
Welcome to Formula One

Welcome to the Borland Edition of Formula One from Visual Components.    Visual Components
develops and markets a full range of tools for the component-based developer.    Our product portfolio
includes best of class tools for data analysis, charting, rich text and spell checking.    We offer a royalty-
free runtime license for all of our OCX products.

The Professional Edition of Formula One supports features not found in this version of Formula One.   
Attempting to use these features through the user interface, or by using OCX properties and methods will
result in an error.

For additional information regarding the Professional Edition of Formula One, including Upgrade
information, contact Visual Component Sales at 800-884-8665.

You can also contact Visual Components Sales any of the following ways:

By FAX. You can contact us by FAX at (913)599-6597.

On the Internet. Contact us at:

World Wide Web - http://www.visualcomp.com

Electronic Mail - sales@visualcomp.com

Via BBS. You can contact us through our 24-hour bulletin board service at (913)599-6713.

Via CompuServe. You can contact us through CompuServe - 74774,443.
Visual Components also maintains a section in the MS Windows Components A+ Forum on
CompuServe.    These sections are used for peer to peer support and the distribution of example
projects, maintenance releases, etc.    To reach the Visual Components section, type:

GO VISTOOLS

When communicating with Visual Components via the CompuServe forums, include our account
number with all messages. This assures that your message receives prompt attention.

By mail. Address your correspondence to:
Visual Components, Inc.
15721 College Blvd.
Lenexa, Kansas 66219
or
Visual Components Europe
Lenexa House
11 Eldon Way
Paddock Wood, Kent
England TN12 6BE
Tel:    +44 1892 834343
Fax: +44 1892 835843
BBS: +44 1892 835579

Reaching Our Technical Support Department
You can receive support directly from Visual Components Technical Support engineers by purchasing a
support plan.

You can call the support line directly at (913) 599-6500 and pay $10 per call.

You can call (800) 884-8665 to purchase an annual support contract for $249 per developer per
year. This Gold Support plan gives you access to a number of on-line information sources as well as the
following:

1.    Unlimited technical support calls.

2.    When calling technical support, your call is placed in a priority queue for faster service.

3.    Expedited open case resolution. For calls that cannot be resolved immediately, an action plan
is developed within 24 hours of the customer's inquiry, and the customer is updated every 48
hours on continuing open cases.

4.    Automatic beta program enrollment.

New Features in the Professional Edition of Formula One 3.0
Version 3.0 of Formula One provides a variety of new features. Among the new features provided by this
version:

OCX Support. Formula One functionality is available through OCX properties and methods.

Enhanced Excel Support. Version 3.0 provides a number of new and improved features that
make Formula One even more Excel-compatible such as:

Excel 5.0 support. Formula One can now read and write Excel 5.0 files.

Workbooks. Support for Excel-type multiple sheet workbooks. This means that Formula One
supports 3-D cell referencing (Sheet1:Sheet5!A1:C10.) Additionally, many worksheet editing methods
such as InsertRange, DeleteRange, MoveRange, etc. can work on multiple worksheets at the same
time. This time-saving feature keeps you from having to perform the same over and over in your code to
modify a series of worksheets.

Cell References. Formula One can now parse range references with . or . . in addition to :(A1:B2
or A1.B2 or A1..B2)

Entering Text. You can now use a leading apostrophe (’) to enter numbers as text.

New Worksheet Functions. The worksheet functions SUMIF, COUNTIF, CONCATENATE,
ROUNDUP and ROUNDDOWN have been added to this version in enhance Excel 5 compatibility.

Connection to ODBC databases. By using the new ODBCConnect, ODBCQuery, and
ODBCDisconnect methods, you can retrieve information from an ODBC database and place it in your
Formula One workbook.

New Built-In Chart Object. You can now select a range of data, click on the chart tool, and draw
a First Impression chart on your worksheet.

Built-In DLL. In this version of Formula One, the DLL is built directly into the OCX. The only file
you have to distribute with your application is VCF132.OCX. (MFCANS32.DLL and OC30.DLL must also
be present.)

Validation Rules. You can now create validation rules to ensure users enter appropriate data in
cells. Validation rules include a formula against which to test the cell entry and a message to be displayed
if validation fails. There is also a new ValidationFailed event to allow you to program a response when
validation fails.

AutoFill Feature. Formula One now provides the ability to autofill worksheet cells with common
lists such as month names and days of the week. You can also add your own autofill lists.

Larger Color Palette. Formula One now offers a default color palette of 56 colors instead of 16.
You also have the power to customize any color on the palette.

Column Widths. You can now specify column widths in twips or character units. Twips are a
standard unit of measure that equal 1/1440th of an inch.

Hiding Columns and Rows. You can now control the display status of columns and rows.

Autosizing. Autosizing an entire column now affects the column header as well.

Displaying Type Markers. You can now display markers on your worksheet that identify the type
of data in each cell.

New Events. Version 3.0 now provides additional events for working with objects:
ObjValueChanged, ObjGotFocus, and ObjLostFocus. There are also additional events for capturing
user interaction with a mouse: MouseDown, MouseMove and MouseUp. Finally, a new Modified event
provides you additional means for responding to user changes.

Scroll Bar Improvements. You can now set the scroll bars to scroll to the last row or column in a
worksheet.

New Modified Property. Used with the new Modified event, provides more flexibility in
determining and responding to user changes.

Enhanced Printing Support. Formula One can now read and write the Windows API
PrintDevMode structure.

User-defined Names. You can now enumerate the uer-defined names in a workbook.

Dropdown List Box Enhancements. A dropdown list box can now set a cell value to the text of
a selection rather than just the selection index.

Customizable Mousepointer. You can now control the shape and behavior of the mouse pointer
when it is over the Formula One control.

Adding the OCX to Your Application
The process you use to add an OCX to your application varies slightly from one development
environment to another. In most cases it consists of:

Adding the OCX control to your project.

Selecting the control’s tool from the tool bar and drawing the control on a form or in a window.
Consult your development environment documentation for specific steps to add a control to your
application.

Distributing Formula One Applications
Please read the license agreement that was shipped with this package. You are bound by the licensing
restrictions contained in that document.

Redistributing Files
You can use all the files accompanying this product for development of an application. You can
redistribute the run time version of the software according to the terms of the license agreement.

You can ship the following files with your application:

File

VCF132.OCX

MFCANS32.DLL

OC30.DLL

MSVCRT20.DLL

Note      These DLLs must be present on a system for Formula One to function correctly. In addition if you
intend to connect to an ODBC database, ODBC32.DLL must be present. This file is not distributed with
Formula One.

The Formula One Control
Each time you create a Formula One workbook control in your application, you create an object that gives
you a specific view into a workbook.

The workbook object has properties and methods you can use to change its appearance and behavior.
Properties allow you to change the attributes of the object. For example, you can set properties to hide
the horizontal scroll bar, or to change the height of a row or the width of a column.

Methods allow you to control the activities of the object. For example, you can use methods to recalculate
the workbook, or invoke one of the Formula One dialog boxes for user input.

There are times when methods change the value of a property. For example, when you use the
DeleteSheets method to delete one or more worksheets from a workbook, the value of the NumSheets
property is changed to reflect the new number of worksheets.

Using Properties

Using Methods

Handling Errors

Using Properties
With Formula One properties, you can perform a variety of tasks, such as hiding and displaying elements
of a worksheet, selecting cells and ranges, and setting print margins. Many properties allow you to
perform complex tasks with very little coding.

When you use properties in your code, you can either set, or change the value of, the property, or retrieve
the property’s current value. Most properties are read-write. This means you can set and retrieve them.
However, some properties are read-only. This means you can retrieve their current value, but you cannot
set the property to change the value.

When you refer to a property, you must list the object name first, followed by a period, and then the name
of the property. In the following example, the AllowArrows property of the object called F1Book1 is set to
True. This means the user can use the arrow keys to reposition the active cell.

F1Book1.AllowArrows = True

Property Data Types

Setting Properties

Retrieving Property Values

Properties that require an index

Property Data Types
Before setting or retrieving the value of a property, you must know its data type. Generally, a property’s
value can be a numeric value, a character string, or a boolean (True|False) value. To determine the
correct data type for a particular property, consult the OCX Property and Method Reference.

Setting Properties

Retrieving Property Values

Properties that require an index

Setting Properties
When you set a property, you assign it a new value. To accomplish this you use the equal sign to set the
property equal to an expression that describes the new value. In the following example, the Col property
is used to set the current column to column 5.

F1Book1.Col = 5

The following example shows the code required to read an Excel worksheet from disk using the Read
method:

F1Book1.Read = "c:\excel\examples\amortize.xls"

The following example uses the Row, Col, Number, Formula, and Text properties to enter data in a
worksheet. Numbers, 1 and 2, are entered in A1 and A2. A formula, SIN(A1) + COS(A2), is entered in A3.
A text string is entered in B4.

F1Book1.Row = 1

F1Book1.Col = 1

F1Book1.Number = 1

F1Book1.Row = 2

F1Book1.Number = 2

F1Book1.Row = 3

F1Book1.Formula = "sin(A1) + cos(A2)"

F1Book1.Row = 4

F1Book1.Col = 2

F1Book1.Text = "The End!"

The following illustration shows the result of the preceding example.

Property Data Types
Retrieving Property Values
Properties that require an index

Retrieving Property Values
Retrieve a property value to determine the condition of an object before your procedure performs
additional actions.

To accomplish this, use the equal sign to assign the value of the property to a variable. For example, in
the following code, the data variable receives the current value of the Entry property, which describes the
contents of the active cell.

Dim data As Integer

data = F1Book1.Entry

You can also use the current value of a property directly in an expression. In the following example, the
code retrieves the value for two check box objects that ask the user whether they want to print row and
column titles with their worksheet. If the result is 0, both check boxes are unchecked and the PrintTitles
property is set to null. No titles are printed with the worksheet.

If F1Book1.ObjValue (1) + F1Book1.ObjValue (2) = 0 Then

F1Book1.PrintTitles = " "

....

End If

Property Data Types

Setting Properties

Properties that require an index

Properties that require an index
Some properties take an index to identify the specific entity the represent. For example, you can use the
ColHidden property to hide a column, but you must give it an index number to identify which column to
act on. The following code hides the fourth column in the active sheet.

F1Book1.ColHidden(4) = True

Property Data Types

Setting Properties

Retrieving Property Values

Using Methods
There are two types of methods, those that take arguments, and those that do not. Methods that take no
arguments initiate an action and return no value. For example, you can use the CalculationDlg method
to display the Calculation dialog box:

F1Book1.CalculationDlg

If a method does take arguments, you must be aware of whether the method returns a value. If the
method does not return a value, or you don’t wish to save the returned value, the method arguments
appear without parentheses as in the following example:

F1Book1.AddPageBreak 10

If you do wish to save the value returned by a method you must use the brackets. The following example
returns the row number of the next row page break after row 15:

nextRow = F1Book1.NextRowPageBreak (15)

Using Properties

Handling Errors

Handling Errors
Formula One errors that occur during program execution are handled like other errors. You must provide
you own error handling routines to intercept and manage errors.

Note      Formula One adds 20000 to all error numbers except F1ErrorNone before reporting them to the
container so that they do not conflict with the container's error numbers. To retrieve the Formula One error
number you would use the following expression: F1Error = Err - 20000.

Error Constant Number Description

F1ErrorNone 0 Function succeeded.

F1ErrorGeneral 20001 Function failed with a non-specific error.

F1ErrorBadArgument 20002 One of the function arguments was invalid.

F1ERRORNOMEMORY 20003 Not enough memory to complete the task.

F1ErrorBadFormula 20004 The formula syntax is incorrect.

F1ErrorBufTooShort 20005 The returned result is longer than the return
buffer size. A NULL string is placed in the buffer.

F1ErrorNotFound 20006 Cannot find item for which function is looking.

F1ErrorBadRC 20007 The row/column reference is invalid.

F1ErrorBadHSS 20008 Invalid view handle passed.

F1ErrorTooManyHSS 20009 Unable to create additional view handles.

F1ErrorNoTable 20010 No worksheet attached to the view.

F1ErrorUnableToOpenFile 20011 Cannot open the specified file.

F1ErrorInvalidFile 20012 Cannot read invalid file.

F1ErrorInsertShiftOffTable 20013 Insert pushes cells outside of worksheet bounds.

F1ErrorOnlyOneRange 20014 Specified command expects only one selected
range.

F1ErrorNothingToPaste 20015 Nothing to paste when a paste operation was
requested.

F1ErrorBadNumberFormat 20016 Invalid custom format string.

F1ErrorTooManyFonts 20017 Cannot add fonts to the table.

F1ErrorTooManySelectedRanges 20018 Cannot add selected ranges.

F1ErrorUnableToWriteFile 20019 An error occurred while writing the file.

F1ErrorNoTransation 20020 TransactCommit or TransactRollback was called
without first calling TransactStart.

F1ErrorNothingToPrint 20021 No data to print in the table or selected range.

F1ErrorPrintMarginsDontFit 20022 Print margins are out of range.

F1ErrorCancel 20023 Returned if the user presses Cancel in a built-in
dialog box.

F1ErrorUnableToInitializePrinter 20024 Cannot initialize the printer.

F1ErrorStringTooLong 20025 An argument to a C function specified a string
that was too long.

F1ErrorFormulaTooLong 20026 Specified formula is too long.

F1ErrorUnableToOpenClipboard 20027 Cannot open the Windows clipboard.

F1ErrorPasteWouldOverflowSheet 20028 The paste operation extends beyond the last

row or last column of the worksheet.

F1ErrorLockedCellsCannotBeModified 20029 Attempted to modify cells that are locked with
protection enabled.

F1ErrorLockedDocumentCannotBeModified 20030 Attempted to modify a document that has
protection enabled.

F1ErrorInvalidName 20031 Specified a user defined name that is invalid.

F1ErrorCannotDeleteNameInUse 20032 Attempted to delete a user defined name that is
currently in use by a formula.

F1ErrorUnableToFindName 20003 Could not find specified user defined name.

F1ErrorNoWindow 20034 Invalid request for a worksheet that is not
attached to a window.

F1ErrorSelection 20035 Invalid request for the current selection.

F1ErrorTooManyObjects 20036 Unable to create more objects.

F1ErrorInvalidObjectType 20037 The type of object selected is invalid for the
operation that is attempted.

F1ErrorObjectNotFound 20038 The specified object cannot be found.

F1ErrorInvalidRequest 20039 The attempted operation is currently invalid.

F1ErrorBadValidationRule 20040 Formula One is unable to parse the validation
rule.

F1ErrorBadInputMask 20041 Formula One is unable to parse the input mask.

F1ErrorValidationFailed 20042 The cell entry failed to pass the validation rule.

F1ErrorNoODBCConnection 20043 This error occurs when ODBCQuery is called
without first executing a successful
ODBCConnect call.

F1ErrorUnableToLoadODBC 20044 This error occurs when ODBCConnectcannot
load the ODBC library.

F1ErrorUnsupportedFeature 20045 The version of Formula One you are using does
not support the requested feature. Contact
Visual Components to obtain a version that does
support this feature.

Using Views and Workbooks
When you create a Formula One control, you are actually creating a workbook and a view into that
workbook. By manipulating this connection between views and workbooks, you can add tremendous
power and flexibility to your application. First, it is important to know the difference between a workbook
and a view.

Workbooks are objects that are maintained by the Formula One engine.

A view is a window into a specific workbook.
Attaching Views to Workbooks

Controlling What is Displayed in a View

One View That Can Display Multiple WorkBooks

One Workbook Displayed in Multiple Views

Working with Views

Working with Workbooks

Working with Workbooks
A workbook is a collection of individual worksheets. The worksheet is a familiar tool you and your end-
users use to store and manipulate data.

Workbooks store:

cell data

cell formulas

workbook formatting information

workbook-specific information such as printing attributes and calculation attributes.
Multiple workbooks can be open simultaneously. Formulas in one workbook can refer to cells in other
workbooks. The Formula One engine manages all open workbooks.

Attaching Views to Workbooks

Using Views and Workbooks

Working with Views

Working with Views
A view controls what part of the workbook is displayed in your application and when. Without a view, you
cannot observe the work that you have performed in a workbook.

Each view can only be attached to one workbook at a time.

Multiple views can be attached to the same workbook.
After a view is created, you can change the workbook to which it is attached at any time using the Attach
or AttachToSS method. This method attaches the view to the new workbook and severs the view’s
attachment to its previous workbook.

This figure illustrates the concept of one view attached to one workbook.

This figure illustrates the concept of multiple views into one workbook. Notice that each view displays a
different area of the workbook.

Attaching Views to Workbooks

Controlling What is Displayed in a View

One View That Can Display Multiple WorkBooks

One Workbook Displayed in Multiple Views

Using View Information

Using Views and Workbooks

Using View Information
Views store information that describes how the workbook is displayed. Views contain information about:

grid line display

column and row heading display

fixed row and column specifications

maximum workbook viewing size
Views also contain information about user permissions such as whether the user is allowed to select cells,
enter or edit data, or resize rows and columns.

Saving View Information

When a workbook is saved, the settings from the view that requested the save operation are saved with
the workbook. When a view is attached to a workbook, the view settings are retrieved from the workbook.

Attaching Views to Workbooks

Controlling What is Displayed in a View

Working with Views

Attaching Views to Workbooks
The requirements of your application may require that you alter the view to which a workbook is attached,
and vice versa. For example, some applications may have only one view, but work with multiple
workbooks. Other applications may have more than one view connected to only one workbook.

When interchanging views and workbooks, there are several important rules to remember.

A view can be connected to only one workbook at a time.

A workbook can have multiple views to which it is attached.

A workbook must be attached to at least one view. A workbook ceases to exist if it is not attached
to a view.
One View That Can Display Multiple WorkBooks

One Workbook Displayed in Multiple Views

One View That Can Display Multiple WorkBooks
Because a view can be connected to only one workbook at a time, you must employ invisible views to
accommodate an application that uses one view that displays multiple workbooks.

To accomplish this, use the appropriate method or property to hide the view controls in your application.
Hide all views in your application except the view you want displayed. Then, use the Attach method to
change which workbook is connected to the visible view.

The application illustrated by this figure uses one view and three workbooks. The workbooks not attached
to the application view are attached to invisible views.

One Workbook Displayed in Multiple Views

One Workbook Displayed in Multiple Views
When multiple views are attached to the same workbook, any change made in one view is reflected in the
other views. The views are independent, so you can view different parts of the same workbook.

After a workbook is created dynamically, you can use the Attach or AttachToSS method to attach
additional views.

One View That Can Display Multiple WorkBooks

Controlling What is Displayed in a View
There are a number of properties you can set to determine which area of the workbook is displayed in a
view. You must identify the worksheet and range of cells to appear in the current view.

If the workbook contains multiple worksheets, you can specify which worksheet you want to display in the
view. This is accomplished by setting the Sheet property. Set Sheet to the index number of the worksheet
you want to display. Sheets are indexed from left to right beginning with 1. Do not confuse the index with
the worksheet sheet name that appears on the sheet tab.

To prevent users from going to another worksheet in the workbook, you can set ShowTabs to off. This
hides the sheet tabs, preventing the user from changing sheets. Alternatively, you could write code within
the SelChange event to prevent the user from changing worksheets.

You can limit the area of each worksheet that can be seen within a view by setting the MinRow, MinCol,
MaxRow, and MaxCol properties for each worksheet. This is particularly useful when you want to use
multiple views to display different parts of the worksheet

The following illustration shows the property settings used to limit the number of rows that can be
displayed in each view. The data displayed in all three views is contained in one worksheet. Notice that
none of the views have vertical scroll bars because the end-users are prevented from scrolling beyond
the rows they already see.

MinCol = 1, MinRow = 1, MaxCol = 256, MaxRow = 8

MinCol = 1, MinRow = 8, MaxCol = 256, MaxRow = 15,

MinCol = 1, MinRow = 15, MaxCol = 256, MaxRow = 22

Attaching Views to Workbooks

The Formula One Workbook
When you open or create a file in Formula One 3.0, you are creating or opening a workbook. The
workbook is where all your data is stored. A workbook can consist of one or more individual worksheets.
Worksheets are useful for organizing information into separate groups. For example, you might have the
year-end sales figures for each sales region on a different worksheet within the same workbook. Having
all the information in one worksheet would be cumbersome; splitting it into separate files would be too
inconvenient to work with.

The following illustration shows a Formula One workbook with three worksheets:

Inserting Worksheets
Selecting Worksheets
Deleting Worksheets
Renaming Worksheets
Navigating Through Worksheets
Selecting Cells
Selecting Rows and Columns

Inserting Worksheets
By default, a workbook contains only one worksheet. However, you can easily insert additional
worksheets through the Workbook Designer, or with program code.

To add worksheets using the Workbook Designer:

1. Right click on the Workbook control to display the shortcut menu.

2. Select Workbook Designer from the shortcut menu.

3. Select Insert Sheet from the Sheet menu in the Workbook Designer.

One new worksheet is inserted to the left of the selected worksheet as shown in the following illustration:

Before adding a sheet

After adding a sheet
Sheet Index List
Selecting Worksheets
Deleting Worksheets
Renaming Worksheets

Sheet Index List
Each workbook maintains an indexed list of the worksheets it contains. Worksheets are indexed from left
to right beginning with 1. As you add worksheets, the index is adjusted. Most methods and properties
reference worksheets by index rather than name. It is important to remember that the sheet index is
different from name that appears on the sheet tab.

Inserting Worksheets

Selecting Worksheets

Deleting Worksheets

Renaming Worksheets

Selecting Worksheets
Usually, you do most of your work in one worksheet at a time. This is called the active worksheet. When
you have multiple worksheets in a workbook, you can use the mouse to click on a worksheet’s tab to
make it the active sheet. The tab is highlighted and moves on top of the other tabs.

You can save time and effort by performing some tasks on several sheets at once. For example, if you
want all three worksheets in your workbook to have the same title information, you can select all three
worksheets and enter the titles on the active worksheet. The titles are automatically entered in the
corresponding cells in the other selected worksheets as well.

To select multiple worksheets in the Workbook Designer:

1. Use one of the following key\mouse combinations, depending on whether you want to select
adjacent or non-adjacent worksheets:

Action Result

CTRL-Click on sheet tab Selects or deselects non-adjacent sheets. Any
other selected worksheets remain selected.

SHIFT-Click on sheet tab Selects all adjacent worksheets between the
active worksheet and the worksheet you clicked
on. All other worksheets are deselected.

The following illustration shows various groupings of selected worksheets:

Sheet4 is the active sheet. All other sheets are deselected.

If you hold down the Shift key and select Sheet1, all sheets between the active sheet (Sheet4 and Sheet1
are selected.

If you select Sheet2, it becomes the active sheet, but all sheets remain selected.

If you hold down the Control key and select Sheet3, it is deselected, but the other sheets remain selected.
To select multiple sheets programmatically:

Use the SheetSelected property to toggle an individual worksheet’s selection status to on.
The following example selects the second and third worksheets in the workbook:

SheetSelected (2) = True

SheetSelected (3) = True

Inserting Worksheets

Sheet Index List

Working with a Group of Worksheets

Inserting Multiple Worksheets

Deleting Worksheets

Renaming Worksheets

Working with a Group of Worksheets
When you have multiple worksheets selected, you can think of them as a group of worksheets. When you
perform some actions, execute some methods, or refer to some properties, they affect all worksheets in
the group. Other actions affect only the active worksheet, regardless of how many worksheets are
selected.

In the Workbook Designer, the following actions work on all selected worksheets:

Changing cell selection.

Entering value via the edit bar.

Inserting rows, columns, or ranges of cells

Deleting rows, columns, or ranges of cells

Clearing rows, columns, or ranges of cells

Setting TopLeft/Row/Column header text.

Setting column width.

Setting row height.

Moving & Copying with mouse.
Within your application code, the following methods and setting of properties affect all selected
worksheets:

Methods Setting Properties

ColWidthDlg (except Auto) ColText

ClearRange ColWidth

CopyRange Entry

DeleteRange EntryRC

EditInsert Formula

EditDelete FormulaRC

EditClear HdrWidth

EnableProtection HdrHeight

FormatAlignmentDlg Logical

FormatBorderDlg LogicalRC

FormatFontDlg Number

FormatPatternDlg NumberFormat

FormatNumberDlg NumberRC

InsertRange RowText

MoveRange RowHeight

ProtectionDlg Text

RowHeightDlg (except Auto) TextRC

SetAlignment TopLeftText

SetBorder

SetColWidth

SetFont

SetPattern

SetProtection

SetRowHeight

Inserting Multiple Worksheets
You can insert more than one sheet at a time and at any point in the sheet tab index. The number and
position of the inserted sheets depends on number and position of the selected sheets in the workbook.

To insert worksheets in the Workbook Designer:

1. Select the worksheet immediately to the right of where you want to insert the new worksheets.

2. Select as many worksheets to the right of that worksheet as the number of worksheets you want to
insert.

For example, if you want to insert two worksheets, a total of two worksheets must be selected.

3. Select Insert Sheet from the Sheet menu.

The following illustration shows this process:

Since Sheet2 and Sheet1 are selected, two additional worksheets are inserted to the left of Sheet2.
Notice that the newly inserted worksheets are given the next available sheet names, regardless of their
position in the sheet index list.
To insert sheets in your code:

Use NumSheets to increase the number of worksheets in the workbook. Additional worksheets
are added to the right of all existing worksheets.

Use the InsertSheets method as shown in the following example which inserts 2 worksheets to
the left of the third worksheet in the workbook:

F1Book1.InsertSheets 3, 2

Use SheetSelected to select the number of worksheets you want and then use the
EditInsertSheets method. The following example selects the third and fourth worksheets in the workbook
and inserts two worksheets before the third worksheet.

F1Book1.SheetSelected (3)

F1Book1.SheetSelected (4)

F1Book1.EditInsertSheets

Inserting Worksheets

Renaming Worksheets

Deleting Worksheets
You can delete one or more worksheets from the sheet index list through the Workbook Designer or
through application code.

To delete worksheets in the Workbook Designer:

1. Select the worksheets you want to delete.

2. Select Delete Sheets from the Sheet menu.

The following illustration shows this process:

Two methods delete worksheets; DeleteSheets and EditDeleteSheets. DeleteSheets takes arguments
that define the position and number of worksheets to be deleted. EditDeleteSheets deletes the currently
selected worksheets.

To delete worksheets in your code:

Use NumSheets to decrease the total number of worksheets. Worksheets are deleted from the
right.

Use the DeleteSheets method as shown in the following example which deletes the third and
fourth worksheets from the workbook:

F1Book1.DeleteSheets 3, 2

Use SheetSelected to select sheets and then use the EditDeleteSheets method. The following
example selects the first and fourth worksheets and then deletes them:

F1Book1.SheetSelected (1)

F1Book1.SheetSelected (4)

F1Book1.EditDeleteSheets

Inserting Worksheets

Sheet Index List

Selecting Worksheets

Renaming Worksheets

Renaming Worksheets
Formula One provides each worksheet with a default name. You can change those names to more
meaningfully describe the sheets contents. For example, the sheet names in the following illustration are
far more descriptive than the worksheets default names.

To edit a sheet name in the Workbook Designer:

1. Double-click on the sheet tab to display the Sheet Name dialog box.

2. Enter the new name and click OK.

To edit a sheet name in code:

Use the SheetName property to rename a worksheet identified by index. The following code
changes the name of the second worksheet in the workbook to QTR 2 Sales.

F1Book1.SheetName (2) = "QTR 2 Sales"

Inserting Worksheets

Sheet Index List

Selecting Worksheets

Positioning Worksheet Tabs
When designing your application, you can use the property pages or the ShowTabs property to control the
appearance and position of the sheet tabs.

To format the sheet tabs using property pages:

1. Right click on the Formula One control while in design mode to display the shortcut menu.

2. Select Properties from the shortcut menu.

3. Select the Show tab.

4. In the Tabs list box, select Top to display tabs at the top of the workbook, Bottom to display tabs at
the bottom of the workbook, or Off to hide the worksheet tabs.

5. Click OK.

The following illustration shows sheet tabs displayed at the top of the workbook.

You can also set the ShowTabs property to reposition the sheet tabs. This can be useful if your
application includes multiple worksheets, but you want to limit users to interacting with a single sheet.

To limit user access to a single sheet:

1. Use the Sheet property to make the sheet you want users to access the active sheet.

2. Set the ShowTabs property to the constant F1TabsOff.

Navigating Through Worksheets
When working in the Workbook Designer or in a workbook at run time, you can navigate within individual
worksheets using keyboard commands or mouse actions. In addition to navigating through worksheets,
keyboard commands allow you to perform a variety of other tasks.

Keyboard commands allow you to:

position the active cell in the worksheet

page through a worksheet

enter data typed in a cell

move the active cell within a selected range

enter and exit edit mode

recalculate a workbook

delete data from a selected cell or range
Using Keyboard Commands

Performing Mouse Actions

Selecting Cells

Selecting Rows and Columns

Using Keyboard Commands
The tables in this section list the keyboard commands you can use when working in the Workbook
Designer or a workbook at run time. The following table lists action keys that allow you to enter and edit
data, move the active cell within a selected range, and recalculate the workbook.

Key Description

ENTER When in edit mode, accepts the current entry. When a range is
selected, and if the EnterMovesDown property is set to True,
accepts the current entry and moves active cell vertically to next
cell in selection.

SHIFT + ENTER When in edit mode, accepts the current entry. When a range is
selected, and if the EnterMovesDown property is set to True,
accepts the current entry and moves active cell vertically to
previous cell in selection.

TAB When in edit mode, accepts the current entry and moves the
active cell horizontally to right.

SHIFT +TAB When in edit mode, accepts the current entry and moves the
active cell horizontally to left.

F2 Enters edit mode. While in editing mode, F2 displays the Cell
Text dialog box, in which you can enter multi-line data entries.

F9 Recalculates workbook.

DEL May clear current selection depending on the setting of the
AllowDelete property.

Escape Cancels current data entry or editing operation.

Important        Some development environments, such as Visual Basic override the use of these keys in
design mode. This can cause unexpected results. For example, pressing the DEL key in Visual Basic’s
edit mode deletes the control instead of the current selection in the worksheet. If this happens, select
Undo from the Edit menu to restore the control.

The following table lists the movement keys that allow you to move the active cell within a worksheet and
display different sections of the worksheet.

Key Description

Up Arrow Moves active cell up one row.

Down Arrow Moves active cell down one row.

Left Arrow Moves active cell left one column.

Right Arrow Moves active cell right one column.

CTRL Up/Down/Left/Right Moves to the next range of cells containing data.
If there is no additional data in the direction in
which you are moving, moves to the edge of the
worksheet.

Page Up Moves up one screen.

Page Down Moves down one screen.

CTRL Page Up Moves left one screen.

CTRL Page Down Moves right one screen.

Home Goes to first column of current row.

End Goes to last column of current row that contains
data.

CTRL Home Goes to row 1 column 1.

CTRL End Goes to last row and column that contains data.

The following table lists the keys that modify the action of the movement keys.

Key Description

Scroll lock Causes the view window to scroll without changing
current selection with all movement keys except Home,
End, CTRL Home, and CTRL End.

SHIFT plus any
movement key

Extends the current selection.

Performing Mouse Actions

Selecting Cells

Selecting Rows and Columns

Performing Mouse Actions
Primarily the mouse is used to select items in a worksheet at run time. The following table lists the mouse
actions you can perform in a worksheet at run time or in the Workbook Designer.

Action Description

Left Click Moves the active cell to the pointer position.

Right Click In the container’s design mode, brings up the shortcut
menu.

Left Click in Row or Column Headings Selects entire row or column.

Left Click in Top Left Corner Selects entire sheet.

Left Double Click in Top Left Corner, Row
Headings, Column Headings, or Worksheet
tabs

Displays a dialog box that allows you to enter a label
for the top left corner or the column or row heading, or
a new name for the worksheet that was double clicked.

Left Double Click In the Workbook Designer, invokes in-cell editing.

At run time, a DblClick event is fired.

Right Double Click In the Workbook Designer, does nothing.

At run time, the Workbook Designer is launched if
DoRDblClick is False.

Left Click and Drag Selects a range. If other ranges are selected, the
previously selected ranges are unselected.

CTRL + Left Click and Drag Selects a range. If other ranges are selected they
remain selected.

SHIFT + Left Click and Drag Extends the current selection.

CTRL + SHIFT Click on Row Headings,
Column Headings, or Top Left Corner

Selects the row headings, column headings, or top left
corner of the sheet.

Drag a Selection's Copy Handle Copies the selection into the newly selected area.

Drag a Selection's Border Moves the selection to a new location.

ALT + Click and Drag an Object or Object’s
Selection Handles

Repositions or resizes an object and aligns object
sides with the cell grid.

Using Keyboard Commands

Selecting Cells

Selecting Rows and Columns

Selecting Cells
Many operations require one or more cells to be selected. There are three kinds of selections: a single
cell, a range of cells, and multiple ranges of cells (non-adjacent). The following illustration shows the three
types of selections.

Selecting Cells with the Mouse
Selecting Cells with Properties and Methods
Selecting Rows and Columns

Selecting Cells with the Mouse
The worksheet cursor is always located on a cell. The cell on which the worksheet cursor is located is
called the active cell. The active cell is also a selection or part of a selection. Any data the user enters is
always placed in the active cell.

To select a range of cells, click and hold the left mouse button and drag through the range you
want to select. When a range is selected, It becomes highlighted.

To select multiple ranges, press the CTRL key while selecting a range with the mouse. Any
previously selected ranges remain selected.
Once a range is selected, you can move the active cell within the range using the ENTER, SHIFT +
ENTER, TAB, and SHIFT + TAB keys. When you use these keys to move the active cell, the range
remains selected.

Selecting Cells

Selecting Cells with Properties and Methods

Selecting Rows and Columns

Selecting Cells with Properties and Methods
The following properties and methods can select ranges.

Setting the Selection property removes all current selections and selects a range.

The AddSelection method adds a selection to the current selection list. Continue calling
AddSelection to create multiple selections.
The following example selects two ranges, A1:D4 and E5:H8.

F1Book1.Selection’ "A1:D4" ’Select A1:D4

F1Book1.AddSelection 5, 5, 8, 8 ’Add E5:H8

In addition, the following properties retrieve information about multiple selections.

The value of the SelectionCount property tells you the number of selections. You can use this if
a selection is made by the user and you need to determine how many ranges are selected.

The value of the Selection property gives you all current the selections in the form of a formula
(e.g. A1:D4,E5:H8).
Selecting Cells

Selecting Cells with the Mouse

Selecting Rows and Columns

Selecting Rows and Columns
Entire rows and columns can be selected in the worksheet at run time or in the Workbook Designer using
the mouse. To select a row or column, position the pointer on the header of the row or column you want to
select. When you click the header, the row or column is selected.

You can also select all rows and columns in the worksheet. To do this, position the pointer on the top left
header and click.

Selecting Cells

Using the Workbook Designer
The Workbook Designer is a Windows application that uses the Formula One workbook engine and
allows you to open, manipulate, and save a Formula One workbook. The designer allows you to visually
design workbooks for your application. With the designer, you can:

add, insert, delete, or name worksheets

enter data and formulas in worksheet cells

size rows and columns

format data

set the font attributes for data and headers

set column and row header text

format worksheet cells with colors and patterns

specify cell borders and border types

define names

protect and hide cells

set user permissions

select items to be shown and hidden

To launch the Workbook Designer:

1. Right click on the Formula One control to display the shortcut menu.

2. Select Workbook Designer from the shortcut menu.

Note    If the Formula One control is in edit mode, you can launch the Workbook designer by double-
clicking the right mouse button on the control.

Workbook Designer Overview

Workbook Designer Overview
The Workbook Designer is an interactive program, available in Design mode, that allows you to design
and format a workbook for your application by pointing and clicking, and choosing format commands from
menus. The Workbook Designer allows you to manipulate a workbook control just like it was a part of
spreadsheet application.

The following illustration shows the default appearance of the Workbook Designer. The toolbars in the
Workbook Designer are dockable. This means they can be dragged to a new location within the Designer,
or made to float on top of the Designer.

To move the dockable toolbars:

1. Select the toolbar you want to move.

2. Drag it to the new location

3. If you drag it to an edge of the Designer, the toolbar is docked on that side of the Designer. If you
drag and release the toolbar on top of the designer, the toolbar is left floating.

In this case, both toolbars have been left to float on top of the Designer.
The following illustration identifies the icons on each toolbar.

File Menu
Edit Menu
View Menu
Data Menu
Sheet Menu
Format Menu
Object Menu

File Menu
Command Description

New Creates a new file. This action deletes any
information currently in the Workbook Designer.

Read Opens a workbook file from disk. Files saved in
Formula One format (.VTS files), Excel 4.0 and 5.0
format (.XLS files), and tabbed text (.TXT) can be
opened.

Write Saves the current worksheet. Files can be saved in
Formula One format (.VTS files), Excel 4.0 or 5.0
format (.XLS files), or tabbed text (.TXT.)

Print Prints the active worksheet.

Page Setup Displays the Page Setup dialog box. This dialog box
allows you to define header and footer text, page
margins, page print order, page centering, worksheet-
related print options.

Print Setup Displays the standard Windows Print Setup dialog
box. This dialog box allows you to select the printer to
which the worksheet is sent, the page orientation,
and paper size.

Edit Menu
Command Description

Cut Cuts the current worksheet selection to the
clipboard.

Copy Copies the current worksheet selection to the
clipboard.

Paste Pastes the contents of the clipboard to the
current worksheet selection.

Paste Values Pastes values from the clipboard to the current
worksheet selection. Any formatting applied to
the values is ignored. In addition, only formula
results are pasted; formulas are ignored.

Clear Displays a dialog box that allows you to clear
data or objects from the current selection. You
can clear only formats, only values (including
formulas), or both formats and values.

Insert Inserts cells at the location of the current
selection. Cells adjacent to the insertion are
shifted to make room for the new cells.

If you use the keyboard shortcut CTRL + I, the
selected cells are shifted right to make room for
the inserted cells. If you use SHIFT + CTRL + I,
the selected cells are shifted down.

Delete Deletes the current selection. Cells adjacent to
the deleted cells are shifted to fill the space left
by the vacated cells.

f you use the keyboard shortcut CTRL + K, cells
to the right of the selected cells are shifted left to
fill the space left by the vacated cells. If you use
SHIFT + CTRL + K, cells below the selected cells

are shifted up.

Copy Right Data in the leftmost cell of the selected range is
copied right to fill the range.

Copy Down Data in the top cell of the selected range is
copied down to fill the range.

Goto Displays the Goto dialog box. This dialog box
allows you to specify a cell to display in the
worksheet window. The specified cell is made the
active cell.

View Menu
Command Description

Main Toolbar Toggles the display of the main toolbar.

Drawing Toolbar Toggles the display of the drawing toolbar.

Edit Bar Toggles the display of the edit bar.

Status Bar Toggles the display of the status bar.

Data Menu
Command Description

Recalc Recalculates the workbook.

Calculation Displays the Calculation dialog box. This dialog box allows you
to enable and disable automatic recalculation and specify
iteration values for calculating circular references.

Define Name Displays the Define Name dialog box. This dialog box allows you
to add and delete user defined names.

Sort Displays the Sort dialog box. This dialog box allows you to set
the sorting method and sort keys for data sorting.

AutoFill List Displays the AutoFill List dialog box. This dialog box allows you
to add, delete, or edit autofill lists.

Sheet Menu
Command Description

Set Print Area Defines the currently selected range in the active
worksheet as the Print_Area user-defined name.

Set Print Titles Defines the currently selected range in the active
worksheet as the Print_Titles user-defined name.

Set Page Breaks Places a horizontal page break adjacent to the top
edge of the active cell and a vertical page break
adjacent to the left edge of the active cell. If a row or
column is selected, a page break is placed adjacent to
the selected row or column.

Remove Page Breaks This command replaces Set Page Breaks if page
breaks are adjacent to the active cell. Removes page
breaks adjacent to the top edge and left edge of the
active cell.

Insert Sheet Inserts one or more worksheets. The number and
position of inserted worksheets is determined by the
number of selected worksheets. This command fails if
non-contiguous sheets are selected.

Delete Sheet Deletes the selected worksheets.

Color Palette Displays the Color Palette dialog box. This dialog box
allows you to edit colors in the color palette, specify a
default color, and use the default color palette.

Default Font Displays the Default Font dialog box. This dialog box
allows you to set the default font used to display data
in worksheets. In addition to setting the font and font
size used to display data in a worksheet, the default
font affects the widths of worksheet columns. Column
widths can be set in units equal to 1/256th of the
character 0 (zero) in the default font.

Enable Protection Enables protection for protected cells in the worksheet.
A check next to this command means that protection is
enabled. Select the command again to disable
protection.

Fix Row + Columns Fixes the selected columns or rows. Fixed columns
and rows do not scroll and cannot be edited.

Unfix Rows + Columns These commands replace Fix Rows or Fix Columns
when any rows or columns are currently fixed.

Format Menu
Command Description

Alignment Displays the Alignment dialog box. This dialog box
allows you to specify the horizontal and vertical
alignment of data in the selected range. In addition, you
can enable and disable word wrapping.

Font Displays the Font dialog box. This dialog box allows you
to specify the font, point size, font style, and color of
data in the selected range.

Border Displays the Border dialog box. This dialog box allows
you to specify the placement of borders in the selected
range. In addition, you can specify the border line style
and color.

The check boxes in the Border dialog box are three-
state check boxes, allowing "as is" selections to be
made.

Pattern Displays the Pattern dialog box. This dialog box allows
you to specify the fill pattern and foreground and
background colors for the selected range.

Cell Protection Displays the Cell Protection dialog box. This dialog box
allows you to specify whether the cells in the selected
range are locked and hidden.

General Formats data in the selected range with the General
format.

Currency (0) Formats data in the selected range with the Currency
format and a decimal precision of 0.

Currency (2) Formats data in the selected range with the Currency
format and a decimal precision of 2.

Fixed Formats data in the selected range with the Fixed
format.

Percent Formats data in the selected range with the Percent
format. Numbers with this format are displayed as

percentages with a trailing percent sign (%).

Fraction Formats data in the selected range with the Fraction
format. Numbers with this format are displayed as
fractions.

Scientific Formats data in the selected range with the Scientific
format.

M/D/YY Formats data in the selected range with the M/D/YY
date format. Numbers with this format are displayed as
dates.

H:MM AM/PM Formats data in the selected range with the H:MM
AM/PM time format. Numbers with this format are
displayed as times.

Custom Number Displays the Custom Number dialog box. This dialog
box allows you to define custom number formats for
data in the selected range.

Validation Rule Displays the Validation Rule dialog box. This dialog box
allows you to create or edit the validation rule for the
current selection.

Column Width Displays the Column Width dialog box. This dialog box
allows you to set the width of the selected columns,
specify default column widths, and specify automatic
column width. In addition, you can specify whether the
selected columns are shown or hidden.

Row Height Displays the Row Height dialog box. This dialog box
allows you to set the height of the selected rows,
specify default row heights, and specify automatic row
height. In addition, you can specify whether the
selected rows are shown or hidden.

Object Menu
Command Description

Pattern Sets the fill pattern and colors for the selected objects.

Line Style Sets the line style, width, and colors for the selected line object
or the border surrounding the selected arcs, ovals, polygons,
and rectangles.

Name Displays the Object Name dialog box. This dialog box allows
you to set a name for the selected object.

Options Displays the Object Option dialog box. This dialog box allows
you to set the input value cell for selected check boxes and list
boxes, the text displayed by check boxes and buttons, and the
list of items contained by list boxes.

Bring to Front Places the selected objects in front of other objects in the
worksheet.

Send to Back Places the selected objects behind other objects in the
worksheet.

Select All Selects all the objects in the worksheet.

Worksheet Data Entry
One of the basic tasks encountered when working with a workbook is data entry. Formula One provides
several methods for entering data.

Direct Entry. This is the most direct method of data entry. Data can be entered directly in a
worksheet at run time. Or, you can enter data in the Workbook Designer at design time.

Properties and methods. Several properties and methods allow you to enter data in the active
cell or a specified cell.
Adding the edit bar

Entering Data with Properties

Using AutoFill Lists

Validating Data

Worksheet Data Types

Cell References

Worksheet Errors

Understanding Functions

Using Names

Calculating Worksheets

Adding the edit bar
You can enter data into a worksheet by typing directly into a cell, or by typing into the edit bar. The edit
bar appears by default in the Workbook designer, and you can turn on or off the display of the edit bar
and cell reference indicator in your workbook control.

To control the display of the edit bar in the Workbook designer:

1. Select Edit Bar from the View menu to toggle the display of the edit bar.

To add an edit bar to your control:

Set the ShowEditBar property to True.

If the ShowEditBar property is True, you can also set the ShowEditBarCellReference to True to
display the cell reference indicator with the edit bar.
Important      The edit bar does not appear on the control unless the container makes it UI Active
(provides a window for it.)

Entering Data with Properties
Formula One provides a full complement of properties for entering data. In addition to entering data in the
active cell, a number of methods allow you to enter data in a cell you specify.

The following table lists the properties involved in entering data.

Property/ Method Description

Entry Sets or returns the value of the current cell in edit
mode format.

EntryRC Sets or returns the value of the specified cell in edit
mode format.

Formula Sets or returns the formula in the active cell.

FormulaRC Sets or returns the formula in the specified cell.

Logical Sets or returns the formula in the active cell.

LogicalRC Sets or returns the logical value of the specified cell.

Number Sets or returns the numeric value of the active cell.

NumberRC Sets or returns the numeric value of the specified cell.

Text Sets or returns the text value of the active cell.

TextRC Sets or returns the text in the specified cell.

Entering Multi-Line Data

Limiting Data Entry

Entering Multi-Line Data
A single cell can contain as many as nine lines or 256 characters of data. When entering the data, new
lines of data are specified within the cell by entering carriage return/line feeds.

When entering data interactively in the Workbook Designer or in a worksheet at run time, press
F2 when editing a cell. The Cell Text dialog box is displayed in which you can enter the cell data. To enter
a line feed, press RETURN. Click the OK button to accept the entry and return to normal worksheet
editing.

When entering data with properties or methods, you should specify line feeds with the ANSI
character codes for a carriage return/line feed pair (ANSI characters 13 and 10).
After entering multi-line data, you may need to resize the row and column in which the entry is placed in
order to view all the data. The following example uses the TextRC property to enter three lines of data in
cell A1.

F1Book1.TextRC(1, 1) = "Regional Sales (Chr(13) & Chr(10)) FY ’94 (Chr(13) & Chr(10)) Q2"

The following illustration shows the results of this example.

You can also enter multi-line row and column headers.

Formatting Row and Column Headings

Entering Data with Properties

Limiting Data Entry
Some applications may require that the user not be allowed to enter or edit data. To prevent data entry,
set the AllowInCellEditing property to False, and set ShowEditBar to False. Data and formula entry and
editing is thus prevented. Any data manipulation must be performed through program code.

Adding the edit bar

Limiting Formula Entry

Locking Cells

Validating Data

Limiting Formula Entry
If you only want to prevent the entering and editing of formulas, set the AllowFormulas property to False.
Setting this property to FALSE does not affect the entry and editing of constant values.

Limiting Data Entry

Locking Cells

Displaying Formulas

Entering Formulas

Formula Operators

Locking Cells
You can lock cells in the Workbook Designer, or through code:

To set editing permissions on a per cell basis:

1. Select the cells you want to lock.

2. Select Cell Protection from the Format menu.

3. Uncheck the Locked check box and click OK.

4. Select Enable Protection from the Sheet menu to enable protection for the entire worksheet.

This final step actually prevents the cells from being modified.

To set editing permissions on selected cells in code:

Use the SetProtection method to change the locked status of the currently selected cells.

Use EnableProtection to enable protection for the entire worksheet.
When a worksheet contains locked cells, ENTER, SHIFT-ENTER, TAB, and SHIFT-TAB advance the
selection to the next unlocked cell.

Limiting Data Entry

Limiting Formula Entry

Displaying Formulas
It is often convenient to display formula text instead of the values they produce. Setting ShowFormulas
to True, causes the worksheet to display formula text instead of formula results. Displaying formula text
can help you debug formula- related problems.

The following example enables and disables the display of formulas.

F1Book1.ShowFormulas = TRUE ’Displays formulas

F1Book1.ShowFormulas = FALSE ’Displays formula text

Entering Formulas

Formula Operators

Using AutoFill Lists
If you frequently use lists of names, months, or days of the week in your worksheet, you can let Formula
One do some of the work for you by using the autofill feature.

Formula One's default autofill lists contain frequently used series of text such as months, and days of the
week. When you enter one of the elements in these lists and drag the autofill handle, Formula One enters
the rest of the data from the list as needed to fill the range you mark.

The multi-line entry is placed in cell A1. Row 1 and column A have been resized so the entry is not
cropped.
Once Formula One has recognized the text as an item from an autofill list, pressing Tab puts the next list
item in the next cell to the right, or Enter puts the next list item in the next cell below.

Using AutoFill Lists

Adding AutoFill Lists

Deleting AutoFill Lists

Worksheet Data Types

Entering Constant Values

Adding AutoFill Lists
You can also add your own autofill lists through the Workbook Designer, or through code.

To add a new autofill list in the Workbook Designer:

1. Select Auto Fill Lists from the Data menu to display the AutoFill Lists dialog box.

By default, a new, empty line is selected in the Lists list box.

2. Type your new autofill list in the Current List list box, separating each item with a semi-colon.

3. Click Add.

Select the empty row at the end of the list and then type your new list in the Current List list box.

To add a new autofill list in code:

Use the AutoFillItemsCount property to determine how many autofill lists there are. Then
increment by one and use the AutoFillItems property to specify the new list. The following example
illustrates:

F1Book1.AutoFillItems (F1Book1.AutoFillItemsCount+1) = "First Grade, Second Grade, Third

Grade"

Note      Values recognized as data cannot be used as autofill list items, such as 1973;1974, 1a;1b,
1%;2%.

Using AutoFill Lists

Deleting AutoFill Lists

Deleting AutoFill Lists
You can also delete an existing autofill list.

To delete an autofill list in the Workbook Designer:

1. Select AutoFill Lists from the Data menu to display the AutoFill Lists dialog box.

2. Select the list you want to edit or delete from the Lists list box.

3. Click Delete.

To manipulate an autofill list in code:

Get the current string of text that makes up a list by returning the value of the AutoFillItems
property.

list = F1Book1.AutoFillItems(2)

Replace a list by setting the AutoFillItems property.

list = "1st Qtr;2nd Qtr;3rd Qtr;4th Qtr"

F1Book1.AutoFillItems(2) = list

Delete a list with the DeleteAutofillItems method.

F1Book1.DeleteAutoFillItems (F1Book1.AutoFillItemsCount -2)

Using AutoFill Lists

Adding AutoFill Lists

Validating Data
Another means of limiting data entry is to specify a validation rule for a cell. A validation rule consists of a
formula to test, and text to display if the validation fails. If the formula returns True, the value is entered. If
the formula returns a text string, the string is displayed and the value is not entered. If the formula returns
False, the value is not entered and the validation text is displayed in an error dialog box.

