

Remote Data Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

RDO provides built-in constants that you can use with methods, properties and events. These
constants all begin with the letters "rd" and are documented with the event, method or property to
which they apply. These constants are also used with RemoteData Control properties.

You can use the Object Browser to browse the list of built-in constants. From the View menu, choose
Object Browser and select the appropriate library. Scroll the list in the Classes portion of the dialog to
see the constants groups. To find a specific constant, use the search window to locate a specific
group or constant.

Remote Data Constants Description – Determines:

Attributes Property rdoColumn object characteristics

BOFAction Property Beginning of file options

CursorDriver Property Type of cursor library

Column Status Batch mode update column status

Data Type Data type

Direction Parameter type

EditMode Edit or AddNew state

EOFAction End of file options

Error Event Error message handling

LockType Type of concurrency management.

Option Processing options

Prompt ODBC driver manager prompting

QueryType Type of query

rdoDefaultCursorDriver Property Type of cursor library

rdoLocaleID Error message language

ResultsetType Type of cursor

Row Status Batch mode update row status

SQLRetCode ODBC return codes

Status (rdoColumn) Batch mode update column status

Status (rdoResultset) Batch mode update row status

Type (rdoColumn, rdoParameter) Data type

Type (rdoQuery) Query function

UpdateCriteria Batch update WHERE clause

UpdateOperation Batch update operation

UpdateReturnCode Batch update completion status

Validate Data validation constants

Attributes Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstAttributesPropertyC;vbproBooksOnlineJumpTopic"}

These constants are used with the Attributes property to determine the characteristics of specific
rdoColumn objects.

Constant Value Description

rdFixedColumn 1 The column size is fixed (default for
numeric columns). For character
columns this indicates the column
is defined as rdTypeCHAR.

rdVariableColumn 2 The column size is variable
(character columns only). Indicates
the column is defined as
rdTypeVARCHAR.

rdAutoIncrColumn 16 The column value for new rows is
automatically incremented to a
unique Long integer that can't be
changed.

rdUpdatableColumn 32 The column value can be changed.

rdTimestampColumn 64 The column is defined as a system-
managed TimeStamp.

BOFAction Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstBOFActionPropertyC;vbproBooksOnlineJumpTopic"}

These constants are used with the RemoteData control's BOFAction property to determine how
RDO behaves when the rdoResultset object's BOF property changes state.

Constant Value Description

rdMoveFirst 0 MoveFirst (Default): Keeps the first row
as the current row.

rdBOF 1 BOF: Moving past the beginning of an
rdoResultset triggers the RemoteData
control's Validate event on the first row,
followed by a Reposition event on the
invalid (BOF) row. At this point, the
Move Previous button on the
RemoteData control is disabled.

CursorDriver, rdoDefaultCursorDriver Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstCursorDriverC;vbproBooksOnlineJumpTopic"}

These constants are used to determine which type of RDO cursor library is chosen by the ODBC
Driver Manager.

Constant Value Description

rdUseIfNeeded 0 The ODBC driver will choose the
appropriate style of cursors. Server-side
cursors are used if they are available.

rdUseOdbc 1 The RDO layer will use the ODBC
cursor library. This gives better
performance for small result sets but
degrades quickly for larger result sets.

rdUseServer 2 Use server-side cursors. For most large
operations this will give better
performance, but can cause more
network traffic.

rdUseClientBatch 3 Use the client batch cursor library used
for batch update operations.

rdUseNone 4 Do not open a cursor. Create a forward-
only, read-only single-row result set.
This uses data access fetch techniques
similar to those used by VBSQL and
ODBC API access methods.

Direction Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstDirectionPropertyC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how individual parameters are to be handled when used in
parameter queries.

Constant Value Description

rdParamInput 0 (Default) The parameter is used to
pass information to the procedure.

rdParamInputOutput 1 The parameter is used to pass
information both to and from the
procedure.

rdParamOutput 2 The parameter is used to return
information from the procedure as in
an output parameter in SQL.

rdParamReturnValue 3 The parameter is used to pass the
return value from a procedure.

EditMode Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstEditModeC;vbproBooksOnlineJumpTopic"}

These constants are used to determine the state of the RDO EditMode property.

Constant Value Description

rdEditNone 0 No editing operation is in progress.

rdEditInProgress 1 The Edit method has been invoked,
and the current row is in the copy
buffer.

rdEditAdd 2 The AddNew method has been
invoked, and the current row in the
copy buffer is a new row that hasn't
been saved in the database.

EOFAction Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstEOFActionC;vbproBooksOnlineJumpTopic"}

These constants are used with the RemoteData control's EOFAction property to determine how
RDO behaves when the rdoResultset object's EOF property changes state.

Constant Value Description

rdMoveLast 0 MoveLast (Default): Keeps the last
row as the current row.

rdEOF 1 EOF: Moving past the end of an
rdoResultset triggers the
RemoteData control's Validation
event on the last row, followed by a
Reposition event on the invalid (EOF)
row. At this point, the Move Next
button on the RemoteData control is
disabled.

rdAddNew 2 AddNew: Moving past the last row
triggers the RemoteData control's
Validation event to occur on the
current row, followed by an automatic
AddNew, followed by a Reposition
event on the new row.

Error Event Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstErrorC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how RDO should handle the message generated by the Error
event. They are applied to the CancelDisplay argument.

Constant Value Description

rdDataErrContinue 0 Continue and do not auto-display the
error message.

rdDataErrDisplay 1 (Default) Display the error message.

Prompt Property, OpenConnection, EstablishConnection Method
Prompt Argument Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstOpenConnectionMethodPromptArgumentC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how the ODBC Driver Manager prompts the user when a
connection is established using the OpenConnection or EstablishConnection methods, or when
using the RemoteData Control.

Constant Value Description

rdDriverPrompt 0 The driver manager displays the
ODBC (Open Database Connectivity)
Data Sources dialog box. The
connection string used to establish the
connection is constructed from the
data source name (DSN) selected and
completed by the user via the dialog
boxes. Or, if no DSN is chosen and the
DataSourceName property is empty,
the default DSN is used.

rdDriverNoPrompt 1 The driver manager uses the
connection string provided in connect.
If sufficient information is not provided,
the OpenConnection method returns
a trappable error.

rdDriverComplete 2 If the connection string provided
includes the DSN keyword, the driver
manager uses the string as provided in
connect, otherwise it behaves as it
does when rdDriverPrompt is
specified.

rdDriverCompleteReq
uired

3 (Default) Behaves like
rdDriverComplete except the driver
disables the controls for any
information not required to complete
the connection.

OpenResultset Method LockType Argument, LockType Property
Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstOpenResultMethodLockTypeC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how RDO manages concurrency on rdoResultset objects
created with the OpenResultset method or the RemoteData control.

Constant Value Description

rdConcurReadOnly 1 (Default) Cursor is read-only. No
updates are allowed.

rdConcurLock 2 Pessimistic concurrency. Cursor uses
the lowest level of locking sufficient to
ensure the row can be updated.

rdConcurRowVer 3 Optimistic concurrency based on row
ID. Cursor compares row ID in old
and new rows to determine if changes
have been made since the row was
last accessed.

rdConcurValues 4 Optimistic concurrency based on row
values. Cursor compares data values
in old and new rows to determine if
changes have been made since the
row was last accessed.

rdConcurBatch 5 Optimistic batch mode operation. Can
only be used when CursorDriver is
set to rdUseClientBatch.

OpenResultset Method Type Argument, ResultsetType and Type
Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstOpenResultsetMethodTypeArgumentC;vbproBooksOnlineJumpTopic"}

These constants are used to determine the type of cursor created by the selected cursor library.

Constant Value Description

rdOpenForwardOnly 0 Opens a forward-only – type
rdoResultset object. (Default)

rdOpenKeyset 1 Opens a keyset-type rdoResultset
object.

rdOpenDynamic 2 Opens a dynamic-type rdoResultset
object.

rdOpenStatic 3 Opens a static-type rdoResultset
object.

Options Property, Execute and OpenResultset Methods Options
Argument Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstOptionsPropertyC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how RDO should process the Execute and OpenResultset
methods, and build rdoResultset objects using the RemoteData control.

Constant Value Description

rdAsyncEnable 32 Execute operation asynchronously.

rdExecDirect 64 Execute query using SQLExecDirect
instead of SQLPrepare/
SQLExecute. The rdoQuery object's
Prepared property also controls this
feature.

rdFetchLongColumns 128 Download all the data for long
character and long binary columns.

rdoLocaleID Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstRdoLocaleIDPropertyC;vbproBooksOnlineJumpTopic"}

These constants are used to determine which language RDO should use when generating error
messages.

Constant Value Description

rdLocaleSystem 0 System

rdLocaleEnglish 1 English

rdLocaleFrench 2 French

rdLocaleGerman 3 German

rdLocaleItalian 4 Italian

rdLocaleJapanese 5 Japanese

rdLocaleSpanish 6 Spanish

rdLocaleChinese 7 Chinese

rdLocaleSimplifiedChinese 8 Simplified Chinese

rdLocaleKorean 9 Korean

SqlRetCode Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstSqlRetCodePropertyC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how the latest RDO operation behaved as indicated in the
rdoError object.

Constant Value Description

rdSQLSuccess 0 The operation is successful.

rdSQLSuccessWithInf
o

1 The operation is successful, and
additional information is available.

rdSQLNoDataFound 100 No additional data is available.

rdSQLError -1 An error occurred performing the
operation.

rdSQLInvalidHandle -2 The handle supplied is invalid.

Status Property, rdoColumn Object Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstStatusPropertyRdoColumnObjectC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how specific rdoColumn objects were affected by the last
BatchUpdate method.

Constant Value Description

rdColUnmodified 0 The column has not been modified or
has been updated successfully.

rdColModified 1 The column has been modified.

Status Property, rdoResultset Object Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstStatusPropertyRdoResultsetObjectC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how specific rdoResultset rows were affected by the last
BatchUpdate method.

Constant Value Description

rdRowUnmodified 0 The row has not been modified or has
been updated successfully.

rdRowModified 1 The row has been modified but has
not been updated in the database.

rdRowNew 2 The row has been inserted with the
AddNew method but not yet inserted
into the database.

rdRowDeleted 3 The row has been deleted but not yet
deleted in the database.

rdRowDBDeleted 4 The row has been deleted locally and
in the database.

Type Property, rdoColumn, rdoParameter Objects Constants
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rdcstTypePropertyRdoColumnRdoParameterObjectsC;vbproBooksOnlineJumpTopic"}

These constants are used to determine the datatype of specific columns of an rdoResultset object.

Constant Value Description

rdTypeCHAR 1 Fixed-length character string of length
n (1 n 254). Length set by Size
property

rdTypeNUMERIC 2 Signed, exact, numeric value with
precision p and scale s (1    p 15; 0    s
p).

rdTypeDECIMAL 3 Signed, exact, numeric value with
precision p and scale s (1    p 15; 0    s
p).

rdTypeINTEGER 4 Signed, exact numeric value with
precision 10, scale 0 (signed: -231    n
231-1; unsigned: 0    n    232-1).

rdTypeSMALLINT 5 Signed, exact numeric value with
precision 5, scale 0 (signed: -32,768
n    32,767, unsigned: 0    n    65,535).

rdTypeFLOAT 6 Signed, approximate numeric value
with mantissa precision 15 (zero or
absolute value 10-308 to 10308).

rdTypeREAL 7 Signed, approximate numeric value
with mantissa precision 7 (zero or
absolute value 10-38 to 1038).

rdTypeDOUBLE 8 Signed, approximate numeric value
with mantissa precision 15 (zero or
absolute value 10-308 to 10308).

rdTypeDATE 9 Date — data source dependent.

rdTypeTIME 10 Time — data source dependent.

rdTypeTIMESTAMP 11 TimeStamp — data source
dependent.

rdTypeVARCHAR 12 Variable-length character string.
Maximum length is DBMS-dependent.

rdTypeLONGVARCHA
R

-1 Variable-length character string.
Maximum length determined by data
source.

rdTypeBINARY -2 Fixed-length binary data. Maximum
length is DBMS-dependent.

rdTypeVARBINARY -3 Variable-length binary data. Maximum
length is DBMS-dependent.

rdTypeLONGVARBINA
RY

-4 Variable-length binary data. Maximum
data source dependent.

rdTypeBIGINT -5 Signed, exact numeric value with
precision 19 (signed) or 20
(unsigned), scale 0; (signed: -263    n
263-1; unsigned: 0    n    264-1).

rdTypeTINYINT -6 Signed, exact numeric value with

precision 3, scale 0; (signed: -128    n
127, unsigned: 0    n    255).

rdTypeBIT -7 Single binary digit.

Type Property, rdoQuery Object Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstQueryTypeC;vbproBooksOnlineJumpTopic"}

These constants are used to determine the function of a specific rdoQuery object.

Constant Value Description

rdQSelect 0 The query contains one or more
select statement

rdQAction 1 The query contains one or more
Update, Insert or Delete statement

rdQProcedures 2 The query is one or more stored
procedure calls

rdQCompound 3 The query contains both action and
select statements

UpdateCriteria Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstUpdpateCriteriaPropertyConstantsC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how RDO manages update operations when the
BatchUpdate method is used.

Constant Value Description

rdCriteriaKey 0 Uses just the key column(s) in the
SQL WHERE clause.

rdCriteriaAllCols 1 Uses the key column(s) and all
updated columns in the SQL WHERE
clause.

rdCriteriaUpdCols 2 Uses the key column(s) and all
columns in the SQL WHERE clause.

rdCriteriaTimeStamp 3 Uses just the timestamp column in the
SQL WHERE clause. (Generates a
trappable error if no timestamp
column is available).

UpdateOperation Property Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstUpdpateOperationPropertyC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how RDO manages update operations when the
BatchUpdate method is used.

Constant Value Description

rdOperationUpdate 0 Uses an Update statement for each
modified row

rdOperationDelIns 1 Uses a pair of Delete and Insert
statements for each modified row

ReturnCode Argument Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstUpdpateReturnCodePropertyConstantsC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how RDO manages update operations when the
WillUpdateRows event is fired. The ReturnCode parameter is used to notify RDO about what your
code did in the event procedure.

Constant Value Description

rdUpdateSuccessful 0 The developer handled the update
and was successful in doing so.

rdUpdateWithCollision
s

1 The developer handled the update,
was successful, but some rows
produced collisions (batch mode
only).

rdUpdateFailed 2 The developer attempted to handle
the update, but encountered an error
when doing so.

rdUpdateNotHandled 3 The developer did not handle the
update, RDO should continue
notifying, and if no one handles the
update RDO should update the data
itself.

Validate Event Action Argument Constants
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdcstValidateEventActionArgumentConstantsC;vbproBooksOnlineJumpTopic"}

These constants are used to determine how the RemoteData control manages validation.

Constant Value Description

rdDataActionCancel 0 Cancel the operation when the Sub
exits.

rdDataActionMoveFirs
t

1 MoveFirst method.

rdDataActionMovePre
vious

2 MovePrevious method.

rdDataActionMoveNex
t

3 MoveNext method.

rdDataActionMoveLas
t

4 MoveLast method.

rdDataActionAddNew 5 AddNew method.

rdDataActionUpdate 6 Update operation (not UpdateRow).

rdDataActionDelete 7 Delete method.

rdDataActionBookmar
k

8 The Bookmark property has been
set.

rdDataActionClose 9 The Close method.

rdDataActionUnload 10 The form is being unloaded.

action query

An SQL query that changes the underlying data or performs some administrative operation, such as
adding new tables or users. An action query returns the number of rows affected rather than a result
set.

aggregate function

A function, such as Count, Avg, or Sum, used in a query that calculates values. In writing SQL
expressions, you can use SQL aggregate functions to determine various statistics.

alias

In Visual Basic, an alternate name you give to an external procedure to avoid conflict with a Visual
Basic keyword, global variable, constant, or a name not allowed by the standard naming conventions.

In SQL, an alternate name you give to a column or expression in a SELECT statement, to make it
shorter or more meaningful, or to prevent name conflicts when performing SQL queries using
expressions that don't return names, or in a query that references the same table more than once.

base table

A table in a remote database. You can manipulate the structure of a base table using data definition
SQL statements, and you can modify data in a base table using rdoResultset objects or action
queries.

bookmark

A system-generated value identifying the current row that is contained in an rdoResultset object's
Bookmark property. If you assign the Bookmark property value to a variable and then move to
another row, you can make the earlier row current again by assigning the value of the variable to the
Bookmark property.

Boolean

A True/False or yes/no value. Boolean values are usually stored in Bit columns in a remote
database; however, some data sources don't support this data type directly.

Byte data type

A fundamental data type used to hold small positive integer numbers ranging from 0 to 255.

bound control

A data-aware control that can provide access to a specific column or columns in a data source
through a RemoteData or Data control. A data-aware control can be bound to a RemoteData or Data
control through its DataSource and DataField properties. When a RemoteData or Data control
moves from one row to the next, all bound controls connected to the RemoteData or Data control
change to display data from columns in the current row. When users change data in a bound control
and then move to a different row, the changes are automatically saved in the data source.

Cartesian product

The result of joining two relational tables, producing all possible ordered combinations of rows from
the first table with all rows from the second table.

Generally, a Cartesian product results from executing an SQL SELECT statement referencing two or
more tables in the FROM clause, and not including a WHERE or JOIN clause that indicates how the
tables are to be joined.

case-sensitive

Capable of distinguishing between uppercase and lowercase letters. A case-sensitive search finds
text that is an exact match of uppercase and lowercase letters. Such a search would, for instance,
treat "ZeroLengthStr" and "zerolengthstr" as different. Case sensitivity is a feature of some database
management systems.

column

Defines the data type, size, and other attributes of one column of an rdoTable or rdoResultset. All
columns taken as a set define a row in the database. An individual column contains data related in
type and purpose throughout the table; that is, a column's definition doesn't change from row to row.

commit

To accept a pending transaction. If you use transaction processing and begin a transaction, none of
the changes made in the transaction will be written to the data source until you commit (accept) the
transaction.

copy buffer

A location created by the rdoResultset object for the contents of a row that is open for editing. The
Edit method copies the current row to the copy buffer; the AddNew method clears the buffer for a
new row; and the Update method saves the data from the copy buffer to the data source, replacing
the current row or inserting the new row. Any statement that resets or moves the current row pointer,
or cancels the edit, will discard the copy buffer.

connect string

A string used to specify a data source and other information, such as user name and password. The
connect string is usually assigned to the Connect property of an rdoConnection object or
RemoteData control, or as an argument to the OpenConnection method.

criteria

A set of limiting conditions, such as = "Denmark" (meaning equal to Denmark) or > 30000, used in
creating a query or filter to show a specific set of rows.

current transaction

All changes made to an rdoResultset object or a set of rows in a database after you use the last
BeginTrans method and before you use the RollbackTrans or CommitTrans method.

remote data object

An object, such as rdoConnection, rdoTable, rdoResultset, or rdoQuery, that represents an object
used to organize and manipulate data in code.

data page

A portion of the database in which row data is stored. Depending on the size of the rows, a data page
may contain more than one row. A data page in most remote databases is 2K bytes.

data type (Remote Data)

The attribute of a variable or column that determines what kind of data it can hold. For example, an
rdoColumn defined with the rdTypeCHAR data type is designed to contain text.

database

A set of data related to a particular topic or purpose. A database contains tables and can also contain
queries and table relationships, as well as table and column validation criteria.

database engine

The part of the database management system that retrieves data from and stores data in user and
system databases.

dissociate result set

An rdoResultset object which is not associated with a specific connection. Basically, a dissociate
result set becomes a static snapshot of data. It is updatable, but changes are not posted to the
remote database until the rdoResultset is re-associated with a specific connection.

rdoConnection object (definition)

Represents an open connection to a remote data source.

database management system (DBMS)

Software used to organize, analyze, and modify information stored in a database. For example, the
Microsoft SQL Server is an example of a database management system.

RemoteData control

Provides access to data stored in a remote ODBC data source. The RemoteData control allows you
to move from row to row in a result set and to display and manipulate data from the rows using bound
controls.

data-definition query

An SQL-specific query that can create, alter, or delete a table, or create or delete an index in a
database.

data source

A named Open Database Connectivity (ODBC) resource that specifies the location, driver type, and
other parameters needed by an ODBC driver to access a database.

database administration

Activities required to created, manage and preserve the integrity and security of a database, such as
maintaining user permissions and backing up and repairing the database.

default environment

The rdoEnvironment object that Visual Basic automatically establishes when your application first
references any remote data object. This rdoEnvironment is referenced by
rdoEngine.rdoEnvironments(0) or simply rdoEnvironments(0).

expression (Remote Data)

Any combination of operators, constants, literal values, functions, and names of columns, controls,
and properties that evaluates to a single value. You can use expressions as settings for many
properties and action arguments, to set criteria or define calculated columns in queries.

column properties

Attributes of a column that describe the data it contains. Size and Type are examples.

filter

A set of criteria applied to rows in order to create a subset of the rows.

forward scroll

Movement toward the end (EOF) of an rdoResultset object.

forward-only-type rdoResultset

An rdoResultset object in which rows can be searched only from beginning to end; the current row
position can't be moved back toward the first row, and only one row at a time is accessible. Forward –
only – type rdoResultset objects are useful for quickly retrieving and processing data.

identifier

An element of an expression that refers to the value of a column or property.

index (Remote Data)

A dynamic cross-reference of one or more table data columns that permits faster retrieval of specific
rows from a table. As rows are added, changed, or deleted, the database management system
automatically updates the index to reflect the changes.

initialization file

An ASCII text file used to contain parameters for configuring Windows-based applications or Microsoft
Windows itself. Generally, an initialization file uses the extension .ini and is named after the
executable program that uses it. For example, a program named Testing.exe would expect an
initialization file called Testing.ini.

Integer data type

A fundamental data type that holds integer numbers. An Integer variable is stored as a 16-bit (2-byte)
number ranging in value from -32,768 to 32,767. The type-declaration character is % (ANSI character
37).

locked

The condition of a data page or row that makes it read-only to all users except the one who is
currently entering data in it.

ODBC (Open Database Connectivity)

A standard protocol that permits applications to connect to a variety of external database servers or
files. ODBC drivers used by the ODBC driver manager permit access to SQL Server and several
other data sources, including text files and Microsoft Excel spreadsheets.

optimistic

A type of locking in which the data page containing one or more rows, including the row being edited,
is unavailable to other users only while the row is being updated by the Update method, but is
available between the Edit and Update methods. Optimistic locking is used when the
rdConcurRowver or rdConcurValues LockType is used when opening an rdoResultset.

parameter

An element containing a value that you can change to affect the results of the query. For example, a
query returning data about an employee might have a parameter for the employee's name. You can
then use one rdoParameter of the rdoQuery object to find data about any employee by setting the
parameter to a specific name before running the query.

pessimistic

A type of locking in which each page touched by the current rowset (as determined by the
RowsetSize property) is locked as soon as the cursor is opened and not freed until the rowset is
repositioned ¾    when the next set of pages touched by the current rowset is locked. Pessimistic
locking is enabled when the rdConcurLock LockType option is used when opening an
rdoResultset. This type of locking is used only in special circumstances.

query

A formalized instruction to a database to either return a set of rows or perform a specified action on a
set of rows, as specified in the query. For example, the following SQL query statement returns rows:

SELECT CompanyName FROM Publishers WHERE State = 'NY'

Query types include select, action, parameter, combination, and stored procedure queries.

read-only

A type of access to data whereby information can be retrieved but not modified. This will provide
better performance in most cases.

row

A set of related data about a person, place, event, or some other item. Table data is stored in rows in
the database. Each row is composed of a set of related columns — each column defining one
attribute of information for the row. Taken together, a row defines one specific unit of retrievable
information in a database.

requery

To rerun a query to reflect changes to the rows, retrieve newly added rows, and eliminate deleted
rows.

security

Used to specify or restrict the access that specified users or user groups have to data and objects in a
database.

server

The database management system designed to share data with client applications; servers and
clients are often connected over a network. A database server usually contains and manages a
central repository of data that remote client applications can retrieve and manipulate.

SQL statement

An expression that defines a Structured Query Language (SQL) command, such as SELECT,
UPDATE, or DELETE, and which might include clauses such as WHERE and ORDER BY. SQL
strings and statements are typically used in queries and rdoResultset objects but can also be used
to create or modify a database structure.

The syntax for SQL statements is dependent on the data source.

table

A basic unit of data storage in a relational database. A table stores data in rows and columns and
usually contains a particular category of things, such as employees or parts. Also called a base table.

rdoTable object

Represents the stored definition of a base table or an SQL view.

transaction

A series of changes made to a database's data. Mark the beginning of a transaction with the
BeginTrans statement, commit the transaction using the CommitTrans statement, or undo all your
changes since BeginTrans using the RollbackTrans statement.

Transactions are optional, but can increase the speed of operations and allow changes to be
reversed.

Transactions can be managed at the rdoConnection level or at the rdoEnvironment level.

Transactions can also be managed by a Distributed Transaction Coordinator.

update

The process that saves changes to data in a row. Until the row is saved, changes are stored in a
temporary row called the copy buffer.

The UPDATE clause in an SQL statement changes data values in one or more rows in a database
table.

message

A packet of information passed from one application to another.

multiuser database

A database that permits more than one user to access and modify the same set of data at the same
time. In some cases, the additional "user" may be another instance of your application, or another
application running on your system that accesses the same data as some other application.

normalize

To minimize the duplication of information in a relational database through effective table design.

null

A value that indicates missing or unknown data. Null values can be entered in columns for which
information is unknown and in expressions and queries. In Visual Basic, the Null keyword indicates a
Null value.

null column

A column containing no characters or values. A null column isn't the same as a zero-length string ("")
or a column with a value of 0. A column is set to null when the content of the column is unknown. For
example, a Date_Completed column in a task table would be left null until a task is completed.

ODBC driver

A dynamic-link library (DLL) used to connect a specific Open Database Connectivity data source with
a client application. For example, there are specific drivers for Microsoft SQL Server included with
Visual Basic. To work with RDO, ODBC drivers must comply with ODBC Level II requirements.

optimistic batch

An optimistic batch is a set of rows submitted to the remote server for processing as a unit of work. In
this case it is assumed that there is little possibility of update or insert collisions.

parameter query

A query that requires you to provide one or more criteria values, such as Redmond for City, before the
query is run. A parameter query isn't, strictly speaking, a separate kind of query; rather, it extends the
flexibility of other queries.

parse

To identify the parts of a statement or expression and then validate those parts against the
appropriate language rules.

permission

One or more attributes that specify what kind of access a user has to data or objects in a database.
For example, a table or query with Read Only permission permits a user to retrieve but not edit data
in the table or query.

rowset population

The process of loading rdoResultset rows into memory.

The rdoResultset objects populate the number of rows defined by the RowsetSize attribute. If you
are using server-side cursors, only this number of rows is present in memory at any given time.

session

A session begins when a user connects to a data source and ends when a user disconnects. All
operations performed during a session are subject to permissions determined by the login user name
and password. Sessions are implemented as rdoConnection objects and are synonymous with
connections.

Single data type

A fundamental data type that holds single-precision floating-point numbers in IEEE format. A Single
variable is stored as a 32-bit (4-byte) number ranging in value from -3.402823E38 to -1.401298E-45
for negative values, from 1.401298E-45 to 3.402823E38 for positive values, and 0. The type-
declaration character is !.

Structured Query Language (SQL)

A language used in querying, updating, and managing relational databases. SQL can be used to
retrieve, sort, and filter specific data to be extracted from the database.

SQL database

A database that can be accessed through the use of Open Database Connectivity (ODBC) data
sources or another interface native to the database. Also known as a relational database.

SQL-specific query

A query that can be created only by writing an SQL statement.

stand-alone object

In RDO, you can create rdoConnection and rdoQuery objects using:

Dim X as New rdoxxxx

When this is done, a stand-alone object is created. Those object properties that do not depend on
access to a connection or other objects can be manipulated.

temporary disk

The directory identified by the TEMP operating system environment variable. Also known as
temporary drive. Although the TEMP environment variable may point to a RAM disk, this isn't
recommended.

TEMP

A TEMP environment variable is initialized by your system when it is started. Generally, TEMP points
to an area on your hard disk used by Microsoft Windows and other programs to store information that
doesn't need to be saved after you shut down your system. For example, the following line in your
autoexec.bat file points the TEMP environment variable to the D:\Temparea directory:

SET TEMP=D:\TEMPAREA

update query

An action query that changes base table data according to criteria you specify. An update query
doesn't return any rows, but it does return the number of rows affected.

user account

An account identified by a user name and password that is created to manage access to objects in a
remote database.

validation

The process of checking whether entered data meets certain conditions or limitations.

WHERE clause

The part of an SQL statement that specifies which rows to retrieve. The WHERE clause limits the
scope of the query and specifies which columns are used to join multiple tables.

Yes/No data type

A column data type that contains a Boolean (True/False or yes/no) value.

zero-length string

A string containing no characters. The Len function of a zero-length string returns 0.

DDL (Data Definition Language)

The language used to describe, change, or define attributes of a database, especially the schema
associated with tables, columns, and storage strategy.

ODBC data source

A database or database server used as a source of data. ODBC data sources are referred to by their
Data Source Name or by specific reference to the ODBC driver and server name. Named Data
sources can be registered using either the ODBC Administrator in the Windows Control Panel or the
rdoRegisterDataSource method.

reserved word

A word that is part of the data source SQL language. Reserved words include the names of
statements, predefined functions and data types, methods, operators, and objects. Examples include
SELECT, UPDATE, BETWEEN, SET, and INSERT.

string expression

Any expression that evaluates to a sequence of contiguous characters. Elements of the expression
can include a function that returns a string, a string literal, a string constant, a string variable, a string
Variant, or a function that returns a string Variant (VarType 8).

Long data type

A four-byte integer (a whole number between -2,147,483,648 and 2,147,483,647, inclusive).

numeric expression

Any expression that can be evaluated as a number. Elements of the expression can include any
combination of keywords, variables, constants, and operators that result in a number.

Object Browser

A dialog box that lets you examine the contents of an object library to get information about the
objects provided, their methods and properties, and possibly their constants.

object library

A file with the .olb extension that provides information to Automation clients (like Visual Basic) about
available ActiveX objects. You can use the Object Browser to examine the contents of an object
library to get information about the objects provided.

ASCII character set

American Standard Code for Information Interchange (ASCII) 7-bit character set widely used to
represent letters and symbols found on a standard U.S. keyboard. The ASCII character set is the
same as the first 128 characters (0 – 127) in the ANSI character set.

column data types

The following table describes the column data types.

Column data type Description

rdTypeCHAR Fixed-length character string. Length set by Size
property.

rdTypeNUMERIC Signed, exact, numeric value with precision p and
scale s (1    p 15; 0    s    p).

rdTypeDECIMAL Signed, exact, numeric value with precision p and
scale s (1    p 15; 0    s    p).

rdTypeINTEGER Signed, exact numeric value with precision 10, scale
0 (signed: -2^31    n    2^31-1; unsigned:    0    n   
2^32-1).

rdTypeSMALLINT Signed, exact numeric value with precision 5, scale 0
(signed: -32,768    n    32,767, unsigned: 0    n   
65,535).

rdTypeFLOAT Signed, approximate numeric value with mantissa
precision 15 (zero or absolute value 10^-308 to
10^308).

rdTypeREAL Signed, approximate numeric value with mantissa
precision 7 (zero or absolute value 10^-38 to 10^38).

rdTypeDOUBLE Signed, approximate numeric value with mantissa
precision 15 (zero or absolute value 10^-308 to
10^308).

rdTypeDATE Date — data source dependent.

rdTypeTIME Time — data source dependent.

rdTypeTIMESTAM
P

TimeStamp — data source dependent.

rdTypeVARCHAR Variable-length character string. Maximum length is
the value returned by the Size property.

rdTypeLONGVARC
HAR

Variable-length character string. Maximum length
determined by data source.

rdTypeBINARY Fixed-length binary data. Maximum length is the
value returned by the Size property.

rdTypeVARBINAR
Y

Variable-length binary data. Maximum length 255.

rdTypeLONGVARB
INARY

Variable-length binary data. Maximum data source
dependent.

rdTypeBIGINT Signed, exact numeric value with precision 19
(signed) or 20 (unsigned), scale 0 (signed: -2^63    n
2^63-1; unsigned: 0    n    2^64-1).

rdTypeTINYINT Signed, exact numeric value with precision 3, scale 0
(signed: -128    n    127, unsigned: 0    n    255).

rdTypeBIT Single binary digit.

current row

The row in an rdoResultset object that you can use to modify or examine data. Use the Move
methods to reposition the current row in a rowset.

Only one row in an rdoResultset can be the current row; however, an rdoResultset may have no
current row. For example, after the current rdoResultset row has been deleted, or when an
rdoResultset has no rows, the current row is undefined. In this case, operations that refer to the
current row result in a trappable error.

data manipulation language (DML)

The SQL statement properties and methods you use to write applications or queries that access and
manipulate the data in existing databases. This includes facilities for querying the database,
navigating through its tables, performing updates, and adding or deleting rows.

Date/Time

Dates and times are stored internally as different parts of a real number.

The value to the left of the decimal represents a date between January 1, 100 and December 31,
9999, inclusive. Negative values represent dates prior to December 30, 1899.

The value to the right of the decimal represents a time between 0:00:00 and 23:59:59, inclusive.
Midday is represented by .5.

design time

The time during which you build an application in the development environment by adding controls,
setting control or form properties, and so on. In contrast, during run time, you interact with the
application as a user would.

environment

An rdoEnvironment object defines a session for a specific user. When RDO is referenced for the first
time, a default rdoEnvironment object is created with a password of "" and user name of "".

object expression

An expression that specifies a particular object. This expression can include any of the object's
containers.

rdoPreparedStatement object

A remote data object that contains a prepared SQL statement and collection of rdoParameter objects
for each parameter in the rdoPreparedStatement. This object is obsolete and should be replaced
with the rdoQuery object.

rdoQuery object (definition)

A remote data object that contains an SQL statement and collection of rdoParameter objects for each
parameter in the rdoQuery. An rdoQuery object is used to manage parameterized queries or queries
used repeatedly throughout execution of an application.

Parameterized Queries

A query that requires one or more parameters or arguments before execution. For example, an SQL
statement that refers to a specific part number as supplied by the user would use a parameterized
query to insert the user-provided number into the SQL statement before execution so that the query
references that specific part.

run time

The time when an application is running. During run time, you interact with the code as a user would.
In contrast, design time is when the application is developed.

server-side cursor

Cursor keysets that are created on the server instead of on the client workstation.

sort order

A sequencing principle used to order data, such as dictionary, binary, ascending, descending, and so
on.

SQL view

SQL views are similar to queries: both allow you to limit the rows and columns displayed from one or
more tables, and both provide similar functionality. SQL views are logical sets of rows where a table
represents the actual rows.

statement handle

Used by the ODBC driver to reference storage for names, parameter and binding information, error
messages, and other information related to a statement processing stream. The hStmt property of
the rdoResultset is an ODBC statement handle.

stored procedure

A pre-compiled procedure stored in a data source, available to be called from an application as
needed. Predefined queries reduce the overhead of repeatedly specifying the same selection criteria,
and are much faster than submitting an ad-hoc query.

two-phase commit

Allows an application to coordinate updates among multiple SQL servers. This implementation of
distributed transactions treats transactions on separate SQL servers as a single transaction. The
service uses one SQL server, the commit server, as a record keeper that helps the application
determine whether to commit or to roll back transactions. Thus, the two-phase commit guarantees
that either all the databases on the participating servers are updated or that none of them are.

Variant data type

A special data type that can contain numeric, string, or date data, as well as the special values Empty
and Null. The VarType function defines how the data in a Variant is treated. All variables become
variant types if not explicitly declared as some other type.

asynchronous

A type of query mode in which SQL queries return immediately, even though the results are still
pending. This enables an application to continue with other processing while the query is pending
completion.

cursor

A logical set of rows managed by the data source or ODBC driver manager. The cursor is so named
because it indicates the current position in the result set, just as the cursor on a CRT screen indicates
current position.

connection handle

Identifies memory storage for information about a particular connection. RDO will request a
connection handle prior to connecting to a data source; RDO manages connection handles
automatically through the rdoConnection object. Each connection handle is associated with an
environment handle. An environment handle can have multiple connection handles associated with it,
and there can be multiple environments.

Data Access Objects (DAO)

Objects that are defined by the Microsoft Jet database engine. You use data access objects, such as
the Database, TableDef, Recordset, and QueryDef objects, to represent objects that are used to
organize and manipulate data in code.

dynamic-link library (DLL)

A library of routines loaded and linked to applications at run time.

dynamic-type rdoResultset

The result of a query that can have updatable rows. A dynamic-type rdoResultset is a dynamic set of
rows that you can use to add, change, or delete rows from an underlying database table or tables. A
dynamic-type rdoResultset can contain columns from one or more tables in a database. Membership
of a dynamic rdoResultset is not fixed.

environment handle

Identifies memory storage for global information, including the valid connection handles and current
active connection handle. RDO will request this handle prior to connecting to a data source. The
remote data objects manage environment handles automatically through the rdoEnvironment object.

escape codes

Allow you to specify a value such as a date or time, in a data-independent way. For example, {d
'value'} allows you to specify the date (SELECT * FROM table WHERE DateField = {d
"2/17/94"}). When this query is submitted to the ODBC driver, it will scan the string and replace
the escape clause with the date in the proper form for the specific ODBC driver you are using.

keyset

The set of key values used to identify specific rows in a cursor. Keysets are stored on the server in a
server-side keyset cursor and on the workstation on client-side keyset cursors.

keyset-type rdoResultset

The result of a query that can have updatable rows. Movement within the keyset is unrestricted. A
keyset-type rdoResultset is a set of rows that you can use to add, change, or delete rows from an
underlying database table or tables. A keyset-type rdoResultset can contain columns from one or
more tables in a database. Membership in a keyset rdoResultset is fixed.

native error

An error generated and returned from the database management system of the data source on a
given connection.

ODBC driver manager

Provides the interface from the host language to the specific back-end data source driver.

Remote Data Objects (RDO)

Provide an information model for accessing remote data sources through ODBC. RDO offers a set of
objects that make it easy to connect to a database, execute queries and stored procedures,
manipulate results, and commit changes to the server.

scope

Defines the visibility of a variable, procedure, or object. For example, a variable declared as Public is
visible to all procedures in all modules. Variables declared in procedures are visible only within the
procedure and lose their value between calls unless they are declared Static.

static-type rdoResultset

The membership, order, and values in a result set used by a static cursor are generally fixed when the
cursor is opened. Rows updated, deleted, or inserted by other users are not detected by the cursor
until it is closed and then reopened or required.

timestamp

Contains a unique value that is updated automatically whenever a row is updated.

procedural query

An SQL query that executes a stored procedure.

connection

A link to an ODBC data source.

compile time

The moment at which source code is translated into executable code.

select query

A query that asks a question about the data stored in your tables, and returns an rdoResultset object
without changing the data. Once the rdoResultset data is retrieved, you can examine and make
changes to the data in the underlying queries.

multiple resultset query

A query that contains more than one select query and returns more than a single set of results.
Multiple resultset queries can also contain a combination of select and action queries.

String data type

A fundamental data type that holds character information. A String variable can contain approximately
65,535 bytes (64K), is either fixed-length or variable-length, and contains one character per byte.
Fixed-length strings are declared to be a specific length. Variable-length strings can be any length up
to 64K, less a small amount of storage overhead.

The type-declaration character for the String data type is $.

Already beyond the end of the result set (Error 40024)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgMoveNextC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgMoveNextS"}

You attempted to call rdoResultset.MoveNext when the EOF property was set to True.

To avoid this error, check the state of the EOF property before calling MoveNext.

An error occurred configuring the DSN. Please check the
parameters and try again (Error 40000)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgConfigDSNC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgConfigDSNS"}

The call to rdoEngine.rdoRegisterDataSource failed.

To avoid this error, check the validity of the rdoRegisterDataSource arguments passed and try
again.

An error occurred loading the ODBC installation library
(ODBCCP32.DLL) (Error 40032)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgLoadODBCLibC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgLoadODBCLibS"}

You attempted to call rdoEngine.rdoRegisterDataSource and the application could not load the
ODBC installation library file ODBCCP32.DLL.

To avoid this error, make sure ODBC is correctly installed on the machine that generated the error,
and that the file ODBCCP32.DLL is in the system path.

An internal ODBC error was encountered (Error 40002)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgODBCC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgODBCS"}

An ODBC error occurred on the most recently invoked property or method.

