A token has a font face name and a font size. The dialog is displayed in this font setting.

See also Language Token Files (TOK)

Language Token Files (TOK)

Language token files are similar to master token files; the only difference being the meaning of the status fields
found in the token identifiers.

Language token files are used during localization. They contain localized resource data.

A token's status field is made up by combinations of four flags:

TRANSLATED 4 indicates that the token contains text that should be put in the target resource. If
a token is not marked as TRANSLATED then it contains unlocalized text from the master token file which is
maintained for update tracking purposes.

READONLY 2 indicates that the token should not be localized.
NEW 1 used only for tokens that are not marked with the TRANSLATED flag to indicate that

this is the new version of the unlocalized token.
DIRTY 1 used only for tokens that are marked with the TRANSLATED flag to indicate that the

token is in need of attention (either the original translation has changed or the token has never been localized).

For example, a clean, localized token is marked only with the TRANSLATED flag and therefore has a status value
of 4.

As in the Master token files, non printing characters (such as new-line and control characters) are represented (and
entered by the localizer) using C escape sequences. Two of the most common are \n for new-line and \t for tab.
Some characters are shown or entered in the form '\nnn' where nnn is the decimal value of that character. The
localizer may enter any character it's '\nnn' form.

When you extract the token file with -x option, some tokens contain the location of    text box have text style type
and font face name and font size.    You can change the style of the current text control using Dlgedit.exe. An
example of what one token might look like is shown below:

[[5|255|1|48|5|"FOO"]]=    10    154      79        8 (LEFT)

A token has a text style type of LEFT, CENTER and RIGHT.

LEFT locates the text to the left of text control.
CENTER locates the text in the middle of    text control.
RIGHT locates the text to the right of text control.

[[5|255|0|8|5|"FOO"]]=8

[[5|255|0|4|5|"FOO"]]=MS Shell Dlg

A token has a font face name and a font size. The dialog is displayed in this font setting.

See also Master Token Files (MTK)

Resource Description Files (RDF)

Custom resources are described in resource description files (RDFs) using c-like structure definitions.    Each
definition is identified with a specific resource type and the definition is applied to every resource of that given type.

An identifier is declared by the following syntax:

<type>

Types are numbers or quoted names unless they are normal windows types in which case the standard Windows type
name may be used in place of a number or name. (CURSOR, BITMAP, ICON, MENU, DIALOG, STRING,
FONTDIR, FONT, ACCELERATORS, RCDATA, ERRTABLE, GROUP_CURSOR, GROUP_ICON,
NAMETABLE, and VERSION).

A structure definition follows normal 'C' syntax with the following limitations and differences:

Each definition must be fully enclosed in braces { }.
The standard 'C' types: char (single-byte OEM characters), int, float, long, short, unsigned, and near and far

pointers are accepted. Additionaly, the types wchar (Unicode character) and tchar (Unicode in the NT version, OEM
otherwise) are accepted. (Labels and macros are not legal.)

Nested structures, arrays and arrays of structures are legal. All arrays must have a fixed count except for
strings which are described below. int[10] is legal int[] is not.

Null terminated strings (sz's) are the only variable length structures allowed. They are represented as an
array of characters with no length: char[]

Fixed length strings are represented as arrays of characters with a fixed length: char[10]
Comments may be included in the file using standard c comment delimiters (/* */ and //) or by placing

them after the pound symbol #.
Localizable types (types that need to be placed in token files) are indicated by all caps. Hence INT would

generate a token while int would not.

See also Sample RDF File

Sample RDF File

#    This is a sample Resource Description File

<"type">

{

int, // no token will be generated for this integer

CHAR // this single-byte character will be placed in a token

}

<RCDATA>

{

WCHAR[]    // a null terminated Unicode string that requires a token

wchar[]    // no token will be generated for this Unicode string

}

<1000>

{

        TCHAR[],    // a null terminated Unicode or OEM string that requires

                              // a token (Unicode if running NT version, else OEM).

{

int,

FLOAT, // localizable floating point value

far *,

CHAR[20] // localizable 20 character single-byte string

}[3], // an array of three structures (NOT IMPLEMENTED YET)

int

}

END // Optional

See also Resource Description Files (RDF)

Throughout this document, the term localization refers to the process of preparing a product for an international
market.    This process involves (among other things) translating text and resizing controls such as dialogs and
buttons.    A person performing localization is referred to as a localizer.

This document refers to a resource file as being any file that contains Windows resources.    This can be a .EXE file
(or a .DLL, a .CPL, etc.), as well as a .RES file.    RLMan can use any of these files as resource files.