For example, you can limit the range of values a user can enter in a cell by creating a rule that fails if the
user enters a number under 100 and displays the message "Enter a value greater than 100."

You can use relative references in validation rules. These references are considered to be relative to the
active cell. This allows a validation rule to be properly applied to an entire range.

Note    Validation rules are only checked data is entered manually, or through use of the Entry or
EntryRC property. Any other way of entering data, such as selecting a value from a check box, bypasses
validation.

To create a validation rule in the Workbook Designer:

1. Select the cell for which you want to create a validation rule.

2. Select Validation Rule from the Format menu to display the Validation Rule dialog box.

3. Enter a validation formula in the Rule text box.

4. Enter text to be displayed if the data fails the validation test in the Text box.

5. Click OK.

This illustration shows the validation rule created for cell A1.

This illustration shows the message displayed when the data entered in cell A1 fails the validation rule.

To work with validation rules in code:

Use the GetValidationRule method to return the validation rule associated with the specified cell.

Use the SetValidationRule method to create, or edit the validation rule associated with a cell.

Use the ValidationRuleDlg method to display the Validation Rule dialog box.

Use the ValidationFailed event to respond progammatically when data fails, you can even
change the value of the data within the ValidationFailed event and attempt to revalidate.

Limiting Data Entry

The Validation Formula

Worksheet Data Types

The Validation Formula
The validation formula follows basically the same rules as those for defined names. It must also be a
worksheet formula that evaluates to True or False. Following are a number of examples of validation
formulas.

SUM(A6:A7) > A5

AND(A6>1, A6 <100)

IF (A7>1,A7<100,A7>0)

OR(ISLOGICAL (A7), A7=1,A7=0)

Validating Data

Worksheet Data Types
Cells can contain two types of information - constant values and formulas.

Constant values are numbers, including dates and times, logical values, error values, and text.

Formulas are groups of constant values, cell references, names, functions, and operators that
result in a new value when calculated or evaluated.
Entering Constant Values

Entering Formulas

Entering Functions

Entering Constant Values
Numbers.Numeric entries can contain numeric characters (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0) and the
special characters (e.g., +, -, (,), /, $, %, ., E, and e).

Negative numbers can be preceded by a minus sign or enclosed in parentheses.

Commas can be included in numeric entries as thousands separators.

Numeric entries containing leading dollar signs are formatted as currency.

Numeric entries containing trailing percent signs are formatted as percentages.
Formula One accepts numeric entries as fractions. If the fraction contains a leading integer (e.g., 1 1/3) it
can be entered directly. If there is no leading integer, the fraction should be preceded by a zero (e.g., 0
2/3).

Numbers larger than the cell in which they are entered are converted to scientific notation unless a
specific format is applied.

Use the SetColWidthAuto method to automatically set the column width to the correct size for all data in
the column. The following code automatically sets the widths of columns 1 through 10.

F1Book1.SetColWidthAuto -1, 1, -1, 10, False

Dates and Times. Dates and times are automatically recognized by Formula One. They are entered in
the cell as values and automatically formatted. The following date and time formats are automatically
recognized.

Entered Format Assigned

3/15/94 m/d/yy

15-Mar-94 d-mmm-yy

15-Mar d-mmm

Mar-94 mmm-yy

9:55 PM h:mm AM/PM

9:55:33 PM h:mm:ss AM/PM

21:55 h:mm

21:55:33 h:mm:ss

3/15/94 21:55 m/d/yy h:mm

Text. Text is any set of characters that Formula One does not recognize as a number, date, or time.

Text that is wider than a cell ordinarily spills over into the cell immediately to the right. You can specify that
text should wrap within the cell by enabling word wrap in your alignment format settings.

Logical and Error Values. Logical and error values are not normally entered directly in cells; they are
usually the result of a formula. However, entering these values can be useful for testing formulas.

The logical values that can be entered are TRUE and FALSE. The error values that can be entered are
#N/A, #VALUE!, #REF!, #NULL!, #DIV/0!, #NUM!, and #NAME?.

Worksheet Data Types

Entering Formulas

Cell References

Entering Formulas
Formulas are the basic building blocks for analyzing and calculating worksheet data. A formula is a string
containing numbers, operators, worksheet functions, cell references, and names. A formula can contain
as many as 1024 characters.

When you manually enter a formula in a worksheet, you must begin the entry with an equal sign
(=). Formula One recognizes this entry as a formula.

When entering a formula using the Formula and FormulaRC properties, exclude the leading
equal sign. These entities expect strings.
Numbers in formulas can be followed by a percent sign (%). Numbers with trailing percent signs are
treated as percentages (e.g., 100% is evaluated as 1).

If text is encountered when a number is expected, the text is converted to a number. For example, the
formula 1 + "3" returns 4, because "3" is converted to a number. If the text cannot be converted to a valid
number (e.g., 1 + "Text"), #VALUE! is returned.

Likewise, if a number is encountered when text is expected, the number is converted to text. The formula
"The number is "&3 converts to the text string "The number is 3".

The value TRUE always converts to 1; while FALSE converts to 0. If a number is encountered when a
logical value is expected, a zero is converted to FALSE. All other numbers are converted to TRUE. If text
is encountered when a logical value is expected, "TRUE" is converted to TRUE; "FALSE" is converted to
FALSE. All other text returns #VALUE!.

Dates and times are recognized and converted to their serial values. For example, "10/10/94" - "10/1/94"
equals 9.

Limiting Formula Entry

Displaying Formulas

Entering Constant Values

Formula Operators

Cell References

Worksheet Errors

Built-In Worksheet Functions

Using Names

Calculating Worksheets

Formula Operators
When creating formulas, Formula One provides a set of operators for specifying the type of calculation or
evaluation to be performed on the formula data. The following table lists the formula operators.

Operator Type Operator Description

Arithmetic + Addition

- Subtraction

/ Division

* Multiplication

% Percentage

^ Exponentiation

Text & Concatenation

Comparison = Equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less then or equal to

<> Not equal to

Reference :, .., . Range - produces a reference that
includes all the cells between the two
references (e.g., A1:A5 includes cells A1
and A5 and all cells in between).

, Union - produces one reference that
includes the two references (e.g.,
A1:A10,C1:C10).

Entering Formulas

Operator Precedence

Operator Precedence
When combining operators in a formula, Formula One uses a specific order of precedence to calculate
the formula. The following table lists the order of precedence for formula operators.

Operator Description

() Parentheses

:, .., . Range

, Union

- Negation (single operand)

% Percentage

^ Exponentiation

* and / Multiplication and Division

+ and - Addition and Subtraction

& Text concatenation

= < > <= >= <> Comparison

Operators of like precedence are evaluated left to right. Parentheses should be used when it is necessary
to change the order of evaluation. The following example illustrates how the result of a formula can be
altered by adding parentheses to change the order of precedence.

Formula Result

1+2*37 75

(1+2)*37 111

As illustrated in the previous table, the multiplication operator (*) has higher precedence than the addition
operator (+). It is evaluated first unless parentheses are used to force the addition to take place first.

Entering Formulas

Formula Operators

Cell References
A reference identifies a cell by referring to the row and column coordinates of the cell. References are
based on the row and column headings. For example, A1 refers to the cell at the intersection of row 1 and
column A. References can be used in formulas to access data from a worksheet.

A range of cells is specified by placing a colon (:) between two cell references. For example, the
reference A1:C3 refers to the range anchored by cells A1 and C3. The range includes all cells in columns
A, B, and C of rows 1, 2, and 3.

Entering Formulas

Absolute and Relative References

References to Other Worksheets

References to Multiple Worksheets

External References

Automatically Entering Cell References

Using Names

Absolute and Relative References
There are two types of cell references - relative and absolute.

Relative references point to a cell based on its relative position to the current cell. When the cell
containing the reference is copied, the reference is adjusted to point to a new cell with the same relative
offset as the originally referenced cell.

Absolute references point to a cell at an exact location. When the cell containing the formula is
copied, the reference does not change. Absolute references are designated by placing a dollar sign ($) in
front of the row and column that is to be absolute.
References can be part absolute and part relative. These are called mixed references. The following table
lists the reference types.

Reference Type

A1 Relative reference pointing to cell A1.

A1 Absolute reference pointing to cell A1.

$A1 Absolute column reference, relative row reference
pointing to cell A1.

A$1 Relative column reference, absolute row reference
pointing to cell A1.

The reference operators can be used to specify multiple ranges in the same reference. For example,
A1:C1,A10:C10 specifies the three cells A1, B1, and C1 and the three cells A10, B10, and C10. The
formula =SUM(A1:C1,A10:C10) adds the values in all six cells.

Cell References

References to Other Worksheets

References to Multiple Worksheets

External References

Automatically Entering Cell References

References to Other Worksheets
You can reference cells in other worksheets.

To reference a worksheet in the same workbook, use the following syntax:

Sheet3!A1

To reference a worksheet in a different workbook, use the following syntax:

[F1Book1]Sheet1!A1:B2

Workbooks are referenced by the value of their Title property, and must be loaded in another control for
the reference to work.

Cell References

Absolute and Relative References

References to Multiple Worksheets

External References

Automatically Entering Cell References

References to Multiple Worksheets
You can also refer to multiple worksheets, or ranges in multiple worksheets. The following example
references cell A1 in Sheet1 and cell A1 in Sheet2.

Sheet1C:Sheet2!A1

Important      Worksheets must be referenced in index order. For example, the reference to the sheet
indexed 1 must come before the reference to the sheet indexed 2. Remember that the worksheet index is
usually different that the sheet name that appears on the sheet tab. Worksheets are indexed from left to
right, beginning with 1.

The following syntax references the range A1 to B2 in Sheet1 and the range A1 to B2 in Sheet2.

Sheet1:Sheet2!A1:B2

You can also reference multiple worksheet ranges in a different workbooks by referencing the workbook
name at the beginning of the syntax.

[F1Book1]Sheet1:Sheet2!A1

[F1Book2]Sheet1:Sheet2!A1:B2

Cell References

Absolute and Relative References

References to Other Worksheets

External References

Automatically Entering Cell References

Solving Circular References

External References
References can point to cells in other workbooks. This type of reference is called an external reference.
An external reference is created by placing a workbook name in brackets, followed by the worksheet
name and an exclamation point, and finally a cell reference. The following table shows examples of
external references.

Reference Type

[Sales]Sheet1!A1 Relative reference pointing to cell A1 in the first worksheet of a
workbook titled Sales.

[FY91]Sheet2!A1 Absolute reference pointing to cell A1 in the second worksheet of a
workbook titled FY91.

[Q1]Sheet1:Sheet2!$A1 Absolute column reference, relative row reference pointing to cell
A1 in the first and second worksheets in a workbook titled Q1.

[Store1]Sheet1:Sheet4!A1:F1 Relative row and column reference, pointing to the range A1 to F1
in a workbook titled Store1.

Cell References

Absolute and Relative References

References to Other Worksheets

References to Multiple Worksheets

Automatically Entering Cell References

Solving Circular References

Automatically Entering Cell References
Cell references can be automatically entered as you enter a formula.

To automatically enter a cell reference:

1. Enter the formula to the point of the range reference.

2. With the mouse, select the cell or range you want to reference.

The reference of the range you select is automatically placed in the formula.

When you enter a cell reference in this manner, Formula One assumes it is a relative reference.

Cell References

Absolute and Relative References

References to Other Worksheets

References to Multiple Worksheets

External References

Solving Circular References

Worksheet Errors
When a formula cannot be properly calculated, an error is returned in the cell. The following table lists the
errors that can be generated.

Error Cause

#ARRAY_FORMULA! Formula One read in a file that contained an array
formula. Since this feature is not supported in Formula
One, this error value is placed in the cell which used to
contain the array formula.

#DIV/0! Divide by zero. May be caused by a reference to a
blank cell or a cell containing zero.

#N/A No value is available. May be caused by inappropriate
values in the formula or a reference to a cell containing
the #N/A value.

#NAME? Name is not recognized. May be caused by a user
defined name that is not defined.

#NULL! Null intersection. An intersection of two ranges was
defined that does not intersect.

#NUM! Number problem. May be caused by inappropriate
numbers in functions, an iteration that cannot solve for
a value, or a formula that results in a number too large
or too small to represent.

#REF! Reference error. May be caused by referring to a cell
that was deleted.

#VALUE! Wrong argument type. May be caused by entering text
where a number was expected, or supplying a range to
an operator or function that was expecting a single
value.

Entering Formulas

Built-In Worksheet Functions

Understanding Functions

Built-In Worksheet Functions
Formula One contains a set of 130 built-in worksheet functions that provide the ability to perform complex
calculations with very little work.

Worksheet functions:

calculate and evaluate data.

can be used alone or in a formula.

are entered directly in the worksheet.
Like formulas, worksheet functions return data to the cell in which they are entered.

Each function performs a specific calculation. The SQRT function is an example of a built in function. With
this function, you can easily calculate the square root of a number. The following example calculates the
square root of 118:

=SQRT(118)

Understanding Functions

Entering Functions

Nesting Functions

Entering Arguments

Syntax Errors

Calculating Worksheets

Understanding Functions
Most worksheet functions are composed of keywords and arguments. Every worksheet function contains
a keyword, but not all functions require arguments.

The keyword identifies the function and tells the worksheet what type of calculation or evaluation
is performed. Each function keyword is unique.

Arguments provide the data for the function to calculate or evaluate. The arguments for a function
immediately follow the function keyword and are enclosed in parentheses.
Built-In Worksheet Functions

Entering Functions

Nesting Functions

Entering Arguments

Syntax Errors

Using Names

Calculating Worksheets

Entering Functions
When entering functions in a worksheet, all functions are preceded by an equal sign (=). The leading
equal sign tells the worksheet that the following information is to be evaluated or calculated.

The function keyword follows the equal sign. It can be entered in lowercase or uppercase characters.
After the function is entered, the worksheet records the function keyword in uppercase characters,
regardless of how it was entered.

If a function requires multiple arguments, the arguments are separated by commas. Some functions
contain optional arguments. If you omit an optional argument, a default value is assumed for the
argument.

Functions that do not require arguments still require a set of parentheses following the function keyword.

Built-In Worksheet Functions

Understanding Functions

Nesting Functions

Entering Arguments

Syntax Errors

Nesting Functions
A function can be used as an argument for another function. When a function is used in this manner, you
are nesting functions. The nested function must return the appropriate type of data for the function in
which it is nested. You must also provide the necessary arguments for the nested function.

In the following example, the AVERAGE function is used as an argument for the SUM function. In this
case, AVERAGE is nested in SUM.

=SUM(5.23, 6.82, AVERAGE(2.45, 5.62, 7.74), 8.95, 9.01)

Built-In Worksheet Functions

Understanding Functions

Entering Functions

Entering Arguments

Syntax Errors

Entering Arguments
The arguments for a function can be:

Numerical values

Logical values

Text strings

Error values

References to cells or ranges
For most arguments, you can substitute a cell or range reference for the data required by an argument.
For example, if an argument requires a number, you can substitute a reference to a cell that contains a
number. The number in the referenced cell is used in the calculation of the function. The data in the
referenced cell must be appropriate for the argument for which it is used.

Built-In Worksheet Functions

Understanding Functions

Entering Functions

Nesting Functions

Syntax Errors

Syntax Errors
If the worksheet function you enter contains syntax errors, Formula One does not allow the function to be
entered. You must correct the errors before proceeding with other tasks.

Built-In Worksheet Functions

Understanding Functions

Entering Functions

Nesting Functions

Entering Arguments

Using Names
User defined names are an easy way to identify a cell, a group of cells, a value, or a formula. For
example, the formula "= Sales - Expenses" is much clearer than "=A10 - A6".

You can also use names to identify constants and formula expressions. For example, you might define
the name LightSpeed as 186000. You could then use the name LightSpeed in all your formulas. Or, you
could define the name SqRtTwo as the formula SQRT(2).

To define names in the Workbook Designer:

1. If you are naming a range, select it.

2. Choose Defined Name from the Data’menu.

3. Enter the name you want to define.

4. Enter the formula that describes the name.

If this is a range, enter a range reference. If this is a formula, enter the formula.

5. Click Add to add the new name to the list.

You can delete any name from the list by selecting it in the list and clicking Delete.
To define names in code:

Use the DefinedName property. The following code uses this property to define a name.

F1Book1.DefinedName ("Sales") = "A10"

This example defines the name "Sales" as A10. The name "Sales" can then be used in formulas
instead of the reference.

Formula One has a set of built-in names. These names are used by the print functions. The built-in
names are listed in the following table.

Built in Name Purpose

Print_Area Defines the print area used during printing. This name can
contain one or more ranges (e.g., A1:C3,A11:C13).

Print_Titles Defines the row and column titles that are printed on each new
page. Entire rows and columns must be selected when you
define this name.

Cell References

Calculating Worksheets
Formula One calculates cells in natural order. In natural order calculation, formulas are calculated in such
a way that all dependencies are calculated before their dependents. This ensures that the formula results
are always correct.

When a worksheet is edited, formula references are adjusted so they point to the correct cells. Then,
Formula One determines the natural order of the formulas.

When a change is made to a cell, the formulas are recalculated to keep all worksheets in the workbook
current, ensuring that data is always valid.

Setting Automatic Recalculation

Solving Circular References

Setting Automatic Recalculation
Normally, automatic recalculation is enabled. In this mode, the worksheet is recalculated each time a cell
is changed and system processing is idle.

For moderate sized worksheets, recalculation operations happen in a fraction of a second. But for large
worksheets or situations where many cells are changed by code, this reorganization and recalculation
process can slow system processing.

In these situations, it is sometimes desirable to disable automatic recalculation while your code operates
on the worksheet. Automatic recalculation can be disabled with the AutoRecalc property. After the
completion of an operation, automatic recalculation can be enabled and the worksheet updated.

Calculating Worksheets

Solving Circular References

Solving Circular References
There are some circumstances where a formula refers to its own cell, either directly or indirectly. This is
called a circular reference. To solve a formula that contains a circular reference, iteration must be used.
Iteration is the process of repeatedly calculating a worksheet until a specific condition is met.

Formula One supports iteration using the SetIteration and CalculationDlg methods. These methods
allow you to specify the maximum number of iterations and the maximum change between iterations. The
iteration continues until one of those two conditions is met.

The following example includes a circular reference:

Suppose your small business has 10,000 shares of stock owned by four shareholders. You decide to let a
fifth shareholder enter your partnership. In return for his investment, you give him 10 percent of the
company. How many more shares will the company have to issue to give the new investor 10% of the
company?

The following illustration shows the results of this example as it is entered in a worksheet.

The formulas in B2 and B3 create a circular reference in this example worksheet.

The first worksheet shows the formula text, the second worksheet shows the results of the formulas.

Calculating Worksheets

Setting Automatic Recalculation

Cut, Copy, and Paste Methods
Ranges of data can be edited using one of several editing methods. Formula One automatically adjusts
cell references when cells are moved. Thus, the integrity of worksheet formulas remains intact.

Formula One maintains its own internal clipboard and also supports text on the Windows clipboard. The
internal clipboard is more flexible than the Windows clipboard. The internal clipboard retains formulas and
allows cell references to be adjusted when cells are pasted. The Windows clipboard only holds text, and
formatting; cell references are not maintained by the Windows clipboard.

The following table describes the methods that interact with the clipboards.

Method Operation

ClearClipboard Clears the internal clipboard.

CopyAll Copies the contents of the active worksheet in the specified view
to the active worksheet in the current view.

EditCopy Copies the current selection to the internal clipboard and the
Windows clipboard (in text format only). If there is more than one
selection, only the first selection is copied.

EditCut Cuts the current selection to the internal clipboard. If there is
more than one selection, only the first selection is cut.

EditPaste Pastes the contents of the internal clipboard to the current
selection. If the internal clipboard is empty, text is pasted from the
Windows clipboard. You can also paste tab-delimited blocks of
data.

EditPasteValues Pastes values from the clipboard to the current worksheet
selection. Any formatting applied to the values is ignored. In
addition, only formula results are pasted; formulas are ignored.

If you cut a cell to which formulas refer, the formula references are maintained while the cell
remains in the clipboard. If the cell is subsequently pasted, references in the original formulas are
adjusted to point to the cell's new location.

If a cell containing a formula is copied and subsequently pasted, its relative references are
adjusted to point to a new location.
Copying Data Across Ranges

Copying Data Interactively

Interactively Copying Ranges

Moving Data

Inserting Cells, Rows, and Columns

Clearing and Deleting Cells, Rows, and Columns

Copying Data Across Ranges
Four methods copy data within and between worksheets. The following table describes these methods.

Method Operation

EditCopyDown Copies the top row of the selection down. Relative references are
automatically adjusted.

EditCopyRight Copies the left column of the selection right. Relative references
are automatically adjusted.

CopyRange Copies a range from one range to another, within the same
workbook or between workbooks.

CopyRangeEx Copies a range from one worksheet to another, within the same
workbook or between workbooks.

Cut, Copy, and Paste Methods

Copying Data Interactively

Interactively Copying Ranges

Copying Data Interactively
You can copy data interactively by dragging the copy handle of a selection. The copy handle is the small
knob in the lower right corner of a selection. When you copy data using the copy handle, the pointer
changes to a small crosshair.

You can disable the user's ability to copy data by setting the AllowFillRange property to False. This
disables interactive data copying.
Cut, Copy, and Paste Methods
Copying Data Across Ranges
Interactively Copying Ranges

Interactively Copying Ranges
You can copy data interactively by dragging a selected range in a worksheet.

To interactively copy a range:

1. Position the pointer on the border of the selection you want to copy.

When placed on the selection border, the pointer changes to an arrow.

2. Press the CTRL key.

3. With the pointer on the selection border, click and drag the range.

An outline of the selected range moves as you drag the pointer.

4. Release the mouse button at the location where you want to place the copied range.

The original range is not moved. The following illustration shows the steps required to interactively copy a
range.

Cut, Copy, and Paste Methods
Copying Data Across Ranges
Copying Data Interactively

Moving Data
There are several ways you can move ranges of data. The easiest way is to use the MoveRange method.
When you use this method, the integrity of formula cell references is maintained.

If there is special processing that must be performed when data is moved, you can use a loop in C or C++
code to move the data. However, cell references are not adjusted using this technique.

Copying Data Across Ranges

Interactively Moving Ranges

Interactively Moving Ranges
In addition to interactively copying ranges, you can move ranges interactively by clicking and dragging a
selection.

To interactively move a range:

1. Position the pointer on the border of the selection you want to move.

When placed on the selection border, the pointer changes to an arrow.

2. With the pointer on the selection border, click and drag the range.

An outline of the selected range moves as you drag the pointer.

3. Release the mouse button at the location where you want to place the selected range.

The following illustration shows the steps required to interactively move a range.

You can disable the user's ability to move data by setting AllowMoveRange property to False. This
disables interactive data moving.
Moving Data

Inserting Cells, Rows, and Columns
You can insert cells, rows or columns in the Workbook Designer or through code.

To insert new cells in the Workbook Designer:

1. Select one of the following, depending on what you want to insert.

Range. Select a range of cells in the size and position you want to insert new cells.

Row. Select the row where you want the new row inserted by clicking on the row heading. Select
as many rows as you want to insert. To select additional row headings, hold down Shift when you click on
the heading. For example, to insert 3 rows, select three rows.

Column. Select the column where you want the new column inserted by clicking on the column
heading. Select as many columns as you want to insert. To select additional column headings, hold down
Shift when you click on the heading. For example, to insert 3 columns, select three columns.

2. Select Insert from the Edit menu.

If you insert a range or columns, any existing data is shifted right. If you insert columns, any existing data
is shifted down.

To insert new cells in code:

Use the InsertRange method to insert new cells in a worksheet. You supply a range where new
cells are inserted and specify how the current cells in that range should be shifted to make room for the
new cells.

The following example inserts a two by two block of cells starting at B2. The current cells in the
range B2:C3 are shifted downward to make room for the new cells.

F1Book1.InsertRange 2, 2, 3, 3, F1ShiftVertical

Use the EditInsert method to insert cells, rows, and columns. You specify whether rows,
columns, or cells should be inserted. This method call uses the currently selected range to determine how
many rows, columns, or cells to insert.

When new cells are inserted, cell references in formulas are adjusted so the formulas remain
correct.

The next four examples assume the range A4:B5 is selected (a two by two range). In the following
code, data in all columns and rows 4 and below is shifted down two rows to allow room for the
inserted cells.

F1Book1.EditInsert F1ShiftRows

The following code shifts all data in the worksheet right two columns to allow room for the inserted
cells.

F1Book1.EditInsert F1ShiftCols

In the following code, data in all columns of rows 4 and 5 is shifted right two columns to allow room
for the inserted cells

F1Book1.EditInsert F1ShiftHorizontal

In the following code, data in columns A and B in rows 4 and below is shifted down two rows to
allow room for the inserted cells

F1Book1.EditInsert F1ShiftVertical

Clearing and Deleting Cells, Rows, and Columns

Clearing and Deleting Cells, Rows, and Columns
You can delete or clear cells, rows or columns in the Workbook Designer or through code. Deleting cells
removes the cells and shifts the surrounding data to fill the space. Clearing cells, leaves the cells, but
deletes the data.

To delete cells in the Workbook Designer:

1. Select the cells, rows, or columns you want to delete.

2. Select Delete from the Edit menu.

If you delete a range or columns, any data to the right of the deleted cells is shifted left. If you
delete rows, any existing data below the deleted rows is shifted up.

To clear cells in the Workbook Designer:

1. Select the cells, rows, or columns you want to clear.

2. Select Clear from the Edit menu to display the Clear dialog box.

3. Select All, Formats, or Values, depending on what you want to clear from the cell. All clears the
value and its formatting. Formats leaves the value, but clears any formatting. Values clears only
the value.

4. Click OK.

To delete or clear cells in code:

Several methods delete and clear data. The following table lists these methods.

Method Operation

EditDelete Deletes the current selection.

DeleteRange Deletes the specified range.

EditClear Clears the current selection.

ClearRange Clears the specified range.

EditDelete is similar to the EditInsert method. For EditDelete, you specify whether cells, rows,
or columns should be deleted. The number of cells, rows, or columns deleted is determined from the
current selection. For example, to delete rows (based on the current selection), you could use the
following code:

F1Book1.EditDelete F1ShiftRows

If you delete cells (e.g., using EditDelete or DeleteRange) to which a formula refers, those formulas
return a #REF! error because the referenced cells no longer exist.

To delete a specific range instead of the current selection, use the DeleteRange method. This
method allows you to explicitly specify the range to delete. The following code uses this method.

F1Book1.DeleteRange 1, 1, 3, 3, F1ShiftRows

Clearing a cell can clear the value or format in a cell, or both. You can also specify whether or not
formulas are cleared. Clearing does not shift other cells in the worksheet. The cleared cell has a value of
zero. Formulas that refer to cleared cells obtain a value of zero from those cells.

You can use EditClear or ClearRange to clear a cell or range of cells. The following example
clears the current selection.

F1Book1.EditClear F1ClearAll

Alternately, you can use the following example to clear specific rows or columns instead of the

current selection.

F1Book1.ClearRange 1, 1, 3, 3, F1ClearAll

Inserting Cells, Rows, and Columns

Sorting Data in Worksheets
You can sort the data in a worksheet and specify the keys by which the data is sorted. SortDlg displays a
dialog box that allows the user to specify sort keys, sort rows or columns, and ascending or descending
sort order. Before using the sort dialog box, a range in a worksheet must be selected. The data in the
selected range is the data that is sorted.

You can also sort worksheet data using the Sort or Sort3 methods.

Formatting Worksheets
Formula One supports a rich set of data formatting capabilities. When a worksheet is first created, all cells
use the General format. As you enter data in the worksheet, Formula One determines the type of data
and applies the appropriate format (e.g., if you enter a date, a date format is applied).

Formatting Worksheets

Built-in Number Formats

Formatting Rows and Columns

Custom Formatting

Aligning Data

Changing Row Heights and Column Widths

Fixing Rows and Columns

Setting Cell Borders and Colors

Formatting Row and Column Headings

Setting Row and Column Text

Built-in Number Formats
You can apply a number of built-in number formats in the Workbook Designer by highlighting a range of
cells and selecting the format from the Format menu.

The following table lists the built-in number formats and the result after the format is applied to a positive,
negative, and decimal number.

Category Format 3 -3 .3

All General 3 -3 .3

Currency $#,##0_);($#,##0) $3 ($3) $0

$#,##0_);[RED]($#,##0) $3 ($3) in red $0

$#,##0.00_);($#,##0.00) $3.00 ($3.00) $0.30

$#,##0.00_);[RED]$(#,##0.00) $3.00 ($3.00) in red $0.30

Fixed 0 3 -3 0

0.00 3.00 -3.00 0.30

#,##0 3 -3 0

#,##0.00 3.00 -3.00 0.30

#,##0_);(#,##0) 3 (3) 0

#,##0_);[RED](#,##0) 3 (3) in red 0

#,##0.00_);(#,##0.00) 3.00 (3.00) 0.30

#,##0.00_);[RED](#,##0.00) 3.00 (3.00) in red 0.30

Percent 0% 300% -300% 30%

0.00% 300.00% -300.00% 30.00%

Fraction # ?/? 3 -3 2/7

??/?? 3 -3 3/10

Scientific 0.00E+00 3.00E+00 -3.00E+00 3.00E-01

Obtaining Formatted Text

Custom Formatting

Formatting Rows and Columns
If you format a row or column, that format is applied to all cells in the row or column. When you enter data
in a cell in a formatted row or column, the data assumes the designated format.

Formula One allocates memory by rows. Formatting empty rows or columns does not use memory. A
format is merely attached to a row or column. Formatting empty ranges is treated differently. If you format
a range of empty cells, a group of formatted, empty cells is created. Each new formatted, empty cells
consumes memory.

Built-in Number Formats

Obtaining Formatted Text

Custom Formatting

Obtaining Formatted Text
You can obtain the formatted text in a cell by retrieving the value of the FormattedText or
FormattedTextRC properties. These properties return text exactly as it is displayed in the worksheet.

Built-in Number Formats

Formatting Rows and Columns

Custom Formatting

Custom Formatting
In addition to the built-in formats, you can define custom formats. Each custom format can have as many
as four sections - one for positive numbers, one for negative numbers, one for zeros, and one for text.
Each section is optional, The sections are separated by semicolons. The following example shows a
custom format.

#,###;(#,###);0;"Error: Entry must be numeric"

To define a custom number format in the Workbook Designer:

1. Select a range of cells to be formatted.

2. Choose Custom Number from the Format’menu    to display the Custom Format dialog box.

3. Enter a format built from the custom format characters described later in this chapter.

To define a custom format programmatically:

Use the NumberFormat property. The following code sets NumberFormat to format numbers in
the current selection with two decimal places and negative numbers with parentheses.

F1Book1.NumberFormat = ("#,##0.00_);(#,##0.00)

Use FormatNumberDlg to display the Custom Format dialog box. This dialog box allows you to
select existing formats as well as define custom formats. The selected format is applied to all selections.
The following code displays the Custom Format dialog box.

F1Book1.FormatNumberDlg

The following table lists the format symbols that can be used in a custom format string.

Format Symbol Description

General Displays the number in General format.

0 Digit placeholder. If the number contains fewer digits
than the format contains placeholders, the number is
padded with 0's. If there are more digits to the right of the
decimal than there are placeholders, the decimal portion
is rounded to the number of places specified by the
placeholders. If there are more digits to the left of the
decimal than there are placeholders, the extra digits are
retained.

Digit placeholder. This placeholder functions the same as
the 0 placeholder except the number is not padded with
0's if the number contains fewer digits than the format
contains placeholders.

? Digit placeholder. This placeholder functions the same as
the 0 placeholder except that spaces are used to pad the
digits.

. (period) Decimal point. Determines how many digits (0's or #'s)
are displayed on either side of the decimal point. If the
format contains only #'s left of the decimal point,
numbers less than 1 begin with a decimal point. If the
format contains 0’s left of the decimal point, numbers
less than 1 begin with a 0 left of the decimal point.

% Displays the number as a percentage. The number is
multiplied by 100 and the % character is appended.

, (comma) Thousands separator. If the format contains commas
separated by #'s or 0's, the number is displayed with
commas separating thousands. A comma following a

placeholder scales the number by a thousand. For
example, the format 0, scales the number by 1000 (e.g.,
10,000 would be displayed as 10).

E- E+ e- e+ Displays the number as scientific notation. If the format
contains a scientific notation symbol to the left of a 0 or #
placeholder, the number is displayed in scientific notation
and an E or an e is added. The number of 0 and #
placeholders to the right of the decimal determines the
number of digits in the exponent. E- and e- place a
minus sign by negative exponents. E+ and e+ place a
minus sign by negative exponents and a plus sign by
positive exponents.

$ - + / () : space Displays that character. To display a character other than
those listed, precede the character with a back slash (\)
or enclose the character in double quotation marks (" ").
You can also use the slash (/) for fraction formats.

\ Displays the next character. The backslash is not
displayed. You can also display a character or string of
characters by surrounding the characters with double
quotation marks (" ").

The backslash is inserted automatically for the following
characters:

! ^ & ` (left quote) ' (right quote) ~ { } = < >

* (asterisk) Repeats the next character until the width of the column
is filled. You cannot have more than one asterisk in each
format section.

_ (underline) Skips the width of the next character. For example, to
make negative numbers surrounded by parentheses
align with positive numbers, you can include the format
_) for positive numbers to skip the width of a parenthesis.

"text" Displays the text inside the quotation marks.

@ Text placeholder. If there is text in the cell, the text
replaces the @ format character.

m Month number. Displays the month as digits without
leading zeros (e.g., 1-12). Can also represent minutes
when used with h or hh formats.

mm Month number. Displays the month as digits with leading
zeros (e.g., 01-12). Can also represent minutes when
used with the h or hh formats.

mmm Month abbreviation. Displays the month as an
abbreviation (e.g., Jan-Dec).

mmmm Month name. Displays the month as a full name (e.g.,
January-December).

d Day number. Displays the day as digits with no leading
zero (e.g., 1-2).

dd Day number. Displays the day as digits with leading
zeros (e.g., 01-02).

ddd Day abbreviation. Displays the day as an abbreviation
(e.g., Sun-Sat).

dddd Day name. Displays the day as a full name (e.g.,
Sunday-Saturday).

yy Year number. Displays the year as a two-digit number

(e.g., 00-99).

yyyy Year number. Displays the year as a four-digit number
(e.g., 1900-2078).

h Hour number. Displays the hour as a number without
leading zeros (1-23). If the format contains one of the AM
or PM formats, the hour is based on a 12-hour clock.
Otherwise, it is based on a 24-hour clock.

hh Hour number. Displays the hour as a number with
leading zeros (01-23). If the format contains one of the
AM or PM formats, the hour is based on a 12-hour clock.
Otherwise, it is based on a 24-hour clock.

m Minute number. Displays the minute as a number without
leading zeros (0-59). The m format must appear
immediately after the h or hh symbol. Otherwise, it is
interpreted as a month number.

mm Minute number. Displays the minute as a number with
leading zeros (00-59). The mm format must appear
immediately after the h or hh symbol. Otherwise, it is
interpreted as a month number.

s Second number. Displays the second as a number
without leading zeros (0-59).

ss Second number. Displays the second as a number with
leading zeros (00-59).

AM/PM am/pm A/P
a/p

12-hour time. Displays time using a 12-hour clock.
Displays AM, am, A, or a for times between midnight and
noon; displays PM, pm, P, or p for times from noon until
midnight.

[h] Outputs total number of hours

[m] Outputs total number of minutes

[s] Outputs total number of seconds

s.0, s.00, s.000,
ss.0, ss.00, ss.000

Outputs fractional part of second.

[BLACK] Displays cell text in black.

[BLUE] Displays cell text in blue.

[CYAN] Displays cell text in cyan.

[GREEN] Displays cell text in green.

[MAGENTA] Displays cell text in magenta.

[RED] Displays cell text in red.

[WHITE] Displays cell text in white.

[YELLOW] Displays cell text in yellow.

[COLOR n] Displays cell text using the corresponding color in the
color palette. n is a color in the color palette.

[conditional value] Each format can have as many as four sections - one
each for positive numbers, negative numbers, zeros, and
text. Using the conditional value brackets ([]), you can
designate a different condition for each section. For
example, you might want positive numbers displayed in
black, negative numbers in red, and zeros in blue. The
following string formats a number for these conditions:
[>0] [BLACK]General; [<0] [RED]General;

[BLUE]General

The following table shows some examples of custom number formats and numbers displayed using the
custom formats.

Format Cell Data Display

#.## 123.456 123.46

0.2 .2

#.0# 123.456 123.46

123 123.0

#,##0"CR";#,##0"DR";0 1234.567 1,235CR

0 0

-123.45 123DR

#, 10000 10

"Sales="0.0 123.45 Sales=123.5

-123.45 -Sales=123.5

"X="0.0;"x="-0.0 -12.34 x=-12.3

$* #,##0.00;$* -#,##0.00 1234.567 $ 1,234.57

-12.34 $ -12.34

000-00-0000 123456789 123-45-6789

"Cust. No." 0000 1234 Cust. No. 1234

;;; Anything (Not Displayed)

"The End" 123.45 The End

-123.45 -The End

text text

m-d-yy 2/3/94 2-3-94

mm dd yy 2/3/94 02 03 94

mmm d, yy 2/3/94 Feb 3, 94

mmmm d, yyyy 2/3/94 February 3, 1994

d mmmm yyyy 2/3/94 3 February 1994

hh"h" mm"m" 1:32 AM 01h 32m

h.mm AM/PM 14:56 2.56 PM

hhmm "hours" 3:15 0315 hours

Aligning Data
Formula One allows you to specify how data is aligned within a cell. The standard alignment places text
along the left edge of the cell and numbers along the right edge of the cell. Logical and error values are
centered.

To align text in the Workbook Designer:

1. Select the cells whose contents you want to align.

2. Choose Alignment from the Format menu to display the Alignment dialog box.

In this dialog box, you can specify the horizontal and vertical alignment of data in the selected
cells. In addition, you can specify whether long strings of data can wrap to multiple lines within the
cell.

To align text in code:

Use the SetAlignment method to set horizontal and vertical alignment and word wrapping for
data in the selected cells.

To set the alignment in the currently selected ranges, you could use the following code:

F1Book1.SetAlignment F1HAlignLeft, FALSE, F1VAlignBottom, 0

In the preceding example, F1HAlignLeft specifies that the cell data is left aligned, FALSE specifies
that word wrap is disabled, F1VAlignBottom indicates that text is positioned at the bottom of the
cell. The 0 is a placeholder for the orientation argument (not implemented in this version).

Use FormatAlignmentDlg to invoke the Alignment dialog box.
The following code invokes the Alignment dialog box.

F1Book1.FormatAlignmentDlg

Changing Row Heights and Column Widths
The width of columns and the height of rows can be changed interactively or set with properties and
methods. Interactive column and row sizing can be performed in the Workbook Designer at design time or
in a workbook at run time.

Interactively Sizing Rows and Columns

Sizing Rows and Columns with Properties and Methods

Fixing Rows and Columns

Formatting Row and Column Headings

Interactively Sizing Rows and Columns
When you position the pointer on the right edge of a column heading or the bottom edge of a row
heading, the pointer changes to a double arrow to indicate that the row or column can be resized. Simply
click and drag to resize the column or row.

If multiple rows are selected when you resize a row, all selected rows are resized as you drag a row
border. Multiple columns can be resized in the same manner.

You can also set the size of a selected group of columns or rows to match the size of an existing row or
column. First, select the group of rows or columns you want to resize, including the row or column whose
size you want to match. Then, click the right border of the column header or the bottom border of the row
whose size you want to match. The selected rows are resized to match the size of the row or column you
clicked.

You can disable interactive sizing of rows and columns by setting the AllowResize property to False.

Changing Row Heights and Column Widths

Sizing Rows and Columns with Properties and Methods

Sizing Rows and Columns with Properties and Methods
The following table lists the properties and methods that allow you to size rows and columns.

Property/Method Operation

ColHidden Sets or returns the display status of an individual column.

ColWidth Sets or returns the width of a single column in units of 1/256 of a
average character’s width in the default font or twips (1/1440th of an
inch) depending on the setting of ColWidthUnits.

ColWidthDlg Displays the Column Width dialog box.

ColWidthTwips Sets or returns the width of the specified columns in twips.

ColWidthUnits Sets or returns whether column widths are stored and displayed in
twips or character units.

SetColWidth Sets the width of the specified columns in units of 1/256 of an
average character’s width in the default font or twips (1/1440th of an
inch) depending on the setting of ColWidthUnits.

SetColWidthAuto Automatically sets the width of the specified columns to
accommodate the largest data in the column.

SetColWidthTwips Changes the width of one or more columns to the specified number
of twips.

RowHeight Sets or returns the height of a single row in twips.

RowHidden Sets or returns the display status of an individual row.

SetRowHeight Sets the height of the specified rows in twips (one twip equals
1/1440 inch).

SetRowHeightAuto Automatically sets the height of the specified rows to accommodate
the tallest data in the row.

RowHeightDlg Displays the Row Height dialog box.

SetRowHeight and SetColWidth set the size of one or more rows or columns. For example, the
following code sets the height of rows 1 through 10 to 1/2 inch, and the width of columns 1 through 10 (A
through J) to 10 characters wide.

F1Book1.SetRowHeight 1, 10, 720, FALSE

F1Book1.SetColWidth 1, 10, 2560, FALSE

SetColWidthAuto and SetRowHeightAuto automatically size rows and columns to accommodate the
largest data in the row or column. For example, the following code automatically sets the row and column
sizes of rows 1 through 10, and columns 1 through 10 (A through J).

F1Book1.SetRowHeightAuto 1, 1, 10, 10, TRUE

F1Book1.SetColWidthAuto 1, 1, 10, 10, TRUE

Changing Row Heights and Column Widths

Interactively Sizing Rows and Columns

Fixing Rows and Columns
Rows and columns in a worksheet can be fixed so that they do not scroll when you perform worksheet
scrolling. Fixed rows remain stationary when you perform vertical scrolling; fixed columns remain
stationary when you perform horizontal scrolling. Fixing rows and columns allows you to place titles in
your worksheet that are always displayed.

When fixing rows and columns, you specify the starting row or column to fix and the number of rows or
columns to fix. Rows and columns preceding the fixed area are not displayed in the worksheet. For
example, if you fix rows 4 through 6, rows 1, 2, and 3 are not displayed.

To fix rows or columns in the Workbook Designer:

1. Select the rows or columns you want to fix by clicking on the column or row header. To select
multiple rows or columns, hold down Shift while you click.

2. Choose Fix Rows (or Columns) from the Sheet menu, depending on what you have selected.

To fix rows or columns in code:

Setting the FixedRow and FixedCol properties specify the starting row and column to fix.
FixedRows and FixedCols determines how many rows or columns are fixed from the first row or column.
The following illustration shows a worksheet with fixed columns.

Setting Cell Borders and Colors
Cells and ranges can be formatted with borders, colors, and patterns. These attributes can be set using
the Workbook Designer or methods.

Borders can be applied to the top, bottom, left, and right sides of a cell. You can select the type and color
of line used for the border. When adding a border to a range, you can place a border around the outside
of the range.

When applying colors and patterns to a cell or range, you specify the pattern and foreground and
background colors used to fill the cells.

To format cells from the Workbook Designer:

1. Select the cells you want to format.

2. To change cell borders, choose Border from the Format menu to display the Borders dialog box. To

change cell colors and patterns, choose Pattern from the Format menu to display the Pattern dialog box.

To format cells from code:

Use SetBorder to format the border, outline, shading, and color for the selected cells. The
following code uses this method:

F1Book1.SetBorder 2, 1, 1, 1, 1, 1, 3, 4, 4, 4, 4

Use SetPattern to format the color and pattern for the selected cells. The following code uses
this method:

F1Book1.SetPattern 2, 128, 0

Use FormatBorderDlg to invoke the Borders dialog box. The following code displays this dialog
box:

F1Book1.FormatBorderDlg

Use FormatPatternDlg to invoke the Pattern dialog box. The following code displays this dialog
box:

F1Book1.FormatPatternDlg

Formatting Row and Column Headings
In addition to formatting worksheet cells, many aspects of row and column headings can be formatted.
Worksheet headings contain three areas: the row headings, column headings, and the box in the top left
corner of the worksheet where the row and column headings intersect. The following illustration highlights
these three areas.

Selecting Row and Column Heading Areas
Sizing Row and Column Headings
Setting Row and Column Text

Selecting Row and Column Heading Areas
Row and column headings can be selected interactively or programmatically.

To select headings interactively:

Press CTRL+Shift and click the heading area.
To select a heading area by programmatically:

Use SetHdrSelection. The following code selects the column heading area.

F1Book1.SetHdrSelection FALSE, FALSE, TRUE

After a heading area is selected, you can set:

the alignment of the heading text.

the font and color of the heading text.

the pattern and fill color of the heading area.

the border used to frame heading cells.
Formatting Row and Column Headings

Selecting Row and Column Heading Areas

Sizing Row and Column Headings

Sizing Row and Column Headings
The size of row, column, and top left headings can be set interactively and programmatically.

To interactively change the size of column headings:

Click and drag the bottom edge of the top left corner.
To interactively change the size of row headings:

Click and drag the right edge of the top left corner.
The following illustration shows interactive resizing of the column headings.

To change the size of column headings programmatically:

Use HdrHeight.
To change the size of row headings programmatically:

Use HdrWidth.
Formatting Row and Column Headings

Selecting Row and Column Heading Areas

Setting Row and Column Text
Like other column and row header attributes, the text displayed in header cells can be changed
interactively or programmatically.

To interactively change the text for a row or column header:

1. Double click on the header for which you want to enter text to display the Header Name dialog
box.

2. Enter one or more lines of text to serve as the header name.

You can control interactive editing of headers by setting the AllowEditHeaders property. You can return
the value of AllowEditHeaders to determine whether interactively editing headers is allowed.
To set or return the text displayed in column headers programmatically:

Use ColText. Use RowText to set or return the text displayed in row headers. TopLeftText sets
or returns the text displayed in the top left corner.
With ColText and RowText, you must specify the column or row for which you are setting header text.
The following example sets the heading for column 4 to "Orders" instead of the default "D".

F1Book1.ColText (3) = "Orders"

The following illustration shows the result of the example code.

The header text for column C is replaced with "Orders" by the ColText property.
Note      Rows, columns, and cells are still referred to by their default numbers and letters in functions,
properties, and formulas even if the header text for rows and columns has been changed. For example,
the cell at the intersection of column B and row 2 is still referred to as B2 even if the header text for row 2
has been set to "New Sales."
Formatting Row and Column Headings

Reading and Writing Files
Formula One can read and write a number of file formats. The following table lists the formats and the
associated file name extensions.

Format Extension Description

Formula One 3.0 .VTS Formula One native format.

Formula One 2.x .VTS Formula One native format. (New 3.0 features
not supported.)

Excel 5.0 .XLS Excel 5.0 format.

Excel 4.0 .XLS Excel 4.0 format.

Tabbed-Text .TXT Tab-delimited text file including number
formatting information.

Tabbed-Text (Values Only) .TXT Tab-delimited text without formatting information.

Since Formula One has some features not supported by Excel, files saved in the VTS file format cannot
be read by Excel. The XLS format is based on records where each record represents a unique feature or
property of the workbook.

If the file you save contains features not supported by Excel, they are removed when the workbook is
saved as an XLS file. Likewise, Excel contains features not supported by Formula One. Unsupported
features are ignored when Formula One loads an Excel worksheet or workbook.

Important      If you load an Excel file that contains features not supported by Formula One, such as
charts or function arrays, those features are ignored. If the imported file is then written from Formula One
as an Excel file and subsequently read by Excel, those features are omitted and irretrievable.

Formula One cannot read password protected Excel files. If you intend to read files from Excel, they
should not be password protected.

The following methods and properties are available for reading and writing files in Formula One
applications:

Property/Method Description

Read Reads a worksheet from disk.

ReadFromBlob Reads a worksheet that has been stored in memory in a blob variable.

SaveFileDlg This dialog box allows you to save the current file in Formula One, Excel, or
tabbed text format.

Write Saves the worksheet to a file.

WriteToBlob Writes a worksheet to a blob variable.

Using BLOB access

Using BLOB access
A Formula One workbook can also read data from or write data to a memory variable defined as a Binary
Large Object (BLOB.) This allows you to store worksheets or workbooks in a database table and later
retrieve them from the database table.

To retrieve a worksheet or workbook from a database table:

1. Write code outside Formula One to read a worksheet or workbook from a database table into a
BLOB variable.

2. Call Formula One’s ReadFromBlob method to display that worksheet or workbook in the
workbook control.

To store a worksheet or workbook in a database table:

1. Call Formula One’s WriteToBlob method to copy the worksheet or workbook from the Formula
One control to a BLOB variable.

2. Write code outside Formula One to write the worksheet or workbook from the BLOB variable to a
database table.

Reading and Writing Files

ABS

Description

Returns the absolute value of a number.

Syntax

ABS (number)

Parameter Description

number Any number.

Remarks

An absolute value does not display a positive or negative sign.

Examples

These functions both return 1:

ABS(–1)

ABS(1)

ACOS

Description

Returns the arc cosine of a number.

Syntax

ACOS (number)

Parameter Description

number The cosine of the angle. The cosine can range from 1 to –1.

Remarks

The resulting angle is returned in radians (from 0 to p). To convert the resulting radians to degrees,
multiply the radians by 180/PI().

Examples

This function returns 1.05:

ACOS(.5)

This function returns 1.77:

ACOS(–.2)

See Also

COS

ACOSH

Description

Returns the inverse hyperbolic cosine of a number.

Syntax

ACOSH (number)

Parameter Description

number Any number equal to or greater than 1.

Examples

This function returns .62:

ACOSH(1.2)

This function returns 1.76:

ACOSH (3)

See Also

ASINH

ATANH

COSH

ADDRESS

Description

Creates a cell address as text.

Syntax

ADDRESS (row, column, ref_type [, a1] [, sheet])

Parameter Description

row The row number for the cell address.

column The column number for the cell address.

ref_type The cell reference type. Following are the valid values
for this argument.

1 Absolute

2 Absolute row, relative column

3 Relative row, absolute column

4 Relative

a1 The reference format. This argument must be TRUE()
to represent an A1 reference format; Formula One does
not support the R1C1 reference format.

sheet The name of an external worksheet view control.
Omitting this argument assumes that the
reference exists in the current spreadsheet.

Examples

This function returns F5:

ADDRESS(5, 6, 1)

This function returns SALES!F5:

ADDRESS(5, 6, 4, TRUE(), “SALES.”)

See Also

COLUMN

OFFSET

ROW

AND

Description

Returns True if all arguments are true; returns False if at least one argument is false.