The exact error depends on the ODBC driver and type of database you are using. Examine the
rdoErrors Collection for an exact description of the problem.

Note      ODBC can generate more than one error during statement execution. Make sure you check
each error in the rdoErrors collection.

An invalid ODBC handle was encountered (Error 40004)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidODBCC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidODBCS"}

An error caused by an invalid ODBC statement handle occurred when executing an ODBC operation.

Examine the rdoErrors collection for an exact description of the problem. If no information is found,
make sure the statement handle wasn't deallocated or altered by a previous operation.

An invalid value for the concurrency option was passed (Error
40019)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidConcurrencyC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidConcurrencyS"}

An invalid lock type was passed to either rdoPreparedStatement.LockType or the locktype
argument in rdoPreparedStatement.OpenResultset.or the rdoQuery.LockType or the locktype
argument in rdoQuery.OpenResultset.

To avoid this error, make sure you pass one of the following valid lock types:

· rdConcurReadOnly

· rdConcurLock

· rdConcurRowVer

· rdConcurValues

Note      Not all lock types can be used on every data source.

An invalid value for the cursor driver was passed (Error 40003)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidCursorDriverC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidCursorDriverS"}

An invalid type value was passed to either rdoEnvironment.CursorDriver or
rdoEngine.rdoDefaultCursorDriver.

To avoid this error, pass one of the following values:

· rdUseIfNeeded

· rdUseODBC

· rdUseServer

· rdUseClient

· rdUseNone

Note      Not all data source drivers support all cursors.

An invalid value for the prompt option was passed (Error 40033)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgPromptC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgPromptS"}

You attempted to call rdoEnvironment.OpenConnection, and the value for the prompt argument
was not one of the following values:

· rdDriverPrompt

· rdDriverNoPrompt

· rdDriverComplete

· rdDriverCompleteRequired

To avoid this error, make sure the prompt argument is one of the previously mentioned values.

An invalid value for the cursor type parameter was passed (Error
40034)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgCursorTypeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCursorTypeS"}

You attempted to call the OpenResultset method, and the value for the type argument was not one of
the following values:

· rdOpenKeyset

· rdOpenDynamic

· rdOpenStatic

· rdOpenForwardOnly

To avoid this error, make sure the type argument is one of the previously mentioned values.

Note      Not all data sources support all cursors.

BOF already set (Error 40025)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgBOFSetC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgBOFSetS"}

You attempted to call rdoResultset.MovePrevious when the BOF property was set to True. This
means that the current row pointer is already positioned before the first row in the result set, and you
are trying to perform a move operation that would move the row pointer to an invalid position.

To avoid this error, check the state of the BOF property before calling the MovePrevious method.

Can't create prepared statement for invalid database connection
(Error 40015)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgConnectionStateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgConnectionStateS"}

The program tried to create an rdoPreparedStatement or rdoQuery object on an invalid
rdoConnection.

To avoid this problem, make sure the rdoConnection object is currently connected to a data source.

Can't execute empty rdoPreparedStatement (Error 40018)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgEmptyQDC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgEmptyQDS"}

A Null or empty string was encountered in the SQL property of rdoPreparedStatement or rdoQuery
object during the invocation of the Execute method.

To avoid this error, make sure the SQL statement for the rdoPreparedStatement or rdoQuery object
is valid, either by passing it as an argument to CreatePreparedStatement or CreateQuery, or by
setting the SQL property of the rdoPreparedStatement or rdoQuery object.

Can't execute unprepared rdoPreparedStatement (Error 40017)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgUnpreparedQDC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUnpreparedQDS"}

An ODBC error occurred trying to prepare the SQL statement passed in
rdoPreparedStatement.Execute or rdoQuery.Execute

Check the rdoErrors collection for more detail and make sure the SQL statement for the
rdoPreparedStatement or rdoQuery object is valid for the data source you are referencing.

Can't move relative to current row as EOF/BOF already set (Error
40029)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgMoveEOFBOFC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgMoveEOFBOFS"}

You attempted to call rdoResultset.Move specifying a relative move (by passing Null as the
bookmark argument) when the result set is currently positioned at EOF or BOF, or the result set is
marked as invalid.

Note      If EOF or BOF are set, a valid bookmark must be passed as part of the call to Move.

To avoid this error, make sure the EOF or BOF properties are not set, or a valid bookmark is
provided.

Invalid bookmark (Error 40027)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidBookmarkC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidBookmarkS"}

An invalid bookmark value was passed to rdoResultset.Move.

To avoid this error, be sure to pass a valid bookmark. Retrieve the bookmark by using
rdoResultset.Bookmark, and make sure the variable you use to store the bookmark is still valid.

Invalid bookmark argument to move (Error 40028)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidBookmarkMoveC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidBookmarkMoveS"}

The bookmark argument to rdoResultset.Move was not passed as the correct data type.

To avoid this error, be sure to pass the bookmark argument as either an Integer or Byte data type.
Retrieve the bookmark by using rdoResultset.Bookmark, and be sure that the variable you use to
store the bookmark is still valid.

Invalid connection string (Error 40005)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidConnectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidConnectionS"}

An invalid connection string was passed to rdoEnvironment.OpenConnection or the
EstablishConnection method through the Connect property of a private rdoConnection object.

To avoid this error, be sure to pass a valid ODBC connection string to the OpenConnection method
of rdoEnvironment.

Invalid resultset state for update (Error 40026)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidUpdateStateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidUpdateStateS"}

You attempted to call rdoResultset.Update when the current row pointer was not pointing to a valid
row, or the result set was marked as invalid. This occurs if:

· The current row pointer is pointing at EOF or BOF.

· The result set has been marked invalid due to a call to a method such as Cancel.

· An SQL error occurs.

Also, deleting a row will mark it as invalid.

To avoid this error, check the state of the BOF and EOF properties before calling Update, and make
sure no method was called prior to calling Update that would mark the result set as invalid.

Invalid state for Move (Error 40023)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidStateMoveC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidStateMoveS"}

An attempt was made to call either rdoResultset.MoveFirst or rdoResultset.MoveNext when the
result set was marked as invalid. A result set can be marked as invalid if:

· You called the Cancel method on the result set prior to calling a Move method.

· You called the MoreResults method and there are no more result sets.

· An SQL error occurs.

To avoid this error, be sure that the current result set is valid and that you have not called an
operation that would mark it as invalid.

Object collection: illegal modification -- collection is read-only (Error
40049)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgCollReadonlyC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCollReadonlyS"}

You attempted to programmatically modify the contents of an RDO collection. This RDO collection is
read-only.

To avoid this error, do not attempt to modify the contents of this type of    RDO collection. For this type
of collection, Items are added to the collection automatically, and they are removed when the Close
or Remove methods for an object are invoked.

SQL returned No Data Found (Error 40001)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNoDataS"}

An SQL statement you tried to execute returned a message indicating no data was found for a query,
or no rows were affected by the action (Insert, Update, Delete) statement you attempted to execute.
This may be a valid response, however, in cases where you issue a query expecting no data or rows
to exist for that query.

To avoid this error, change the criteria in your SQL statement and try again.

An invalid parameter was passed (Error 40054)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidParamS"}

The value passed to a property or method is not a valid value.

Most properties and methods accept values of only a certain type, within a certain range, and an
inappropriate value has been assigned to a property or method. See the property or method's Help
topic to determine the appropriate types and range of values.

Can't assign value to column unless in edit mode (Error 40039)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgFieldNotEditC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgFieldNotEditS"}

You attempted to assign a value to a column before calling rdoResultset.Edit or
rdoResultset.AddNew.

To avoid this error, make sure the Edit or AddNew method has been called before assigning values
to columns with either the Value property or the AppendChunk method.

Can't assign value to non-updatable column (Error 40038)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgFieldNotUpdatableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgFieldNotUpdatableS"}

You attempted to assign a value to a column that is not updatable.

To avoid this error, make sure the result set is updatable    before assigning a value to a column with
either the Value property or the AppendChunk method. Note that the Updatable property does not
always reflect the updatability of any given resultset due to a number of factors including permissions
and type of cursor.

Can't assign value to output-only parameter (Error 40043)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgOutputOnlyC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgOutputOnlyS"}

An attempt was made to set a value for a parameter that is defined as an output (only) parameter.

To avoid this error, use the Direction property to be sure the parameter for which you are setting a
value is defined as either an input (rdParamInput) or input/output (rdParamInputOutput) parameter.
Generally, the Direction property is set automatically based on how the called procedure is defined,
but some drivers require you to set the direction before accessing the parameter. This error could also
occur if you mismatch the ordinal number or name of a parameter and mistake an input parameter for
an output parameter.

Can't assign value to unbound column (Error 40037)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgAssignUnboundC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgAssignUnboundS"}

You attempted to assign a value to a column that represents a large binary object (BLOB) or similar
object.

To avoid this error, use the AppendChunk method to assign values to columns of this type. Use the
ChunkRequired property to determine if the column in question requires the use of AppendChunk.

Can't assign value to unbound parameter (Error 40042)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUnboundParameterS"}

An attempt was made to set a value for a parameter that has not been bound.

To avoid this error, make sure no error was returned from prior RDO methods. If an error was
returned, fix the SQL statement that was passed, and try the operation again.

Column not bound correctly (Error 40035)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgFieldNotBoundC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgFieldNotBoundS"}

An attempt was made to open a result set with a column of unknown data type. In most cases, the
ODBC driver is capable of recognizing all data types supported by the version of back-end that is
being accessed. This error can occur when the driver does not recognize one of the returned data
types.

For more information, consult the documentation for the data source from which the column data
originated. For example, consult the DRVSSRVR.HLP file for detailed information on the SQL Server
driver.

GetNewEnum: Couldn't get interface for IID_IUnknown (Error
40050)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNewEnumIIDS"}

An internal error occurred while attempting to allocate memory to enable the For...Each syntax to
iterate over a collection.

This error can be caused by any condition that exhausts system resources including internal handles,
RAM, disk space or object reference pointers. Watch for recursive procedures or procedures that leak
memory.

Incorrect type for parameter (Error 40040)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidTypeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidTypeS"}

A Variant with an invalid type was detected. This can be caused by passing a value to an RDO
method or property that cannot be coerced to the correct type, such as trying to pass a string data
type as a numeric value.

To avoid this problem, make sure the value passed is the correct type for the operation. For column
values, you can check the column's Type property to ensure you are passing the correct type.

Object Collection: Couldn't find item indicated by text (Error 40041)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgCollecNotFoundC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCollecNotFoundS"}

You attempted to address an object in a collection by using a text value, and no object in that
collection matched the text string supplied. For example, you tried to reference a column of a result
set by name and the specified column does not exist in the result set.

To avoid this error, make sure an object in the collection has a Name property that matches the text
string supplied, or use the object's ordinal value.

Object Collection: This collection doesn't support location by text
tag (Error 40021)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCollecTagS"}

You attempted to find an object in a collection with a text string, and the objects in the collection do
not support lookup by text strings. For example, you cannot reference members of the rdoErrors
collection by name -- only by ordinal number.

To avoid this error, use an ordinal value instead, such as rdoErrors(1).

The object has already been closed (Error 40046)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgAlreadyClosedC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgAlreadyClosedS"}

You have attempted to call the Close method on an object that has already been closed.

To avoid this problem, do not use the Close method on an object that has already been closed.

This environment name already exists in the collection (Error
40048)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgDupnameC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgDupnameS"}

You attempted to call the rdoEngine.rdoCreateEnvironment method, the
rdoConnection.CreatePreparedStatement, rdoConnection.CreateQuery, or Add method passing
a name that already exists in the rdoEnvironments, rdoConnections or rdoPreparedStatements
collection.

To avoid this error, make sure the name you pass does not conflict with a name already added to the
collection.

Unbound column - use GetChunk (Error 40036)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgUnboundFieldC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUnboundFieldS"}

You attempted to access a column containing a large binary object (BLOB) or similar object.

To avoid this error, use the GetChunk method to access columns of this type. If this error occurs
when using parameters, you cannot use parameters on columns that represent large binary objects
(Text or Image columns in SQL Server). You can use the ChunkRequired property to determine if the
column in question requires the use of GetChunk.

You cannot execute a query when an asynchronous query is in
progress (Error 40045)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgAsyncInProgressC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgAsyncInProgressS"}

You have attempted to call a method or property while an asynchronous query is still executing.

To avoid this error, check the StillExecuting property, and do not call RDO methods or properties that
affect the SQL statement until the StillExecuting property returns False.

You must specify a valid name for the environment (Error 40047)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidNameC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidNameS"}

You have attempted to pass an invalid name for the name argument when calling the
rdoEngine.rdoCreateEnvironment method or Add method with a private rdoEnvironment.

To avoid this error, make sure you pass a valid name as the name argument. The name can be any
string expression that is not null or empty, and it should not be a duplicate of any name previously
added to the collection.

An attempt was made to issue a select statement using the
Execute method (Error 40057)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgExecuteSelectC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgExecuteSelectS"}

You attempted to issue a SELECT statement using the Execute method. This error can also occur
when you execute a stored procedure that contains a SELECT statement.

To issue a select query, you should instead use the OpenResultset method. The Execute method is
designed for use with action queries (Insert, Update, Delete).

An error occurred loading the version library (VERSION.DLL) (Error
40016)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgLibraryErrorC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgLibraryErrorS"}

You attempted to call rdoEngine.rdoVersion and the application could not load the Win32 library file
VERSION.DLL.

To avoid this error, make sure the file VERSION.DLL is in the system path.

An unexpected error occurred (Error 40006)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUnexpectedErrorS"}

An unexpected error occurred that caused RDO to become unstable. This error can also occur if you
use the ODBC API to manipulate RDO-generated objects using one of the ODBC handles.

To avoid this error, make sure you have enough free resources and memory, then restart the program
and try again.

Incompatible data types for compare (Error 40014)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgIncompatibleCompareS"}

An rdoResultset was called with an argument value whose data type is not compatible with the
compared column's data type.

To avoid this problem, make sure the value you are using in the comparison matches the data type of
the column you are comparing against. Also, this method is valid only when called by a data source
control.

Invalid operation (Error 40055)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidOperationC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidOperationS"}

The property or method invoked is not valid in this context. For example, you might have used the
Edit or Update method against an rdoResultset that is not updatable.

To avoid this error, check the sequence of the operations you are attempting and make sure they are
correct. One possible cause is that you are trying to set a column value on a column that is a meta
data column (that is, a column generated from an rdoTable and not an rdoResultset).

Invalid operation for forward-only cursor (Error 40008)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidCursorOperationC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidCursorOperationS"}

The program called rdoResultset.MovePrevious, rdoResultset.MoveLast or
rdoResultset.MoveFirst while processing a forward-only query.

To avoid this error, either change the cursor type to rdOpenKeyset, rdOpenDynamic, or
rdOpenStatic, or call only MoveNext for a forward-only rdoResultset.

Invalid row for AddNew (Error 40010)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidAddNewRowC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidAddNewRowS"}

There was a call to rdoResultset.AddNew when the cursor was positioned on an invalid row, or the
program had previously called AddNew or Edit without calling Update or cancelling the operation.

To avoid this error, move the cursor to a valid row and make sure you have a valid result set, and the
sequence of calls to rdoResultset are correct.

Invalid seek flag (Error 40012)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidSeekFlagS"}

An invalid seek flag was passed to rdoResultset. This message is only applicable to developers
creating third-party bound controls.

To avoid this error, make sure the flag passed is one of the following values:

· DBSEEK_LT

· DBSEEK_LE

· DBSEEK_EQ

· DBSEEK_GE

· DBSEEK_GT

· DBSEEK_PARTIALEQ

Also, this method is only valid when called by a data source control.

No current row (Error 40009)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgNoCurrentRowC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNoCurrentRowS"}

There was a call to rdoResultset.Edit when the cursor was positioned on an invalid row. This error
may be caused by attempting to edit a deleted row, or by invoking Edit when the cursor is positioned
either before the first row, or after the last row.

To avoid this error, move the cursor to a valid row and make sure you have a valid result set. You
cannot use the Edit method if either the BOF or EOF properties are true.

Object is invalid or not set (Error 40011)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidObjectS"}

The program called a method or operation on an object that has been closed, discarded, or not
allocated.

To avoid this error, make sure:

· The object has been allocated using the Set syntax.

· The object or its parent objects have not been closed.

· The object has not been set to Nothing.

Partial equality requires string column (Error 40013)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgPartialEqualityS"}

rdoResultset.FindByValues was called specifying DBSEEK_PARTIALEQ on a non-string column.
DBSEEK_PARTIALEQ works only on columns that contain string data.

To avoid this error, use only DBSEEK_PARTIALEQ on string-based columns. Also, this method is
valid only when called by a data source control.

This message is applicable to developers creating third-party bound controls.

The row you attempted to move to has been deleted (Error 40056)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRowDeletedC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRowDeletedS"}

The row you attempted to move to using a bookmark has been deleted from the database. The
database row in question could have been deleted by your program or some other program with
access to the row.

To avoid this error, try the operation again, specifying a valid bookmark.

The rdoResultset is empty (Error 40022)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgrdoResultsetEmptyC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgrdoResultsetEmptyS"}

You attempted to make a call to rdoResultset.Move, rdoResultset.MoveNext, or
rdoResultset.MovePrevious on an empty result set.

To avoid this error, make sure the SQL statement used returns a valid result set before using any of
the previously mentioned methods. You can check to see if a result set is empty by checking the
RowCount property, or by checking to see if both the EOF and BOF properties are True.

The resultset is read only (Error 40058)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgTheResultsetIsReadOnly.S"}

You attempted an Edit, Delete, or AddNew operation on a read-only result set. Make sure you
specify the correct LockType value that supports action queries when you open the result set.

The user canceled the operation. (Error 40059)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgErr40059S"}

The user clicked the Cancel button on an ODBC dialog box.

A control canceled the operation or an unexpected internal error
has occurred.
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCCancelOperationS"}

The RemoteData control tried to update a row based on bound control data, but the Update
operation failed. This usually occurs because of one of the following reasons:

· The data in the bound control fails validation.

· The data is not the correct data type for the result set column.

· The value in the bound control does not match the row description, rule, or trigger criteria.

Examine and modify the data values and retry the operation.

An error has occurred. Unable to retrieve error information (Error
40502)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCRetrieveErrInfoS"}

An error has occurred in the RemoteData control, and no detailed error information is available. This
error occurs only under very unusual circumstances—never during normal operation. You'll get this
error message only when the RemoteData control can't access detailed error information. This
situation only occurs when OLE is not working properly, and is generally an indication of a more
serious error condition.

An unexpected error occurred (Error 40501)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUnexpectedS"}

The RemoteData control tried to call an RDO method that should normally exist. The method was
not found, or the call did not complete correctly. This error occurs only under very unusual
circumstances—never during normal operation. You'll see this error message only when the
RemoteData control can't get a dispatch interface to RDO, or when a method in RDO fails for an
unknown reason. This error message is generally an indication of a more serious error condition.

An unexpected internal error has occurred (Error 40500)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCUnexpectedInternalErrorS"}

The RemoteData control attempted to notify the bound controls that new data is available, but
received a failure code from RDO instead. This error occurs only under very unusual circumstances—
never during normal operation—and only if something is seriously wrong with Visual Basic's binding
manager or the bound controls themselves. This error message is generally an indication of a more
serious error condition.

Could not refresh controls (Error 40504)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRDCRefreshControlC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCRefreshControlS"}

The Refresh method of the RemoteData control failed because of one of the following reasons:

· A connection could not be established.

· A result set could not be opened.

· A bound control failed to update.

Check the connection, the result set, and the control bindings (review information in Help about the
bound control). This error can also occur if the server or network unexpectedly drops the connection.
Generally, it indicates that the rdoResultset or connection is no longer usable.

Invalid object (Error 40506)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRDCInvalidObjectC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCInvalidObjectS"}

An object other than an rdoResultset was assigned to the Resultset property. Assign a valid
rdoResultset object to the Resultset property. The only object that can be assigned to the Resultset
property of the RemoteData control is an rdoResultset object created with another RemoteData
control or the OpenResultset method.

Invalid property value (Error 40505)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCInvalidPropertyS"}

An inappropriate value has been assigned to a property. Most properties only accept values of a
certain type, and within a certain range.

To see the appropriate values for the property, search Help for the property in question.

Method cannot be called in RDC's current state (Error 40507)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRDCMethodNotCalledC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCMethodNotCalledS"}

A method has been called that cannot be completed while an AddNew or Edit operation is in
progress. For example, you cannot call the Refresh method while the RemoteData control (RDC) is
editing an existing row or adding a new row. Make sure AddNew and Edit operations are completed
by executing the Update or CancelUpdate method, or by using one of the Move methods before
calling the method that caused the error.

For additional information, search Help for the method in question.

One or more of the arguments is invalid (Error 40508)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgInvalidArgC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgInvalidArgS"}

A value of at least one of the arguments called by this method is beyond the valid range of values for
the argument. Use valid argument values to call the method.

For additional information, search Help for the method in question.

Out of memory (Error 40510)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgOutOfMemoryS"}

More system resources were required than are available. This error might have one or more of the
following causes and solutions:

· You have too many applications, documents, or source files open.

Close any unnecessary applications, documents, or source files.

· You have too many forms or controls loaded.

Eliminate unnecessary overhead or break up your application so that fewer forms and controls are
loaded at once.

· You have run out of space for Public variables.

Reduce the number of Public variables.

· You have exhausted available TEMP or virtual memory space.

Use the System Resource meter to view available system resources. Check available disk space.

· You have insufficient RAM to run the application or set of applications loaded in memory.

Increase the amount of available RAM by installing additional memory, or reallocate memory to
reduce the size of SmartDrive or other cache memory allocations.

· Your application has generated a memory leak; it allocates memory but does not free it when it is
no longer needed.

· You have written reentrant code that is not properly executed or procedures that allocate excessive
memory for arrays.

Property cannot be set in RDC's current state (Error 40513)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRDCPropertyNotSettableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCPropertyNotSettableS"}

Some properties of the RemoteData control (RDC) cannot be set after you have programmatically
set the Resultset property. If you create an rdoResultset object in code and set it to the Resultset
property of the RemoteData control, the RemoteData control cannot automatically reset certain
properties, such as DataSourceName, Options, Password, QueryTimeout, and UserName. The
RemoteData control cannot reset these properties because the rdoResultset object was created
outside the RemoteData control.

To reset these properties, close the current rdoResultset object, programmatically set the
RemoteData control properties to new values, and call the Refresh method against the RemoteData
control to rebuild the result set.

For additional information, search Help for the property in question.

Property not available in RDC's current state (Error 40514)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRDCPropertyUnavailableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCPropertyUnavailableS"}

Because some properties cannot be accessed until a valid RemoteData control (RDC) / RDO
connection is established, the state of the RemoteData control restricts read access for this property.
Set the appropriate RemoteData control properties and use the Refresh method to establish a
connection.

For additional information, search Help for the property in question.

Resultset is empty (Error 40509)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRSEmptyC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRSEmptyS"}

The result set is empty, so an operation that requires the UpdateRow method cannot be called for a
nonexistent row. Make sure the result set is not empty before calling UpdateRow.

Resultset not available (Error 40511)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRDCResultsetUnavailableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCResultsetUnavailableS"}

The Resultset property cannot find a valid result set because an error occurred while opening the
result set, or the result set is closed. Set the SQL property to a valid value and/or use the Refresh
method against the RemoteData control.

The connection is not open (Error 40512)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgRDCConnectionNotOpenC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRDCConnectionNotOpenS"}

Because there is no connection to a database, the Connection property cannot reference a valid
database connection. To establish a database connection, check the SQL property, set the
DataSourceName or Connection property to a valid value, and use the Refresh method against the
RemoteData control.

Type mismatch (Error 40515)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgTypeMismatchC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgTypeMismatchS"}

The wrong argument type was passed in the RemoteData control event parameter. Check the
argument's values.

For additional information, search Help for the event in question.

Cannot connect to Remote Data Object (Error 40516)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmsgError40516C;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgError40516S"}

The RemoteData control could not create a Remote Data Object. This can occur if the Microsoft
Remote Data Object library was not registered correctly, or if the library is not present on the
computer.

To manually register the Remote Data Object    library, type the following at the command prompt:

regsvr32 msrdo32.dll

If MSRDO32.DLL is not present on your system, reinstall Visual Basic or your application and make
sure you have purchased the Enterprise Edition and the application setup program properly installs it.

A control bound to a data control using this result set canceled the
operation, or was unable to synchronize itself with the result set
(Error 40503).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCONTROLCANCELLEDOPS"}

Either a control bound to a data control using the current result set cancelled the current operation, or
it was unable to synchronize itself with the current result set.

A control canceled the operation or an unexpected internal error
has occurred (Error 40503).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCONTROLINTERNALS"}

Either a control canceled the current operation, or an unexpected internal error occurred, causing the
operation to cancel.

Already at BOF (Error 40030)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgALREADYATBOFS"}

You attempted to use a current row repositioning method like MovePrevious or MoveFirst when the
BOF property is True.

Already at EOF (Error 40031)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgALREADYATEOFS"}

You attempted to use a current row repositioning method like MoveNext or MoveLast when the EOF
property is True.

An attempt was made to issue a SELECT statement using the
Execute method (Error 40057).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgEXECUTES"}

The Execute method is used to execute action queries which do not return rows. The query executed
contains one or more SELECT statements. In some cases, stored procedures call other stored
procedures that contain SELECT statements.

An error has occurred with no information available (Error 40501).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNOINFOS"}

RDO has encountered an internal error. No further information is available about the cause of the
error.

An error has occurred. Unable to retrieve error information (Error
40501).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgERRORINFOS"}

RDO has encountered an internal error. No further information is available about the cause of the
error.

An error occurred loading the Win32 library (version.dll) (Error
40016).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgLOADVERSIONS"}

An invalid ODBC handle was encountered (Error 40004).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgODBCHANDLES"}

Your code referenced an ODBC handle such as the hEnv, hDbc or hStmt properties that were not
valid. If you used the ODBC API directly, you might have made one or more handles invalid.

An unexpected internal error has occurred (Error 40503).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUNEXPECTEDINTERNALS"}

This type of error can be caused by a variety of internal validity checks which indicate your application
might be out of resources, or have other indeterminate problems.

Can't assign value to non-updatable field (Error 40038).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgFIELDNOTUPDATEABLES"}

You attempted to change the Value property of a database column that is marked as read-only.

Can't find table to update (Error 40079).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgTABLENOTFUNDS"}

The SQL parser could not determine the table to be updated.

Can't open result set for unnamed table (Error 40020).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUNAMEDTABLES"}

You must name any tables referenced with the rdoTable object.

Cancel has been selected in an ODBC dialog requesting
parameters needed to complete a connection (Error 40059).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgDLGCANCELEDS"}

The user chose "Cancel" when prompted for needed connection parameters such as user-id,
password or data source name.

Cannot connect to RemoteData Objects (Error 40516).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNORDOS"}

This is caused by a failure to connect to the specified data source. Failure to connect can be caused
by invalid network, remote server, user authorization or other options. It can also be caused by
hardware failure of the network, the remote server, or any associated connectivity components.

Could not load resource library corresponding to rdoLocaleID (Error
40061)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgLOADRESLIBS"}

The locale DLL was not found or is corrupt.

Could not refresh controls (Error 40504).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCONTROLREFRESHS"}

The RemoteData control could not refresh the associated bound controls.

Cursor type should be: rdOpenForwardOnly.    LockType should be:
rdConcurReadOnly.    RowsetSize should be: 1 (Error 40080).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgMUSTFORREADONES"}

For this type of operation, you must use a "cursor-less" result set. By setting the OpenResultset
options as shown, RDO creates a cursor-less result set.

DataType Conversion Error (Error 40517).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgDATACONVS"}

This error is usually caused by an inability to convert Variant data types when trying to set a data
column from a bound control.

Failed to load RDOCURS.DLL (Error 40078).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgFAILLOADFOXS"}

The batch cursor library DLL was not found or is corrupt.

General Client Cursor error (Error 40069).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCLIENTCURSORGENS"}

An attempt was made to execute a BatchUpdate or Requery method without an associated Query
object.

Incompatible data types for compare (Error 40014).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINCOMPATIBLETYPESS"}

You attempted to compare incompatible data types. For example, you tried to compare a binary type
with a numeric type.

Incorrect CursorDiver. Only rdUseClient supported (Error 40075).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCONNNOTFOXS"}

You cannot set the ActiveConnection property unless you are using the Client Batch cursor library.

Incorrect type found when assigning rdoParameter Value property
(Error 40044).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINCORRECTPARAMTYPES"}

The data type assigned to the rdoParameter in question does not match the data type of the value
being assigned. For example, the data type is set to Integer and you are assigning a String value.

Whenever possible, RDO chooses the parameter data types based on information passed back from
the remote data source. You can override that data type by setting the Type property of the
rdoParameter object to the correct type.

Invalid operation for forward-only cursor    (Error 40008).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgOPFWDONLYS"}

Forward-only cursors do not support the current row positioning method being used. You can only use
the MoveNext method to reposition a forward-only cursor.

Invalid Operation (Error 40055).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINVALIDOPS"}

This operation is invalid in this context.

Invalid Option flags (Error 40085).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINVALIDOPTIONS"}

The options chosen are invalid in this context.

Invalid property value (Error 40505).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINVALIDPROPERTYS"}

The value being assigned is invalid for this property.

Invalid row for AddNew (Error 40010).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgADDNEWNOROWS"}

The current row pointer is invalid for this operation.

Invalid state for Move (Error 40023).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINVALIDSTATES"}

You cannot use a Move method in this context.

Method cannot be called in RemoteData control's current state
(Error 40507).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgMETHODS"}

You cannot use this method in the current RemoteData control state.

No current row (Error 40009).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgEDITNOROWS"}

You attempted to edit, delete or perform some other operation when the current row pointer was not
positioned over a valid row. This can occur when:

· All rows of a result set are deleted.

· There are no rows in a result set.

· One or more rows' bookmarks are made invalid.

Object Collection : Can't add non-object item (Error 40053).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNONOBJECTS"}

An attempt was made to add an object to a collection which was of a different type. For example
attempting to add an rdoResultset object to an rdoQueries collection would trigger this error.

Object Collection:Assignment to Count property not allowed (Error
40051).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgADDCOUNTS"}

The Count property of this collection cannot be set in code. It is maintained automatically by Visual
Basic.

Object Collection:Illegal modification - collection is read-only (Error
40049).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCOLLECREADONLYS"}

An attempt was made to remove a member from a read-only collection.

Object is invalid or not set (Error 40011).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgCLOSEDS"}

You attempted to assign a value using an object that was not Set.

One or more of the arguments is invalid (Error 40508).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINVALIDARGUMENTS"}

The arguments supplied are not valid in this context.

Only the rdUseClientBatch cursor driver can support
rdConcurBatch lock type (Error 40081).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgBATCHNOTSUPPORTS"}

The Client Batch cursor library must be used whenever working with optimistic batch updates or
dissociate rdoResultset objects.

RemoteData control reports: Out of memory (Error 40510).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgMEMORYS"}

This can be caused by any of several internal resources being exhausted including RAM, swap space
on disk, or internal handles.

Partial equality requires string column (Error 40013).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgPARTIALCMPS"}

Property cannot be set in RemoteData control's current state (Error
40513).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgSETPROPERTYS"}

Some RemoteData Control properties cannot be set at runtime.

Property not available in RemoteData control's current state (Error
40514).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgAVAILPROPERTYS"}

Some RemoteData Control properties are not available at runtime.

Result set is empty (Error 40509).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRESULTEMPTYS"}

No rows were returned for the result set or all rows have been deleted.

Result set not available (Error 40511).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRESULTUNAVAILABLES"}

The result set cannot be referenced in its current state.

The column buffer is bound so data cannot be appended. Use
Value property to set data (Error 40048).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNOAPPENDONBUNDS"}

The connection is not open (Error 40512).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNOCONNECTIONS"}

The operation attempted requires that the rdoConnection object be associated with a specific server.
Use the EstablishConnection or OpenConnection method to open the connection.

The object is already in the collection (Error 40077).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgALREADYINLISTS"}

You cannot add another member to this collection using the name provided. There is already another
member in the collection with this name.

The object is still in some other collection (Error 40083).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINOTHERCOLLECTIONS"}

The rdoConnection object is not connected to a data source (Error
40071).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNOTCONNECTEDS"}

rdoConnection objects can be instantiated but not connected to a specific data source. To perform
this operation, you must first use the EstablishConnection or OpenConnection method to open the
connection.

The rdoConnection object is already connected to a data source
(Error 40072).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgALREADYCONNECTS"}

You attempted to use the EstablishConnection method against an rdoConnection object while it is
still connected to a data source. Use the Close method to disconnect from the current connection
before retrying the operation.

The rdoConnection object is busy connecting (Error 40073).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgINCONNECTINGS"}

You cannot use the rdoConnection object until the StillConnecting property returns False.

The rdoQuery or rdoResultset has no active connection    (Error
40074).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNOACTIVECONNS"}

The operation you attempted is not permitted unless the object has an active connection.

The result set is read-only    (Error 40058).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgREADONLYS"}

You attempted to update, add or delete rows in a result set that does not support these operations.

This column does not have the ChunkRequired flag set.    Use the
Value property to retrieve its contents (Error 40060).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgNOTCHUNKS"}

You should not use the GetChunk method with columns that do not require its use.

This function is not supported (Error 40082).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgBATCHNOTSUPPORTDAOS"}

This operation is not supported in this context.

This property is currently read-only (Error 40076).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgPROPREADONLYS"}

This property cannot be altered in the current state of its object.

Type mismatch (Error 40515).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgTYPES"}

The data types do not match for the column or parameter specified.

You attempted to reposition to a deleted row (Error 40056).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgRECDELETEDS"}

Either you, or another user sharing this data has deleted the row in question.

You must use AppendChunk to set data in a TEXT or IMAGE
(BLOB) field    (Error 40052).
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmsgUSEAPPENDCHUNKS"}

The number of bytes in the field require use of the AppendChunk method. Check the
ChunkRequired property to determine when the chunk methods are required.

Error Event (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtErrorC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtErrorX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdevtErrorA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtErrorS"}

Occurs only as the result of a data access error that takes place when no Visual Basic code is being
executed.

Syntax

Private Sub object _Error([index As Integer,]Number As Long, Description As String, Scode As
Long, Source As String, HelpFile As String, HelpContext As Long, CancelDisplay As Boolean)

The Error event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

index Identifies the control if it's in a control array.

Number The native error number.

Description Describes the error.

Scode ODBC error return code.

Source Source of the error.

HelpFile The path to a Help file containing more information
on the error.

HelpContext The Help file context number.

CancelDisplay A number corresponding to the action you want to
take, as described in Settings.

Settings

The settings for CancelDisplay are:

Constant Value Description

rdDataErrContinue 0 Continue.

rdDataErrDisplay 1 (Default) Display the
error message.

Remarks

Generally, the Error event arguments correspond to the properties of the rdoError object.

You usually provide error-handling functionality for run-time errors in your code. However, run-time
errors can occur when none of your code is running, as when:

· A user clicks a RemoteData control button.

· The RemoteData control attempts to open an rdoConnection and creates rdoResultset objects
after the Form_Load event.

· A custom control performs an operation, such as the MoveNext method, the AddNew method, or
the Delete method.

If an error results from one of these actions, the Error event occurs.

If you don't code an event procedure for the Error event, Visual Basic displays the message
associated with the error.

Reposition Event (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtRepositionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtRepositionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtRepositionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtRepositionS"}

Occurs after a row becomes the current row.

Syntax

Private Sub object.Reposition ([index As Integer])

The Reposition event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

index Identifies the control if it's in a control array.

Remarks

When a RemoteData control is loaded, the first row in the rdoResultset object becomes the current
row, causing the Reposition event to fire. The Reposition event fires after each row becomes current:

Whenever a user clicks any button on the RemoteData control to move from row to row.

· You use one of the Move methods, such as MoveNext.

· You use any other property or method that changes the current row

In contrast, the Validate event occurs before moving to a different row. The RowCurrencyChange
event associated with the rdoResultset also fires when the current result set row changes.

You can use the Reposition event to perform calculations based on data in the current row or to
change the form in response to data in the current row.

Validate Event (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtValidateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtValidateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtValidateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtValidateS"}

Occurs before a different row becomes the current row; before the Update method (except when data
is saved with the UpdateRow method); and before a Delete, Unload, or Close operation.

Syntax

Private Sub object_Validate ([index As Integer,] action As Integer, save As Integer)

The Validate event syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

index Identifies the control if it's in a control array.

action An Integer or constant that indicates the operation
causing this event to occur, as described in Settings.

save A Boolean expression that specifies whether bound
data has changed, as described in Settings.

Settings

The settings for action are:

Constant Value Description

rdActionCancel 0 Cancel the operation when the Sub
exits.

rdActionMoveFirst 1 MoveFirst method.

rdActionMovePreviou
s

2 MovePrevious method.

rdActionMoveNext 3 MoveNext method.

rdActionMoveLast 4 MoveLast method.

rdActionAddNew 5 AddNew method.

rdActionUpdate 6 Update operation (not UpdateRow).

rdActionDelete 7 Delete method.

rdActionFind 8 Find method (not implemented).

rdActionBookmark 9 The Bookmark property has been
set.

rdActionClose 10 The Close method.

rdActionUnload 11 The form is being unloaded.

rdActionUpdateAddNe
w

12 A new row was inserted into the result
set.

rdActionUpdateModifi
ed

13 The current row changed.

rdActionRefresh 14 Refresh method executed.

rdActionCancelUpdate 15 Update canceled.

rdActionBeginTransac
t

16 BeginTrans method.

rdActionCommitTrans 17 CommitTrans Method.

act

rdActionRollbackTran
sact

18 RollbackTrans Method

rdActionNewParamete
rs

19 Change in parameters, or order of
columns or rows.

rdActionNewSQL 20 SQL statement changed.

The settings for save are:

Setting Description

True A Boolean expression indicating bound data has
changed.

False A Boolean expression indicating bound data has not
changed.

Remarks

The save argument initially indicates whether bound data has changed. This argument can still be
False if data in the copy buffer is changed. If save is True when this event exits, the Edit and
UpdateRow methods are invoked.

This event can occur regardless of whether data in bound controls changes, or whether bound
controls exist. You can use this event to change values and update data. You can also choose to save
data or stop whatever action is causing the event to occur and substitute a different action.

You can change the various Move methods and the AddNew method, which can be freely exchanged
(any Move into AddNew, any Move into any other Move, or AddNew into any Move). Attempting to
change AddNew or one of the Moves into any of the other actions is either ignored or produces a
trappable error. Any action can be stopped by setting action to rdActionCancel. If you change the
action argument, the current action will also be canceled.

In your code for this event, you can check the data in each bound control where DataChanged is
True. You can then set DataChanged to False to avoid saving that data in the database.

Note      Because a data-aware control can have more than one bound property, the DataChanged
property must be examined for each of the bound properties as enumerated in the Bindings
collection.

You can't use any methods (such as MoveNext) on the underlying rdoResultset object during this
event.

QueryCompleted Event (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtQueryCompletedC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtQueryCompletedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtQueryCompletedA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtQueryCompletedS"}

Occurs after the query of an rdoResultset generated by a RemoteData Control returns the first result
set.

Syntax

Private Sub object.QueryCompleted ([index As Integer])

The QueryCompleted event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

index Identifies the control if it's in a control array.

Remarks

When a RemoteData control completes the creation of an rdoResultset, the QueryCompleted event
is fired. This event is not triggered if you execute the Cancel method which terminates processing of
the query before the query has been completed.

This event fires for both asynchronous and synchronous query operations.

RDO Events Example

This example illustrates several of the Remote Data Object (RDO) event handlers. The code
establishes event variables and handlers to trap connection and query events. To help illustrate use of
the BeforeConnect event, the code concatenates a workstation ID value and the current time to the
end of the connect string. This permits identification of the specific connection at the server. After
establishing the connection, the code executes a query that takes an fairly long time to execute — the
query is designed to run for about a minute. Because a 5 second QueryTimeout value is set, the
QueryTimeout event should fire unless the query returns before 5 seconds has elapsed. Notice that
the query itself is run asynchronously and the code does not poll for completion of the query. In this
case the code simply waits for the QueryComplete or QueryTimeout events to fire — indicating that
the query is finished. The code also permits you to request another 5 seconds of waiting time.

Option Explicit
Private WithEvents cn As rdoConnection
Private WithEvents EngEv As rdoEngine
Dim er As rdoError
Dim strConnect As String
Dim rs As rdoResultset
Dim TimeStart As Single
Dim clock As Integer

Private Sub EngEv_InfoMessage()
 InfoMsg = "For your information..." _

& " the following message" _
 & " was returned by the server." & vbCrLf
 For Each er In rdoErrors
 InfoMsg = InfoMsg & er.Number _

& " - " & er.Description & vbCrLf
 Next

End Sub
Private Sub cn_BeforeConnect(_

ConnectString As String, Prompt As Variant)
 InfoMsg = "About to connect to:" & ConnectString _

& " - " & Prompt
 ConnectString = ConnectString & ";WSID=" _

& "EventTest" & Time$ & ";"
End Sub

Private Sub cn_Connect() 'Fires once connected.
 Connected = True
End Sub

Private Sub cn_Disconnect()'Fires when disconnected
 Connected = False
End Sub

Private Sub cn_QueryComplete(_
ByVal ErrorOccured As Boolean)

 Timer1.Enabled = False
 QueryComplete = vbChecked
 RunButton.Enabled = True
 Beep

 MsgBox "Query Done"

End Sub

Private Sub cn_QueryTimeout(Cancel As Boolean)
 ans = MsgBox("The query did not complete "

& "in the time allocated. " _
& "Press Cancel to abandon the query " _
& "or Retry to keep working.", _

 vbRetryCancel + vbQuestion, "Query Timed Out")
 If ans = vbRetry Then
 Cancel = False
 QueryComplete = vbGrayed
 Else
 Timer1.Enabled = False
 QueryComplete = vbChecked
 End If
End Sub

Private Sub MenufileExit_Click()
cn.Close
Unload Form1
End Sub

Private Sub RunButton_Click()
 RunButton.Enabled = False
 On Error GoTo C1EH
 QueryComplete = vbGrayed
 Timer1.Enabled = True
 Set rs = cn.OpenResultset(_

"execute VeryLongProcedure", _
 rdOpenKeyset, rdConcurValues, rdAsyncEnable)
 TimeStart = Timer
QuitRun:
Exit Sub
C1EH:
 Debug.Print Err, Error
 InfoMsg = "Error:.. the following error" _
 & " was returned by the server." & vbCrLf
 For Each er In rdoErrors
 InfoMsg = InfoMsg & er.Number _

& " - " & er.Description & vbCrLf
 Next
 MsgBox "Query Failed to run"
 Timer1.Enabled = False
 Resume QuitRun

End Sub

Private Sub Form_Load()
On Error GoTo FLeh
Set EngEv = rdoEngine
Set cn = New rdoConnection
Show
 With cn
 .Connect = "UID=;PWD=;database=Workdb;" _
 & "Server=SEQUEL;" _

& "driver={SQL Server};DSN='';"
 .QueryTimeout = 5

 .CursorDriver = rdUseClientBatch
 .EstablishConnection rdDriverNoPrompt
 End With
Exit Sub

FLeh:
 Debug.Print Err, Error
 For Each er In rdoErrors
 Debug.Print er.Description
 Next
 Stop
 Resume

End Sub

Private Sub Timer1_Timer()
Static ot As Integer
' Display number of seconds
ShowClock = Int(Timer - TimeStart)
If ShowClock = ot Then ShowClock.Refresh
End Sub

BeforeConnect Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtBeforeConnectC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtBeforeConnectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtBeforeConnectA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtBeforeConnectS"}

Occurs just before RDO calls the ODBC API SQLDriverConnect function to establish a connection to
the server.

Syntax

Private Sub object.BeforeConnect(ConnectString as String, Prompt as Variant)

The BeforeConnect event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

ConnectString A Variant expression that evaluates to a connect
string used to provide connect parameters for the
ODBC SQLDriverConnect function.

Prompt Determines how the user should be prompted.

Remarks

The BeforeConnect event is fired just before RDO calls the ODBC API SQLDriverConnect function
to establish a connection to the server. This event gives your code an opportunity to provide custom
prompting, or just provide or capture connection information.

The ConnectString parameter is the ODBC connect string RDO will pass to the ODBC API
SQLDriverConnect function. This string can be changed during this event, and RDO will use the
changed value. For example, your code can provide additional parameters, or change existing
parameters of the connect string.

The Prompt parameter is the ODBC prompting constant (see the Prompt property). This parameter
will default to the value of the Prompt parameter passed in the OpenConnection or
EstablishConnection methods. The developer may change this value, and RDO will use the new
value when calling SQLDriverConnect.

Associate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtAssociateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtAssociateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtAssociateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtAssociateS"}

Fired after a new connection is associated with the object.

Syntax

Private Sub object.Associate()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

This event is raised after the result set is associated with a new rdoConnection object. You can use
this event to initialize the new connection. The ActiveConnection property of the associated
rdoResultset object refers to the new connection.

For example, you can use the Associate event procedure to send a special query each time a
connection is established, but before other operations are executed.

BeginTrans Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtBeginTransC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtBeginTransX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtBeginTransA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtBeginTransS"}

Occurs after the BeginTrans method has completed.

Syntax

Private Sub object.BeginTrans()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

The BeginTrans event is raised after a BeginTrans method has completed. This event procedure can
synchronize some other process with the transaction.

CommitTrans Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtCommitTransC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtCommitTransX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtCommitTransA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtCommitTransS"}

Occurs after the CommitTrans method has completed.

Syntax

Private Sub object.CommitTrans()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

This event is raised after a CommitTrans method has been executed. The developer can respond to
this event to synchronize some other process with the transaction.

Connect Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtConnectC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtConnectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtConnectA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtConnectS"}

Occurs after a connection is established to the server.

Private Sub object.Connect(ErrorOccurred As Boolean)

Part Description

object An object expression that evaluates to an object in
the Applies To list.

ErrorOccurred A Boolean expression that determines whether the
connection was successful, as described in Settings.

Settings

The ErrorOccurred argument will be set to one of the following values:

Value Description

True The connection failed.

False The connection succeeded.

Remarks

You can catch the Connect event and do any kind of initial queries required on a new connection,
such as verifying the version of the database against the version of the client or setting a default
database not established in the connect string. You can also check for errors or messages returned
during the process of opening the connection — or perhaps simply clear the rdoErrors collection of
informational messages.

DataChanged Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtDataChangeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtDataChangedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtDataChangeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtDataChangedS"}

Occurs when the value of the column has changed.

Syntax

Private Sub object.DataChanged()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

This event is raised after the data in a column has been changed. The new data can be accessed
through the rdoColumn object's Value property. You can also use the WillChange event to prevent or
modify the change about to be made on a column-by-column basis. However, once the DataChanged
event fires, the change has already been committed to the database.

Disconnect Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtDisconnectC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtDisconnectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtDisconnectA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtDisconnectS"}

Occurs after a connection has been closed.

Private Sub object.Disconnect()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Fired after a physical connection is closed. The developer can catch this event to do any clean-up
work necessary.

Applies to rdoConnection object.

Dissociate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtDissociateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtDissociateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtDissociateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtDissociateS"}

Occurs after an rdoResultset object has been dissociated from a connection.

Private Sub object.Dissociate()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

This event is raised after the ActiveConnection property has been set to Nothing and the result set
has been dissociated from its connection.

InfoMessage Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtInfoMessageC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtInfoMessageX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtInfoMessageA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtInfoMessageS"}

Occurs when informational messages are added to the rdoErrors collection.

Private Sub object.InfoMessage()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

This event is raised after RDO receives a SQL_SUCCESS_WITH_INFO return code from the ODBC
Driver Manager, and populates the rdoErrors collection with the informational messages.

The InfoMessage event is raised once for each set of informational messages. Thus, if an RDO
method generates several informational messages, this event is raised only once — after the last
message has been added to the collection. You can trap this event and examine the contents of the
rdoErrors collection and decide what action is appropriate.

QueryComplete Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtQueryCompleteC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtQueryCompleteX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtQueryCompleteA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtQueryCompleteS"}

Occurs after the query of an rdoResultset returns the first result set

Syntax

Private Sub object.QueryComplete(Query as rdoQuery, ErrorOccured as Boolean)

The QueryComplete event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

Query An object expression that evaluates to an rdoQuery
object whose query has just completed.

ErrorOccured A Boolean expression indicating if an error occurred
while processing the query.

The settings for ErrorOccurred are:

Setting Description

True An error occurred during query processing.

False An error did not occur during query processing.

Fired when a query has completed. You can use this event as a notification that the result set is now
ready for processing.

The ErrorOccured parameter indicates if there was an error while the query was executing. If this
flag is True, you should check the rdoErrors collection for more information.

The QueryComplete event fires for all queries execute on this rdoConnection. This includes those
queries executed via the OpenResultset or Execute methods, as well as those executed from an
associated rdoQuery object. The Query argument is an object reference indicating which query just
finished executing. Using this argument, you can write a single event handler for all queries on the
connection, but still customize the handler for specific queries. When executing queries against the
rdoConnection object itself, RDO creates an rdoQuery object internally, and a reference to this
internal rdoQuery is passed as the Query argument.

This event should be used instead of polling the StillExecuting property to test for completion of
OpenResultset or Execute method queries.

QueryTimeout Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtQueryTimeoutC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtQueryTimeoutX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtQueryTimeoutA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtQueryTimeoutS"}

Occurs when the query execution time has exceeded the value set in the QueryTimeout property.

Syntax

Private Sub object.QueryTimeout(Query as rdoQuery, Cancel as Boolean)

The BeforeConnect event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

Query An object expression that evaluates to an rdoQuery
object whose query has just completed.

Cancel A Boolean expression indicating if an error occurred
while processing the query.

The settings for Cancel are:

Setting Description

True RDO should cancel further query processing.

False RDO should continue processing the query for another
query timeout period.

Remarks

Fired when a running query has exceeded the time specified by the QueryTimeout property. This
event is fired each time the QueryTimeout time has been reached. This event is fired on both
asynchronous and synchronous queries.

The Cancel parameter indicates if RDO should cancel the query or continue processing the query
and wait for the number of seconds specified in the QueryTimeout property. The default value of this
parameter is True, so if your code not respond to this event, the query is canceled after the
QueryTimeout time has been reached. If the value of the parameter is set to False, RDO continues
to wait for the query to complete for another QueryTimeout period.

You can use this method to display a message box to the user asking them if they wanted to cancel
the query, or continue to wait another N seconds.

The QueryTimeout event fires for all queries execute on this rdoConnection. This includes those
queries executed via the OpenResultset or Execute methods, as well as those executed from an
associated rdoQuery object. The Query argument is an object reference indicating which query just
timed out. Using this argument, you can write a single event handler for all queries on the connection,
but still customize the handler for specific queries. When executing queries against the
rdoConnection object itself, RDO creates an rdoQuery object internally, and a reference to this
internal rdoQuery is passed as the Query argument.

ResultsChanged Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtResultsChangeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtResultsChangeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtResultsChangeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtResultsChangedS"}

Occurs when a new result set is made available after the MoreResults method is executed.

Private Sub object.ResultsChanged()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

This event is raised after the MoreResults method completes and a new set of rows is loaded into
the result set. This event is fired even if there are no more sets and the MoreResults method returns
False. In this case, both the EOF and BOF properties will be True, indicating that the result set is
empty.

RollbackTrans Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtRollbackTransC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtRollbackTransX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtRollbackTransA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtRollbackTransS"}

Occurs after the RollbackTrans method has completed.

Private Sub object.RollbackTrans()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

You can respond to this event to synchronize some other process with the transaction.

RowCurrencyChange Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtRowCurrencyChangeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtRowCurrencyChangeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtRowCurrencyChangeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtRowCurrencyChangeS"}

Occurs after the result set has repositioned to a new row, BOF or EOF.

Private Sub object.RowCurrencyChange()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

This event is raised after the result set has repositioned to a new row, or has moved to either BOF or
EOF. Any of the Move methods, the AbsolutePosition, PercentPosition, or Bookmark properties,
or the Requery, MoreResults, or Update (after an AddNew) methods can also cause a the current
row pointer to be repositioned and cause the RowCurrencyChange event to fire. The current position
can be determined by accessing the AbsolutePosition, PercentPosition, or Bookmark properties
of the object.

The RowCurrencyChange event can be used to execute a detail query when an associated master
row currency changes. For example, if you setup a form containing a master customer record, and a
set of rows corresponding to customer orders, you can use the RowCurrencyChange event to launch
a query that returns all associated order information each time the user chooses another master
customer record.

Note      The order in which the RowCurrencyChange and Reposition events fire cannot be predicted.

RowStatusChanged Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtRowStatusChangeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtRowStatusChangeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtRowStatusChangeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtRowStatusChangeS"}

Occurs after the data state of the current row changes due to an edit, delete or insert.

Private Sub object.RowStatusChange()

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

This event is raised after the status of the current row data changes. The status of a row can change
due to an Delete, or Update operation. The current status for the row can be determined using the
Status property of the object.

WillAssociate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtWillAssociateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtWillAssociateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtWillAssociateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtWillAssociateS"}

Occurs before a new connection is associated with the object.

Private Sub object.WillAssociate(Connection as rdoConnection, Cancel as Boolean)

The WillAssociate event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

Connection An object expression that evaluates to the
rdoConnection object that is to be associated.

Cancel A Boolean expression indicating if RDO should
prohibit the association.

The settings for Cancel are:

Setting Description

True RDO will prohibit the association.

False (Default) RDO will not prohibit the association.

Remarks

This event is raised after you set the ActiveConnection property to a valid rdoConnection object,
but before the actual associate is made.

The Connection argument is a reference to the rdoConnection object that you are attempting to
associate with the rdoResultset object. When the WillAssociate event is raised, the
ActiveConnection property remains set to the value before the attempted association. You can use
this property to determine the current rdoResultset connection association.

You can prohibit the association by setting the Cancel argument to True, causing RDO to not
associate the result set with the new connection and produce a runtime error. If you do not prohibit
the association using the Cancel argument, the ActiveConnection property is set to the reference
contained in the Connection parameter after this event procedure completes.

WillChangeData Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtWillChangeDataC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtWillChangeDataX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtWillChangeDataA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtWillChangeDataS"}

Occurs before data is changed in the column.

Private Sub object.WillChangeData(NewValue as Variant, Cancel as Boolean)

The WillChangeData event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

NewValue A Variant expression containing the data to be
applied to the column.

Cancel A Boolean expression indicating if RDO should
prohibit the change.

The settings for Cancel are:

Setting Description

True RDO will prohibit the change.

False (Default) RDO will not prohibit the change.

Remarks

This event is raised just before RDO commits any change to the data in a column. By trapping this
event, you can either modify the new value, or prohibit the change by modifying the Cancel
argument.

If you modify the NewValue parameter, the modified value is assigned to the column’s Value
property. This allows you translate or substitute data.

By default, the Cancel argument is False, but if you set it to True, the change to the column’s data is
canceled, and RDO generates a trappable error.

WillDissociate Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtWillDissociateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtWillDissociateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtWillDissociateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtWillDissociateS"}

Occurs before the connection is set to nothing.

Private Sub object.WillDissociate(Cancel as Boolean)

The WillDissociate event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

Cancel A Boolean expression indicating whether RDO
should prohibit the disassociation.

The settings for Cancel are:

Setting Description

True RDO will prohibit the change.

False (Default) RDO will not prohibit the change.

Remarks

This event is raised when the developer attempts to set the ActiveConnection property to Nothing
but before the result set is dissociated from the connection.

If you wish to prohibit the dissociation, set the Cancel parameter to True, causing RDO to cancel the
operation and trigger a trappable error.

The default value for the Cancel parameter is False, so if the event is not trapped, the dissociation is
completed.

WillExecute Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtWillExecuteC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtWillExecuteX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtWillExecuteA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtWillExecuteS"}

Occurs before the execution of a query,

Private Sub object.WillExecute(Query as rdoQuery, Cancel as Boolean)

The WillExecute event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

Query An object expression that evaluates to an rdoQuery
object whose query has just completed.

Cancel A Boolean expression indicating if RDO should
prohibit the change.

The settings for Cancel are:

Setting Description

True RDO will prohibit the change.

False (Default) RDO will not prohibit the change.

Remarks

This event is fired before the execution of a query, regardless if it is an action or row-returning query.
You can trap this event to disallow the execution of certain queries, or to make last-minute
adjustments to the rdoQuery object's SQL string.

The Cancel argument allows you to disallow the query. The Cancel parameter will default to False,
but if you set it to True, the query will not execute, and RDO generates a trappable error indicating
that the query was canceled.

For example, you can pre-screen the query to make sure the WHERE clause will not cause a table-
scan operation. Thus, by setting the Cancel argument to True, you can prohibit users from searching
for customers with the last name of “Smith” without also providing a first name or street address.

The WillExecute event fires for all queries execute on this rdoConnection. This includes those
queries executed via the OpenResultset or Execute methods, as well as those executed from an
associated rdoQuery object. The Query argument is an object reference indicating which query is
about to execute. Using this argument, you can write a single event handler for all queries on the
connection, but still customize the handler for specific queries. When executing queries against the
rdoConnection object itself, RDO creates an rdoQuery object internally, and a reference to this
internal rdoQuery is passed as the Query argument.

WillUpdateRows Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdevtWillUpdateRowsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdevtWillUpdateRowsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdevtWillUpdateRowsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdevtWillUpdateRowsS"}

Occurs before an update to the database occurs.

Private Sub object.WillUpdateRows(ReturnCode as Long)

The WillUpdateRows event syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

RetrunCode An Long integer expression or constant indicating
whether the developer handled the update or not as
described in Settings.

The Value argument is used to notify RDO about what your code did during the event handling. The
possible values for this argument are as follows:

Setting Description

rdUpdateSuccessful Your code handled the update and was
successful in doing so.

rdUpdateWithCollisions Your code handled the update successfully,
but some rows produced collisions (batch
mode only).

rdUpdateFailed Your code attempted to handle the update,
but encountered an error when doing so.

rdUpdateNotHandled Your code did not handle the update. RDO
should continue notifying and if no one
handles the update, RDO should update the
data itself.

Remarks

The WillUpdateRows event is raised before updated, new and deleted rows are committed to the
server. You can override the update behavior of the cursor by responding to this event and perform
your own updates using stored procedures or any other mechanism you choose.

If the result set is using batch optimistic concurrency, this event is only raised when the BatchUpdate
method is called. In this case, the    entire set of changes is about to be transmitted to the server.

If the result set is not in a batch mode, the WillUpdateRows event is raised for each call to the Update
method, since the changes for that row are immediately sent to the server.

To summarize, no matter what mode the result set is in, this event is only raised before data is
actually sent to the server.

If you set the ReturnCode argument to rdUpdateSuccessful, RDO assumes that your code
successfully handled the update. RDO will not send this event to any additional clients (if there is
more than one handler of this event) and the status for the row(s) and their columns is set to
rdRowUnmodified and rdColUnmodified respectively.

If you set the ReturnCode parameter to rdUpdateWithCollisions, RDO    assumes that you have
successfully handled the update, but some rows caused collisions. RDO will not send this event to
any additional clients (if there was more than one handler of this event) and the status for the rows
and their columns is not changed. It is your code's responsibility to set the column status flags during
the handling of this event. The rdUpdateWithCollisions would only be used if you are using batch

optimistic concurrency and you wanted to check for and handle collisions in code.

If the developer sets the ReturnCode parameter to rdUpdateFailed, RDO assumes that your code
attempted to handle the update, but encountered an error while doing so. RDO will not send this
event to any additional clients (if there was more than one handler of this event) and the status for the
row(s) and their columns remains unchanged. Finally, RDO generates a runtime error to be trapped
by the Update method causing the WillUpdate event to fire.

If you set the ReturnCode parameter to rdUpdateNotHandled, RDO will assume that the developer
did not handle the update, and RDO will continue to raise this event to all remaining clients (if there
was more than one handler of this event). If all clients return rdUpdateNotHandled, RDO will perform
the update itself, according the normal rules.

The default value for the ReturnCode parameter is rdUpdateNotHandled, so if no client sinks the
event, or no client changes the value of ReturnCode, RDO will perform the update.

AddNew Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthAddNewC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthAddNewX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthAddNewA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthAddNewS"}

Creates a new row for an updatable rdoResultset object.

Syntax

object.AddNew

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

The AddNew method prepares a new row you can edit and subsequently add to the rdoResultset
object named by object using the Update method. This method initializes the columns to
SQL_IGNORE to ensure columns not specifically referenced are not included in the update operation.

When the AddNew method is executed, the EditMode property is set to rdEditAdd until you execute
the Update method.

After you modify the new row, use the Update method to save the changes and add the row to the
result set. No changes are made to the database until you use the Update method — unless you are
using the Client Batch cursor library — which does not write to the database until the BatchUpdate
method is used.

The AddNew method does not return an error if the rdoResultset is not updatable. A trappable error
is triggered when the Update method is used against an object that is not updatable. For an object to
be updatable, the rdoColumn, rdoResultset, and rdoConnection objects must all be updatable —
check the Updatable property of each of these objects before performing an update. There are a
variety of reasons why an rdoResultset is not updatable as discussed in the Update method topic.

Caution      If you use the AddNew method on a row and then perform any operation that moves to
another row without using Update, your changes are lost without warning. In addition, if you close the
object or end the procedure which declares the object or its rdoConnection object, the new row and
the changes made to it are discarded without warning.

A newly added row might be visible as a part of the rdoResultset if your data source and type of
cursor support it. For example, newly added rows are not included in a static-type rdoResultset.

When newly added rows are included in the rdoResultset, the row that was current before you used
AddNew remains current. When the row is added to the cursor keyset, and you want to make the
new row current, you can set the Bookmark property to the bookmark identified by the LastModified
property setting.

If you need to cancel a pending AddNew operation, use the CancelUpdate method.

When you use the Update method after using the AddNew method, the RowCurrencyChange event
is fired.

AddNew, Update, CancelUpdate Method Example

The following example illustrates use of the AddNew method to add new rows to a base table. This
example assumes that you have read-write access to the table, that the column data provided meets
the rules and other constraints associated with the table, and there is a unique index on the table. The
data values for the operation are taken from three TextBox controls on the form. Note that the unique
key for this table is not provided here as it is provided automatically – it is an identity column.

Option Explicit
Dim er As rdoError
Dim cn As New rdoConnection
Dim qy As New rdoQuery
Dim rs As rdoResultset
Dim col As rdoColumn

Private Sub AddNewJob_Click()
On Error GoTo ANEH

With rs
.AddNew
!job_desc = JobDescription
!min_lvl = MinLevel
!max_lvl = MaxLevel
.Update

End With
Exit Sub

UpdateFailed:
MsgBox "Update did not suceed."
rs.CancelUpdate
Exit Sub
A
NEH:
Debug.Print Err, Error
For Each er In rdoErrors

Debug.Print er
Next
Resume UpdateFailed

End Sub

Private Sub Form_Load()

cn.CursorDriver = rdUseOdbc
cn.Connect = "uid=;pwd=;server=sequel;" _

& "driver={SQL Server};database=pubs;dsn=’’;"
cn.EstablishConnection
With qy

.Name = "JobsQuery"

.SQL = "Select * from Jobs"

.RowsetSize = 1
Set .ActiveConnection = cn
Set rs = .OpenResultset(rdOpenKeyset, _

rdConcurRowver)
Debug.Print rs.Updatable

End With

Exit Sub
End Sub

AppendChunk Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthAppendChunkC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthAppendChunkX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthAppendChunkA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthAppendChunkS"}

Appends data from a Variant expression to an rdoColumn object with a data type of
rdTypeLONGVARBINARY or rdTypeLONGVARCHAR.

Syntax

object ! column.AppendChunk source

The AppendChunk method syntax has these parts:

Part Description

object An object expression that evaluates to the rdoResultset
object containing the rdoColumns collection.

column An object expression that evaluates to an rdoColumn object
whose ChunkRequired property is set to True.

source A string expression or variable containing the data you want
to append to the rdoColumn object specified by column.

Remarks

Chunk data columns are designed to store large binary (BLOB) or text values    that can range in size
from a few characters to over 1.2GB and are stored in the database on successive data pages. In
many cases, chunk data cannot be managed with a single operation, so you must use the chunk
methods to save and write data. If the ChunkRequired property is True for a column, you should use
the AppendChunk method to manipulate column data. However, if there is sufficient internal memory
available, RDO might be able to carry out the operation without use of the AppendChunk method. In
other words, you might be able to simply assign a value to a BLOB column.

Use the AppendChunk method to write successive blocks of data to the database column and
GetChunk to extract data from the database column. Certain operations (copying, for example)
involve temporary strings. If string space is limited, you may need to work with smaller segments of a
chunk column instead of the entire column.

Use the BindThreshold property to specify the largest column size that will be automatically bound.

Use the ColumnSize property to determine the number of bytes in a chunk column. Note that for
variable-sized columns, it is not necessary to write back the same number of bytes as returned by the
ColumnSize property as ColumnSize reflects the size of the column before changes are made.

If there is no current row when you use AppendChunk, a trappable error occurs.

Note      The initial AppendChunk (after the first Edit method), even if the row already contains data,
replaces existing column data. Subsequent AppendChunk calls within a single Edit session appends
data to existing column data.

AppendChunk, GetChunk Method Example

This example illustrates use of the AppendChunk and GetChunk methods to write page-based
binary large object (BLOB) data to a remote data source. The code expects a table with a char, text,
and image field named Chunks. To create this table, submit the following as an action query against
your test database:

CREATE TABLE Chunks (ID integer identity NOT NULL, PName char(10) NULL,
Description TEXT NULL,
Photo IMAGE NULL)
CREATE UNIQUE INDEX ChunkIDIndex on Chunks(ID)

Once the table is created, you will need to locate one or more .BMP or other suitable graphics images
that can be loaded by the PictureBox control.

'
Option Explicit
Dim en As rdoEnvironment
Dim Qd As rdoQuery
Dim Cn As rdoConnection
Dim Rs As rdoResultset
Dim SQL As String
Dim DataFile As Integer, Fl As Long, Chunks As Integer
Dim Fragment As Integer, Chunk() As Byte, I As Integer
Const ChunkSize As Integer = 16384

Private Sub Form_Load()
Set en = rdoEnvironments(0)
Set Cn = en.OpenConnection(dsname:="", _
Connect:="UID=;PWD=;DATABASE=WorkDB;" _
& "Driver={SQL Server};SERVER=Betav486", _
prompt:=rdDriverNoPrompt)
Set Qd = Cn.CreateQuery("TestChunk", "Select * from Chunks Where PName
= ?")
End Sub
Private Sub LoadFromFile_Click()
'
' Locates a file and sets the Filename to this file.
'
With CommonDialog1
.Filter = "Pictures(*.bmp;*.ico)|*.bmp;*.ico"
.ShowOpen
FileName = .FileName
End With
End Sub

Private Sub ReadFromDB_Click()
If Len(NameWanted) = 0 Then _
NameWanted = InputBox("Enter name wanted", "Animal")
Qd(0) = NameWanted
Set Rs = Qd.OpenResultset(rdOpenKeyset, rdConcurRowver)
If Rs Is Nothing Or Rs.Updatable = False Then
MsgBox "Can’t open or write to result set"
Exit Sub
End If
If Rs.EOF Then

MsgBox "Can’t find picture by that name"
Exit Sub
End If
Description = Rs!Description
DataFile = 1
Open "pictemp" For Binary Access Write As DataFile
Fl = Rs!Photo.ColumnSize
Chunks = Fl \ ChunkSize
Fragment = Fl Mod ChunkSize
ReDim Chunk(Fragment)
Chunk() = Rs!Photo.GetChunk(Fragment)
Put DataFile, , Chunk()
For I = 1 To Chunks
ReDim Buffer(ChunkSize)
Chunk() = Rs!Photo.GetChunk(ChunkSize)
Put DataFile, , Chunk()
Next I
Close DataFile
FileName = "pictemp"
End Sub

Private Sub SaveToDB_Click()
If Len(NameWanted) = 0 Then _
NameWanted = InputBox("Enter name for this" _
& " picture", "Animal")
Qd(0) = NameWanted
Set Rs = Qd.OpenResultset(rdOpenKeyset, _
rdConcurRowver)
If Rs Is Nothing Or Rs.Updatable = False Then
MsgBox "Can’t open or write to result set"
Exit Sub
End If
If Rs.EOF Then
Rs.AddNew
Rs!PName = NameWanted
If Description = "" Then _
Description = InputBox("Describe the picture", _
"Don’t care")
'Rs!Description = Description
Else
Rs.Edit
End If
DataFile = 1
Open FileName For Binary Access Read As DataFile
Fl = LOF(DataFile) ' Length of data in file
If Fl = 0 Then Close DataFile: Exit Sub
Chunks = Fl \ ChunkSize
Fragment = Fl Mod ChunkSize
Rs!Photo.AppendChunk Null
ReDim Chunk(Fragment)
Get DataFile, , Chunk()
Rs!Photo.AppendChunk Chunk()
ReDim Chunk(ChunkSize)
For I = 1 To Chunks
Get DataFile, , Chunk()
Rs!Photo.AppendChunk Chunk()
Next I

Close DataFile
Rs.Update
End Sub

Private Sub FileName_Change()
Picture1.Picture = LoadPicture(FileName)
End Sub

BeginTrans, CommitTrans, RollbackTrans Methods (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthBeginTransC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthBeginTransX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthBeginTransA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthBeginTransS"}

The transaction methods manage transaction processing during a session represented by the object
placeholder as follows:

· BeginTrans begins a new transaction.

· CommitTrans ends the current transaction and saves the changes.

· RollbackTrans ends the current transaction and restores the databases in the rdoEnvironment
object to the state they were in when the current transaction began.

You can use the transaction methods with an rdoConnection object — but in this case, the
transaction scope only includes rdoResultset and rdoQuery objects created under the
rdoConnection.

Syntax

object.BeginTrans | CommitTrans | RollbackTrans

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

You use the transaction methods with an rdoEnvironment or rdoConnection object when you want
to treat a series of changes made to the databases in a session as one logical unit. That is, either the
set of operations completes as a set, or is rolled back as a set. This way if any operation in the set
fails, the entire transaction fails. Transactions also permit you to make temporary changes to the
database – changes that can be undone with the RollbackTrans method.

Typically, ODBC drivers work in one of two modes:

· Auto-commit Mode: When you have not explicitly started a transaction using the BeginTrans
method, every operation executed is immediately committed to the database upon completion.

· Manual-commit Mode: When you explicitly start a transaction using the BeginTrans method or
use the ODBC SQLSetStmtOption function to disable the SQL_AUTO_COMMIT mode, or send
an SQL statement to begin a transaction (BEGIN TRANS), operations are part of a transaction and
no changes are committed to the database until you use the CommitTrans method. If the
connection fails before CommitTrans is executed, or you use the RollbackTrans method, the
operations are undone — rolled back.

Note      When working with remote servers that support a Distributed Transaction Coordinator (DTC)
like Microsoft SQL Server, you can initiate and control transactions that span more than one server.
That is, if you invoke a procedure on the remote server that invokes a remote procedure call, the DTC
service can ensure that this operation is included in the initial transaction. See Building Client/Server
Applications with Visual Basic for more information.

Typically, you use transactions to maintain the integrity of your data when you must update rows in
two or more tables and ensure that changes made are completed (committed) in all tables or none at
all (rolled back). For example, if you transfer money from one account to another, you might subtract
an amount from one and add the amount to another. If either update fails, the accounts no longer
balance. Use the BeginTrans method before updating the first row, and then, if any subsequent
update fails, you can use the RollbackTrans method to undo all of the updates. Use the
CommitTrans method after you successfully update the last row.

Caution      Within one rdoEnvironment object, transactions are always global to the
rdoEnvironment and aren’t limited to only one database or result set. If you perform operations on

more than one database or result set within an rdoEnvironment transaction, the RollbackTrans
method restores all operations on those databases and result sets.

Once you use CommitTrans, you can’t undo changes made during that transaction unless the
transaction is nested within another transaction that is itself rolled back. You cannot nest transactions
unless you use an action query to directly execute SQL transaction management statements. If you
want to have simultaneous transactions with overlapping, non-nested scopes, you can create
additional rdoEnvironment objects to contain the concurrent transactions.

Note      You can use SQL action queries that contain transaction statements. For example, with
Microsoft SQL Server, you can use SQL statements like BEGIN TRANSACTION, COMMIT
TRANSACTION, or ROLLBACK TRANSACTION. This technique supports nested transactions which
may not be supported by the ODBC driver.

If you close an rdoEnvironment object without saving or rolling back any pending transactions, the
transactions are automatically rolled back.

No error occurs If you use the CommitTrans or RollbackTrans method without first using the
BeginTrans method.

Some databases may not support transactions, in which case the Transactions property of the
rdoConnection object or rdoResultset object is False. To make sure that the database supports
transactions, check the value of the Transactions property of the rdoConnection object before using
the BeginTrans method. If you are using an rdoResultset object based on more than one database,
check the Transactions property of the rdoResultset object. If the rdoConnection or rdoResultset
doesn’t support transactions, the methods are ignored and no error occurs.

Cancel Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthCancelC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthCancelX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthCancelA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthCancelS"}

Cancels the processing of a query running in asynchronous mode, or cancels any pending results
against the specified RDO object.

Syntax

object.Cancel

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

The Cancel method requests that the remote data source stop work on a pending asynchronous
query or cancels any pending results. In some cases, it might not be possible to cancel an operation
once it is started, and in other cases it might be possible to cancel the operation, but part of its steps
might have already been completed.

In situations where you need to create a result set, but do not want to wait until the query engine
completes the operation, you can use the rdAsyncEnable option with the OpenResultset or
Execute method. This option returns control to your application as soon as the operation is initiated,
but before the first row is ready for processing. This gives you an opportunity to execute other code
while the query is executed. If you need to stop this operation before it is completed, use the Cancel
method against the object being created.

The Cancel method can also be used against an rdoConnection object when you use the
rdAsyncEnable option to request an asynchronous connection. In this case the attempt to connect to
the remote server is abandoned.

You can also use the Cancel method against a synchronous rdoResultset or rdoQuery object to
flush remaining result set rows and release resources committed to the query and rdoResultset.

If you use the Cancel method against rdoResultset objects that have multiple result sets pending, all
result sets are flushed. To simply cancel the current set of results and begin processing the next set,
use the MoreResults method.

Note      Using the Cancel method against an executing action query might have unpredictable
results. If the query is performing an operation that affects a number of rows, some of the rows might
be changed, while others are not. For example, if you execute an action query containing an SQL
UPDATE statement and use the Cancel method before the operation is complete, an indeterminate
number of rows are updated — leaving others unchanged. If you intend to use the Cancel method
against this type of action query, it is recommended that you use transaction methods to rollback or
commit partially completed operations.

CancelUpdate Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthCancelUpdateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthCancelUpdateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthCancelUpdateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthCancelUpdateS"}

Cancels any pending updates to an rdoResultset object.

Syntax

object.CancelUpdate

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

The CancelUpdate method flushes the copy buffer and cancels any pending updates from an Edit or
AddNew operation. For example, if a user invokes the Edit or AddNew method and hasn’t yet
invoked the Update method, CancelUpdate cancels any changes made after Edit or AddNew was
invoked. Any information in the copy buffer is lost — that is, any changes made to the row after the
Edit or AddNew methods are invoked, are flushed.

Use the EditMode property to determine if there is a pending operation that can be canceled.

If the CancelUpdate method is used before using the Edit or AddNew methods or when the
EditMode property is set to rdEditNone, the method is ignored.

Note      Using the CancelUpdate method has the same effect as moving to another row without using
the Update method, except that the current row doesn’t change, and various properties, such as BOF
and EOF, aren’t updated.

Close Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthCloseC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthCloseX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdmthCloseA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthCloseS"}

Closes an open remote data object.

Syntax

object.Close

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Closing an open object removes it from the collection of like objects — except for the rdoConnection
object. For example, using the Close method on an rdoResultset removes it from the rdoResultsets
collection. However, using the Close method on the rdoConnection object, simply closes and
discards any subordinate objects (like rdoResultset or rdoQuery objects) but does not remove it
from the rdoConnections collection.

Closing the rdoConnection object also releases its parent rdoEnvironment object. Any attempt to
close the default environment rdoEnvironments(0) is ignored. Unlike DAO, RDO collection members
cannot be removed with the Delete method.

If you try to close an rdoConnection object while any rdoResultset objects are open, or if you try to
close an rdoEnvironment object while any rdoConnection objects belonging to that specific
rdoEnvironment are open, those rdoResultset objects are closed and any pending updates or edits
are rolled back.

If the rdoConnection object is defined outside the scope of the procedure, and you exit the
procedure without closing it, the rdoConnection object remains open until it is explicitly closed or the
module in which it is defined is out of scope. Any rdoResultset or rdoQuery objects that are opened
against the rdoConnection remain open until explicitly closed. Once all result sets are closed on an
rdoConnection that is no longer in scope, the rdoConnection is closed.

If object is already closed when you use Close, a trappable error is triggered.

Note      Using the Close method against an executing action query might have unpredictable results.
If the query is performing an operation that affects a number of rows, some of the rows might be
changed, while others are not. For example, if you execute an action query containing an SQL
UPDATE statement and use the Close method before the operation is complete, an indeterminate
number of rows are updated — leaving others unchanged. If you intend to use the Close method
against this type of action query, it is recommended that you use transaction methods to roll back or
commit partially completed operations.

ColumnSize Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthColumnSizeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthColumnSizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthColumnSizeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthColumnSizeS"}

Returns the number of bytes in an rdoColumn object with a data type of rdTypeLONGVARBINARY
or rdTypeLONGVARCHAR.

Syntax

varname = object ! column.ColumnSize()

The ColumnSize method syntax has these parts:

Part Description

varname The name of a Long or Variant variable.

object An object expression that evaluates to the rdoResultset object
containing the rdoColumns collection.

column The name of an rdoColumn object whose ChunkRequired
property is set to True.

Remarks

Depending on the driver being used, the ColumnSize method either returns the size of a binary large
object (BLOB) column, or -1 if the size is not available. If the BLOB column size is not available, you
can still use the GetChunk method to read chunks of data from your BLOB column. The last block
has been fetched when the value returned by GetChunk is smaller than the size requested (for binary
data), at least two bytes smaller than your buffer (for character data), or returns a NULL value.

When working with data types that span multiple database pages, you should use the chunk methods
to manage the data — but this is not an absolute requirement. You should also use the GetChunk
and AppendChunk methods to manage chunk data when the ChunkRequired property is True.
Note that when the size of BLOB data columns is smaller than the BindThreshold, it is not necessary
to use the chunk methods.

Use the ColumnSize method to determine the size of chunk columns.

Because the size of a chunk data column can exceed 64K, you should assign the value returned by
the GetChunk method to a variable large enough to store the data returned based on the size
returned by the ColumnSize method.

Note      To determine the size of a non-chunk rdoColumn object, use the Size property.

CreatePreparedStatement Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthCreatePreparedStatementC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthCreatePreparedStatementX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthCreatePreparedStatementA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdmthCreatePreparedStatementS"}

Creates a new rdoPreparedStatement object.

Syntax

Set prepstmt = connection.CreatePreparedStatement(name, sqlstring)

The CreatePreparedStatement method syntax has these parts:

Part Description

prepstmt An object expression that evaluates to the
rdoPreparedStatement object you want to create.

connection An object expression that represents the open
rdoConnection object.

name A String that is the name of the new rdoPreparedStatement.
This part is required, but may be an empty string (“”).

sqlstring A Variant expression (a valid SQL statement) that defines the
rdoPreparedStatement. This part is required, but you can
provide an empty string — if you do, you must define the
rdoPreparedStatement by setting its SQL property before
executing the new rdoPreparedStatement.

Remarks

Note      Support for the rdoPreparedStatement object is provided in this version of Visual Basic to
provide compatibility with previous versions. The rdoQuery object should be used as a direct
replacement for this object. Because of this, it is also recommended that use of the
CreatePreparedStatement method be discontinued in favor of the CreateQuery method.

Delete Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthDeleteC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthDeleteX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdmthDeleteA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthDeleteS"}

Deletes the current row in an updatable rdoResultset object.

Syntax

object.Delete

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Delete removes the current row and makes it inaccessible. The deleted row is removed from the
rdoResultset cursor and the database. When you delete rows from an rdoResultset, there must be
a current row in the rdoResultset before you use Delete; otherwise, a trappable error is triggered.

Once you delete a row in an rdoResultset, you must reposition the current row pointer to another row
in the rdoResultset before performing an operation that accesses the current row. Although you can’t
edit or use the deleted row, it remains current until you reposition to another row. Once you move to
another row, however, you can’t make the deleted row current again.

When you position to a row in your rdoResultset that has been deleted by another user, or if you
delete a common row in another rdoResultset, a trappable error occurs indicating that the row has
been deleted. At this point, the current row is invalid and you must reposition to another valid row. For
example, if you use a bookmark to position to a deleted row, a trappable error occurs.