Syntax

AND (logical_list)

Parameter Description

logical_list A list of conditions separated by commas. You can include as many as
30 conditions in the list. The list can contain logical values or a
reference to a range containing logical values. Text and empty cells are
ignored. If there are no logical values in the list, the error #VALUE! is
returned.

Examples

This function returns True because both arguments are true:

AND(1+1=2, 5+5=10)

This function returns False:

AND(TRUE(), FALSE())

See Also

ROW

NOT

OR

ASIN

Description

Returns the arcsine of a number.

Syntax

ASIN (number)

Parameter Description

number The sine of the resulting angle, ranging from –1 to 1.

Remarks

The resulting angle is returned in radians (ranging from –p/2 to p/2). To convert the resulting radians to
degrees, multiply the radians by 180/PI().

Examples

This function returns –1.57:

ASIN(–1)

This function returns .41:

ASIN(.4)

See Also

ASINH

PI

SIN

ASINH

Description

Returns the inverse hyperbolic sine of a number.

Syntax

ASINH (number)

Parameter Description

number Any number.

Examples

This function returns 2.37:

ASINH(5.3)

This function returns –2.09:

ASINH(–4)

See Also

ACOSH

ASIN

ATANH

SINH

ATAN

Description

Returns the arctangent of a number.

Syntax

ATAN (number)

Parameter Description

number The tangent of the angle.

Remarks

The resulting angle is returned in radians, ranging from –p/2 to p/2. To convert the resulting radians to
degrees, multiply the radians by 180/PI().

Examples

This function returns 1.29:

ATAN(3.5)

This function returns –1.33:

ATAN(–4)

See Also

ATAN2

ATANH

PI

TAN

ATAN2

Description

Returns the arctangent of the specified coordinates.

Syntax

ATAN2 (x, y)

Parameter Description

 x The x coordinate.

y The y coordinate.

Remarks

The arctangent is the angle from the x axis to a line with end points at the origin (0, 0) and a point with the
given coordinates (x, y). The angle is returned in radians, ranging from –p to p, excluding –p.

Examples

This function returns 1.11:

ATAN2(3, 6)

This function returns 3.04:

ATAN2(–1, .1)

See Also

ATAN

ATANH

PI

TAN

ATANH

Description

Returns the inverse hyperbolic tangent of a number.

Syntax

ATANH (number)

Parameter Description

number A number between –1 and 1, excluding –1 and 1.

Examples

This function returns .55:

ATANH(.5)

This function returns –.26:

ATANH(–.25)

See Also

ACOS

ASINH

TANH

AVERAGE

Description

Returns the average of the supplied numbers. The result of AVERAGE is also known as the arithmetic
mean.

Syntax

AVERAGE (number_list)

Parameter Description

number_list A list of numbers separated by commas. As many as 30 numbers can
be included in the list, and the list can contain numbers or a reference
to a range that contains numbers. Text, logical expressions, or empty
cells in a referenced range are ignored. All numeric values (including 0)
are used.

Examples

This function returns 8.25:

AVERAGE(5, 6, 8, 14)

This function returns 134, the average of the values in the range C15:C17:

AVERAGE(C15:C17)

See Also

MIN

MAX

CEILING

Description

Rounds a number up to the nearest multiple of a specified significance.

Syntax

CEILING (number, significance)

Parameter Description

number The value to round.

significance The multiple to which to round.

Remarks

Regardless of the sign of the number, the value is rounded up, away from zero. If number is an exact
multiple of significance, no rounding occurs.

If number or significance is non-numeric, the error #VALUE! is returned. When the arguments have
opposite signs, the error #NUM! is returned.

Examples

This function returns 1.25:

CEILING(1.23459, .05)

This function returns –150:

CEILING(–148.24, –2)

See Also

EVEN

FLOOR

INT

ODD

ROUND

TRUNC

CHAR

Description

Returns a character that corresponds to the supplied ASCII code.

Syntax

CHAR (number)

Parameter Description

number A value between 1 and 255 that specifies an ASCII character.

Remarks

The character and associated numeric code are defined by Windows in the ASCII character set.

Examples

This function returns F:

CHAR(70)

This function returns #:

CHAR(35)

See Also

CODE

CHOOSE

Description

Returns a value from a list of numbers based on the index number supplied.

Syntax

CHOOSE (index, item_list)

Parameter Description

index A number that refers to an item in item_list.

item_list A list of numbers, formulas, or text separated by commas. This
argument can also be a range reference. You can specify as many
as 29 items in the list.

Remarks

Index can be a cell reference; index can also be a formula that returns any value from 1 to 29. If index is
less than 1 or greater than the number of items in item_list, #VALUE! is returned. If index is a fractional
number, it is truncated to an integer.

Examples

This function returns Q2:

CHOOSE(2,”Q1”, “Q2”, “Q3”, “Q4”)

This function returns the average of the contents of range A1:A10:

AVERAGE(CHOOSE(1, A1:A10, B1:B10, C1:C10))

See Also

INDEX

CLEAN

Description

Removes all nonprintable characters from the supplied text.

Syntax

CLEAN (text)

Parameter Description

text Any worksheet information.

Remarks

Text that is imported from another environment may require this function.

Examples

This function returns Payments Due because the character returned by CHAR (8) is nonprintable:

CLEAN(“Payments “ & CHAR(8) & “Due”)

See Also

CHAR

TRIM

CODE

Description

Returns a numeric code representing the first character of the supplied string.

Syntax

CODE (text)

Parameter Description

text Any string.

Remarks

The numeric code and associated string are defined in your computer’s character set. The character set
used by Windows is the ANSI character set.

Examples

This function returns 65:

CODE(“A”)

This function returns 98:

CODE(“b”)

See Also

CHAR

COLUMN

Description

Returns the column number of the supplied reference.

Syntax

COLUMN (reference)

Parameter Description

reference A reference to a cell or range. Omitting the argument returns
the number of the column in which COLUMN is placed.

Examples

This function returns 2:

COLUMN(B3)

This function returns 4 if the function is entered in cell D2:

COLUMN()

See Also

COLUMNS

ROW

COLUMNS

Description

Returns the number of columns in a range reference.

Syntax

COLUMNS (range)

Parameter Description

range A reference to a range of
cells.

Example

This function returns 4:

COLUMNS(A1:D5)

See Also

COLUMN

ROWS

CONCATENATE

Description

Joins several text strings into one string.

Syntax

CONCATENATE (text1, text2,)

Parameter Description

text1, text2, ... Up to 30 text items to be joined into a single text item. The
text items can be strings, numbers, or single-cell
references.

Remarks

The "&" operator can be used instead of CONCATENATE to join text items.

Examples

The following example returns "Sale Price" it is the same as typing "Sale"&" "&"Price":

CONCATENATE ("Sale ", "Price")

Suppose in an inventory worksheet, C2 contains "extruder1", C5 contains " gaskets", and C8 contains the
number 15. The following example returns "Inventory currently holds 15 gaskets for extruder1.":

CONCATENATE ("Inventory currently holds ", C8, " ", C5," for ", C2)

See Also

COLUMN

ROWS

COS

Description

Returns the cosine of an angle.

Syntax

COS (number)

Parameter Description

number The angle in radians. If the angle is in degrees,
convert the angle to radians by multiplying the angle
by PI()/180.

Examples

This function returns .126:

COS(1.444)

This function returns .28:

COS(5)

See Also

ACOS

ASINH

ATANH

COSH

PI

COSH

Description

Returns the hyperbolic cosine of a number.

Syntax

COSH (number)

Parameter Description

number Any number.

Examples

This function returns 4.14:

COSH(2.10)

This function returns 1.03:

COSH(.24)

See Also

ASINH

ATANH

COS

COUNT

Description

Returns the number of values in the supplied list.

Syntax

COUNT (value_list)

Parameter Description

value_list A list of values. The list can contain as many as 30 values.

Remarks

COUNT only numerates numbers or numerical values such as logical values, dates, or text
representations of dates. If you supply a range, only numbers and numerical values in the range are
counted. Empty cells, logical values, text, and error values in the range are ignored.

Examples

This function returns 2:

COUNT(5, 6, “Q2”)

This function returns 3:

COUNT(“03/06/94”, “06/21/94”, “10/19/94”)

See Also

AVERAGE

COUNTA

SUM

COUNTIF

Description

Returns the number of cells within a range which meet the given criteria.

Syntax

COUNTIF (range, criteria)

Parameter Description

range Range of cells you want to count.

criteria Number, expression, or text that defines which cells are
counted.

See Also

AVERAGE

COUNTA

SUM

SUMIF

COUNTA

Description

Returns the number of nonblank values in the supplied list.

Syntax

COUNTA (expression_list)

Parameter Description

expression_list A list of expressions. As many as 30 expressions can be included in the list.

Remarks

COUNTA returns the number of cells that contain data in a range. Null values ("") are counted, but
references to empty cells are ignored.

Examples

This function returns 4:

COUNTA(32, 45, “Earnings”, "")

This function returns 0 when the specified range contains empty cells:

COUNTA(C38:C40)

See Also

AVERAGE

COUNT

PRODUCT

SUM

DATE

Description

Returns the serial number of the supplied date.

Syntax

DATE (year, month, day)

Parameter Description

year A number from 1900 to 2078. If year is between 1920 to 2019, you can specify two digits to represent the
year; otherwise specify all four digits.

month A number representing the month (for example, 12 represents December). If a number greater than 12 is
supplied, the number is added to the first month of the specified year.

day A number representing the day of the month. If the number you specify for day exceeds the number of days
in that month, the number is added to the first day of the specified month.

Examples

This function returns 34506:

DATE(94, 6, 21)

This function returns 36225:

DATE(99, 3, 6)

See Also

DATEVALUE

DAY

MONTH

NOW

TIMEVALUE

TODAY

YEAR

DATEVALUE

Description

Returns the serial number of a date supplied as a text string.

Syntax

DATEVALUE (text)

Parameter Description

text A date in text format between January 1, 1900, and December 31, 2078. If you omit the year, the current
year is used.

Examples

This function returns 34399:

DATEVALUE(“3/6/94”)

This function returns 35058:

DATEVALUE(“12/25/95”)

See Also

NOW

TIMEVALUE

TODAY

DAY

Description

Returns the day of the month that corresponds to the date represented by the supplied number.

Syntax

DAY (serial_number)

Parameter Description

serial_number A date represented as a serial number or as text (for example, 06-21-94 or 21-Jun-94).

Examples

This function returns 6:

DAY(34399)

This function returns 21:

DAY(“06-21-94”)

See Also

NOW

HOUR

MINUTE

MONTH

SECOND

TODAY

WEEKDAY

YEAR

DB

Description

Returns the real depreciation of an asset for a specific period of time using the fixed-declining balance
method.

Syntax

DB (cost, salvage, life, period [, months])

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

period The period for which to calculate the depreciation. The time units used
to determine period and life must match.

months The number of months in the first year of the item’s life.
Omitting this argument assumes there are 12 months in the first
year.

Example

This function returns 1451.52:

DB(10000, 1000, 7, 3)

See Also

DDB

SLN

SYD

VDB

DDB

Description

Returns the depreciation of an asset for a specific period of time using the double-declining balance
method or a declining balance factor you supply.

Syntax

DDB (cost, salvage, life, period [, factor])

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

period The period for which to calculate the depreciation. The time units
used to determine period and life must match.

factor The rate at which the balance declines. Omitting this argument
assumes a default factor of 2, the double-declining balance factor.

Remarks

The double-declining balance method uses an accelerated rate where the highest depreciation occurs in
the first period, decreasing in successive periods.

All arguments for this function must be positive numbers.

Example

This function returns 1457.73:

DDB(10000,1000, 7, 3)

See Also

DB

SLN

SYD

VDB

DOLLAR

Description

Returns the specified number as text, using currency format and the supplied precision.

Syntax

DOLLAR (number [, precision])

Parameter Description

number A number, a formula that evaluates to a number, or a reference to a cell
that contains a number.

precision A value representing the number of decimal places to the right of the
decimal point. Omitting this argument assumes two decimal places.

Examples

This function returns $1023.79:

DOLLAR(1023.789)

This function returns $500:

DOLLAR(495.301, –2)

See Also

FIXED

TEXT

VALUE

ERROR.TYPE

Description

Returns a number corresponding to an error.

Syntax

ERROR.TYPE (error_ref)

Parameter Description

error_ref A cell reference.

Remarks

The following error text or numbers can be returned by this function.

Number Description

1 #NULL!

2 #DIV/0!

3 #VALUE!

4 #REF!

5 #NAME?

6 #NUM!

7 #N/A

#N/A Other

Example

This function returns 2 if the formula in cell A1 attempts to divide by zero:

ERROR.TYPE(A1)

See Also

ISERR

ISERROR

EVEN

Description

Rounds the specified number up to the nearest even integer.

Syntax

EVEN (number)

Parameter Description

number Any number, a formula that evaluates to a number, or a
reference to a cell that contains a number.

Examples

This function returns 4:

EVEN(2.5)

This function returns 2032:

EVEN(2030.45)

See Also

CEILING

FLOOR

INT

ODD

ROUND

TRUNC

EXACT

Description

Compares two expressions for identical, case-sensitive matches. True is returned if the expressions are
identical; False is returned if they are not.

Syntax

EXACT (expression1, expression2)

Parameter Description

expression1 Any text.

expression2 Any text.

Examples

This function returns True:

EXACT(“Match”, “Match”)

This function returns False:

EXACT(“Match”, “match”)

See Also

LEN

SEARCH

EXP

Description

Returns e raised to the specified power. The constant e is 2.71828182845904 (the base of the natural
logarithm).

Syntax

EXP (number)

Parameter Description

number Any number as the exponent.

Examples

This function returns 12.18:

EXP(2.5)

This function returns 20.09:

EXP(3)

See Also

LN

LOG

FACT

Description

Returns the factorial of a specified number.

Syntax

FACT (number)

Parameter Description

number Any non-negative integer. If you supply a real number, FACT truncates
the number to an integer before calculation.

Examples

This function returns 2:

FACT(2.5)

This function returns 720:

FACT(6)

See Also

PRODUCT

FALSE

Description

Returns the logical value False. This function always requires the trailing parentheses.

Syntax

FALSE ()

See Also

TRUE

FIND

Description

Searches for a string of text within another text string and returns the character position at which the
search string first occurs.

Syntax

FIND (search_text, text [, start_position])

Parameter Description

search_text The text to find. If you specify an empty string (""), FIND
matches the first character in text.

text The text to be searched.

start_position The character position in text where the search begins. The
first character in text is character number 1. When you omit
this argument, the default starting position is character
number 1.

Remarks

FIND is case-sensitive. You cannot use wildcard characters in the search_text.

Examples

This function returns 12:

FIND(“time”, “There’s no time like the present”)

This function returns 19:

FIND(“4”, “Aisle 4, Part 123-4-11”, 9)

See Also

EXACT

LEN

MID

SEARCH

FIXED

Description

Rounds a number to the supplied precision, formats the number in decimal format, and returns the result
as text.

Syntax

FIXED (number [, precision][, no_commas])

Parameter Description

number Any number.

precision The number of digits that appear to the right of the decimal place. When this argument is omitted, a default
precision of 2 is used. If you specify negative precision, number is rounded to the left of the decimal point.
You can specify a precision as great as 127 digits.

no_commas Determines if thousands separators (commas) are used in the result. Use 1 to exclude commas in the
result. If no_commas is 0 or the argument is omitted, thousands separators are included (for example,
1,000.00).

Examples

This function returns 2,000.500:

FIXED(2000.5, 3)

This function returns 2010:

FIXED(2009.5, –1, 1)

See Also

DOLLAR

ROUND

TEXT

VALUE

FLOOR

Description

Rounds a number down to the nearest multiple of a specified significance.

Syntax

FLOOR (number, significance)

Parameter Description

number The value to round.

significance The multiple to which to round.

Remarks

Regardless of the sign of the number, the value is rounded down, toward zero. If number is an exact
multiple of significance, no rounding occurs.

If number or significance is non-numeric, #NAME? is returned. When the arguments have opposite signs,
#NUM! is returned.

Examples

This function returns 1.2:

FLOOR(1.23459, .05)

This function returns –148:

FLOOR(–148.24, –2)

See Also

CEILING

EVEN

INT

ODD

ROUND

TRUNC

FV

Description

Returns the future value of an annuity based on regular payments and a fixed interest rate.

Syntax

FV (interest, nper, payment [, pv] [, type])

Parameter Description

interest The fixed interest rate.

nper The number of payments in an annuity.

payment The fixed payment made each period.

pv The present value, or the lump sum amount, the annuity is currently
worth. When you omit this argument, a present value of 0 is assumed.

type Indicates when payments are due. Use 0 if payments are due at the
end of the period or 1 if payments are due at the beginning of the
period. When you omit this argument, 0 is assumed.

Remarks

The units used for interest must match those used for nper. For example, if the annuity has an 8 percent
annual interest rate over a period of 5 years, specify 8 percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received, such as a dividend
check, is shown as a positive number.

Examples

This function returns 4,774.55:

FV(5%, 8, –500)

This function returns 531,550.86:

FV(10%/12, 240, –700, 1)

See Also

IPMT

NPER

PMT

PPMT

PV

RATE

HLOOKUP

Description

Searches the top row of a table for a value and returns the contents of a cell in that table that corresponds
to the location of the search value.

Syntax

HLOOKUP (search_item, search_range, row_index)

Parameter Description

search_item A value, text string, or reference to a cell containing a value that is matched against data in the top row of
search_range.

search_range A reference to the range (table) to be searched. The cells in the first row of search_range can contain
numbers, text, or logical values. The contents of the first row must be in ascending order (for example, –2,
–1, 0, 2...A through Z, False, True). Text searches are not case-sensitive.

row_index The row in search_range from which the matching value is returned. row_index can be a number from 1
to the number of rows in search_range. If row_index is less than 1, the error #VALUE! is returned. When
row_index is greater than the number of rows in the table, the error #REF! is returned.

Remarks

HLOOKUP compares the information in the top row of search_range to the supplied search_item. When
a match is found, information located in the same column and supplied row (row_index) is returned.

If search_item cannot be found in the top row of search_range, the largest value that is less than
search_item is used. When search_item is less than the smallest value in the first row of the
search_range, the error #REF! is returned.

Examples

The following examples use this worksheet.

This function returns 22.63:

HLOOKUP(“Northeast”, B1:E5, 3)

This function returns #REF!:

HLOOKUP(“Pacific”, B1:E5, 7)

See Also

INDEX

LOOKUP

MATCH

VLOOKUP

HOUR

Description

Returns the hour component of the specified time in 24-hour format.

Syntax

HOUR (serial_number)

Parameter Description

serial_number The time as a serial number. The decimal portion of the
number represents time as a fraction of the day.

Remarks

The result is an integer ranging from 0 (12:00 AM) to 23 (11:00 PM).

Examples

This function returns 9:

HOUR(34259.4)

This function returns 23:

HOUR(34619.976)

See Also

DAY

MINUTE

MONTH

NOW

SECOND

WEEKDAY

YEAR

IF

Description

Tests the condition and returns the specified value.

Syntax

IF (condition, true_value, false_value)

Parameter Description

condition Any logical expression.

true_value The value to be returned if condition evaluates to True.

false_value The value to be returned if condition evaluates to
False.

Example

This function returns Greater if the contents of A1 is greater than 10 and Less if the contents of A1 is less
than 10:

IF(A1>10, “Greater”, “Less”)

See Also

AND

FALSE

NOT

OR

TRUE

INDEX

Description

Returns the contents of a cell from a specified range.

Syntax

INDEX (reference [, row] [, column] [, range_number])

Parameter Description

reference A reference to one or more ranges. If reference specifies more than one range, separate each reference
with a comma and enclose reference in parentheses. For example, (A1:C6, B7:E14, F4). If each range in
reference contains only one row or column, you can omit the row or column argument. For example, if
reference is A1:A15, you can omit the column argument INDEX(A1:A15, 3,, 1).

row The row number in reference from which to return data.

column Column number in reference from which to return data.

range_number Specifies the range from which data is returned if reference contains more than one range. For example,
if reference is (A1:A10, B1:B5, D14:E23), A1:A10 is range_number 1, B1:B5 is range_number 2, and
D14:E23 is range_number 3.

Remarks

If row, column, and range_number do not point to a cell within reference, #REF! is returned. If row and
column are omitted, INDEX returns the range in reference specified by range_number.

Examples

The following examples use this worksheet.

This function returns $1415.35:

INDEX(A2:B6, 2, 2)

This function returns $1634.58:

INDEX((A2:B6, D2:E6), 4, 2, 2)

See Also

CHOOSE

HLOOKUP

LOOKUP

MATCH

VLOOKUP

INDIRECT

Description

Returns the contents of the cell referenced by the specified cell.

Syntax

INDIRECT (ref_text [, a1])

Parameter Description

ref_text A reference to a cell that references a third cell. If ref_text is not a valid reference, the error #REF! is
returned.

a1 The reference format. This argument must be TRUE() to represent an A1 reference format;
Formula One does not support the R1C1 reference format.

Example

This function returns the contents of the cell that C1 references. If C1 contains "D1," then the contents of
D1is returned:

INDIRECT(C1)

See Also

OFFSET

INT

Description

Rounds the supplied number down to the nearest integer.

Syntax

INT (number)

Parameter Description

number Any real number.

Examples

This function returns 10:

INT(10.99)

This function returns –11:

INT(–10.99)

See Also

CEILING

FLOOR

MOD

ROUND

TRUNC

IPMT

Description

Returns the interest payment of an annuity for a given period, based on regular payments and a fixed
periodic interest rate.

Syntax

IPMT (interest, per, nper, pv, [fv], [type])

Parameter Description

interest The fixed periodic interest rate.

per The period for which to return the interest payment. This number
must be between 1 and nper.

nper The number of payments.

pv The present value, or the lump sum amount the annuity is currently
worth.

fv The future value, or the value after all payments are made. If this
argument is omitted, the future value is assumed to be 0.

type Indicates when payments are due. Use 0 if payments are due at
the end of the period or 1 if payments are due at the beginning of
the period. When you omit this argument, 0 is assumed.

Remarks

The units used for interest must match those used for nper. For example, if the annuity has an 8 percent
annual interest rate over a period of 5 years, specify 8 percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received, such as a dividend
check, is shown as a positive number.

Examples

This function returns –117.87:

IPMT(8%/12, 2, 48, 18000)

This function returns –117.09:

IPMT(8%/12, 2, 48, 18000, 0, 1)

See Also

FV

PMT

PPMT

RATE

IRR

Description

Returns internal rate of return for a series of periodic cash flows.

Syntax

IRR (cash_flow [, guess])

Parameter Description

cash_flow A reference to a range that contains values for which to calculate the internal rate of return. The values must
contain at least one positive and one negative value. During calculation, IRR uses the order in which the
values appear to determine the order of the cash flow. Text, logical values, and empty cells in the range are
ignored.

guess The estimate of the internal rate of return. If no argument is supplied, a rate of return of 10 percent is
assumed.

Remarks

The internal rate of return is the interest rate received for an investment consisting of payments (specified
by negative numbers) and investments (specified by positive numbers).

IRR is calculated iteratively, cycling through the calculation until the result is accurate to .00001 percent. If
the result cannot be found after 20 iterations, #NUM! is returned. When this occurs, supply a different
value for guess.

Examples

The following examples use this worksheet.

This function returns 3.72 percent:

IRR(B1:B6)

This function returns –49.26 percent:

IRR(B1:B3, –20%)

See Also

MIRR

NPV

RATE

ISBLANK

Description

Determines if the specified cell is blank.

Syntax

ISBLANK (reference)

Parameter Description

reference A reference to any cell.

Remarks

If the referenced cell is blank, True is returned. False is returned if the cell is not blank.

Example

This function returns True if A1 is a blank cell:

ISBLANK(A1)

See Also

ISERR

ISERROR

ISLOGICAL

ISNA

ISNONTEXT

ISNUMBER

ISREF

ISTEXT

ISERR

Description

Determines if the specified expression returns an error value.

Syntax

ISERR (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns any error except #N/A!, True is returned. Otherwise, False is returned.

Example

This function returns True if A1 contains a formula that returns an error such as #NUM!:

ISERR(A1)

See Also

ISBLANK

ISERROR

ISLOGICAL

ISNA

ISNONTEXT

ISNUMBER

ISREF

ISTEXT

ISERROR

Description

Determines if the specified expression returns an error value.

Syntax

ISERROR (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns any error value, such as #N/A!, #VALUE!, #REF!, #DIV/0!, #NUM!, #NAME?, or
#NULL!, True is returned. Otherwise, False is returned.

Examples

This function returns True:

ISERROR(4/0)

This function returns False if A1 contains a formula that does not return an error.

ISERROR(A1)

See Also

ISBLANK

ISERR

ISLOGICAL

ISNA

ISNONTEXT

ISNUMBER

ISREF

ISTEXT

ISLOGICAL

Description

Determines if the specified expression returns a logical value.

Syntax

ISLOGICAL (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns a logical value, True is returned. Otherwise, False is returned.

Example

This function returns True because ISBLANK returns a logical value:

ISLOGICAL(ISBLANK(A1))

See Also

ISBLANK

ISERR

ISERROR

ISNA

ISNONTEXT

ISNUMBER

ISREF

ISTEXT

ISNA

Description

Determines if the specified expression returns the value not available error.

Syntax

ISNA (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns the #N/A! error, True is returned. Otherwise, False is returned.

Example

This function returns True if cell A1 contains the NA () function or returns the error value #N/A!:

ISNA(A1)

See Also

ISBLANK

ISERR

ISERROR

ISLOGICAL

ISNONTEXT

ISNUMBER

ISREF

ISTEXT

ISNONTEXT

Description

Determines if the specified expression is not text.

Syntax

ISNONTEXT (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns any value that is not text, True is returned. Otherwise, False is returned.

Examples

This function returns True if cell F3 contains a number or is a blank cell:

ISNONTEXT(F3)

This function returns False:

ISNONTEXT(“text”)

See Also

ISBLANK

ISERR

ISERROR

ISLOGICAL

ISNA

ISNUMBER

ISREF

ISTEXT

ISNUMBER

Description

Determines if the specified expression is a number.

Syntax

ISNUMBER (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns a number, True is returned. Otherwise, False is returned. If expression returns a
number represented as text (for example, “12”), False is returned.

Examples

This function returns True:

ISNUMBER(123.45)

This function returns False:

ISNUMBER(“123”)

See Also

ISBLANK

ISERR

ISERROR

ISLOGICAL

ISNA

ISNONTEXT

ISREF

ISTEXT

ISREF

Description

Determines if the specified expression is a range reference.

Syntax

ISREF (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns a range reference, True is returned. Otherwise, False is returned.

Example

This function returns True:

ISREF(A3)

See Also

ISBLANK

ISERR

ISERROR

ISLOGICAL

ISNA

ISNONTEXT

ISNUMBER

ISTEXT

ISTEXT

Description

Determines if the specified expression is text.

Syntax

ISTEXT (expression)

Parameter Description

expression Any expression.

Remarks

If the expression returns text, True is returned. Otherwise, False is returned.

Example

This function returns True:

ISTEXT(“2nd Quarter”)

See Also

ISBLANK

ISERR

ISERROR

ISLOGICAL

ISNA

ISNONTEXT

ISNUMBER

ISREF

LEFT

Description

Returns the leftmost characters from the specified text string.

Syntax

LEFT (text [, num_chars])

Parameter Description

text Any text string.

num_chars The number of characters to return. This value must be greater than or equal to zero. If num_chars is
greater than the number of characters in text, the entire string is returned. Omitting this argument assumes a
value of 1.

Examples

This function returns 2:

LEFT(“2nd Quarter”)

This function returns 2nd:

LEFT(“2nd Quarter”, 3)

See Also

MID

RIGHT

LEN

Description

Returns the number of characters in the supplied text string.

Syntax

LEN (text)

Parameter Description

text Any text string. Spaces in the string are counted as characters.

Examples

This function returns 11:

LEN(“3rd Quarter”)

This function returns 3:

LEN(“1-3”)

See Also

EXACT

SEARCH

LN

Description

Returns the natural logarithm (based on the constant e) of a number.

Syntax

LN (number)

Parameter Description

number Any positive real number.

Remarks

LN is the inverse of the EXP function.

Examples

This function returns 2.50:

LN(12.18)

This function returns 3.00:

LN(20.09)

See Also

EXP

LOG

LOG10

LOG

Description

Returns the logarithm of a number to the specified base.

Syntax

LOG (number [, base])

Parameter Description

number Any positive real number.

base The base of the logarithm. Omitting this argument assumes a base of 10.

Examples

This function returns 0:

LOG(1)

This function returns 1:

LOG(10)

See Also

EXP

LN

LOG10

LOG10

Description

Returns the base-10 logarithm of a number.

Syntax

LOG10 (number)

Parameter Description

number Any positive real number.

Examples

This function returns 2.41:

LOG10(260)

This function returns 2:

LOG10(100)

See Also

EXP

LN

LOG

LOOKUP

Description

Searches for a value in one range and returns the contents of the corresponding position in a second
range.

Syntax

LOOKUP (lookup_value, lookup_range, result_range)

Parameter Description

lookup_value The value for which to search in the first range.

lookup_range The first range to search and contains only one row or one
column. The range can contain numbers, text, or logical values. To
search lookup_range correctly, the expressions in the range must
be placed in ascending order (for example, –2, –1, 0, 1, 2...A
through Z, False, True). The search is not case-sensitive.

result_range A range of one row or one column that is the same size as
lookup_range.

Remarks

If lookup_value does not have an exact match in lookup_range, the largest value that is less than or equal
to lookup_value is found and the corresponding position in result_range is returned. When lookup_value
is smaller than the data in lookup_range, #N/A is returned.

Examples

The following examples use this worksheet.

This function returns Detroit:

LOOKUP(“North”, A2:A7, B2:B7)

This function returns #N/A:

LOOKUP(“Alabama”, A2:A7, B2:B7)

See Also

HLOOKUP

INDEX

VLOOKUP

LOWER

Description

Changes the characters in the specified string to lowercase characters. Numeric characters in the string
are not changed.

Syntax

LOWER (text)

Parameter Description

text Any string.

Examples

This function returns 3rd quarter:

LOWER(“3rd Quarter”)

This function returns john doe:

LOWER(“JOHN DOE”)

See Also

PROPER

UPPER

MATCH

Description

A specified value is compared against values in a range. The position of the matching value in the search
range is returned.

Syntax

MATCH (lookup_value, lookup_range, comparison)

Parameter Description

lookup_value The value against which to compare. It can be a number, text, or logical value or a reference to a
cell that contains one of those values.

lookup_range The range to search and contains only one row or one column. The range can contain numbers,
text, or logical values.

comparison A number that represents the type of comparison to be made between lookup_value and the
values in lookup_range. When you omit this argument, comparison method 1 is assumed.

When comparison is 0, the first value that is equal to lookup_value is matched. When using this
comparison method, the values in lookup_range can be in any order.

When comparison is 1, the largest value that is less than or equal to lookup_value is matched.
When using this comparison method, the values in lookup_range must be in ascending order (for
example, ...–2, –1, 0, 1, 2..., A through Z, False, True).

When comparison is –1, the smallest value that is greater than or equal to lookup_value is
matched. When using this comparison method, the values in lookup_range must be in descending
order (for example, True, False, Z through A, ...2, 1, 0, –1, –2...).

Remarks

When using comparison method 0 and lookup_value is text, lookup_value can contain wildcard
characters. The wildcard characters are * (asterisk), which matches any sequence of characters, and ?
(question mark), which matches any single character.

When no match is found for lookup_value, #N/A is returned.

Examples

The following examples use this worksheet.

This function returns 5:

MATCH(7600, B2:B7,1)

This function returns 2:

MATCH("D*", A2:A7,0)

See Also

HLOOKUP

INDEX

LOOKUP

VLOOKUP

MAX

Description

Returns the largest value in the specified list of numbers.

Syntax

MAX (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.

 The list can contain numbers, logical values, text representations of numbers, or a reference to a
range containing those values.

Error values or text that cannot be translated into numbers return errors.

. If a range reference is included in the list, text, logical expressions, and empty cells in the range are
ignored

If there are no numbers in the list, 0 is returned.

Examples

This function returns 500:

MAX(50, 100, 150, 500, 200)

This function returns the largest value in the range:

MAX(A1:F12)

See Also

AVERAGE

MIN

MID

Description

Returns the specified number of characters from a text string, beginning with the specified starting
position.

Syntax

MID (text, start_position, num_chars)

Parameter Description

text The string from which to return characters.

start_position The position of the first character to return from text.

If start_position is 1, the first character in text is returned.

If start_position is greater than the number of characters in
text, an empty string ("") is returned.

If start_position is less than 1, #VALUE! is returned.

num_chars The number of characters to return. If num_chars is negative,
#VALUE! is returned.

Remarks

If start_position plus the number of characters in num_chars exceeds the length of text, the characters
from start_position to the end of text are returned.

Examples

This function returns Expenses:

MID(“Travel Expenses”, 8, 8)

This function returns 45:

MID(“Part #45-7234”, 7, 2)

See Also

CODE

FIND

LEFT

RIGHT

SEARCH

MIN

Description

Returns the smallest value in the specified list of numbers.

Syntax

MIN (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list can contain numbers, logical values,
text representations of numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return errors.

If a range reference is included in the list, text, logical expressions, and empty cells in the range are
ignored. If there are no numbers in the list, 0 is returned

Examples

This function returns 50:

MIN(50, 100, 150, 500, 200)

This function returns the smallest value in the range:

MIN(A1:F12)

See Also

AVERAGE

MAX

MINUTE

Description

Returns the minute that corresponds to the supplied date.

Syntax

MINUTE (serial_number)

Parameter Description

serial_number The time as a serial number. The decimal
portion of the number represents time as a
fraction of the day.

Remarks

The result is an integer ranging from 0 to 59.

Examples

This function returns 36:

MINUTE(34506.4)

This function returns 48:

MINUTE(34399.825)

See Also

DAY

HOUR

MONTH

NOW

SECOND

WEEKDAY

YEAR

MIRR

Description

Returns the modified internal rate of return for a series of periodic cash flows.

Syntax

MIRR (cash_flows, finance_rate, reinvest_rate)

Parameter Description

cash_flow A reference to a range that contains values for which to calculate the modified internal rate of
return. The values must contain at least one positive and one negative value.

Values that represent cash received should be positive; negative values represent cash paid.
During calculation, MIRR uses the order in which the values appear to determine the order of
cash flow.

Text, logical values, and empty cells in the range are ignored.

finance_rate The interest rate paid on money used in the cash flow.

reinvest_rate The interest rate received on money reinvested from the cash flow.

Remarks

The modified internal rate of return considers the cost of the investment and the interest received on the
reinvestment of cash.

Examples

The following examples use this worksheet.

This function returns 5.20 percent:

MIRR(B1:B6, 12%, 8%)

This function returns –40.93 percent:

MIRR(B1:B3, 12%, 8%)

See Also

IRR

NPV

RATE

MOD

Description

Returns the remainder after dividing a number by a specified divisor.

Syntax

MOD (number, divisor)

Parameter Description

number Any number.

divisor Any nonzero number. If divisor is 0, #DIV/0! is returned.

Examples

This function returns 1:

MOD(–23, 3)

This function returns –2:

MOD(–23, –3)

See Also

INT

ROUND

TRUNC

MONTH

Description

Returns the month that corresponds to the supplied date.

Syntax

MONTH (serial_number)

Parameter Description

serial_number The date as a serial number or as text (for
example, 06-21-94 or 21-Jun-94).

Remarks

MONTH returns a number ranging from 1 (January) to 12 (December).

Examples

This function returns 6:

MONTH(“06-21-94”)

This function returns 10:

MONTH(34626)

See Also

DAY

NOW

HOUR

MINUTE

SECOND

TODAY

WEEKDAY

YEAR

N

Description

Tests the supplied value and returns the value if it is a number.

Syntax

N (value)

Parameter Description

value A value or a reference to a cell containing a value to test.

Remarks

Numbers are returned as numbers, serial numbers formatted as dates are returned as serial numbers,
and the logical function TRUE() is returned as 1. All other expressions return 0.

Examples

This function returns 32467:

N(32467)

This function returns 1 if A4 contains the logical function TRUE:

N(A4)

See Also

T

VALUE

NA

Description

Returns the error value #N/A, which represents “not available.”

Syntax

NA ()

Remarks

Use NA to mark cells that lack data without leaving them empty. Empty cells may not be correctly
represented in some calculations.

Although NA does not use arguments, you must supply the empty parentheses to correctly reference the
function.

See Also

ISNA

NOT

Description

Returns a logical value that is the opposite of its value.

Syntax

NOT (logical)

Parameter Description

logical An expression that returns a logical value such as True or False.

Remarks

If logical is false, NOT returns True. Conversely, if logical is true, NOT returns False.

Examples

This function returns False:

NOT(TRUE())

This function returns False:

NOT(MONTH(“12/25/94”) = 12)

See Also

AND

IF

OR

NOW

Description

Returns the current date and time as a serial number.

Syntax

NOW ()

Remarks

In a serial number, numbers to the left of the decimal point represent the date; numbers to the right of the
decimal point represent the time. The result of this function changes only when a recalculation of the
worksheet occurs.

See Also

DATE

DAY

HOUR

MINUTE

MONTH

SECOND

TODAY

WEEKDAY

YEAR

NPER

Description

Returns the number of periods of an investment based on regular periodic payments and a fixed interest
rate.

Syntax

NPER (interest, pmt, pf [, fv] [, type])

Parameter Description

interest The fixed interest rate.

pmt The fixed payment made each period. Generally, pmt includes
the principle and interest, not taxes or other fees.

pf The present value, the lump-sum amount that a series of
future payments is currently worth.

fv The future value, the balance to attain after the final payment.
Omitting this argument assumes a future balance of 0.

type Indicates when payments are due. Use 0 if payments are due
at the end of the period or 1 if payments are due at the
beginning of the period. When you omit this argument, 0 is
assumed.

Examples

This function returns 36.67:

NPER(12%/12, –350, –300, 16000, 1)

This function returns 36.98:

NPER(1%, –350, –300, 16000)

See Also

FV

IPMT

PMT

PPMT

PV

RATE

NPV

Description

Returns the net present value of an investment based on a series of periodic payments and a discount
rate.

Syntax

NPV (discount_rate, value_list)

Parameter Description

discount_rate The rate of discount for one period.

value_list A list of as many as 29 arguments or a reference to a range
that contains values that represent payments and income.

During calculation, NPV uses the order in which the values
appear to determine the order of cash flow.

Numbers, empty cells, and text representations of numbers
are included in the calculation. Errors and text that cannot be
translated into numbers are ignored.

If value_list is a range reference, only numeric data in the
range is included in the calculation. Other types of data in the
range, such as empty cells, logical values, text, and error
values, are ignored.

Remarks

The time span NPV uses for calculation begins one period before the first cash flow date and ends when
the last cash flow payment is made. This function is based on future cash flows. When your first cash flow
occurs at the beginning of the first period, the first value must be added to the NPV result, not supplied as
a value in value_list.

Example

This function returns 811.57:

NPV(8%, –12000, 3000, 3000, 3000, 7000)

See Also

FV

IRR

PV

ODD

Description

Rounds the specified number up to the nearest odd integer.

Syntax

ODD (number)

Parameter Description

number Any number, a formula that evaluates to a number, or a reference to a cell that contains a number.

Examples

This function returns 5:

ODD(3.5)

This function returns 7:

ODD(6)

See Also

CEILING

EVEN

FLOOR

INT

ROUND

TRUNC

OFFSET

Description

Returns the contents of a range that is offset from a starting point in the spreadsheet.

Syntax

OFFSET (reference, rows, columns [, height] [, width])

Parameter Description

reference A reference to a cell from which the offset reference is based. If you
specify a range reference, #VALUE! is returned.

rows The number of rows from reference that represents the upper-left cell of
the offset range. A positive number represents rows below the starting
cell; a negative number represents rows above the starting cell. If rows
places the upper-left cell of the offset range outside the spreadsheet
boundary, #REF! is returned.

columns The number of columns from reference that represents the upper-left
cell of the offset range. A positive number represents columns right of
the starting cell; a negative number represents columns left of the
starting cell. If columns places the upper-left cell of the offset range
outside the spreadsheet boundary, #REF! is returned.

height A positive number representing the number of rows to include in the
offset range. Omitting this argument assumes a single row.

width A positive number representing the number of columns to include in the
offset range. Omitting this argument assumes a single column.

Remarks

OFFSET does not change the current selection in the worksheet. Because it returns a reference,
OFFSET can be used in any function that requires or uses a cell or range reference as an argument.

Examples

This function returns the contents of cell D4:

OFFSET(B1, 3, 2, 1, 1)

This function returns the sum of the values in the range E3:F5:

SUM(OFFSET(A1, 2, 4, 3, 2))

OR

Description

Returns True if at least one of a series of logical arguments is true.

Syntax

OR (logical_list)

Parameter Description

logical_list A list of conditions separated by commas. You can include as many as 30 conditions in the list.
The list can contain logical values or a reference to a range containing logical values. Text and
empty cells are ignored. If there are no logical values in the list, the error value #VALUE! is
returned.

Example

This function returns True because one of the arguments is true:

OR(1 + 1 = 1, 5 + 5 = 10)

See Also

AND

IF

NOT

PI

Description

Returns the value of pi (p), which is approximately 3.14159265358979 when calculated to 15 significant
digits.

Syntax

PI ()

Remarks

Although PI does not use arguments, you must supply the empty parentheses to correctly reference the
function.

See Also

COS

SIN

TAN

PMT

Description

Returns the periodic payment of an annuity, based on regular payments and a fixed periodic interest rate.

Syntax

PMT (interest, nper, pv [, fv] [, type])

Parameter Description

interest The fixed periodic interest rate.

nper The number of periods in the annuity.

pv The present value, or the amount the annuity is currently worth.

fv The future value, or the amount the annuity will be worth. When you omit this argument, a future value of 0 is
assumed.

type Indicates when payments are due. Use 0 if payments are due at the end of the period or 1 if payments are
due at the beginning of the period. When you omit this argument, 0 is assumed.

Remarks

PMT returns only the principal and interest payment, it does not include taxes or other fees.

The units used for interest must match those used for nper. For example, if the annuity has an 8 percent
annual interest rate over a period of 5 years, specify 8 percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received, such as a dividend
check, is shown as a positive number.

Examples

This function returns –439.43:

PMT(8%/12, 48, 18000)

This function returns –436.52:

PMT(8%/12, 48, 18000, 0, 1)

See Also

IPMT

FV

NPER

PPMT

PV

RATE

PPMT

Description

Returns the principle paid on an annuity for a given period.

Syntax

PPMT (interest, per, nper, pv, [fv], [type])

Parameter Description

interest The fixed periodic interest rate.

per The period for which to return the principle.

nper The number of periods in the annuity.

pv The present value, or the amount the annuity is currently worth.

fv The future value, or the amount the annuity will be worth. When you omit
this argument, a future value of 0 is assumed.

type Indicates when payments are due. Use 0 if payments are due at the end
of the period or 1 if payments are due at the beginning of the period.
When you omit this argument, 0 is assumed.

Remarks

The units used for interest must match those used for nper. For example, if the annuity has an 8 percent
annual interest rate over a period of 5 years, specify 8 percent/12 for interest and 5*12 for nper.

Examples

This function returns –321.56:

PPMT(8%/12, 2, 48, 18000)

This function returns –319.43:

PPMT(8%/12, 2, 48, 18000, 0, 1)

See Also

FV

IPMT

NPER

PMT

PV

RATE

PRODUCT

Description

Multiplies a list of numbers and returns the result.

Syntax

PRODUCT (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list can contain numbers, logical
values, text representations of numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return errors.

If a range reference is included in the list, text, logical expressions, and empty cells in the range
are ignored.

All numeric values, including 0, are used in the calculation.

Example

This function returns 24:

PRODUCT(1, 2, 3, 4)

See Also

FACT

SUM

PROPER

Description

Returns the specified string in proper-case format.

Syntax

PROPER (text)

Parameter Description

text Any string.

Remarks

In proper-case format, the first alphabetic character in a word is capitalized. If an alphabetic character
follows a number, punctuation mark, or space, it is capitalized. All other alphabetic characters are
lowercase. Numbers are not changed by PROPER.

Examples

This function returns 3rd Quarter:

PROPER(“3rd Quarter”)

This function returns John Doe:

PROPER(“JOHN DOE”)

See Also

LOWER

UPPER

PV

Description

Returns the present value of an annuity, considering a series of constant payments made over a regular
payment period.

Syntax

PV (interest, nper, pmt [, fv] [, type])

Parameter Description

interest The fixed periodic interest rate.

nper The number of payment periods in the investment.

pmt The fixed payment made each period.

fv The future value, or the amount the annuity will be
worth. When you omit this argument, a future value of 0
is assumed.

type Indicates when payments are due. Use 0 if payments
are due at the end of the period or 1 if payments are due
at the beginning of the period. When you omit this
argument, 0 is assumed.

Remarks

The units used for interest must match those used for nper. For example, if the annuity has an 8 percent
annual interest rate over a period of 5 years, specify 8 percent/12 for interest and 5*12 for nper.

Cash paid out, such as a payment, is shown as a negative number. Cash received, such as a dividend
check, is shown as a positive number.

Examples

This function returns –17999.89:

PV(8%/12, 48, 439.43)

This function returns 17999.89:

PV(8%/12, 48, –439.43)

See Also

FV

IPMT

NPER

PMT

PPMT

RATE

RAND

Description

Returns a number selected randomly from a uniform distribution greater than or equal to 0 and less than
1.

Syntax

RAND ()

Remarks

Although RAND does not use arguments, you must supply the empty parentheses to correctly reference
the function.

Example

This function returns a random number greater than or equal to 0 and less than 10:.

RAND()*10

RATE

Description

Returns the interest rate per period of an annuity, given a series of constant cash payments made over a
regular payment period.

Syntax

RATE (nper, pmt, pv [, fv] [, type] [, guess])

Parameter Description

nper The number of periods in the annuity.

pmt The fixed payment made each period. Generally, pmt includes
only principle and interest, not taxes or other fees.

pv The present value of the annuity.

fv The future value, or the amount the annuity will be worth.
When you omit this argument, a future value of 0 is assumed.

type Indicates when payments are due. Use 0 if payments are due
at the end of the period or 1 if payments are due at the
beginning of the period. When you omit this argument, 0 is
assumed.

guess Your estimate of the interest rate. If no argument is supplied, a
value of 0.1 (10 percent) is assumed.

Remarks

RATE is calculated iteratively, cycling through the calculation until the result is accurate to .00001 percent.
If the result cannot be found after 20 iterations, #NUM! is returned. When this occurs, supply a different
value for guess.

Example

The following example returns the monthly interest rate of .0067; the annual interest rate (.0067 multiplied
by 12) is 8 percent:

RATE(48, –439.43, 18000)

See Also

FV

IPMT

NPER

PMT

PPMT

PV

REPLACE

Description

Replaces part of a text string with another text string.

Syntax

REPLACE (orig_text, start_position, num_chars, repl_text)

Parameter Description

orig_text The original text string.

start_position The character position where the replacement begins. If start_position is greater than the number of
characters in orig_text, repl_text is appended to the end of orig_text. If start_position is less than 1,
#VALUE! is returned.

num_chars The number of characters to replace. If this argument is negative, #VALUE! is returned.

repl_text The replacement text string.

Examples

This function returns "For the year: 1994":

REPLACE(“For the year: 1993”, 18, 1, “4”)

See Also

MID

SEARCH

TRIM

REPT

Description

Repeats a text string the specified number of times.

Syntax

REPT (text, number)

Parameter Description

text Any text string.

number The number of times you want text to repeat.
If number is 0, empty text ("") is returned.

Remarks

The result of REPT cannot exceed 255 characters.

Example

This function returns error-error-error-:

REPT(“error-”, 3)

RIGHT

Description

Returns the rightmost characters from the given text string.

Syntax

RIGHT (text [, num_chars])

Parameter Description

text Any text string.

num_chars The number of characters to return. The value must be greater
than or equal to zero. If num_chars is greater than the number
of characters in text, the entire string is returned. Omitting this
argument assumes a value of 1.

Examples

This function returns r:

RIGHT(“2nd Quarter”)

This function returns Quarter:

RIGHT(“2nd Quarter”, 7)

See Also

LEFT

MID

ROUND

Description

Rounds the given number to the supplied number of decimal places.

Syntax

ROUND (number, precision)

Parameter Description

number Any value.

precision The number of decimal places to which number is rounded.

When a negative precision is used, the digits to the right of the decimal
point are dropped and the absolute number of significant digits
specified by precision are replaced with zeros.

If precision is 0, number is rounded to the nearest integer.

Example

This function returns 123.46:

ROUND(123.456, 2)

This function returns 9900:

ROUND(9899.435, –2)

See Also

CEILING

FLOOR

INT

MOD

ROUNDDOWN

ROUNDUP

TRUNC

ROUNDDOWN

Description

Rounds a number down.

Syntax

ROUNDDOWN (number, numberOfDigits)

Parameter Description

number Any real number you want to round.

numberOfDigits The number of decimal places to which number is
rounded.

When a negative precision is used, the digits to the right
of the decimal point are dropped and the absolute
number of significant digits specified by precision are
replaced with zeros.

If precision is 0, number is rounded down to the nearest
integer.

Example

This function returns 31.141:

ROUNDDOWN(3.14159, 3)

This function returns 31.400:

ROUNDDOWN(31415.92654, -2)

See Also

CEILING

FLOOR

INT

MOD

ROUND

ROUNDUP

TRUNC

ROUNDUP

Description

Rounds the given number up to the supplied number of decimal places.

Syntax

ROUNDUP (number, numberOfDigits)

Parameter Description

number Any value you want to round up.

numberOfDigits The number of decimal places to which number is
rounded. When a negative precision is used, the
digits to the right of the decimal point are dropped
and the absolute number of significant digits
specified by precision are replaced with zeros.    If
precision is 0, number is rounded up to the
nearest integer.

Example

This function returns 77:

ROUNDUP(76.9,0)

This function returns 3150:

ROUNDUP(31415.92654, -2)

See Also

CEILING

FLOOR

INT

MOD

ROUND

ROUNDDOWN

TRUNC

ROW

Description

Returns the row number of the supplied reference.

Syntax

ROW (reference)

Parameter Description

reference A cell or range reference. Omitting this argument returns
the row number of the cell in which ROW is entered.

Examples

This function returns 3:

ROW(B3)

See Also

COLUMN

ROWS

ROWS

Description

Returns the number of rows in a range reference.

Syntax

ROWS (range)

Parameter Description

range A reference to a range of cells.

Examples

This function returns 5:

ROWS(A1:D5)

This function returns 6:

ROWS(C30:F35)

See Also

COLUMNS

ROW

SEARCH

Description

Locates the position of the first character of a specified text string within another text string.