You can undo a row deletion if you use transactions and the RollbackTrans method — assuming you
use BeginTrans before using the Delete method.

Using Delete produces an error under any of the following conditions:

· There is no current row.

· The connection or rdoResultset is read-only.

· No columns in the row are updatable.

· The row has already been deleted.

· Another user has locked the data page containing your row.

· The user does not have permission to perform the operation.

Edit Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthEditC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthEditX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdmthEditA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthEditS"}

Enables changes to data values in the current row of an updatable rdoResultset object.

Syntax

object.Edit

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Before you use the Edit method, the data columns of an rdoResultset are read-only. Executing the
Edit method copies the current row from an updatable rdoResultset object to the copy buffer for
subsequent editing. Changes made to the current row’s columns are copied to the copy buffer. After
you make the desired changes to the row, use the Update method to save your changes or the
CancelUpdate method to discard them. The current row remains current after you use Edit.

Caution      If you edit a row, and then perform any operation that repositions the current row pointer to
another row without first using Update, your changes to the edited row are lost without warning. In
addition, if you close object, or end the procedure which declares the result set or the parent
rdoConnection object, your edited row might be discarded without warning.

You cannot use the Edit method if the EditMode property of the rdoResultset object indicates that
an Edit or AddNew operation is in progress.

When the rdoResultset object’s LockEdits property setting is True (pessimistically locked) , all rows
in the rdoResultset object’s rowset are locked as soon as the cursor is opened and remain locked
until the cursor is closed. The number of rows in the rowset is determined by the RowsetSize
property. Since many remote data sources use page locking schemes, pessimistic locking also locks
all data pages of the table(s) containing a row fetched by the rdoResultset.

If the LockEdits property setting is False (optimistically locked), the individual row or the data page
containing the row is locked and the new row is compared with the pre-edited row just before it’s
updated in the database. If the row has changed since you last used the Edit method, the Update
operation fails with a trappable error.

Note      Not all data sources use page locking schemes to manage data concurrency. In some cases,
data is locked on a row-by-row basis, therefore locks only affect the specific rowset being edited.

Using Edit produces an error under any of the following conditions:

· There is no current row.

· The connection or rdoResultset is read-only.

· No columns in the row are updatable.

· The EditMode property indicates that an AddNew or Edit is already in progress.

· Another user has locked the row or data page containing your row and the LockEdits property is
True.

Execute Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthExecuteC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthExecuteX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthExecuteA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthExecuteS"}

Runs an action query or executes an SQL statement that does not return rows.

Syntax

connection.Execute source[, options]
query.Execute [options]

The Execute method syntax has these parts:

Part Description

connection An object expression that evaluates to the rdoConnection
object on which the query will run.

query An object expression that evaluates to the rdoQuery object
whose SQL property setting specifies the SQL statement to
execute.

source A string expression that contains the action query to execute
or the name of an rdoQuery.

options A Variant or constant that determines how the query is run,
as specified in Settings.

Settings

You can use the following constants for the options argument:

Constant Value Description

rdAsyncEnable 32 Execute operation asynchronously.

rdExecDirect 64 Bypass creation of a stored procedure
to execute the query. Uses
SQLExecDirect instead of
SQLPrepare and SQLExecute.

Remarks

It is recommended that you use the Execute method only for action queries. Because an action query
doesn’t return any rows, Execute doesn’t return an rdoResultset. You can use the Execute method
on queries that execute multiple statements, but none of these batched statements should return
rows. To execute multiple result set queries that are a combination of action and SELECT queries,
use the OpenResultset method.

Use the RowsAffected property of the rdoConnection or rdoQuery object to determine the number
of rows affected by the most recent Execute method. RowsAffected contains the number of rows
deleted, updated, or inserted when executing an action query. When you use the Execute method to
run an rdoQuery, the RowsAffected property of the rdoQuery object is set to the number of rows
affected.

Options

To execute the query asynchronously, use the rdAsyncEnable option. If set, the data source query
processor immediately begins to process the query and returns to your application before the query is
complete. Use the StillExecuting property to determine when the query processor is ready to return
the results from the query. Use the Cancel method to terminate processing of an asynchronous
query.

To bypass creation of a temporary stored procedure to execute the query, use the rdExecDirect
option. This option is required when the query contains references to transactions or temporary tables
that only exist in the context of a single operation. For example, if you include a Begin Transaction
TSQL statement in your query or reference a temporary table, you must use rdExecDirect to ensure
that the remote engine is not confused when these objects are left pending at the end of the query.

While it is possible to execute stored procedures using the Execute method, it is not recommended
because the procedure’s return value and output parameters are discarded and the procedure cannot
return rows. Use the OpenResultset method against an rdoQuery to execute stored procedures.

Note      When executing stored procedures that do not require parameters, do not include the
parenthesis in the SQL statement. For example, to execute the "MySP" procedure use the following
syntax: {Call MySP }.

Execute Method Example

This example illustrates use of the Execute method to execute SQL queries against a remote data
source. These action queries do not return rows, but in some cases do return the number of rows
affected in the RowsAffected property. The example creates a work table called “TestData”, inserts a
few rows of data in the table and proceeds to run a DELETE query against the table. Notice that the
delete queries have their own embedded transaction management. Because of this, you must use the
rdExecDirect option to prevent the creation of stored procedures which negate the use of query-
provided transactions.

Option Explicit
Dim er As rdoError
Dim cn As New rdoConnection
Dim qy As New rdoQuery
Dim rs As rdoResultset
Dim col As rdoColumn
Dim SQL As String

Private Sub DropRows_Click()
Dim SQL As String, Ans As Integer

SQL = "Begin Transaction Delete TestData " _
& " Where State = ‘" & StateWanted & "’"

cn.Execute SQL, rdExecDirect
Ans = MsgBox("Ok to delete these " _

& cn.RowsAffected & " rows?", vbOKCancel)
If Ans = vbOK Then

cn.Execute "Commit Transaction", rdExecDirect
Else

cn.Execute "Rollback Transaction", rdExecDirect
End If
Exit Sub
End Sub

Private Sub Form_Load()
cn.CursorDriver = rdUseOdbc
cn.Connect = "uid=;pwd=;server=sequel;" _

& "driver={SQL Server};" _
& "database=pubs;dsn=’’;"

cn.EstablishConnection
With qy

.Name = "TestList"

.SQL = "Select * from TestData Where State = ?"

.RowsetSize = 1
Set .ActiveConnection = cn

End With
SQL = "Drop Table TestData"
cn.Execute SQL

SQL = " CREATE TABLE TestData " _
& " (ID integer identity NOT NULL, " _
& " PName char(10) NULL," _
& " State Char(2) NULL) " _
& " CREATE UNIQUE INDEX " _
& "TestDataIndex on TestData(ID)"

cn.Execute SQL
SQL = "Insert TestData (PName,State) " _

& "Values('Bob', 'CA')" _
& " Insert TestData (PName,State) " _
& " Values('Bill', 'WA')" _
& " Insert TestData (PName,State) " _
& " Values('Fred', 'WA')” _
& " Insert TestData (PName,State) " _
& " Values('George', 'CA')" _
& " Insert TestData (PName,State) " _
& " Values('Sam', 'TX')" _
& " Insert TestData (PName,State) " _
& " Values('Marilyn', 'TX')"

cn.Execute SQL
Debug.Print cn.RowsAffected
' This returns 1
'(The last INSERT statement affected 1 row)
End Sub

Private Sub SeekRows_Click()
qy(0) = StateWanted
Set rs = qy.OpenResultset(rdOpenForwardOnly, _
rdConcurReadOnly)
List1.Clear
If rs.EOF Then

MsgBox "No hits for that state"
Exit Sub
End If
Do Until rs.EOF

List1.AddItem rs!PName & " - " & rs!state
rs.MoveNext

Loop
End Sub

GetChunk Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthGetChunkC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthGetChunkX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthGetChunkA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthGetChunkS"}

Returns all or a portion of the contents of an rdoColumn object with a data type of
rdTypeLONGVARBINARY or rdTypeLONGVARCHAR.

Syntax

varname = object ! column.GetChunk(numbytes)

The GetChunk method syntax has these parts:

Part Description

varname The name of a Variant that receives the data from the
rdoColumn object named by column.

object An object expression that evaluates to an rdoResultset
object containing the rdoColumns collection.

column An object expression that evaluates to an rdoColumn object
whose ChunkRequired property is True.

numbytes A numeric expression that is the number of bytes you want to
return.

Remarks

Chunk data columns are designed to store binary or text values that can range in size from a few
characters to over 1.2GB and are stored in the database on successive data pages. In most cases,
chunk data cannot be managed with a single operation so you must use the chunk methods to save
and write data a piece at a time. If the ChunkRequired property is True for a column, you should use
the GetChunk and AppendChunk methods to manipulate column data. The BindThreshold
property determines the largest size block that is automatically bound and precludes the need to use
the chunk methods.

If the ChunkRequired property is True for a column, you must use the GetChunk method to retrieve
the data. The GetChunk method moves a portion of the data from a chunk column to a variable. The
total number of bytes in the column is determined by executing the ColumnSize method.

The GetChunk method is used iteratively, copying column data to a variable, one segment or chunk
at a time. The chunk size is set by numbytes. The starting point of the copy operation is initially 0,
which causes data to be copied from the first byte of the column being read. Subsequent calls to
GetChunk get data from the first position after the previously read chunk.

The bytes returned by GetChunk are assigned to varname. Due to memory requirements for the
returned data and temporary storage, numbytes might be limited, but with 32-bit systems this
limitation is over 1.2GB, or more practically the memory and disk capacity of your virtual memory
system.

If numbytes is greater than the number of bytes in the column, the actual number of bytes in the
column is returned. After assigning the results of GetChunk to a Variant variable, you can use the
Len function to determine the number of bytes returned.

Use the AppendChunk method to write successive blocks of data to the column and GetChunk to
extract data from the column. Certain operations (copying, for example) involve temporary strings. If
string space is limited, you may need to work with smaller segments of a chunk column instead of the
entire column.

Use the BindThreshold property to specify the largest column size that will be automatically bound.

Note      Because the size of a chunk data column can exceed 1.2GB, you should assign the value

returned by the GetChunk method to a variable large enough to store the data returned based on the
size returned by the ColumnSize method.

GetRows Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthGetrowsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthGetrowsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthGetrowsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthGetrowsS"}

Retrieves multiple rows of an rdoResultset into an array.

Syntax

array = object.GetRows (rows)

The GetRows method syntax has these parts:

Part Description

array The name of a Variant type variable to store the returned data.

object An object expression that evaluates to an object in the Applies
To list.

rows A Long value indicating the number of rows to retrieve.

Remarks

Use the GetRows method to copy one or more entire rows from an rdoResultset into a two-
dimensional array. The first array subscript identifies the column and the second identifies the row
number, as follows:

avarRows(intColumn)(intRow)

To get the first column value in the second row returned, use the following:

col1 = avarRows(0,1)

To get the second column value in the first row, use the following:

col2 = avarRows(1,0)

If more rows are requested than are available, only the available rows are returned. Use Ubound to
determine how many rows are actually fetched, as the array is resized based on the number of rows
returned. For example, if you return the results into a Variant called varA, you could determine how
many rows were actually returned by using:

numReturned = Ubound(varA,2) + 1

The “+ 1” is used because the first data returned is in the 0th element of the array. The number of
rows that can be fetched is constrained by available memory and should be chosen to suit your
application — don’t expect to use GetRows to bring your entire table or result set into an array if it is
a large table.

GetRows does not return data from columns whose ChunkRequired property is True — a variant
value containing an ODBC S-code is returned in these columns instead.

After a call to GetRows, the current row is positioned at the next unread row. That is, GetRows is
equivalent to using the Move (rows) method.

If you are trying to fetch all the rows using multiple GetRows calls, use the EOF property to determine
if there are rows available. GetRows returns less than the number requested either at the end of the
rdoResultset, or if it cannot fetch a row in the range requested. For example, if a fifth row cannot be
retrieved in a group of ten rows that you’re trying to fetch, GetRows returns four rows and leaves
currency on the row that caused the problem. It will not generate a run-time error.

The GetRows method fetches data from the ODBC buffers based on the RowsetSize property. RDO
proceeds to fetch from the current row toward the end of the result set — returning as many rows as
you requested. As the current rowset is exhausted, RDO issues another SQLExtendedFetch function
call to fetch subsequent rowsets from the database. This technique applies to all types of cursors.

GetRows Method Example

This example illustrates use of the GetRows method to fetch rows from an rdoResultset into a
variant array. The code opens a connection to a remote data source and creates an rdoQuery object
that requires a single parameter. The GetRowsNow procedure executes the query with a user-
supplied parameter and uses GetRows to fetch the rows from the result set.

Option Explicit
Dim er As rdoError
Dim cn As New rdoConnection
Dim qy As New rdoQuery
Dim rs As rdoResultset
Dim RowBuf As Variant
Dim RowsReturned As Integer
Dim i As Integer
Dim Ans As Integer

Private Sub GetRowsNow_Click()
qy(0) = StateWanted
rs.Requery

Do Until rs.EOF
List1.Clear
RowBuf = rs.GetRows(5) 'Get the next 5 rows
RowsReturned = UBound(RowBuf, 2) + 1
For i = 0 To RowsReturned - 1

List1.AddItem RowBuf(0, i) & ":" & RowBuf(1, i)
Next i
Ans = MsgBox("Press Ok to see next 5 rows " _

&" or Cancel to quit", vbOKCancel)
If Ans = vbOK Then Else Exit Sub

Loop
End Sub

Private Sub Form_Load()
cn.CursorDriver = rdUseOdbc
cn.Connect = "uid=;pwd=;server=SEQUEL;" _

driver={SQL Server};database=pubs;dsn='';"
cn.EstablishConnection
With qy

.Name = "GetRowsQuery"

.SQL = "Select * from Titles T, Publishers P " _
& " Where T.Pub_ID = P.Pub_ID " _
& " and P.State = ?"
.RowsetSize = 1
Set .ActiveConnection = cn
.rdoParameters(0) = "CA"
Set rs = .OpenResultset(rdOpenKeyset, _

rdConcurRowver)
End With
End Sub

MoreResults Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthMoreResultsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthMoreResultsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthMoreResultsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthMoreResultsS"}

Clears the current result set of any pending rows and returns a Boolean value that indicates if one or
more additional result sets are pending.

Syntax

variable = object.MoreResults

The MoreResults method syntax has these parts:

Part Description

variable A Boolean variable that indicates if additional result sets are
found as described in Return Values.

object An object expression that evaluates to an open rdoResultset
object variable.

Return Values

The return values for variable are:

Value Description

True Additional result sets are ready to be processed.

False All result sets in the rdoResultset have been processed.

Remarks

Calling this method will flush the current result set, call the ODBC API SQLMoreResults function to
see if there is another result set on the same statement, and if there is, loads the new result set,
positions the current row pointer at the first row and returns True. If there are no more result sets, this
method will return False, and both the EOF and BOF properties will be True.

If the result set was created asynchronously (developer used rdAsyncEnable in the Options
parameter), the MoreResults method will be executed asynchronously as well. You should use the
StillExecuting property to determine when the next result set has been enabled. Asynchronous
execution of the MoreResults method follows the same rules as asynchronously opening a result set.

When the query used to create an rdoResultset returns more than one result set, use the
MoreResults method to end processing of the current result set and test for subsequent result sets. If
there are no additional result sets to process, the MoreResults method returns False and both BOF
and EOF are set to True. In any case, using the MoreResults method flushes the current
rdoResultset.

You can also use the Cancel method to flush the contents of an rdoResultset. However, Cancel also
flushes any additional result sets not yet processed.

Not all cursor libraries support multiple resultset queries. For example, the Server-side cursor library
does not support this type of query unless you disable the cursor processor by requesting a forward-
only, read-only cursor with a RowsetSize property of 1.

MoreResults Method Example

The following example illustrates use of the MoreResults method. In this example, an SQL query
containing three separate SELECT queries is executed. The first query simply returns the number of
publishers in the Publishers table. The next two queries each return two columns resulting from more
complex join operations. All of this information is displayed in a ListBox control.

Option Explicit
Dim Cn As New rdoConnection
Dim Rs As rdoResultset
Dim SQL As String

Private Sub Test_Click()
SQL = "Select Count(*) From Publishers" _

& " Select Pub_Name, Title " _
& " From Publishers P, Titles T" _
& " Where P.Pub_ID = T.Pub_ID" _
& " Select Au_Lname, Title " _
& " From Titles T, TitleAuthor Ta, Authors A" _
& " Where T.title_ID = ta.Title_ID " _
& " and Ta.Au_ID = A.Au_ID"

Set Rs = Cn.OpenResultset(SQL, rdOpenForwardOnly, _
rdConcurReadOnly)

' From the first set of results
List1.AddItem "Publishers: " & Rs(0)
'
' Loop through all of the remaining result sets
'
Do While Rs.MoreResults

List1.AddItem Rs(0).Name & " - " & Rs(1).Name
Do Until Rs.EOF

List1.AddItem Rs(0) & " - " & Rs(1)
Rs.MoveNext

Loop
Loop
End Sub

Private Sub Form_Load()
On Error GoTo CnEh
With Cn

.Connect = "UID=;PWD=;Database=Pubs;" _
& "Server=SEQUEL;Driver={SQL Server}" _
& "DSN='';"
.LoginTimeout = 5
.CursorDriver = rdUseOdbc
.EstablishConnection rdDriverNoPrompt, True

End With
Exit Sub

CnEh:
Dim er As rdoError
Debug.Print Err, Error
For Each er In rdoErrors

Debug.Print er.Description, er.Number
Next er
Resume Next
End Sub

Move Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthMoveC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthMoveX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdmthMoveA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthMoveS"}

Repositions the current row pointer in an rdoResultset object.

Syntax

object.Move rows[, start]

The Move method syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

rows A signed Long value that specifies the number of rows the
position will move as described in Settings.

start A Variant value that identifies a bookmark as described in
Settings.

Settings

If rows is greater than 0, the position is moved forward (toward the end of the cursor). If rows is less
than 0, the position is moved backward (toward the beginning of the cursor). If rows is equal to 0, any
pending edits are discarded and the current row is refreshed from the data source. At a lower level,
when you use 0 as the rows argument, RDO executes the ODBC SQLExtendedFetch function to re-
fetch the current rowset (as determined by the RowsetSize property) from the database.

If start is specified, the move begins relative to this bookmark. If start is not specified, Move begins
from the current row.

Remarks

If using Move repositions the current row to a position before the first row, the position is moved to the
beginning-of-file (BOF) position. If the rdoResultset contains no rows and its BOF property is set to
True, using this method to move backward triggers a trappable run-time error. If either the BOF or
EOF property is True and you attempt to use the Move method without a valid bookmark, a trappable
error is triggered.

If using Move repositions the current row to a position after the last row, the position is moved to the
end-of-file (EOF) position. If the rdoResultset contains no rows and its EOF property is set to True,
then using this method to move forward produces a trappable run-time error.

If you use Move on an rdoResultset object based on an SQL-specific query or rdoQuery, the query
is forced to completion and the rdoResultset object is fully populated.

If you use any method that repositions the current row pointer after using the Edit or AddNew method
but before using the Update method, any changes made to the copy buffer are lost.

To make the first, last, next, or previous row in an rdoResultset the current row, use the MoveFirst,
MoveLast, MoveNext, or MovePrevious method. To position the current row pointer based on an
absolute row number, use the AbsolutePosition property. To position the current row pointer based
on a percentage of the accessed rows of a result set, use the PercentPosition property.

When you use the Move method or any other method to reposition the current row pointer, the
RowCurrencyChange event is fired.

When using a forward-only rdoResultset, the you can reposition the current row only by using the
MoveNext method. You cannot use the MoveLast, MovePrevious, MoveFirst, or Move method, or

the PercentPosition or AbsolutePosition property, to reposition the current row pointer.

MoveFirst, MoveLast, MoveNext, MovePrevious Methods (Remote
Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthMoveFirstC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthMoveFirstX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthMoveFirstA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthMoveFirstS"}

Repositions the current row pointer to the first, last, next, or previous row in a specified rdoResultset
object and makes that row the current row.

The syntax for these methods have these parts:

object.{MoveFirst | MoveNext | MovePrevious}
object. MoveLast ([Options as Variant])

Part Description

object An object expression that evaluates to a rdoResultset object.

options A Variant or constant that determines how the operation is
carried out, as specified in Settings.

Settings

You can use the following constant for the options argument:

Constant Value Description

rdAsyncEnable 32 Execute operation asynchronously.

Remarks

Use the Move methods to reposition the current row pointer from row to row without applying a
condition.

If you specify the rdAsyncEnable option with the MoveLast method, the move operation is executed
asynchronously. That is, control is returned to your application immediately — often before the
operation has completed. This prevents your application from blocking until the operation is complete.
To check for completion of the operation, you can either wait for the QueryComplete or
RowCurrencyChange events, or periodically check the StillExecuting property which returns False
when the move operation is complete.

Caution      If you edit the current row, be sure to save the changes using the Update method before
you move to another row. If you move to another row without updating, your changes are lost without
warning.

When you open the result set named by object, the first row is current and the BOF property is set to
False. If the result set contains no rows, the BOF property is set to True, and there is no current row.

If the first or last row is already current when you use MoveFirst or MoveLast, the current row
doesn’t change.

If you use MovePrevious when the first row is current, the BOF property is set to True, and there is
no current row. If you use MovePrevious again, an error occurs; BOF remains True.

If you use MoveNext when the last row is current, the EOF property is set to True, and there is no
current row. If you use MoveNext again, an error occurs; EOF remains True.

If you use MoveLast on an rdoResultset object based on an SQL-specific query or rdoQuery, the
query is forced to completion and the rdoResultset object is fully populated.

If you use any method that repositions the current row pointer after using the Edit or AddNew method
but before using the Update method, any changes made to the copy buffer are lost.

To move the position of the current row in an rdoResultset object a specific number of rows forward

or backward, use the Move method.

To position the current row pointer based on an absolute row number, use the AbsolutePosition
property. To position the current row pointer based on a percentage of the accessed rows of a result
set, use the PercentPosition property.

When you use the Move method or any other method to reposition the current row pointer, the
RowCurrencyChange event is fired.

When using a forward-only rdoResultset, the you can reposition the current row only by using the
MoveNext method. You cannot use the MoveLast, MovePrevious, MoveFirst, or Move method, or
the PercentPosition or AbsolutePosition property, to reposition the current row pointer. If you use
one of the prohibited Move methods on a forward-only result set, your code will trip an ODBC "Fetch
type out of range" error.

Move Methods Example

This example illustrates use of the rdAsyncEnable option in conjunction with the MoveLast method.
The Phones table is simply a table with over 15,000 rows which takes some time to process. While
this is not a recommended technique, it provides a way to illustrate a query that takes a significant
length of time to run and fully populate — as is done when you execute the MoveLast method. The
application uses a status bar to indicate the degree of completion of the operations.

Option Explicit
Dim rdoCn As New rdoConnection
Dim rdoRs As rdoResultset
Dim SQL As String
Dim TimeExpected As Single
Dim Ts As Single, Tn As Single

Private Sub Command1_Click()
TimeExpected = 5 ' We expect this to take about 5 seconds
SQL = "Select Email, Name From Phones"
Set rdoRs = rdoCn.OpenResultset(Name:=SQL, _

Type:=rdOpenStatic, _
LockType:=rdConcurReadOnly, _
Option:=rdAsyncEnable)

ShowProgress "Query"
 '
' Query Has completed... now move to the last row
 '
rdoRs.MoveLast rdAsyncEnable
' We expect this to take about 15 seconds
TimeExpected = 15
ShowProgress "MoveLast"
rdoCn.Close
End Sub

Sub ShowProgress(Operation As String)
Ts = Timer
' time to execute query
ProgressBar1.Max = TimeExpected
While rdoRs.StillExecuting

Tn = Int(Timer - Ts)
If Tn < TimeExpected Then

ProgressBar1 = Tn
Else

ProgressBar1.Max = ProgressBar1.Max + 10
TimeExpected = ProgressBar1.Max

End If
DoEvents

Wend
Status = Operation & "Done. Duration:" _

& Int(Timer - Ts)
End Sub
Private Sub Form_Load()
With rdoCn

.Connect = "UID=;PWD=;Database=WorkDB;" _
& "Server=BETAV486;Driver={SQL Server}" _
& "DSN='';"
.LoginTimeout = 5

.EstablishConnection rdDriverNoPrompt, True
End With
Exit Sub
End Sub

OpenConnection Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthOpenConnectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthOpenConnectionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthOpenConnectionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthOpenConnectionS"}

Opens a connection to an ODBC data source and returns a reference to the rdoConnection object
that represents a specific database.

Syntax

Set connection = environment.OpenConnection(dsName[, prompt[, readonly[, connect[, options]]]])

The OpenConnection method syntax has these parts:

Part Description

connection An object expression that evaluates to an
rdoConnection object that you’re opening.

environment An object expression that evaluates to an existing
rdoEnvironment object. You must provide an
rdoEnvironment object.

dsName A string expression that is the name of a registered
ODBC data source name or a zero-length string (“”)
as described in Settings.

prompt A Variant or constant that determines how the
operation is carried out, as specified in Settings.

readonly A Boolean value that is True if the connection is to be
opened for read-only access, and False if the
connection is to be opened for read/write access. If
you omit this argument, the connection is opened for
read/write access.

connect A string expression used to pass arguments to the
ODBC driver manager for opening the database —
the connect string as described in Settings.

options A Variant or constant that determines how the
operation is carried out, as specified in Settings.

Settings

The connect argument constitutes the ODBC connect arguments, and is dependent on the ODBC
driver. See the Connect property for syntax and typical settings. If the connect argument is an empty
string (“”), the user name and password are taken from the rdoEnvironment object’s UserName and
Password properties, and a dsName argument must be provided.

If the provided dsName doesn’t refer to a valid ODBC data source name, and the Data Source Name
(DSN) parameter does not appear in the connect argument an error occurs if prompt is
rdDriverNoPrompt; otherwise, the user is prompted to select from a list of registered data source
names. If dsName is a zero-length string, the connect string must indicate the driver and server
names.

Based on the prompt value, the ODBC driver manager exposes a dialog which prompts the user for
connection information such as DSN, user name, and password. Use one of the following constants
that defines how the user should be prompted:

prompt Constant Value Description

rdDriverPrompt 0 The driver manager displays the ODBC Data
Sources dialog box. The connection string
used to establish the connection is

constructed from the DSN selected and
completed by the user via the dialog boxes,
or, if no DSN is chosen and the
DataSourceName property is empty (in the
case of the RemoteData control), the default
DSN is used.

rdDriverNoPrompt 1 The driver manager uses the connection
string provided in dsName and connect. If
sufficient information is not provided, the
OpenConnection method returns a trappable
error.

rdDriverComplete 2 (Default) If the connection string provided
includes the DSN keyword, the driver
manager uses the string as provided in
connect. Otherwise it behaves as it does
when rdDriverPrompt is specified.

rdDriverComplete
Required

3 Behaves like rdDriverComplete except the
driver disables the controls for any information
not required to complete the connection. If the
controls are disabled, users cannot select or
specify missing arguments.

You can use the following constant for the options argument:

options Constant Value Description

rdAsyncEnable 32 Execute operation
asynchronously.

Remarks

When you successfully execute the OpenConnection method, a new rdoConnection object is
instantiated and added to the rdoConnections collection, and a network connection is established to
the remote server. If the connection cannot be established, no object is created and a trappable error
is fired.

Note      RDO 2.0 behaves differently than RDO 1.0 in how it handles orphaned references to
rdoConnection objects. When you Set a variable already assigned to an rdoConnection object with
another rdoConnection object using the OpenConnection method, the existing rdoConnection
object is closed and dropped from the rdoConnections collection. In RDO 1.0, the existing object
remained open and was left in the rdoConnections collection.

If you set the options argument to rdAsyncEnable, the connection operation is executed
asynchronously. That is, control returns to your application before the connection has been
established to prevent your application from blocking while the connection is being made. You can
check for completion of the connection by polling the rdoConnection object’s StillConnecting
property, which returns False when the connection operation is complete. You can also code an event
procedure for the Connect event which is fired when the connect operation is complete. If you use the
Cancel method while waiting for an asynchronous connection to be established, the connection
attempt is abandoned.

Before the process of establishing a connection is started, the BeforeConnect event is fired. This
event procedure permits you to examine and modify the connect string and prompt levels as needed.

There are a variety of reasons why a connection might not be made. These include but are not limited
to the following:

· Lack of proper user ID and password.

· Incorrect driver or options configuration.

· Lack of correct network or server permissions.

· The remote server could not be found on the network, or is not operating.

· The remote server did not have sufficient resources or connections to permit another user to
connect.

DSN-Less Connections

In some cases, it might not be necessary to create and register a Data Source Name (DSN) before
attempting to open a connection to a data source. If your remote server uses the named pipes LAN
protocol and the default OEMTOANSI settings, you can simply provide the name of the server and
ODBC driver in the connect string. You must provide an empty DSN entry in the connect string, or in
the dsName parameter as the last argument. If the ODBC driver manager finds a null DSN entry, it
attempts to locate it unless it has already determined the driver and server values. The connect string
shown below is used to establish a DSN-less connection to a SQL Server named “BETAV486”:

Connect = "UID=;PWD=;Database=WorkDB;" _
& "Server=BETAV486;Driver={SQL Server}" _
& "DSN='';"

Other Connect String Options

Establishing an rdoConnection may require that the user specified by the UserName property, or
UID connect string argument have permission to access the network, the specific data source server,
and the chosen database on that server. Failure to meet these qualifications might result in failure to
connect.

If you do not specify a database either through the DATABASE parameter of the connect argument
or through the data source entry, the database opened when you establish a connection is
determined by the default database assigned to the user by the database administrator. In some
cases, you can change the default database by executing an action query containing an SQL
command such as the Transact SQL USE database statement.

Note      The connect part of the OpenConnection method is coded differently than the source part of
the OpenDatabase method as used with DAO. The connect part neither requires nor supports use of
the “ODBC;” keyword at the beginning of the connect string. In addition, the connect part does not
support use of the LOGINTIMEOUT argument – use the LoginTimeout property of the
rdoEnvironment object instead.

Use the Close method on the object to close a database associated with an rdoConnection, remove
the connection from the rdoConnections collection, and disconnect from the data source.

You can also declare a new rdoConnection object using the Dim statement as follows:

Dim myCn as New rdoConnection

Once instantiated in this manner, you can set the rdoConnection properties as required, and use the
EstablishConnection method to open the connection.

For more information about ODBC drivers and the specific connect string arguments they require, see
the Help file provided with the driver.

OpenResultset Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthOpenResultsetC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthOpenResultsetX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthOpenResultsetA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthOpenResultsetS"}

Creates a new rdoResultset object.

Syntax

Set variable = connection.OpenResultset(name [,type [,locktype [,option]]])
Set variable = object.OpenResultset([type [,locktype [, option]]])

The OpenResultset method syntax has these parts:

Part Description

variable An object expression that evaluates to an
rdoResultset object.

connection An object expression that evaluates to an existing
rdoConnection object you want to use to create the
new rdoResultset.

object An object expression that evaluates to an existing
rdoQuery or rdoTable object you want to use to
create the new rdoResultset.

name A String that specifies the source of the rows for the
new rdoResultset. This argument can specify the
name of an rdoTable object, the name of an
rdoQuery, or an SQL statement that might return
rows.

type A Variant or constant that specifies the type of cursor
to create as indicated in Settings.

locktype A Variant or constant that specifies the type of
concurrency control. If you don’t specify a locktype,
rdConcurReadOnly is assumed.

 option A Variant or constant that specifies characteristics of
the new rdoResultset.

Settings

· name

The name argument is used when the OpenResultset method is used against the
rdoConnection object, and no query has been pre-defined. In this case, name typically contains a
row-returning SQL query. The query can contain more than one SELECT statement, or a
combination of action queries and SELECT statements, but not just action queries, or a trappable
error will result. See the SQL property for additional details.

· Cursor type

Note      Not all types of cursors and concurrency are supported by every ODBC data source driver.
See rdoResultset for more information. In addition, not all types of cursor drivers support SQL
statements that return more than one set of results. For example, server-side cursors do not
support queries that contain more than one SELECT statement.

The type argument specifies the type of cursor used to manage the result set. If you don’t specify
a type, OpenResultset creates a forward-only rdoResultset. Not all ODBC data sources or
drivers can implement all of the cursor types. If your driver cannot implement the type chosen, a
warning message is generated and placed in the rdoErrors collection. Use one of the following
result set type constants that defines the cursor type of the new rdoResultset object. For

additional details on types of cursors, see the CursorType property.

type Constant Value Description

rdOpenForwardOnly 0 (Default) Opens a forward-only-type
rdoResultset object.

rdOpenKeyset 1 Opens a keyset-type rdoResultset
object.

rdOpenDynamic 2 Opens a dynamic-type rdoResultset
object.

rdOpenStatic 3 Opens a static-type rdoResultset object.

· Concurrency LockType

In order to maintain adequate control over the data being updated, RDO provides a number of
concurrency options that control how other users are granted, or refused access to the data being
updated. In many cases, when you lock a particular row using one of the LockType settings, the
remote engine might also lock the entire page containing the row. If too many pages are locked,
the remote engine might also escalate the page lock to a table lock to improve overall system
performance.

Not all lock types are supported on all data sources. For example, for SQL Server and Oracle
servers, static-type rdoResultset objects can only support rdConcurValues or
rdConcurReadOnly. For additional details on the types of concurrency, see the LockType
property.

locktype Constant Value Description

rdConcurReadOnly 1 (Default) Read-only .

rdConcurLock 2 Pessimistic concurrency.

rdConcurRowVer 3 Optimistic concurrency based on row ID.

rdConcurValues 4 Optimistic concurrency based on row
values.

rdConcurBatch 5 Optimistic concurrency using batch mode
updates. Status values returned for each
row successfully updated.

· Other options

If you use the rdAsyncEnable option, control returns to your application as soon as the query is
begun, but before a result set is available. To test for completion of the query, use the
StillExecuting property. The rdoResultset object is not valid until StillExecuting returns False.
You can also use the QueryComplete event to determine when the query is ready to process. Until
the StillExecuting property returns True, you cannot reference any other property of the
uninitialized rdoResultset object and only the Cancel and Close methods are valid.

If you use the rdExecDirect option, RDO uses the SQLExecDirect ODBC API function to execute
the query. In this case, no temporary stored procedure is created to execute the query. This option
can save time if you don’t expect to execute the query more than a few times in the course of your
application. In addition, when working with queries that should not be run as stored procedures but
executed directly, this option is mandatory. For example, in queries that create temporary tables for
use by subsequent queries, you must use the rdExecDirect option.

You can use the following constants for the options argument:

Constant Value Description

rdAsyncEnable 32 Execute operation asynchronously.

rdExecDirect 64 Bypass creation of a stored
procedure to execute the query.
Uses SQLExecDirect instead of

SQLPrepare and SQLExecute.

Remarks

If the OpenResultset method succeeds, RDO instantiates a new rdoResultset object and appends it
to the rdoResultsets collection – even if no rows are returned by the query. If the query fails to
compile or execute due to a syntax error, permissions problem or other error, the rdoResultset is not
created and a trappable error is fired. The rdoResultset topic contains additional details on
rdoResultset behavior and managing the rdoResultsets collection.

Note      RDO 2.0 behaves differently than RDO 1.0 in how it handles orphaned references to
rdoResultset objects. When you Set a variable already assigned to an rdoResultset object with
another rdoResultset object using the OpenResultset method, the existing rdoResultset object is
closed and dropped from the rdoResultsets collection. In RDO 1.0, the existing object remained
open and was left in the rdoResultsets collection.

Note      Before you can use the name of a base table in the name argument, you must first use the
Refresh method against the rdoTables collection to populate it. You can also populate the rdoTables
collection by referencing one of its members by its ordinal number. For example, referencing
rdoTables(0) will populate the entire collection.

Executing Multiple Operations on a Connection

If there is an unpopulated rdoResultset pending on a data source that can only support a single
operation on an rdoConnection object, you cannot create additional rdoQuery or rdoResultset
objects using the OpenResultset method, or use the Refresh method on the rdoTable object until
the rdoResultset is flushed, closed, or fully populated. For example, when using SQL Server 4.2 as a
data source, you cannot create an additional rdoResultset object until you move to the last row of the
last result set of the current rdoResultset object. To populate the result set, use the MoreResults
method to move through all pending result sets, or use the Cancel or Close method on the
rdoResultset to flush all pending result sets.

rdoCreateEnvironment Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthrdoCreateEnvironmentC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthrdoCreateEnvironmentX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthrdoCreateEnvironmentA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthrdoCreateEnvironmentS"}

Creates a new rdoEnvironment object.

Syntax

Set variable = rdoCreateEnvironment(name, user, password)

The rdoCreateEnvironment method syntax has these parts:

Part Description

variable An object expression that evaluates to an
rdoEnvironment object.

name A String variable that uniquely names the new
rdoEnvironment object. See the Name property for
details on valid rdoEnvironment names.

user A String variable that identifies the owner of the new
rdoEnvironment object. See the UserName property
for more information.

password A String variable that contains the password for the
new rdoEnvironment object. The password can be up
to 14 characters long and can include any characters
except ASCII character 0 (null).

Remarks

The rdoEnvironment object defines a transaction, user, and password context. When the rdoEngine
is initialized, a default rdoEnvironments(0) is created automatically with the rdoDefaultUser and
rdoDefaultPassword user name and password. If you need to define alternate transaction scopes
that contain specific rdoConnection objects, or specific users, use the rdoCreateEnvironment
method and specify the specific users for the environment. You can then open connections against
this new environment.

Unlike the other methods you use to create Remote Data Objects, rdoCreateEnvironment requires
that you provide all of its parts. If you don’t provide all of the parts, the object won’t be added to the
collection. In addition, rdoEnvironment objects aren’t permanent and can’t be saved. Once you
create an rdoEnvironment object, you can only modify the UserName and Timeout property
settings.

You don’t have to append the new rdoEnvironment object to a collection before you can use it — it is
automatically appended to the rdoEnvironments collection.

If name refers to an object that is already a member of the rdoEnvironments collection, a trappable
error occurs.

Once you use rdoCreateEnvironment to create a new rdoEnvironment object, an rdoEnvironment
session is started, and you can refer to the rdoEnvironment object in your application.

To remove an rdoEnvironment object from the rdoEnvironments collection, use the Close method
on the rdoEnvironment object. You cannot remove rdoEnvironments(0).

rdoRegisterDataSource Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthrdoRegisterDataSourceC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthrdoRegisterDataSourceX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthrdoRegisterDataSourceA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthrdoRegisterDataSourceS"}

Enters connection information for an ODBC data source into the Windows Registry.

Syntax

rdoRegisterDataSource DSN, driver, silent, attributes

The rdoRegisterDataSource method syntax has these parts:

Part Description

DSN A string expression that is the name used in the
OpenConnection method that refers to a block of
descriptive information about the data source. For
example, if the data source is an ODBC remote
database, it could be the name of the server.

driver A string expression that is the name of the ODBC
driver. This isn’t the name of the ODBC driver
dynamic link library (DLL) file. For example, SQL
Server is a driver name, but SQLSRVR.DLL is the
name of a DLL file. You must have ODBC and the
appropriate driver already installed.

silent A Boolean value that is True if you don’t want to
display the ODBC driver dialog boxes that prompt for
driver-specific information, or False if you do want to
display the ODBC driver dialog boxes. If silent is
True, attributes must contain all the necessary driver-
specific information or the dialog boxes are displayed
anyway.

attributes A string expression that is a list of keywords to be
added to the ODBC.INI file. The keywords are in a
carriage-return-delimited string.

Remarks

When you use the OpenConnection or EstablishConnection method, you can use a registered
data source entry to provide connection information.

If the data source is already registered in the Windows Registry when you use the
rdoRegisterDataSource method, the connection information is updated. If the
rdoRegisterDataSource method fails for any reason, no changes are made to the Windows Registry,
and an error occurs.

For more information about ODBC drivers such as SQL Server, see the Help file provided with the
driver.

Note      You are encouraged to use the Windows Control Panel 32-bit ODBC Data Sources dialog box
to add new data sources, or to make changes to existing entries.

Microsoft SQL Server Attributes

The following attributes are used when setting up DSN entries for Microsoft SQL Server drivers as
extracted from the Drvssrvr.Hlp file. Other vendor’s drivers expose their own set of attributes that
might or might not conform to this set. See the documentation provided with your driver for additional
details.