Syntax

SEARCH (search_text, text [, start_position])

Parameter Description

search_text The text to find.    To search for an asterisk or question
mark, include a tilde (~) before the character.

The search string can contain wildcard characters. The
available wildcard characters are * (asterisk), which
matches any sequence of characters, and ? (question
mark), which matches any single character.

text The text to be searched.

start_position The character position where the search begins. If the
number you specify is less than 0 or greater than the
number of characters in text, #VALUE! is returned.
Omitting this argument assumes a starting position of 1.

Remarks

Text is searched from left to right, starting at the position specified. The search is not case-sensitive. If
text does not contain the search string, #VALUE! is returned.

Examples

This function returns 6:

SEARCH(“?5”, “Bin b45”)

This function returns 5:

SEARCH(“b”, “Bin b45”, 4)

See Also

FIND

MID

REPLACE

SUBSTITUTE

SECOND

Description

Returns the second that corresponds to the supplied date.

Syntax

SECOND (serial_number)

Parameter Description

serial_number The time as a serial number. The decimal portion of the number represents
time as a fraction of the day.

Examples

This function returns 58:

SECOND(.259)

This function returns 46:

SECOND(34657.904)

See Also

DAY

HOUR

MINUTE

MONTH

NOW

WEEKDAY

SIGN

Description

Determines the sign of the specified number.

Syntax

SIGN (number)

Parameter Description

number Any number.

Remarks

SIGN returns 1 if the specified number is positive, –1 if it is negative, and 0 if it is 0.

Examples

This function returns –1:

SIGN(–123)

This function returns 1:

SIGN(123)

See Also

ABS

SIN

Description

Returns the sine of the supplied angle.

Syntax

SIN (number)

Parameter Description

number The angle in radians. If the angle is in degrees, convert the angle to
radians by multiplying the angle by PI()/180.

Examples

This function returns .85:

SIN(45)

This function returns .89:

SIN(90)

See Also

ASIN

PI

SINH

Description

Returns the hyperbolic sine of the specified number.

Syntax

SINH (number)

Parameter Description

number Any number.

Examples

This function returns 1.18:

SINH(1)

This function returns 10.02:

SINH(3)

See Also

ASINH

PI

SLN

Description

Returns the depreciation of an asset for a specific period of time using the straight-line balance method.

Syntax

SLN (cost, salvage, life)

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods of the useful life of the
asset.

Example

This function returns 1285.71:

SLN(10000, 1000, 7)

See Also

DDB

SYD

VDB

SQRT

Description

Returns the square root of the specified number.

Syntax

SQRT (number)

Parameter Description

number Any positive number. If you specify a negative number, the error #NUM! is returned.

Examples

This function returns 3:

SQRT(9)

This function returns 1.58:

SQRT(2.5)

See Also

SUMSQ

STDEV

Description

Returns the standard deviation of a population based on a sample of supplied values. The standard
deviation of a population represents an average of deviations from the population mean within a list of
values.

Syntax

STDEV (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.
The list can contain numbers or a reference to a range that
contains numbers.

Example

This function returns .56:

STDEV(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also

STDEVP

VAR

VARP

STDEVP

Description

Returns the standard deviation of a population based on an entire population of values. The standard
deviation of a population represents an average of deviations from the population mean within a list of
values.

Syntax

STDEVP (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas. The list can contain numbers or a
reference to a range that contains numbers.

Example

This function returns .52:

STDEVP(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also

STDEV

VAR

VARP

SUBSTITUTE

Description

Replaces a specified part of a text string with another text string.

Syntax

SUBSTITUTE (text, old_text, new_text [, instance])

Parameter Description

text A text string that contains the text to replace. You can also
specify a reference to a cell that contains text.

old_text The text string to be replaced.

new_text The replacement text.

instance Specifies the occurrence of old_text to replace. If this argument
is omitted, every instance of old_text is replaced.

Examples

This function returns "Second Quarter Results":

SUBSTITUTE(“First Quarter Results”, “First”, “Second”)

This function returns "Shipment 45, Bin 52":

SUBSTITUTE(“Shipment 45, Bin 45”, “45”, “52”, 2)

See Also

REPLACE

TRIM

SUM

Description

Returns the sum of the supplied numbers.

Syntax

SUM (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.

The list can contain numbers, logical values, text representations
of numbers, or a reference to a range containing those values.

Error values or text that cannot be translated into numbers return
errors.

If a range reference is included in the list, text, logical
expressions, and empty cells in the range are ignored.

Examples

This function returns 6000:

SUM(1000, 2000, 3000)

This function returns 4000 when each cell in the range contains 1000:

SUM(A10:D10)

See Also

AVERAGE

COUNT

COUNTA

PRODUCT

SUMSQ

SUMIF

Description

Returns the sum of the specified cells based on the given criteria.

Syntax

SUMIF (range, criteria, sum_range)

Parameter Description

range The range of cells you want evaluated.

criteria A number, expression, or text that defines which cells are
added. For example, criteria can be expressed as 15, "15",
">15", "cars".

sum_range The actual cells to sum. These cells are only summed
if their corresponding cells in range match the criteria.
If this argument is omitted, the cells in range are
summed.

See Also

AVERAGE

COUNT

COUNTA

COUNTIF

PRODUCT

SUM

SUMSQ

Description

Squares each of the supplied numbers and returns the sum of the squares.

Syntax

SUMSQ (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by
commas.

The list can contain numbers, logical values, text
representations of numbers, or a reference to a range
containing those values.

Error values or text that cannot be translated into
numbers return errors.

If a range reference is included in the list, text, logical
expressions, and empty cells in the range are ignored.

Example

This function returns 302:

SUMSQ(9, 10, 11)

See Also

SUM

SYD

Description

Returns the depreciation of an asset for a specified period using the sum-of-years method. This
depreciation method uses an accelerated rate, where the greatest depreciation occurs early in the useful
life of the asset.

Syntax

SYD (cost, salvage, life, per)

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

period The period for which to calculate the depreciation. The time
units used to determine period and life must match.

Example

This function returns 1607.14:

SYD(10000, 1000, 7, 3)

See Also

DDB

SLN

VDB

T

Description

Tests the supplied value and returns the value if it is text.

Syntax

T (value)

Parameter Description

value The value to test.

Remarks

Empty text ("") is returned for any value that is not text.

Examples

This function returns Report:

T(“Report”)

This function returns empty text (" ") if A4 contains a number:

T(A4)

See Also

N

VALUE

TAN

Description

Returns the tangent of the specified angle.

Syntax

TAN (number)

Parameter Description

number The angle in radians. To convert a number expressed as
degrees to radians, multiply the degrees by PI()/180.

Examples

This function returns 0.752:

TAN(0.645)

This function returns 1:

TAN(45*PI()/180)

See Also

ATAN

ATAN2

PI

TANH

TANH

Description

Returns the hyperbolic tangent of a number.

Syntax

TANH (number)

Parameter Description

number Any number.

Examples

This function returns –.96:

TANH(–2)

This function returns .83:

TANH(1.2)

See Also

ATANH

COSH

SINH

TAN

TEXT

Description

Returns the given number as text, using the specified formatting.

Syntax

TEXT (number, format)

Parameter Description

number Any value, a formula that evaluates to a number, or a
reference to a cell that contains a value.

format A string representing a number format. The string can be
any valid format string including “General,” “M/DD/YY,” or
“H:MM AM/PM.” The format must be surrounded by a set
of double quotation marks. Asterisks cannot be included in
format.

Examples

This function returns 123.620:

TEXT(123.62, “0.000”)

This function returns 10/19/94:

TEXT(34626.2, “MM/DD/YY”)

See Also

DOLLAR

FIXED

T

VALUE

TIME

Description

Returns a serial number for the supplied time.

Syntax

TIME (hour, minute, second)

Parameter Description

hour A number from 0 to 23.

minute A number from 0 to 59.

second A number from 0 to 59.

Examples

This function returns .52:

TIME(12, 26, 24)

This function returns .07:

TIME(1, 43, 34)

See Also

HOUR

MINUTE

NOW

SECOND

TIMEVALUE

TIMEVALUE

Description

Returns a serial number for the supplied text representation of time.

Syntax

TIMEVALUE (text)

Parameter Description

text A time in text format.

Examples

This function returns .07:

TIMEVALUE(“1:43:43 am”)

This function returns .59:

TIMEVALUE(“14:10:07”)

See Also

HOUR

MINUTE

NOW

SECOND

TIME

TODAY

Description

Returns the current date as a serial number.

Syntax

TODAY ()

Remarks

This function is updated only when the worksheet is recalculated.

See Also

DATE

DAY

NOW

TRIM

Description

Removes all spaces from text except single spaces between words.

Syntax

TRIM (text)

Parameter Description

text Any text string or a reference to a cell that contains a text string.

Remarks

Text that is imported from another environment may require this function.

Example

This function returns Level 3, Gate 45:

TRIM(“ Level 3, Gate 45 ”)

See Also

CLEAN

MID

REPLACE

SUBSTITUTE

TRUE

Description

Returns the logical value True. This function always requires the trailing parentheses.

Syntax

TRUE ()

See Also

FALSE

TRUNC

Description

Truncates the given number to an integer.

Syntax

TRUNC (number [, precision])

Parameter Description

number Any value.

precision The number of decimal places allowed in the truncated number.
Omitting this argument assumes a precision of 0.

Remarks

TRUNC removes the fractional part of a number to the specified precision without rounding the number.

Examples

This function returns 123.45:

TRUNC(123.456, 2)

This function returns 9800:

TRUNC(9899.435, –2)

See Also

CEILING

FLOOR

INT

MOD

ROUND

TYPE

Description

Returns the argument type of the given expression.

Syntax

TYPE (expression)

Parameter Description

expression Any expression.

Remarks

The valid values returned by this argument are:

Number Description

1 Number

2 Text string

4 Logical value

16 Error value

Examples

This function returns 1 if cell A1 contains a number:

TYPE(A1)

This function returns 2:

TYPE(“Customer”)

See Also

ISBLANK

ISERR

ISERROR

ISLOGICAL

ISNA

ISNONTEXT

ISNUMBER

ISREF

ISTEXT

UPPER

Description

Changes the characters in the specified string to uppercase characters.

Syntax

UPPER (text)

Parameter Description

text Any string.

Remarks

Numeric characters in the string are not changed.

Examples

This function returns 3RD QUARTER:

UPPER(“3rd Quarter”)

This function returns JOHN DOE:

UPPER(“JOHN DOE”)

See Also

LOWER

PROPER

VALUE

Description

Returns the specified text as a number.

Syntax

VALUE (text)

Parameter Description

text Any text string, a formula that evaluates to a text string, or a cell
reference that contains a text string. You can also specify a date or time
in a recognizable format (for example, M/DD/YY for dates or H:MM
AM/PM for time). If the format is not recognized, #VALUE! is returned.

Examples

This function returns 9800:

VALUE(9800)

This function returns 123:

VALUE(“123”)

See Also

DOLLAR

FIXED

TEXT

VAR

Description

Returns the variance of a population based on a sample of values.

Syntax

VAR (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by
commas. The list can contain numbers or a
reference to a range that contains numbers.

Example

This function returns .31:

VAR(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also

STDEV

STDEVP

VARP

VARP

Description

Returns the variance of a population based on an entire population of values.

Syntax

VARP (number_list)

Parameter Description

number_list A list of as many as 30 numbers, separated by commas.
The list can contain numbers or a reference to a range
that contains numbers.

Example

This function returns .27:

VARP(4.0, 3.0, 3.0, 3.5, 2.5, 4.0, 3.5)

See Also

STDEV

STDEVP

VAR

VDB

Description

Returns the depreciation of an asset for a specified period using a variable method of depreciation.

Syntax

VDB (cost, salvage, life, start_period, end_period [, factor] [, method])

Parameter Description

cost The initial cost of the asset.

salvage The salvage value of the asset.

life The number of periods in the useful life of the asset.

start_period The beginning period for which to calculate the depreciation.
The time units used to determine start_period and life must
match.

end_period The ending period for which to calculate the depreciation. The
time units used to determine end_period and life must match.

factor The rate at which the balance declines. Omitting this argument
assumes a default of 2, which is the double-declining balance
factor.

method A logical value that determines if you want to switch to
straight-line depreciation when depreciation is greater
than the declining balance calculation. Use True to
maintain declining balance calculation; use False or omit
the argument to switch to straight-line depreciation
calculation.

Example

This function returns 1041.23:

VDB(10000, 1000, 7, 3, 4)

See Also

DDB

SLN

SYD

VLOOKUP

Description

Searches the first column of a table for a value and returns the contents of a cell in that table that
corresponds to the location of the search value.

Syntax

VLOOKUP (search_item, search_range, column_index)

Parameter Description

search_item A value, text string, or reference to a cell containing a value
that is matched against data in the top row of search_range.

search_range The reference of the range (table) to be searched. The cells in
the first column of search_range can contain numbers, text, or
logical values. The contents of the first column must be in
ascending order (for example, –2, –1, 0, 2...A through Z, False,
True). Text searches are not case-sensitive.

column_index The column in the search range from which the matching
value is returned.    column_index can be a number from 1 to
the number of rows in the search range. If column_index is
less than 1, #VALUE! is returned. When column_index is
greater than the number of rows in the table, #REF! is
returned.

Remarks

VLOOKUP compares the information in the first column of search_range to the supplied search_item.
When a match is found, information located in the same row and supplied column (column _index) is
returned.

If search_item cannot be found in the first column of search_range, the largest value that is less than
search_item is used. When search_item is less than the smallest value in the first column of the
search_range, #REF! is returned.

Examples

The following examples use this worksheet.

This function returns $28,700:

VLOOKUP("Clark", A2:E9, 4)

This function returns 3961:

VLOOKUP("Lee", A2:E9, 3)

See Also

HLOOKUP

INDEX

LOOKUP

MATCH

WEEKDAY

Description

Returns the day of the week that corresponds to the supplied date.

Syntax

WEEKDAY (serial_number)

Parameter Description

serial_number The date as a serial number or as text (for
example, 06-21-94 or 21-Jun-94).

Remarks

WEEKDAY returns a number ranging from 1 (Sunday) to 7 (Saturday).

Examples

This function returns 1, indicating Sunday:

WEEKDAY(34399.92)

This function returns 3, indicating Tuesday:

WEEKDAY(“06/21/94”)

See Also

DAY

NOW

TEXT

TODAY

YEAR

Description

Returns the year that corresponds to the supplied date.

Syntax

YEAR (serial_number)

Parameter Description

serial_number The date as a serial number or as text (for
example, 06-21-94 or 21-Jun-94).

Examples

This function returns 1993:

YEAR(34328)

This function returns 1994:

YEAR(“06/21/94”)

See Also

DAY

HOUR

MINUTE

MONTH

NOW

SECOND

TODAY

WEEKDAY

Working with Objects
Formula One provides the ability to create objects in a worksheet. Among the objects you can create are
charts, lines, rectangles, ovals, arcs, polygons, push buttons, check boxes, and drop down list boxes. As
with other worksheet elements, Formula One provides a wide range of options for formatting and
manipulating the appearance of objects you create.

Creating Objects

Identifying Objects

Naming Objects

Selecting Objects

Moving, Sizing, and Arranging Objects

Formatting Objects

Creating Objects
Formula One provides several methods for creating objects in worksheets:

Objects can created by calling methods in your code.

The Workbook Designer allows objects to be created interactively.

You can set the mode of the mouse to allow object drawing at any time.
Creating Objects with Methods

Interactively Drawing Objects

Picture Objects

Setting Mouse Mode

Identifying Objects

Naming Objects

Selecting Objects

Formatting Objects

Creating Objects with Methods
Formula One provides several methods that allow you to create objects from your application code.

ObjNew allows you to create lines, rectangles, ovals, arcs, buttons, check boxes, drop down list
boxes, and charts.

OjbNewPicture creates a new metafile picture object on a worksheet.
The following example creates four adjoining arcs using the ObjNew method:

Dim objID1 As Long

Dim objID2 As Long

Dim objID3 As Long

Dim objID4 As Long

F1Book1.ObjNew F1ObjArc, .5, 2, 1.5, 4, objID1

F1Book1.ObjNew F1ObjArc, 2.5, 2, 1.5, 4, objID2

F1Book1.ObjNew F1ObjArc, 2.5, 6, 3.5, 4, objID3

F1Book1.ObjNew F1ObjArc, 4.5, 6, 3.5, 4, objID4

The following illustration shows the result of the example code.

Creating Objects
Interactively Drawing Objects
Picture Objects
Setting Mouse Mode

Interactively Drawing Objects
The Workbook Designer toolbar contains buttons that allow you to interactively create and edit objects.
The following table describes the buttons on the toolbar.

Button Name Description

Worksheet tool Performs standard worksheet editing.
Also selects objects for editing. Press
CTRL when selecting buttons, check
boxes, and drop down list boxes.

Polygon editing mode Toggles between normal polygon
editing and polygon point editing.
When polygon point editing is
enabled, the points of a polygon can
be moved.

Line tool Draws lines.

Rectangle tool Draws rectangles and squares.

Oval tool Draws ovals and circles.

Arc tool Draws arcs.

Polygon tool Draws polygons.

Button tool Draws push buttons.

Check box tool Draws check box objects.

List box tool Draws drop down list box objects.

Chart tool Charts the selected range of data.

Interactively drawing objects in the Workbook Designer is as simple as point, click, and drag.

To draw an object in the Workbook Designer:

1. Select the tool for the object you want to draw.

The pointer appears as a small cross when positioned in the worksheet.

2. Position the pointer at the point where you want to begin drawing.

3. Click and drag to draw the object.

An outline of the object you are drawing appears and moves as you drag the mouse.

4. Release the mouse button to set the object.

Note      When drawing an object, press ALT to align the object to the cell grid.

Creating Objects

Creating Objects with Methods

Picture Objects

Setting Mouse Mode

Picture Objects
You can place a picture object on a worksheet and fill it with a metafile. Formula One provides two
methods for doing this, one for drawing the picture object, and one for filling it with a metafile.

Use ObjNewPicture to create a picture object on the current worksheet. You must specify the
position for the new picture object.
When specifying the location of the picture object, integers place the edge of the object on a row or
column border; fractional numbers place the edge of the object between borders.

Use ObjSetPicture to place a metafile in an existing object. You must provide a handle to the
metafile and the ID number of the picture object into which you want the metafile placed. Any metafile
previously contained by the picture object is freed from memory.
These methods also pass information about the dimensions of the picture and whether the picture can be
stretched. Formula One manages the memory associated with a metafile once a picture object has been
created, including freeing memory when the object is deleted.

You should be familiar with Windows metafiles and their structure before using these methods.

Creating Objects

Creating Objects with Methods

Interactively Drawing Objects

Setting Mouse Mode

Setting Mouse Mode
By setting the mode for mouse actions, you can allow objects to be drawn interactively in a worksheet.

Set the Mode property to change the mouse mode. You can specify that the mouse draw charts,
lines, rectangles, ovals, arcs, buttons, polygons, check boxes, and drop down list boxes. You can also
specify that the mouse assume normal worksheet editing mode.

Return the value of the Mode property to return the current mouse mode.
The following example uses Mode to set the mouse mode to rectangle drawing when you double click a
worksheet.

Private Sub F1Book1_Click(ByVal nRow As Long, ByVal nCol As Long)

F1Book1.Mode = F1ModeRectangle

End Sub

Interactively Drawing Objects

Identifying Objects
When you create an object – whether by method, in the Workbook Designer, or by setting the mouse
mode – the object is assigned an identification number. Many methods or properties require an object
identification number to tell Formula One on which object to operate.

If you are uncertain of an object’s identification number, there are several ways to determine it.

To determine an objects number in the Workbook Designer:

1. Select the object for which you want to determine the identification number.

2. Choose Name from the Object menu to display the Object Name dialog box.

The dialog box displays the identification number of the selected object.

The Object Name dialog box displays the identification number for the selected object.
To determine an objects number programmatically, use one of the following methods:

If an object is selected, the ObjGetSelection method returns the identification number of the
selected object.

Formula One maintains a list of objects in each worksheet within a workbook. The order of the
objects in that list is determined by the order in which objects are drawn in the worksheet. The farther to
the back an object is placed or drawn, the higher the object is placed in the list; the closer to the front an
object is placed or drawn, the lower the object is placed in the list. Therefore, when you call ObjFirstID,
this method returns the identification number of the first object in the list, which is the object drawn
farthest back in the layers of worksheet objects. Then, ObjNextID returns the identification number of the
next closest object, and so on.
When you use the ObjBringToFront and ObjSendToBack methods or the Bring To Front and Send To
Back commands from the Object menu in the Workbook Designer, you alter the order of the object list
maintained by the worksheet.

If an object has been named, you can return the identification number of the named object with
the ObjNameToID method.
Creating Objects

Naming Objects

Selecting Objects

Moving, Sizing, and Arranging Objects

Formatting Objects

Naming Objects
As mentioned in the previous section, objects can be named after they are created. Object names do not
take the place of object identification numbers. Rather, object names are used as a supplement to
identification numbers, making it easier to track and manipulate objects.

Another purpose for naming objects is to enable the ObjClick, ObjDblClick, ObjGotFocus,
ObjLostFocus, and ObjValueChanged events. Before these events can fire, you must name the object
receiving the action.

Objects can be named in the Workbook Designer or programmatically.

To name an object in the Worksheet Designer:

1. Select the object you want to name.

2. Choose Name from the Object menu to display the Object Name dialog box.

3. In the entry field, enter the name to assign to the object.

To name an object in code:

Set the ObjName property to name an object. Once an object is named, return the value of
ObjName to obtain the name assigned to an object. You can also call ObjNameDlg to display the Object
Name dialog box.
Note      After an object is named, you must press CTRL to select it at run time. In addition, if the ObjClick
or ObjDblClick events are enabled, you must press CTRL when clicking the object.

Creating Objects

Identifying Objects

Selecting Objects

Moving, Sizing, and Arranging Objects

Formatting Objects

Selecting Objects
When working in the Workbook Designer or in a workbook at run time, selecting objects is an important
first step when you are formatting, moving, or resizing objects. In addition, many methods – such as
SetPattern, SetLineStyle, ObjBringToFront, and ObjSendToBack – require that an object be selected
for the method to work.

Creating Objects

Identifying Objects

Naming Objects

Moving, Sizing, and Arranging Objects

Formatting Objects

Interactively Selecting Objects
Selecting objects interactively in the Workbook Designer or in a worksheet at run time is as simple as
pointing and clicking.

To interactively select an object:

1. Position the pointer on the object you want to select.

The pointer appears as an arrow when positioned on an object.

2. Click the object.

When the object is selected, selection handles appear at the edges of the bounding box that surrounds
the object.

Note      For check boxes, list boxes, and buttons that have been named or if the ObjClick or ObjDblClick
events are enabled, you must press CTRL when selecting the object. In addition, in a worksheet at run
time, you must press CTRL to select arcs, lines, ovals, polygons, and rectangles that have been named.

To select multiple objects, press SHIFT as you select the objects. For objects that have been named, you
must press CTRL+SHIFT to select multiple objects.

In the Workbook Designer, you can choose Select All from the Objects menu to select all the objects in a
worksheet.

Selecting Objects

Limiting Interactive Object Selection

Selecting Objects Programmatically

Selecting Check Box and List Box Items

Limiting Interactive Object Selection
Setting the AllowObjSelections property allows you to specify whether users can interactively select
objects in the Workbook Designer or in a worksheet at run time. Return the value of AllowObjSelections
to determine if object selections are allowed.

Selecting Objects

Interactively Selecting Objects

Selecting Objects Programmatically

Selecting Objects Programmatically

To select objects programatically, use one or more of the following:

ObjSetSelection selects the object you specify by object identification number. This method
unselects any previously selected objects or worksheet ranges.

ObjAddSelection adds an object to the current selection. Any previously selected objects remain
selected.

ObjGetSelection returns the identification number of the selected object. If more than one object
is selected, you must indicate for which object to return an identification number.

ObjGetSelectionCount returns the number of objects currently selected.
Selecting Objects

Interactively Selecting Objects

Limiting Interactive Object Selection

Moving, Sizing, and Arranging Objects
After an object is created, you can change both the position and size of the object. Formula One allows
these changes to be made interactively or programmatically.

Selecting Objects

Interactively Positioning Objects

Positioning Objects Programmatically

Determining Object Position and Size

Arranging Overlapping Objects

Arranging Objects and Object Order

Interactively Positioning Objects
Interactively, objects can be resized and repositioned at run time or in the Workbook Designer.

To interactively resize and reposition an object:

1. Select the object to be moved or sized.

Note    To select a named button, check box, or list box, you must press CTRL when selecting the
object. Or, if the ObjClick or ObjDblClick events are enabled, you must press CTRL when clicking
the object.

When you select an object, selection handles appear along the bounding box that surrounds the
object.

2. If moving the object, position the pointer anywhere in the area occupied by the object. If resizing
the object, position the pointer on one of the selection handles.

When positioned in the object area, the pointer appears as an arrow. When positioned on a
selection handle, the pointer appears as a two-headed arrow, indicating the direction in which the
object can be resized.

3. Click and drag to move or resize the object.

An outline of the object moves with the pointer as you drag the mouse.

Note    When moving or resizing an object, you can align the object to the worksheet grid by
pressing ALT as you click and drag.

4. Release the mouse to set the object at its new position or at its new size.

Selecting Objects

Moving, Sizing, and Arranging Objects

Positioning Objects Programmatically

Determining Object Position and Size

Arranging Overlapping Objects

Arranging Objects and Object Order

Positioning Objects Programmatically
Use the ObjSetPos method to set the position of an object. Because this method sets the placement of
both anchor points of the bounding box that surrounds an object, this method also resizes objects.

If you are uncertain of an object’s location, use the ObjGetPos to return the object’s position. The
following example uses ObjGetPos to obtain the position of the object. Then, ObjSetPos resizes the
object by moving the second anchor point left one and a half columns and up five rows.

Dim x1 As Single

Dim y1 As Single

Dim x2 As Single

Dim y2 As Single

F1Book1.ObjGetPos 1, x1, y1, x2, y2

F1Book1.ObjSetPos 1, x1, y1, (x2 - 1.5), (y2 - 5)

The following illustration shows the results of the example.

Selecting Objects Programmatically
Moving, Sizing, and Arranging Objects
Interactively Positioning Objects
Determining Object Position and Size
Arranging Overlapping Objects
Arranging Objects and Object Order

Determining Object Position and Size
The ObjPosToTwips method returns the placement and size of an object in twips. For this method, you
provide the position of an object’s anchor points in relation to the rows and columns of a worksheet. The
method also determines whether the object is shown, partially shown, or hidden given the current
dimensions of the view.

ObjPosToTwips does not reference a specific object on a worksheet and has no effect on any objects.

Moving, Sizing, and Arranging Objects

Interactively Positioning Objects

Positioning Objects Programmatically

Arranging Overlapping Objects

Arranging Objects and Object Order

Arranging Overlapping Objects
When you have multiple objects on a worksheet, they appear to be drawn on the same plane. However,
when two objects overlap, the previously drawn object is covered by the latter-drawn object. You can
change the order of object layering in a worksheet by sending an object behind other objects or bringing
an object to the front of other objects.

To arrange objects in the Workbook Designer:

1. Select the object you want to move.

2. Choose Bring to Front or Send to Back from the Object menu. The object is moved in the direction
you specify.

To arrange objects in code:

Call the methods ObjBringToFront or ObjSendToBack to arrange objects. These methods
move only the selected objects.
If multiple objects are selected when using these commands and methods, the order of objects within the
selection remains unchanged. The selected objects are placed in front of or behind only the unselected
objects.

Moving, Sizing, and Arranging Objects

Interactively Positioning Objects

Positioning Objects Programmatically

Determining Object Position and Size

Arranging Objects and Object Order

Arranging Objects and Object Order
When you use the ObjBringToFront and ObjSendToBack methods or the Bring To Front and Send To
Back commands from the Object menu in the Workbook Designer, you alter the order of the object list
maintained by the worksheet.

Moving, Sizing, and Arranging Objects

Interactively Positioning Objects

Positioning Objects Programmatically

Determining Object Position and Size

Arranging Overlapping Objects

Formatting Objects
Many elements of objects can be formatted including:

fill patterns and colors, and line colors, widths and styles for arcs, lines, ovals, polygons, and
rectangles.

the lists of items contained by drop down list boxes.

the text displayed by check boxes or push buttons.
Creating Objects

Identifying Objects

Selecting Objects

Formatting Colors and Patterns

Showing and Hiding Objects

Formatting List Boxes

Formatting Check Boxes

Formatting Buttons

Selecting Check Box and List Box Items

Setting Values Interactively

Setting Values Programmatically

Setting Values by Cell Reference

Editing Polygons

Formatting Colors and Patterns
To set the fill colors and patterns for graphical objects – arcs, ovals, polygons, and rectangles – use the
following methods:

To set fill colors and patterns for selected objects in the Workbook Designer:

Choose Pattern from the Object menu. The Pattern dialog box is displayed from which you can
make your pattern and color choices.
To set fill colors and patterns for selected object in code:

Use SetPattern to set the fill colors and pattern for the selected objects. You can also call
FormatPatternDlg to display the Pattern dialog box.
To set the line style, color, and weight for line objects and the lines that form the borders of arcs, ovals,
polygons, and rectangles, use the following approaches:

To format lines for selected objects in the Workbook Designer:

Choose Line Style from the Object menu. The Line Style dialog box is displayed from which you
can choose line attributes for the selected objects.
To format lines for selected objects in code:

Use SetLineStyle to set the line style, color, and weight for the selected objects. You can also
call LineStyleDlg to display the Line Style dialog box.
The following table shows the line styles that can be applied to line objects and the borders of arcs, ovals,
polygons, and rectangles:

Line styles

Solid

Dashed

Ditted

Dash-ditted

Dash-dit-ditted

None

Solid lines can be 1/2 point, 1 point, 2 points, or 3 points in weight. Styled lines can only be 1/2 point in
weight.

Formatting Objects

Showing and Hiding Objects

Formatting List Boxes

Formatting Check Boxes

Formatting Buttons

Editing Polygons

Showing and Hiding Objects
An object on a worksheet can be hidden by setting the ObjVisible property to False. To display a hidden
object, set the property to True. If you are uncertain whether an object is shown or hidden, return the
value of ObjVisible.

Formatting Objects

Formatting List Boxes
List boxes can be formatted by setting or changing the cell they reference, whether a selection appears in
the referenced cell as a value or text, and specifying the list of selections in the list box.

To set or edit list box items in the Workbook Designer:

1. Select a list box

2. Choose Options from the Object menu to display the Options dialog box.

3. Enter or edit the list of items contained by the list box. The items must be entered as a semicolon-
delimited list.

The following illustration shows the Options dialog box and a list box in a worksheet.

To set and manipulate the items contained in a list box programmatically, use the following
properties:

Set ObjItems to specify a list of items for a list box. For this property, you provide a semicolon-
delimited list of items. The list you provide replaces any previously-specified lists. Return the value of
ObjItems to get a semicolon-delimited list of items from a list box.

To change an item in a list of items, set ObjItem. For this property, you provide the number of the
item you want to change and the new value for the item. Return the value of ObjItem to get a specific
item from a list box.

To add an item to a list of items, use ObjAddItem. This method adds an item to the end of the
current list. Use ObjInsertItem to add an item at a specific location within a list.

Use ObjDeleteItem to delete an item from a list box.

ObjGetItemCount returns the number of items contained by a list box.

Use ObjOptionsDlg to display the Options dialog box.
Selecting Objects

Limiting Interactive Object Selection

Formatting Objects

Showing and Hiding Objects

Formatting Check Boxes

Formatting Buttons

Selecting Check Box and List Box Items

Setting Values Interactively

Setting Values Programmatically

Setting Values by Cell Reference

Formatting Check Boxes
The text displayed by a check box can be set either through the Workbook Designer or programmatically.

To edit check box text in the Workbook Designer:

1. Select a check box.

2. Choose Options from the Object menu to display the Options dialog box. In this dialog box, you
can enter and edit the text displayed by the check box.

To set the text displayed in a check box programmatically:

Set the ObjText property. Return the value of ObjText to get the text displayed by a check box.
Selecting Objects

Limiting Interactive Object Selection

Selecting Objects Programmatically

Formatting List Boxes

Formatting Buttons

Selecting Check Box and List Box Items

Setting Values Interactively

Setting Values Programmatically

Setting Values by Cell Reference

Formatting Buttons
The text displayed on a button can be set either through the Workbook Designer or programmatically.

To edit button text in the Workbook Designer:

1. Select a button.

2. Choose Options from the Object menu to display the Options dialog box. In this dialog box, you
can enter and edit the text displayed on the button.

To set the text displayed on a button programmatically:

Set the ObjText property. Return the value of ObjText to get the text displayed on a button.
Selecting Objects

Limiting Interactive Object Selection

Selecting Objects Programmatically

Showing and Hiding Objects

Formatting List Boxes

Formatting Check Boxes

Selecting Check Box and List Box Items
Formula One provides a variety of methods for checking or unchecking check box objects and selecting
items from drop down list box objects.

At run time, items can be checked or selected interactively using the mouse.

Properties and methods can set the value of a check box or list box object.

By assigning a cell to an object, you can set the value in the cell by making a selection from the
object. Likewise, if you enter a value that is in the list associated with a list box, you can change the value
displayed in the list box. The cell reflects the value to which the object is set, regardless of the method
used to set the value.
When you check or uncheck a check box, or select an item from list box, you set the value in the
assigned cell.

For a check box, the value of the assigned cell is True if the object is checked or False if
unchecked.

In a list box, you can choose to have the value of the assigned cell set to the number or the text
of the selected item. Items in a list box are numbered consecutively, starting with 0 (e.g., the first item is
item 0, the second item is item 1, and so on). -1 means that no item is selected in the list box.
Creating Objects

Selecting Objects

Limiting Interactive Object Selection

Selecting Objects Programmatically

Showing and Hiding Objects

Formatting List Boxes

Formatting Check Boxes

Setting Values Interactively

Setting Values Programmatically

Setting Values by Cell Reference

Setting Values Interactively
To set the value of a check box or list box interactively, the object itself cannot be selected and the pointer
must be in normal worksheet editing mode.

To set the value of a check box, position the pointer anywhere in the check box area and click.
The check box toggles between checked and unchecked states.

To set the value of a list box, position the pointer anywhere in the list box area and click. The list
of items contained by the list box is displayed. If the list area is not large enough to display all the items,
you may have to click the scroll areas to view the entire list. Then, click the item you want to select.
Formatting List Boxes

Formatting Check Boxes

Setting Values Programmatically
Set the ObjValue property to set the value of a check box or list box specified by object ID number.

For check boxes, provide 1 to check a check box; provide 0 to uncheck the object.

For list boxes, provide the number of the item you want to select. List box items are numbered
consecutively, starting with 0. If you specify -1, no item is selected in the list box.
Return the value of ObjValue to get the value of the current selection.

You can also use ObjText to set or return the text displayed on a button or next to a check box.
Formatting List Boxes

Formatting Check Boxes

Setting Values by Cell Reference
For both check boxes and list boxes, you can specify a cell that references the object. The referenced cell
works in two ways:

If you select an item from the object, the value or text of that selection is displayed in the
referenced cell. For example, if you uncheck a check box, FALSE is placed in the cell the check box
references.

If you enter a valid value in the referenced cell, the current selection of the object reflects the cell
value. For example, if you enter 0 in the cell, a list box that references the cell displays its first item as the
current selection.
If multiple objects reference the same cell, making a selection in one object makes the same selection in
all objects that reference the cell.

The cell reference for an object can be set in the Options dialog box, displayed by choosing Options from
the Object menu when the object is selected. You can also specify a cell reference by calling the
ObjSetCell method. ObjGetCell returns an object cell reference.

For list boxes only, you can specify whether the value or text of the selection is displayed in the cell.

Formatting List Boxes

Formatting Check Boxes

Editing Polygons
When editing polygons, there are two editing modes:

Normal Polygon Editing. This mode allows you to resize and move polygons. Editing of polygon
points is not allowed in this mode.

Polygon Point Editing. This mode allows you to reposition polygon points, thus changing the shape
of the polygon.

You can set the polygon editing mode by setting the PolyEditMode property. To determine the current
polygon editing mode, return the value of PolyEditMode.

In the Workbook Designer, use the polygon editing mode button in the toolbar to toggle between the
polygon editing modes. The following illustration shows a selected polygon when normal polygon editing
and polygon point editing modes are enabled.

To interactively reshape a polygon:

1. Select the polygon to be reshaped.

2. Make certain that polygon editing mode is enabled.

When polygon editing mode is enabled, selection handles appear at each point along the border of
the selected polygon.

3. Position the pointer on the polygon point that you want to move.

4. Click the point and drag the mouse.

An outline of the lines adjoining the point move as you drag the polygon point.

5. Release the mouse button to place the point at its new location.

Working with Chart Objects
If you have also purchased Visual Component’s First Impression OCX, you can automatically chart
worksheet data. In order to draw a chart, First Impression must be properly installed on your system. The
following illustration shows an example of a chart on a worksheet.

To create a chart programmatically;

Use the ObjNew method with the F1ModeChart constant. This draws a chart object on the
worksheet in the position you specify and charts the currently selected range.

To change a chart’s data range, you must select it, open the Object Options dialog box and
provide a range reference or defined name for the chart.
To interactively chart data:

1. Select a range of data to be charted.

2. Click the chart button in the Tool bar.

3. Draw a rectangle where you want to place the chart.

The Chart Wizard appears to assist you in designing the chart appearance.

4. Make any necessary selections from the Chart Wizard and click Finished.

Using the Chart Wizard

Chart Options

Referencing Data on Another Worksheet

Using the Chart Wizard
The tabs within the Chart Wizard guide you through most common design decisions required when you
create or modify a chart. The Chart Wizard is displayed automatically when you draw a new chart on a
worksheet. You can also display the Chart Wizard at any time to assist you in formatting an existing chart.

Important      Each chart type has individual requirements as to how the data must be laid out. Separate
formatting options are also available for different chart types. You should read your First Impression
User’s Guide to familiarize yourself with the requirements of various chart types.

To access the Chart Wizard:

1. Double-click on the chart to activate it.

2. Right-click the chart to display the shortcut menu.

3. Choose Wizard from the menu.

The Chart Wizard provides four tabs that control various design aspects such as choosing a chart type,
setting chart options, controlling chart layout, and specifying chart and axis titles. You can navigate
through these tabs by clicking on the tab at the top of the dialog box, or by using the navigation buttons at
the bottom of the dialog box.

Click on the following illustration to display additional information about the Chart Wizard.

Working with Chart Objects

Using the Chart Wizard
The tabs within the Chart Wizard guide you through most common design decisions required when you
create or modify a chart. The Chart Wizard is displayed automatically when you draw a new chart on a
worksheet. You can also display the Chart Wizard at any time to assist you in formatting an existing chart.

Important      Each chart type has individual requirements as to how the data must be laid out. Separate
formatting options are also available for different chart types. You should read your First Impression
User’s Guide to familiarize yourself with the requirements of various chart types.

To access the Chart Wizard:

1. Double-click on the chart to activate it.

2. Right-click the chart to display the shortcut menu.

3. Choose Wizard from the menu.

The Chart Wizard provides four tabs that control various design aspects such as choosing a chart type,
setting chart options, controlling chart layout, and specifying chart and axis titles. You can navigate
through these tabs by clicking on the tab at the top of the dialog box, or by using the navigation buttons at
the bottom of the dialog box.

Click on the following illustration to display additional information about the Chart Wizard.

Working with Chart Objects

Using the Chart Wizard
The tabs within the Chart Wizard guide you through most common design decisions required when you
create or modify a chart. The Chart Wizard is displayed automatically when you draw a new chart on a
worksheet. You can also display the Chart Wizard at any time to assist you in formatting an existing chart.

Important      Each chart type has individual requirements as to how the data must be laid out. Separate
formatting options are also available for different chart types. You should read your First Impression
User’s Guide to familiarize yourself with the requirements of various chart types.

To access the Chart Wizard:

1. Double-click on the chart to activate it.

2. Right-click the chart to display the shortcut menu.

3. Choose Wizard from the menu.

The Chart Wizard provides four tabs that control various design aspects such as choosing a chart type,
setting chart options, controlling chart layout, and specifying chart and axis titles. You can navigate
through these tabs by clicking on the tab at the top of the dialog box, or by using the navigation buttons at
the bottom of the dialog box.

Click on the following illustration to display additional information about the Chart Wizard.

Working with Chart Objects

Using the Chart Wizard
The tabs within the Chart Wizard guide you through most common design decisions required when you
create or modify a chart. The Chart Wizard is displayed automatically when you draw a new chart on a
worksheet. You can also display the Chart Wizard at any time to assist you in formatting an existing chart.

Important      Each chart type has individual requirements as to how the data must be laid out. Separate
formatting options are also available for different chart types. You should read your First Impression
User’s Guide to familiarize yourself with the requirements of various chart types.

To access the Chart Wizard:

1. Double-click on the chart to activate it.

2. Right-click the chart to display the shortcut menu.

3. Choose Wizard from the menu.

The Chart Wizard provides four tabs that control various design aspects such as choosing a chart type,
setting chart options, controlling chart layout, and specifying chart and axis titles. You can navigate
through these tabs by clicking on the tab at the top of the dialog box, or by using the navigation buttons at
the bottom of the dialog box.

Click on the following illustration to display additional information about the Chart Wizard.

Working with Chart Objects

In the Gallery Tab, select the type of chart you wish to design. Two radio buttons control whether 2D chart
or 3D chart types are displayed.

In the Style Tab, select a style for the chart type you have selected. Each style is a predefined set of
display options such as series labels, stacking and bar gap.

In the Layout Tab, specify an optional chart title, footnote, chart legend position, and whether the series
data in the charted range should be charted along rows or columns. The chart preview image on this tab
shows you how the chart will look with these modifications.

In the Axes Tab, enter optional axis titles for any or all axes on your chart. The chart preview image on
this tab shows you how the chart will look with the addition of the axis title.

Displays Wizard Help

Aborts changes.

Displays previous tab.

Displays next tab.

Applies modifications.

Additional Chart Formatting
The Chart Wizard provides a quick and easy method for applying some of the most common formatting
options to your chart. Additional formatting options are available by using the First Impression dialog
boxes. These dialog boxes are displayed by double-clicking on chart elements in an activated chart
object, or selecting items from the First Impression shortcut menu. Consult your First Impression
documentation for more information about these.

To access First Impression dialog boxes:

1. Double-click on the chart object to activate it.

2. Right-click on the chart to display the shortcut menu.

3. Make a selection from the menu.

Important      One of the options on the First Impression shortcut menu is Edit Chart Data. This displays
First Impression’s Data Grid View tool. In this tool you can modify the size and content of the chart’s data
source. Any changes you make in the Data Grid View tool are reflected in the chart, but are NOT reflected
in the worksheet. Also, if you use the Data Grid View tool to edit the chart data and then recalculate the
workbook in Formula One while the chart still references a range in the worksheet, the worksheet data
overwrites your changes. To prevent this, set the charts formula to an empty string (" ") before using the
Data Grid View tool to edit the data.

Using the Chart Wizard

Chart Options
Within Formula One, you can control whether or not users can edit the chart, and change the source data
range for a chart using the Object Options dialog box.

To edit chart options:

1. Select the chart.

2. Choose Options from the Object menu to display the object options dialog box.

Developer’s Note    If you make the Workbook designer available to your end-users, they will have
access to the Allow User Change check box. To prevent them from modifying a chart regardless of
this setting, set the AllowObjSelection property to False.

Referencing Data on Another Worksheet

Referencing Data on Another Worksheet
You can also display a chart on one worksheet that references data on a separate worksheet.

To create a chart on a separate worksheet:

1. Select the chart tool.

2. Draw the chart on a worksheet.

3. Choose Options from the Object menu to display the Object Options dialog box.

4. Enter the formula referencing the data source on the other spreadsheet.

Chart Options

Working with Databases
Database connectivity is one of Formula One's most powerful features. You can use Formula One, along
with ODBC drivers, to retrieve data from a database and use it to populate a Formula One worksheet at
the starting row and column position you specify. This ODBC connection offers incredible speed and
flexibility in populating your worksheet.

Installing the ODBC Drivers

Setting up a Data Source

Overview of Formula One Connections

Connecting to the Data Source

Querying the Data Source

Disconnecting from the Data Source

Installing the ODBC Drivers
In order to connect a Formula One worksheet to a database via ODBC, you must have the 32 bit version
of the ODBC drivers installed on your system. These drivers come with most 32 bit development
environments such as Visual Basic 4.0, Office95, and Visual C++ 2.x. When you install these
environments be sure to select the ODBC option. If you have already installed your development
environment, you can re-install and check only the ODBC option. Be aware that different environments
offer different drivers. Please contact your development environment vender for information about the
drivers available.

Working with Databases

Setting up a Data Source

Overview of Formula One Connections

Setting up a Data Source
You can create a new data source from within Formula One, or you may find it more convenient to set up
your data sources outside Formula One.

To set up a data source outside Formula One:

1. Double-click the ODBC icon in the Control Panel to bring up the Data Sources dialog box.

2. Press the Add button to add a connection to the database you want to reach.

3. In the Add Data Source dialog box, choose the appropriate 32 bit driver for the database you are
connecting to and press OK. This brings up an ODBC dialog box based on the driver you chose.

4. Enter a Data Source Name and Database Name that describe the database you want to connect
to and press OK.

Overview of Formula One Connections
Database connections are made on a per worksheet basis. This means that you can populate each
worksheet in a workbook with data from a different query, or even a different database. This is a powerful
feature because Formula One worksheet functions work across multiple worksheets.

As an example, you can query district sales information, and place information from each district in a
separate worksheet within the same workbook. On each worksheet, you can do summary calculations to
show statistics for that district. You can also add additional worksheets to the workbook that do
summaries or analysis on any combination of the districts.

If you also purchase Visual Component’s First Impression charting tool, you can select a range of data in
a worksheet and draw a chart illustrating that data right on the Formula One worksheet.

Installing the ODBC Drivers

Connecting to the Data Source

Querying the Data Source

Disconnecting from the Data Source

Connecting to the Data Source
Formula One provides the ODBCConnect method to connect the active worksheet to a database. You
provide ODBCConnect with:

a variable containing a connect string,

a boolean that controls whether SQL errors are displayed,

and a variable that receives the returned SQL status code.
The following code example shows the use of this method:

On Error GoTo ConnectError

Dim returnCode As Integer, pConnect As String

F1Book1.ODBCConnect pConnect, True, returnCode

Exit Sub

ConnectError:

MsgBox Error

The connect string must be a variable. This allows you to let the user select the database at run time and
returns the data source in the connect string. When you pass in a null string for the connect string, the
following dialog box is displayed, allowing the user to select the data source.

To create a new data source within Formula One:

1. Click New in the SQL Data Sources dialog box to display the following dialog box.

2. Select an ODBC driver to use with the data source you are defining and click OK to display the Setup
dialog for that driver.
If the appropriate driver does not appear in the list see the instructions under Installing ODBC drivers
earlier in this chapter.
3. In the Setup dialog, enter a data source name and optional description. Click Select to identify the
database associated with this data source.

4. Click OK to redisplay the SQL Data Sources dialog box.
5. Select the data source to which you want to connect and click OK.
Querying the Data Source

Disconnecting from the Data Source

Querying the Data Source
Once you have connected to a data source, you can build and execute a query. Formula One's
ODBCQuery method accomplishes both. You must provide ODBCQuery the following information:

a variable that specifies the query syntax. If you pass a null string for this argument, the
ODBCQuery dialog box is displayed to allow the user to build the query at run time. The query string
must be passed as a variable. This allows you to let the user build the query at run time and returns the
final query string.

row and column coordinates that identify where in the active worksheet the returned data is to be
placed.

a boolean that determines whether the ODBCQuery dialog box is displayed.

variables that control whether data and data type information is used to format the worksheet
size, column headings, column width, and cell formatting.

a variable that received the returned status code.
Below is the code that implements this in the demo.

On Error GoTo FetchError

Dim returnCode As Integer, query As String

Dim setColNames As Boolean, setColFormats As Boolean

Dim setColWidths As Boolean, setMaxRC As Boolean

Let query = cboQueries.TEXT

setColNames = chkSetColNames.Value

setColFormats = chkSetColFormats.Value

setColWidths = chkSetColWidths.Value

setMaxRC = chkSetMaxRC.Value

F1Book1.ODBCQuery query, Val(txtStartRow.TEXT), Val(txtStartCol.TEXT), optShowDialog.Value,

setColNames, setColFormats, setColWidths, setMaxRC, returnCode

Exit Sub

FetchError:

MsgBox Error

If the query string is null or you set the optShowDialog value to true, the query dialog is displayed.

Set Column Widths. Check this box to automatically set the width of each column to be wide
enough to display the widest data in the column.

Set Column Names. Check this box to display field names instead of the standard alphabetic
column headings. Even though field names are displayed as the column headings, formulas must still use
the standard cell referencing conventions (e.g., A1).

Set Column Formats. Check this box to have formats for date, time, and currency fields set
automatically when data is placed in the worksheet. If you do not check this box, you must set the formats
for these columns manually.

Set MaxRow & MaxCol. Check this box to have the maximum number of worksheet rows and
columns set to the number of records and fields returned by the query.
When you click OK in the ODBC Query dialog box, the query is executed. The following example shows
the results of a returned query.

Notice that Set Column Names and Set MaxRow and Max Column have been set to True. Column labels
have been replaced with database field names and the size of the worksheet has been adjusted to the
number of returned columns and rows.
Note    To maintain Excel compatibility, each cell is limited to 256 characters. If the returned data exceeds

this limit, the text is truncated to fit in the cell
Notice that Set Column Names and Set MaxRow and Max Column have been set to True. Column labels
have been replaced with database field names and the size of the worksheet has been adjusted to the
number of returned columns and rows.

Connecting to the Data Source

Disconnecting from the Data Source

Disconnecting from the Data Source
After your query you should disconnect from the database. This is done with the ODBCDisconnect
method. Following is a code example showing the use of this method.

F1Book1.ODBCDisconnect

Connecting to the Data Source

Querying the Data Source

Printing Worksheets
You can print the active worksheet from the Workbook Designer, or from code.

To print the active sheet from the Workbook Designer:

1. Choose Print from the File menu to display the Print dialog box.

2. Make any necessary adjustments to the settings and click OK.

To print the active sheet from code:

Use the FilePrint method. The following code uses this method to print a worksheet.

F1Book1.FilePrint TRUE

When you call FilePrint, the Print dialog box can be displayed, allowing you to specify the pages
to print, the number of copies to print, and other related items.

Use FilePageSetupDlg to display the Page Setup dialog box which gives easy access to setting
margins, headers, footers, headings, grid printing, page ordering, and output alignment. The following
code displays the Page Setup dialog box.

F1Book1.FilePageSetupDlg

Use FilePrintSetupDlg to invoke the Print Setup dialog box, the standard Windows printer setup
dialog box is displayed. It allows you to select a printer, select the paper source, and select the page
orientation (portrait or landscape). The following code displays the Print Setup dialog box.

F1Book1.FilePrintSetupDlg

Specifying Print Areas

Specifying Row and Column Print Titles

Specifying Headers and Footers

Specifying Page Breaks

Page Break Methods

Setting Printing Orientation

Using the Windows API DEVMODE Structure

Specifying Print Areas
Formula One prints the entire active worksheet unless you specify the ranges you want to print. To specify
the areas you want to print, you must set the Print_Area name to reflect the worksheet area to be printed.

To set the print area in the Workbook Designer:

1. Select the ranges to print.

2. Choose Set Print Area from Sheet.

To set the print area in code:

Use the PrintArea property.
The following example uses the PrintArea property to set A1:D25 as the area to be printed.

F1Book1.PrintArea "A1:D25"

You can select multiple ranges to print. If you specify multiple ranges, the ranges do not have to be
adjacent. For example, a print area could be comprised of two ranges, A1:D4 and F5:I8.

In the following example, the print area is set to the ranges A1:D4 and F5:I8.

F1Book1.PrintArea "A1:D4,F5:I8"

Specifying Row and Column Print Titles

Specifying Headers and Footers

Specifying Page Breaks

Specifying Row and Column Print Titles
You can specify row or column titles that you want printed on each page of your worksheet. If you select a
row, it is printed at the top of each page. If you select a column, it is printed at the left edge of each page.
You can select multiple rows or columns, but they must be adjacent.

Important      When setting print titles, you must select entire rows and columns.

The Print_Titles name holds the row and column titles specification.

To set print titles in the Workbook Designer:

1. Select the rows or columns to use as print titles.

2. Choose Print Titles on the Sheet menu.

To set print titles in code:

Set the PrintTitles property.
The following example uses the PrintTitles property to set rows 1 and 2 and column A as print
titles.

F1Book1.PrintTitles "A1:IV2, A1:A16384"

Specifying Print Areas

Specifying Headers and Footers

Specifying Page Breaks

Specifying Headers and Footers
Headers and footers are printed at the top and bottom of each page. The header and footer definition is
accessible in the Page Setup dialog box. You can also define headers and footers through the
PrintFooter and PrintHeader properties.

Headers and footers can contain text and special formatting codes. The following table lists the special
formatting codes. Header and footer codes can be entered in upper or lower case.

Format Code Description

&L Left-aligns the characters that follow

&C Centers the characters that follow

&R Right-aligns the characters that follow

&D Prints the current date

&T Prints the current time

&F Prints the workbook name

&A Prints the worksheet name

&P Prints the page number

&P+number Prints the page number plus number

&P-number Prints the page number minus number

&& Prints an ampersand

&N Prints the total number of pages in the document

Codes and text are, by default, centered unless &L or &R is specified.

The following font codes must appear before other codes and text or they are ignored. The alignment
codes (e.g., &L, &C, and &R) restart each section; new font codes can be specified after an alignment
code.

Format Code Description

&B Use a bold font

&I Use an italic font

&U Underline the header

&S Strikeout the header

&O Ignored

&H Ignored

&"fontname" Use the specified font

&nn Use the specified font size - must be a two digit number

Specifying Print Areas

Specifying Row and Column Print Titles

Specifying Page Breaks

Specifying Page Breaks
Both horizontal and vertical page breaks can be specified on a worksheet. Page breaks can be specified
interactively using the Workbook Designer, or you can use methods and properties.

In the Workbook Designer, page breaks are always placed adjacent to the active cell. When using
methods, page breaks can be placed adjacent to the active cell or a cell that you specify.

Horizontal (row) page breaks are placed adjacent to the top edge of the active or specified cell.

Vertical (column) page breaks are placed adjacent to the left edge of the active or specified cell.
To set page breaks in the Workbook Designer:

1. Select the cell adjacent to which you want to place page breaks.

2. Choose Set Page Breaks from the Sheet menu.

Page Break Methods

Page Break Methods
There are several categories of page break methods. The AddPageBreak and RemovePageBreak
methods add page breaks adjacent to the active cell. The following example uses these methods:

F1Book1.AddPageBreak

F1Book1.RemovePageBreak

AddRowPageBreak, AddColPageBreak, RemoveRowPageBreak, and RemoveColPageBreak add
and remove page breaks adjacent to the row or column that you specify in the method. The following
example uses the AddRowPageBreak method:

Dim theRow As Long

theRow = 8

F1Book1.AddRowPageBreak theRow

NextRowPageBreak returns the next page break below the row that you specify in the method.
NextColPageBreak returns the next page break to the right of the column that you specify in the method.
The following example uses the NextRowPageBreak method:

Dim nextBreak As Long

Dim theRow As Long

theRow = 20

nextBreak = F1Book1.NextRowPageBreak (therow)

Specifying Page Breaks

Setting Printing Orientation
Worksheet pages can be printed with a portrait or landscape orientation. The PrintLandscape property
controls the printing orientation.

To set printing orientation in the Worksheet Designer:

Choose Print Setup from the File menu and set the printing orientation in the Print Setup dialog
box.

Using the Windows API DEVMODE Structure
You can also customize your printing session by using the PrintDevMode property to read and write the
Windows API DEVMODE structure. This structure sets a number of common printing attributes such as
device name, orientation, paper size, print scale, and print resolution.

Formula One Workbook Properties
A number of the most commonly used properties can be set in the Formula One Workbook Properties
dialog box.

To display the Formula One Workbook Properties dialog box:

1. Right-click on the workbook control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a control in the following illustration for more information about that particular control.

Enter an application name to display in the title bar of all Formula One error dialog boxes.

AppName property

Enter a name to change the default name assigned to the workbook associated with the current view. A
number of methods, such as Attach, reference a workbook by its name instead of its handle.

TableName property

This control displays a set of cell references identifying the current selection on the current worksheet.
Enter a cell reference here to select a new range and move the active cell to the top left cell in the range.

Selection Property

This control shows the current display scale for the workbook. Enter a number between 10 and 400 to
change the display scale.

ViewScale Property

Check this box to immediately recalculate the worksheet if recalculation is necessary. Thereafter, any
change to the workbook causes all formulas to be recalculated. Uncheck this box to recalculate the
worksheet only if you specifically request a recalculation.

AutoRecalc Property

Check this box to select an entire row when you click on a cell. Uncheck this box to select only a cell
when you click on a cell.

RowMode Property

Check this box to enable protection for all selected sheets. Uncheck this box to disable protection.
Enabling protection means that any cells marked as hidden or locked, are actually hidden and locked.

EnableProtection Property

Check this box to cause pressing the enter key to move the active cell down to the next cell. Uncheck this
box to prevent the enter key from moving to the next cell.

EnterMovesDown Property

Formula One Workbook Properties
A number of the most commonly used properties can be set in the Formula One Workbook Properties
dialog box.

To display the Formula One Workbook Properties dialog box:

1. Right-click on the workbook control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a control in the following illustration for more information about that particular control.

The controls in this section specify whether you can use certain mouse actions to perform certain tasks.
Check the Resize Rows/Cols box to allow rows and columns to be resized by dragging row or column
heading borders. Check the Fill Range box to fill a worksheet range by dragging a selection’s copy
handle. Check the Move Range box to move ranges by dragging a cell.

AllowResize Property

AllowFillRange Property

AllowMoveRange Property

The controls in this section specify whether you can perform certain editing activities. Check the Formulas
box to allow formulas to be entered. Check In Cell Editing to allow data to be entered directly into a cell,
bypassing the edit bar. Check the Selections box to allow ranges and objects to be selected with the
keyboard or by clicking and dragging the mouse.

AllowFormulas Property

AllowInCellEditing Property

AllowSelections Property

The controls in this section specify the behavior of certain keyboard actions. Check Use Arrows to allow
use of the arrow keys to reposition the active cell. Check Use Tabs to allow use the tab key to reposition
the active cell in a selected range. Check Use Delete to allow use of the delete key deletes records and
clears selections. The delete key deletes a record if an entire row is selected. The current selection is
cleared if less than a row is selected or if data browsing mode is disabled.

AllowTabs Property

AllowArrows Property

AllowDelete Property

Formula One Workbook Properties
A number of the most commonly used properties can be set in the Formula One Workbook Properties
dialog box.

To display the Formula One Workbook Properties dialog box:

1. Right-click on the workbook control to display the shortcut menu.

2. Select Properties from the shortcut menu.

Click on a control in the following illustration for more information about that particular control.

Enter the column number of the first column you want to fix in the active worksheet. Fixed columns do not
scroll when the worksheet is scrolled horizontally. Data in fixed columns cannot be edited.

FixedCol Property

Enter the number of columns (from FixedCol) you want to fix. Fixed columns do not scroll when the
worksheet is scrolled horizontally. Data in fixed columns cannot be edited.

FixedCols Property

Enter the row number of the first row you want to fix in the active worksheet. Fixed rows do not scroll
when the worksheet is scrolled vertically. Data in fixed rows cannot be edited.

FixedRow Property

Enter the number of rows (from FixedRow) you want to fix. Fixed rows do not scroll when the worksheet is
scrolled vertically. Data in fixed rows cannot be edited.

FixedRows Property

Enter the number of the first row that can be displayed in the active worksheet. Rows before the first row
are not displayed but can be used to hold data and formulas.

MinRow Property

Enter the number of the first column that can be displayed in the active worksheet. Columns before the
first row are not displayed but can be used to hold data and formulas.

MinCol

Enter the number of the last displayable row in the active worksheet. Rows beyond the last row are not
displayed but can be used to hold data and formulas.

MaxRow Property

Enter the number of the last displayable column in the active worksheet. Columns beyond the last column
are not displayed but can be used to hold data and formulas.

MaxCol Property

Check this box to display formula text in cells instead of the values formulas produce. Uncheck the box to
display formula results.

ShowFormulas Property

Check this box to display grid lines on the active worksheet. Uncheck this box to hide the gridlines.

ShowGridLines Property

Check this box to display row headings on the active worksheet. Uncheck this box to hide the row
headings.

ShowRowHeading Property

Check this box to display column headings on the active worksheet. Uncheck this box to hide the column
headings.

ShowColHeading Property

Check this box to display zeros in cells with zero values. Uncheck this box to display zero value cells as
blanks.

ShowZerosValues Property

Controls the appearance of the vertical scroll bar. Select On to turn the scroll bar on, Off to turn scroll bar
off, and Automatic to display scroll bar when the workbook is too tall to display in the control.

ShowVScrollBar

Controls the appearance of the horizontal scroll bar. Select On to turn the scroll bar on, Off to turn scroll
bar off, and Automatic to display scroll bar when the workbook is too tall to display in the control.

ShowHScrolBar

Controls how selections are displayed on the active worksheet. Select On to display selections, Off to
hide selections, or Automatic to display selections only when the control has focus.

ShowSelections Property

Controls the appearance and position of sheet name tabs. Select Top to display the tabs at the top of the
workbook, Bottom to display the tabs at the bottom of the workbook, or Off to hide the sheet tabs.

ShowTabs Property

AboutBox Method

Description

Displays the About Formula One dialog box. This dialog box contains information about your version of
Formula One, including your serial number. You must have your serial number to receive technical
support or upgrade pricing on future product releases.

Syntax

F1Book1.AboutBox

AddColPageBreak Method

Description

Adds a vertical page break adjacent to the left edge of the specified column.

Syntax

F1Book1.AddColPageBreak nCol

Part Type Description

nCol Long Indicates the column where the page
break is added.

See Also

AddPageBreak method

AddRowPageBreak method

NextColPageBreak method

NextRowPageBreak method

RemoveColPageBreak method

RemovePageBreak method

RemoveRowPageBreak method

Example

The following example adds a vertical page break at the left edge of the column containing the active cell
(identified by the Col property):

F1Book1.AddColPageBreak F1Book1.Col

AddPageBreak Method

Description

Adds a horizontal and vertical page break adjacent to the active cell.

Syntax

F1Book1.AddPageBreak

Remarks

When page breaks are added adjacent to the active cell, the horizontal page break is added at the cell’s
top edge; the vertical page break is added at the cell’s left edge.

See Also

AddColPageBreak method

AddRowPageBreak method

RemoveColPageBreak method

NextColPageBreak method

NextRowPageBreak method

RemovePageBreak method

RemoveRowPageBreak method

Example

The following example puts a page break at the top left corner of a range of cells with the defined name of
SalesReport2:

F1Book1.Selection = "SalesReport2"

F1Book1.AddPageBreak

AddRowPageBreak Method

Description

Adds a horizontal page break adjacent to the top edge of the specified row.

Syntax

F1Book1.AddRowPageBreak nRow

Part Type Description

nRow Long Indicates the row where the page
break is added.

See Also

AddPageBreak method

AddColPageBreak method

RemoveColPageBreak method

NextColPageBreak method

NextRowPageBreak method

RemovePageBreak method

RemoveRowPageBreak method

Example

The following example implements a menu item that adds row page breaks at the active cell:

Private Sub mnuFileAddRowPageBreak

F1Book1.AddRowPageBreak F1Book1.Row

End Sub

AddSelection Method

Description

Adds a new selection to the current selection list.

Syntax

F1Book1.AddSelection nRow1, nCol1, nRow2, nCol2

Part Type Description

nRow1, nCol1,
nRow2, nCol2

Long Indicate the row and column coordinates of the selection to
add to the selection list. To include all rows in the selection,
set nRow1 to -1. To include all columns in the selection, set
nCol1 to -1. For example, to add all of row 4 to the
selection list, use 4, -1, 4, -1.

Remarks

Multiple selections allow operations such as formatting or clearing to be performed on non-contiguous
areas.

See Also

Selection property

Example

The following example sets a medium black border on the bottom of every 5th row for the first 100 rows:

Dim i As Integer, savedRange As String

savedRange = F1Book1.Selection

F1Book1.SetSelection 5, -1, 5, -1

For i = 10 To 100 Step 5

F1Book1.AddSelection i, -1, i, -1

Next i

F1Book1.SetBorder 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0

F1Book1.Selection = savedRange

AllowArrows Property

Description

Sets or returns whether the arrow keys can reposition the active cell.

Syntax

F1Book1.AllowArrows [= boolean]

If this property is True, the arrow keys on your keyboard move the active cell in the spreadsheet. By
default, this property is True.

AllowAutoFill Property

Description

Sets or returns whether the AutoFill feature is enabled.

Syntax

F1Book1.AllowAutoFill [= boolean]

If this property is True, you can use the mouse or the keyboard to autofill a range.

See Also

AutoFillItems property

AutoFillItemsCount property

DeletAutoFillItems method

AllowDelete Property

Description

Sets or returns whether the delete key clears selections.

Syntax

F1Book1.AllowDelete [= boolean]

If this property is True, the delete key deletes the current selection. If this property is False, the delete key
does not clear selections. By default, the allow delete flag is True.

AllowDesigner Property

Description

Sets or returns whether the Workbook Designer can be launched at run-time.

Syntax

F1Book1.AllowDesigner [= boolean]

Remarks

When this property is True, the default state, you can display the Workbook Designer by double-clicking
the right mouse on the workbook control. When it is False, the Workbook Designer is only available at
design time.

If you make the Workbook Designer available at run-time, it will also be available to your end users.

See Also

LaunchDesigner method

AllowEditHeaders Property

Description

Sets or returns whether row, column, and top left headers can be edited.

Syntax

F1Book1.AllowEditHeaders [= boolean]

If this property is True, you can edit the names displayed in row, column, and top left headers by double-
clicking on a header. This displays the Header Name dialog box, allowing you to enter a new header
name. If this property is False, editing of headers is not allowed and a DblClick event is passed when a
header is double clicked, if DoDblClick is True.

AllowFillRange Property

Description

Sets or returns whether you can fill a worksheet range by dragging.

Syntax

F1Book1.AllowFillRange [= boolean]

If this property is True, you can drag a selection’s copy handle to fill a range.

AllowFormulas Property

Description

Sets or returns whether the user is allowed to enter or edit formulas.

Syntax

F1Book1.AllowFormulas [= boolean]

If this property is False, formulas cannot be added or edited by the user at run time.

AllowInCellEditing Property

Description

Sets or returns whether in-cell editing is allowed.

Syntax

F1Book1.AllowInCellEditing [= boolean]

If this property is False, in-cell editing is inactive and you cannot enter or edit data in a cell without using
the edit bar.

AllowMoveRange Property

Description

Sets or returns whether you can move ranges by dragging them.

Syntax

F1Book1.AllowMoveRange [= boolean]

If this property is True, you can move ranges by dragging a selection.

AllowObjSelections Property

Description

Sets or returns whether you can select objects at runtime.

Syntax

F1Book1.AllowObjSelections [= boolean]

If this property is True, objects can be selected. If an object is already selected when you set this property
to False, it remains selected.

AllowResize Property

Description

Sets or returns whether you can resize rows and columns by dragging them.

Syntax

F1Book1.AllowResize [= boolean]

If this property is True, rows and columns can be sized by dragging row or column heading borders.

AllowSelections Property

Description

Sets or returns whether you can select ranges and objects.

Syntax

F1Book1.AllowSelections [= boolean]

If this property is True, you can select ranges and objects with the keyboard or by clicking and dragging
with the mouse.

AllowTabs Property

Description

Sets or returns whether you can use the tab key to reposition the active cell in a selected range.

Syntax

F1Book1.AllowTabs [= boolean]

If this property is True, you can use the tab key to move the active cell through a selected range. When
tabbing through a range, the active cell moves from left to right through each row in the range. By default,
the allow tabs flag is True.

AppName Property

Description

Sets or returns the application name that is displayed in the title bar of Visual Components error dialog
boxes.

Syntax

F1Book1.AppName [= name]

Part Type Description

name String Application name.

Remarks

When the application name is set, only the name displayed in the title bar of error dialog boxes is
affected. Other dialog boxes display functional names (e.g., Alignment, Custom Format, Font).

Attach Method

Description

Searches for a workbook with the given title and attaches it to a view.

Syntax

F1Book1.Attach pTitle

Part Type Description

pTitle String Indicates the title of the workbook for
which to search.

Remarks

This method searches for a workbook with the given title. If the workbook is found, it is attached to the
specified view. After a successful attachment, both the workbook’s original view and the new view display
the same workbook.

This method is similar to AttachToSS, except that the workbook is referenced by title, rather than by
handle.

Use the Title property to return the title associated with a particular workbook.

AttachToSS Method

Description

Searches for a workbook by handle, and attaches it to a view.

Syntax

F1Book1.AttachToSS hSrcSS

Part Type Description

hSrcSS Long Handle to the workbook.

Remarks

After a successful attachment, both the workbook’s original view and the new view display the same
workbook. This method is similar to Attach, except that the workbook is referenced by handle, rather than
by title.

Use the SS Method method to return the handle associated with a particular workbook.

See Also

Attach method

SwapTables method

Example

The following example shows how to present different worksheets in response to user selection.
F1BookMain is the only visible Formula One control. Each time the user clicks the button, he is shown a
different view of the same worksheet. He can view regional, district, or national sales information at the
click of a button:

Sub SwapViews (toWhat As Integer)

Select Case toWhat

Case kRegionSales

F1BookMain.AttachToSS F1BookHidden1.SS

Case kDistrictSales

F1BookMain.AttachToSS F1BookHidden2.SS

Case kNationalSales

F1BookMain.AttachToSS F1BookHidden3.SS

Case Else

MsgBox "debug: invalid toWhat in SwapViews # " & toWhat

End Select

End Sub

AutoFillItems Property

Description

Sets or returns an autofill list.

Syntax

F1Book1.AutoFillItems (nIndex) [= list]

Part Type Description

nIndex Integer Identifies the list’s position within all
defined autofill lists. The first autofill list
has an index of one.

list String The semi-colon delimited list of autofill
items.

Remarks

Autofill lists are frequently used series of text such as months and days of the week. When you enter a
text value from an autofill list and move one cell down or to the right, the next text value in the list is
proposed for that cell. You can also use the fill handle to autofill a single row or column.

Lists are case sensitive. To delete any existing autofill list, use DeleteAutoFillItems method .

Following are the default lists provided with Formula One:

Index List

1 "Sun; Mon; Tue; Wed; Thu; Fri; Sat"

2 "Sunday; Monday; Tuesday; Wednesday; Thursday; Friday"

3 "Jan; Feb; Mar; Apr; May; Jun; Jul; Aug; Sep; Oct; Nov; Dec"

4 "January; February; March; April; May; June; July; August; September; October; November; December"

See Also

AutoFillItemsCount property

Example

The following example creates a new autofill list.

F1Book1.AutoFillItems (F1Book1.AutoFillItemsCount+1) = "North Region; South Region; East

Region; West Region"

AutoFillItemsCount Property

Description

Returns the number of existing autofill lists.

Syntax

[count =] F1Book1.AutoFillItemsCount

Part Type Description

count Integer A variable that receives the number of
lists.

Remarks

Autofill lists are frequently used series of text such as months and days of the week. When you enter a
value from an autofill list and move one cell down or to the right, the next value in the list is proposed for
that cell. You can also use the fill handle to autofill a single row or column.

See Also

AutoFillItems property

DeleteAutoFillItems method

Example

The following example uses creates a new autofill list.

F1Book1.AutoFillItems (F1Book1.AutoFillItemsCount+1) = "First Quarter;Second Quarter;Third

Quarter;Fourth Quarter"

AutoRecalc Property

Description

Sets or returns whether automatic recalculation is enabled

Syntax

F1Book1.AutoRecalc [= boolean]

Remarks

If this property is True, the workbook is recalculated if needed. Thereafter, any change to the workbook
causes all formulas to be recalculated.

You may notice that the workbook is not recalculated immediately after each change you make from your
program. This is a speed optimization. To force the workbook to be recalculated immediately, call Recalc.

Setting Text, TextRC, Number, NumberRC, FormattedText, FormattedTextRC, TypeRC and
LogicalRC also causes the workbook to be recalculated immediately, if needed.

See Also

SSUpdate method

BackColor Property

Description

Sets or returns the background color of the view.

Syntax

F1Book1.BackColor [= color]

Part Type Description

color OLE_COLOR This value can be one of the
normal RGB Colors. These
colors are specified using the
color palette, or by using the
RGB or QBColor functions. The
valid range for a normal RGB
color is 0 to 16,777,215
(&HFFFFFF).

Important      Formula One does not support the system default colors.

Remarks

All cells within the view are set to the background color except those with patterns.

See Also

ExtraColor property

BorderStyle Property

Description

Sets or returns the border style for the Formula One window.

Syntax

F1Book1.BorderStyle [= setting]

Part Type Description

setting Integer Describes the type of border on the
window.

Remarks

The BorderStyle property settings are:

Setting Description

0 None

1 Fixed Single

CalculationDlg Method

Description

Displays the Calculation dialog box.

Syntax

F1Book1.CalculationDlg

Remarks

The Calculation dialog box allows you to enable and disable automatic recalculation and specify iteration
values for calculating circular references.

See Also

AutoRecalc property

GetIteration method

CancelEdit Method

Description

Cancels edit mode and leaves the contents of the active cell unchanged.

Syntax

F1Book1.CancelEdit

Remarks

CancelEdit aborts cell editing and exits edit mode without altering the contents of the active cell.

See Also

EndEdit method

Example

The following example uses CancelEdit in an EndEdit event to prevent the user from entering more than
15 characters in a cell:

Private Sub F1Book1_EndEdit (EditString As String, Cancel As Integer)

Dim result As Integer

If Len(EditString) >15 then

result = MsgBox("Entry exceeds maximum length. Abort entry?", vbYesNo)

EndIf

Select Case result

Case vbYes

F1Book1.CancelEdit

Case vbNo

Cancel = True

End Select

End Sub

CheckRecalc Method

Description

Recalculates the workbook if needed.

Syntax

F1Book1.CheckRecalc

Remarks

CheckRecalc determines if the workbook needs to be recalculated as a result of a change. If so, the
workbook is recalculated. A workbook is usually recalculated when the result of a formula cell is required
by some operation, a worksheet is printed or saved, or when the system becomes idle.

See Also

AutoRecalc property

ClearClipboard Method

Description

Clears the internal clipboard.

Syntax

F1Book1.ClearClipboard

Remarks

ClearClipboard clears the contents of the internal clipboard and releases all resources associated with it.
This does not affect the contents of the Windows clipboard.

See Also

EditPaste method

ClearRange Method

Description

Clears the specified range in all selected sheets.

Syntax

F1Book1.ClearRange nRow1, nCol1, nRow2, nCol2, nClearType

Part Type Description

nRow1,
nCol1,
nRow2, nCol2

Long Coordinates that specify the range to clear. If nRow1 is -1,
all rows are included in the range; if nCol1 is -1, all columns
are included.

nClearType Integer F1ClearTypeConstants that determine what is cleared from
the specified range:

Constants Description

F1ClearDlg Displays the Clear dialog box.

F1ClearAll All (values and formats)

F1ClearFormats Formats only

F1ClearValues Values only (including formulas)

See Also

DeleteRange method

Clip Property

Description

Imports and exports tab-delimited text strings to and from workbooks. This is a run time only property.

Syntax

F1Book1.Clip [= text]

Part Type Description

text String Identifies a tab-delimited text block.

Remarks

The Clip property can set or obtain a tab-delimited text block in a workbook.

When placing a block of text in a worksheet, text placement begins with the active cell. Tab
characters (ANSI character 9) in the text block move text placement to the next column; carriage returns
(ANSI character 13), line feeds (ANSI character 10), and carriage return/line feed pairs move text
placement to the following row.

When obtaining a block of text from a worksheet, text is obtained from the currently selected
range. If multiple ranges are selected, only text from the first range is used.

See Also

ClipValues property

Formula property

Number property

Text property

GetTabbedText method

SetTabbedText method

Example

The following example uses Formula One to sort text in a text box control by paragraphs:

F1Book1.Clip = RichTextBox1.Text

F1Book1.Sort -1,-1,-1,-1, True, 1

RichTextBox1.Text = F1Book1.Clip

ClipValues Property

Description

Imports and exports tab-delimited text strings to and from workbooks, ignoring any formatting applied to
the text. This is a run-time only property.

Syntax

F1Book1.ClipValues [= text]

Part Type Description

text String Identifies a tab-delimited text block.

Remarks

Like the Clip property , ClipValues can set or obtain a tab-delimited text block in a workbook. However,
ClipValues ignores formatting applied to the text block.

When placing a block of text in a worksheet, text placement begins with the active cell. Tab
characters (ANSI character 9) in the text block move text placement to the next column; carriage returns
(ANSI character 13), line feeds (ANSI character 10), and carriage return/line feed pairs move text
placement to the following row.

When obtaining a block of text from a worksheet, text is obtained from the currently selected
range. If multiple ranges are selected, only text from the first range is used.

See Also

Formula property

Number property

Text property

GetTabbedText method

SetTabbedText method

Col Property

Description

Determines the active column in the active worksheet. This is a run-time only property.

Syntax

F1Book1.Col [= column]

Part Type Description

column Long Identifies a column number. -1
indicates all columns.

Remarks

The Col property is used with the Row property to set the active cell in the worksheet. The Col property is
automatically changed if a range is selected using the SelStartCol property , SelStartRow property ,
SelEndCol property and SelEndRow property properties.

You can specify -1 as the row and column number to indicate all rows or all columns. For example, setting
Row to 1 and Col to -1 causes all columns in row 1 to be selected. Setting both Row and Col to -1
selects the entire worksheet.

See Also

GetActiveCell method

SetActiveCell method

ColHidden Property

Description

Sets or returns the display status of an individual column.

Syntax

F1Book1.ColHidden (nCol) [= boolean]

Part Type Description

nCol Long Identifies a column by number.

boolean Boolean If this property is True, the column is
hidden. If it is False, the column is
displayed.

Remarks

Use SetColHidden to change the display status of one or more columns.

See Also

RowHidden property

Example

The following example assumes a Formula One button named HideSales:

Sub F1Book1_ObjClick (ObjName As String, ByVal ObjID As Long)

Dim i as Integer

With F1Book1

.ObjText = IIf(.ColHidden (kSalesStartCol), "Hide Sales", "Show Sales")

For i = kSalesStartCol to kSalesEndCol

.ColHidden (i) = Not , ColHidden (i)

Next i

End With

End Sub

ColorPaletteDlg Method

Description

Displays the Color Palette dialog box.

Syntax

F1Book1.ColorPaletteDlg

Remarks

The Color Palette dialog box allows you to edit colors in the color palette, specify a default color, and use
the default color palette. Color palettes are workbook specific.

See Also

BackColor property

GetBorder method

ExtraColor property

GetFont method

GetPattern method

SetBorder method

SetFont method

SetPattern method

ColText Property

Description

Sets or returns the label for a column. Setting this property affects all selected sheets.

Syntax

F1Book1.ColText (nCol) [= colText]

Part Type Description

nCol Long Identifies a column by number.

colText String The column label text.

Remarks

Naming a column is useful for labeling columns so they reflect the data in the column (e.g., column G
might be named Total Sales). The column name is displayed in the column heading and is used for
display purposes only. The column is still referred to by letter reference in formulas.

The column name can be up to 9 lines and 254 characters. A CR (carriage return and LF (line feed)
combination are counted as two characters.

Set ColText to change a column label and get the value of ColText to return a string that contains the
current column label.

See Also

RowText property

TopLeftText property

Example

The following example restores the original column heading text after modifications have been made:

Dim i As Integer

For i = 1 to 26

F1Book1.ColText (i) = Chr(i+64)

Next i

For i = 27 to 256

F1Book1.ColText (i) = Left$(F1Book1.FormatRCNr (1, i, False), 2)

Next i

ColWidth Property

Description

Sets or returns the width of a single column. Setting this property affects all selected sheets.

Syntax

F1Book1.ColWidth (nCol) [= width]

Part Type Description

nCol Long Identifies a column by number.

width Integer Indicates the column width value.

Remarks

Column width can be specified in units equal to 1/256th of an average character's width in the default
font, or twips, depending on the setting of the ColWidthUnits property.

Use the SetColWidth method to change the width of multiple columns. Use ColWidthTwips to set or
return the width of a single column in twips.

See Also

ColWidthDlg method

RowHeight property

SetColWidthAuto method

ColWidthDlg Method

Description

Displays the Column Width dialog box.

Syntax

F1Book1.ColWidthDlg

Remarks

The Column Width dialog box allows you to set the width of the selected columns, specify default column
widths, and automatically set column widths to the display the widest column text. In addition, you can
specify whether the selected columns are shown or hidden. Settings made in this dialog box affect all
selected sheets.

See Also

ColWidth property

SetColWidth method

SetColWidthAuto method

ColWidthTwips Property

Description

Sets or returns the width of a specified column in twips.

Syntax

F1Book1.ColWidthTwips (nCol) [= width]

Part Type Description

nCol Long Identifies a column by number for
which the current width is returned.

width Integer Indicates the column width value in
twips.

See Also

ColWidth property

ColWidthDlg method

RowHeight property

SetColWidthAuto method

Example

The following example creates a resizable form that is filled with a one column workbook.    It also
assumes that ColWidthUnits is set to twips:

F1Book1.Width = Form1.ScaleWidth

F1Book1.Height = Form1.ScaleHeight

F1Book1.ColWidthTwips (1) = F1Book1.Width - F1Book1.HdrWidth

ColWidthUnits Property

Description

Sets or returns whether column widths are stored and displayed in twips or character units.

Syntax

F1Book1.ColWidthUnits [= nColWidthUnits]

Part Type Description

nColWidthUnits Integer F1ColWidthUnitsConstants that determine the type of units used
for column widths:

Constant Description

F1ColWidthUnitsCharacters All column widths    are
converted to units equal to
1/256th of an average
characters width in the default
font. This is the default
column width unit.

F1ColWidthUnitsTwips All widths in the workbook are
converted to twips. This can
allow more consistent sizing
between printer output and
screen display.

Remarks

When you change the column width unit you are changing how widths are stored. Use care when
switching back and forth. If you switch from character units to twips and back again, the character unit
values may be slightly different due to mathematical rounding used in the conversion process.

See Also

ColWidth property

ColWidthDlg method

SetColWidth method

SetColWidthAuto method

CopyAll Method

Description

Copies the contents of one workbook to another workbook.

Syntax

F1Book1.CopyAll hSrcSS

Part Type Description

hSrcSS Long A handle to the source view.

Remarks

CopyAll copies an entire worksheet from the source view control to the current view control.

See Also

CopyRange method

MoveRange method

SS method

Example

The following example copies the contents of workbook F1Book1 to the workbook F1Book2:

F1Book1.CopyAll F1Book2.SS

CopyRange Method

Description

Copies a range of data to the specified location. This method can be used to copy ranges within a
worksheet, or from the active worksheet in the specified workbook to the active worksheet in the current
workbook.

Syntax

F1Book1.CopyRange nDstR1, nDstC1, nDstR2, nDstC2, hSrcSS, nSrcR1, nSrcC1, nSrcR2, nSrcC2

Part Type Description

nDstR1, nDstC1,
nDstR2, nDstC2

Long Coordinates that define the range to hold the
copied data in the current view.

hSrcSS Long Handle to the source view.

nSrcR1, nSrcC1,
nSrcR2, nSrcC2

Long Coordinates defining the range holding the data to
be copied in the specified view.

Remarks

The source and the destination ranges can be in different workbooks, allowing ranges to be copied
between workbooks. The copy operation is the same as if a copy and paste operation had occurred. Cell
references are adjusted appropriately in the destination range.

See Also

CopyAll method

EditCopy method

EditPaste method

CopyRangeEx Method

Description

Copies a range of data from one worksheet to another.

Syntax

F1Book1.CopyRangeEx nDstSheet, nDstR1, nDstC1, nDstR2, nDstC2, hSrcSS, nSrcSheet, nSrcR1,
nSrcC1, nSrcR2, nSrcC2

Part Type Description

nDstSheet Long Index that identifies a specific worksheet in the current
workbook. Worksheets are indexed from left to right beginning
with 1. Do not confuse the index with the sheet name that
appears on the sheet tab.

nDstR1,
nDstC1,
nDstR2,
nDstC2

Long Coordinates that define the range to hold the copied data in
the current workbook.

hSrcSS Long Handle to the source workbook.

nSrcSheet Long Index that identifies a specific worksheet in the source
workbook. Worksheets are indexed from left to right beginning
with 1. Do not confuse the index with the sheet name that
appears on the sheet tab.

nSrcR1,
nSrcC1,
nSrcR2,
nSrcC2

Long Coordinates defining the range holding the data to be copied
in the specified workbook.

Remarks

The source and the destination worksheets can be in the same workbook, or a different workbook. The
copy operation is the same as if a copy and paste operation had occurred. Cell references are adjusted
appropriately in the destination range.

DefinedName Property

Description

Sets or returns the formula associated with a defined name.

Syntax

F1Book1.DefinedName (name) [= formula]

Part Type Description

name String A defined name. Enter an existing
name if you are returning the formula
associated with the name or changing
the value associated with the name.
Enter a unique name if you are
creating a new value.

formula String Describes the range represented by
name. A name can refer to a cell, a
group of cells, a value, or a formula.
When setting a name, do not include a
leading equal sign (=) in the formula.

Remarks

DefinedName returns a string describing the formula for the specified defined name. For example, if the
range B10:F10 is named TotalSales, a string is returned containing the range reference
B10:F10. Relative references in defined name formulas are relative to the active cell. Changing the
active cell will offset relative references in defined names.

Set DefinedName to define or change a user-defined name.

See Also

DefinedNameDlg method

DeleteDefinedName method

DefinedNameByIndex Property

Description

Changes or returns a defined name.

Syntax

F1Book1.DefinedNameByIndex (index) [= name]

Part Type Description

index Long Identifies a name by number. Defined
names are numbered in the order they
are created, beginning with 1.

name String Defined name.

See Also

DefinedName property

DefinedNameCount method

DefinedNameDlg method

DeleteDefinedName method

Example

The following example clears all defined names:

Dim i As Integer

For i = 1 to F1Book1.DefinedNameCount

F1Book1.DeleteDefinedName x = F1Book1.DefinedNameByIndex(i)

Next i

DefinedNameCount Method

Description

Returns the number of defined names in a view.

Syntax

count = F1Book1.DefineNameCount

Part Type Description

count Long Variable that receives the returned
number of defined ranges.

See Also

DefinedName property

DefinedNameByIndex property

DefinedNameDlg method

DeleteDefinedName method

DefinedNameDlg Method

Description

Displays the Define Name dialog box.

Syntax

F1Book1.DefinedNameDlg

Remarks

The Define Name dialog box allows you to add and delete user defined names.

Important    Do not type a leading equal sign (=) at the beginning of the defined name formula.

See Also

DefinedName property

DeleteDefinedName method

DeleteAutoFillItems Method

Description

Deletes the specified autofill list.

Syntax

F1Book1.DeleteAutoFillItems nIndex

Part Type Description

nIndex Integer Identifies the list’s position within all
defined autofill lists. The first autofill list
has an index of one.

Remarks

Autofill lists are frequently used series of data such as months and days of the week. When you enter a
value from an autofill list and move one cell down or to the right, the next value in the list is proposed for
that cell. You can also use the fill handle to autofill a single row or column.

See Also

AutoFillItems property

AutoFillItemsCount property

Example

The following example deletes the standard autofill item lists.

Dim i Integer

For i = 1 to F1Book1.AutoFillItemsCount

F1Book1.DeleteAutoFillItems (i)

Next i

DeleteDefinedName Method

Description

Deletes the specified user-defined name.

Syntax

F1Book1.DeleteDefinedName pName

Part Type Description

pName String Identifies the user-defined name to
delete.

Remarks

You cannot delete a defined name that is currently referenced by a formula in a cell, other defined name,
or a chart object.

See Also

DefinedName property

DefinedNameDlg method

DeleteRange Method

Description

Deletes cells, rows, or columns from the specified range in all selected sheets.

Syntax

F1Book1.DeleteRange nRow1, nCol1, nRow2, nCol2, nShiftType

Part Type Description

nRow1, nCol1,
nRow2, nCol2

Long Coordinates that specify the range to delete. If nRow1 is -1, all rows are
included in the range; if nCol1 is -1, all columns are included.

nShiftType Integer F1ShiftTypeConstants that determine how the delete should occur:

Constants Description

F1ShiftHorizontal Cells to the right of the range are shifted left to fill
the vacated space

F1ShiftVertical Cells below the range are shifted up to fill the
vacated space

F1ShiftRows Rows in which the range resides are deleted and
lower rows are shifted up to fill the vacated
space

F1ShiftCols Columns in which the range resides are deleted
and the rightmost columns are shifted left to fill
the vacated space

See Also

ClearRange method

EditDelete method

DeleteSheets Method

Description

Deletes one or more worksheets from a workbook.

Syntax

F1Book1.DeleteSheets nSheet, nSheets

Part Type Description

nSheet Long Specifies the index to the first
worksheet you want to delete.
Worksheets are indexed from left to
right beginning with 1. Do not confuse
the index with the sheet name that
appears on the sheet tab.

nSheets Long Specifies how many worksheets to
delete. For example, if you specify 3 for
this argument, Formula One deletes
the worksheet referenced in nSheet
and the two immediate to its right.

Remarks

The names displayed on sheet tabs are not affected by deletions. However the worksheet index is
adjusted to match its new position.

See Also

InsertSheets method

DoCancelEdit Property

Description

Determines if the CancelEdit event can be fired.

Syntax

 F1Book1.DoCancelEdit [= boolean]

Remarks

If True, this property allows the CancelEdit event to be fired when the user aborts editing a cell.

See Also

DoEndEdit property

DoStartEdit property

EndEdit event

StartEdit event

DoClick Property

Description

Determines if the Click event can be fired.

Syntax

F1Book1.DoClick [= boolean]

Remarks

If True, this property allows the Click event to be fired when the user clicks the Formula One control with
the left mouse button. If False, the event is not fired.

DoDblClick Property

Description

Determines if the DblClick event can be fired.

Syntax

F1Book1.DoDblClick [= boolean]

Remarks

If True, this property allows the DblClick event to be fired when the user double clicks the Formula One
control with the left mouse button. If False, the event is not fired and in-cell editing is activated when the
user double clicks the control.

The default for this property is True.

Note      Operations in Click event may inhibit the DblClick.

DoEndEdit Property

Description

Determines if the EndEdit event can be fired.

Syntax

F1Book1.DoEndEdit [= boolean]

Remarks

If True, this property allows the EndEdit event to be fired when the user finishes editing a cell.

See Also

CancelEdit event

StartEdit event

DoCancelEdit property

DoStartEdit property

DoEndRecalc Property

Description

Determines if the EndRecalc event can be fired.

Syntax

F1Book1.DoEndRecalc [= boolean]

Remarks

If True, this property allows the EndRecalc event to be fired when the workbook finishes recalculation. If
you disable this event, processing is accelerated when you perform large operations on a workbook with
Visual Basic code.

See Also

AutoRecalc property

DoStartRecalc property

DoObjClick Property

Description

Determines if the ObjClick event can be fired.

Syntax

F1Book1.DoObjClick [= boolean]

Remarks

If True, this property allows the ObjClick event to be fired when the user clicks a named Formula One
object with the left mouse button. The default for this property is True. For an object to receive an
ObjClick event, it must be named.

When an object is named and the ObjClick event is enabled, you must press CTRL when interactively
selecting the object.

DoObjDblClick Property

Description

Determines if the ObjDblClick event can be fired.

Syntax

F1Book1.DoObjDblClick [= boolean]

Remarks

If True, this property allows the ObjDblClick event to be fired when the user double clicks a Formula One
object with the left mouse button. The default for this property is True. For an object to receive an
ObjDblClick event, it must be named.

When an object is named and the ObjDblClick event is enabled, you must press CTRL when
interactively selecting the object.

DoObjGotFocus Property

Description

Determines whether an event is triggered when an object gets focus.

Syntax

F1Book1.DoObjGotFocus [= boolean]

Remarks

If this property is true a ObjGotFocus event is triggered when the user clicks on an object.

See Also

DoObjLostFocus property

DoObjLostFocus Property

Description

Determines whether an event is triggered when an object loses focus.

Syntax

F1Book1.DoObjLostFocus [= boolean]

Remarks

If this property is true, an ObjLostFocus event is triggered when a user clicks off of an object.

See Also

DoObjGotFocus property

DoObjValueChanged Property

Description

Determines whether an event is triggered when the value of a list box or check box is changed.

Syntax

F1Book1.DoObjValueChanged [= boolean]

Remarks

If this property is true, an ObjValueChanged event is triggered when a user changes the selection for a
list box or check box.

DoRClick Property

Description

Determines if the RClick event can be fired.

Syntax

F1Book1.DoRClick [= boolean]

Remarks

If True, this property allows the RClick event to be fired when the user clicks the Formula One control
with the right mouse button. If False, the event is not fired.

DoRDblClick Property

Description

Determines if the RDblClick event can be fired.

Syntax

F1Book1.DoRDblClick [= boolean]

Remarks

If True, this property allows the RDblClick event to be fired when the user double clicks the Formula One
control with the right mouse button. The default for this property is True.

DoSelChange Property

Description

Determines if the SelChange event can be fired.

Syntax

F1Book1.DoSelChange [= boolean]

Remarks

If True, this property allows the SelChange event to be fired when the current selection changes. If you
disable this event, processing is accelerated when you perform large operations on a workbook with
Visual Basic code.

DoStartEdit Property

Description

Determines if the StartEdit event can be fired.

Syntax

F1Book1.DoStartEdit [= boolean]

Remarks

If True, this property allows the StartEdit event to be fired when the current cell enters edit mode.

See Also

CancelEdit event

EndEdit event

DoCancelEdit property

DoEndEdit property

DoStartRecalc Property

Description

Determines if the StartRecalc event can be fired.

Syntax

F1Book1.DoStartRecalc [= boolean]

Remarks

If True, this property allows the StartRecalc event to be fired when the workbook begins recalculation. If
you disable this event, processing is accelerated when you perform large operations on a workbook with
Visual Basic code.

See Also

DoEndRecalc property

DoTopLeftChanged Property

Description

Determines if the TopLeftChanged event can be fired.

Syntax

F1Book1.DoTopLeftChanged[= boolean]

Remarks

If True, this property allows the TopLeftChanged event to be fired when the top left edge of any cell
changes position. This event is fired every time any column or row is resized, a column or row is hidden
or displayed, or a worksheet is scrolled in any direction. This event is also fired when a workbook is first
created. The execution of this event is deferred until the system is idle.

DragIcon Property

Description

Determines the icon displayed in a drag-and-drop operation.

Syntax

F1Book1.DragIcon = icon

Part Type Description

icon Picture Identifies the icon displayed during drag-and-drop
operations. Valid settings are:

Setting Description

(None) Default Windows Icon.

Icon A custom mouse pointer. See Microsoft
documentation.

Remarks

For additional information, refer to the description of the DragIcon property in the Microsoft Visual Basic
documentation.

See Also

DragMode property

DragMode Property

Description

Determines the dragging mode for drag-and-drop operations.

Syntax

F1Book1.DragMode [= mode]

Part Type Description

mode Integer Identifies the dragging mode. Valid settings are:

Setting Description

0 (Default) Manual: Requires the drag method to
initiate dragging.

1 Automatic: Clicking the source control
initiates dragging.

Remarks

For additional information, refer to the description of the DragMode property in the Microsoft Visual Basic
documentation.

See Also

DragIcon property

Draw Method

Description

This method draws a workbook to the specified device context, such as a printer or window.

Syntax

F1Book1.Draw hDC, X, Y, cX, cY, nRow, nCol, pRows, pCols, nFixedRow, nFixedCol, nFixedRows,
nFixedCols

Part Type Description

hDC OLE_HANDLE Handle to a device context and specifies where
the workbook is drawn. This handle must be
established outside of Formula One.

X, Y Long Coordinates of the upper left corner of the drawn
workbook.

cX Long Width of the drawn workbook.

cY Long Height of the drawn workbook.

nRow,
nCol

Long Beginning row and column in the workbook to be
drawn.

pRows,
pCols

Long Variables, passed by reference, that specify the
number of rows and columns to be drawn.
Formula One attempts to draw the number of
rows and columns specified by these arguments
at the current print scale. If necessary, Formula
One reduces the print scale until the rows and
columns fit in the specified drawing area or until
the print scale reaches 10 percent. If pRows and
pCols are set to 0, Formula One draws as many
rows and columns as will fit using the current
print scale; and, pRows and pCols are set to the
number of rows and columns that are drawn.

nFixedRow,
nFixedCol

Long Starting fixed row and column of the drawn
worksheet.

nFixedRows,
nFixedCols

Long Number of rows and columns to fix in the
drawn worksheet.

Remarks

The settings for the following properties and methods affect how the workbook is drawn on the specified
device:

Property/Method

PrintColHeading property

PrintGridLines property

PrintHCenter property

PrintNoColor property

PrintRowHeading property

PrintVCenter property

SetPrintScale method

EditClear Method

Description

Clears all cells in the selected ranges and all selected objects in all selected sheets.

Syntax

F1Book1.EditClear nClearType

Part Type Description

nClearType Integer F1ClearTypeConstants that determine what is cleared
from the selected range:

Constants Description

F1ClearDlg Displays the Clear dialog box.

F1ClearAll All (values, formats, and objects)

F1ClearFormats Formats only

F1ClearValues Values only (including formulas)

Remarks

EditClear clears cells in all selected ranges. Non-contiguous ranges can be cleared simultaneously if
AddSelection or the CTRL key were used to select multiple ranges. In addition, all selected objects are
cleared.

See Also

ClearRange method

EditDelete method

EditCopy Method

Description

Copies the selected range or objects to the clipboard.

Syntax

F1Book1.EditCopy

Remarks

EditCopy copies the selected range or objects to the clipboard. Only one range can be selected. If more
than one range is selected, the error F1ErrorOnlyOneRange is returned.

Cells cut to the internal clipboard can be pasted to other areas of Formula One and retain their formulas,
formatting, and data. When data is copied to other programs, the windows clipboard is used and the cells
become formatted text representations of the data they contain. If you want to copy data from the
Windows clipboard to Formula One and the internal clipboard contains data, you must first clear the
internal clipboard.

See Also

EditCut method

EditPaste method

EditCopyDown Method

Description

Copies cells in the top row of a selection to the other rows in the selected range.

Syntax

F1Book1.EditCopyDown

Remarks

EditCopyDown copies data in the top row of a selection to the other rows in the selection and adjusts
relative cell references appropriately.

See Also

EditCopyRight method

EditCopyRight Method

Description

Copies cells in the left column of a selection to the other columns in the selected range.

Syntax

F1Book1.EditCopyRight

Remarks

EditCopyRight copies data in the left column of a selection to the other columns in the selection and
adjusts relative cell references appropriately.

See Also

EditCopyDown method

EditCut Method

Description

Cuts the selected range or objects to the clipboard.

Syntax

F1Book1.EditCut

Remarks

EditCut cuts the selected range or objects to the clipboard and clears the range or objects from the active
worksheet. Only one range can be selected. If more than one range is selected, the error
F1ErrorOnlyOneRange is returned.

Cells cut to the internal clipboard can be pasted to other areas of Formula One and retain their formulas,
formatting, and data. When data is copied to other programs, the windows clipboard is used and the cells
become formatted text representations of the data they contain. If you want to copy data from the
Windows clipboard to Formula One and the internal clipboard contains data, you must first clear the
internal clipboard.

See Also

EditCopy method

EditPaste method

EditDelete Method

Description

Deletes the selected range in all selected sheets.

Syntax

F1Book1.EditDelete nShiftType

Part Type Description

nShiftType Integer F1ShiftTypeConstants that determine how the delete
should occur:

Constants Description

F1ShiftHorizontal Cells to the right of the range are
shifted left to fill the vacated space

F1ShiftVertical Cells below the range are shifted
up to fill the vacated space

F1ShiftRows Rows in which the range resides
are deleted and lower rows are
shifted up to fill the vacated space

F1ShiftCols Columns in which the range
resides are deleted and the
rightmost columns are shifted left
to fill the vacated space

See Also

DeleteRange method

EditDeleteSheets method

EditInsert method

EditDeleteSheets Method

Description

Deletes the selected sheets.

Syntax

F1Book1.EditDeleteSheets

Remarks

Sheet names displayed on the tabs are not affected by the deletion. However, the remaining worksheets
have their indexes adjusted to reflect their new position.

You cannot delete the last sheet out of a workbook.

See Also

DeleteSheets method

EditDelete method

EditInsertSheets method

EditInsert Method

Description

Moves the selected range in all selected worksheets to insert new cells, rows, or columns.

Syntax

F1Book1.EditInsert nShiftType

Part Type Description

nShiftType Integer F1ShiftTypeConstants that determine how the insert
should occur:

Constants Description

F1ShiftHorizontal Cells of the selected range are
shifted right to make room for the
inserted cells.