Keyword Description

ADDRESS The network address of the SQL Server
database management system from which the
driver retrieves data.

DATABASE The name of the SQL Server database.

DESCRIPTION A description of the data in the data source.

LANGUAGE The national language to be used by
SQL Server.

NETWORK The network library connecting the platforms
on which SQL Server and the SQL Server
driver reside.

OEMTOANSI Enables conversion of the OEM character set
to the ANSI character set if the SQL Server
client machine and SQL Server are using the
same non-ANSI character set. Valid values are
YES for on (conversion is enabled) and NO for
off.

SERVER The name of the network computer on which
the data source resides.

TRANSLATIONDLL The name of the DLL that translates data
passing between an application and a data
source.

TRANSLATIONNAME The name of the translator that translates data
passing between an application and a data
source.

TRANSLATIONOPTION Enables translation of data passing between an
application and a data source.

USEPROCFORPREPARE Disables generation of stored procedures for
SQLPrepare. Valid values are NO for off
(generation is disabled) and YES for on. The
default value (set in the setup dialog box) is
YES.

Setting the OEMTOANSI Option

If the SQL Server client computer and SQL Server are using the same non-ANSI character set, select
this option. For example, if SQL Server uses code page 850 and this client computer uses code page
850 for the OEM code page, selecting this option will ensure that extended characters stored in the
database are property converted to ANSI for use by Windows-based applications.

When this option is set to YES and the SQL Server client machine and SQL Server are using different
character sets, you must specify a character set translator.

Setting the Server Option

The Server option sets the name of the server. “(local)” can be entered as the server on a Microsoft
Windows NT computer if the DSN is intended to reference a server on the local system. The user can
then use a local copy of SQL Server (that listens on named pipes), even when running a non-
networked version of SQL Server. Note that when the 16-bit SQL Server driver is using “(local)”
without a network, the MS Loopback Adapter must be installed.

For more information about server names for different types of networks, see Microsoft SQL Server
Setup.

Setting the Address Option

The Address option sets the network pathname address of the SQL Server database management
system (DBMS) from which the driver retrieves data. For Microsoft SQL Server you can usually omit
this argument when sets it to (Default).

Setting the Network Option

The Network attribute sets the name of the 32-bit SQL Server Net-Library DLL that the SQL Server
driver uses to communicate with the network software. If this option is not provided, the SQL Server
driver uses the client computer’s default Net-Library, which is specified in the Default Network box in
the Net-Library tab of the SQL Server Client Configuration Utility.

If you create a data source using a Network Library and optionally a Network Address, ODBC SQL
Server Setup will create a server name entry that you can see in the Advanced tab in the SQL Server
Client Configuration Utility. These server name entries can also be used by DB-Library applications.

rdoRegisterDataSource Method Example

The following example illustrates use of the rdoRegisterDataSource method to create a new ODBC
data source entry.

Private Sub RegisterDataSource()
Dim en As rdoEnvironment
Dim cnTest As rdoConnection
Dim strAttribs As String
' Build keywords string.
strAttribs = "Description=" _
 & "SQL Server on server SEQUEL" _
 & Chr$(13) & "OemToAnsi=No" _
 & Chr$(13) & "SERVER=SEQUEL" _
 & Chr$(13) & "Network=DBNMPNTW" _
 & Chr$(13) & "Database=WorkDB" _
 & Chr$(13) & "Address=\\SEQUEL\PIPE\SQL\QUERY"

' Create new registered DSN.
rdoEngine.rdoRegisterDataSource "Example", _
 "SQL Server", True, strAttribs
' Open the database.
Set en = rdoEngine.rdoEnvironments(0)
Set cnTest = en.OpenConnection(_
 dsname:="Example", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="UID=;PWD=;")

End Sub

Refresh Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthRefreshC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthRefreshX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthRefreshA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthRefreshS"}

Closes and rebuilds the rdoResultset object created by a RemoteData control or refreshes the
members of the collections in the Applies To list.

Syntax

object.Refresh

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

You can use the Refresh method on a RemoteData control to close and reopen the rdoResultset if
the properties that describe the result set have changed. When you use the Refresh method, the
properties and current row position is reset to the state set when the query was first run.

Once the Refresh method has been executed against the RemoteData control, all stored
rdoResultset bookmarks are invalid.

If both the BOF and EOF property settings of the rdoResultset object are True, or the RowCount
property is set to 0 after you use the Refresh method, the query didn’t return any rows and the new
rdoResultset contains no data.

Use the Refresh method in multi-user environments in which the database schema is subject to
change to retrieve current table definitions. Using the Refresh method on an rdoTables collection
fetches table names from the base tables in the database. Using Refresh on a specific rdoTable
object’s rdoColumns collection fetches the table structures including column names and data types
from the base tables.

Note      Before you can use the name of a base table in the name argument of the OpenResultset
method, you must first use the Refresh method against the rdoTables collection to populate it. You
can also populate the rdoTables collection by referencing one of its members by its ordinal number.
For example, referencing rdoTables(0) will populate the entire collection.

Refresh Method Example

The following example illustrates use of the Refresh method to rebuild an rdoResultset on the
RemoteData control. The example resets the SQL property with a new query built using the
concatenation technique. When the Refresh method is executed, the query is re-executed. Since the
Connect property is not changed for each invocation of the Search procedure, the connection is not
re-established each time – it is opened only on the first invocation. When the Refresh method is
complete, the bound controls reflect data from the columns returned by the query.

Option Explicit
Private Sub Search_Click()
On Error GoTo eh
With MSRDC1

.Connect = "UID=;PWD=;Database=Pubs;"

.DataSourceName = "WorkDB"

.SQL = "Select Au_Fname " _
& " From Authors " _
& " Where Au_Lname like '%" _
& AuthorWanted & "%'"

Debug.Print .SQL
.Refresh

If .Resultset.EOF Then

MsgBox "No authors on file with that last name"
End If

End With
Exit Sub

eh:
Dim er As rdoError
For Each er In rdoErrors
Debug.Print er
Next
Resume Next
End Sub

Requery Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthRequeryC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthRequeryX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthRequeryA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthRequeryS"}

Updates the data in an rdoResultset object by re-executing the query on which the object is based.

Syntax

object.Requery [options]

The Requery method syntax has these parts:

Part Description

object The object placeholder represents an object
expression that evaluates to an object in the Applies
To list.

options A Variant or constant that determines how the query
is run, as specified in Settings.

Settings

You can use the following constant for the options part:

Constant Value Description

rdAsyncEnable 32 Execute operation
asynchronously.

Remarks

Use this method to ensure an rdoResultset contains the most recent data. When you use Requery,
all changes made to the data in the underlying table(s) by you and other users is displayed in the
rdoResultset, and the first row in the rdoResultset becomes the current row.

If you use the rdAsyncEnable option, control returns to your application as soon as the query is
begun, often before a result set is available. To test for completion of the query, use the
StillExecuting property. The rdoResultset object is not valid until StillExecuting returns False. You
can also use the QueryCompleted event to indicate when the query is completed.

If the rdoParameter objects have changed, their new values are used in the query used to generate
the new rdoResultset.

Once the Requery method has been executed, all previously stored rdoResultset bookmarks are
invalid.

If both the BOF and EOF property settings of the rdoResultset object are True, or the RowCount
property is set to 0 after you use the Requery method, the query didn’t return any rows and the
rdoResultset contains no data.

You can’t use the Requery method on rdoResultset objects whose Restartable property is set to
False.

Requery Method Example

The following example illustrates use of the Requery method to re-execute an rdoQuery. Note that
the rdoResultset is created only at form load and only re-executed on each invocation of the
Requery method.

Option Explicit
Dim Cn As New rdoConnection
Dim Rs As rdoResultset
Dim Col As rdoColumn
Dim Qy As rdoQuery
Dim SQL As String
Dim TimeExpected As Single
Dim Ts As Single, Tn As Single

Private Sub SpWho_Click()
Rs.Cancel
With Rs

.Requery
While .StillExecuting

SpinGlobe
DoEvents

Wend
ShowRS

End With

End Sub
Sub ShowRS()
With Rs

Form1.Cls
For Each Col In .rdoColumns

Print Col.Name,
Next
Print
Do Until .EOF

For Each Col In .rdoColumns
Print Col,

Next
Print
.MoveNext

Loop
End With
End Sub
Sub SpinGlobe()
' Animate a globe here to show query is in progress.
Print ".";
End Sub

Private Sub Form_Load()
With Cn

.Connect = "UID=;PWD=;Database=WorkDB;" _
& "Server=sequel;Driver={SQL Server}" _
& "DSN='';"
.LoginTimeout = 5
.EstablishConnection rdDriverNoPrompt, True
Set Qy = .CreateQuery("SpWho", _

"{ call master..sp_who (?) }")
Qy.RowsetSize = 1
Set Rs = Qy.OpenResultset(rdOpenForwardOnly, _
rdConcurReadOnly, rdAsyncEnable)
Show
ShowRS

End With
End Sub

Update Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthUpdateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthUpdateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthUpdateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthUpdateS"}

Saves the contents of the copy buffer row to a specified updatable rdoResultset object and discards
the copy buffer.

Syntax

object.Update

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Use Update to save the current row and any changes you’ve made to it to the underlying database
table(s). Changes you make to the rdoResultset after using the AddNew or Edit methods can be
lost if you do not use the Update method before the application ends.

Note      When you use the ClientBatch cursor library, all updates to the base tables are deferred until
you use the BatchUpdate method. In this case, the Update method updates the local rdoResultset,
but does not update the base tables. These changes can be lost if the application ends before the
BatchUpdate method has been completed.

Changes to the current row are lost if:

· You use the Edit or AddNew method, and then reposition the current row pointer to another row
without first using Update.

· You use Edit or AddNew, and then use Edit or AddNew again without first using Update.

· You cancel the update with the CancelUpdate method.

· You set the Bookmark property to another row.

· You close the result set referred to by object without first using Update.

· The application ends before the Update method is executed, as when system power is interrupted.

To edit a row, use the Edit method to copy the contents of the current row to the copy buffer. If you
don’t use AddNew or Edit first, an error occurs when you use Update or attempt to add a new row.

To add a new row, use the AddNew method to initialize and activate the copy buffer.

Using Update produces an error under any of the following conditions:

· There is no current row.

· The connection or rdoResultset is read-only.

· No columns in the row are updatable.

· You do not have an Edit or AddNew operation pending.

· Another user has locked the row or data page containing your row.

· The user does not have permission to perform the operation.

· Depending on the driver and type of cursor being used, you might not be able to use the cursor to
update the primary key.

UpdateControls Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthUpdateControlsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthUpdateControlsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthUpdateControlsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthUpdateControlsS"}

Gets the current row from a RemoteData control’s rdoResultset object and displays the appropriate
data in controls bound to a RemoteData control.

Syntax

object.UpdateControls

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Use this method to restore the contents of bound controls to their original values, as when a user
makes changes to data and then decides to cancel the changes.

This method creates the same effect as making the current row current again, except that no events
occur. By not invoking any events, this method can be used to simplify an update operation because
no additional validation or change event procedures are triggered.

UpdateRow Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthUpdateRowC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthUpdateRowX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthUpdateRowA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthUpdateRowS"}

Saves the current values of bound controls to the database.

Syntax

object.UpdateRow

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Use this method to save the current contents of bound controls to the database during the Validate
event, but without triggering the Validate event again. You can use this method to avoid triggering the
Validate event. Using this method avoids a cascading event.

The UpdateRow method has the same effect as executing the Edit method, changing a column, and
then executing the Update method, except that no events occur.

Note      When you use the ClientBatch cursor library, all updates to the base tables are deferred until
you use the BatchUpdate method. In this case, the UpdateRow method updates the local
rdoResultset, but does not update the base tables. These changes can be lost if the application ends
before the BatchUpdate method has been completed.

Whenever you attempt to update a row in the database, any validation rules must be satisfied before
the row is written to the database. In the case of Microsoft SQL Server, these rules are established by
Transact SQL defaults, rules, and triggers written to enforce referential and data integrity.

An update may not occur because of any of the following reasons, which can also trigger a trappable
error:

· The page containing the row or the row itself is locked.

· The database or rdoResultset object isn’t updatable.

· The user doesn’t have permission to perform the operation.

Clear Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthClearC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthClearX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdmthClearA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthClearS"}

Clears all members from the rdoErrors collection.

Syntax

object.Clear

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

Use this method to remove all rdoError objects from the rdoErrors collection.

Generally, it is unnecessary to clear the rdoErrors collection because it is automatically cleared when
the first error occurs after initiating a new operation. Use the Clear method in cases where you need
to clear the rdoErrors collection manually, for example if you wish to clear errors that have already
been processed.

BatchUpdate Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthBatchUpdateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthBatchUpdateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthBatchUpdateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthBatchUpdateS"}

Performs a batched optimistic update.

Syntax

object.BatchUpdate (SingleRow, Force)

The BatchUpdate method syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

SingleRow A Boolean value that is True if the update is done
only for the current row, or False if the update applies
to all rows in the batch. Default is False.

Force A Boolean value that is True if the row or batch of
rows will overwrite existing rows in the database
regardless if they cause collisions or not. Default is
False.

Remarks

This method performs a batch optimistic update operation. When using batch optimistic concurrency,
it is necessary to call this method to actually send the changes back to the server.

Batch updates are used whenever you open a connection using the Client Batch cursor library
(rdUseClientBatch). In this case, each time you use the Update or UpdateRow methods, the local
rdoResultset is updated, but the base database tables are not changed. The BatchUpdate method
is used to update the base database table(s) with any information changed since the rdoResultset
was last created or synchronized with the BatchUpdate command.

The BatchUpdate method updates the BatchCollisionRows property to include a bookmark for
each row that failed to update – collided with an existing row that has data more current than the
rdoResultset object as it existed when first read. The BatchCollisionCount property indicates how
many collisions occurred during the batch update process.

If you use the CancelBatch method, the changes saved to the local rdoResultset object are
discarded. When you use the CancelUpdate method, only the current row’s changes are rolled back
to the state prior to execution of the last Update method.

The SingleRow parameter can be used in conjunction with the Force parameter to force the client’s
version of the data back into the database, even if collisions have occurred. The SingleRow
parameter will tell RDO to only send the current row back to the server and not the entire batch, and
the Force parameter will tell RDO to force the data in, and not use the normal optimistic concurrency
detection.

Setting both the SingleRow and Force parameters to True overlays a single database row with the
current updated rdoResultset row. This is useful when processing collision rows and you want to
force your local version of the data to be saved regardless of the current database row setting.

Setting SingleRow to False and Force to True will cause all rows that are dirty to be forced into the
database, which is useful as a shorthand way of forcing everything in (the last-one-in-wins scenario).

Setting SingleRow to True and Force to False will cause just the current row to go through the
optimistic concurrency update, which is useful when you only want to update the current row, not the
entire batch.

CancelBatch Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthCancelBatchC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthCancelBatchX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthCancelBatchA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthCancelBatchS"}

Cancels all uncommitted changes in the local cursor (used in batch mode)

Syntax

object.CancelBatch

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

The CancelBatch method cancels all uncommitted changes in the local cursor, and reverts the data
back to the state it was when originally fetched from the database. Note that this method does not
refresh the data by re-querying the server like the Refresh method does — instead it just discards
changes made in the local cursor that have not already been sent in a batch update operation.

When you use the CancelUpdate method, only the current row’s changes are rolled back to the state
prior to execution of the last Update method.

Batch updates are used whenever you open a connection using the Client Batch cursor library
(rdUseClientBatch). In this case, each time you use the Update or UpdateRow methods, the local
rdoResultset is updated, but the base database tables are not changed. The BatchUpdate method
is used to update the base database table(s) with any information changed since the rdoResultset
was last created or synchronized with the BatchUpdate command.

The BatchUpdate method updates the BatchCollisionRows property to include a bookmark for
each row that failed to update – collided with an existing row that has data more current than the
rdoResultset object as it existed when first read. The BatchCollisionCount property indicates how
many collisions occurred during the batch update process.

CreateQuery Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthCreateQueryC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthCreateQueryX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthCreateQueryA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthCreateQueryS"}

Creates a new query object and adds it to the rdoQueries collection.

Syntax

object.CreateQuery Name, SQLString

The CreateQuery method syntax has these parts:

Part Description

object An object expression that evaluates to an
rdoConnection object

Name Required. A string expression that evaluates to the
name for the new object

SQLString Optional. SQL query for the new prepared statement

Remarks

The CreateQuery method creates a new rdoQuery object for this connection and adds it to the
rdoQueries collection. You can also declare stand-alone rdoQuery objects using the Dim statement
as follows:

Dim myQuery as New rdoQuery

Stand-alone rdoQuery objects are not associated with a connection until you set the
ActiveConnection property.

The rdoQuery corresponds to the ODBC prepared statement used to define a reusable SQL query
that can contain parameters.    You can execute the rdoQuery any number of times, and pass
parameters that are substituted into the SQL statement before it is executed.    Parameters are
maintained in the rdoParameters collection.    Generally, if you intend to execute a query more than
once in your code, it is more efficient to use rdoQuery objects than to use the Execute or
OpenResultset method on objects other than the rdoQuery.

The value passed for the Name parameter can be used with the Item method to locate the new object
in its collection. If Name is not provided, the rdoQuery is appended to the rdoQueries collection, and
the rdoQuery can be used by referencing the query variable or the rdoQuery object’s ordinal value.
If the object specified by name is already a member of the rdoQueries collection (including an empty
string), a trappable error occurs.    All rdoQuery objects are temporary — they are discarded when the
rdoConnection object is closed.

To remove an rdoQuery object from an rdoQueries collection, use the Close method on the
rdoQuery.

The SQLString parameter is optional, but if not provided, you must set the SQL property of the
resulting rdoQuery object before executing it.

Use the Execute method to run an SQL statement in an rdoQuery object that does not return rows
(an action query).    Use the OpenResultset method to run an rdoQuery that returns rows.

If there is an unpopulated rdoResultset pending on a data source that can only support a single
operation on an rdoConnection object, you cannot create additional rdoQuery or rdoResultset
objects, or use the Refresh method on the rdoTable object until the rdoResultset is flushed, closed,
or fully populated.    For example, when using SQL Server 4.2 as a data source, you cannot create an
additional rdoResultset object until you move to the last row of the current rdoResultset object.    To
populate the result set, use the MoreResults method to move through all pending result sets, or use

the Cancel or Close method on the rdoResultset to flush all pending result sets.

EstablishConnection Method (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthEstablishConnectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthEstablishConnectionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthEstablishConnectionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthEstablishConnectionS"}

Establishes a physical connection to an ODBC server.

Syntax

object.EstablishConnection prompt, readonly, options

The EstablishConnection method syntax has these parts:

Part Description

object An object expression that evaluates to an
rdoConnection object.

prompt Optional. Integer value indicating ODBC prompting
characteristic (see the OpenConnection method on
the rdoEnvironment object).

readonly Optional. Boolean value which is True if intending to
use connection as read-only.

options Optional. Integer value indicating connection options.
This parameter has the same rules, restrictions and
possible values that it does in the OpenConnection
method of the rdoEnvironment object.

Remarks

This method causes the rdoConnection object to physically connect to the server, if it is not so
already. This method is used when creating stand-alone rdoConnection objects or when re-
connecting rdoConnection objects that have been disconnected using the Close method.

Unlike the OpenConnection method, the EstablishConnection method does not automatically
append the rdoConnection object to the rdoConnections collection. If you want to add the newly
established connection into the rdoConnections collection, you must use the Add method. You can
use the Remove method to remove a member from the rdoConnections collection.

When using the Client Batch cursor library, the EstablishConnection method can be used to
establish a connection once the ActiveConnection of an rdoResultset or rdoQuery object has been
set to Nothing.

Just as with the OpenConnection method, the prompt argument dictates how the ODBC driver
manager prompts the user for missing arguments needed to establish the connection. You can also
request that the connection be made asynchronously by using the rdAsyncEnable option.

In general, you must set the Connect property and other appropriate properties of the
rdoConnection object prior to making an attempt at connecting to a remote server.

See the OpenConnection method for details on how the rdoConnection properties should be set
prior to attempting to use the EstablishConnection method.

GetClipString Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdmthGetClipStringC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdmthGetClipStringX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdmthGetClipStringA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdmthGetClipStringS"}

The GetClipString method returns a delimited string for 'n' rows in a result set.

Syntax

ResulsetString = object.GetClipString (NumRows, [ColumnDelimiter],[RowDelimiter], NullExpr])

The GetClipString method syntax has these parts:

Part Description

ResultsetString A variable used to reference the entire result set as a
delimited string.

Object An object expression that evaluates to an
rdoResultset object.

NumRows Required: Long value. Number of rows to copy into the
clip string.

ColumnDelimiter Optional: Variant(String) expression used to separate
data columns as described in Settings. Default is Tab
(VbTab).

RowDelimiter Optional: Variant(String)expression used to separate
data rows as described in Settings. Default is carriage
return (VbCr).

NullExpr Optional: Variant(String)expression used when NULL
values are encountered as described in Settings.
Default is an empty string.

Settings

The row and column delimiters can be any length, but are generally one or two bytes long. Generally,
the ResultsetString delimiters are determined by the Clip property of the target object. For example,
if the string is applied to a grid control, columns are separated by tabs and the rows are separated by
carriage returns (the default settings).

The NullExpr is used to substitute a suitable value in place of NULL values returned from the query.
Generally, an empty string or “<null>” is used.

Remarks

The GetClipString method returns a delimited string for 'n' rows in a result set based on the
NumRows argument. If more rows are requested than are available, only the available rows are
returned. Use the RowCount property to determine how many rows are actually fetched. The number
of rows that can be fetched is constrained by available memory and should be chosen to suit your
application. Don't expect to use GetClipString to bring your entire table or result set into memory if it
is a large table.

Generally, GetClipString works just like the GetRows method except that the data is returned as a
string instead of a 2-dimensional variant array. GetClipString can be used fill a grid control, or any
control that has a Clip property. It can also be used to format export data from a result set to a
sequential file.

After a call to GetClipString, the current row is positioned at the next unread row. That is,
GetClipString is equivalent to using the Move (rows) method.

If you are trying to fetch all the rows using multiple GetClipString calls, use the EOF property to

determine if there are rows available. GetClipString returns less than the number requested either at
the end of the rdoResultset, or if it cannot fetch a row in the range requested. For example, if a fifth
row cannot be retrieved in a group of ten rows that you're trying to fetch, GetClipString returns four
rows and leaves currency on the row that caused the problem. It will not generate a run-time error.

The ColumnDelimiter optional parameter can be used to substitute a different column delimiter than
the default tab (Chr$(9)) character, and the RowDelimiter optional parameter can be used to
substitute a different row delimiter. This is useful when working with a control that accepts a clip
format, but requires different characters for the column and row delimiters (some grids have been
known to require both a carriage return and a line feed character for a row delimiter).

GetClipString Example (Remote Data)

The following example creates a clip string from a result set containing a selected set of rows from the
Publishers table and fills a Grid control from the string by applying it to the Clip property.

Dim rs As rdoResultset
Set rs = MyConnection.OpenResultset(_
"Select * from Publishers Where State = ‘WA’", _

rdOpenNone)
MyGrid.Rows = rs.RowCount
MyGrid.Cols = rs.rdoColumns.Count
MyGrid.SelStartRow = 1
MyGrid.SelEndRow = MyGrid.Rows
MyGrid.SelStartCol = 0
MyGrid.SelEndCol = MyGrid.Cols - 1
MyGrid.Clip = rs.GetClipString(rs.RowCount)

result set

The results of a query. Result sets might contain rows when a query contains a SELECT statement.
Action queries do not return rows but do return result sets that contain information about the
operation, such as rows affected.

rdoColumn Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoColumnC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoColumnX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdocolumnP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoColumnM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoColumnE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoColumnS"}

An rdoColumn object represents a column of data with a common data type and a common set of
properties.

 

 

 

Remarks

The rdoTable, or rdoResultset object's rdoColumns collection represents the rdoColumn object in
a row of data. You can use the rdoColumn object in an rdoResultset to read and set values for the
data columns in the current row of the object. However, in most cases, references to the rdoColumn
object is only implied because the rdoColumns collection is the rdoResultset object's default
collection.

An rdoColumn object's name is determined by the name used to define the column in the data
source table or by the name assigned to it in an SQL query. For example, if an SQL query aliases the
column, this name is assigned to the Name property; otherwise, the column's name is used.

You manipulate database columns using an rdoColumn object and its methods and properties. For
example, you can:

· Use the Value property of an rdoColumn to extract data from a specified column.

· Use the Type and Size property settings to determine the data type and size of the data.

· Use the Updatable property to see if the column can be changed.

· Use the SourceColumn and SourceTable property settings to locate the original source of the
data.

· Use the OrdinalPosition property to get presentation order of the rdoColumn objects in an
rdoColumns collection.

· Use the Attributes and Required property settings to determine optional characteristics and if
Nulls are permitted in the column.

· Use the AllowZeroLength property to determine how zero-length strings are handled.

· Use the BatchConflictValue, and OriginalValue properties to resolve optimistic batch update
conflicts.

· Use the KeyColumn to determine if this column is part of the primary key.

· Use the Status property to determine if the column has been modified.

· Use the AppendChunk, ColumnSize, and GetChunk methods to manipulate columns that require
the use of these methods, as determined by the ChunkRequired property.

When you need to reference data from an rdoResultset column, you can refer to the Value property
of an rdoColumn object by:

· Referencing the Name property setting using this syntax:
' Refers to the Au_Fname column rdoColumns("Au_Fname")
rs.rdoColumns("Au_Fname")

-Or-
' Refers to the Au_Fname column
rs.rdoColumns!Au_Lname

· Referencing its ordinal position in the rdoColumns collection using this syntax:
rs.rdoColumns(0)

The rdoTable object's rdoColumns collection contains specifications for the data columns. You can
use the rdoColumn object of an rdoTable object to map a base table's column structure. However,
you cannot directly alter the structure of a database table using RDO properties and methods. You
can, however, use data definition language (DDL) action queries to modify database schema.

When the rdoColumn object is accessed as part of an rdoResultset object, data from the current
row is visible in the rdoColumn object's Value property. To manipulate data in the rdoResultset, you
don't usually reference the rdoColumns collection directly. Instead, use syntax that references the
rdoColumns collection as the default collection of the rdoResultset.

dim rs As rdoResultset
Set rs = cn.OpenResultset("Select * from Authors" _

& "Where Au_Lname = 'White'",rdOpenForwardOnly)
debug.print rs!Au_Fname

'Refers to rdoRecordset object's rdoColumns collection.

rdoColumns Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoColumnSC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoColumnsCollectionX;rdobjrdoColumnSX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoColumnsP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoColumnsM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoColumnsCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoColumnsCollectionS"}

An rdoColumns collection contains all rdoColumn objects of an rdoResultset, or rdoTable object.

 

 

 

Remarks

The rdoTable, or rdoResultset object's rdoColumns collection represents the rdoColumn objects in
a row of data. You use the rdoColumn object in an rdoResultset to read and set values for the data
columns in the current row of the object.

The rdoColumn object is either created automatically by RDO when

· An rdoTable, or rdoResultset object is created.

· An rdoTable object is referenced.

· An rdoResultset is created via OpenResultset.

rdoColumn Object, rdoColumns Collection Example

The following example opens a connection against an SQL Server database and creates an
rdoResultset that returns two columns: one normal column, and one derived from an expression.
Next, the example maps the rdoColumn objects returned from the result set.

Private Sub rdoColumnButton_Click()
Dim cl As rdoColumn
Dim rs As rdoResultset
Dim sSQL As String
Dim cn As rdoConnection
Dim connect As String

connect = "uid=;pwd=;database=pubs;"

Set cn = rdoEnvironments(0).OpenConnection(workdb, _
 rdDriverNoPrompt, False, connect)

sSQL = "Select Pub_ID, Max(Price) BestPrice " _
 & " from Titles Group by Pub_ID"

Set rs = cn.OpenResultset(sSQL, rdOpenForwardOnly, _
 rdConcurReadOnly)

With rs
 For Each cl In .rdoColumns
 Print cl.Name; "-"; cl.Type; ":"; cl.Size, _

cl.SourceTable, cl.SourceColumn
 Next cl
 Print
 Do Until .EOF
 For Each cl In .rdoColumns
 Print cl.Value,
 Next cl
 Print
 .MoveNext
 Loop
End With
End Sub

rdoConnection Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoConnectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoConnectionX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoConnectionP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoConnectionM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoConnectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoConnectionS"}

An rdoConnection object represents an open connection to a remote data source and a specific
database on that data source, or an allocated but as yet unconnected object, which can be used to
subsequently establish a connection.

Remarks

Generally, an rdoConnection object represents a physical connection to the remote data source and
corresponds to a single ODBC hDbc handle. A connection to a remote data source is required before
you can access its data. You can open connections to remote ODBC data sources and create
rdoConnection objects with either the RemoteData control or the OpenConnection method of an
rdoEnvironment object.

To establish a connection to a remote server using the rdoConnection object, you can use the
OpenConnection method to gather the connect, dsname, readonly and prompt arguments and
open the connection. These arguments are then applied to the newly created rdoConnection object.
You can also establish connections using the RemoteData control.

Creating Stand Alone rdoConnection Objects

You can also create a new rdoConnection object that is not immediately linked with a specific
physical connection to a data source. For example, the following code creates a new stand-alone
rdoConnection object:

Dim X as new rdoConnection.

Once created, you can set the properties of a stand-alone rdoConnection object and subsequently
use the EstablishConnection method. This method determines how users are prompted — based
on the prompt argument, and sets the read-only status of the connection based on the readonly
argument.

When using this technique, RDO sets the following properties based on rdoEngine default values:
CursorDriver, LoginTimeout, UserName, Password and ErrorThreshold. The CursorDriver and
LoginTimeout properties can be set in the rdoConnection object itself and the UserName and
Password can be set through arguments in the connect string. Once the connection is open, all of
these properties are read-only.

When you declare a stand-alone rdoConnection object or use the EstablishConnection method,
the object is not automatically appended to the rdoConnections collection. Use the Add or Remove
methods to add or delete stand-alone rdoConnection objects to or from the rdoConnections
collection. It is not necessary, however to add    an rdoConnection object to the rdoConnections
collection before it can be used to establish a connection.

Note      RDO 1.0 collections behave differently than Data Access Object (DAO) collections. When you
Set a variable containing a reference to a RDO object like rdoResultset, the existing rdoResultset is
not closed and removed from the rdoResultsets collection. The existing object remains open and a
member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to
assign a variable containing a reference to an RDO object, the existing object is closed and removed
from the associated collection. This change is designed to make RDO more compatible with DAO.

Asynchronous Operations

Both the EstablishConnection and OpenConnection methods support synchronous, asynchronous,
and event-managed operations. By setting the rdAsyncEnable option, control returns to your
application before the connection is established. Once the StillConnecting property returns False,
and the Connect event fires, the connection has either been made or failed to complete. You can
check the success or failure of this operation by examining errors returned through the rdoErrors
collection.

Opening Connections without Data Source Names

In many situations, it is difficult to ensure that a registered Data Source Name (DSN) exists on the
target system, and in some cases it is not advisable to create one. Actually, a DSN is not needed to
establish a connection if you are using the default network protocol (named pipes) and you know the
name of the server and ODBC driver. If this is the case, you can establish a DSN-less connection by
following these steps:

1. Set the DSN argument of the connect string to an empty string (DSN='').

2. Include the server name in the connect string.

3. Include the ODBC driver name in the connect string. Since many driver names have more than
one word, enclose the name in curly braces { }.

Note      This option is not available if you need to use other than the named pipes network protocol or
one of the other DSN-set options such as OEMTOANSI conversion.

For example, the following code opens a read-only ODBC cursor connection against the SQL Server
"SEQUEL" and includes a simple error handler:

Sub MakeConnection()
Dim rdoCn As New rdoConnection
On Error GoTo CnEh
With rdoCn
 .Connect = "UID=;PWD=;Database=WorkDB;" _
 & "Server=SEQUEL;Driver={SQL Server}" _
 & "DSN='';"
 .LoginTimeout = 5

 .CursorDriver = rdUseODBC
 .EstablishConnection rdDriverNoPrompt, True
End With
Exit Sub
CnEh:
Dim er As rdoError
 Debug.Print Err, Error
 For Each er In rdoErrors
 Debug.Print er.Description, er.Number
 Next er
 Resume Next
End Sub

Choosing a Specific Database

Once a connection is established, you can manipulate a database associated with the
rdoConnection using the rdoConnection object and its methods and properties. For servers that
support more than one database per connection, the default database is:

· Assigned to the user name by the database system administrator

· Specified with the DATABASE connect argument used when the rdoConnection is created.

· Specified in the registered ODBC data source entry.

· Selected by using an SQL statement such as USE <database> submitted with an action query.

All queries executed against the server assume this default database unless another database is
specifically referenced in your SQL query.

Preparing for Errors when Connecting

There are a variety of reasons why you might be unable to connect to your remote database.
Consider the following conditions that can typically prevent connections from completing:

· Your server might not have sufficient connection resources due to administrative settings or
licensing restrictions.

· Your user might not have permission to access the network, server, or database with the password
provided.

· The server, network or WAN bridges might be down or simply running slower than expected.

Closing the rdoConnection

When you use the Close method against an rdoConnection object, any open rdoResultset, or

rdoQuery objects are closed. However, if the rdoConnection object simply loses scope, these
objects remain open until the rdoConnection or the objects are explicitly closed. Closing a
connection is not recommended when there are incomplete queries or uncommitted transactions
pending.

Closing a connection also removes it from the rdoConnections collection. However, the
rdoConnection object itself is not destroyed. If needed, you can use the EstablishConnection
method to re-connect to the same server using the same settings, or change the rdoConnection
object's properties and then use EstablishConnection to connect to another server.

Closing a connection also instructs the remote server to discard any instance-specific objects
associated with the connection. For example, server-side cursors, temporary tables or any other
objects created in the TempDB database on SQL Server are all dropped.

Working with rdoConnection Methods and Properties

You can manipulate the connection, databases, and queries associated with them using the methods
and properties of the rdoConnection object. For example, you can:

· Use the CursorDriver property to determine the type of cursor requested by result sets created
against the connection.

· Use the OpenResultset method to create a new rdoResultset object.

· Use the LastQueryResults to reference the last rdoResultset created against this connection.

· Use the QueryTimeout or LoginTimeout properties to specify how long the ODBC driver
manager should wait before abandoning a query or connection attempt.

· Use the RowsAffected property to determine how many rows were affected by the last action
query.

· Use the Execute method to run an action query or pass an SQL statement to a database for
execution.

· Use the CreateQuery method to create a new rdoQuery object.

· Use the Close method to close an open connection, remove the rdoConnection object from the
rdoConnections collection, deallocate the connection handle, and terminate the connection.

· Use the Transactions property to determine if the connection supports transactions, which you
can implement using the BeginTrans, CommitTrans, and RollbackTrans methods.

· Use the AsyncCheckInterval property to determine how often RDO should poll for a completed
asynchronous operation.

· Use the ODBC API with the hDbc property to set connection options.

· Use the Connect property to determine the connect argument used in the OpenConnection
method, or the Connect property of the RemoteData control.

rdoConnection Events

The following events are fired as the rdoConnection object is manipulated. These can be used to
micro-manage the process of connecting and disconnecting and provide additional retry handling in
query timeout situations.

Event Name Description

BeforeConnect Fired before ODBC is called to establish the connection.

Connect Fired after a connection is established.

Disconnect Fired after a connection has been closed

QueryComplete Fired after a query run against this connection is
complete

QueryTimeout Fired after the QueryTimeout period is exhausted.

Addressing the rdoConnection Object

The Name property setting of an rdoConnection specifies the data source name (DSN) parameter
used to open the connection. This property is often empty as it is not used when making a DSN-less
connection. In cases where you specify a different DSN to open each connection, you can refer to
any rdoConnection object by its Name property setting using the following syntax. This code Refers
to the connection opened against the Accounting DSN:

rdoConnections("Accounting")

You can also refer to the object by its ordinal number using this syntax (which refers to the first
member of the rdoConnections collection):

rdoConnections(0)

rdoConnections Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoConnectionSC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoConnectionSX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoConnectionsP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoConnectionsM;vamthAdd;vamthRemove"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoConnectionSE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoConnectionsCollectionS"}

An rdoConnections collection contains all rdoConnection objects opened or created in an
rdoEnvironment object of the remote database engine, or allocated and appended to the
rdoConnections collection using the Add method.

Remarks

The rdoConnections collection is used to manage your rdoConnection objects. However, only
rdoConnection objects created using the OpenConnection method, or using the RemoteData
control are automatically appended to the collection. When you allocate a stand-alone
rdoConnection object, it is not appended to the rdoConnections collection until you use the Add
method.

Note      RDO 1.0 collections behave differently than Data Access Object (DAO) collections. When you
Set a variable containing a reference to a RDO object like rdoResultset, the existing rdoResultset is
not closed and removed from the rdoResultsets collection. The existing object remains open and a
member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to
assign a variable containing a reference to an RDO object, the existing object is closed and removed
from the associated collection. This change is designed to make RDO more compatible with DAO.

Closing rdoConnection Objects

When you use the Close method against an rdoConnection object, any open rdoResultset, or
rdoQuery objects are closed and the rdoConnection object is removed from the rdoConnections
collection. However, if the rdoConnection object simply loses scope, these objects remain open until
the rdoConnection or the objects are explicitly closed.

rdoConnection Object, rdoConnections Collection Example

This example establishes a stand-alone rdoConnection object, sets its properties and uses the
EstablishConnection method to open the connection.

Option Explicit
Dim cn As New rdoConnection

Private Sub rdoConnectionButton_Click()
WorkingLight.Caption = "Connecting"
With cn
 .Connect = "DSN=BadServerName;" _
 & "UID=;PWD=;DATABASE=WorkDB;"
 .LoginTimeout = 20
 .CursorDriver = rdUseOdbc
 .EstablishConnection _
 prompt:=rdDriverNoPrompt, _
 Option:=rdAsyncEnable
End With
While .StillConnecting
 ToggleLight ' Flash status indicator
 DoEvents
Wend
WorkingLight = True ' Show status indicator
WorkingLight.Caption = "Connected"
End Sub

Sub ToggleLight() 'Flashes "Opening" light
WorkingLight = Not WorkingLight
End Sub

rdoEngine Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoEngineC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoEngineX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoEngineP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoEngineM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoEngineE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoEngineS"}

The rdoEngine object represents the remote data source. As the top-level object, it contains all other
objects in the hierarchy of Remote Data Objects (RDO).

Remarks

The rdoEngine object can represent a remote database engine or another data source managed by
the ODBC driver manager as a database. The rdoEngine object is a predefined object, therefore you
can't create additional rdoEngine objects and it isn't a member of any collection.

The rdoEngine object is used to reference the rdoEnvironments collection, or establish default
values for newly created rdoEnvironment objects. When an rdoEnvironment object is created, its
properties are initialized based on the default values set in the rdoEngine. A default
rdoEnvironments(0) object is created automatically when it is first referenced.

The rdoEngine object fires the InfoMessage event when an informational message is returned from
the remote data source. Informational messages are indicated by an ODBC
SQL_SUCCESS_WITH_INFO return code. These messages are placed in the rdoErrors collection.
In cases where several messages arrive at once, only a single InfoMessage event is fired — after the
last message arrives and has been added to the rdoErrors collection.

Setting Default rdoEnvironment Properties

The following properties establish default settings for all newly-created rdoEnvironment objects.
They are also used when instantiating stand-alone rdoConnection objects.

· Use the rdoDefaultLoginTimeout property to determine the rdoEnvironment object's default
LoginTimeout property used in connection timeout management.

· Use the rdoDefaultCursorDriver property to determine the rdoEnvironment object's default
CursorDriver value. This property determines if the ODBC driver manager creates client batch,
local, server-side, or no cursors.

· Use the rdoDefaultUser and rdoDefaultPassword properties to determine the default
rdoEnvironment object's UserName and Password properties. These determine the user name
and password when opening connections if no specific values are supplied.

Working with other rdoEngine Properties and Methods

You can establish the default configuration of new rdoEnvironment objects and create new ODBC
data source entries using the properties and methods of the rdoEngine object. For example, you can:

· Use the rdoEnvironments collection to examine rdoEnvironment objects that have been
appended to the collection. Note that rdoEnvironment objects can be allocated as stand-alone
objects.

· Use the rdoLocaleID property to determine which language-localized DLLs are loaded.

· Use the Version property to examine the version of RDO in use.

· Use the rdoErrors collection to examine information about errors generated by the ODBC
interface. Errors generated by Visual Basic are maintained in a separate Errors collection.