F1ShiftVertical Cells of the selected range are
shifted down to make room for
the inserted cells.

F1ShiftRows Rows in which the range resides
are shifted down to make room
for the inserted cells.

F1ShiftCols Columns in which the range
resides are shifted right to make
room for the inserted cells.

Remarks

EditInsert inserts cells, rows, or columns by moving the selected range. It uses the shape of the selected
range to determine what to insert. For example, if you select a two-by-two range of cells and call
EditInsert with the F1ShiftRows option, a new two-by-two range is inserted by shifting the rows in the
selected range down.

Formats are copied from the cells above when inserting and shifting down and from the cells to the left
when inserting and shifting right. All formatting is copied except that only borders that are the same above
and below or left and right of the new cells are copied.

See Also

EditDelete method

EditInsertSheets method

InsertRange method

EditInsertSheets Method

Description

Inserts one or more new worksheets, depending on the number and position of the currently selected
worksheets.

Syntax

F1Book1.EditInsertSheets

Remarks

EditInsertSheets inserts one or more worksheets in the workbook. It uses the number and position of
selected worksheets in the workbook to determine how many worksheets to add and where to add them.
For example, if you select the second and third worksheet in the workbook and call EditInsertSheets,
two new worksheets are added and the second worksheet becomes the fourth.

The newly inserted worksheets are given the next available sheet name, regardless of their position. For
example, if there are 5 worksheets in the workbook and you insert two worksheets before the second
worksheet, they are given the names Sheet6 and Sheet7. However, all worksheets in the workbook are
still indexed from left to right, beginning with 1.

See Also

EditDelete method

EditDeleteSheets method

EditInsert method

InsertSheets method

EditPaste Method

Description

Pastes the contents of the clipboard to the selected range.

Syntax

F1Book1.EditPaste

Remarks

EditPaste pastes information from the clipboard to the selected range in the active worksheet. How the
information is pasted in the worksheet depends on the size of the selected range.

· If the selected range consists of a single cell, all information in the clipboard is pasted to the
worksheet.

· If the selected range is smaller than the clipboard information, only as much information as will fit in
the range is pasted.

· If the selected range is larger than the clipboard information, the clipboard information is replicated to
fill the range.

Formula One can also paste tab-delimited blocks of data from the clipboard. Objects are also pasted by
this command.

See Also

EditCopy method

EditCut method

EditPasteValues method

EditPasteValues Method

Description

Pastes values from the clipboard to the selected range.

Syntax

F1Book1.EditPasteValues

Remarks

EditPasteValues only pastes values from the clipboard to the selected range in the active worksheet. If
the data on the clipboard contains formulas, only formula results are pasted, not the formula itself. In
addition, formatting applied to the data on the clipboard is ignored by this method.

See Also

EditCopy method

EditCut method

EditPaste method

Enabled Property

Description

Determines if the Formula One object is enabled.

Syntax

F1Book1.Enabled [= boolean]

Remarks

When True, this property enables the Formula One object; when False, the Formula One object is
disabled.

EnableProtection Property

Description

Sets or returns whether protection is enabled for all selected sheets.

Syntax

F1Book1.EnableProtection [= boolean]

Remarks

If this property is True, protection is enabled. Enabling protection means that any cells marked as hidden
or locked, are actually hidden and locked. Cells can be marked as locked and hidden using the
SetProtection and ProtectionDlg methods.

See Also

GetProtection method

EndEdit Method

Description

Ends edit mode and applies changes to the active cell.

Syntax

F1Book1.EndEdit

Remarks

EndEdit ends cell editing and applies any changes made during edit mode to the active cell. If an invalid
entry has been made (e.g., an incorrect formula), edit mode cannot end. In this case, F1ErrorGeneral is
returned.

See Also

CancelEdit method

StartEdit method

EnterMovesDown Property

Description

Sets or returns whether pressing the enter key moves the active cell down to the next cell.

Syntax

F1Book1.EnterMovesDown [= boolean]

If this property is True, pressing the enter key moves the active cell down to the next row, even if no range
is selected. If False and a single cell is selected, pressing the enter key does not advance the active cell.

When you create a new workbook, this property is True by default.

Entry Property

Description

Enters text in the active cell of all selected worksheets, or returns the contents of the active cell in the first
selected worksheet in the same format as it would be displayed while in edit mode.

Syntax

F1Book1.Entry [= data]

Part Type Description

data String The cell value.

Remarks

The text returned by this property is in the same format as if you were entering or editing the cell's value.
If the cell contains a formula, the text of the formula is returned. Formulas are returned preceded by an
equal sign (=).

Setting this property allows you to enter information in a cell just as a user would enter information. The
program automatically determines the kind of data entered (e.g., number, text, formula). It also recognizes
dates, times, percentages, currency, fractions, and scientific notation and applies an appropriate number
format. When setting formulas, precede the formula with an equal sign (=).

See Also

EntryRC property

Text property

EntryRC Property

Description

Sets the value of a specified cell of all selected worksheets, or returns the text value of the specified cell
in the first selected worksheet in the same format as it would be displayed while in edit mode.

Syntax

F1Book1.EntryRC (nRow, nCol) [= entry]

Part Type Description

nRow,
nCol

Long Row and column numbers that identify
a cell.

entry String Cell value

Remarks

The text returned by this property is in the same format as if you were entering or editing the cell's value.
If the cell contains a formula, the text of the formula is returned.

Setting this property allows you to enter information in a cell just as a user would enter information. The
program automatically determines the kind of data entered (e.g., number, text, formula). It also recognizes
dates, times, percentages, currency, fractions, and scientific notation and applies an appropriate number
format.

See Also

Entry property

Text property

ErrorNumberToText Method

Description

Returns the error text corresponding to the specified error number.

Syntax

errorText = F1Book1.ErrorNumberToText (nError)

Part Type Description

nError Integer F1ErrorConstants that describe the
error for which text is returned.

errorText String Variable which receives the returned
error text. The string must be of
sufficient length to hold the returned
text.

ExtraColor Property

Description

Sets or returns the color of the view area outside the workbook.

Syntax

F1Book1.ExtraColor [= color]

Part Type Description

color OLE_COLOR This value can be one of the
normal RGB Colors. These
colors are specified using the
color palette, or by using the
RGB or QBColor functions. The
valid range for a normal RGB
color is 0 to 16,777,215
(&HFFFFFF).

Important      Formula One does not support the system default colors.

Remarks

The color of the workbook itself is controlled with the BackColor method.

See Also

BackColor property

FileName Property

Description

Attaches a worksheet or workbook file to a view control or returns the name of the file currently attached
to the control.

Syntax

F1Book1.FileName [= filename]

Remarks

If two controls are in existence at the same time with the same FileName setting, they are attached to the
same table. This provides the same result as using the Attach method to attach two or more views to one
workbook.

If FileName is set to an existing file at design time, a dialog box asks whether the file should be read
immediately, not read immediately, or if the read request should be canceled. If the file is read
immediately, the worksheet or workbook is loaded. The file can be a Formula One file, an Excel 4.0 or 5.0
file, or a tab-delimited text file. When the form is saved, the worksheet or workbook is saved in the file
specified in the FileName property as a Formula One file.

If the FileName property is blank, the worksheet or workbook is saved with the form instead of in a
separate file.

You can also use the Read command on the File menu in the Workbook Designer to read in a file that you
want to save in a form.

Caution    If you set FileName to the name of an Excel file, this file is overwritten with a Formula One file
when the form is saved. Excel features not supported in Formula One are lost.

Use TableName and not FileName to change the workbook name used by external references in
formulas.

See Also

TableName property

FilePageSetupDlg Method

Description

Displays the Page Setup dialog box.

Syntax

F1Book1.FilePageSetupDlg

Remarks

The Page Setup dialog box allows you to define header and footer text, page margins, page print order,
page centering, worksheet-related print options.

See Also

FilePrint method

FilePrintSetupDlg method

FilePrint Method

Description

Prints the active worksheet.

Syntax

F1Book1.FilePrint bShowPrintDlg

Part Type Description

bShowPrintDlg Boolean Sets the show print dialog flag. If this
flag is True, the Print dialog box is
displayed before printing. The Print
dialog box allows the user to set
printing parameters such as the page
range and number of copies to print.

Remarks

FilePrint prints the worksheet or selections as directed by the user.

If the user defined name Print_Area is defined, only those ranges specified in Print_Area are printed. If
Print_Area is not defined, the entire formatted section of the worksheet is printed.

See Also

FilePageSetupDlg method

FilePrintSetupDlg method

FilePrintSetupDlg Method

Description

Displays the standard Windows Print Setup dialog box.

Syntax

F1Book1.FilePrintSetupDlg

Remarks

The Print Setup dialog box allows you to select the printer to which the workbook is sent, the page
orientation, and paper size.

See Also

FilePageSetupDlg method

FilePrint method

FixedCol Property

Description

Return or set the starting fixed column for the active worksheet.

Syntax

F1Book1.FixedCol [= column]

Part Type Description

column Long Number of the first fixed column.

Remarks

The FixedCol property is used with the FixedCols property to fix one or more columns at the left edge of
the active worksheet. The fixed columns do not scroll when the worksheet is scrolled horizontally.
Individual cells in fixed columns cannot be selected with the mouse or keyboard.

See Also

FixedRow Property

FixedRows Property

FixedCols Property

Description

Sets or returns how many columns to fix at the left edge of the active worksheet.

Syntax

 F1Book1.FixedCols [= columns]

Part Type Description

columns Long The number of columns to fix.

Remarks

The FixedCols property is used with the FixedCol property to fix one or more columns at the left edge of
the worksheet. The fixed columns do not scroll when the worksheet is scrolled horizontally. Individual cells
in fixed columns cannot be selected with the mouse or keyboard.

See Also

FixedRow property

FixedRows property

FixedRow Property

Description

Sets or returns the starting fixed row in the active worksheet.

Syntax

 F1Book1.FixedRow [= row]

Part Type Description

row Long Number of first fixed row.

Remarks

The FixedRow property is used with the FixedRows property to fix one or more rows at the top of the
worksheet. The fixed rows do not scroll when the worksheet is scrolled vertically. Individual cells in fixed
rows cannot be selected with the mouse or keyboard.

See Also

FixedCol property

FixedCols property

FixedRows Property

Description

Sets or returns how many rows to fix at the top of the active worksheet.

Syntax

 F1Book1.FixedRows [= rows]

Part Type Description

rows Long Number of rows to fix.

Remarks

The FixedRows property is used with the FixedRow property to fix one or more rows at the top of the
worksheet. The fixed rows do not scroll when the worksheet is scrolled vertically. Individual cells in fixed
columns cannot be selected with the mouse or keyboard.

See Also

FixedCol property

FixedCols property

FormatAlignmentDlg Method

Description

Displays the Alignment dialog box.

Syntax

F1Book1.FormatAlignmentDlg

Remarks

The Alignment dialog box allows you to specify the horizontal and vertical alignment of data in the
selected range. In addition, you can enable and disable word wrapping. Settings in this dialog box affect
all selected sheets.

See Also

GetAlignment method

SetAlignment method

FormatBorderDlg Method

Description

Displays the Border dialog box.

Syntax

F1Book1.FormatBorderDlg

Remarks

The Border dialog box allows you to specify the placement of borders in the selected range. In addition,
you can specify the border line style and color. Settings in this dialog box affect all selected sheets.

See Also

GetBorder method

SetBorder method

FormatCurrency0 Method

Description

Formats the selected ranges on all selected worksheets with currency format and no decimal places.

Syntax

F1Book1.FormatCurrency0

Remarks

Currency (0) format displays numbers with a currency symbol and no decimal places. Both the currency
symbol and its position are taken from the Windows international setting.

See Also

FormatCurrency2 method

NumberFormat property

FormatCurrency2 Method

Description

Formats the selected ranges on all selected worksheets with currency format and two decimal places.

Syntax

F1Book1.FormatCurrency2

Remarks

Currency (2) format displays numbers with a currency symbol and two decimal places. Both the currency
symbol and its position are taken from the Windows international setting.

See Also

NumberFormat property

FormatCurrency0 method

FormatDefaultFontDlg Method

Description

Displays the Default Font dialog box.

Syntax

F1Book1.FormatDefaultFontDlg

Remarks

This dialog box allows you to set the default font for the current workbook. In addition to setting the font
and font size used to display data in a workbook, the default font can affect the widths of worksheet
columns if the ColWidthUnits property is set to character units instead of twips. If column widths are
stored as character units, each unit is equal to 1/256th of the character 0 (zero) in the default font.

Because the basic unit for measuring columns changes when you change the default font, you may need
to adjust the widths of columns – including the row header column – to achieve the desired appearance
for your workbook.

Note      By default, Formula One uses Arial as the default font. You must use a TrueType font as your
default font in order for ViewScale and SetPrintScale to work correctly.

See Also

GetDefaultFont method

ColWidth property

SetColWidth method

SetDefaultFont method

FormatFixed Method

Description

Formats the selected ranges on all selected worksheets with fixed format and no decimal places.

Syntax

F1Book1.FormatFixed

Remarks

Fixed format includes thousands separators (normally commas).

See Also

NumberFormat property

FormatFixed2 Method

Description

Formats the selected ranges on all selected worksheets with fixed format and two decimal places.

Syntax

F1Book1.FormatFixed2

Remarks

Fixed format includes thousands separators (normally commas).

See Also

NumberFormat property

FormatFontDlg Method

Description

Displays the Font dialog box.

Syntax

F1Book1.FormatFontDlg

Remarks

The Font dialog box allows you to specify the font, point size, font style, and color of data in the selected
range. Settings in this dialog box affect all selected sheets.

See Also

GetFont method

SetFont method

FormatFraction Method

Description

Formats the selected ranges on all selected worksheets with the fraction format.

Syntax

F1Book1.FormatFraction

Remarks

The fraction format displays numbers in a fractional format - with a numerator and denominator separated
by a slash (e.g. .5 is displayed as 1/2).

See Also

NumberFormat property

FormatGeneral Method

Description

Formats the selected ranges on all selected worksheets with the general format.

Syntax

F1Book1.FormatGeneral

Remarks

The general format displays numbers with as many decimal places as necessary; thousands separators
(normally commas) are not used.

See Also

NumberFormat property

FormatHmmampm Method

Description

Formats the selected ranges on all selected worksheets with the 12-hour time format.

Syntax

F1Book1.FormatHmmampm

Remarks

All selected ranges are formatted with the h:mm AM/PM format (e.g., 1:00 AM).

See Also

NumberFormat property

FormatMdyy Method

Description

Formats the selected ranges on all selected worksheets with the date format.

Syntax

F1Book1.FormatMdyy

Remarks

All selected ranges are formatted with the m/d/yy format (e.g., 12/31/93).

See Also

NumberFormat property

FormatNumberDlg Method

Description

Displays the Custom Number dialog box.

Syntax

F1Book1.FormatNumberDlg

Remarks

The Custom Format dialog box allows you to define custom number formats for data in the selected
range. Settings in this dialog box affect all selected sheets.

See Also

NumberFormat property

FormatPatternDlg Method

Description

Displays the Pattern dialog box.

Syntax

F1Book1.FormatPatternDlg

Remarks

The Pattern dialog box allows you to specify the fill pattern and foreground and background colors for the
selected range or objects. Settings in this dialog box affect all selected sheets.

See Also

GetPattern method

SetPattern method

FormatPercent Method

Description

Formats the selected ranges on all selected worksheets in percent format.

Syntax

F1Book1.FormatPercent

Remarks

Percent format displays numbers with a trailing percent sign and no decimal places.

See Also

NumberFormat property

FormatRCNr Method

Description

Returns a string containing a formatted row and column reference.

Syntax

reference = F1Book1.FormatRCNr (nRow, nCol, bDoAbsolute)

Part Type Description

nRow, nCol Long Row and column numbers of the
reference to format.

bDoAbsolute Boolean Specifies whether absolute or relative
cell references are used. Use True for
absolute references, False for relative
references.

reference String Variable which received the returned
format string. The string must be of
sufficient length to hold the returned
reference.

See Also

Selection property

Example

The following example displays the string "B4-B4" when you click on cell B4.

Private Sub F1Book1_Click(ByVal nrow As Long, ByVal nCol As Lon)

MsgBox F1Book1.FormatRCNr (nRow, nCol, False) & "-" & F1Book1.FormatRCNr(nRow, nCol,

True)

End Sub

FormatScientific Method

Description

Formats the selected ranges on all selected worksheets in scientific format.

Syntax

F1Book1.FormatScientific

See Also

NumberFormat property

FormattedText Property

Description

Returns the formatted text value of the active cell.

Syntax

[text =] F1Book1.FormattedText

Part Type Description

text String Variable that receives the returned text.

Remarks

This property returns the text as it is seen in the spreadsheet, including all formatting. To return
unformatted text, use Text or Entry.

See Also

Entry property

FormattedTextRC property

Text property

FormattedTextRC Property

Description

Returns the formatted text value of the specified cell.

Syntax

text = F1Book1.FormattedTextRC (nRow, nCol)

Part Type Description

nRow,
nCol

Long Row and column numbers of the cell
from which the text is returned.

text String Variable which receives the
returned text.

Remarks

This property returns the text as it is seen in the spreadsheet, including all formatting.

See Also

EntryRC property

FormattedText property

NumberRC property

TextRC property

Formula Property

Description

Enters a formula in the active cell of all selected sheets, or returns the text version of the formula already
in the active cell of the active worksheet.

Syntax

F1Book1.Formula [= formula]

Part Type Description

formula String The formula string.

Remarks

Set this property to enter a formula in the active cell. The formula should not have a leading equal sign
(=). This property returns a string containing the text of a formula already in the active cell.

See Also

Entry property

FormulaRC property

Number property

Text property

FormulaRC Property

Description

Enters a formula in the specified cell of all selected sheets, or returns the text version of the formula
already in the specified cell of the active worksheet.

Syntax

F1Book1.FormulaRC (nRow, nCol) [= formula]

Part Type Description

nRow,
nCol

Long Row and column numbers that identify
the cell.

formula String The formula string.

Remarks

Set this property to enter a formula in the specified cell. The formula should not have a leading equal sign
(=). This method returns a string containing the text of a formula already in the specified cell.

See Also

Entry property

Formula property

Number property

Text property

GetActiveCell Method

Description

Returns the row and column coordinates of the active cell.

Syntax

F1Book1.GetActiveCell pRow, pCol

Part Type Description

pRow Long A variable, passed by reference, that
receives the returned row number of
the active cell.

pCol Long A variable, passed by reference, that
receives the returned column number
of the active cell.

Remarks

The active cell is the cell on which the cursor is currently located. It is the cell in which data is entered or
edited if the user starts typing.

Cell A1 is the active cell in this worksheet. The active cell is highlighted by a heavy border.

See Also

Col property

Row property

SetActiveCell method

Example

The following example moves the active cell down one row:

Dim theRow As Long

Dim theCol As Long

F1Book1.GetActiveCell theRow, theCol

F1Book1.SetActiveCell theRow+1, theCol

GetAlignment Method

Description

Returns data alignment information for the active cell.

Syntax

F1Book1.GetAlignment pHorizontal, pWordWrap, pVertical, pOrientation

Part Type Description

pHorizontal Integer A variable, passed by reference that receives the returned
horizontal alignment setting. Following are the
F1HAlignConstants that can be returned to this variable:

Constant Description

F1HAlignGeneral General

F1HAlignLeft Left

F1HAlignCenter Center

F1HAlignRight Right

F1HAlignFill Fill

F1HAlignJustify Justify

F1HAlignCenterAcrossCells Center across cells

pWordWrap Boolean A variable, passed by reference, that receives the returned
value of the word wrap flag. If the flag is true, text wraps
when it exceeds the cell width.

pVertical Integer A variable, passed by reference, that receives the returned
vertical alignment value. Following are the
F1VAlignConstants that can be returned to this variable:

Constant Description

F1VAlignTop Top

F1VAlignCenter Center

F1VAlignBottom Bottom

pOrientation Integer A variable, passed by reference, that receives the returned
orientation value. Following are the values that can be
returned to this variable. Because this feature is not
implemented in this version, this argument always
returns 0.

Value Description

0 Horizontal

1 Vertical

2 Upward

3 Downward

Remarks

If a range is selected, only settings for the active cell are returned.

See Also

FormatAlignmentDlg method

SetAlignment method

Example

The following example returns the current alignment settings for the active cell, changes the horizontal
alignment and writes the new settings for the current selection:

Dim hAlign as Integer

Dim wordWrap as Boolean

Dim vAlign as Integer

Dim orient as Integer

F1Book1.GetAlignment hAlign, wordWrap, vAlign, orient

F1Book1.SetAlignment kHAlignCenter, wordWrap, vAlign, orient

GetBorder Method

Description

Returns the border styles used to display cells.

Syntax

F1Book1.GetBorder pLeft, pRight, pTop, pBottom, pShade, pcrLeft, pcrRight, pcrTop, pcrBottom

Part Type Description

pLeft, pRight,
pTop, pBottom

Integer Variables, passed by reference that receive the
border type for a side of the active cell. Following are
the values that can be returned to these variables:

Setting Description

0 No Border

1 Thin Line

2 Medium Line

3 Dashed Line

4 Dotted Line

5 Thick Line

6 Double Line

7 Hairline

pShade Integer A variable, passed by reference, that receives the
border shade setting; the value corresponds to the
built-in shades (not implemented in this version).

pcrLeft, pcrRight,
pcrTop, pcrBottom

OLE_COLOR Variables, passed by reference, that receive the
values that specify the colors of the cell border sides.
Each is an RGB color that has been translated into
one of the 56 colors in the color palette.

See Also

FormatBorderDlg method

BorderStyle property

SetBorder method

Example

The following example retrieves the border settings for the current selection and changes the color of the
border lines. Notice the -1 option is used to prevent changes to the outline of the selection.

Dim lBorder As Integer

Dim rBorder As Integer

Dim tBorder As Integer

Dim bBorder As Integer

Dim shade As Integer

Dim lColor As Long

Dim rColor As Long

Dim tColor As Long

Dim bColor As Long

Dim newColor As Long

F1Book1.GetBorder lBorder, rBorder, tBorder, bBorder, shade, lColor, rColor, tColor, bColor

newcolor= RGB(255,0,255)

F1Book1.SetBorder -1, lBorder, rBorder, tBorder, bBorder, shade, -1, newColor, newColor,

newColor, newColor

GetDefaultFont Method

Description

Returns the default font and font size for the specified workbook.

Syntax

F1Book1.GetDefaultFont pFont, pSize

Part Type Description

pFont String Variable, passed by reference, that
receives the default font name.

pSize Integer Variable, passed by reference, that
receives the default font size in twips.
The size is returned in twips, even if
the font size was originally specified in
points. To convert twips to points,
divide the number of twips by 20.

Remarks

 In addition to setting the font and font size used to display data in a workbook, the default font can affect
the widths of worksheet columns if the ColWidthUnits property is set to character units instead of twips.
If column widths are stored as character units, each unit is equal to 1/256th of the character 0 (zero) in
the default font.

Because the basic unit for measuring columns changes when you change the default font, you may need
to adjust the widths of columns – including the row header column – to achieve the desired appearance
for your workbook.

Note    By default, Formula One uses Arial as the default font. You must use a TrueType font as your
default font in order for ViewScale and SetPrintScale to work correctly.

See Also

FormatDefaultFontDlg method

SetColWidth method

SetDefaultFont method

GetFont Method

Description

Returns font information for the active cell.

Syntax

F1Book1.GetFont pFont, pSize, pBold, pItalic, pUnderline, pStrikeout, pcrColor, pOutline, pShadow

Part Type Description

pFont String Variable, passed by reference, that receives the
font name.

pSize Integer Variable, passed by reference that receives the font
size. The font size is always returned in twips. To
convert twips to points, divide the number of
twips by 20.

pBold, pItalic,
pUnderline, pStrikeout

Boolean Variables, passed by reference, that receive
whether these attributes are turned on for the font.
True means the font has the attribute; False means
the font does not have the attribute.

pcrColor OLE_COLOR Variable, passed by reference that receives the
color used to display the font.

pOutline,
pShadow

Boolean Variables, passed by reference, that receive
whether these attributes are turned on for the font.
These attributes are not supported in this
version of Formula One.

See Also

FormatFontDlg method

SetFont method

GetHdrSelection Method

Description

Returns whether the row and column headings are selected.

Syntax

F1Book1.GetHdrSelection pTopLeftHdr, pRowHdr, pColHdr

Part Type Description

pTopLeftHdr Boolean Variable, passed by reference, that
receives the returned value of the top
left header flag. If True, the heading
area at the intersection of the row and
column headings is selected. If False,
the area is not selected.

pRowHdr Boolean Variable, passed by reference, that
receives the returned value of the row
header selection flag. If True, the
row headings are selected. If
False, the row headings are not
selected.

pColHdr Boolean Variable, passed by reference, that
receives the returned value of the
column header selection flag. If True,
the column headings are selected.
If False, the column headings are
not selected.

Remarks

To interactively select this header intersection area, use CTRL+ SHIFT click.

See Also

SetHdrSelection method

GetIteration Method

Description

Returns iteration information.

Syntax

F1Book1.GetIteration pIteration, pMaxIterations, pMaxChange

Part Type Description

pIteration Boolean Variable, passed by reference, that
receives the returned state of the
iteration flag. If True, iteration is
enabled. If False, iteration is disabled.

pMaxIterations Integer Variable, passed by reference, that
receives the returned maximum
number of iterations.

pMaxChange Double Variable, passed by reference, that
receives the returned maximum
change value.

Remarks

Iteration can be used to solve circular references.    Formula One calculates until it iterates the number of
times specified by nMaxIterations or until all cells change by less than the amount specified in
nMaxChange.

See Also

SetIteration method

GetLineStyle Method

Description

Returns the weight, color, and style for the selected line object or the line forming the border around the
selected object.

Syntax

F1Book1.GetLineStyle pStyle, pcrColor, pWeight

Part Type Description

pStyle Integer Variable, passed by reference that receives the returned line style.
Following are valid values returned by this variable:

Values Description

0 Solid

1 Dashed

2 Ditted

3 Dash-ditted

4 Dash-dit-ditted

5 None

pcrColor OLE_COLOR Variable, passed by reference, that receives the returned line color.

pWeight Integer Variable, passed by reference, that receives the returned line weight.
Following are the valid values returned to this variable:

Values Line weight

0 1/2 point (displayed as 1 point rule on low
resolution monitors)

1 1 point

2 2 points

3 3 points

Remarks

Solid lines can assume any of the line weights; styled lines appear solid if set wider than 1/2 point.

See Also

LineStyleDlg method

SetLineStyle method

GetPattern Method

Description

Returns the pattern for the active cell or the first selected object.

Syntax

F1Book1.GetPattern pPattern, pcrFG, pcrBG

Part Type Description

pPattern Integer Variable, passed by reference, that
receives the returned pattern number
used to display the cells or objects. The
pattern number can range from 0 (no
pattern) to 18 and represents one of
the 18 patterns.

crFG,
crBG

OLE_COLOR Variables, passed by reference, that
receive the returned foreground and
background colors for the pattern.

See Also

FormatPatternDlg method

SetPattern method

GetPrintScale Method

Description

Returns the current print scale settings for the active worksheet.

Syntax

F1Book1.GetPrintScale pScale, pFitToPage, pVPages, pHPages

Part Type Description

pScale Integer Variable, passed by reference, that
receives the returned scale factor.
Scale factor can range from 10 to 400.

pFitToPage Boolean Variable, passed by reference, that
receives the returned state of the fit to
page flag. If the flag is False, the scale
percentage returned in scale is used to
print the workbook. If the flag is True,
the worksheet is printed on the number
of vertical and horizontal pages
returned by vPages and hPages.

pVPages Long Variable, passed by reference, that
receives the returned number of
vertical pages to which each range in
the print job is fit.

pHPages Long Variable, passed by reference, that
receives the returned number of
horizontal pages to which each range
in the print job is fit.

Remarks

Each separate print range is printed starting on a new page. When fitting a print job to a specified number
of pages, Formula One begins with the page scale specified by pScale and reduces the scaling until the
job fits in the specified horizontal and vertical pages.

To print a worksheet at the largest scale possible, set pScale to 400 when pFitToPage is True. Then,
specify the number of pages on which you want the worksheet printed.

See Also

FilePageSetup method

SetPrintScale method

GetProtection Method

Description

Returns the protection status of the active cell.

Syntax

F1Book1.GetProtection pLocked, pHidden

Part Type Description

pLocked Boolean Variable, passed by reference, that
receives the returned status of the
locked cell flag. If the locked cell flag is
True, the active cell is locked.

pHidden Boolean Variable, passed by reference, that
receives the returned status of the hide
formulas flag. If the hide formulas flag
is True, the formulas are hidden
(formula results are not hidden).

Remarks

After locking cells and hiding formulas, you must enable protection for the workbook before cell locking
and formula hiding is enabled. Protection for a workbook is enabled using the EnableProtection property.

See Also

SetProtection method

ProtectionDlg method

GetSelection Method

Description

Returns the row and column coordinates of the currently selected range.

Syntax

F1Book1.GetSelection nSelection pRow1, pCol1, pRow2, pCol2

Part Type Description

nSelection Integer Identifies the index of the selection. An index of 0
returns the row and column coordinates of the first
selection.

pRow1, pCol1,
pRow2, pCol2

Long Variables, passed by reference, that receive the row
and column coordinates of the current selection.

See Also

Selection property

SelectionCount property

SetSelection method

GetTabbedText Method

Description

Takes the specified range of data and converts it to a tab-delimited block of text.

Syntax

F1Book1.GetTabbedText nRow1, nCol1, nRow2, nCol2, bValuesOnly, phText

Part Type Description

nRow1,
nCol1,
nRow2,
nCol2

Long Specify the range from which the tab-
delimited block of text is obtained.

bValuesOnly Boolean Determines if the text is obtained as
unformatted text (True) or as
formatted text (False).

phText OLE_HANDLE Variable, passed by reference, that
receives the returned handle to the tab-
delimited block of text. You must free
this handle by calling GlobalFree. To
get a pointer to access the text, you
must use GlobalLock and
GlobalUnlock. The text is null
terminated, and its size is limited only
by available memory.

See Also

Clip property

ClipValues property

SetTabbedText method

Text property

TextRC property

GetValidationRule Method

Description

Returns the validation rule for the currently selected range of cells.

Syntax

F1Book1.GetValidationRule pRule, pText

Part Type Description

pRule String Variable, passed by reference, that
receives the returned formula used to
test the entered value.

pText String Variable, passed by reference, that
receives the returned text to display in
cell if validation fails.

Remarks

Validation rules can be used to test data entered in a cell or a range of cells. A validation rule consists of a
formula to test, and text to display if the validation fails. If the formula returns True, the value is entered. If
the formula returns a text string, the string is displayed and the value is not entered. If the formula returns
False, the value is not entered and the validation text is displayed.

You can use relative references in validation rules. These references are considered to be relative to the
active cell. This allows a validation rule to be properly applied to an entire range.

See Also

ValidationRuleDlg method

SetValidationRule method

GotoDlg Method

Description

Displays the Goto dialog box.

Syntax

F1Book1.GotoDlg

Remarks

GotoDlg displays the Goto dialog box. When you enter a location in this dialog box, Formula One moves
the visible area of the workbook to display this selection. To make a selection in another worksheet, type
the sheet name, followed by an exclamation mark before the range reference (Sheet3!A1:H10).

To enter multiple ranges, separate ranges with a comma. (A1:C5,D4). You can also enter a defined name
if it specifies a range.

See Also

GetActiveCell method

Selection property

SetActiveCell method

HdrHeight Property

Description

Sets or returns the height of the column headers. Setting this property affects all selected sheets.

Syntax

F1Book1.HdrHeight [= height]

Part Type Description

height Integer Indicates the height of the column
headers.

Remarks

Header height is specified in twips. A twip is 1/1440 of an inch.

See Also

HdrWidth property

RowHeight property

HdrWidth Property

Description

Sets or returns the width of the row headers. Setting this property affects all selected sheets.

Syntax

F1Book1.HdrWidth [= width]

Part Type Description

width Integer Indicates the width of the row headers.

Remarks

The units used to store or display width units depends on the setting of ColWidthUnits. If ColWidthUnits
is set to characters, width is specified in units equal to 1/256th of an average character's width in the
default font. If ColWidthUnits is set to twips, columns are set in twips which are 1/440th of an inch.

If you do any addition or subtraction of widths in your code, make sure that the units of the items you are
using are the same.

See Also

ColWidth property

HdrHeight property

HeapMin Method

Description

Calls the Visual C++ _heapmin() function and releases unused memory that was allocated for Formula
One workbooks.

Syntax

F1Book1.HeapMin

Remarks

Formula One uses the memory allocation routines that are provided by Microsoft Visual C++. These
routines allocate large blocks of memory from Windows and divide them into smaller memory blocks for
use by Formula One. When Formula One releases these memory blocks the memory is not returned to
Windows unless the _heapmin() function is called. The only time Formula One automatically calls this
method is after an application deletes it's last workbook.

You can manually call _heapmin() by calling HeapMin. By doing this, you can be certain that Formula
One has released as much memory back to Windows as possible without deleting all of your workbooks.

hWnd Property

Description

Returns a handle to the specified view window. This is a read-only property.

Syntax

handle = F1Book1.hWnd

Part Type Description

handle OLE_HANDLE The handle you want to
assign to the view window

Remarks

The Windows environment identifies each window in an application by assigning it a handle, or hWnd.
This hWnd is used with Windows API calls. Many Windows environment functions require the hWnd of
the current window as an argument. Refer to your development environment documentation for more
information about window handles.

InitTable Method

Description

Initializes the workbook associated with the current view control.

Syntax

F1Book1.InitTable

Remarks

InitTable initializes the workbook attached to a view. If there is no workbook attached to the view, a new
workbook is created.

Initializing the workbook deletes all information in the workbook, resetting it to its default state.

InsertRange Method

Description

Moves the specified range in order to insert new cells, rows, or columns.

Syntax

F1Book1.InsertRange nRow1, nCol1, nRow2, nCol2, nShiftType

Part Type Description

nRow1, nCol1,
nRow2, nCol2

Long Coordinates that specify the range that identifies how many cells rows
or columns are inserted and where they are inserted. If nRow1 is -1,
all rows are included in the selection; if nCol1 is -1, all columns are
included.

nShiftType Integer F1ShiftTypeConstants that determine how the insert should occur:

Constants Description

F1ShiftHorizontal Cells of the specified range are shifted right to
make room for the inserted cells.

F1ShiftVertical Cells of the specified range are shifted down to
make room for the inserted cells.

F1ShiftRows Rows in which the specified range resides are
shifted down to make room for the inserted
cells.

F1ShiftCols Columns in which the specified range resides
are shifted right to make room for the inserted
cells.

Remarks

InsertRange uses the shape of the specified range to determine what to insert. For example, if you
specify a two-by-two range of cells and call InsertRange with the F1ShiftRows option, a new two-by-two
range is inserted by shifting the rows in the specified range down.

Formats are copied from the cells above when inserting and shifting down and from the cells to the left
when inserting and shifting right. All formatting is copied except that only borders that are the same above
and below or left and right of the new cells are copied.

InsertRange acts on all selected sheets.

See Also

DeleteRange method

EditInsert method

EditDelete method

InsertSheets Method

Description

Inserts one or more sheets at the specified location.

Syntax

F1Book1.InsertSheets nSheet, nSheets

Part Type Description

nSheet Long Identifies the index of the worksheet in
front of which you want to insert the
new sheets. Sheets are indexed from
left to right beginning with 1. Do not
confuse the index with the sheet name
that appears on the sheet tab.

nSheets Long Determines how many sheets are
inserted before nSheet.

Remarks

Inserted sheets are given the next sequential names in the worksheet list. To rename a worksheet use the
SheetName method. The index of all sheets is adjusted to reflect their new position after the insertion.

See Also

DeleteSheets method

LastCol Property

Description

Returns the number of the last occupied column.

Syntax

[column =] F1Book1.LastCol

Part Type Description

column Long Variable that receives the returned
column number.

Remarks

This property returns the last column that is not empty, including cells that contain only formatting.

See Also

LastColForRow property

LastRow property

LastColForRow Property

Description

Returns the last occupied column in the specified row.

Syntax

[pLastColForRow =] F1Book1.LastColForRow (nRow)

Part Type Description

nRow Long Identifies a row.

pLastColForRow Long Variable that receives the last column
value for nRow.

Remarks

This property returns the last column in the specified row that is not empty, including cells that contain
only formatting.

See Also

LastCol property

LastRow property

LastRow Property

Description

Returns the number of the last occupied row.

Syntax

[row =] F1Book1.LastRow

Part Type Description

row Long Variable that receives the number of
the last row.

Remarks

This property returns the last row that is not empty, including rows with cells that contain only formatting.

See Also

LastCol property

LastColForRow property

Example

The following example searches for a string in the active worksheet, moves it to the top left corner and
selects it:

Sub FindString (target As String)

Dim i As Long, j As Long

For i = 1 to F1Book1.LastRow

For j = 1 to F1Book1.LastColForRow

If F1Book1.TypeRC (i, j) = 2 then ’Text only search

If StrComp (F1Book1.TextRC (i, j), target) Then

F1Book1.TopRow = i

F1Book1.LeftCol = j

F1Book1.SetSelection (i,j,i,j)

Exit Sub

End If

End If

Next j

Next i

End Sub

LaunchDesigner Method

Description

Displays the Workbook Designer.

Syntax

F1Book1.LaunchDesigner

Remarks

Calling this method displays the Workbook Designer, regardless of the setting of the AllowDesigner
property.

LeftCol Property

Description

Sets or returns the leftmost column currently displayed in the view.

Syntax

F1Book1.LeftCol [= col]

Part Type Description

col Long Indicates the number of the leftmost
column.

LineStyleDlg Method

Description

Displays the Line Style dialog box.

Syntax

F1Book1.LineStyleDlg

Remarks

The Line Style dialog box allows you to set the weight, color, and style for the selected line object or the
line forming the border around the selected object.

Note    Styled lines (e.g., lines with dashes and dots) that are wider than one pixel are not supported by
this version of Formula One. If you select a heavier weight, the line appears solid.

See Also

GetLineStyle method

SetLineStyle method

Logical Property

Description

Sets or returns the logical (True or False) value of the active cell. Setting this property affects all selected
worksheets.

Syntax

F1Book1.Logical [= boolean]

Remarks

Set this property to change the logical value of the active cell. This property returns the cell’s current
logical value.

If the cell contains a number, it’s logical value is True for nonzero values, and False for zero values. If the
cell has text that can be converted to a number, the text is converted and treated as a numeric cell. If the
cell contains a formula, the above rules apply depending on the formula's result. All other cells, including
empty cells, have a False logical value.

The text "True" and "False" are returned as True and False, respectively.

If the cell contains a formula, the formula is deleted when the logical value is assigned.

See Also

LogicalRC property

LogicalRC Property

Description

Sets or returns the logical (True or False) value of the specified cell. Setting this property affects all
selected sheets.

Syntax

F1Book1.LogicalRC (nRow, nCol) [= value]

Part Type Description

nRow,
nCol

Long Row and column numbers that identify
a cell

value Boolean Indicates the specified cell’s logical
value.

Remarks

If the cell contains a number, it’s logical value is True for nonzero values, and False for zero values. If the
cell has text that can be converted to a number, the text is converted and treated as a numeric cell. If the
cell contains a formula, the above rules apply depending on the formula's result. All other cells, including
empty cells, have a False logical value.

The text "True" and "False" are returned as True and False, respectively.

If the cell contains a formula, the formula is deleted when the logical value is assigned.

See Also

Logical property

MaxCol Property

Description

Sets or returns the last displayable column in a the active worksheet.

Syntax

F1Book1.MaxCol [= col]

Part Type Description

col Long Indicates the number of the last
displayable column.

Remarks

Columns beyond the last column are not displayed but can be used to hold data and formulas.

Set this property to change the last displayable column. This property returns the current last displayable
column.

See Also

MaxRow property

MinCol property

MinRow property

MaxRow Property

Description

Sets or returns the last displayable row in the active worksheet.

Syntax

F1Book1.MaxRow [= row]

Part Type Description

row Long Indicate the number of the last
displayable row.

Remarks

Rows beyond the last row are not displayed but can be used to hold data and formulas.

See Also

MaxCol property

MinCol property

MinRow property

MinCol Property

Description

Sets or returns the first column that can be displayed in the active worksheet.

Syntax

F1Book1.MinCol [= col]

Part Type Description

col Long Indicates the column number of the first
displayable column in the view.

Remarks

Columns before the first column are not displayed but can be used to hold data and formulas.

See Also

MaxCol property

MaxRow property

MinRow property

MinRow Property

Description

Sets or returns the first row that can be displayed in the active worksheet.

Syntax

F1Book1.MinRow [= row]

Part Type Description

row Long Indicates the first displayable row in a
view.

Remarks

Rows before the first row are not displayed but can be used to hold data and formulas.

See Also

MaxCol property

MaxRow property

MinCol property

Mode Property

Description

Sets or returns the current mode for mouse actions in a view.

Syntax

F1Book1.Mode [= mode]

Part Type Description

mode Integer F1ModeConstants that indicate the mouse mode:

Constants Description

F1ModeNormal Normal worksheet editing

F1ModeLine Line drawing

F1ModeRectangle Rectangle drawing

F1ModeOval Oval drawing

F1ModeArc Arc drawing

F1ModeChart Chart drawing

F1ModeField Field drawing (not implemented in
this version)

F1ModeButton Button drawing

F1ModePolygon Polygon drawing

F1ModeCheckBox Check box drawing

F1ModeDropDown Drop down list box drawing

See Also

PolyEditMode property

Modified Property

Description

Sets or returns the state of the modified flag which indicates whether modifications have been made to a
view.

Syntax

F1Book1.Modified [= boolean]

Remarks

The value of this property indicates whether modifications have been made. When a new view is created
the Modified property is set to False. When something in the view is changed, Modified is set to True
and the Modified event is fired. If further changes are made, the Modified event is not fired again. It will
not be fired again until you set this property to False.

Setting Modified to True only sets it for the specified view, setting it to False sets it to False for all views
attached to a table.

To cause the Modified event to be fired every time a change is made to the workbook, set the modified
flag to False from within the Modified event.

MouseIcon Property

Description

Sets a custom mouse icon.

Syntax

F1Book1.MouseIcon [= picture]

Part Type Description

picture IPictureDisp Identifies the picture to be used as a
mouse icon.

Remarks

The MouseIcon property provides a custom icon that is used when the MousePointer property is set to
Custom.

MousePointer Property

Description

Returns or sets a value indicating the type of mouse pointer displayed when the mouse is over a
particular part of an object at run time.

Syntax

F1Book1.MousePointer [= value]

Part Type Description

value Integer F1MousePointerConstants that specify the type of
mouse pointer displayed:

Constant Description

F1Default Shape determined by the
object.

F1Arrow Arrow head shape.

F1Cross Cross-hair pointer.

F1IBeam I-Beam shape.

F1Icon Small square within a square.

F1Size Four-pointed arrow pointing
north, south, east, and west.
WindowsNT only

F1SizeNESW Double arrow pointing northeast
and southwest.

F1SizeNS Double arrow pointing north and
south.

F1SizeNWSE Double arrow pointing
northwest and southeast.

F1SizeWE Double arrow pointing west and
east.

F1UpArrow Arrow pointing up.

F1Hourglass Hourglass icon usually
associated with waiting.

F1NoDrop No Drop. Not Implemented.

F1Custom Custom icon specified by the
MouseIcon property.

Remarks

Use this property when you want to indicate changes in functionality as the mouse pointer passes over
the Formula One control. The Hourglass setting (11) is useful for indicating that the user should wait for a
process or operation to finish.

See Also

MouseIcon property

Example

The following example displays the mouse pointer as an hour glass while the workbook is recalculating:

Sub RecalcAll ()

F1Book1.MousePointer = F1HourGlass

. . . 'Do the recalc

F1Book1.MousePointer = F1Default

End Sub

MoveRange Method

Description

Moves a range in all selected sheets.

Syntax

F1Book1.MoveRange nRow1, nCol1, nRow2, nCol2, nRowOffset, nColOffset

Part Type Description

nRow1, nCol1,
nRow2, nCol2

Long Coordinates that specify the source range. If
nRow1 is -1, all rows are included in the
selection; if nCol1 is -1, all columns are included.

nRowOffset,
nColOffset

Long Specify the offset of the destination range from
the source range.

Remarks

When MoveRange moves a range, the source range becomes blank. If the cells in the destination range
contain data, the data in those cells is lost. References to the moved cells are adjusted to refer to their
new location. References to any cells that are overwritten by the moved cells are converted to errors.

See Also

CopyRange method

CopyRangeEx method

EditCut method

EditPaste method

NextColPageBreak Method

Description

Returns the next column where there is a page break.

Syntax

 nextCol = F1Book1.NextColPageBreak (nCol)

Part Type Description

nCol Long Identifies the starting column.

nextCol Long Variable that receives the returned
column number of the next vertical
page break, or zero if there is no page
break after nCol.

See Also

AddColPageBreak method

AddPageBreak method

AddRowPageBreak method

NextRowPageBreak method

RemoveColPageBreak method

RemovePageBreak method

RemoveRowPageBreak method

NextRowPageBreak Method

Description

Returns the next row where there is a page break.

Syntax

nextRow = F1Book1.NextRowPageBreak (nRow)

Part Type Description

nRow Long Identifies the starting row.

nextRow Long Variable that receives the returned row
number of the next horizontal page
break, or zero if there is no page break
after nRow.

See Also

AddColPageBreak method

AddPageBreak method

AddRowPageBreak method

NextColPageBreak method

RemoveColPageBreak method

RemovePageBreak method

RemoveRowPageBreak method

Number Property

Description

Sets or returns the numeric value of the active cell. Setting this property affects all selected sheets.

Syntax

F1Book1.Number [= number]

Part Type Description

number Double Indicates the cell value.

Remarks

Set this property to enter a number in the active cell and get the value of this property to return the
numeric value currently in the active cell.

When returning the value, cells containing a formula return the numeric result of the formula. If the cell
contains text, an attempt is made to convert the text to a number. If the text cannot be converted, 0 (No
Error) is returned.

If the active cell contains a formula, the formula is deleted when the numeric value is assigned.

See Also

Entry property

Formula property

NumberRC property

Text property

NumberFormat Property

Description

Sets or returns the number format for the active cell in all selected sheets.

Syntax

F1Book1.NumberFormat [= format]

Part Type Description

format String Indicates the number format string.

Remarks

Set this property to change the format used to display numbers in the active cell. This property returns the
format string currently used to display numbers in the active cell.

The following table lists the symbols that can be used in the format string.

Format Symbol Description

General Displays the number with up to 14 significant digits..

0 Digit placeholder. If the number contains fewer digits than the format contains placeholders, the
number is padded with 0's. If there are more digits to the right of the decimal than there are
placeholders, the decimal portion is rounded to the number of places specified by the
placeholders. If there are more digits to the left of the decimal than there are placeholders, the
extra digits are retained.

Digit placeholder. This placeholder functions the same as the 0 placeholder except the number
is not padded with 0's if the number contains fewer digits than the format contains placeholders.

? Digit placeholder. This placeholder functions the same as the 0 placeholder except that spaces
are used to pad the digits.

. (period) Decimal point. Determines how many digits (0's or #'s) are displayed on either side of the
decimal point. If the format contains only #'s left of the decimal point, numbers less than 1 begin
with a decimal point. If the format contains 0’s left of the decimal point, numbers less than 1
begin with a 0 left of the decimal point.

% Displays the number as a percentage. The number is multiplied by 100 and the % character is
appended.

, (comma) Thousands separator. If the format contains commas separated by #'s or 0's, the number is
displayed with commas separating thousands. A comma following a placeholder scales the
number by a thousand. For example, the format 0, scales the number by 1000 (e.g., 10,000
would be displayed as 10).

E- E+ e- e+ Displays the number as scientific notation. If the format contains a scientific notation symbol to
the left of a 0 or # placeholder, the number is displayed in scientific notation and an E or an e is
added. The number of 0 and # placeholders to the right of the decimal determines the number
of digits in the exponent. E- and e- place a minus sign by negative exponents. E+ and e+ place
a minus sign by negative exponents and a plus sign by positive exponents.

$ - + / () : space Displays that character. To display a character other than those listed, precede the character
with a back slash (\) or enclose the character in double quotation marks (" "). You can also use
the slash (/) for fraction formats.

\ Displays the next character. The backslash is not displayed. You can also display a character or
string of characters by surrounding the characters with double quotation marks (" ").

The backslash is inserted automatically for the following characters:

! ^ & ` (left quote) ' (right quote) ~ { } = < >

* (asterisk) Repeats the next character until the width of the column is filled. You cannot have more than

one asterisk in each format section.

_ (underline) Skips the width of the next character. For example, to make negative numbers surrounded by
parentheses align with positive numbers, you can include the format _) for positive numbers to
skip the width of a parenthesis.

"text" Displays the text inside the quotation marks.

@ Text placeholder. If there is text in the cell, the text replaces the @ format character.

m Month number. Displays the month as digits without leading zeros (e.g., 1-12). Can also
represent minutes when used with h or hh formats.

mm Month number. Displays the month as digits with leading zeros (e.g., 01-12). Can also
represent minutes when used with the h or hh formats.

mmm Month abbreviation. Displays the month as an abbreviation (e.g., Jan-Dec).

mmmm Month name. Displays the month as a full name (e.g., January-December).

d Day number. Displays the day as digits with no leading zero (e.g., 1-2).

dd Day number. Displays the day as digits with leading zeros (e.g., 01-02).

ddd Day abbreviation. Displays the day as an abbreviation (e.g., Sun-Sat).

dddd Day name. Displays the day as a full name (e.g., Sunday-Saturday).

yy Year number. Displays the year as a two-digit number (e.g., 00-99).

yyyy Year number. Displays the year as a four-digit number (e.g., 1900-2078).

h Hour number. Displays the hour as a number without leading zeros (1-23). If the format
contains one of the AM or PM formats, the hour is based on a 12-hour clock. Otherwise, it is
based on a 24-hour clock.

hh Hour number. Displays the hour as a number with leading zeros (01-23). If the format contains
one of the AM or PM formats, the hour is based on a 12-hour clock. Otherwise, it is based on a
24-hour clock.

m Minute number. Displays the minute as a number without leading zeros (0-59). The m format
must appear immediately after the h or hh symbol. Otherwise, it is interpreted as a month
number.

mm Minute number. Displays the minute as a number with leading zeros (00-59). The mm format
must appear immediately after the h or hh symbol. Otherwise, it is interpreted as a month
number.

s Second number. Displays the second as a number without leading zeros (0-59).

ss Second number. Displays the second as a number with leading zeros (00-59).

AM/PM, am/pm

A/P, a/p

12-hour time. Displays time using a 12-hour clock. Displays AM, am, A, or a for times between
midnight and noon; displays PM, pm, P, or p for times from noon until midnight.

[h] Outputs total number of hours

[m] Outputs total number of minutes

[s] Outputs total number of seconds

s.0, s.00, s.000, ss.0,
ss.00, ss.000

Outputs fractional part of second.

[BLACK] Displays cell text in black.

[BLUE] Displays cell text in blue.

[CYAN] Displays cell text in cyan.

[GREEN] Displays cell text in green.

[MAGENTA] Displays cell text in magenta.

[RED] Displays cell text in red.

[WHITE] Displays cell text in white.

[YELLOW] Displays cell text in yellow.

[COLOR n] Displays cell text using the corresponding color in the color palette. n is a number 1 to 56 that
represents a color in the color palette.

[conditional value] Each format can have as many as four sections - one each for positive numbers, negative
numbers, zeros, and text. Using the conditional value brackets ([]), you can designate a
different condition for each section. For example, you might want positive numbers displayed in
black, negative numbers in red, and zeros in blue. The following string formats a number for
these conditions:

[>=0] [BLACK]General; [<0] [RED]General; [BLUE]General

The following table shows examples of custom number formatting.

Format Cell Data Display

#.## 123.456 123.46

0.2 .2

#.0# 123.456 123.46

123 123.0

#,##0"CR";#,##0"DR";0 1234.567 1,235CR

0 0

-123.45 123DR

#, 10000 10

"Sales="0.0 123.45 Sales=123.5

-123.45 -Sales=123.5

"X="0.0;"x="-0.0 -12.34 x=-12.3

$* #,##0.00;$* -#,##0.00 1234.567 $ 1,234.57

-12.34$ 12.34$

000-00-0000 123456789 123-45-6789

"Cust. No." 0000 1234 Cust. No. 1234

;;; Anything (Not Displayed)

"The End" 123.45 The End

-123.45 -The End

text text

m-d-yy 2/3/94 2-3-94

mm dd yy 2/3/94 02 03 94

mmm d, yy 2/3/94 Feb 3, 94

mmmm d, yyyy 2/3/94 February 3, 1994

d mmmm yyyy 2/3/94 3 February 1994

hh"h" mm"m" 1:32 AM 01h 32m

h.mm AM/PM 14:56 2.56 PM

hhmm "hours" 3:15 0315 hours

See Also

FormatNumberDlg method

NumberRC Property

Description

Sets or returns the numeric value of the specified cell. Setting this property affects all selected sheets.

Syntax

F1Book1.NumberRC (nRow, nCol) [= number]

Part Type Description

nRow, nCol Long Row and column coordinates that
identify a cell.

number Double Indicates the cell value.

Remarks

When returning the value, cells containing a formula return the numeric result of the formula. If the cell
contains text, an attempt is made to convert the text to a number. If the text cannot be converted, 0 (No
Error) is returned.

If the specified cell contains a formula, the formula is deleted when the numeric value is assigned.

You can use TypeRC to determine the type of value in a cell.

See Also

EntryRC property

FormulaRC property

Number property

TextRC property

NumSheets Property

Description

Sets or returns the number of worksheets in the current workbook.

Syntax

F1Book1.NumSheets [= sheets]

Part Type Description

sheets Long Indicates the number of worksheets
that make up the workbook.

Remarks

Set NumSheets to change the number of worksheets in the workbook. Worksheets are added to or
deleted from the end of the current list of worksheets. This property returns the number of existing
worksheets.

To add worksheets between existing worksheets, use InsertSheets. To delete worksheets between
existing worksheets, use DeleteSheets.

See Also

Sheet property

SheetName property

EditInsertSheets method

EditDeleteSheets method

ObjAddItem Method

Description

Adds an item to a list box object.

Syntax

F1Book1.ObjAddItem ID, pItem

Part Type Description

ID Long Identification number of the list box
object to which the item is added.

pItem String Reference to a string to be added to
the list box.

Remarks

The new item is added to the end of the list of items in the object.

See Also

ObjDeleteItem method

ObjGetItemCount method

ObjInsertItem method

ObjItem property

ObjItems property

ObjAddSelection Method

Description

Selects an additional object in a view.

Syntax

F1Book1.ObjAddSelection ID

Part Type Description

ID Long Identification number of the object to
select.

Remarks

All previously selected objects remain selected as the additional object is selected.

See Also

ObjGetSelectionCount method

ObjGetSelection method

ObjBringToFront Method

Description

Places the selected objects in front of all unselected objects in the active worksheet.

Syntax

F1Book1.ObjBringToFront

Remarks

If the selected objects overlap unselected objects in the active worksheet, the selected objects are
displayed on top of the unselected objects. If a group of objects are selected, the order of the objects
within the selection is unchanged.

See Also

ObjSendToBack method

ObjDeleteItem Method

Description

Deletes an item from a list box object.

Syntax

F1Book1.ObjDeleteItem ID, nItem

Part Type Description

ID Long Identification number of the list box
object from which and item is deleted.

nItem Integer Number of the item to delete. Items in
a list box are numbered sequentially
starting with 0.

See Also

ObjAddItem method

ObjItem property

ObjItems property

ObjGetItemCount method

ObjInsertItem method

ObjFirstID Method

Description

Returns the object identification number for the first object in the active worksheet.

Syntax

ID = F1Book1.ObjFirstID

Part Type Description

ID Long Variable which receives the returned
identification number.

Remarks

This property can be used in conjunction with ObjNextID to loop through all the objects in a worksheet.

See Also

ObjNameToID method

ObjGetCell Method

Description

Returns the worksheet cell assigned to hold the value displayed by the specified check box or list box
object.

Syntax

F1Book1.ObjGetCell ID, pHasCell, pRow, pCol

Part Type Description

ID Long Identification number of the object.

pHasCell Integer Variable, passed by reference, that receives the returned state of
the object cell flag. This flag controls what is placed in the cell
identified by pRow and pCol when a selection is made from the
check box or dropdown listbox. Following are the
F1ControlCellConstants for this argument:

Constant Description

F1ControlNoCell Cell value is not changed when
selection is made from dropdown
listbox.

F1ControlCellValue Cell value is set to index of selection in
dropdown listbox.

F1ControlCellText Cell value is set to text of selection in
dropdown listbox.

pRow, pCol Long Variables, passed by reference, that receive the returned row
and column numbers that identify the cell in which the object
value is placed.

See Also

ObjValue property

ObjSetCell method

ObjGetItemCount Method

Description

Returns the number of items in a list box object.

Syntax

pItems = F1Book1.ObjGetItemCount (ID)

Part Type Description

ID Long Identification number of the object for
which the item count is returned.

pItems Integer Variable, passed by reference, that
receives the returned item count.

See Also

ObjItem property

ObjItems property

ObjGetPos Method

Description

Returns the position of an object.

Syntax

F1Book1.ObjGetPos ID, pX1, pY1, pX2, pY2

Part Type Description

ID Long Identification number of the object for
which position values is returned.

pX1 Single Variable, passed by reference, that
receives the left edge position of the
object.

pY1 Single Variable, passed by reference, that
receives the top edge position of the
object.

pX2 Single Variable, passed by reference, that
receives the right edge position of the
object.

pY2 Single Variable, passed by reference, that
receives the bottom edge position of
the object.

Remarks

The values returned by pX1 and pX2 are measured in columns from the left edge of the worksheet. The
values returned by pY1 and pY2 are measured in rows from the top edge of the worksheet.

In the measurements returned by pX1, pY1, pX2, and pY2, integers indicate the edge of the object is
placed on a row or column border; fractional numbers indicate the edge of the object is placed between
borders. For example, if pX1 is 1.25, the left edge of the object is positioned one and a quarter columns
from the left edge of the worksheet; if nY1 is 3, the top edge of the object is positioned exactly three rows
from the top of the worksheet.

See Also

ObjSetPos method

ObjGetSelection Method

Description

Returns the identification number of a selected object.

Syntax

F1Book1.ObjGetSelection nSelection, pID

Part Type Description

nSelection Integer Number of the object in the group of
selected objects for which the
identification number is to be returned.
This is a 0 based index, that is the first
object is given the number 0, second
object 1 etc.

pID Integer Variable, passed by reference, that
receives the returned object
identification number.

ObjGetSelectionCount Method

Description

Returns the number of selected objects.

Syntax

count = F1Book1.ObjGetSelectionCount

Part Type Description

count Integer Variable that receives the returned
number of selected objects.

See Also

ObjAddSelection method

ObjGetSelection method

Selection property

ObjGetType Method

Description

Returns the type of the specified object.

Syntax

pType = F1Book1.ObjGetType (ID)

Part Type Description

ID Long Identification number of the object.

pType Integer Variable, passed by reference, that receives the returned
object type. Following are the valid F1ObjTypeConstants:

Constants Description

F1ObjLine Line

F1ObjRectangle Rectangle

F1ObjChart Chart

F1ObjOval Oval

F1ObjArc Arc

F1ObjButton Button

F1ObjPolygon Polygon

F1ObjCheckBox Check box

F1ObjDropDown Drop down list box

F1ObjPicture Picture

Example

The following example hides all shape objects in the current selection:

Dim i As Long, id As Long

For i = 1 to F1Book1.ObjSelectionCount

F1Book1.ObjGetSelection i, id

Select Case F1Book1.ObjGetType (id)

Case F1ObjLine, F1ObjRectangle, F1ObjOval, F1ObjArc:

F1Book1.ObjVisible (id) = False

End Select

Next i

ObjInsertItem Method

Description

Inserts an item in a list box object.

Syntax

F1Book1.ObjInsertItem ID, nItem, pItem

Part Type Description

ID Long Identification number of the list box
object in which an item is inserted.

nItem Integer Number of the item before which the
new item is inserted. Items in a list box
are numbered sequentially starting with
0.

pItem String Reference to the item to be inserted.

Remarks

If you specify the number of items in the list box for nItem, the new item is added to the end of the list. For
example, if a list box has four items and you specify 4 for nItem, the new item is added after the fourth
item in the list box.

See Also

ObjAddItem method

ObjDeleteItem method

ObjItem property

ObjItems property

ObjGetItemCount method

Example

The following example fills a list box with all defined names in the current worksheet:

Dim i As Long, id As Long

With F1Book1

id = .ObjNameToId (LBDefinedNames)

For i = 1 to .DefinedNameCount

.ObjInsertItem id, 0, .DefinedNameByIndex (i)

Next i

End With

ObjItem Property

Description

Sets or returns an item from a list box object.

Syntax

F1Book1.ObjItem (ID, nItem) [= item]

Part Type Description

ID Long Identification number of the object for
which the item is returned.

nItem Integer Identifies the item in the list box. Items
in a list box are numbered sequentially
starting with 0.

item String Identifies the list box item.

See Also

ObjGetItemCount method

ObjItems property

Example

The following example puts list box entries in proper case and trims them:

Dim i As Long, str As Long

With F1Book1.

For i = 0 to .ObjGetItemCount (1) -1

.ObjItem (1,i) = Trim$ (StrConv (.ObjItem (1, i), vbProperCase))

Next i

End With

ObjItems Property

Description

Assigns a list of values to, or returns a semicolon-delimited list of items from a list box object.

Syntax

F1Book1.ObjItems (ID) [= items]

Part Type Description

ID Long Identification number of the object for
which the list is returned.

items String Semicolon-delimited list of values.

See Also

ObjItem property

ObjGetItemCount method

ObjName Property

Description

Sets or returns the name of the specified object.

Syntax

 F1Book1.ObjName (ID) [= name]

Part Type Description

ID Long Object identification number.

name String Object name. A name can be of any
length.

See Also

ObjNameToID method

ObjNameDlg Method

Description

Displays the Object Name dialog box.

Syntax

F1Book1.ObjNameDlg

Remarks

The Object Name dialog box allows you to specify a name for the currently selected object. An object
must be selected for this dialog box to display.

ObjNameToID Method

Description

Returns the object identification number for an object specified by name.

Syntax

ID = F1Book1.ObjNameToID (pName)

Part Type Description

pName String Object name.

ID Long Variable that receives the object’s
identification number.

Remarks

Use this property to obtain the identification number for an object that was created and named for which
you do not know the identification number.

See Also

ObjFirstID method

ObjNextID method

ObjNew Method

Description

Creates and adds an object to the active worksheet.

Syntax

F1Book1.ObjNew nType, nX1, nY1, nX2, nY2, pID

Part Type Description

nType Integer Identifies the type of object to create. Following are the
F1ObjTypeConstants:

Constants Description

F1ObjLine Line

F1ObjChart Chart

F1ObjRectangle Rectangle

F1ObjOval Oval

F1ObjArc Arc

F1ObjButton Button

F1ObjCheckBox Check box

F1ObjDropDown Drop down list box

nX1, nY1 Single Coordinates that represent the first anchor point of the
object. nX1 is measured in columns from the left edge of
the worksheet; nY1 is measured in rows from the top edge
of the worksheet.

nX2, nY2 Single Coordinates that represent the second anchor point of the
object. nX2 is measured in columns from the left edge of
the worksheet; nY2 is measured in rows from the top edge
of the worksheet.

pID Long Variable, passed by reference, that receives the
identification number of the new object.

Remarks

When specifying the location of the object, integers place the edge of the object on a row or column
border; fractional numbers place the edge of the object between borders. For example, if nX1 is 1.25, the
first anchor point is placed one and a quarter columns from the left edge of the worksheet; if nY1 is 3, the
first anchor point is placed exactly three rows from the top of the worksheet.

The first anchor point (identified by nX1 and nY1) can be to the right and below the second anchor point.
When drawing rectangles, ovals, buttons, list boxes, and check boxes, the order of the anchor points is of
no consequence. However, when drawing lines and arcs, the order and placement of the anchor points
affects the angle and direction in which the object is drawn.

The following illustration demonstrates how the positioning of anchor points affects the drawing of arcs
and lines.

ObjNewPicture Method

Description

Creates a new metafile picture object on the active worksheet.

Syntax

F1Book1.ObjNewPicture nX1, nY1, nX2, nY2, pID, hMF, nMapMode, nWndExtentX, nWndExtentY

Part Type Description

nX1, nY1 Single Coordinates that represent the first anchor point of the
object. nX1 is measured in columns from the left edge
of the worksheet; nY1 is measured in rows from the
top edge of the worksheet.

nX2, nY2 Single Coordinates that represent the second anchor point of
the object. nX2 is measured in columns from the left
edge of the worksheet; nY2 is measured in rows from
the top edge of the worksheet.

pID Long Variable, passed by reference, that receives the
returned identification number of the new picture
object.

hMF OLE_HANDLE Handle to the metafile to place in the picture object.

nMapMode Long Indicates how the metafile is mapped in the object. 7
indicates isotropic mode (keep aspect ratio); 8 is
anisotropic mode (stretchable).

nWndExtentX,
nWndExtentY

Long Dimensions of the picture.

Remarks

hMF, nMapMode, and nWndExtentX and nWndExtentY usually accompany a metafile and are merely
passed to this method. You should be familiar with Windows metafiles and their structure before using this
method. Isotropic and anisotropic are Windows constants listed as MM_ISOTROPIC and
MM_ANISOTROPIC.

Formula One manages the memory associated with a metafile once a picture object has been created,
including freeing memory when the object is deleted.

When specifying the location of the picture object, integers place the edge of the object on a row or
column border; fractional numbers place the edge of the object between borders. For example, if nX1 is
1.25, the first anchor point is placed one and a quarter columns from the left edge of the worksheet; if nY1
is 3, the first anchor point is placed exactly three rows from the top of the worksheet.

See Also

ObjSetPicture method

ObjNextID Method

Description

Given an object identification number, this method returns the object identification number for the next
object in the active worksheet.

Syntax

[pNextID =] F1Book1.ObjNextID (ID)

Part Type Description

ID Long Identification number of the current
object.

pNextID Long Variable that receives the returned
identification number of the next object.

Remarks

Use this property if objects have been deleted from a worksheet and you are uncertain of the order or
identification numbers of the remaining objects. In addition, this method can be used in conjunction with
ObjFirstID to loop through all the objects in a worksheet.

See Also

ObjNameToID method

Example

The following example select all objects and deletes them:

Sub DeleteAllObjects ()

Dim id As Long

On Error Goto DeleteObjects

With F1Book1

id = .ObjFirstID

.ObjSetSelection id

While True

id = .ObjNextID (id)

.ObjAddSelection id

Wend

End With

DeleteObjects:

F1Book1.EditClear F1ClearAll

End Sub

ObjOptionsDlg Method

Description

Displays the Object Options dialog box.

Syntax

F1Book1.ObjOptionsDlg

Remarks

The Object Options dialog box allows you to set options for the currently selected object. An object must
be selected for this dialog box to display. The contents of the dialog box change according to the selected
object.

ObjPosToTwips Method

Description

Given an object position in relation to rows and columns, this method returns the object position in twips.

Syntax

F1Book1.ObjPosToTwips nX1, nY1, nX2, nY2, pX, pY, pCX, pCY, pShown

Part Type Description

nX1 Single Number of columns from the left edge of the
worksheet where the left edge of the object is
placed.

nY1 Single Number of rows from the top edge of the
worksheet where the top of the object is placed.

nX2 Single Number of columns from the left edge of the
worksheet where the right edge of the object is
placed.

nY2 Single Number of rows from the top edge of the
worksheet where the bottom of the object is
placed.

pX Long Variable, passed by reference, that received the
returned left edge position of the object in
twips.

pY Long Variable, passed by reference, that received the
returned top edge position of the object in
twips.

pCX Long Variable, passed by reference, that received the
returned width of the object in twips.

pCY Long Variable, passed by reference, that received the
returned height of the object in twips.

pShown Integer Variable, passed by reference, that received the
returned display status of the object at the given
position. Following are valid values returned to
this variable

Values Description

0 Not shown

1 Shown

2 Partially shown

Remarks

This method does not reference a specific object on a worksheet and has no effect on any objects.

See Also

ObjGetPos method

ObjSetPos method

ObjSendToBack Method

Description

Places the selected objects behind all unselected objects in a view.

Syntax

F1Book1.ObjSendToBack

Remarks

If the selected objects overlap unselected objects in the active worksheet, the selected objects are
displayed behind the unselected objects. If a group of objects are selected, the order of the objects within
the selection is unchanged.

See Also

ObjBringToFront method

ObjSetCell Method

Description

Assigns a worksheet cell to hold the value displayed by the specified check box or list box object.

Syntax

F1Book1.ObjSetCell ID, nHasCell, nRow, nCol

Part Type Description

ID Long Identification number of the object from which a value is placed.

nHasCell Integer Sets the object cell flag. This flag controls what is placed in the cell
identified by nRow and nCol when a selection is made from the check
box or dropdown list box. Following are the valid
F1ControlCellConstants:

Constant Description

F1ControlNoCell Cell value is not changed when selection
is made from dropdown listbox.

F1ControlCellValue Cell value is set to index of selection in
dropdown listbox.

F1ControlCellText Cell value is set to text of selection in
dropdown listbox.

nRow Long Number of the row in which the object value is placed.

nCol Long Number of the column in which the object value is placed.

Remarks

If pHasCell is set to F1ControlCellValue or F1ControlCellText, the value displayed by the specified check
box or list box object is placed in the cell specified by nRow and nCol. If it is set to F1ControlCellNone, no
value is placed and the row and column values are ignored.

See Also

ObjGetCell method

ObjValue property

ObjSetPicture Method

Description

Places a metafile in an existing picture object.

Syntax

F1Book1.ObjSetPicture (ID, hMF, nMapMode, nWndExtentX, nWndExtentY)

Part Type Description

ID Long Identification number of the picture object in which
the metafile specified by hMF is placed.

hMF OLE_HANDLE Handle to a metafile.

nMapMode Integer Indicates how the metafile is mapped in the object.
7 indicates isotropic mode (keep aspect ratio); 8 is
anisotropic mode (stretchable).

nWndExtentX,
nWndExtentY

Long Dimensions of the picture.

Remarks

This method places a metafile picture in a previously created picture object. The previous metafile
contained by the picture object is freed from memory. Picture objects are created with the ObjNewPicture
method.

Formula One manages the memory associated with a metafile once a picture object has been created,
including freeing memory when the object is deleted.

hMF, nMapMode, and nWndExtentX and nWndExtentY usually accompany a metafile and are merely
passed to this method. You should be familiar with Windows metafiles and their structure before using this
method. Isotropic and anisotropic are Windows constants listed as MM_ISOTROPIC and
MM_ANISOTROPIC.

See Also

ObjNewPicture method

ObjSetPos Method

Description

Sets the position and size of an object.

Syntax

F1Book1.ObjSetPos ID, nX1, nY1, nX2, nY2

Part Type Description

ID Long Identification number of the object to
position.

nX1, nY1 Single Coordinates that represent the first
anchor point of the object. nX1 is
measured in columns from the left
edge of the worksheet; nY1 is
measured in rows from the top edge of
the worksheet.

nX2, nY2 Single Coordinates that represent the second
anchor point of the object. nX2 is
measured in columns from the left
edge of the worksheet; nY2 is
measured in rows from the top edge of
the worksheet.

Remarks

When specifying the location of the object, integers place the edge of the object on a row or column
border; fractional numbers place the edge of the object between borders. For example, if nX1 is 1.25, the
left edge of the object is placed one and a quarter columns from the left edge of the worksheet; if nY1 is
3, the top edge of the object is placed exactly three rows from the top of the worksheet.

The first anchor point (identified by nX1 and nY1) can be to the right and below the second anchor point
(identified by nX2 and nY2). When positioning rectangles, ovals, buttons, list boxes, and check boxes, the
order of the anchor points is of no consequence. However, when positioning lines and arcs, the order and
placement of the anchor points affects the angle and direction in which the object is placed. Refer to the
illustration in the description of ObjNew for an example of anchor point placement.

See Also

ObjGetPos method

ObjSetSelection Method

Description

Selects an object in a view.

Syntax

F1Book1.ObjSetSelection ID

Part Type Description

ID Long Identification number of the object to
select.

Remarks

All other items on the active worksheet are unselected before the specified object is selected.

See Also

ObjAddSelection method

ObjGetSelection method

ObjGetSelectionCount method

ObjText Property

Description

Sets or returns the text displayed by a specific button or check box object.

Syntax

F1Book1.ObjText (ID) [= text]

Part Type Description

ID Long Identification number of a button or
check box object.

text String Text displayed by the object.

Remarks

Button text is displayed on the face of the button. Check box text is displayed adjacent to the check box.

ObjValue Property

Description

Sets or returns the value of a check box or list box object.

Syntax

F1Book1.ObjValue (ID) [= pValue]

Part Type Description

ID Long Object identification number.

pValue Integer Object value.

Remarks

For check box objects 0 is unchecked and 1 is checked. For list box objects -1 means no item is
displayed, 0 means the first item is displayed, 1 means the second item is displayed, and so on.

ObjVisible Property

Description

Sets or returns whether an object is visible.

Syntax

F1Book1.ObjVisible (ID) [= boolean]

Part Type Description

ID Long Object identification number.

Remarks

If this property is True, the specified object is displayed.

ODBCConnect Method

Description

Connects the current workbook to an ODBC database. To retrieve data from the database, you must call
ODBCConnect, followed by as many calls to ODBCQuery as needed and then ODBCDisconnect.

Syntax

F1Book1.ODBCConnect pConnect, bShowErrors, pRetCode

Part Type Description

pConnect String A variable, passed by reference, that identifies the ODBC
database to which you want to connect. When you call
ODBCConnect, this string is passed to the ODBC call
SQLDriverConnect. If pConnect is a null string (" ")
SQLDriverConnect displays a dialog box prompting you
to identify the database. After you call ODBCConnect,
the value of pConnect is set to the connect string that was
selected from the dialog box.

bShowErrors Boolean Determines whether ODBC errors are displayed in a
dialog box. If this is true, all error statuses returned by
SQLError () are displayed in an error dialog box. If False,
errors are not displayed.

pRetCode Integer Variable, passed by reference, that receives the
ODBCRETCODE of the most recent ODBC call. This will
be SQL_SUCCESS if ODBCConnect is successful.

Remarks

For more information about SQLDriverConnect, SQLError, and other ODBC information, refer to the
ODBC 2.0 Programmers Reference.

ODBCDisconnect Method

Description

Disconnects the workbook from an ODBC database previously connect with the ODBCConnect method.

Syntax

F1Book1.ODBCDisconnect

ODBCQuery Method

Description

Builds and then runs a query on a ODBC database connected to the current workbook with the
ODBCConnect method.

Syntax

F1Book1.ODBCQuery pQuery, nRow, nCol, bForceShowDlg, pSetColNames, pSetColFormats,
pSetColWidths, pSetMaxRC, pRetCode

Part Type Description

pQuery Sting Variable, passed by reference, that specifies the query to
execute. If pQuery is a null string (" "), or if bForceShowDlg is
True, a dialog box is displayed to help you build your query
and set other query options. The query string is passed to
SQLPrepare and the resulting HSTMT is passed to
SQLExecute. Rows are fetched by calls to SQLFetch. After
executing ODBCQuery, this variable is set to the query string
that was sent to SQLPrepare. You can test this value to
determine the string built in the Query dialog box.

nRow, nCol Long Identifies the row and column coordinates of the cell in which
to start placing query results.

bForceShowDlg Boolean Determines whether the Query dialog box is displayed. If True,
the dialog box is displayed.

pSetColNames Boolean Indicates whether worksheet column headings are replaced by
database field names. If True, field names are displayed
instead of the standard alphabetic column headings. Even
though field names are displayed as the column headings,
formulas must still use the standard cell referencing
conventions (e.g., A1). After this method is executed, you can
test this variable to determine the setting for this flag made in
the Query dialog box.

bSetColFormats Boolean Indicates if formats for date, time, and currency fields are set
automatically when data is placed in the worksheet. If True,
formats for columns containing these fields are set
automatically. If False, you must set the formats for these
columns manually in the Workbook Designer or in code. After
this method is executed, you can test this variable to
determine the setting for this flag made in the Query dialog
box.

pSetColWidths Boolean Indicates if column widths are automatically set to
accommodate the widest data in the column. If True, this
property automatically sets the width of each column to be
wide enough to display the widest data in the column. After
this method is executed, you can test this variable to
determine the setting for this flag made in the Query dialog
box.

bSetMaxRC Boolean Indicates whether the maximum number of worksheet rows
and columns are set to the number of records and fields
returned by the query. After this method is executed, you can
test this variable to determine the setting for this flag made in
the Query dialog box.

pRetCode Integer Variable, passed by reference, that receives the
ODBCRETCODE of the most recent ODBC call. This will be

SQL_SUCCESS if ODBCQuery is successful.

Remarks

Formula One does not clear the worksheet each time you run a query.

For more information about SQLPrepare, SQLFetch, and other ODBC information, refer to the ODBC 2.0
Programmers Reference.

OpenFileDlg Method

Description

Displays the Open File dialog box.

Syntax

F1Book1.OpenFileDlg pTitle, hWndParent, pBuf

Part Type Description

pTitle String Title of the dialog box. Use an empty
string (" ") for default title.

hWndParent OLE_HANDLE Handle to a parent window.

pBuf String Name of the file to open.

Remarks

The Open File dialog box allows you to select a file to open.

See Also

SaveFileDlg method

PaletteEntry Property

Description

Sets or returns a color in the Formula One color palette.

Syntax

F1Book1.PaletteEntry (nEntry) [= colors]

Part Type Description

nEntry Long One-based index of the entry to
change. Formula One presents a color
pallete with 56 color entries.

colors OLE_COLOR Points to an array of COLORREF
values. A COLORREF value is a 32-bit
value used to specify an RGB color.

Remarks

When specifying an explicit RGB color, the COLORREF value has the following hexadecimal form:
0x00bbggrr

The low-order byte contains a value for the relative intensity of red; the second byte contains a value for
green; and the third byte contains a value for blue. The high-order byte must be zero. The maximum
value for a single byte is 255.

Example

The following example shows how to use this property to set the first three entries to red, white and blue:

Private Sub RedWhitBlue_Click()

F1Book1.PaletteEntry(1) = RGB(255, 0, 0) ' Red

F1Book1.PaletteEntry(2) = RGB(255, 255, 255) ' White

F1Book1.PaletteEntry(3) = RGB(0, 0, 255) ' Blue

F1Book1.FormatPatternDlg ' Show palette in color pickers

End Sub

PolyEditMode Property

Description

Sets or returns the mode for interactive polygon editing.

Syntax

F1Book1.PolyEditMode [= mode]

Part Type Description

mode Integer Indicates the polygon editing mode. Following are the valid
F1PolyEditModeConstants:

Constants Description

F1PolyEditModeNormal Normal polygon editing

F1PolyEditModePoints Polygon point editing

Remarks

In normal polygon editing mode (0), only the width and height of polygons can be interactively edited. To
reshape and edit the points on a polygon, polygon point editing mode (1) must be enabled.

See Also

Mode property

PrintArea Property

Description

Sets or returns the current print area.

Syntax

F1Book1.PrintArea [= formula]

Part Type Description

formula String Indicates the print area formula. Each
range is printed starting on a new
page.

Remarks

Set this property to change the "Print_Area" user-defined name to the formula pointed to by formula. This
name defines the worksheet ranges to be printed. This property returns a string containing a formula for
the Print_Area user defined name.

The print area formula can contain one or more ranges (e.g. A1:C3,A11:C13). If "Print_Area" is Null (""),
the selected portion of the active worksheet is printed.

See Also

PrintTitles property

SetPrintAreaFromSelection method

PrintBottomMargin Property

Description

Sets or returns the bottom page margin used during printing.

Syntax

F1Book1.PrintBottomMargin [= margin]

Part Type Description

margin Double Indicates the bottom margin value in
inches. This value can range from 0 to
48 inches.

PrintColHeading Property

Description

Sets or returns whether column headings are printed.

Syntax

F1Book1.PrintColHeading [= boolean]

If this property is True, column headings are enabled and printed at the top of the worksheet.

PrintDevMode Property

Description

Reads and writes the Windows API DEVMODE printer structure.

Syntax

F1Book1.PrintDevMode [= devmode]

Part Type Description

devmode OLE_HANDLE Handle to a DEVMODE structure.

Remarks

The DEVMODE data structure contains information about the device initialization and environment of a
printer. This property returns the current values of the DEVMODE structure, make any necessary
changes, and set PrintDevMode to write out those changes. This property may return NULL if the
DevMode structure in Formula One has not been initalized.

You can also allocate your own DEVMODE structure and then set PrintDevMode. If you allocate your
own structure and pass it to PrintDevMode, Formula One frees it's own DEVMODE structure and keeps
the one you passed in. You should not refer to this DEVMODE after passing it to PrintDevMode.

Important      Never GlobalFree the DEVMODE returned via PrintDevMode.

Following is the DEVMODE structure. For more information about each field in the structure, refer to your
Windows API documentation.

typedef struct _devicemode { // dvmd

 BCHAR dmDeviceName[32];

 WORD dmSpecVersion;

 WORD dmDriverVersion;

 WORD dmSize;

 WORD dmDriverExtra;

 DWORD dmFields;

 short dmOrientation;

 short dmPaperSize;

 short dmPaperLength;

 short dmPaperWidth;

 short dmScale;

 short dmCopies;

 short dmDefaultSource;

 short dmPrintQuality;

 short dmColor;

 short dmDuplex;

 short dmYResolution;

 short dmTTOption;

 short dmCollate;

 BCHAR dmFormName[32];

 DWORD dmLogPixels;

 DWORD dmBitsPerPel;

 DWORD dmPelsWidth;

 DWORD dmPelsHeight;

 DWORD dmDisplayFlags;

 DWORD dmDisplayFrequency;

} DEVMODE;

PrintFooter Property

Description

Sets or returns the current page footer.

Syntax

F1Book1.PrintFooter [= footer]

Part Type Description

footer String List of special codes that describe the
footer printed at the bottom of each
page.

Remarks

The following tables list the special codes the footer text string can contain. By default, footer text is
centered unless &L or &R is specified.

Format Code Description

&L Left-aligns the characters that follow

&C Centers the characters that follow

&R Right-aligns the characters that follow

&A Prints the sheet name.

&D Prints the current date

&T Prints the current time

&F Prints the workbook name

&P Prints the page number

&P+number Prints the page number plus number

&P-number Prints the page number minus number

&& Prints an ampersand

&N Prints the total number of pages in the document

The following font codes must appear before other codes and text or they are ignored. The alignment
codes (e.g., &L, &C, and &R) restart each section; new font codes can be specified after an alignment
code.

Format Code Description

&B Use a bold font

&I Use an italic font

&U Underline the header

&S Strikeout the header

&O Ignored (Mac specific)

&H Ignored (Mac specific)

&"fontname" Use the specified font

&nn Use the specified font size - must be a two digit number

PrintGridLines Property

Description

Sets or returns whether grid lines are printed.

Syntax

F1Book1.PrintGridLines [= boolean]

If this property is True, grid lines are printed.

PrintHCenter Property

Description

Sets or returns whether a worksheet is horizontally centered when printed.

Syntax

F1Book1.PrintHCenter [= boolean]

If this property is True, the worksheet is centered horizontally on the page when printed.

PrintHeader Property

Description

Sets or returns the page header printed at the top of each page.

Syntax

F1Book1.PrintHeader [= header]

Part Type Description

header String List of special codes that describe the
header printed at the top of each page.

Remarks

The following tables list the special codes the header text string can contain. By default, header text is
centered unless &L or &R is specified.

Format Code Description

&L Left-aligns the characters that follow

&C Centers the characters that follow

&R Right-aligns the characters that follow

&A Prints the current sheet name.

&D Prints the current date

&T Prints the current time

&F Prints the workbook name

&P Prints the page number

&P+number Prints the page number plus number

&P-number Prints the page number minus number

&& Prints an ampersand

&N Prints the total number of pages in the document

The following font codes must appear before other codes and text or they are ignored. The alignment
codes (e.g., &L, &C, and &R) restart each section; new font codes can be specified after an alignment
code.

Format Code Description

&B Use a bold font

&I Use an italic font

&U Underline the header

&S Strikeout the header

&O Ignored (Mac specific)

&H Ignored (Mac specific)

&"fontname" Use the specified font

&nn Use the specified font size - must be a two digit number

PrintLandscape Property

Description

Sets or returns whether a workbook is printed with a portrait or landscape orientation.

Syntax

F1Book1.PrintLandscape [= boolean]

Remarks

If this property is True, the workbook is printed with a landscape orientation. If this property is false, the
workbook is printed with a portrait orientation.

PrintLeftMargin Property

Description

Sets or returns the left page margin used during printing.

Syntax

F1Book1.PrintLeftMargin [= margin]

Part Type Description

margin Double Indicates the left margin value in
inches. This value can range from 0 to
48 inches.

PrintLeftToRight Property

Description

Sets or returns the order in which worksheet data is printed.

Syntax

F1Book1.PrintLeftToRight [= boolean]

Remarks

If this property is True, pages in a worksheet are printed left to right before printing top to bottom.

PrintNoColor Property

Description

Sets or returns whether the workbook is printed in color.

Syntax

F1Book1.PrintNoColor [= boolean]

Remarks

Color formats are translated by the printer driver and printed as patterns. This translation sometimes
makes text unreadable. If this property is True, all workbook colors are converted to black and white, and
all patterns are removed. A cleaner output is produced.

PrintRightMargin Property

Description

Sets or returns the right page margin used during printing.

Syntax

F1Book1.PrintRightMargin [= margin]

Part Type Description

margin Double Indicates the right margin value in
inches. Margins can range from 0 to 48
inches.

PrintRowHeading Property

Description

Sets or returns whether row headings are printed.

Syntax

F1Book1.PrintRowHeading [= boolean]

If this property is True, row headings are enabled and printed at the left edge of the worksheet.

PrintTitles Property

Description

Sets or returns print titles to be printed at the top or left of each page.

Syntax

F1Book1.PrintTitles [= formula]

Part Type Description

formula String Formula for the Print_Titles user
defined name. This formula can contain
a single range or multiple ranges (e.g.,
A1:IV2, A1:A16384 prints the first two
rows and the first column on every
page)

Remarks

Print titles are row or column titles that are printed on each page. Row titles are printed at the top of each
new page; column titles are printed on the left of each new page. If the property is set to null (""), no titles
are printed.

Important    When setting print titles, you must specify entire rows and columns.

See Also

SetPrintTitlesFromSelection method

PrintTopMargin Property

Description

Sets or returns the top page margin used during printing.

Syntax

F1Book1.PrintTopMargin [= margin]

Part Type Description

margin Double Indicates the margin in inches. Page
margins can range from 0 to 48 inches.

PrintVCenter Property

Description

Sets or returns whether the worksheet is vertically centered when printed.

Syntax

F1Book1.PrintVCenter [= boolean]

Remarks

If this property is True, the worksheet is centered vertically on the page when printed.

ProtectionDlg Method

Description

Displays the Cell Protection dialog box.

Syntax

F1Book1.ProtectionDlg

Remarks

The Cell Protection dialog box allows you to set the locked attributes of a cell and hidden attributes of a
formula. When a cell is locked, its contents cannot be altered. When a formula is hidden, formula text is
hidden but formula results are still displayed.

After locking cells and hiding formulas, you must enable protection for the workbook before cell locking
and formula hiding is enabled. Protection for a workbook is enabled using the EnableProtection property.
Settings in this dialog box affect all selected sheets.

See Also

EnableProtection property

GetProtection method

SetProtection method

RangeToTwips Method

Description

Determines the offset, width, and height of the specified range in twips.

Syntax

F1Book1.RangeToTwips nRow1, nCol1, nRow2, nCol2, pX, pY, pCX, pCY, pShown

Part Type Description

nRow1, nCol1,
nRow2, nCol2

Long Specify the range for which to find
the offset, width, and height.

pX Long Variable, passed by reference, that
receives the returned horizontal
offset of the range

pY Long Variable, passed by reference, that
receives the returned vertical offset
of the range.

pCX Long Variable, passed by reference, that
receives the returned width of the
range.

pCY Long Variable, passed by reference, that
receives the returned height of the
range.

pShown Integer Variable, passed by reference, that
receives the returned display status
of the range. Following are the list of
valid values returned to this variable:

Value Description

0 Not shown

1 Shown

2 Partially shown

Remarks

The coordinates returned by this method are measured in twips from the upper left corner of the
workbook control, excluding any borders on the workbook control, to the upper left corner of the specified
range. The height and width of the range are also returned in twips.

Use RangeToTwips if you want to place a control or object in a worksheet at a specific range location.

See Also

TwipsToRC method

TopLeftChanged event

Read Method

Description

Reads a worksheet or workbook from disk.

Syntax

F1Book1.Read pPathName, pFileType

Part Type Description

pPathName String Name of the file to read. The name can include drive, path, and file name.

pFileType Integer Variable, passed by reference, that receives the returned type of the file that is
read. This parameter is undefined if Read returns an error. Following is a list of
valid F1FileTypeConstants returned to this variable:

Constants Description

F1FileFormulaOne Formula One format

F1FileExcel4 Excel 4.0 format

F1FileTabbedText Tab-delimited text file

F1FileExcel5 Excel 5.0 format

F1FileFormulaOne3 Formula One v.3 format

F1FileTabbedTextValuesOnly Tab-delimited text file
values only

Remarks

Read initializes a workbook structure and reads a worksheet from the specified file. If there is not a
workbook attached to the view, a new workbook is created.

See Also

ReadFromBlob method

Write method

ReadFromBlob Method

Description

Reads a worksheet or workbook that has been stored in memory in a BLOB variable.

Syntax

F1Book1.ReadFromBlob hBlob, nReservedBytes

Part Type Description

hBlob OLE_HANDLE Reference to a BLOB variable in
memory.

nReservedBytes Integer Size of the BLOB variable. Not
implemented in this version and must
be 0.

Remarks

If a worksheet or workbook was previously saved as a blob in a database, it must be assigned to a blob
type variable before it is passed to ReadFromBlob.

See Also

WriteToBlob method

Windows API

GlobalAlloc

GlobalFree

GlobalLock

GlobalUnlock

Recalc Method

Description

Recalculates the workbook attached to a view.

Syntax

F1Book1.Recalc

Remarks

Recalc recalculates all formulas in the workbook attached to the specified view.

See Also

AutoRecalc property

RemoveColPageBreak Method

Description

Removes a vertical page break adjacent to the left edge of the specified column.

Syntax

F1Book1.RemoveColPageBreak nCol

Part Type Description

nCol Long Column where the page break is
removed.

See Also

AddColPageBreak method

AddPageBreak method

AddRowPageBreak method

NextColPageBreak method

NextRowPageBreak method

RemovePageBreak method

RemoveRowPageBreak method

RemovePageBreak Method

Description

Removes page breaks adjacent to the active cell.

Syntax

F1Book1.RemovePageBreak

Remarks

If a horizontal page break is adjacent to the top edge of the active cell, it is removed. In addition, if a
vertical page break is adjacent to the left edge of the active cell, it is also removed.

See Also

AddColPageBreak method

AddPageBreak method

AddRowPageBreak method

NextColPageBreak method

NextRowPageBreak method

RemoveColPageBreak method

RemoveRowPageBreak method

RemoveRowPageBreak Method

Description

Removes a horizontal page break adjacent to the top edge of the specified row.

Syntax

F1Book1.RemoveRowPageBreak nRow

Part Type Description

nRow Long Row where the page break is removed.

See Also

AddColPageBreak method

AddPageBreak method

AddRowPageBreak method

NextColPageBreak method

NextRowPageBreak method

RemoveColPageBreak method

RemovePageBreak method

Repaint Property

Description

Sets or returns the repaint status for a view.

Syntax

F1Book1.Repaint [= boolean]

Remarks

If this property is True, repainting occurs in the entire window when Windows sends a WM_PAINT
message. No repainting occurs when the flag is False.

The repaint flag is not saved to disk. The default repaint setting for a new view is always True.

Row Property

Description

Determines the active row in the active worksheet. This is a run time only property.

Syntax

F1Book1.Row [= row]

Part Type Description

row Long Row number.

Remarks

The Row property is used along with the Col property to set the active cell in the worksheet. The Row
property is automatically changed if a range is selected using the SelStart... and SelEnd... properties.

You can specify -1 as the row and column number to indicate all rows or all columns. For example, setting
Row to -1 and Col to 1 causes all rows in column 1 to be selected. Setting both Row and Col to -1
selects the entire worksheet.

See Also

Col property

GetActiveCell method

SelEndCol property

SelEndRow property

SelStartCol property

SelStartRow property

SetActiveCell method

RowHeight Property

Description

Sets or returns the height of a single specified row. Setting this property affects all selected sheets

Syntax

F1Book1.RowHeight (nRow) [= height]

Part Type Description

nRow Long Row number.

height Integer Row height value in twips. A twip is
1/1440th of an inch.

See Also

ColWidth property

SetRowHeight method

RowHeightDlg Method

Description

Displays the Row Height dialog box.

Syntax

F1Book1.RowHeightDlg

Remarks

The Row Height dialog box allows you to set the height of the selected rows, specify default row heights,
and specify automatic row height. In addition, you can specify whether the selected rows are shown or
hidden. Settings in this dialog box affect all selected sheets.

See Also

RowHeight property

SetRowHeight method

SetRowHeightAuto method

RowHidden Property

Description

Sets or returns the display status of an individual row.

Syntax

F1Book1.RowHidden (nRow) [= boolean]

Part Type Description

nRow Long Identifies a row by number.

 Remarks

If this property is true, the specified row is not displayed. If this property is False, the row is displayed.

See Also

ColHidden property

RowMode Property

Description

Sets or returns the row mode status for a view.

Syntax

F1Book1.RowMode [= boolean]

Remarks

If this property is True, an entire row is selected when you select a cell. Normal cell selection occurs when
the flag is False.

RowText Property

Description

Sets or returns the name for the specified row. Setting this property affects all selected sheets.

Syntax

F1Book1.RowText (nRow) [= rowText]

Part Type Description

nRow Long Identifies a row by number.

rowText String Row name.

Remarks

Naming a row is useful for labeling rows so they reflect the data in the row (e.g., row 2 might be named
Central Region). The row name is displayed in the row heading and is used for display purposes only.
The row is still referred to by normal cell references in formulas.

Row names can be up to 254 characters long.

See Also

ColText property

TopLeftText property

SaveFileDlg Method

Description

Displays the Save As dialog box.

Syntax

F1Book1.SaveFileDlg pTitle, pBuf, pFileType

Part Type Description

pTitle String Title of the dialog box. Use a null string for the default
title.

pBuf String Variable, passed by reference, that receives the
returned name by which the workbook is saved.

pFileType Integer Variable, passed by reference, that receives the
returned file type selected when the file is saved.
Following are the F1FileTypeConstants:

Constants Description

F1FileFormulaOne Formula One format

F1FileExcel4 Excel 4.0 format

F1FileExcel5 Excel 5.0 format

F1FileFormulaOne3 Formula One v.3
format

Remarks

The Save As dialog box allows you to save and name a file.

See Also

OpenFileDlg method

SaveWindowInfo Method

Description

Saves the window specific information from a view to its workbook.

Syntax

F1Book1.SaveWindowInfo

Remarks

Window specific information from the view must be saved to its workbook if the information is to be saved
the next time the workbook is written to disk.

The following table lists the window information that is saved.

Saved information

AllowArrows RowMode Selection

AllowDelete EnterMovesDown ShowFormulas

AllowFillRange ExtraColor ShowGridLines

AllowInCellEditing FixedCol ShowColHeading

AllowMoveRange FixedCols ShowHScrollBar

AllowSelections FixedRow ShowRowHeading

AllowResize FixedRows ShowSelections

AllowTabs LeftCol ShowVScrollBar

AllowFormulas MaxCol ShowZeroValues

BackColor MaxRow TopRow

See Also

Write method

WriteToBlob method

ScrollToLastRC Property

Description

Sets or returns how scrollbars work.

Syntax

F1Book1.ScrollToLastRC [= boolean]

Remarks

Normally scroll bars can scroll the last filled cell to the top-left edge of the window. If ScrollToLastRC is
set to False it causes scrolling to stop when the last filled row and column reach the bottom-right edge of
the screen. The last row and column can still be set to the top-left edge of the window by setting TopRow
or LeftCol properties to the appropriate value.

Selection Property

Description

Selects the specified range and moves the active cell to the top left cell in the range or returns a string
that represents the row and column coordinates of the current selection.

Syntax

F1Book1.Selection [= range]

Part Type Description

range String Identifies the starting and ending rows
and columns of the selection or a
defined name that represents the
selection.

See Also

AddSelection method

GetSelection method

ObjSetSelection method

SelectionCount property

SetSelection method

SelectionCount Property

Description

Returns the number of selected ranges.

Syntax

F1Book1.SelectionCount [= count]

Part Type Description

count Integer Number of selected ranges in the
active worksheet.

Remarks

You can use this property to determine if only objects are selected. If you know you have a selection, and
SelectionCount equals 0, you know the remaining selections must be objects.

See Also

AddSelection method

Selection property

GetSelection method

ObjGetSelectionCount method

SetSelection method

SelEndCol, SelEndRow, SelStartCol, and SelStartRow Properties

Description

These properties determine the starting column, starting row, ending column, and ending row of a
selected range.

Syntax

F1Book1.Sel...Col [= column]

Part Type Description

column Long Identifies a column by number. Use -1
to specify all columns.

F1Book1.Sel...Row [= row]

Part Type Description

row Long Identifies a row by number. Use -1 to
specify all rows

Remarks

SelEndCol, SelEndRow, SelStartCol, and SelStartRow define the starting and ending rows and
columns when selecting a range. Use these properties to select a range before performing operations
such as copying or deleting data.

If you need to select multiple ranges, you use the AddSelection method or Selection property.

See Also

Col property

GetSelection method

Row property

SelectionCount property

SetSelection method

SetActiveCell Method

Description

Makes the specified cell the active cell.

Syntax

F1Book1.SetActiveCell nRow, nCol

Part Type Description

nRow Long Indicates the number of the row that
contains the cell you want to make
active.

nCol Long Indicates the number of the column
that contains the cell you want to make
active.

Remarks

The active cell is the cell on which the cursor is currently located. It is the cell in which data is entered or
edited if the user starts typing.

Cell A1 is the active cell in this worksheet. The active cell is highlighted by a heavy border.
If you use SetActiveCell to change the active cell to another cell in the same selection, only the active
cell changes, the selection is not lost.

See Also

Col property

Row property

Example

The following example moves the active cell down one row:

Dim theRow As Long

Dim theCol As Long

F1Book1.GetActiveCell theRrow, theCol

F1Book1.SetActiveCell theRow+1, theCol

SetAlignment Method

Description

Changes the data alignment information for the currently selected cells in all selected sheets.

Syntax

F1Book1.SetAlignment HAlign, bWordWrap, VAlign, nOrientation

Part Type Description

HAlign Integer Indicates the horizontal alignment. Following are the valid
F1HAlighConstants:

Constant Description

F1HAlignGeneral General

F1HAlignLeft Left

F1HAlignCenter Center

F1HAlignRight Right

F1HAlignFill Fill

F1HAlignJustify Justify

F1HAlignCenterAcrossCells Center across
cells

bWordWrap Boolean Indicates the value of the word wrap flag. If the flag is true, text
wraps when it exceeds the cell width.

VAlign Integer Indicates the vertical alignment. Following are the valid
F1VAlignConstants:

Constant Description

F1VAlignTop Top

F1VAlignCenter Center

F1VAlignBottom Bottom

nOrientation Integer Indicates the orientation. Following are the valid settings.
Because this feature is not implemented in this version, this
argument must always be 0.

Value Description

0 Horizontal

1 Vertical

2 Upward

3 Downward

See Also

FormatAlignmentDlg method

GetAlignment method

Example

The following example returns the current alignment settings for the active cell, changes the horizontal
alignment and writes the new settings for the current selection:

Dim hAlign as Integer

Dim wordWrap as Boolean

Dim vAlign as Integer

Dim orient as Integer

F1Book1.GetAlignment hAlign, wordWrap, vAlign, orient

F1Book1.SetAlignment F1HAlignCenter, wordWrap, vAlign, orient

SetBorder Method

Description

Sets the border styles used to display cells in all selected sheets.

Syntax

F1Book1.SetBorder nOutline, nLeft, nRight, nTop, nBottom, nShade, crOutline, crLeft, crRight, crTop,
crBottom

Part Type Description

nOutline Integer Indicates the outline border for the
selected range. This border type is
assigned to the top edge of cells in
the top row, the left edge of cells in
the left column, the right edge of
cells in the right column, and the
bottom edge of cells in the bottom
row.

nLeft, nRight,
nTop, nBottom

Integer Indicates the border type for a side
of the active cell. Following are the
valid values for these arguments:

Setting Description

-1 No Change

0 No Border

1 Thin Line

2 Medium Line

3 Dashed Line

4 Dotted Line

5 Thick Line

6 Double Line

7 Hairline

nShade Integer Indicates the border shade setting;
the value corresponds to the built-in
shades (not implemented in this
version).

crOutline, crLeft,
crRight, crTop,
crBottom

OLE_COLOR Indicates the values that specify the
colors of the cell border sides or
outline. Each is an RGB color that
has been translated into one of the
56 colors in the color palette.