· Use the rdoRegisterDataSource method to create a new data source entry in the Windows
System Registry.

· Use the rdoCreateEnvironment method to create a new rdoEnvironment object. You can also
allocate a new rdoEnvironment object by coding

Dim MyEnv as New rdoEnvironment

rdoEngine Object Example

This example sets a number of rdoEngine properties and creates a customized rdoEnvironment
object based on these new default settings. Note that while your code can set a password in an
rdoEnvironment object, it cannot be read once it is set.

Dim en As rdoEnvironment
Private Sub Form_Load()
With rdoEngine
 .rdoDefaultLoginTimeout = 20
 .rdoDefaultCursorDriver = rdUseOdbc
 .rdoDefaultUser = "Fred"
 .rdoDefaultPassword = ""
End With
Set en = rdoEnvironments(0)
'
' Dump current rdoEnvironments collection
' and display current properties where
' possible.
'
For Each en In rdoEnvironments
 Debug.Print "LoginTimeout:" & en.LoginTimeout
 Debug.Print "CursorDriver:" & en.CursorDriver
 Debug.Print "User:" & en.UserName
 ' (Write-only) Debug.Print "Password:" & en.Password
Next
End Sub

rdoEnvironment Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoEnvironmentC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoEnvironmentX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoEnvironmentP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoEnvironmentM;vamthAdd;vamthRemove"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoEnvironmentE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoEnvironmentS"}

An rdoEnvironment object defines a logical set of connections and transaction scope for a particular
user name. It contains both open and allocated but unopened connections, provides mechanisms for
simultaneous transactions, and provides a security context for data manipulation language (DML)
operations on the database.

Remarks

Generally, an rdoEnvironment object corresponds to an ODBC environment that can be referred to
by the rdoEnvironment object's hEnv property. However, if the Name argument is not provided when
the rdoEnvironment object is created by the rdoCreateEnvironment method, a stand-alone
rdoEnvironment is created that is not added to the rdoEnvironments collection. Stand-alone
rdoEnvironment objects are not exposed to other in-process DLLs unless specifically designated as
public. If the reference count for any private rdoEnvironment is reduced to zero, all rdoConnections
associated with the rdoEnvironment are closed.

Once you set the properties of an rdoEnvironment object, you can use the Add method to append it
to the rdoEnvironments collection or the Remove method to detach and deallocate the object. The
Name property is read-only and is determined by the specific remote data object.

The default rdoEnvironment is created automatically when the RemoteData control is initialized, or
the first remote data object is referenced in code. The Name property of rdoEnvironments(0) is
"Default_Environment". The user name and password for rdoEnvironments(0) are both "".

rdoEnvironment objects can be created with the rdoCreateEnvironment method of the rdoEngine
object which automatically appends the new object to the rdoEnvironments collection. All
rdoEnvironment objects created in this manner are assigned properties based on the default
properties set in the rdoEngine object.

The user name and password information from the rdoEnvironment is used to establish the
connection if these values are not supplied in the connect argument of the OpenConnection
method, or in the Connect property of the RemoteData control .

All rdoEnvironment objects share a common hEnv value that is created on an application basis. Use
the rdoEnvironment object to manage the current ODBC environment, or to start an additional
connection. In an rdoEnvironment, you can open multiple connections, manage transactions, and
establish security based on user names and passwords. For example, you can:

· Create an rdoEnvironment object using the Name, Password, and UserName properties to
establish a named, password-protected environment. The environment creates a scope in which
you can open multiple connections and conduct one instance of coordinated transactions.

· Use the CursorDriver property to determine which cursor driver library is used to build
rdoResultset objects. You can choose one of four types of cursors, or set the CursorDriver
property to rdUseNone to indicate that no cursor is to be used to manage result sets.

· Use the OpenConnection method to open one or more existing connections in that
rdoEnvironment.

· Use the LoginTimeout property to determine how long the ODBC drivers should wait before
abandoning the connection attempt.

· Use the BeginTrans, CommitTrans, and RollbackTrans methods to manage transaction
processing within an rdoEnvironment across several connections.

· Use several rdoEnvironment objects to conduct multiple, simultaneous, independent, and
overlapping transactions.

· Use the Close method to terminate an environment and the connection and remove the
rdoEnvironment object from the rdoEnvironments collection. This also closes all connections
associated with the object.

Managing Transactions

The rdoEnvironment also determines transaction scope. Committing an rdoEnvironment
transaction commits all open rdoConnection databases and their corresponding open rdoResultset
objects. This does not imply a two-phase commit operation — simply that individual rdoConnection
objects are instructed to commit any pending operations — one at a time.

For Microsoft SQL Server databases, the Distributed Transaction Coordinator (DTC) can be used to
manage blocks of transactions simply by introducing the SQL query with the BEGIN DISTRIBUTED
TRANSACTION statement. DTC facilitates the creation of network-wide database updates through its
own two-phase commit protocol. Whenever SQL Server commits a transaction, the DTC ensures all
related resources also commit the transaction. If any part of the transaction fails, the DTC ensures
that the entire transaction is rolled back across all enlisted servers.

When you use transactions, all databases in the specified rdoEnvironment are affected – even if
multiple rdoConnection objects are opened in the rdoEnvironment. For example, suppose you use
a BeginTrans method against one of the databases visible from the connection, update several rows
in the database, and then delete rows in another rdoConnection object's database. When you use
the RollbackTrans method, both the update and delete operations are rolled back. To avoid this
problem, you can create additional rdoEnvironment objects to manage transactions independently
across rdoConnection objects. Note that transactions executed by multiple rdoEnvironment objects
are serialized and are not atomic operations. Because of this, their success or failure is not
interdependent. This is an example of batched transactions.

You can execute nested transactions only if your data source supports them. For example, on a single
connection, you can execute a BEGIN TRANS SQL statement, execute several UPDATE queries,
and another BEGIN TRANS statement. Any operations executed after the second BEGIN TRANS
SQL statement can be rolled back independently of the statements executed after the first BEGIN
TRANS. This is an example of nested transactions. To commit the first set of UPDATE statements,
you must execute a COMMIT TRANS statement, or a ROLLBACK TRANS statement for each BEGIN
TRANS executed.

rdoEnvironment Events

The following events are fired as the rdoEnvironment object is manipulated. These can be used to
micro-manage RDO transactions associated with the rdoEnvironment or to synchronize some other
process with the transaction.

Event Name Description

BeginTrans Fired after the BeginTrans method has completed.

CommitTrans Fired after the CommitTrans method has completed.

RollbackTrans Fired after the RollbackTrans method has completed.

Addressing rdoEnvironment Objects

The Name property of rdoEnvironment objects is set from the name argument passed to the
rdoCreateEnvironment method. You can refer to any other rdoEnvironment object by specifying its
Name property setting using this syntax:

rdoEnvironments("MyEnvName")

or simply:

rdoEnvironments!MyEnvName

You can also refer to rdoEnvironment objects by their position in the rdoEnvironments collection
using this syntax (where n is the nth member of the zero-based rdoEnvironments collection):

rdoEngine.rdoEnvironments(n)

or simply:

rdoEnvironments(n)

rdoEnvironments Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoEnvironmentSC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoEnvironmentsCollectionX;rdobjrdoEnvironmentSX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoEnvironmentsP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoEnvironmentsM;vamthAdd;vamthRemove"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoEnvironmentsCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoEnvironmentsCollectionS"}

The rdoEnvironments collection contains all active rdoEnvironment objects of the rdoEngine
object.

Remarks

rdoEnvironment objects are created with the rdoCreateEnvironment method of the rdoEngine
object. Newly created rdoEnvironment objects are automatically appended to the rdoEnvironments
collection unless you do not provide a name for the new object when using the
rdoCreateEnvironment method or simply declare a new rdoEnvironment object in code.

The rdoEnvironments collection is automatically initialized with a default rdoEnvironment object
based on the default properties set in the rdoEngine object.

If you use the Close method against an rdoEnvironment object, all rdoConnections it contains are
closed and the object is removed from the rdoEnvironments collection.

rdoEnvironment Object, rdoEnvironments Collection Example

The following example illustrates creation of the rdoEnvironment object and its subsequent use to
open an rdoConnection object.

Private Sub rdoEnvironmentButton_Click()
Dim en As rdoEnvironment
Dim cn As rdoConnection
Set en = rdoEngine.rdoEvironments(0)
With en
 en.CursorDriver = rdUseOdbc
 en.LoginTimeout = 5
 en.Name = "TransOp1"
 Set cn = en.OpenConnection(dsname:="", _
 prompt:=rdDriverNoPrompt, _
 Connect:="UID=;PWD=;" _
 driver={SQL Server};Server=SEQUEL;", _
 Options:=rdAsyncEnable)
End With
Print "Connecting ";
While cn.StillConnecting
 Print ".";
 DoEvents
Wend
Print "done."

End Sub

rdoError Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoErrorC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoErrorX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoErrorP"}                  {ewc HLP95EN.DLL,DYNALINK,"Methods":"rdobjrdoErrorM"}
{ewc HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoErrorE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoErrorS"}

Contains details about remote data access errors.

Remarks

Any operation involving remote data objects can potentially generate one or more ODBC errors or
informational messages. As each error occurs or as messages are generated, one or more rdoError
objects are placed in the rdoErrors collection of the rdoEngine object. When a subsequent RDO
operation generates an error, the rdoErrors collection is cleared, and the new set of rdoError objects
is placed in the rdoErrors collection. RDO operations that don't generate an error have no effect on
the rdoErrors collection. To make error handling easier. you can use the Clear method to purge the
rdoErrors collection between operations.

Generally, all ODBC errors generate a trappable Visual Basic error of some kind. This is your cue to
check the contents of the rdoErrors collection for any and all errors resulting from the last operation
which provide specific details on the cause of the error.

Not all errors generated by ODBC are fatal. In the normal course of working with connections, default
databases, stored procedure print statements and other operations, the remote server often returns
warnings or messages that are usually safe to ignore. When an informational message arrives, the
rdoEngine InfoMessage event is fired. You should examine the rdoErrors collection in this event
procedure.

If the severity of the error number is below the error threshold as specified in either the
rdoDefaultErrorThreshold or ErrorThreshold property, then a trappable error is triggered when the
error is detected. Otherwise, an rdoError object is simply appended to the rdoErrors collection. To
control trappable errors in Microsoft SQL Server, you should use the Transact SQL RAISERROR
statement coupled with an appropriate Severity argument to indicate the error or other information.

Use the rdoError object to determine the type and severity of any errors generated by the
RemoteData control or RDO operations. For example, you can:

· Use the Description property to display a text message describing the error.

· Use the Number property to determine the native data source error number.

· Use the Source property to determine the source of the error and the object class causing the
error.

· Use the SQLRetCode and SQLState properties to determine the ODBC return code and
SQLState flags.

· Use the Clear method on the rdoErrors collection to remove all rdoError objects. In most cases, it
is not necessary to use the Clear method because the rdoErrors collection is cleared

automatically when a new error occurs.

Members of the rdoErrors collection aren't appended as is typical with other collections. The most
general errors are placed at the end of the collection (Count -1), and the most detailed errors are
placed at index 0. Because of this implementation, you can often determine the root cause of the
failure by examining rdoErrors(0).

The set of rdoError objects in the rdoErrors collection describes one error. The first rdoError object
is the lowest level error, the second is the next higher level, and so forth. For example, if an ODBC
error occurs while the RemoteData control tries to create an rdoResultset object, the last rdoError
object contains the RDO error indicating the object couldn't be opened. The first error object contains
the lowest level ODBC error. Subsequent errors contain the ODBC errors returned by the various
layers of ODBC. In this case, the driver manager, and possibly the driver itself, returns separate
errors which generate rdoError objects.

The rdoErrors collection is also used to manage informational messages returned by the data
source. For example, messages returned back from PRINT statements, showplan requests, or DBCC
operations in SQL Server are returned as rdoError objects in the rdoErrors collection. This type of
message causes the InfoMessage event to fire, but does not trip a trappable error. Because of this,
you must check the rdoErrors collection's Count property to see if any new errors have arrived.

rdoErrors Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoErrorSC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoErrorsCollectionX;rdobjrdoErrorSX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoErrorsP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoErrorsM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoErrorsCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoErrorsCollectionS"}

Contains all stored rdoError objects which pertain to a single operation involving Remote Data
Objects (RDO).

Remarks

Any operation involving remote data objects can generate one or more errors. As each error occurs,
one or more rdoError objects are placed in the rdoErrors collection of the rdoEngine object. When
another RDO operation generates an error, the rdoErrors collection is cleared, and the new set of
rdoError objects is placed in the rdoErrors collection. RDO operations that don't generate an error
have no effect on the rdoErrors collection.

· Use the Clear method on the rdoErrors collection to remove all rdoError objects. In most cases, it
is not necessary to use the Clear method because the rdoErrors collection is cleared
automatically when a new error occurs.

Members of the rdoErrors collection aren't appended as is typical with other collections. The most
general errors are placed at the end of the collection (Count -1), and the most detailed errors are
placed at index 0. Because of this implementation, you can determine the root cause of the failure by
examining rdoErrors(0).

The set of rdoError objects in the rdoErrors collection describes one error. The first rdoError object
is the lowest level error, the second is the next higher level, and so forth. For example, if an ODBC
error occurs while the RemoteData control tries to create an rdoResultset object, the last rdoError
object contains the RDO error indicating the object couldn't be opened. The first error object contains
the lowest level ODBC error. Subsequent errors contain the ODBC errors returned by the various
layers of ODBC. In this case, the driver manager, and possibly the driver itself, returns separate
errors which generate rdoError objects.

rdoError Object, rdoErrors Collection Example

The following code illustrates a simple design-time RDO error handler. Note that the handler simply
displays the errors in the rdoErrors collection in the Immediate window.

Dim er as rdoError
On Error GoTo CnEh
.
.
.

CnEh:
Dim er As rdoError
 Debug.Print Err, Error
 For Each er In rdoErrors
 Debug.Print er.Description, er.Number
 Next er
 Resume Next

rdoParameter Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoParameterC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoParameterX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoParameterP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdobjrdoParameterM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoParameterE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoParameterS"}

An rdoParameter object represents a parameter associated with an rdoQuery object.

Remarks

When working with stored procedures or SQL queries that require use of arguments that change from
execution to execution, you should create an rdoQuery object to manage the query and its
parameters. For example, if you submit a query that includes information provided by the user such
as a date range, or part number, RDO and the ODBC interface can insert these values automatically
into the SQL statement at specific positions in the query.

Providing Parameters

Your query's parameters can be provided in a number of ways:

· As hard-coded arguments in the SQL query string.
"Select Name from Animals Where ID = 'Cat'"

· As concatenated text or numeric values extracted from TextBox, Label or other controls.
"Select Name from Animals Where ID = '" _

& IDWanted.Text & "'"

· As the question mark (?) parameter placeholders.
"Select Name from Animals Where ID = ?"

· As the question mark (?) parameter placeholders in a stored procedure call that accepts input,
output and/or return status arguments.
"{ ? = Call MySP (?, ?, ?) }"

Note      Stored procedure invocations that use the Call syntax (as shown above) are executed in their
"native" format so they do not require parsing and data conversion by the ODBC Driver Manager.
Because of this the Call syntax can be executed somewhat faster than other syntaxes.

Using Parameter Markers

The only time you must use parameter markers is when executing stored procedures that require
input, output or return status arguments. If the stored procedure only requires input arguments, these

can be provided in-line as imbedded values concatenated into the query (as shown below).

When the rdoParameter collection is first referenced (but not before) RDO and the ODBC interface
pre-processes the query, and creates an rdoParameter object for each marked parameter. You can
also create queries with multiple parameters, and in this case you can mark some parameters and
provide the others by hard-coding or concatenation – in any combination. However, all marked
parameters must appear to the left of all other parameters. If you don't, a trappable error occurs
indicating "Wrong number of parameters".

Note      Due to the extra overhead involved in creating and managing rdoQuery objects and their
rdoParameters collection, you should not use parameter queries for SQL statements that do not
change from execution to execution — especially those that are executed only once or infrequently.

Marking Parameters

Each query parameter that you want to have RDO manage must be indicated by a question mark (?)
in the text of the SQL statement, and correspond to an rdoParameter object referenced by its ordinal
number counting from zero – left to right. For example, to execute a query that takes a single input
parameter, your SQL statement would look something like this:

SQL$ = "Select Au_Lname, Au_Fname where Au_ID Like ? "
Dim qd as rdoQuery, rd as rdoResultset
Set qd = CreateQuery ("SeekAUID", SQL$)
qd(0) = "236-66-%"
set rd = qd.OpenResultset(rdOpenForwardOnly)

Note      You can also create an rdoQuery object using the Query Connection designer and name and
set the data type and direction of individual parameters.

Acceptable Parameters

Not all types of data are passable as parameters. For example you cannot always use a TEXT or
IMAGE data type as an OUTPUT parameter. In addition, if your query does not require parameters or
has no parameters in a specific invocation of the query, you cannot use parenthesis in the query. For
example, for a stored procedure that does not require parameters could be coded as follows:

"{ ? = Call MySP }"

When submitting queries that return output parameters, these parameters must be submitted at the
end of the list of your query's parameters. While it is possible to provide both marked and unmarked
(in-line) parameters, your output parameters must still appear at the end of the list of parameters.

All in-line parameters must be provided to the right of marked parameters. If this is not the case, RDO
returns an error indicating "Wrong number of parameters".

RDO 2.0 supports BLOB data types as parameters and you also can use the AppendChunk method
against the rdoParameter object to pass TEXT or IMAGE data types as parameters into a procedure.

Identifying the Parameter's Data Type

When your parameter query is processed by ODBC, it attempts to identify the data type of each
parameter by executing ODBC functions that query the remote server for specific information about
the query. In some cases, the data type cannot be correctly determined. In these cases, use the Type
property to set the correct data type or create a custom query using the User Connection Designer.

For example, in the following query, the parameter passed to the TSQL Charindex function is typed
as an integer. While this is correct for the function itself, the parameter is referencing a string
argument of the TSQL function, so it must be set to an ODBC character type to work properly.

Dim SQL as string, qd as rdoQuery
SQL = "Select * From Titles " _

 & "Where Charindex(?, Title) > 0
Set qd = cn.CreateQuery("FindTitle", SQL)

qd(0).Type = rdTypeChar

Note      You do not have to surround text parameters with quotes as this is handled automatically by
the ODBC API interface.

Handling Output and Return Status Arguments

In some cases, a stored procedure returns an output or return status argument instead of or in
addition to any rows returned by a SELECT statement. Each of these parameters must also be
marked in the SQL statement with a question mark. Using this technique, you can mark the position of
any number of parameters in your SQL query – including input, output or input/output.

Whenever your query returns output or return status arguments, you must use the ODBC CALL
syntax when setting the SQL property of the rdoQuery object. In this case, a typical stored procedure
call would look like this:

Dim qd as rdoQuery, rd as rdoResultset, SQL as String
SQL = "{ ? = Call master..sp_password (?, ?) }"
Set qd = CreateQuery ("SetPassword", SQL)
qd.rdoParameters(0).Direction = rdParamReturnValue
qd(1) = "Fred" ' the old password
qd(2) = "George" ' the new password
set rd = qd.Execute
if qd(0) <> 0 then _

MsgBox "Operation failed"

Tip      Be sure to specifically address stored procedures that do not reside in the current (default)
database. In this example, the default database is not Master where the sp_password procedure is
maintained, so this procedure is specifically addressed.

When control returns to your application after the procedure is executed, the rdoParameter objects
designated as rdParamReturnValue,    rdParamOutput or rdParamInputOutput contain the
returned argument values. In the example shown above, the return status is available by examining
qd(0)after the query is executed.

Using Other Properties

Using the properties of an rdoParameter object, you can set a query parameter that can be changed
before the query is run. You can:

· Use the Direction property setting to determine if the parameter is an input, output, or input/output
parameter, or a return value. In RDO 2.0, the Direction property is usually set automatically, so it is
unnecessary to set this value. It is also unnecessary to set it for input parameters — which is the
default value.

· Use the Type property setting to determine the data type of the rdoParameter. Data types are
identical to those specified by the rdoColumn.Type property. In some cases, RDO might not be
able to determine the correct parameter data type. In these cases, you can force a specific data
type by setting the Type property.

· Use the Value property (the default property of an rdoParameter) to pass values to the SQL
queries containing parameter markers used in rdoQuery.Execute or rdoQuery.OpenResultset
methods. For example:
MyQuery(0) = 5

Note      RDO requires that your ODBC driver support a number of Level II compliant options and
support the SQLNumParams, SQLProcedureColumns and SQLDescribeParam ODBC API
functions in order to be able to create the rdoParameters collection and parse parameter markers in
SQL statements. While some drivers can be used to create and execute queries, if your driver does
not support creation of the rdoParameters collection, RDO fails quietly and simply does not create
the collection. As a result, any reference to the collection results in a trappable error.

Addressing the Parameters

By default, members of the rdoParameters collection are named "Paramn" where n is the
rdoParameter object's ordinal number. For example, if an rdoParameters collection has two
members, they are named "Param0" and "Param1". However, if you use the User Connection
Designer, you can specify names for specific parameters.

Because the rdoParameters collection is the default collection for the rdoQuery object, addressing
parameters is easy. Assuming you have created an rdoQuery object referenced by rdoQo, you can
refer to the Value property of its rdoParameter objects by:

· Referencing the Name property setting using this syntax:
' Refers to PubDate parameter
rdoQo("PubDate")

-Or-
' Refers to PubDate parameter
rdoQo!PubDate

· Referencing its ordinal position in the rdoParameters collection using this syntax:
' Refers to the first parameter marker
rdoQo(0)

rdoParameters Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoParameterSC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoParametersCollectionX;rdobjrdoParameterSX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoParametersP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdobjrdoParametersCollectionM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoParametersCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoParametersCollectionS"}

An rdoParameters collection contains all the rdoParameter objects of an rdoQuery object.

Remarks

The rdoParameters collection provides information only about marked parameters in an rdoQuery
object or stored procedure. You can't append objects to or delete objects from the rdoParameters
collection.

When the rdoParameters collection is first referenced, RDO and the ODBC interface parse the query
searching for parameter markers – the question mark (?). For each marker found, RDO creates an
rdoParameter object and places it in the rdoParameters collection. However, if the query cannot be
compiled or otherwise processed, the rdoParameters collection is not created and your code will
trigger a trappable error indicating that the object does not exist. In this case, check the query for
improper syntax, permissions on underlying objects, and proper placement of parameter markers.

rdoParameter Object, rdoParameters Collection, Direction Property Example

This example executes a stored procedure against the SQL Server 'Pubs’ database. The procedure
text is also included here so you can setup this example on your own machine. The stored procedure
expects your code to provide three input arguments: A string to use in an expression to choose the
title, and two numbers used to choose a price range for the books. The procedure returns the number
of books that fall in the range, and the maximum price of the books. It also returns a set of rows
containing detailed information about the books.

To establish the connection, we assume the name of the server is "SEQUEL" and it is a Microsoft
SQL Server – this is a DSN-less connection. Next, we use the ODBC CALL syntax to prepare the
query. Notice that each parameter is marked with a question mark. Once, marked, the
rdoParameters collection is used to set the direction for the output and return value parameters and
the initial values for the input parameters. While you don't see the rdoParameters collection called
out specifically, understand that it is the default collection of the rdoQuery object so references are
made simpler by not including a reference to the rdoParameters collection itself.

Sub RunQuery_Click()
Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim qd As New rdoQuery
Dim cl As rdoColumn
Const None As String = ""

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
 & "driver={SQL Server};database=pubs;" _
 & "DSN='';"
cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverNoPrompt

Set qd.ActiveConnection = cn
qd.SQL = "{ ? = Call ShowOutputRS (?,?,?,?,?) }"
qd(0).Direction = rdParamReturnValue
qd(4).Direction = rdParamOutput
qd(5).Direction = rdParamOutput
qd(1) = "c"
qd(2) = 5
qd(3) = 50

Set rs = qd.OpenResultset(rdOpenForwardOnly, _
 rdConcurReadOnly)

For Each cl In rs.rdoColumns
 Debug.Print cl.Name,
Next
Debug.Print

Do Until rs.EOF
 For Each cl In rs.rdoColumns
 Debug.Print cl.Value,
 Next
 rs.MoveNext
Debug.Print
Loop

Debug.Print "Output from SP="; qd(3)
Debug.Print "Return Status from SP="; qd(0)

rs.Close
qd.Close
cn.Close

End Sub

This is the stored procedure that is executed by the example shown above.

CREATE PROCEDURE ShowOutputRS
(

@Ser varChar(128),
@PriceLow Integer,
@PriceHigh Integer,
@Hits Integer OUTPUT,
@MaxPrice integer OUTPUT

)
AS
Select @MaxPrice = Max(Price) from Titles
where Charindex(@Ser, title) > 0
and price between @priceLow and @priceHigh

Select * from Titles
where Charindex(@Ser, title) > 0
and price between @priceLow and @PriceHigh

Select @Hits = @@RowCount

return @@ROWCOUNT

rdoPreparedStatement Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoPreparedStatementC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoPreparedStatementX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoPreparedstatementP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoPreparedstatementM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoPreparedStatementE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoPreparedstatementS"}

An rdoPreparedStatement object is a prepared query definition.

Remarks

Note      The rdoPreparedStatement object is outdated and only maintained for backward
compatibility. It should be replaced with the rdoQuery object. The rdoQuery object supports all of the
rdoPreparedStatement object's properties and methods. In contrast, the rdoPreparedStatement
only a subset of the rdoQuery object's properties and methods and none of its events.

rdoPreparedStatements Collection
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"rdobjrdoPreparedstatementSC;rdobjrdoPreparedStatementsCollectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoPreparedStatementsCollectionX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoPreparedStatementsP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdobjrdoPreparedStatementsCollectionM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoPreparedStatementsCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoPreparedStatementsCollectionS"}

An rdoPreparedStatements collection contains all rdoPreparedStatement objects in an
rdoConnection.

Remarks

Note      The rdoPreparedStatements collection is outdated and maintained for compatibility. It
should be replaced with the rdoQueries collection. The rdoQuery object and rdoQueries collection
supports all of the rdoPreparedStatement object's properties and methods.    In contrast, the
rdoPreparedStatement supports only a subset of the rdoQuery object's properties and methods and
none of its events.

Note      RDO requires that your ODBC driver support a number of Level II options and support the
SQLNumParams, SQLProcedureColumns and SQLDescribeParam ODBC API functions in order
to be able to create the rdoParameters collection and parse SQL statement parameter markers.
While some drivers can be used to create and execute queries, if your driver does not support
creation of the rdoParameters collection, RDO fails quietly and simply does not create the collection.

rdoQuery Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoQueryC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoQueryX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoQueryP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoQueryM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoQueryE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoQueryS"}

An rdoQuery object is a query definition that can include zero or more parameters.

Remarks

The rdoQuery object is used to manage SQL queries requiring the use of input, output or input/output
parameters. Basically, an rdoQuery functions as a compiled SQL statement. When working with
stored procedures or queries that require use of arguments that change from execution to execution,
you can create an rdoQuery object to manage the query parameters. If your stored procedure returns
output parameters or a return value, or you wish to use rdoParameter objects to handle the
parameters, you must use an rdoQuery object to manage it. For example, if you submit a query that
includes information provided by the user such as a date range or part number, RDO can substitute
these values automatically into the SQL statement when the query is executed.

Note      The rdoQuery object replaces the outdated rdoPreparedStatement object. The rdoQuery
object remains similar to the rdoPreparedStatement in its interface, but adds the ability to be
persisted into a Visual Basic project, allowing you to create and manipulate it at design time.
Additionally, the rdoQuery objects can be prepared or not, allowing the you to choose the most
appropriate use of the query.

Creating rdoQuery Objects

To create an rdoQuery object, use the CreateQuery method which associates the rdoQuery with a
specific rdoConnection object and adds it to the rdoQueries collection. Once created, you must fill

in required parameters using the rdoParameters collection, and then use the OpenResultset
method to create resultsets from the query, or the Execute method to simply run the query if it does
not return rows.

You can also use the User Connection Designer (CQD) to create rdoQuery objects in your project.
The CQD takes your SQL query and permits you to specify the data types for each parameter. It then
inserts appropriate code in your application to expose these procedures very much like methods off of
the rdoQuery object.

Note      Due to the extra overhead involved in creating and managing rdoQuery objects and the
rdoParameters collection, you should not use parameter queries for SQL statements that do not
change from execution to execution — especially those that are executed only once or infrequently.

Stand Alone rdoQuery Objects

You can declare a stand-alone rdoQuery object using the Dim statement as follows:

Dim MyQuery as New rdoQuery

Stand-alone rdoQuery objects are not assigned to a specific rdoConnection object, so you must set
the ActiveConnection property before attempting to execute the query, or to use the OpenResultset
object against it. The CursorType and ErrorThreshold properties are set from default values
established by the rdoEngine default settings. In addition, new rdoQuery objects are not
automatically appended to the rdoQueries collection until you use the Add method.

For example, the code shown below creates an rdoQuery object, associates it with a connection, and
executes it. Next, the rdoQuery object is associated with a different connection and executed again.
The query object becomes more of an encapsulation of any kind of query, and thus can be executed
against any kind of connection, provided the SQL statement would be appropriate for the connection.

Dim MyQuery As rdoQuery '
MyQuery.SQL = "Update customers " _

& " Set LastTouched = GetDate()"
MyQuery.Prepared = False 'don't prepare it,

'just SQLExecDirect
'assume that cnSomeConnection
'is an rdoConnection or stand-alone object
MyQuery.ActiveConnection = cnSomeConnection
MyQuery.Execute

MyQuery.ActiveConnection = cnOtherConnection
'the cnOtherConnection is over a WAN, so I can increase
'my query timeout to compensate
MYQuery.QueryTimeout = 120
MyQuery.Execute

Choosing the right SQL Syntax

When coding the SQL property of an rdoQuery object, you can choose between one of three syntax
styles to code your parameter query:

·ed Strings : Your code builds up the SQL statement and its parameters using the Visual Basic
concatenation (&) operator. This statement can be passed to the SQL argument of the
OpenResultset method or the rdoQuery object's SQL property. In this case, a parameter query
might look like this:

sSQL = "Select Name, Age From Animals " _
& " Where Weight > " & WeightWanted.Text _
& " and Type = ' & TypeWanted.Text & "'"

·SQL syntax : The SQL syntax used by the remote server. In this case you can execute your own
query or stored procedure, and pass in parameters by concatenation, or using placeholders, or

both. The parameters marked with placeholders are managed by RDO as rdoParameter objects.
A parameter query might look like this:
sSQL = "Select Au_LName from Authors" _

& " Where Au_Fname = ?"
– Or –
sSQL = "Execute MyStoredProc 'Arg1', 450, '" _

& Text1
– Or –
sSQL = "Execute MyStoredProc ?, ?, ?"

·ALL syntax : Designed to call stored procedures that return a return status or output parameters. In
this case, a placeholder can be defined for each input, output, or input/output parameter which is
automatically mapped to rdoParameter objects. You can also mix in concatenated operators as
needed. In this case, a parameter query might look like this:
sSQL = "{call ParameterTest (?,?,?) }"
– Or –

sSQL = "{? = call ParameterTest (?,?,?) }"
– Or –
sSQL = "{? = call CountAnimals (?, ?, 14, 'Pig')}

The rdoQuery object is managed by setting the following properties and methods.

· Use the SQL property to specify a parameterized SQL statement to execute. The name argument
of the CreateQuery method can also be used to provide the SQL query string.

· Set query parameters by using the rdoQuery object's rdoParameters collection.

· Use the Prepared property to indicate if the rdoQuery object should be prepared by the ODBC
SQLPrepare function. If False, the query is executed using the SQLExecDirect function.

· Use the Type property to determine whether the query selects rows from an existing table (select
query), performs an action (an action query), contains both action and select operations, or
represents a stored procedure.

· Use the RowsetSize property setting to determine how many rows are buffered internally when
building a cursor and locked when using pessimistic locking.

· Use the KeysetSize property to indicate the size of the keyset buffer when creating cursors.

· Use the MaxRows property to indicate the maximum number of rows to be returned by a query.

· Use the RowsAffected property to indicate how many rows are affected by an action query.

· Use the QueryTimeout property to indicate how long the driver manager waits before pausing a
query and firing the QueryTimeout event.

· Use the BindThreshold property to indicate the largest column to be automatically bound.

· Use the ErrorThreshold property to indicate the error level that constitutes a trappable error.

· Use the Updatable property to see if the result set generated by an rdoQuery can be updated.

· Use the OpenResultset method to create an rdoResultset based on the OpenResultset
arguments and properties of the rdoQuery.

· Use the Execute method to run an action query using SQL and other rdoQuery properties,
including any values specified in the rdoParameters collection.

· Use the LogMessages property to activate ODBC tracing.

rdoQuery Object Events

The following events are fired as the rdoQuery object is manipulated. These can be used to micro-
manage queries associated with the rdoQuery or coordinate other processes in your application.

Event Name Description

QueryComplete Fired when a query has completed.

QueryTimeout Fired when the QueryTimeout period has elapsed and
the query has not begun to return rows.

WillExecute Fired before the query is executed permitting last-minute
changes to the SQL, or to prevent the query from
executing.

Closing the rdoQuery Object

Use the Close method to close an rdoQuery object, set its ActiveConnection property to Nothing,
and remove it from the rdoQueries collection. However, you can still re-associate the rdoQuery
object with another rdoConnection object by setting its ActiveConnection property to another
rdoConnection object. Using the Execute method or OpenResultset method against an rdoQuery
object that has its ActiveConnection property set to Nothing or an invalid rdoConnection causes a
trappable error.

Addressing rdoQuery Objects

rdoQuery objects are the preferred way to submit parameter queries to the external server. For
example, you can create a    parameterized Transact SQL query (as used on Microsoft SQL Server)
and store it in an rdoQuery object.

You refer to an rdoQuery object by its Name property setting using the following syntax. Since the
rdoQuery object's default collection is the rdoParameters collection, all unqualified references to the
rdoQuery object refer to the rdoParameters collection. In these examples, assume we have created
an rdoQuery object named rdoQo. The first two examples refer to the rdoQuery object named
"MyQuery".

rdoQo("MyQuery")

– Or –

rdoQo!MyQuery

You can also refer to rdoQuery objects (and the rdoPreparedStatements collection) by their position
in the rdoQueries collection using this syntax (where n is the nth member of the zero-based
rdoQueries collection):

rdoQo(n)

rdoQueries Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoQueriesC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoQueriesCollectionX;rdobjrdoQueriesX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoQueriesP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdobjrdoQueriesCollectionM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoQueriesCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoQueriesCollectionS"}

Contains rdoQuery objects that have been added to the rdoQueries collection either automatically
via the CreateQuery method, or with the Add method.

Remarks

An rdoQuery object is automatically appended to the rdoQueries collection when you use the
CreateQuery method of the rdoConnection object. You can also use the Add method against the
rdoQueries collection supplying a stand-alone rdoQuery object as the argument.

When you use the Close method against and rdoQuery object, it is removed from the rdoQueries
collection, but the object remains instantiated. By resetting the ActiveConnection property, you can
associate the rdoQuery object with another connection and use the Add method to append it to the
rdoQueries collection.

An rdoQuery object need not be a member of the rdoQueries collection before it can be associated
with an rdoConnection object and used with the Execute or OpenResultset methods.

rdoQuery Object, rdoQueries Collection Example

This example leverages RDO's ability to set the data type of individual arguments of a query. In this
case, a CHARINDEX function argument is passed as a parameter. Since the ODBC driver does not
recognize this data type correctly, we simply change it to CHAR before assigning a value to the
parameter. The query itself uses TSQL syntax – it does not need to use the ODBC CALL syntax as it
does not execute a parameter-based stored procedure. This example also creates a DSN-less
connection to a Microsoft SQL Server and uses the sample Pubs database.

Private Sub Query1_Click()
Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim qd As New rdoQuery
Dim cl As rdoColumn
Const None As String = ""

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
 & "driver={SQL Server};database=pubs;" _
 & "DSN='';"
cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverNoPrompt

Set qd.ActiveConnection = cn
qd.SQL = "Select * From Titles" _
 & " Where CharIndex(?, Title) > 0"

qd(0).Type = rdTypeCHAR
qd(0) = InputBox("Enter search string", , "C")

Set rs = qd.OpenResultset(rdOpenForwardOnly, rdConcurReadOnly)

For Each cl In rs.rdoColumns
 Debug.Print cl.Name,
Next
Debug.Print

Do Until rs.EOF
 For Each cl In rs.rdoColumns
 Debug.Print cl.Value,
 Next
 rs.MoveNext
Debug.Print
Loop
End Sub

rdoResultset Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoResultsetC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoResultSetX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoResultsetP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoResultsetM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoResultSetE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoResultSetS"}

An rdoResultset object represents the rows that result from running a query

Remarks

When you use remote data objects, you interact with data almost entirely using rdoResultset objects.
rdoResultset objects are created using the RemoteData control, or the OpenResultset method of
the rdoQuery, rdoTable, or rdoConnection object.

When you execute a query that contains one or more SQL SELECT statements, the data source
returns zero or more rows in an rdoResultset object. All rdoResultset objects are constructed using
rows and columns.

A single rdoResultset can contain zero or any number of result sets —    so-called "multiple" result
sets. Once you have completed processing the first result set in an rdoResultset object, use the
MoreResults method to discard the current rdoResultset rows and activate the next rdoResultset.
You can process individual rows of the new result set just as you processed the first rdoResultset.
You can repeat this until the MoreResults method returns False.

A new rdoResultset is automatically added to the rdoResultsets collection when you open the
object, and it's automatically removed when you close it.

Note      RDO 1.0 collections behave differently than Data Access Object (DAO) collections. When you
Set a variable containing a reference to a RDO object like rdoResultset, the existing rdoResultset is
not closed and removed from the rdoResultsets collection. The existing object remains open and a

member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to
assign a variable containing a reference to an RDO object, the existing object is closed and removed
from the associated collection. This change is designed to make RDO more compatible with DAO.

Processing Multiple Result Sets

When you execute a query that contains more than one SELECT statement, you must use the
MoreResults method to discard the current rdoResultset rows and activate each subsequent
rdoResultset. Each of the rdoResultset rows must be processed or discarded before you can
process subsequent result sets. To process result set rows, use the Move methods to position to
individual rows, or the MoveLast method to position to the last row of the rdoResultset. You can use
the Cancel or Close methods against rdoResultset objects that have not been fully processed.

Choosing a Cursor Type

You can choose the type of rdoResultset object you want to create using the type argument of the
OpenResultset method – the default Type is rdOpenForwardOnly for RDO and rdOpenKeyset for
the RemoteData control. If you specify rdUseNone as the CursorDriver property, a forward-only,
read-only result set is created. Each type of rdoResultset can contain columns from one or more
tables in a database.

There are four types of rdoResultset objects based on the type of cursor that is created to access
the data:

· Forward-only — type rdoResultset — individual rows in the result set can be accessed and can
be updatable (when using server-side cursors), but the current row pointer can only be moved
toward the end of the rdoResultset using the MoveNext method — no other method is supported.

· Static-type rdoResultset — a static copy of a set of rows that you can use to find data or generate
reports. Static cursors might be updatable when using either the ODBC cursor library or server-
side cursors, depending on which drivers are supported and whether the source data can be
updated.

· Keyset-type rdoResultset — the result of a query that can have updatable rows. Movement within
the keyset is unrestricted. A keyset-type rdoResultset is a dynamic set of rows that you can use to
add, change, or delete rows from an underlying database table or tables. Membership of a keyset
rdoResultset is fixed.

· Dynamic-type rdoResultset — the result of a query that can have updatable rows. A dynamic-type
rdoResultset is a dynamic set of rows that you can use to add, change, or delete rows from an
underlying database table or tables. Membership of a dynamic-type rdoResultset is not fixed.

Dissociate rdoResultset objects

When using the client batch cursor library, RDO permits you to disconnect an rdoResultset object
from the rdoConnection object used to populate its rows by setting the ActiveConnection property
to Nothing. While dissociated, the rdoResultset object becomes a temporary static snapshot of a
local cursor. It can be updated, new rows can be added and rows can be removed from this
rdoResultset. You can re-associate the rdoResultset    by setting the ActiveConnection property to
another (or the same) rdoConnection object. Once reconnected, you can use the BatchUpdate
method to synchronize the rdoResultset with a remote database.

To perform this type of dissociated update operation, you should open the rdoResultset using an
rdOpenStatic cursor, and use the rdConcurBatch as the concurrency option.

Managing rdoResultset Object Properties and Methods

You can use the methods and properties of the rdoResultset object to manipulate data and navigate
the rows of a result set. For example, you can:

· Use the Type property to indicate the type of rdoResultset created, and the Updatable property

indicates whether or not you can change the object's rows.

· Use the BOF and EOF properties to see if the current row pointer is positioned beyond either end
of the rdoResultset or it contains no rows.

· Use the MoveNext method to reposition the current row in forward-only type rdoResultset
objects.

· Use the Bookmarkable, Transactions, and Restartable properties to determine if the
rdoResultset supports bookmarks or transactions, or can be restarted.

· Use the LockEdits property to determine the type of locking used to update the rdoResultset.

· Use the RowCount property to determine how many rows in the rdoResultset are available. If the
RowCount property returns -1, RDO cannot determine how many rows have been processed.
Only when you move to EOF does the RowCount property reflect the number of rows returned by
the query. Not all cursor types support this functionality. The RowCount property returns -1 if it is
not available.

· Use the AddNew, Edit, Update, and Delete methods to add new rows or otherwise modify
updatable rdoResultset objects. Use the CancelUpdate method to cancel pending edits.

· Use the Requery method to restart the query used to create an rdoResultset object. This method
can be used to re-execute a parameterized query.

· Use the MoreResults method to complete processing of the current rdoResultset and begin
processing the next result set generated from a query. Use the Cancel method to terminate
processing of all pending queries when the query contains more than one SQL operation. When
you use the Close method against an rdoResultset, all pending queries are flushed and the
rdoResultset is automatically dropped from the rdoResultsets collection.

· Use the Close method to terminate and deallocate the rdoResultset object and remove it from the
rdoResultsets collection.

rdoResultset Events

The following events are fired as the rdoResultset object is manipulated. These can be used to
micro-manage result sets or to synchronize other processes with the operations performed on the
rdoResultset object.

Event Name Description

Associate Fired after a new connection is associated with the
object.

ResultsChange Fired after current rowset is changed (multiple
result sets).

Dissociate Fired after the connection is set to nothing.

QueryComplete Fired after a query has completed.

RowStatusChange Fired after the state of the current row has changed
(edit, delete, insert).

RowCurrencyChange Fired after the current row pointer is repositioned.

WillAssociate Fired before a new connection is associated with
the object.

WillDissociate Fired before the connection is set to nothing.

WillUpdateRows Fired before an update to the server occurs.

Executing Multiple Operations on a Connection

If there is an unpopulated rdoResultset pending on a data source that can only support a single
operation on an rdoConnection object, you cannot create additional rdoQuery or rdoResultset
objects, or use the Refresh method on the rdoTable object until the rdoResultset is flushed, closed,
or fully populated. For example, when using SQL Server 4.2 as a data source, you cannot create an
additional rdoResultset object until you move to the last row of the last result set of the current

rdoResultset object. To populate the result set, use the MoreResults method to move through all
pending result sets, or use the Cancel or Close method on the rdoResultset to flush all pending
result sets.

Handing Beginning and End of File Conditions

When you create an rdoResultset, the current row is positioned to the first row if there are any rows.
If there are no rows, the RowCount property setting is 0, and the BOF and EOF property settings are
both True.

Note      An rdoResultset may not be updatable even if you request an updatable rdoResultset. If the
underlying database, table, or column isn't updatable, or if your user does not have update
permission, all or portions of your rdoResultset may be read-only. Examine the rdoConnection,
rdoResultset,    and rdoColumn objects' Updatable property to determine if your code can change
the rows.

Closing rdoResultset objects

Use the Close method to remove an rdoResultset object from the rdoResultsets collection,
disassociate it from its connection, and free all associated resources. No events are fired when you
use the Close method.

Setting the ActiveConnection property to Nothing removes the rdoResultset object from the
rdoResultsets collection and fires events, but does not deallocate the object resources. Setting the
rdoResultset object's ActiveConnection property to a valid rdoConnection object causes the
rdoResultset object to be re-appended to the rdoResultsets collection of the rdoConnection
object.

Addressing rdoResultset Objects

The default collection of an rdoResultset is the rdoColumns collection, and the default property of
an rdoColumn object is the Value property. You can simplify your code by taking advantage of these
defaults. For example, the following lines of code all set the value of the PubID column in the current
row of an rdoResultset:

MyRs.rdoColumns("PubID").Value = 99
MyRs("PubID") = 99
MyRs!PubID = 99
' This is the first column
' returned by the SELECT statement...
MyRs(0) = 99

The Name property of an rdoResultset object contains the first 255 characters of the query used to
create the resultset, so it is often unsuitable as an index into the rdoResultsets collection    especially
since several queries might be created with the same SQL query.

You can refer to rdoResultset objects by their position in the rdoResultsets collection using this
syntax (where n is the nth member of the zero-based rdoResultsets collection):

rdoResultsets(n)

rdoResultsets Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoResultsetSC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoResultsetsCollectionX;rdobjrdoResultsetSX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoResultsetsP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdobjrdoResultsetsCollectionM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoResultsetsCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoResultsetsCollectionS"}

The rdoResultsets collection contains all open rdoResultset objects in an rdoConnection.

Remarks

A new rdoResultset is automatically added to the rdoResultsets collection when you open the
object, and it's automatically removed when you close it. Several rdoResultset objects might be
active at any one time.

Use the Close method to remove an rdoResultset object from the rdoResultsets collection,
disassociate it from its connection, and free all associated resources. No events are fired when you
use the Close method.

Setting the ActiveConnection property to Nothing removes the rdoResultset object from the
rdoResultsets collection and fires events, but does not deallocate the object resources. Setting the
rdoResultset object's ActiveConnection property to a valid rdoConnection object causes the
rdoResultset object to be re-appended to the rdoResultsets collection.

Note      RDO 1.0 collections behave differently than Data Access Object (DAO) collections. When you
Set a variable containing a reference to a RDO object like rdoResultset, the existing rdoResultset is
not closed and removed from the rdoResultsets collection. The existing object remains open and a
member of its respective collection.

In contrast, RDO 2.0 collections do not behave in this manner. When you use the Set statement to
assign a variable containing a reference to an RDO object, the existing object is closed and removed

from the associated collection. This change is designed to make RDO more compatible with DAO.

Managing the rdoResultsets Collection

When you use the OpenResultset method against an rdoConnection or rdoQuery, and assign the
result to an existing rdoResultset object, the existing object is maintained and a new rdoResultset
object is appended to the rdoResultsets collection. When performing similar operations using the
Microsoft Jet database engine and Data Access Objects (DAO), existing recordset objects are
automatically closed when the variable is assigned, and no two Recordsets collection members can
have the same name. For example, using RDO:

Dim rs as rdoResultset
Dim cn as rdoConnection
Set cn = OpenConnection....
Set rs = cn.OpenResultset("Select * from Authors", _

 rdOpenStatic)
Set rs = cn.OpenResultset("Select * from Titles", _

 rdOpenDynamic)

This code opens two separate rdoResultset objects; both are stored in the rdoResultsets collection.
After this code runs, the second query, which is stored in rdoResultsets(1), is assigned to the
rdoResultset variable rs. The first query is available and its cursor is still available by referencing
rdoResultsets(0). Because of this implementation, more than one member of the rdoResultsets
collection can have the same name.

This behavior permits you to maintain existing rdoResultset objects, which are maintained in the
rdoResultsets collection, or close them as needed. In other words, you must explicitly close any
rdoResultset objects that are no longer needed. Simply assigning another rdoResultset to a
rdoResultset-type variable has no affect on the existing rdoResultset formerly referenced by the
variable. Note that the procedures and other temporary objects created to manage the rdoResultset
are maintained on the remote server as long as the rdoResultset remains open.

If you write an application that does not close each rdoResultset before opening additional
rdoResultset objects, the number of procedures maintained in TempDB or elsewhere on the server
increases each time another rdoResultset object is opened. In addition those resultsets might
require significant client or server resources to store keysets or row values. Over time, this behavior
can overflow the capacity of the server or workstation resources.

rdoResultset Object, rdoResultsets Collection Example

The following example illustrates execution of a multiple result set query. While this query uses three
SELECT statements, only two return rows to your application. The subquery used instead of a join
does not pass rows outside the scope of the query itself. This is also an example of a simple
parameter query that concatenates the arguments instead of using an rdoQuery to manage the
query. The OpenResultset also runs asynchronously – the code checks for completion of the
operation by polling the StillExecuting property.

Private Sub ShowResultset_Click()
Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim SQL As String
Const None As String = ""

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
 & "driver={SQL Server};database=pubs;" _
 & "DSN='';"

cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverNoPrompt

SQL = "Select Au_Lname, Au_Fname" _
 & " From Authors A" _
 & " Where Au_ID in " _
 & " (Select Au_ID" _
 & " from TitleAuthor TA, Titles T" _
 & " Where TA.Au_ID = A.Au_ID" _
 & " And TA.Title_ID = T.Title_ID " _
 & " And T.Title Like '" _
 & InputBox("Enter search string", , "C") & "%')" _
 & "Select * From Titles Where price > 10"

Set rs = cn.OpenResultset(SQL, rdOpenKeyset, _
 rdConcurReadOnly, rdAsyncEnable + rdExecDirect)

Debug.Print "Executing ";
While rs.StillExecuting
 Debug.Print ".";
 DoEvents
Wend

Do
 Debug.Print String(50, "-") _

& "Processing Result Set " & String(50, "-")
 For Each cl In rs.rdoColumns
 Debug.Print cl.Name,
 Next
 Debug.Print

 Do Until rs.EOF
 For Each cl In rs.rdoColumns
 Debug.Print cl.Value,
 Next
 rs.MoveNext

 Debug.Print
 Loop
 Debug.Print "Row count="; rs.RowCount

Loop Until rs.MoreResults = False
End Sub

rdoTable Object
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoTableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoTableX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoTableP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoTableM"}                  {ewc HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoTableE"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoTableS"}

An rdoTable object represents the stored definition of a base table or an SQL view.

Remarks

Note      You are discouraged from using the rdoTable object and rdoTables collection to manage or
inspect the structure of your database tables. This object is maintained for backward compatibility and
might not be supported in future versions of Visual Basic or RDO.

You can map a table definition using an rdoTable object and determine the characteristics of an
rdoTable object by using its methods and properties. For example, you can:

· Examine the column properties of any table in an ODBC database. (Note that all rdoTable object
properties are read-only.)

· Use the OpenResultset method to create an rdoResultset object based on all of the rows of the
base table.

· Use the Name property to determine the name of the table or view.

· Use the RowCount property to determine the number of rows in the table or view. Referencing the
RowCount property causes the query to be completed — just as if you had used the MoveLast
method.

· Use the Type property to determine the type of table. The ODBC data source driver determines the
supported table types.

· Use the Updatable property to determine if the table supports changes to its data.

You cannot reference the rdoTable objects until you have populated the rdoTables collection
because it is not automatically populated when you connect to a data source. To populate the
rdoTables collection, use the Refresh method or reference individual members of the collection by
their ordinal number.

When you use the OpenResultset method against an rdoTable object, RDO executes a "SELECT *
FROM table" query that returns all rows of the table using the cursor type specified. By default, a
forward-only cursor is created.

You cannot define new tables or change the structure of existing tables using RDO or the
RemoteData control. To change the structure of a database or perform other administrative functions,
use SQL queries or the administrative tools that are provided with the database.

The default collection of an rdoTable object is the rdoColumns collection. The default property of an
rdoTable is the Name property. You can simplify your code by using these defaults. For example, the
following statements are identical in that they both print the number corresponding to the column data
type of a column in an rdoTable using a RemoteData control:

Print RemoteData1.Connection.rdoTables _
("Publishers").rdoColumns("PubID").Type

Print RemoteData1.Connection("Publishers"). _
("PubID").Type

The Name property of an rdoTable object isn't the same as the name of an object variable to which
it's assigned — it is derived from the name of the base table in the database.

You refer to an rdoTable object by its Name property setting using this syntax:

rdoTables("Authors") 'Refers to the Authors table

– Or –

rdoTables!Authors 'Refers to the Authors table

You can also refer to rdoTable objects by their position in the rdoTables collection using this syntax
(where n is the nth member of the zero-based rdoTables collection):

rdoTables(n)

rdoTables Collection
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoTableSC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoTablesCollectionX;rdobjrdoTableSX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdidxrdoTablesP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdidxrdoTablesM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoTablesCollectionE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoTablesCollectionS"}

The rdoTables collection contains all stored rdoTable objects in a database.

Remarks

Note      You are discouraged from using the rdoTable object and rdoTables collection to manage or
inspect the structure of your database tables. This object is maintained for backward compatibility and
might not be supported in future versions of Visual Basic.

For performance reasons, you cannot reference an rdoTable object until you have first populated the
rdoTables collection because it is not automatically populated when you connect to a data source. To
populate the rdoTables collection, use the Refresh method or reference individual members of the
collection by their ordinal number. Depending on the number of tables in your database, this can take
quite some time.

Remote Data Objects and Collections
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjrdoObjectsCollectionsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjrdoObjectsCollectionsX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdobjrdoObjectsCollectionsP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdobjrdoObjectsCollectionsM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjrdoObjectsCollectionsE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjrdoObjectsCollectionsS"}

Remote Data objects and collections provide a framework for using code to create and manipulate
components of a remote ODBC database system. Objects and collections have properties that
describe the characteristics of database components and methods that you use to manipulate them.
Using the containment framework, you create relationships among objects and collections, and these
relationships represent the logical structure of your database system.

Objects and collections provide different types of containment relationships:    Objects contain zero or
more collections, all of different types; and collections contain zero or more objects, all of the same
type. Although objects and collections are similar entities, the distinction differentiates the two types of
relationships.

Note      The RDO is only supported on 32-bit operating systems such as Windows 95 and Windows
NT. To use the Remote Data Objects, you must set a reference to the Microsoft Remote Data Object
2.0 object library in the Visual Basic References dialog box.

In the following table, the type of collection in the first column contains the type of object in the second
column. The third column describes what each type of object represents.

Collection Object Description

rdoConnections rdoConnection An open or allocated
connection

None rdoEngine The remote database
engine

rdoErrors rdoError Information about
ODBC errors

rdoEnvironments rdoEnvironment A logical set of
rdoConnection objects
with a common user
name and password

rdoColumns rdoColumn A column that is part of
an rdoResultset

rdoParameters rdoParameter A parameter for an

rdoQuery or an
rdoPreparedStatement

rdoPreparedStatement
s

rdoPreparedStatement
s

A saved query definition
(outdated)

rdoQueries rdoQuery A saved query definition

rdoResultsets rdoResultset The rows resulting from
a query

rdoTables rdoTable A table definition

RemoteData Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdobjRemoteDataC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdobjRemoteDataX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"rdobjRemoteDataP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"rdobjRemoteDataM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"rdobjRemoteDataE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdobjRemoteDataS"}

Provides access to data stored in a remote ODBC data source through bound controls. The
RemoteData control enables you to move from row to row in a result set and to display and
manipulate data from the rows in bound controls.

Syntax

RemoteData

Remarks

The RemoteData control provides an interface between Remote Data Objects (RDO) and data-aware
bound controls. With the RemoteData control, you can:

· Establish a connection to a data source based on its properties.

· Create an rdoResultset.

· Pass the current row's data to corresponding bound controls.

· Permit the user to position the current row pointer.

· Pass any changes made to the bound controls back to the data source.

Overview

Without a RemoteData control, a Data control or its equivalent, data-aware (bound) controls on a
form can't automatically access data. The RemoteData and Data controls are examples of
DataSource Controls. You can perform most remote data access operations using the DataSource
controls without writing any code at all. Data-aware controls bound to a DataSource control
automatically display data from one or more columns for the current row or, in some cases, for a set
of rows on either side of the current row. DataSource controls perform all operations on the current
row.

The RemoteData DataSource Control

If the RemoteData control is instructed to move to a different row, all bound controls automatically
pass any changes to the RemoteData control to be saved to the ODBC data source. The
RemoteData control then moves to the requested row and passes back data from the current row to
the bound controls where it's displayed.

The RemoteData control automatically handles a number of contingencies including empty result
sets, adding new rows, editing and updating existing rows, converting and displaying complex data
types, and handling some types of errors. However, in more sophisticated applications, you must trap
some error conditions that the RemoteData control can't handle. For example, if the remote server
has a problem accessing the data source, the user doesn't have permission, or the query can't be
executed as coded, a trappable error results. If the error occurs before your application procedures
start, or as a result of some internal errors, the Error event is triggered.

Operation

Use the RemoteData control properties to describe the data source, establish a connection, and
specify the type of cursor to create. If you alter these properties once the result set is created, use the
Refresh method to rebuild the underlying rdoResultset based on the new property settings.

The RemoteData control behaves like the Jet-driven Data control in most respects. The following
guidelines illustrate a few differences that apply when setting the SQL property.

You can treat the RemoteData control's SQL property like the Data control's RecordSource property
except that it cannot accept the name of a table by itself, unless you populate the rdoTables
collection first. Generally, the SQL property specifies an SQL query. For example, instead of just
"Authors", you would code "SELECT * FROM AUTHORS" which provides the same functionality.
However, specifying a table in this manner is not a good programming practice as it tends to return
too many rows and can easily exhaust workstation resources or lock large segments of the database.

The result set created by the RemoteData control might not be in the same order as the Recordset
created by the Data control. For example, if the Data control's RecordSource property is set to
"Authors" and the RemoteData control's SQL property is set to "SELECT * FROM AUTHORS", the
first record returned by Jet to the Data control is based on the first available index on the Authors
table. The RemoteData control, however, returns the first row returned by the remote database
engine based on the physical sequence of the rows in the database, regardless of any indexes. In
some cases, the order of the records could be identical, but not always.

This difference in behavior can affect how bound controls handle the resulting rows — especially
multiple-row bound controls like the DBGrid control. You can manipulate the RemoteData control
with the mouse — to move the current row pointer from row to row, or to the beginning or end of the
rdoResultset by clicking the control. As you manipulate the RemoteData control buttons, the current
row pointer is repositioned in the rdoResultset. You cannot move off either end of the rdoResultset
using the mouse. You also can't set focus to the RemoteData control.

Other Features

You can use the objects created by the RemoteData control to create additional rdoConnection,
rdoResultset, or rdoQueryobjects.

You can set the RemoteData control Resultset property to an rdoResultset created independently
of the control. If this is done, the RemoteData control properties are reset based on the new
rdoResultset and rdoConnection.

You can set the Options property to enable asynchronous creation of the rdoResultset
(rdAsyncEnable) or to execute the query without creating a temporary stored procedure
(rdExecDirect).

The Validate event is triggered before each reposition of the current row pointer. You can choose to
accept the changes made to bound controls or cancel the operation using the Validate event's action
argument.

The RemoteData control can also manage what happens when you encounter an rdoResultset with
no rows. By changing the EOFAction property, you can program the RemoteData control to enter
AddNew mode automatically.

Programmatic Operation

To create an rdoResultset programmatically with the RemoteData control:

· Set the RemoteData control properties to describe the desired characteristics of the rdoResultset.

· Use the Refresh method to begin the automated process or to create the new rdoResultset. Any
existing rdoResultset is discarded.

All of the RemoteData control properties and the new rdoResultset object may be manipulated
independently of the RemoteData control with or without bound controls. The rdoConnection and
rdoResultset objects each have properties and methods of their own that can be used with
procedures that you write.

For example, the MoveNext method of an rdoResultset object moves the current row to the next row
in the rdoResultset. To invoke this method with an rdoResultset created by a RemoteData control,
you could use this code:

RemoteData1.Resultset.MoveNext

AbsolutePosition Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproAbsolutePositionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproAbsolutePositionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproAbsolutePositionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproAbsolutePositionS"}

Returns or sets the absolute row number of an rdoResultset object's current row.

Syntax

object.AbsolutePosition [= value]

The AbsolutePosition property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A Long Data Type value from -1 to the maximum number of
rows in the rdoResultset. Corresponds to the ordinal position
of the current row in the rdoResultset specified by object.
Default value is -1.

Remarks

Use the AbsolutePosition property to position the current row pointer to a specific row based on its
ordinal position in a keyset-, or static-type rdoResultset. It is not supported for dynamic or forward-
only-type rdoResultset objects. While a value is returned for a dynamic cursor, the value is not
necessarily accurate. Generally, the rdoResultset object's Bookmarkable property must be True
before AbsolutePosition values are supported.

You can also determine the current row number by checking the AbsolutePosition property setting.
For example, if you have populated 10 rows of a 50 row rdoResultset, the AbsolutePosition
property returns 10. After you execute a MoveLast method against the result set, AbsolutePosition
returns 50. You can then set the AbsolutePosition property to any value between 1 and 50 to
position the current row pointer to that row.

The AbsolutePosition property value is -1 based thus a setting of 1 refers to the first row in the
rdoResultset. Setting a value greater than the number of populated rows causes RDO to position to
the last row in the result set (EOF).

If there is no current row, as when there are no rows in the rdoResultset, -1 is returned. If the current
row is deleted, the AbsolutePosition property value isn't defined and a trappable error occurs if it is
referenced. New rows are added to the end of the sequence if the type of cursor includes dynamic
membership.

Note      This property isn't intended to be used as a surrogate row number. Using bookmarks is still
the recommended way of retaining and returning to a given position in a cursor. Also, there is no
assurance that a given row will have the same absolute position if the rdoResultset is re-created
because the order and membership of individual rows within an rdoResultset can vary between
executions.

AbsolutePosition Property Example

The following example uses the SQL Server Pubs database to illustrate use of the AbsolutePosition
property as a secondary letter index to a set of rows. The program begins by fetching the name and
ID of all publishers into a dropdown ComboBox control. Initially, and as a specific publisher is chosen
from the ComboBox, the set of titles for this publisher is fetched from the Titles table. This is
accomplished by creating a query using the concatenation method and setting the RemoteData
control's SQL property to this query. A DBGrid control is bound to the RemoteData control, so it
reflects the current set of titles based on the publisher chosen. In the process of populating the result
set, the first letter of each title is placed in an array along with the AbsolutePosition value for the
row. When a letter is chosen and the MoveToRow button is clicked, the RemoteData control's
AbsolutePosition property is set to the value associated with the letter.

Dim cn As rdoConnection
Dim en As rdoEnvironment
Dim rs As rdoResultset
Dim LetterIndex() As Long

Private Sub Form_Load()
Dim Li As Integer
'
' Open the connection. This is a DSN-less Connection
'
Set en = rdoEnvironments(0)
Set cn = en.OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="uid=;pwd=;driver={SQL Server};" _
 & "server=SEQUEL;database=pubs;")

MsRdc1.Connect = cn.Connect

'
' Fill Publishers list combo box.
'
Set rs = cn.OpenResultset _
 ("Select distinct Pub_Name, Pub_ID" _

& " from Publishers", _
rdOpenStatic, rdConcurReadOnly)

Do Until rs.EOF
 If rs(0) = Null Then
 Else
 PubList.AddItem " " _

& rs!Pub_ID & ":" & rs!Pub_Name
 End If
 rs.MoveNext
Loop
PubList.ListIndex = 1
rs.Close

PubList_Click ' Make the first query

End Sub

Sub GetLetterIndexes()
'
' Build an index array for the first

' occurance of a letter in the list
' of titles. Save an AbsolutePosition
' for each letter.

ReDim LetterIndex(122) As Long
Screen.MousePointer = vbHourglass

Set rs = MsRdc1.Resultset
Do Until rs.EOF
 Li = Convert(Left$(rs!Title, 1))
 If LetterIndex(Li) = 0 Then
 LetterIndex(Li) = rs.AbsolutePosition
 End If
 rs.MoveNext
Loop

Screen.MousePointer = vbDefault
End Sub
'
' Position the RemoteData control's
' rdoResultset to the first row of the letter
' chosen based on the AbsolutePosition
'
Private Sub MoveToRow_Click()
Dim i
i = Convert(LetterWanted)
If LetterIndex(i) > 0 Then
 MsRdc1.Resultset.AbsolutePosition = LetterIndex(i)
Else
 LetterWanted = "(Not Found)"
 Beep
 For i = i + 1 To Asc("z")
 If LetterIndex(i) > 0 Then
 MsRdc1.Resultset.AbsolutePosition = _

LetterIndex(i)
 LetterWanted = Chr(i + 64)
 Exit For
 End If
 Next i
End If
End Sub

Private Function Convert(Li As String) As Integer
Dim i As Integer
i = Asc(Li) ' Only references first letter
Select Case i
 Case Is < 65: Convert = 0
 Case Is > 122: Convert = 58
 Case Else: Convert = i - 64
End Select
End Function
'
' Fetch List of Titles for this
' publisher
'
Private Sub PubList_Click()
Dim PubWanted As String

' Pick off the PUB_ID
'
' Build the SQL Query based on
' publisher chosen
'
PubWanted = Trim(Left(PubList,

InStr(PubList, ":") - 1))
Screen.MousePointer = vbHourglass

MsRdc1.SQL = "select * from Titles" _
 & " where Pub_ID = '" _
 & PubWanted & "'" _
 & " order by Title"
MsRdc1.Refresh
Screen.MousePointer = vbDefault
If MsRdc1.Resultset.EOF Then
 MoveToRow.Enabled = False
Else
 MoveToRow.Enabled = True
 GetLetterIndexes
 MsRdc1.Resultset.MoveFirst
End If
End Sub

AllowZeroLength Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproAllowZeroLengthC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproAllowZeroLengthA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproAllowZeroLengthX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproAllowZeroLengthS"}

Returns a value that indicates whether a zero-length string ("") is a valid setting for the Value property
of an rdoColumn object with a data type of rdTypeCHAR, rdTypeVARCHAR, or
rdTypeLONGVARCHAR.

Syntax

object.AllowZeroLength

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The AllowZeroLength property return values are:

Value Description

True A zero-length string is a valid value.

False A zero-length string isn't a valid value.

Remarks

If AllowZeroLength is False for a column, you must use Null to represent "unknown" states — you
cannot use empty strings.

AsyncCheckInterval Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproAsyncCheckIntervalC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproAsyncCheckIntervalA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproAsyncCheckIntervalX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproAsyncCheckIntervalS"}

Returns or sets a value specifying the number of milliseconds that RDO waits between checks to see
if an asynchronous query is complete.

Syntax

object.AsyncCheckInterval [= value]

The AsyncCheckInterval property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the Applies
To list.

value A Long expression as described in Remarks.

Remarks

When you use the rdAsyncEnable option to execute a query asynchronously, RDO polls the data
source periodically to determine if the query has completed. You can change the duration of time
between checks by using the AsyncCheckInterval property. RDO also checks the status of an
asynchronous query when you examine the StillExecuting property.

The AsyncCheckInterval property defaults to 1000 milliseconds (once a second).

Polling too often can adversely affect both server and workstation performance. Polling less
frequently can improve performance, but may affect how quickly data is made available to the user.

As long as the asynchronous query is executing, the StillExecuting property returns True. Once the
query is completed, the StillExecuting property is set to false and the QueryComplete event is fired.
You can also interrupt and end an asynchronous query by using the rdoResultset object's Cancel or
Close method.

Attributes Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproAttributesC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproAttributesA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproAttributesX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproAttributesS"}

Returns a value that indicates one or more characteristics of an rdoColumn object.

Syntax

object.Attributes

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Attributes property return value specifies characteristics of the column represented by the
rdoColumn object and can be a sum of these constants:

Constant Value Description

rdFixedColumn 1 The column size is fixed (default for
numeric columns) For example, Char,
Binary.

rdVariableColumn 2 The column size is variable. For
example, VarChar and LongVarChar,
VarBinary and LongVarBinary
columns.

rdAutoIncrColumn 16 The column value for new rows is
automatically incremented to a unique
value that can't be changed.

rdUpdatableColumn 32 The column value can be changed.

rdTimeStampColumn 64 The column is a timestamp value.
This attribute is set only for
rdClientBatch    cursors.

Remarks

When checking the setting of this property, you should use the And operator to test for a specific
attribute. Testing for absolute values can jeopardize future compatibility. For example, to determine
whether an rdoColumn object is fixed-size, you can use code like the following:

If MyResultset![ColumnName].Attributes And rdFixedColumn Then...

BindThreshold Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBindthresholdC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproBindthresholdA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBindThresholdX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproBindThresholdS"}

Returns or sets a value specifying the largest column that will be automatically bound under ODBC.

Syntax

object.BindThreshold [= value]

The BindThreshold property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the Applies
To list.

value A Long expression as described in Remarks.

Remarks

The default value for BindThreshold is 1024 bytes.

Several data types support sizes that are far too large to handle using conventional string or byte
array techniques. For these columns, you should use the GetChunk and AppendChunk methods.
However, use of these methods is not required — you can simply address the Value property
assuming the size of the chunk data does not exhaust your resources.

By setting the BindThreshold property, you can set the maximum size of chunk that RDO
automatically binds to strings. Columns larger than the BindThreshold value require use of the
GetChunk method to retrieve data. The ChunkRequired property indicates if the column requires
use of AppendChunk and GetChunk methods by comparing the column's data size against the
BindThreshold value.

BOF, EOF Properties (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBOFEOFC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproBOFEOFA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBOFEOFX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproBOFEOFS"}

· BOF — returns a value that indicates whether the current row position is before the first row in an
rdoResultset.

· EOF — returns a value that indicates whether the current row position is after the last row in an
rdoResultset.

Syntax

object.BOF
object.EOF

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The BOF property return values are:

Value Description

True The current row position is before the first row.

False The current row position is on or after the first row.

The EOF property return values are:

Value Description

True The current row position is after the last row.

False The current row position is on or before the last row.

Remarks

The BOF and EOF return values are determined by the location of the current row pointer — if this
pointer is valid. If either BOF or EOF is True, there is no current row, and any attempt to reference
rdoResultset data results in a trappable error.

You can use the BOF and EOF properties to determine whether an rdoResultset object contains
rows or whether you've gone beyond the limits of an rdoResultset as you move from row to row.

If you open an rdoResultset containing no rows, BOF and EOF are set to True, and the result set's
RowCount property setting is 0. When you open an rdoResultset that contains at least one row, the
first row is the current row and BOF and EOF are False; they remain False until you move beyond
the beginning or end of the rdoResultset using the MovePrevious or MoveNext method,
respectively. When you move beyond the beginning or end of the rdoResultset, there is no current
row.

If you delete the last remaining row in the rdoResultset object, BOF and EOF might remain False
until you attempt to reposition the current row.

If you use the MoveLast method on an rdoResultset containing rows, the last row becomes the
current row; if you then use the MoveNext method, the current row becomes invalid and EOF is set to
True. Conversely, if you use the MoveFirst method on an rdoResultset containing rows, the first row
becomes the current row; if you then use the MovePrevious method, there is no current row and
BOF is set to True.

Typically, when you work with all the rows in an rdoResultset, your code will loop through the rows
using MoveNext until the EOF property is set to True.

If you use MoveNext while EOF is set to True or MovePrevious while BOF is set to True, a
trappable error occurs.

This table shows which Move methods are allowed with different combinations of BOF and EOF.

MoveFirst,
MoveLast

MovePrevio
us,
Move < 0

Move 0
MoveNext,
Move > 0

BOF = True,
EOF = False

Allowed Error Error Allowed

BOF =
False,
EOF = True

Allowed Allowed Error Error

Both True Error Error Error Error

Both False Allowed Allowed Allowed Allowed

Allowing a Move method doesn't mean that the method will successfully locate a row. It merely
indicates that an attempt to perform the specified Move method is allowed and won't generate an
error. The state of the BOF and EOF properties may change as a result of the attempted Move.

Effect of specific methods on BOF and EOF settings:

· An OpenResultset method internally invokes a MoveFirst. Therefore, an OpenResultset on an
empty set of rows results in BOF and EOF being set to True.

· All Move methods that successfully locate a row set both BOF and EOF to False.

· For dynamic-type rdoResultset objects, any Delete method, even if it removes the only remaining
row from an rdoResultset, won't change the setting of BOF or EOF.

· For other types of rdoResultset objects, the BOF and EOF properties are unchanged as add and
delete operations are made because result set membership is fixed.

BOFAction, EOFAction Properties (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBOFActionEOFActionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproBOFActionEOFActionA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBOFActionEOFActionX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproBOFActionEOFActionS"}

Returns or sets a value indicating what action the RemoteData control takes when the BOF or EOF
property is True.

Syntax

object.BOFAction [= value]
object.EOFAction [= value]

The BOFAction and EOFAction property syntaxes have these parts:

Part Description

object An object expression that evaluates to an object in the Applies
To list.

value A constant or value that specifies an action, as described in
Settings.

Settings

For the BOFAction property, the settings for value are:

Constant Value Description

rdMoveFirst 0 MoveFirst (Default): Keeps the first
row as the current row.

rdBOF 1 BOF: Moving past the beginning of an
rdoResultset triggers the
RemoteData control's Validate event
on the first row, followed by a
Reposition event on the invalid (BOF)
row. At this point, the Move Previous
button on the RemoteData control is
disabled.

For the EOFAction property, the settings for value are:

Constant Value Description

rdMoveLast 0 MoveLast (Default): Keeps the last
row as the current row.

rdEOF 1 EOF: Moving past the end of an
rdoResultset triggers the
RemoteData control's Validation
event on the last row, followed by a
Reposition event on the invalid
(EOF) row. At this point, the Move
Next button on the RemoteData
control is disabled.

rdAddNew 2 AddNew: Moving past the last row
triggers the RemoteData control's
Validation event to occur on the
current row, followed by an
automatic AddNew, followed by a
Reposition event on the new row.

Remarks

If you set the EOFAction property to rdAddNew, once the user moves the current row pointer to EOF
using the RemoteData control, the current row is positioned to a new row in the copy buffer. At this
point you can edit the newly added row. If you make changes to the new row and the user
subsequently moves the current row pointer using the RemoteData control, the row is automatically
appended to the rdoResultset. If you don't make changes to this new row, and reposition the current
row to another row, the new row is discarded. If you use the RemoteData control to position to
another row while it is positioned over this new row, another new row is created.

When you use code to manipulate rdoResultset objects created with the RemoteData control, the
EOFAction property has no effect — it only takes effect when manipulating the RemoteData control
with the mouse.

In situations where the RemoteData control rdoResultset is returned with no rows, or after the last
row has been deleted, using the rdAddNew option for the EOFAction property greatly simplifies your
code because a new row can always be edited as the current row.

Bookmark Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBookmarkC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproLastModifiedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproBookmarkA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproBookmarkS"}

Returns or sets a bookmark that uniquely identifies the current row in an rdoResultset object. If you
have a valid bookmark, you can use it to reposition the current row in an rdoResultset.

Syntax

object.Bookmark [= value]

The Bookmark property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the Applies
To list.

value A Variant(string) expression that evaluates to a valid
bookmark.

Remarks

When a non-forward-only-type rdoResultset object is created or opened, each of its rows already
has a unique bookmark. You can save the bookmark for the current row by assigning the value of the
Bookmark property to a variable declared as Variant. To quickly return to that row at any time after
moving to a different row, set the rdoResultset object's Bookmark property to the value of that
variable.

There is no limit to the number of bookmarks you can establish. To create a bookmark for a row other
than the current row, move to the desired row and assign the value of the Bookmark property to a
Variant variable that identifies the row.

To make sure the rdoResultset supports bookmarks, inspect the value of its Bookmarkable property
before you use the Bookmark property. If Bookmarkable is False, the rdoResultset doesn't support
bookmarks, and using the Bookmark property results in a trappable error. While a bookmark value
might be returned when using a dynamic cursor, this value cannot always be trusted.

The value of the Bookmark property isn't guaranteed to be the same as a row number.

Note      The Bookmark property doesn't apply to forward-only type rdoResultset objects.

Bookmarkable Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBookmarkableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBookmarkableX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproBookmarkableA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproBookmarkableS"}

Returns a value that indicates whether an rdoResultset object supports bookmarks, which you can
set using the Bookmark property.

Syntax

object.Bookmarkable

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Bookmarkable property return values are:

Value Description

True The rdoResultset supports bookmarks.

False The rdoResultset doesn't support bookmarks.

Remarks

To make sure an rdoResultset supports bookmarks, check the Bookmarkable property setting
before you attempt to set or check the Bookmark property.

ChunkRequired Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproChunkRequiredC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproChunkRequiredX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproChunkRequiredA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproChunkRequiredS"}

Returns a Boolean value that indicates if data must be accessed using the GetChunk method.

Syntax

object.ChunkRequired

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The ChunkRequired property return values are:

Value Description

True The data should be accessed using the GetChunk method.

False The data need not be accessed using the GetChunk method.

Remarks

Use the ChunkRequired property to determine if the column in question should be manipulated using
the AppendChunk and GetChunk methods. Accessing the Value property of a column whose
ChunkRequired property is True, will only result in a trappable error when RDO is unable to fetch the
data without use of the AppendChunk or GetChunk methods. In other words, when the data column
does not contain more data than can be handled by conventional string handling, you are not required
to use the GetChunk and AppendChunk methods.

By setting the BindThreshold property, you can adjust the number of bytes that will force the use of
the AppendChunk and GetChunk methods. You can also determine the length of a chunk column by
using the ColumnSize method.

Connect Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproConnectC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproConnectX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproConnectA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproConnectS"}

Returns or sets a value that provides information about the source of an open rdoConnection. The
Connect property contains the ODBC connect string. This property is always readable, but cannot be
changed after the connection is established.

Syntax

object.Connect [= value]

The Connect property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A string expression as described in Remarks. (Data type is
String)

Settings

The Connect property return value is a String expression composed of zero or more parameters
separated by semicolons, as described in Remarks.

Remarks

When used with the rdoQuery or rdoConnection objects, this property is read-only unless created
as a stand-alone object when it is read-write until the connection is established. The Connect
property becomes read-write when the rdoConnection object is closed. When used with the
RemoteData control, this property is read-write.

The Connect property is used to pass additional information to and from the ODBC driver manager to
establish a connection with a data source. The Connect property holds the ODBC connect string
which is also used as an argument to the OpenConnection method. When used with a stand-alone
rdoConnection or rdoQuery objects, the Connect property is used by the EstablishConnection
method.

Except when associated with the RemoteData control, once a connection is made, the Connect
property is completed with the values optionally supplied by the user and the ODBC driver manager.
The Connect property of the rdoQuery contains this amended connect string.

The RemoteData control's Connect property is not changed after the connection is established.
However, the completed connect string can be extracted from the RemoteData control's Connection
property. For example:

FullConnect = MSRDC1.Connection.Connect

The following table details valid ODBC connect string arguments and typical usage. Note that each
parameter is delineated with a semi-colon (;).

ODBC Connect String Arguments

Parameter Specifies Example

DSN Registered ODBC data
source by name.

DSN=MyDataSource;

(If specified when
establishing a DSN-less
connection, DSN must be the
last argument)

UID User name of a recognized
user of the database

UID=Victoria;

PWD Password associated with
user name

PWD=ChemMajor;

DRIVER Description of driver. (Note
brackets for driver names that
include spaces.)

DRIVER={SQL Server};

DATABASE Default database to use once
connected

DATABASE=Pubs;

SERVER Name of remote server SERVER=SEQUEL;

WSID Workstation ID (your system's
Net name)

WSID=MYP5

APP Application name. At design
time this is set to your project
name. At runtime this is
your .exe name.

APP=Accounting

Note      Some ODBC drivers require different parameters not shown in this list.

For example, to set the Connect property of a RemoteData control you could use code like the
following:

Dim Cnct As String
Cnct = "DSN=WorkData;UID=Chrissy;" _

& "PWD=MIDFLD;DATABASE=WorkDB;"
RemoteData1.Connect = Cnct
RemoteData1.SQL = "Select Name, City " _

& " From Teams Where Type = 12"
RemoteData1.Refresh

You can use this same connect string to establish a new connection:

Dim Cn As rdoConnection
Set Cn = rdoEnvironments(0).OpenConnection("", _
rdDriverNoPrompt,True,Cnct$)

Note      Valid parameters are determined by the ODBC driver. The parameters shown in the
preceding example are supported by the Microsoft SQL Server ODBC driver. ODBC,
LOGINTIMEOUT and DBQ are not valid parameters of the RemoteData control or the
rdoConnection object's Connect property. These parameters are supported by the Microsoft Jet
database engine, and not by the ODBC driver. To set login timeout delay, you must use the
LoginTimeout property of the rdoEnvironment object.