Remarks

Use the -1 option to indicate that a border or the outline should be unchanged. This option is most
commonly used for the outline setting when specifying a top, left, right, or bottom border where there is
not an outline border. The -1 option can also be used to format a range when you only want to change 1
attribute and leave the rest unchanged.

For example, if you want to apply a top border to a selected range, you would specify the border type,
such as 5 for a thick border. Then for the outline setting, you would use -1 to indicate no change in the
outline border. If you use 0 (no line) for the outline setting, the outline setting overrides the top border

setting you specified, and the top border is not displayed.

See Also

FormatBorderDlg method

GetBorder method

Example

The following example returns the border settings for the current selection and changes the color of the
border lines. Notice the -1 option is used to prevent changes to the outline of the selection.

Dim lBorder As Integer

Dim rBorder As Integer

Dim tBorder As Integer

Dim bBorder As Integer

Dim shade As Integer

Dim lColor As Long

Dim rColor As Long

Dim tColor As Long

Dim bColor As Long

Dim newColor As Long

F1Book1.GetBorder lBorder, rBorder, tBorder, bBorder, shade, lColor, rColor, tColor, bColor

newcolor= RGB(255,0,255)

F1Book1.SetBorder -1, lBorder, rBorder, tBorder, bBorder, shade, -1, newColor, newColor,

newColor, newColor

SetColHidden Method

Description

Sets or the display status of a range of columns.

Syntax

F1Book1.SetColHidden nCol1, nCol2, bColHidden

Part Type Description

nCol1 Long Identifies the first column in a range.

nCol2 Long Identifies the last column in a range.

bColHidden Boolean Identifies the status of the column
hidden flag for all columns in the
range identified by nCol1 an nCol2. If
the column hidden flag is true, the
specified columns are not displayed.
If the flag is False, the columns are
displayed.

Remarks

Use the ColHidden property to return or change the display status of a single column.

See Also

SetRowHidden method

SetColWidth Method

Description

Changes the width of one or more columns in all selected sheets.

Syntax

F1Book1.SetColWidth nCol1, nCol2, nWidth, bDefColWidth

Part Type Description

nCol1 Long Identifies the first column in block of
columns whose width you want to
change.

nCol2 Long Identifies the last column in a block of
columns whose width you want to
change.

nWidth Integer The column width value.

bDefColWidth Boolean Specifies whether the default column
width is changed. True specifies that
the default width is set to nWidth, and
the specified columns are set to the
default width. In addition, any columns
that use the default width are updated
with the new default. False specifies
that the default width is unchanged.

Remarks

Column width is specified in units equal to 1/256th of an average character's width in the default font or
twips, depending on the setting of the ColWidthUnits property. If you want to set the column width in
twips with out changing the units in which widths are stored and displayed, use the ColWidthTwips
property or the SetColWidthTwips method.

Use the ColWidth property to set or return the width of a single column.

See Also

ColWidthDlg method

RowHeight property

SetColWidthAuto method

SetRowHeight method

SetColWidthAuto Method

Description

Sets the widths of the specified columns to automatically adjust to the largest column entry, including the
header.

Syntax

F1Book1.SetColWidthAuto nRow1, nCol1, nRow2, nCol2, bSetDefaults

Part Type Description

nRow1,
nCol1,
nRow2,
nCol2

Long Specifies the range containing the
columns for which to set the width.

bSetDefaults Boolean If True, columns greater than or lest
than the default column width that don’t
need to be are set to the default width.
If text is wider than column, those
columns are resized.

Remarks

SetColWidthAuto specifies that the widths of the columns in the specified range are automatically set to
display the largest entry in the columns. The columns are set at least as wide as the default column width.
If -1 is specified for nRow1, or all rows are specified, the columns are made wide enough for the column
headers as well as the specified cells.

See Also

ColWidth property

ColWidthDlg method

SetColWidth method

SetColWidthTwips Method

Description

Changes the width of one or more columns to the specified number of twips.

Syntax

F1Book1.SetColWidthTwips nCol1, nCol2, nWidth, bDefColWidth

Part Type Description

nCol1 Long Identifies the first column in block of
columns whose width you want to
change.

nCol2 Long Identifies the last column in a block of
columns whose width you want to
change.

nWidth Long Indicates the column width value in
twips.

bDefColWidth Boolean Specifies whether the default column
width is changed. True specifies that
the default width is set to nWidth, and
the specified columns are set to the
default width. In addition, any columns
that use the default width are updated
with the new default. False specifies
that the default width is unchanged.

See Also

ColWidth property

ColWidthDlg method

RowHeight property

SetColWidth method

SetColWidthAuto method

SetRowHeight method

SetDefaultFont Method

Description

Sets the default font and font size for the specified workbook.

Syntax

F1Book1.SetDefaultFont pFont, nSize

Part Type Description

pFont String Indicates the default font name.

nSize Integer Indicates the default font size in twips.
When setting the size, you can specify
points or twips. When specifying size in
points, use a positive number; use a
negative number when specifying
twips. When specifying twips,
SetDefaultFont uses the absolute
value of the number you provide for
size.

Remarks

In addition to setting the font and font size used to display data in a workbook, the default font can affect
the widths of worksheet columns. Column widths are set in units equal to 1/256th of the character 0 (zero)
in the default font, or twips, depending on the setting of ColWidthUnits.

Because the basic unit for measuring columns can change when you change the default font, you may
need to adjust the widths of columns – including the row header column – to achieve the desired
appearance for your workbook.

Note      By default, Formula One uses Arial as the default font. Be sure you always use a TrueType font
as the default font in order for print and display scaling to work correctly.

See Also

ColWidthTwips property

FormatDefaultFontDlg method

SetColWidth method

SetFont Method

Description

Sets font information for all selected cells in all selected sheets.

Syntax

F1Book1.SetFont pFont, nSize, bBold, bItalic, bUnderline, bStrikeout, crColor, bOutline, bShadow

Part Type Description

pFont String Indicates the font name.

nSize Integer You can specify the font size in points or twips, but the font
size is always returned in twips. When specifying nSize in
points, use a positive number; use a negative number when
specifying twips. When you specify twips, this method uses
the absolute value of the number you provide for nSize.

bBold, bItalic,
bUnderline,
bStrikeout

Boolean Indicates whether these attributes are turned on for the font.
True means the font has the attribute; False means the font
does not have the attribute

crColor OLE_COLOR Indicates the color used to display the font.

bOutline,
bShadow

Boolean Indicates whether these attributes are turned on for the font.
These attributes are not supported in this version of Formula
One, so this argument must be set to 0.

See Also

FormatFontDlg method

GetFont method

SetHdrSelection Method

Description

Sets whether the row and column headings are selected.

Syntax

F1Book1.SetHdrSelection bTopLeftHdr, bRowHdr, bColHdr

Part Type Description

bTopLeftHdr Boolean Sets the value of the top left header
flag. If True, the cell at the
intersection of the row and column
headings is selected. If False, the
cell is not selected.

bRowHdr Boolean Sets the value of the row header
selection flag. If True, the row
headings are selected. If False, the
row headings are not selected.

bColHdr Boolean Sets the value of the column header
selection flag. If True, the column
headings are selected. If False, the
column headings are not selected.

See Also

GetHdrSelection method

SetIteration Method

Description

Sets or returns iteration information.

Syntax

F1Book1.SetIteration bIteration, nMaxIterations, nMaxChange

Part Type Description

bIteration Boolean Indicates the state of the iteration flag.
It True, iteration is enabled. If False,
iteration is disabled.

nMaxIterations Integer Indicates the maximum number of
iterations.

nMaxChange Double Indicates the maximum change value.

Remarks

Iteration can be used to solve circular references.      The program calculates until it iterates the number of
times specified by nMaxIterations or until all cells change by less than the amount specified in
nMaxChange.

See Also

GetIteration method

SetLineStyle Method

Description

Returns the weight, color, and style for the selected line object or the line forming the border around the
selected object.

Syntax

F1Book1.SetLineStyle nStyle, crColor, nWeight

Part Type Description

nStyle Integer Indicates the line style. Following are valid
values for this argument:

Values Description

0 Solid

1 Dashed

2 Ditted

3 Dash-ditted

4 Dash-dit-ditted

5 None

crColor OLE_COLOR Indicates the line color.

nWeight Integer Indicates the line weight. Following are the valid
values returned to this variable:

Values Line weight

0 1/2 point (displayed as 1 point
rule on low resolution monitors)

1 1 point

2 2 points

3 3 points

Remarks

Solid lines can assume any of the line weights; styled lines appear as solid lines when set larger than 1/2
point.

See Also

LineStyleDlg method

SetPattern Method

Description

Sets the pattern for all selected cells and objects in all selected sheets.

Syntax

F1Book1.SetPattern nPattern, crFG, crBG

Part Type Description

nPattern Integer Indicates the pattern number used to
display the cells or objects. The
pattern number can range from 0
(no pattern) to 18 and represents
one of the 18 patterns.

crFG,
crBG

OLE_COLOR Indicate the foreground and
background colors for the pattern.

See Also

FormatPatternDlg method

GetPattern method

SetPrintAreaFromSelection Method

Description

Sets the print range to the currently selected ranges.

Syntax

F1Book1.SetPrintAreaFromSelection

See Also

PrintArea property

SetPrintScale Method

Description

Sets the current print scale settings for the active worksheet.

Syntax

F1Book1.SetPrintScale nScale, bFitToPage, nVPages, nHPages

Part Type Description

nScale Integer Indicates the scale factor. Scale
factor can range from 10 to 400.

bFitToPage Boolean Sets the fit to page flag. If the flag is
False, the scale percentage returned
in scale is used to print the
workbook. If the flag is True, the
workbook is printed on the number of
vertical and horizontal pages
returned by vPages and hPages.

nVPages Long Sets the number of vertical pages to
which the print job it fit.

nHPages Long Sets the number of horizontal pages
to which the print job is fit.

Remarks

Each print range is printed starting on a new page. If bFitToPage is true and multiple ranges are specified
the scale is reduced until the largest of the print ranges fits within the specified number of pages.

To print a worksheet at the largest scale possible, set nScale to 400 when bFitToPage is True. Then,
specify the number of pages on which you want the worksheet printed.

See Also

GetPrintScale method

PrintArea property

SetPrintTitlesFromSelection Method

Description

Specifies the current selection as print titles to be printed at the top or left of each page.

Syntax

F1Book1.SetPrintTitlesFromSelection

Remarks

SetPrintTitlesFromSelection sets the "Print_Titles" user-defined name to a formula referring to the
current selection. You cannot select partial rows or columns to be used as print titles.

Print titles are row or column titles that are printed on each page. Row titles are printed at the top of each
page; column titles are printed on the left of each page. The name defines the fixed columns and rows
that are printed. If set to null (""), no titles are printed.

See Also

PrintTitles property

SetProtection Method

Description

Sets the protection status of all selected cells in all selected sheets.

Syntax

F1Book1.SetProtection bLocked, bHidden

Part Type Description

bLocked Boolean Sets the locked cell flag. If the
locked cell flag is True, the active
cell is locked.

bHidden Boolean Sets the hide formulas flag. If the
hide formulas flag is True, the
formulas are hidden (formula results
are not hidden).

Remarks

After locking cells and hiding formulas, you must enable protection for the workbook before cell locking
and formula hiding is enabled. Protection for a workbook is enabled using the EnableProtection property.

See Also

GetProtection method

ProtectionDlg method

SetRowHeight Method

Description

Sets the height for the specified range of rows in all selected sheets.

Syntax

F1Book1.SetRowHeight nRow1, nRow2, nHeight, bDefRowHeight

Part Type Description

nRow1, nRow2 Long Indicate the first and last rows in a
range of rows.

nHeight Integer Indicates the row height value in twips.
A twip is 1/1440th of an inch.

bDefRowHeight Boolean Specifies whether the default row
height is changed. True specifies that
the default height is set to nHeight, and
the specified rows are set to the default
height. In addition, any rows that use
the default height are updated with the
new default. False specifies that the
default height is unchanged.

See Also

ColWidth property

RowHeight property

SetRowHeightAuto Method

Description

Sets the height of the specified rows automatically.

Syntax

F1Book1.SetRowHeightAuto nRow1, nCol1, nRow2, nCol2, bSetDefaults

Part Type Description

nRow1,
nCol1,
nRow2,
nCol2

Long Coordinates for the range containing
the rows for which to set the height.

bSetDefaults Boolean Determines when the specified rows
are resized. If True, all specified rows
are adjusted automatically. If False,
only rows in the specified row range
that need to be larger than their current
size are adjusted.

Remarks

SetRowHeightAuto specifies that the heights of the rows in the specified range are automatically set to
display the tallest entry in the specified rows. The rows are set at least as tall as the default row height.

See Also

RowHeight property

RowHeightDlg method

SetRowHeight method

SetRowHidden Method

Description

Changes the display status of one or more rows.

Syntax

F1Book1.SetRowHidden nRow1, nRow2, bRowHidden

Part Type Description

nRow1 Long Identifies the first row in a range.

nRow2 Long Identifies the last row in a range.

bRowHidden Boolean Sets the status of the row hidden flag
for all rows in the range identified by
nRow1 and nRow2. If the row hidden
flag is true, the specified rows are not
displayed. If the flag is False, the
rows are displayed.

SetSelection Method

Description

Selects the specified range and moves the active cell to the top left cell in the range.

Syntax

F1Book1.SetSelection nRow1, nCol1, nRow2, nCol2

Part Type Description

nRow1, nCol1,
nRow2, nCol2

Long Identifies the row and column coordinates you want to
select.

See Also

GetSelection method

ObjSetSelection method

SelectionCount property

SetTabbedText Method

Description

Places a block of tab-delimited text in a workbook.

Syntax

F1Book1.SetTabbedText nStartRow, nStartCol, pRows, pCols, bValuesOnly, pText

Part Type Description

nStartRow, nStartCol Long Identifies the starting row and column
where the text block is placed.

pRows, pCols Long Variables, passed by reference, that
receive the returned number of rows
and columns contained in the text
block.

bValuesOnly Boolean Determines if the text is placed as
unformatted text (True) or as
formatted text (False).

pText String Identifies the tab-delimited block of
text. .

See Also

Clip property

ClipValues property

GetTabbedText method

Text property

TextRC property

Text property

SetValidationRule Method

Description

Sets the validation rule for the currently selected range of cells.

Syntax

F1Book1.SetValidationRule pRule, pText

Part Type Description

pRule String Formula used to test the entered
value.

pText String Text to display in cell if validation
fails.

Remarks

Validation rules can be used to validate data entered in a cell or a range of cells. A validation rule consists
of a formula to test, and text to display if the validation fails. If the formula returns True, the value is
entered. If the formula returns a text string, the string is displayed and the value is not entered. If the
formula returns False, the value is not entered and the validation text is displayed.

You can use relative references in validation rules. These references are considered to be relative to the
active cell. This allows a validation rule to be properly applied to an entire range.

See Also

GetValidationRule method

ValidationFailed event

ValidationRuleDlg method

Sheet Property

Description

Sets or returns the active worksheet.

Syntax

F1Book1.Sheet [= sheet]

Part Type Description

sheet Long Index number that identifies an existing
worksheet within the workbook
attached to the view. Worksheets are
indexed from left to right beginning with
1. Do not confuse the index with the
sheet name that appears on the sheet
tab.

Remarks

Set Sheet to make a specific worksheet current. This property returns the index number of the currently
active worksheet.

See Also

NumSheets property

SheetName property

Example

The following example resets sheet names after inserting new sheets:

Dim i As Integer

For i = 1 to F1Book1.NumSheets

F1Book1.SheetName (i) = "Sheet"& i

Next i

SheetName Property

Description

Assigns a name to a worksheet or returns the current name of the specified worksheet.

Syntax

F1Book1.SheetName (nSheet) [= sheetName]

Part Type Description

nSheet Long Index number that identifies an existing
worksheet within the workbook
attached to the view. Worksheets are
indexed from left to right beginning with
1. Do not confuse the index with the
sheet name that appears on the sheet
tab.

sheetName String Name associated with nSheet.

Remarks

Set SheetName to give the specified worksheet a name, or change its existing name. This property
returns the name of the specified worksheet.

When you change a sheet name, formulas that reference the worksheet are updated to reference the new
sheet name.

See Also

NumSheets property

Sheet property

SheetSelected Property

Description

Sets or returns the selection status of a worksheet.

Syntax

F1Book1.SheetSelected (nSheet) [= boolean]

Part Type Description

nSheet Long Index number that identifies an existing worksheet within the
workbook attached to the view. Workheets are indexed from
left to right beginning with 1. Do not confuse the index with the
sheet name that appears on the sheet tab.

Remarks

Set SheetSelected to True to select a worksheet or False to deselect the worksheet.

See Also

NumSheets property

Sheet property

ShowActiveCell Method

Description

Positions the view to show the active cell if it is not currently displayed in the window.

Syntax

F1Book1.ShowActiveCell

Remarks

If the active cell is not displayed in the view window the active worksheet is scrolled until the active cell
becomes visible.

See Also

GetActiveCell method

Row property

Col property

SetActiveCell method

ShowColHeading Property

Description

Sets or returns whether column headings are displayed.

Syntax

F1Book1.ShowColHeading [= boolean]

Remarks

If this property is True, column headings are displayed.

See Also

PrintColHeading property

ShowEditBar Property

Description

Sets or returns whether the edit bar is displayed.

Syntax

F1Book1.ShowEditBar [= boolean]

Remarks

If this property is True, the edit bar is displayed with the workbook.

Note      The edit bar does not appear until the container makes it UI active (provides a window for it.) For
example, scroll bars do not appear in Visual Basic design mode, but they do in edit mode and run mode.

See Also

ShowEditBarCellRef property

ShowEditBarCellRef Property

Description

Sets or returns whether the reference of the active cell appears with the edit bar.

Syntax

F1Book1.ShowEditBarCellRef [= boolean]

Remarks

If this property is True, and the ShowEditBar property is True, the cell reference of the active cell in the
active worksheet is displayed with the edit bar. If ShowEditBar is False, ShowEditBarCellRef has no
effect.

ShowFormulas Property

Description

Sets or returns whether formulas are displayed in place of cell values.

Syntax

F1Book1.ShowFormulas [= boolean]

If this property is True, formula text is displayed in cells instead of the values formulas produce. In order
to accomplish this, column widths are shown at twice their actual size.

ShowGridLines Property

Description

Sets or returns whether grid lines are displayed.

Syntax

F1Book1.ShowGridLines [= boolean]

Remarks

If this property is True, grid lines are displayed.

ShowHScrollBar Property

Description

Sets or returns how the horizontal scroll bar is displayed.

Syntax

F1Book1.ShowHScrollBar [= setting]

Part Type Description

setting Index Controls the appearance and behavior of horizontal scroll
bars. Following are the valid F1ShowOffOnAutoConstants:

Constant Description

F1Off The horizontal scroll bar is hidden.

F1On The horizontal scroll bar is displayed.

F1Automatic The horizontal scroll bar is displayed if
the workbook is wider than the window
and the workbook is active.

Remarks

The scroll bars do not appear on the control until the container makes them UI active (provides a window
for them.) For example, scroll bars do not appear in Visual Basic design mode, but they do in edit mode
and run mode.

See Also

ShowVScrollBar property

ShowRowHeading Property

Description

Sets or returns whether row headings are displayed.

Syntax

F1Book1.ShowRowHeading [= boolean]

Remarks

If the flag is True, row headings are displayed.

See Also

PrintRowHeading property

ShowSelections Property

Description

Sets or returns whether selections are displayed.

Syntax

F1Book1.ShowSelections [= setting]

Part Type Description

setting Index Controls whether selections are displayed on the
workbook. Following are the valid
F1ShowOffOnAutoConstants:

Constant Description

F1Off Do not display selections, and user
cannot interactively make selections.

F1On Display all selections at all times

F1Auto Display selections in this control only
when the control is active.

See Also

AllowSelections property

ShowTabs Property

Description

Sets or returns the display status and position of the sheet name tabs on a workbook.

Syntax

F1Book1.ShowTabs [= setting]

Part Type Description

setting Integer Controls the display of the sheet name tabs. Following
are the valid F1ShowTabsConstants

Constant Description

F1TabsOff Tabs are not displayed

F1TabsBottom Tabs are displayed along the
bottom of the workbook.

F1TabsTop Tabs are displayed along the
top of the workbook.

ShowTypeMarkers Property

Description

Sets or returns whether frames are displayed around cells to identify the cell types.

Syntax

F1Book1.ShowTypeMarkers [= boolean]

Remarks

If this property is True, the following frame types are used to identify different types of cells:

Cell Type Frame Marker

Empty cell None

Blank formatted cell Blue frame

Value cell (holds a number or text) Green frame

Formula cell Red frame

By default, type markers are not displayed.

ShowVScrollBar Property

Description

Sets or returns how the vertical scroll bar is displayed.

Syntax

F1Book1.ShowVScrollBar [= setting]

Part Type Description

setting Index Controls the appearance and behavior of vertical scroll bars.
Following are the valid F1ShowOffOnAutoConstants:

Constant Description

F1Off The vertical scroll bar is hidden.

F1On The vertical scroll bar is displayed.

F1Automatic The vertical scroll bar is displayed if the
workbook is taller than the window and the
workbook is active.

Remarks

The scroll bars do not appear on the control until the container makes them UI active (provides a window
for them.) For example, scroll bars do not appear in Visual Basic design mode, but they do in edit mode
and run mode.

See Also

ShowHScrollBar property

ShowZeroValues Property

Description

Set or returns whether zero value cells are displayed.

Syntax

F1Book1.ShowZeroValues [= boolean]

Remarks

If this property is True, cells with zero values are displayed. If False, zero value cells are displayed as
blanks.

Sort Method

Description

Specifies a range of data to be sorted and the keys by which to sort the data.

Syntax

F1Book1.Sort nR1 nC1 nR2 nC2 bSortByRow    Keys

Part Type Description

nR1, nC1,
nR2, nC2

Long Coordinates of the range of data to be sorted.

bSortByRow Boolean Specifies how data is sorted. If True, data is sorted by
rows; if False, data is sorted by columns.

Keys Variant Identifies the key or keys to use to sort the data. This
argument can be a single integer or an array of integers.

Remarks

If the data is sorted by rows, each row of data in the specified range is considered a record and sorted
together. If data is sorted by columns, each column in the specified range is considered a record.

When defining sort keys, specify the number of the row or column in the selected range that is to serve as
a key. Use a positive number to define an ascending key; use a negative number to define a descending
key.

See Also

Sort3 method

SortDlg method

Sort3 Method

Description

Specifies a range of data to be sorted and as many as three keys by which to sort the data.

Syntax

F1Book1.Sort3 nRow1, nCol1, nRow2, nCol2, bSortByRows, nKey1, nKey2, nKey3

Part Type Description

nRow1,
nCol1,
nRow2,
nCol2

Long Specify the range of data to be sorted.

bSortByRows Boolean Specifies how data is sorted. If True,
data is sorted by rows; if False, data is
sorted by columns.

nKey1,
nKey2,
nKey3

Long Specify the sort keys. If the data is
sorted by rows, columns are specified
as sort keys; rows are specified as sort
keys if the data is sorted by columns.
nKey1 is the primary key, nKey2 is the
secondary key, and nKey3 is the last
sort key.

Remarks

If the data is sorted by rows, each row of data in the specified range is considered a record and sorted
together. If data is sorted by columns, each column in the specified range is considered a record.

When defining sort keys, specify the number of the row or column in the selected range that is to serve as
a key. Use a positive number to define an ascending key; use a negative number to define a descending
key.

For example, to specify the second column in the selected range as a primary descending key, enter -2
for nKey1.

To sort on one key, nKey2 must be zero. To sort on two keys, nKey3 must be zero.

See Also

Sort method

SortDlg method

SortDlg Method

Description

Displays the Sort dialog box.

Syntax

F1Book1.SortDlg

Remarks

The Sort dialog box allows you to sort the data in the currently selected range. The dialog box allows you
to specify sort keys, whether those sort keys are ascending or descending, and whether data is sorted by
rows or columns.

See Also

Sort method

Sort3 method

SS Method

Description

Returns the handle to the workbook associated with the current view control.

Syntax

handle = F1Book1.SS

Part Type Description

handle Long Variable that receives the returned
workbook handle.

SSUpdate Method

Description

Updates all workbooks.

Syntax

F1Book1.SSUpdate

Remarks

SSUpdate updates everything that might be delayed. This includes recalculating any workbooks with the
AutoRecalc property set to True, updating the scroll bar position, and firing a Modified event if needed.
An update happens automatically when the system is idle. You should not normally need to call this
method.

SSVersion Method

Description

Returns the version number of the Formula One control.

Syntax

version = F1Book1.SSVersion

Part Type Description

version Integer Variable that receives the returned
version number. The high byte is
the major release number and the
low byte is the minor number.

StartEdit Method

Description

Begins edit mode for the active cell.

Syntax

F1Book1.StartEdit bClear, bInCellEditFocus, bArrowsExitEditMode

Part Type Description

bClear Boolean Sets the clear edit bar flag. If True, the
edit bar is cleared as edit mode
commences.

bInCellEditFocus Boolean Sets the in cell edit flag. If True, editing
focus is given to in-cell editing; if False,
editing focus is given to the edit bar.

bArrowsExitEditMode Boolean Sets the arrows exit edit mode flag. If
True, edit mode is exited if you press
an arrow key on the keyboard.

Remarks

StartEdit starts edit mode for the active cell and allows you to specify how the cell is edited.

See Also

CancelEdit method

EndEdit method

SwapTables Method

Description

Exchanges the workbooks attached to two views.

Syntax

F1Book1.SwapTables hSS2

Part Type Description

hSS2 Long Handle to a view whose workbook you
want to swap with the current view.

Remarks

When the workbooks are exchanged, the view information is not swapped - only the workbooks are
swapped. The following properties are not swapped when SwapTables is called: Tablename, all Do
properties, and FileName. If you want to swap both workbooks and view information between two views,
then you must swap these properties progammatically.

See Also

Attach method

AttachToSS method

TableName Property

Description

Sets or returns the name assigned to the workbook associated with the current view control.

Syntax

F1Book1.TableName [= name]

Part Type Description

name String Worksheet name.

Remarks

A number of methods, such as Attach, reference a workbook by its name instead of its handle. Set this
property to change the workbook’s name, and get the value of this property to determine the workbook’s
current name.

This is the name used to refer to the workbook in external references. For example, if you set TableName
to MySheet, you can refer to Sheet1!A1 in that workbook by entering the formula [MySheet]Sheet1!A1 in
another workbook.

TableName and Title are the same thing. Changing one property changes the other.

Text Property

Description

Enters text in the active cell of all selected sheets or returns the text value of the active cell in the active
worksheet.

Syntax

F1Book1.Text [= text]

Part Type Description

text String Text value.

Remarks

Set Text to place text into the active cell. If the active cell contains a formula, the formula is deleted when
the text is placed in the cell.

Text returns the current text value of the active cell. If the cell contains a formula, the variable contains
the result of the formula.

See Also

Entry property

Formula property

Number property

TextRC property

TextRC Property

Description

Enters text in the specified cell of all selected sheets or returns the text value of the specified cell.

Syntax

F1Book1.TextRC (nRow, nCol) [= text]

Part Type Description

nRow,
nCol

Long Row and column numbers of the cell
that identify the specific cell.

text String Text value.

Remarks

Set TextRC to place text into the active cell. If the active cell contains a formula, the formula is deleted
when the text is placed in the cell.

TextRC returns the current text value of the active cell. If the cell contains a formula, the variable contains
the result of the formula.

See Also

EntryRC property

FormulaRC property

NumberRC property

Text property

Title Property

Description

Sets or returns the title of the workbook.

Syntax

F1Book1.Title [= title]

Part Type Description

title String Title text. A title can be of any length.

Remarks

The title of a workbook can be used in external references to access multiple workbooks.

This is the name used to refer to the workbook in external references. For example, if you set Title to
MySheet, you can refer to Sheet1!A1 in that workbook by entering the formula [MySheet]Sheet1!A1 in
another workbook.

TableName and Title are the same thing. Changing one property changes the other.

See Also

Attach method

TopLeftText Property

Description

Sets or returns the text displayed at the intersection of the row and column headings in the top left corner.
Setting this property affects all selected sheets.

Syntax

F1Book1.TopLeftText [= text]

Part Type Description

text String Text displayed in the row and column
heading intersection.

Remarks

The text placed in the top left corner of the spreadsheet is used for display purposes only. This text can
be up to 254 characters long.

See Also

ColText property

RowText property

TopRow Property

Description

Sets or returns the top row displayed in the active worksheet.

Syntax

F1Book1.TopRow[= row]

Part Type Description

row Long Number of first row displayed in the
view.

Remarks

Set TopRow to change the first row displayed in the view. TopRow returns the number of the first row
currently displayed in the view.

See Also

LeftCol property

TransactCommit Method

Description

Commits changes made during a transaction.

Syntax

F1Book1.TransactCommit

Remarks

Transactions allow the performance of multiple operations with the ability to undo changes if all
operations do not succeed. Every operation between the start of a transaction and the end of a
transaction can be undone by calling TransactRollback. If all operations succeed, TransactCommit should
be called to make the changes permanent and release resources associated with the transaction.

Every TransactStart method call must have a matching TransactCommit or TransactRollback method
call.

TransactRollback Method

Description

Undoes all changes made to a table since the last TransactStart method was called.

Syntax

F1Book1.TransactRollback

Remarks

Transactions allow the performance of multiple operations with the ability to undo changes if all
operations do not succeed. Every operation between the start of a transaction and the end of a
transaction can be undone by calling TransactRollback. If all operations succeed, TransactCommit
method should be called to make the changes permanent and release resources associated with the
transaction.

Every TransactStart method call must have a matching TransactCommit or TransactRollback call.

TransactStart Method

Description

Starts a transaction.

Syntax

F1Book1.TransactStart

Remarks

Transactions allow the performance of multiple operations with the ability to undo changes if all
operations do not succeed. Every operation between the start of a transaction and the end of a
transaction can be undone by calling TransactRollback method . If all operations succeed,
TransactCommit method should be called to make the changes permanent and release resources
associated with the transaction.

Every TransactStart call must have a matching TransactCommit or TransactRollback call.

Note      TransactStart makes a copy of the entire workbook and should probably not be used on very
large workbooks.

TwipsToRC Method

Description

Converts a point in a worksheet, as specified by a set of coordinates, to the corresponding row and
column at which the point is located.

Syntax

F1Book1.TwipsToRC x, y, pRow, pCol

Part Type Description

x Long Horizontal coordinate of the point to
convert.

y Long Vertical coordinate of the point to
convert.

pRow Long Variable, passed by reference, that
receives the returned row number.

pCol Long Variable, passed by reference, that
receives the returned column
reference.

Remarks

The coordinates specified by this method are measured in twips from the upper left corner of the
worksheet control. TwipsToRC can determine the row and column that corresponds to a point returned
by the DragDrop and DragOver events.

pRow and pCol return 0 if the referenced point is located in a row or column heading.

See Also

RangeToTwips method

Type Property

Description

Returns the cell type of the active cell.

Syntax

[pType =] F1Book1.Type

Part Type Description

pType Integer Variable, passed by reference, that
receives the returned cell type. Following
are the valid types that can be returned to
this variable:

Value Cell Type

-0 Empty

-1 Number

-1 Formula returning number

-2 Text

-2 Formula returning text

-3 Logical

-3 Formula returning logical

-4 Error

-4 Formula returning error

See Also

Entry property

Formula property

Number property

Text property

TypeRC property

TypeRC Property

Description

Returns the cell type of the specified cell.

Syntax

[pType =] F1Book1.TypeRC (nRow, nCol)

Part Type Description

nRow,
nCol

Long Row and column number of the cell for which the type is
returned.

pType Integer Variable, passed by reference, that receives the returned
cell type. Following are the valid types that can be returned
to this variable:

Value Cell Type

-0 Empty

-1 Number

-1 Formula returning number

-2 Text

-2 Formula returning text

-3 Logical

-3 Formula returning logical

-4 Error

-4 Formula returning error

See Also

EntryRC property

FormulaRC property

NumberRC property

TextRC property

Type property

ValidationRuleDlg Method

Description

Displays the Validation Rule dialog box.

Syntax

F1Book1.ValidationRuleDlg

Remarks

You can use the Validation Rule dialog box to set the validation rule for the current selection and apply it
to all selected worksheets. Validation rules are used to validate data entered in a cell. A validation rule
consists of a formula to test, and text to display if the validation fails.

See Also

GetValidationRule method

SetValidationRule method

ViewScale Property

Description

Sets or returns the current display scale for a workbook.

Syntax

F1Book1.ViewScale [= scale]

Part Type Description

scale Integer Indicates the current display scale,
ranging from 10 to 400 percent. 100
percent is normal display scale.

Visible Property

Description

Sets or returns whether the Formula One object is visible.

Syntax

F1Book1.Visible [= boolean]

Write Method

Description

Saves the workbook to the specified file.

Syntax

F1Book1.Write pPathName, nSaveType

Part Type Description

pPathName String Name of the file to write. The name can include drive, path, and
filename.

nSaveType Index Type of file to write. Following are the valid F1FileTypeConstants:

Constants Description

F1FileFormulaOne Formula One format

F1FileExcel4 Excel 4.0 format

F1FileTabbedText Tab-delimited text file

F1FileExcel5 Excel 5.0 format

F1FileFormulaOne3 Formula One v.3 format

  F1FileTabbedTextValuesOnly Tab-delimited text file values only

See Also

Read method

SaveWindowInfo method

WriteToBlob method

Example

The following example displays the Save File dialog box, records the users selections, and writes the file
to disk using this information:

Sub SaveFile ()

Dim fName As String, fType As Integer

OnError Goto FileSaveError

F1Book1.SaveFileDlg " ", fName, fType

F1Book1.Write fname, fType

Exit Sub

FileSaveError;

If Err < > F1ErrorCancel then

MsgBox "Formula One Error # & Err

End Sub

WriteToBlob Method

Description

Writes a worksheet to a blob variable.

Syntax

F1Book1.WriteToBlob phBlob, nReservedBytes

Part Type Description

phBlob OLE_HANDLE Reference to a blob variable in
memory.

nResevedBytes Integer Size of the blob variable. Not
implemented in this version and must
be 0.

Remarks

Once a workbook is written to a blob, it can be stored in a database, or passed to ReadFromBlob.

See Also

Write method

Windows API

GlobalAlloc

GlobalFree

GlobalLock

GlobalUnlock

Using Events
Formula One provides a full range of events that allow you to track and monitor actions performed on a
spreadsheet view control by users of your application. Events allow you to respond to user’s actions and
control the operations of the worksheet control.

Drilling for Data

Events and Other Controls

Capturing Mouse Movements

Drilling for Data
Many applications consist of summary forms backed up by detail forms. For example, you may have a
sales management application that reports your company's sales by region. The summary screen shows
the total sales for each region. Other worksheets show the various regions and their sales breakdowns. If
the user double clicks one of the summary region columns, a second worksheet is displayed that shows
the sales breakdown in that region.

This type of operation is referred to as drilling. Drilling is generally defined as the ability to see greater
levels of detail by double clicking a worksheet. The area clicked defines the additional information that is
displayed.

Drilling can be implemented using the DblClick event. The following example demonstrates how to catch
the event.

Private Sub F1Book1_DblClick (nRow As Long, nCol As Long)

If nCol = 3 Then

F1Book1.Sheet = 3

End If

End Sub

Formula One is adept at handling this type of model since it can handle multiple workbooks, worksheets,
and supports formulas with external references.

Events and Other Controls
If is often necessary to use one of the Visual Basic controls during data entry. For example, you might use
a pop up list box to display a list of items that can be entered in a worksheet. This is easily accomplished
by designing a form with a list box and displaying it when the user clicks a cell.

The following example creates and fills a Visual Basic list box; then, it displays the list box when the user
right clicks anywhere in the worksheet.

' Initialize list box items to available fonts and make it invisible.

Private Sub Form_Load ()

Dim i As Integer

List1.Visible = False

For i = 0 To Screen.FontCount - 1

List1.AddItem Screen.Fonts(i)

Next i

End Sub

' Move the listbox to the active cell and make it visible.

Private Sub F1Book1_RClick (nRow As Long, nCol As Long)

Dim ssError As Integer, shown As Integer

Dim xOffset As Integer, yOffSet As Integer, thisWidth As Integer, thisHeight As Integer

' Get the cell clicked on in twips.

F1Book1.RangeToTwips nRow, nCol, nRow, nCol, xOffSet, yOffSet, thisWidth, thisHeight,

shown

' Set position and size of the listbox, move to click location and make it visible

List1.Move (F1Book1.Left + xOffset), (F1Book1.Top + yOffSet), (F1Book1.Left + 2 *

thisWidth), (F1Book1.Top + 5 * thisHeight)

List1.Visible = True

End Sub

' Set the current selection to the specified font. Default height is 10 and the other

attributes are not set.

Sub List1_Click ()

F1Book1.SetFont List1.List(List1.ListIndex), 10, False, False, False, False, False,

False, False)

' Make listbox invisible now that we are done with it.

List1.Visible = False

End Sub

Other controls can be displayed in the same manner, including combo boxes and menus. In addition,
many custom controls that are built in Visual Basic can be used in this manner.

Capturing Mouse Movements
The DragOver and DragDrop events capture mouse movements within a worksheet and return locations
within the worksheet as X and Y coordinates. The events can be used with methods that require
coordinates in twips, such as the TwipsToRC method.

The following example uses the TwipsToRC in a DragDrop event. The method uses the X and Y
coordinates returned by the event and converts the points to a row and column location in the worksheet.
If the location returned by the event is located in column 5 of the worksheet, the TextRC property is called
and places the caption contained in the Label2 control in the worksheet cell returned by TwipsToRC.

Private Sub F1Book1_DragDrop (Source As Control, X As Single, Y As Single)

Dim row as long, col as long

If strCompare ("Label2", Source, Name) =0 then

F1Book1.TwipsToRC X,Y, row, col

If col=5 then

F1Book1.TextRC (row, col) = Label2.Caption

End If

End If

End Sub

The following illustration shows a form that employs the preceding example code. The code is attached to
the Formula One control.

CancelEdit Event

Description

This event occurs when the user leaves edit mode without making changes or presses the Escape key.

Syntax

Private Sub F1Book1_CancelEdit ()

Click Event

Description

The Click event occurs when the user presses and releases the left mouse button while the pointer is in
the Formula One window and the window has focus.

Syntax

Private Sub F1Book1_Click (ByVal nRow as Long, ByVal nCol as Long)

Part Description

nRow, nCol Coordinates that identify the cell in which the user clicks. If a click occurs on a row heading,
nRow is 0; nCol is 0 if the click occurs on a column heading. If a scroll bar is clicked, the event
does not fire.

DblClick Event

Description

The DblClick event occurs when the user double clicks the left mouse button while the pointer is in the
Formula One window and the window has focus.

Syntax

Private Sub F1Book1_DblClick (ByVal nRow as Long, ByVal nCol as Long)

Part Description

nRow , nCol Coordinates that identify the cell in which the user double clicks. If a double click occurs on a row heading,
nRow is 0; nCol is 0 if the double click occurs on a column heading. If a scroll bar is double clicked, the
event does not fire.

DragDrop Event

Description

This event occurs when a drag-drop operation is completed.

Syntax

Private Sub F1Book1_DragDrop (Source As Control, x As Single, y As Single)

DragOver Event

Description

This event occurs when a drag-drop operation is in process.

Syntax

Private Sub F1Book1_DragOver (Source As Control, x As Single, y As Single, State As Integer)

EndEdit Event

Description

This event occurs when an editing operation is completed.

Syntax

Private Sub F1Book1_EndEdit (EditString As String, Cancel As Integer)

Part Description

EditString Edited text to be entered in the active cell. This value can be changed to modify what is placed in the cell.

Cancel Set to True to force edit mode to continue. This is often used for data validation when you do not want the
user to exit edit mode until data is correct

EndRecalc Event

Description

This event occurs when the recalculation process is completed.

Syntax

Private Sub F1Book1_EndRecalc ()

GotFocus Event

Description

The GotFocus event occurs when the Formula One window receives focus, either by clicking the object
or changing the focus in code using the SetFocus method.

Syntax

Private Sub F1Book1_GotFocus ()

KeyDown, KeyUp Events

Description

These events occur when the user presses (KeyDown) and releases (KeyUp) a key while the Formula
One object has the focus.

Syntax

Private Sub F1Book1_KeyDown (KeyCode As Integer, Shift As Integer)

Private Sub F1Book1_KeyUp (KeyCode As Integer, Shift As Integer)

KeyPress Event

Description

Occurs when the user presses and releases a key that triggers an ANSI character.

Syntax

Private Sub F1Book1_KeyPress (KeyAscii As Integer)

LostFocusEvent

Description

The LostFocus event occurs when the Formula One window loses focus, either by clicking the object or
changing the focus in code using the SetFocus method.

Syntax

Private Sub F1Book1_LostFocus ()

Modified Event

Description

Occurs when a change is made in the workbook.

Syntax

Private Sub F1Book1_Modified ()

Remarks

When a new workbook is created it's Modified property is set to FALSE. When something is changed the
Modified property is set to TRUE and the Modified event is fired. Further changes do not cause the
Modified event to fire until the Modified property is set to FALSE.

To cause the Modified event to be fired every time a change is made, set the Modified property to False
within the Modified event.

MouseDown, MouseUp Events

Description

Occurs when the user presses a mouse button (MouseDown) or releases a mouse button (MouseUp.).

Syntax

Private Sub F1Book1_MouseDown (Button As Integer, Shift As Integer, x As Single, y As Single)

Private Sub F1Book1_MouseUp (Button As Integer, Shift As Integer, x As Single, y As Single)

Part Description

Button Identifies the pressed or released button that caused the event. The button argument is a bit field with bits
corresponding to the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits correspond to the
values 1, 2, and 4, respectively. Only one of the bits is set, indicating the button that caused the event.

Shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when button is pressed or released. A
bit is set if the key is down. The shift argument is a bit field with the least-significant bits corresponding to the
SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. The shift argument indicates the state of these keys. Some, all, or none of the bits can be set,
indicating that some, all, or none of the keys are pressed. For example, if both CTRL and ALT were pressed, the
value of shift would be 6.

x, y Coordinates of the current mouse location.

Remarks

Use the bitwise AND operator to check bits.

MouseMove Event

Description

Occurs when the user moves the mouse.

Syntax

Private Sub F1Book1_MouseMove (Button As Integer, Shift As Integer, x As Single, y As Single)

Part Description

Button Identifies whether any buttons where down when the mouse
moved. The button argument is a bit field with bits corresponding to
the left button (bit 0), right button (bit 1), and middle button (bit 2).
These bits correspond to the values 1, 2, and 4, respectively. Only
one of the bits is set, indicating the button that caused the event.

Shift An integer that corresponds to the state of the SHIFT, CTRL, and
ALT keys when button is pressed or released. A bit is set if the key
is down. The shift argument is a bit field with the least-significant
bits corresponding to the SHIFT key (bit 0), the CTRL key (bit 1),
and the ALT key (bit 2). These bits correspond to the values 1, 2,
and 4, respectively. The shift argument indicates the state of these
keys. Some, all, or none of the bits can be set, indicating that
some, all, or none of the keys are pressed. For example, if both
CTRL and ALT were pressed, the value of shift would be 6.

x, y Coordinates of the current mouse location.

Remarks

Use the bitwise AND operator to check bits.

ObjClick Event

Description

This event occurs when an object is clicked.

Syntax

Private Sub F1Book1_ObjClick (ObjName As String, ObjID As Long)

Part Description

ObjName Name of the clicked object.

ObjID Identification number of the clicked object.

Remarks

An object must be named to receive an ObjClick event.

ObjDblClick Event

Description

This event occurs when an object is double clicked.

Syntax

Private Sub F1Book1_ObjDblClick (ObjName As String, By Val ObjID As Long)

Part Description

ObjName Name of the double-clicked object.

ObjID Identification number of the double-clicked object.

Remarks

An object must be named to receive an ObjDblClick event.

ObjGotFocus Event

Description

This event occurs when a window based object such as a button, check box or list box gets the focus.

Syntax

Private Sub F1Book1_ObjGotFocus (ObjName As String, ByVal ObjID As Long)

Part Description

ObjName Name of the object that receives focus.

ObjID Identification number of the object that receives focus.

Remarks

An object must be named to receive an ObjGotFocus event.

ObjLostFocus Event

Description

This event occurs when a window based object such as a button, check box, or list box loses the focus.

Syntax

Private Sub F1Book1_ObjLostFocus (ObjName As String, ByVal ObjID As Long)

Part Description

ObjName Name of the object that loses focus.

ObjID Identification number of the object that loses focus.

Remarks

An object must be named to receive an ObjLostFocus event.

ObjValueChanged Event

Description

This event occurs when the value of a check box or list box changes.

Syntax

Private Sub F1Book1_ObjValueChanged (ObjName As String, ByVal ObjID As Long)

Part Description

ObjName Name of the object whose value changes.

ObjID Identification number of the object whose value changes.

Remarks

An object must be named to receive an ObjValueChanged event.

RClick Event

Description

The RClick event occurs when the user presses and releases the right mouse button while the pointer is
in the Formula One window and the window has focus.

Syntax

Private Sub F1Book1_RClick (ByVal nRow as Long, ByVal nCol as Long)

Part Description

nRow, nCol Coordinates that specify the cell in which the user right clicks. If a click occurs on a row heading, nRow is 0;
nCol is 0 if the click occurs on a column heading. If a scroll bar is clicked, the event does not fire

RDblClick Event

Description

The RDblClick event occurs when the user double clicks the right mouse button while the pointer is in the
Formula One window and the window has focus.

Syntax

Private Sub F1Book1_RDblClick (ByVal nRow as Long, ByVal nCol as Long)

Part Description

nRow, nCol Coordinates that specify the cell in which the user double clicks. If a double click occurs on a row heading,
nRow is 0; nCol is 0 if the double click occurs on a column heading. If a scroll bar is double clicked, the
event does not fire.

SelChange Event

Description

This event occurs when the active cell is changed or the current selection is changed.

Syntax

Private Sub F1Book1_SelChange ()

Remarks

Use caution when performing actions that change the row and column selection (e.g., using the Row or
Col properties) within this event. Recursive actions could overflow the stack.

The following example would not cause a problem because it would only occur once.

If F1Book1.SelStartRow < 10 then

F1Book1.SelStartRow = 10

End if

However, the following example would not be appropriate in a SelChange Event because it would keep
recursing.

F1Book1.SelStartRow = F1Book1.SelStartRow.1

StartEdit Event

Description

This event occurs when an editing operation is started.

Syntax

Private Sub F1Book1_StartEdit (EditString As String, Cancel As Integer)

Part Description

EditString Text to be edited.

Cancel Can be set to True to cancel edit mode. In this case, edit mode is not entered.

StartRecalc Event

Description

This event occurs when the recalculation process is started.

Syntax

Private Sub F1Book1_StartRecalc ()

TopLeftChanged Event

Description

This event occurs when the top left edge of any cell changes position. This event is fired every time any
column or row is resized, a column or row is hidden or displayed, or the worksheet is scrolled in any
direction. This event is also fired when a worksheet is first created. The execution of this event is deferred
until the system is idle.

Syntax

Private Sub F1Book1_TopLeftChanged ()

ValidationFailed Event

Description

Occurs when    a user attempts to enter data into a cell and it fails to pass the validation test.

Syntax

Private Sub F1Book1_ValidationFailed (pEntry As String, ByVal nSheet As Long, ByVal nRow As
Long, ByVal nCol As Long, pShowMessage As String, pAction As Integer)

Part Description

pEntry Entry the user attempted to make.

nSheet Identifies the worksheet the user tried to enter data into.

nRow, nCol Row and column numbers that identify the cell the user tried to
enter data into.

pShowMessage The message the user receives when the validation fails.

pAction Action Formula One takes when the validation fails. Following are
the valid settings for pAction:

Setting Description

0 Return F1ErrorValidationFailed. This is the default
action.

1 Display pShowMessage in an error dialog box and
return F1ErrorValidationFailed.

2 Enter the value without checking validation.

3 Retry entering with validation. Another
ValidationFailed event is fired if it still fails.

Remarks

You can change the value of pEntry within this event. The changed value is used if pAction is set to 3.
Setting pAction to 3 without changing pEntry would be pointless, because the validation will still fail.

Performance Tuning
The following tips can help you make the most efficient use of memory and get the best performance from
Formula One.

Avoid formatting blank cells. It is more efficient to format an entire row or column because no
cells are created. When you format a blank range, that does not consist of whole rows or whole columns,
Formula One must create empty cells before it can apply the format.

Build worksheets by rows instead of columns. Formula One allocates memory by rows. You
can save memory by building tables a row at a time, rather than a column at a time. For example, fill cells
in row 1 before moving to row 2, and so on, rather than filling cells in column A before moving to column
B, and so on.

Build ranges from the lower right corner. When building a table one cell at a time from code, it
is faster and more efficient to start in the lower right corner of the area in which you are working. This
ensures that the row pointers are allocated simultaneously instead of one at a time. Likewise, each row is
allocated once instead of being reallocated as each cell is added.

Use values instead of formulas whenever possible.

Avoid adding empty rows and columns for white space. Adjust the row height or column
width to create white space instead of adding empty rows or columns. If you must have additional white
space on your worksheet, empty rows are more efficient than empty columns.

Disable repainting when performing a series of operations. When performing a number of
sequential operations on a worksheet, disable repainting with Repaint so the screen does not repaint
after each operation. This increases the speed of the operation and avoids unnecessary screen flashing.

Use methods to copy and move data. Use EditCopyRight, EditCopyDown, CopyRange,
CopyRangeEx, and MoveRange to copy and move cells. These methods are much faster than using the
clipboard. In addition, these methods update cell references to maintain the integrity of your formulas.

Specifications
The following table lists the technical specifications for the Formula One control.

Specifications

Maximum worksheet size 16,384 Rows by 256 Columns

Column width 0 to 255 characters

Row height 0 to 409 points

Text length 255 characters

Formula length 1024 characters

Number precision 15 digits

Largest positive number 9.99999999999999E307

Largest negative number -9.99999999999999E307

Smallest positive number 1E-307

Smallest negative number -1E-307

Maximum number of iterations 32,767

Maximum number of colors 36

Maximum number of available colors Limited by display card and monitor

Maximum number of fonts per sheet 256

Maximum number of selected ranges 2048

Maximum number of names per sheet 16384

Maximum length of name 255

Maximum number of function arguments 30

Maximum length of format string 255

Maximum number of tables Limited by system resources (Windows
and memory)

Excel file format version Excel 4.0 and Excel 5.0