Capturing Missing Arguments

If the connect string is null, the information provided by the DSN is incomplete, or invalid arguments
are provided, the connection cannot be established. If your code sets the prompt argument of the
OpenConnection method or the RemoteData control's Prompt property to prohibit user completion
of missing ODBC connect arguments, a trappable error is triggered. Otherwise the ODBC driver
manager displays a dialog box to gather missing information from the user. Depending on the setting
of the Prompt argument of the OpenConnection or EstablishConnection methods, these dialogs
capture the DSN from a list of registered ODBC data sources. Names presented to the user, and
optionally, the user ID and password. If the connection fails to succeed using these user-provided
values, the dialogs are presented again until the connection succeeds or the user cancels the
operation. In some cases, the user can create their own DSN using these dialogs.

If a password is required, but not provided in the Connect property setting, a login dialog box is
displayed the first time a table is accessed by the ODBC driver and each time the connection is

closed and reopened.

Connecting with Domain-Managed Security

When connecting to ODBC data sources that support domain-managed security, set the UID and
PWD parameters to "". In this case, the Windows NT user name and password are passed to the data
source for validation. This strategy permits access to the data source by users with access to the NT
domain through authenticated workstation logons.

You can set the Connect property for an rdoConnection object by providing a connect argument to
the OpenConnection method. Once the connection is established, you can check the Connect
property setting to determine the DSN, database, user name, password, or ODBC data source of the
database.

Registering Data Source Names

Before you can establish a connection using a Data Source Name (DSN), you must either manually
register the DSN using the Windows control panel application or use the rdoRegisterDataSource
method. This process establishes the server name, driver name and other options used when
referencing this data source.

Establishing DSN-Less Connections

Under the right circumstances you might not need to pre-register a DSN before connecting. If the
following conditions are met, RDO can establish a DSN-less connection using the RemoteData
control, or the OpenConnection or EstablishConnection methods with a fully-populated Connect
property or connect string:

· The connection uses the default named-pipes networking protocol.

· The connection does not set the OEMTOANSI option.

· You specify the name of the server using the SERVER argument in the connect string.

· You specify the name of the ODBC driver using the DRIVER argument in the connect string.

· You set the DSN argument in the connect string (or wherever it appears — as in the
DataSourceName property of the RemoteData control) to an empty string. The empty DSN
argument must be specified as the last parameter of the connect string.

Connect Property and OpenConnection Example: DSN-Less Connection Using
OpenConnection

The following example establishes a DSN-less ODBC connection using the OpenConnection
method against the default rdoEnvironment. In this case the example prints the resulting Connect
property to the Immediate window.

Dim en as rdoEnvironment
Dim cn as rdoConnection

Set en = rdoEnvironments(0)
Set cn = en.OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="uid=;pwd=;driver={SQL Server};" _
 & "server=SEQUEL;database=pubs;")
debug.print cn.Connect

Connect Property and OpenConnection Example: DSN Connection Using OpenConnection

The following example establishes an ODBC connection using the OpenConnection method but
requires the user to provide all connection information. In this case the example prints the resulting
Connect property to the Immediate window.

Dim cn As rdoConnection
Dim en As rdoEnvironment

Set en = rdoEnvironments(0)
Set cn = en.OpenConnection(dsName:="WorkDB", _
 Prompt:=rdDriverCompleteRequired)
debug.print cn.Connect

Connect Property Example: DSN-Less Connection Using Stand-Alone Connection

The following example establishes a DSN-less ODBC connection by creating a stand-alone
rdoConnection object and uses the EstablishConnection method to open the connection. Note that
the DSN=''; argument is positioned at the end of the connect string. The example prints the resulting
Connect property to the Immediate window.

' Create a DSN-less connection
' using a stand-alone rdoConnection object and
' the EstablishConnection method
'
Dim cn As New rdoConnection
Dim qd As New rdoQuery

cn.Connect = "uid=;pwd=;server=SEQUEL;" _
 & "driver={SQL Server};database=pubs;" _
 & "DSN='';"
cn.cursordriver = rdUseOdbc
cn.EstablishConnection rdDriverNoprompt
debug.print cn.Connect

Set qd.ActiveConnection = cn

Connect Property Example: DSN Connection Using Establish Connection

The following example establishes an ODBC connection using a registered DSN to provide most of
the required arguments. The User ID and Password are to be provided by domain-managed security.
In this case the example prints the resulting Connect property to the Immediate window.

Dim cn As New rdoConnection
Dim qd As New rdoQuery

cn.Connect = "uid=;pwd=;"DSN=WorkDB;"
cn.cursordriver = rdUseOdbc
cn.EstablishConnection rdDriverNoprompt
debug.print cn.Connect

Connection Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproConnectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproConnectionA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproConnectionX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproConnectionS"}

Returns a reference to a RemoteData control's underlying rdoConnection object.

Syntax

object.Connection
Set connection = object.Connection

The Connection property syntax has these parts:

Part Description

connection An object expression that evaluates to a valid
rdoConnection object.

object An object expression that evaluates to an object in the
Applies To list.

Remarks

When a RemoteData control is initialized, RemoteData opens a connection to the data source
specified in the control's Connect property. The rdoConnection object created by RDO is exposed
by the Connection property.

rdoConnection objects have properties and methods you can use to manage data. You can use any
method of an rdoConnection object, such as Close and Execute, with the Connection property of a
RemoteData control.

Except when associated with the RemoteData control, once a connection is made, the Connect
property is completed with the values optionally supplied by the user and the ODBC driver manager.
The Connect property of the rdoQuery contains this amended connect string.

The RemoteData control's Connect property is not changed after the connection is established.
However, the completed connect string can be extracted from the RemoteData control's Connection
property. For example:

FullConnect = MSRDC1.Connection.Connect

CursorDriver Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproCursorDriverC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproCursorDriverX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproCursorDriverA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproCursorDriverS"}

Returns or sets a value that specifies the type of cursor to be created.

Syntax

object.CursorDriver [= value]

The CursorDriver property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the Applies
To list.

value An Integer or constant as described in Settings.

Settings

Constant Value Description

rdUseIfNeeded 0 The ODBC driver will choose the
appropriate style of cursors. Server-
side cursors are used if they are
available.

rdUseOdbc 1 RemoteData will use the ODBC
cursor library.

rdUseServer 2 Use server-side cursors.

rdUseClientBatch 3 RDO will use the optimistic batch
cursor library.

rdUseNone 4 Result set is not returned as a cursor.

Remarks

The CursorDriver property only affects connections established after the CursorDriver property has
been set — the property is read-only on existing connections.

When the initial (default), and each subsequent rdoEnvironment object is created, the CursorDriver
property is set from the rdoEngine object's rdoDefaultCursorDriver property which is set using the
same constants.

Choosing a Cursor Driver

Choosing the right cursor driver can have a significant impact on the overall performance of your
application, what resources are consumed by the cursor, and limit the type or complexity of the
cursors you create. Each type of cursor has its own benefits and limitations. In many cases, the best
choice is no cursor at all because your application often does not need to scroll through the data or
perform update operations against a keyset.

The following paragraphs outline the functionality and suggested purposes for each of the cursor
types.

· Server-Side Cursors

This cursor library maintains the cursor keyset on the server (in TempDB) which eliminates the
need to transmit the keyset to the workstation where it consumes needed resources. However,
this cursor driver consumes TempDB space on the remote server so this database must be
expanded to meet this requirement. Cursors created with the server-side driver cannot contain

more than one SELECT statement – if they do, a trappable error is fired. You can still use the
server-side cursor driver with multiple result set queries if you disable the cursor by creating a
forward-only, read-only cursor with a rowset size of one. Not all remote servers support server-
side cursors. Note that server-side cursors are enabled when using either rdUseIfNeeded or
rdUseServer against Microsoft SQL Server databases.

· ODBC Client-Side Cursors

This cursor library builds keysets on the workstation in local RAM overflowing to disk if necessary.
Because of this design considerably more network operations must be performed to initially
create the keyset, but with small cursors this should not impose a significant load on the
workstation or network. ODBC client-side cursors do not impose any type of restriction on the
type of query executed. This option gives better performance for small result sets, but degrades
quickly for larger result sets.

· Client-Batch Cursors

This cursor library is designed to deal with the special requirements of optimistic batch updates
and several other more complex cursor features. Client-batch cursors are required for dissociate
connections, batch mode, and multi-table updates. This cursor also supports delayed BLOB
column fetch, buffered cursors, and additional control over updates. This library is somewhat
larger than the others, but also performs better in many situations.

· The No-Cursor Option

In cases where you need to fetch rows quickly, or perform action queries against the database
without the overhead of a cursor, you can choose to instruct RDO to bypass creation of a cursor.
Basically, this option creates a forward-only, read-only result set with a RowsetSize set to 1.
This option can improve performance in many operations. While you cannot update rows or
scroll between rows with this cursor, you can submit independent action queries to manipulate
data. This option is especially useful when accessing data through stored procedures.

DataSourceName Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproDataSourceNameC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproDataSourceNameX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproDataSourceNameA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproDataSourceNameS"}

Returns or sets the data source name for a RemoteData control.

Syntax

object.DataSourceName [= datasourcename]

The DataSourceName property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

datasourcename A string expression that indicates a
registered data source name.

Remarks

This property can be left blank if the RemoteData control's Connect property identifies a data source
name (DSN) registered in the Windows Registry (32-bit) or if you create a DSN-less connection that
provides all required information in the Connect property.

Once the rdoConnection is opened by the RemoteData control, the DataSourceName property
contains the DSN used to establish the connection — it may be different from the value set before the
connection is opened, because a user might select a data source from a list of valid DSN entries
during the connection process.

If you change this property after the control's rdoConnection object is open, you must use the
RemoteData control's Refresh method to open a new connection to the data source.

Description Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproDescriptionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproNumberX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproDescriptionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproDescriptionS"}

Returns a descriptive string associated with an error.

Syntax

object.Description

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Description property return value is a string expression containing a description of the error.

Remarks

When an error occurs either on the remote server, or in the ODBC interface while processing your
query, an rdoError object is created and appended to the rdoErrors collection. The rdoError object's
Description property returns a short description and context information about where the error
occurred. This can be used to alert the user to an error that you cannot, or do not want to handle. The
SQLState code is appended    to the front of message, followed by a colon and a space. For example
"S0021: Cannot find XXX".

Direction Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproDirectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproDirectionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproDirectionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproDirectionS"}

Returns or sets a value indicating how a parameter is passed to or from a procedure.

Syntax

object.Direction [= value]

The Direction property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A constant or Integer as described in
Settings.

Settings

The settings for value are one of the following values:

Constant Value Description

rdParamInput 0 (Default) The parameter is used to
pass information to the procedure.

rdParamInputOutput 1 The parameter is used to pass
information both to and from the
procedure.

rdParamOutput 2 The parameter is used to return
information from the procedure as in
an output parameter in SQL.

rdParamReturnValue 3 The parameter is used to return the
return status value from a procedure.

Remarks

When working with stored procedures, and parameter queries you should identify those parameters
that are to be managed by RDO on your behalf — but only when using drivers that do not
automatically detect parameter direction. A parameterized query can take virtually any number of
input arguments — each of these need to be marked when you create your query.

Generally, your query returns a set of rows that meet the requirements established in the query based
on the parameters you provide at runtime. However, when working with stored procedures, another
aspect is exposed. Stored procedures return information using row sets, return status, and output
parameters. Because of this, each parameter returned by your stored procedure must be marked
when creating your query.

The Direction property determines whether the parameter is an input parameter, output parameter, or
both — or if the parameter is the return value from the procedure.

Note      When first addressing the rdoParameter object to set the Direction property you might trip a
trappable error if the rdoParameters collection could not be created. Generally this is due to syntax
errors in the query or other problems that prevented RDO from creating the collection.

Some ODBC drivers do not provide information on the direction of parameters to a SELECT
statement or procedure call so all parameter directions default to rdParamInput. In these cases, it is
necessary to set the direction in code prior to executing the query.

Note      The Microsoft SQL Server 6.x driver automatically sets the Direction property for all
procedure parameters so you should not have to set the Direction property for any of your queries'
parameters.

The Direction property is associated with the rdoParameter object but it is generally unnecessary to
address the rdoParameter object itself as it is the default collection of the rdoQuery object as shown
in the examples below.

For example, the following procedure returns a value from a stored procedure:

{? = call sp_test}

This call produces one parameter — the return value. It is necessary to set the direction of this
parameter to rdParamOutput or rdParamReturnValue before executing the prepared statement. For
example:

Dim my_statement As rdoQuery
Set my_statement = someRdoConnection.CreateQuery _

("MyPs", "{? = call sp_testprocedure }", ...)
my_statement.rdoParameters(0).Direction = _

rdParamReturnValue
my_statement.Execute
Print my_statement.rdoParameters(0)

You need to set all parameter directions except rdParamInput before accessing or setting the values
of the parameters and before executing the rdoQuery.

You should use rdParamReturnValue for return values, but you can use rdParamOutput where
rdParamReturnValue is not supported.

EditMode Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdproEditModeA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproEditModeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"See
Also":"rdproEditModeC;vbproBooksOnlineJumpTopic"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproEditModeS"}

Returns a value that indicates the state of editing for the current row.

Syntax

object.EditMode

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The EditMode property returns an Integer or constant as described in the following table:

Constant Value Description

rdEditNone 0 No editing operation is in progress.

rdEditInProgress 1 The Edit method has been invoked,
and the current row is in the copy
buffer.

rdEditAdd 2 The AddNew method has been
invoked, and the current row in the
copy buffer is a new row that hasn't
been saved in the database.

Remarks

The EditMode property is most useful when you want to depart from the default functionality of a
RemoteData control. You can check the value of the EditMode property and the value of the action
parameter in the Validate event procedure to determine whether to invoke the UpdateRow method.

You can also check to see if the LockEdits property of the rdoResultset is True and the EditMode
property setting is rdEditInProgress to determine whether the current data page is locked.

Environment Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproEnvironmentC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproEnvironmentX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproEnvironmentA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproEnvironmentS"}

Returns a reference to a RemoteData control's underlying rdoEnvironment object.

Syntax

object.Environment
Set environment = object.Environment

The Environment property syntax has these parts:

Part Description

environment An object expression that evaluates to a valid
rdoEnvironment object.

object An object expression that evaluates to an object in the
Applies To list.

Remarks

When a RemoteData control is initialized, RemoteData uses the default rdoEnvironments(0) — the
Environment property is initially set to this object.

If you assign another rdoResultset to the RemoteData control's Resultset property, the
Environment property is set to the rdoEnvironment object used to create the result set.

rdoEnvironment objects have properties and methods you can use to manage data. For example,
you can use any method of an rdoEnvironment object, such as OpenConnection, BeginTrans,
CommitTrans, or RollbackTrans, with the Environment property.

ErrorThreshold Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproErrorthresholdC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproErrorthresholdX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproErrorthresholdA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproErrorthresholdS"}

Returns or sets a value that determines the severity level that constitutes a fatal error.

Note      This property is provided for backward compatibility with RDO version 1.0 code. It should be
replaced with code that implements the rdoEngine object's InfoMessage event which provides
equivalent functionality.

Remarks

In version 4.x of Microsoft SQL Server, it is not possible to set the severity of errors using the
RAISERROR statement. As a result, the ErrorThreshold property was needed to permit your code to
filter those messages beyond a threshold of severity.

Version 6.x of Microsoft SQL Server now supports the inclusion of a severity level in the RAISERROR
statement so it is no longer necessary to use the ErrorThreshold property.

All errors that are returned with a severity of less than 10 are trapped by the ODBC layers and set the
SQL_SUCCESS_WITH_INFO result code. This causes RDO to raise the InfoMessage event but not
stop query processing.

HelpContext, HelpFile Properties (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproHelpContextHelpFileC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproHelpContextHelpFileX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproHelpContextHelpFileA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproHelpContextHelpFileS"}

· HelpContext — returns a context ID for a topic in a Microsoft Windows Help file.

· HelpFile — returns a fully qualified path to the Help file as a variable.

Syntax

object.HelpContext
object.HelpFile

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The HelpContext property returns a Long value.

The HelpFile property returns a String value.

Remarks

If a Microsoft Windows Help file is specified in HelpFile, the HelpContext property is used to
automatically display the Help topic it identifies.

Note      You should write routines in your application to handle typical errors. When programming with
an object, you can use the Help supplied by the object's Help file to improve the quality of your error
handling, or to display a meaningful message to your user if the error is not recoverable.

hDbc Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprohDbcC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprohDbcX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdprohDbcA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprohDbcS"}

Returns a value corresponding to the ODBC connection handle.

Syntax

object.hDbc

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The hDbc property returns a Long value containing the ODBC connection handle created by the
ODBC driver manager corresponding to the specified rdoConnection object.

Remarks

This handle can be used to execute ODBC functions that require an ODBC hDbc connection handle.

Note      While it is possible to execute ODBC API functions using the ODBC hEnv, hDbc, and hStmt
handles, it is recommended that you do so with caution. Improper use of arbitrary ODBC API
functions using these handles can result in unpredictable behavior. You should not attempt to save
this handle in a variable for use at a later time as the value is subject to change.

If your application requires access to special ODBC connection option settings, these should be set or
retrieved using the hDbc property before the connection is established. Resetting ODBC settings of
any kind after the connection is established can result in unpredictable behavior.

hDbc Property Example

The following example illustrates use of the hDbc property when executing an ODBC API function. In
this case, the application sets a connection option that changes how transactions are isolated.

Option Explicit
Dim en As rdoEnvironment
Dim cn As rdoConnection
Dim rc As Integer

'Declare Function SQLSetConnectOption Lib "odbc32.dll" (ByVal hdbc&, ByVal
fOption%, ByVal vParam As Any) As Integer
'
'Transaction isolation option masks
'
 Const SQL_TXN_ISOLATION As Long = 108
 Const SQL_TXN_READ_UNCOMMITTED As Long = &H1&
 Const SQL_TXN_READ_COMMITTED As Long = &H2&
 Const SQL_TXN_REPEATABLE_READ As Long = &H4&
 Const SQL_TXN_SERIALIZABLE As Long = &H8&
 Const SQL_TXN_VERSIONING As Long = &H10&

Private Sub Form_Load()
Set en = rdoEngine.rdoEnvironments(0)

Set cn = en.OpenConnection(dsName:="WorkDB", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="Uid=;pwd=;database=workdb")

rc = SQLSetConnectOption(cn.hDbc, SQL_TXN_ISOLATION,
SQL_TXN_READ_UNCOMMITTED)

Debug.Print rc

End Sub

hEnv Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprohEnvC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprohEnvX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdprohEnvA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprohEnvS"}

Returns a value corresponding to the ODBC environment handle.

Syntax

object.hEnv

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The hEnv property returns a Long value containing the ODBC environment handle created by the
ODBC driver manager corresponding to the specified rdoEnvironment object.

Remarks

This handle can be used to execute ODBC functions that require an ODBC hEnv environment
handle.

Note      While it is possible to execute ODBC API functions using the ODBC hEnv, hDbc, and hStmt
handles, it is recommended that you do so with caution. Improper use of arbitrary ODBC API
functions using these handles can result in unpredictable behavior. You should not attempt to save
this handle in a variable for use at a later time as the value is subject to change.

hEnv Property Example

The following example illustrates use of the hEnv property when accessing an ODBC API function.
This code displays all registered data source names (DSNs) in a ListBox control.

Private Sub ShowDSNs_Click()
Dim fDirection As Integer
Dim szDSN As String * 1024
Dim cbDSNMax As Integer
Dim pcbDSN As Integer
Dim szDescription As String * 1024
Dim cbDescriptionMax As Integer
Dim pcbDescription As Integer
Dim Item As String
Set En = rdoEnvironments(0)
fDirection = SQL_FETCH_NEXT
cbDSNMax = 1023
cbDescriptionMax = 1023
List1.Clear
I = SQL_SUCCESS
 While I = SQL_SUCCESS
 szDSN = String(1024, " ")
 szDescription = String(1024, " ")
 I = SQLDataSources(En.hEnv, fDirection, szDSN, _
 cbDSNMax, pcbDSN, szDescription, _
 cbDescriptionMax, pcbDescription)
 Item = Left(szDSN, pcbDSN) & " - " _

& Left(szDescription, pcbDescription)
 Debug.Print Item
 List1.AddItem Item
 Wend

End Sub

hStmt Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprohStmtC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprohStmtX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdprohStmtA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprohStmtS"}

Returns a value corresponding to the ODBC statement handle.

Syntax

object.hStmt

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The hStmt property returns a Long value containing the ODBC statement handle created by the
ODBC driver manager corresponding to the specified rdoResultset object.

Remarks

This handle can be used to execute ODBC functions that require an ODBC hStmt statement handle.

Note      While it is possible to execute ODBC API functions using the ODBC hEnv, hDbc, and hStmt
handles, it is recommended that you do so with caution. Improper use of arbitrary ODBC API
functions using these handles can result in unpredictable behavior. You should not attempt to save
this handle in a variable for use at a later time as the value is subject to change.

hStmt Property Example

This example illustrates use of the hStmt property to return a configuration option for a specific
statement handle. The example uses the SQLGetStmtOption function to determine the type of
cursor created by the OpenResultset method. Note that this value is also supplied by the
rdoResultset Type property.

Option Explicit
Dim en As rdoEnvironment
Dim cn As rdoConnection
Dim rs As rdoResultset
Dim rc As Integer
Dim CursorType As Long
Dim T As String

'Declare Function SQLGetStmtOption Lib "odbc32.dll" (ByVal hstmt&, ByVal
fOption%, ByRef pvParam As Any) As Integer

Private Sub Form_Load()
Set en = rdoEngine.rdoEnvironments(0)

en.CursorDriver = rdUseOdbc

Set cn = en.OpenConnection(dsName:="WorkDB", _
 prompt:=rdDriverNoPrompt, _
 Connect:="Uid=;pwd=;database=Pubs")

Set rs = cn.OpenResultset("Select * from Publishers", _
 rdOpenKeyset, rdConcurRowVer)

Select Case rs.Type
 Case rdOpenForwardOnly: T = "Forward-only"
 Case rdOpenStatic: T = "Static"
 Case rdOpenKeyset: T = "Keyset"
 Case rdOpenDynamic: T = "Dynamic"
End Select
MsgBox "RDO indicates that a " & T _

& " Cursor was created"
CursorType = 0
rc = SQLGetStmtOption(rs.hStmt, _

SQL_CURSOR_TYPE, CursorType)

Select Case CursorType
 Case SQL_CURSOR_FORWARD_ONLY: T = "Forward-only"
 Case SQL_CURSOR_STATIC: T = "Static"
 Case SQL_CURSOR_KEYSET_DRIVEN: T = "Keyset"
 Case SQL_CURSOR_DYNAMIC: T = "Dynamic"
End Select
MsgBox "ODBC indicates that a " & T _

& " Cursor was created"
End Sub

KeysetSize Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproKeysetsizeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproKeysetsizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproKeysetsizeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproKeysetsizeS"}

Returns or sets a value indicating the number of rows in the keyset buffer.

Syntax

object.KeysetSize [= value]

The KeysetSize property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Long expression as described in Settings.

Settings

The settings for value must be greater than or equal to the RowsetSize property.

Remarks

The KeysetSize property is a value that specifies the number of rows in the keyset for a keyset- or
dynamic-type rdoResultset cursor. If the keyset size is 0 (the default), the cursor is fully keyset-
driven. If the keyset size is greater than 0, the cursor is mixed (keyset-driven within the keyset and
dynamic outside the keyset).

If KeysetSize is a value greater than RowsetSize, the value defines the number of rows in the keyset
that are to be buffered by the driver.

Not all ODBC data sources support keyset cursors.

Note      Because version 2.5 of the Microsoft SQL Server ODBC driver does not support mixed-style
cursors, if you set a value, KeysetSize is reset to 0 and the driver returns error 01S02: "Option
value changed."

Warning      When using rdConcurLock concurrency (pessimistic), the KeysetSize determines the
number of rows locked when the cursor is first opened. The entire keyset remains locked as long as
the cursor remains open.

LastModified Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproLastModifiedC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproLastModifiedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproLastModifiedA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproLastModifiedS"}

Returns a bookmark indicating the most recently added or changed row.

Syntax

object.LastModified

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The return value for this property is a Variant(string) data type, as described in Remarks.

Remarks

After you use the AddNew method to add a new row, or edit an existing row using the Update
method, the LastModified property returns a bookmark as a pointer to the row most recently modified
— providing the keyset supports additions. That is, if new rows are added to the keyset as well as the
underlying database table(s), the LastModified property will point to this new row in the keyset.

To position the current row pointer to this row, set the Bookmark property of the (same)
rdoResultset object to the LastModified property.

If there have been no modifications against this rdoResultset, then the LastModified property
returns 0.

Not all types of rdoResultsets support additions to their keysets so the LastModified property might
return 0 after a row has just been added. For example, while a ODBC cursor static keyset can be
updated, its rowset cannot be added to. Inserts are performed on the database, but not to the keyset,
so the LastModified property always returns 0 in this case.

Server-side keyset cursors support additions to the keyset so the AddNew method sets the
LastModified property — as does the Update method. .

Client-side static cursors do not add new rows to the cursor's membership, thus the LastModified
property value is undefined when using the AddNew method. However, it is defined after the Update
method is used. Server-side static cursors are read-only, so the LastModified property is not relevant
in this case.

Dynamic and forward-only cursors do not support bookmarks (as indicated by the Bookmarkable
property returning False), so the LastModified property is not relevant in these cursors.

The client batch cursor library also supports the LastModified property. For static cursors, new rows
are added to the cursor membership so the AddNew method sets the LastModified property — as
does the Update method.

LastModified, Bookmark Properties Example

This example illustrates use of the LastModified property to reposition the current row pointer to the
row most recently modified by RDO. The code opens a connection against SQL Server and creates a
keyset cursor-based query on the Authors table. The query expects a single parameter to pass in the
name of the Author to edit. Once selected, edited and updated, the row pointer is repositioned to the
last row modified by setting the bookmark property of the rdoResultset to the LastModified property.

Option Explicit
Dim er As rdoError
Dim cn As New rdoConnection
Dim qy As New rdoQuery
Dim rs As rdoResultset
Dim col As rdoColumn

Private Sub TestLM_Click()
qy(0) = LookFor.Text

rs.Edit
rs!City = NewCity.Text ' a TextBox control
rs.Update

rs.Bookmark = rs.LastModified

'Simply show data in picture control
Pic.Cls 'Clear the picture control.

For Each col In rs.rdoColumns
 Pic.Print col.Name,
Next
Pic.Print String(80, "-")
For Each col In rs.rdoColumns
 Pic.Print col,
Next

End Sub

Private Sub Form_Load()
cn.CursorDriver = rdUseOdbc
cn.Connect = "uid=;pwd=;server=sequel;" _

& "driver={SQL Server};database=pubs;dsn='';"
cn.EstablishConnection

With qy
 .Name = "ShowWhite"
 .SQL = "Select * from Authors " _

& " where Au_LName like ?"
 .LockType = rdConcurReadOnly
 .CursorType = rdOpenForwardOnly
 .RowsetSize = 1
 Set .ActiveConnection = cn
End With

qy(0) = LookFor.Text ' a textbox control
Set rs = qy.OpenResultset(rdOpenKeyset, rdConcurRowver)

Exit Sub
End Sub

LockType Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproLockTypeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproLockTypeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproLockTypeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproLockTypeS"}

Returns or sets a Long integer value indicating the type of concurrency handling.

Syntax

object.LockType [= value]

The LockType property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A constant or Long value as
described in Settings.

Settings

The settings for value are:

Constant Value Description

rdConcurReadOnly 1 (Default) Cursor is read-only. No
updates are allowed.

rdConcurLock 2 Pessimistic concurrency.

rdConcurRowVer 3 Optimistic concurrency based on row
ID.

rdConcurValues 4 Optimistic concurrency based on row
values.

rdConcurBatch 5 Optimistic concurrency using batch
mode updates. Status values
returned for each row successfully
updated.

Remarks

In order to maintain adequate control over the data being updated, RDO provides a number of
concurrency options that control how other users are granted, or refused access to the data being
updated. In many cases, when you lock a particular row using one of the LockType settings, the
remote engine might also lock the entire page containing the row. If too many pages are locked, the
remote engine might also escalate the page lock to a table lock to improve overall system
performance.

Not all lock types are supported on all data sources. For example, for SQL Server and Oracle servers
using the rdUseODBC cursor library, static-type rdoResultset objects can only support
rdConcurValues or rdConcurReadOnly.

If the concurrency option is not supported by the data source, the driver substitutes a different
concurrency option at execution time if one is available. If the driver cannot substitute a suitable
alternative concurrency option, a trappable error is fired (SQLState Code 01S02 "Option Value
Changed"). For rdConcurValues, the driver substitutes rdConcurRowVer and vice versa. For
rdConcurLock, the driver substitutes, in order: rdConcurRowVer or rdConcurValues.

Choosing a Concurrency Option

Note      RDO concurrency does not function as it does with Data Access Objects (DAO). Be sure to

review the following sections to determine the best type of concurrency control for your application.

· Read-Only Concurrency: This option does not impose any exclusive locks on the rows fetched. In
most cases, however, you must be granted a share lock to gain access to the rows. In other words,
other users cannot have exclusive locks (read-write or intend to write locks) on the pages being
accessed. Choosing this option makes the cursor read-only. This does not preclude use of action
queries to update the data independent of the cursor. This is the default LockType.

· Pessimistic Concurrency: This option requests an immediate exclusive lock on the cursor rows
which implements the lowest level of locking sufficient to ensure the row can be updated. Unlike
DAO, which defers locking until the Edit method is used, RDO locks the first RowsetSize rows of
the result set when the cursor is first opened with the OpenResultset method. That is, if your
RowsetSize is 100 rows, the remote engine is instructed to lock each page that contains one of
these selected rows. This means up to 100 pages can be locked – which can lock hundreds of
rows. As the current row pointer is moved through the result set, additional pages are locked, and
those no longer referenced are released. This technique assures your application that no other
application is granted exclusive (read-write) access to any rows being processed by the cursor.

· Optimistic Concurrency: This type of concurrency management does not lock any rows or pages
– it simply compares the row being posted to the database with the row as it currently exists on the
server. Depending on the type of optimistic concurrency chosen, RDO and the ODBC layers
compare either the row ID, the row data values, TimeStamp columns or combinations of these
options with existing data to determine if a row has changed since last fetched. If no changes have
taken place since the last fetch, the update is made. Otherwise, your application triggers a
trappable error.

The LockType property supports three types of optimistic concurrency as described below. When
using the Optimistic Batch Concurrency option (rdConcurBatch), you should also set the
UpdateCriteria property to choose an appropriate update concurrency option.

· Optimistic Concurrency – Row Version: By comparing the row identifier (usually a TimeStamp
column) , RDO can determine if the row has changed since last fetched. If it has, a trappable error
results.

· Optimistic Concurrency – Row Values: By comparing row values on a column-by-column basis,
RDO can determine if the row has changed since last fetched. If it has, a trappable error results.

· Optimistic Batch: This type of concurrency uses the UpdateCriteria property to determine how to
test if rows have changed when using the UpdateBatch method.

LockEdits Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproLockEditsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproLockEditsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproLockEditsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproLockEditsS"}

Returns a Boolean value indicating the type of locking that is in effect.

Syntax

object.LockEdits

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The return values for LockEdits are:

Setting Description

True Pessimistic locking is in effect.

False (Default) Optimistic locking is in
effect.

Remarks

If a page is locked and the data source uses page locking, no other user can edit rows on the same
page. If row-level locking is used, the row being edited and all other rows in the rowset are locked.
The rowset is defined as the number of rows specified by the RowsetSize property. If LockEdits is
True and another user already has the page locked, an error occurs when you use the
OpenResultset method. Generally, other users can read data from locked pages.

If LockEdits is False (the default) and you later use Update while the page is locked by another user,
an error occurs. To see the changes made to your row by another user (and lose your changes), set
the Bookmark property of your rdoResultset object to itself.

Note      Data page size is determined by the data source. Microsoft SQL Server uses 2K data pages.

LoginTimeout Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproLoginTimeoutC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproLoginTimeoutX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproLoginTimeoutA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproLoginTimeoutS"}

Returns or sets a value that specifies the number of seconds the ODBC driver manager waits before
a timeout error occurs when a connection is opened.

Syntax

object.LoginTimeout [= value]

The LoginTimeout property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A Long integer representing the
number of seconds the driver
manager waits before timing out and
returning an error.

Remarks

If value is 0, no timeout occurs and an error does not occur if a connection cannot be established. If
you are not using asynchronous connections, this might cause your application to block indefinitely.

When you're attempting to connect to an ODBC database, such as SQL Server, there may be delays
due to network traffic or heavy use of the ODBC data source. Rather than waiting indefinitely, you can
specify how long to wait before the ODBC driver manager produces an error.

The default timeout value is either 15 seconds or a value set by the rdoDefaultLoginTimeout
property. When used with an rdoEnvironment object, the LoginTimeout property specifies a global
value for all login operations associated with the rdoEnvironment. The LoginTimeout setting of on
an rdoConnection object overrides the default value.

If the specified timeout exceeds the maximum timeout in the data source, or is smaller than the
minimum timeout, the driver substitutes that value and the following error is logged in the rdoErrors
collection: SQLState 01S02 "Option value changed."

Typically, a connection to a remote server on a Local Area Network (LAN) takes under eight seconds
to complete. Remote Access Service (RAS) or Internet connections can take far longer depending on
Wide Area Network bandwidth, load and other factors.

LogMessages Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproLogmessagesC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproLogmessagesX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproLogmessagesA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproLogmessagesS"}

Enables ODBC trace logging and returns or sets a value indicating the path of the ODBC trace file
created by the ODBC driver manager to record all ODBC operations.

Syntax

object.LogMessages [= value]

The LogMessages property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A String expression as described in
Settings.

Settings

Value contains the path of an ASCII file used to log ODBC operations. If the LogMessages property
is an empty string, no logging takes place.

Remarks

When the LogMessages property is True, all ODBC commands are sent to an ASCII log file that can
be used to debug or tune queries or other operations.

On Windows NT or Windows 95, tracing should only be used for a single application or each
application should specify a different trace file. Otherwise, two or more applications might attempt to
open the same trace file at the same time, causing an error.

Note      ODBC performance is adversely affected when the log is enabled.

MaxRows Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproMaxrowsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproMaxrowsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproMaxrowsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproMaxrowsS"}

Returns or sets a value indicating the maximum number of rows to be returned from a query or
processed in an action query.

Syntax

object.MaxRows [= value]

The MaxRows property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Long expression as described in Settings.

Settings

The setting for value ranges from 0 to any number. If value is set to 0, no limit is placed on the
number of rows returned (default). Setting value to a negative number is invalid and is automatically
reset to 0.

Remarks

The MaxRows property limits the number of rows processed by the remote server. When MaxRows
is set to a value greater than 0, only 'n' rows are processed. When executing a query that returns
rows, it means that only the first 'n' rows are returned. When executing an action query, it means that
only the first 'n' rows are updated, inserted or deleted.

This property is useful in situations where limited resources prohibit management of large numbers of
result set rows. By setting MaxRows to 1 on an action query, you can be assured that no more than
one row will be affected by the operation.

Name Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproNameC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproNameX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdproNameA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproNameS"}

Returns the name of a RemoteData object.

Syntax

object.Name

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Name property returns a string expression that represents the name assigned to the object. The
following table describes how each object is assigned its name.

Assigning the Name Property for Remote Data Objects

Remote Data Object Name property is determined by …

rdoEnvironments(0) rdoEngine — Set to "Default_Environment."

rdoEnvironments(1-
n)

name argument of rdoCreateEnvironment.

rdoConnection Data source name (DSN) used for connection.

rdoResultset First 256 characters of the SQL query.

rdoQuery name argument in CreateQuery method or set
directly for stand-alone rdoQuery objects.

rdoTable Database table name once the rdoTables collection
is populated.

rdoParameter "Paramn" where "n" is the ordinal number.

rdoColumn Database column name.

rdoError Not applicable. rdoErrors collection members can
only be referenced by their ordinal number.

Remarks

rdoTable and rdoQuery objects can't share the same name. In other words, you cannot create two
rdoQuery objects that have the same name.

Use the Name property to reference members of a collection in code, but in most cases, it is easier to
simply use the ordinal number. Generally, you can use the Name property to map database table and
column names.

Name Property Example (RDO)

The following example illustrates use of the Name property to expose the names of all tables
associated with a chosen database, the names of each column for the selected table, and specific
type information about a selected column. This application uses three Listbox controls and a
Command button control.

Option Explicit
Dim en As rdoEnvironment
Dim cn As rdoConnection
Dim rs As rdoResultset
Dim tb As rdoTable
Dim cl As rdoColumn
Dim er As rdoError

Private Sub Command1_Click()
Set en = rdoEngine.rdoEnvironments(0)

Set cn = en.OpenConnection(dsName:="WorkDB", _
 prompt:=rdDriverNoPrompt, _
 Connect:="Uid=;pwd=;database=Pubs")

For Each tb In cn.rdoTables
 List1.AddItem tb.Name
Next
List1.ListIndex = 1
End Sub

Private Sub List1_Click()
List3.Enabled = False
List2.Clear
For Each cl In cn.rdoTables((List1)).rdoColumns
 List2.AddItem cl.Name
Next
List3.Enabled = True
End Sub

Private Sub List2_Click()
List3.Clear
With cn.rdoTables((List1)).rdoColumns((List2))
 List3.AddItem "Source Column:" & .SourceColumn
 List3.AddItem "Source Table:" & .SourceTable
 List3.AddItem "Type:" & .Type
 List3.AddItem "Size:" & .Size
 List3.AddItem "Ordinal Position:" _

& .OrdinalPosition
 List3.AddItem "Allow Zero Length ?" _

 & .AllowZeroLength
 List3.AddItem "Required:" & .Required
 List3.AddItem "Chunk Required?:" & .ChunkRequired
 List3.AddItem "Updatable?:" & .Updatable
End With
End Sub

Number Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproNumberC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproNumberX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproNumberA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproNumberS"}

Returns a numeric value specifying a native error.

Syntax

object.Number

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The return value is a Long integer representing an error number.

Remarks

Use the Number property to determine the nature of an error that occurred on the remote server or in
the ODBC interface with the data source. The value of the property corresponds to a unique number
that corresponds to an error condition generated by a stored procedure, a syntax or other procedural
error, a permissions or rule violation or some other type of error. This native number can also be
generated by a remote procedure executing a statement such as SQL Server's RAISERROR
statement.

Note      The SQL Server error severity level is not returned by the ODBC driver, and is therefore
unavailable.

Error Description and Number Properties Example

The following code opens a read-only ODBC cursor connection against the SQL Server "SEQUEL"
and includes a simple error handler that displays the error description and number.

Sub MakeConnection()
Dim rdoCn As New rdoConnection
On Error GoTo CnEh
With rdoCn
 .Connect = "UID=;PWD=;Database=WorkDB;" _
 & "Server=SEQUEL;Driver={SQL Server}" _
 & "DSN='';"
 .LoginTimeout = 5

 .CursorDriver = rdUseODBC
 .EstablishConnection rdDriverNoPrompt, True
End With
AbandonCn:
Exit Sub

CnEh:
Dim er As rdoError
Dim msg as string
 Msg = "An error occured " _

 & "while opening the connection:" _
 & Err & " - " & Error & VbCr

 For Each er In rdoErrors
 Msg = Msg & er.Description _

& ":" & er.Number & VbCr
 Next er
 Resume AbandonCn
End Sub

Options Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproOptionsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproOptionsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproOptionsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproOptionsS"}

Returns or sets a value that specifies one or more operational characteristics of the RemoteData
control.

Syntax

object.Options [= value]

The Options property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A constant or Integer as described in
Settings.

Settings

Use the following values to set the Options property for the RemoteData control:

Constant Value Description

rdAsyncEnable 32 Execute the query
asynchronously.

rdExecDirect 64 Use the ODBC
SQLExecDirect API
function to execute
query.

Remarks

This property corresponds to the options argument in the OpenResultset and Execute methods. If
you change the Options property at run time, you must use the Refresh method for the change to
have any effect.

Enable Asynchronous Operations

Asynchronous operations permit RemoteData objects to work in the background on operations like
creating result sets or executing procedures while your foreground code continues to work.

Whenever you use the OpenResultset, Execute, Move or MoreResults methods with the
rdAsyncEnable option, control returns immediately to your application — before the operation is
completed by RDO. If required, RDO periodically checks the data source to see if the operation is
complete. You can adjust the frequency of this polling by setting the AsyncCheckInterval property.
To see if your operation has completed, check the StillExecuting property which remains True until
RDO completes the operation. To cancel the operation, use the rdoResultset object's Cancel
method. In addition, when queries are complete, RDO fires the QueryComplete event to indicate that
the rdoResultset is ready to access.

Enable Use of SQLExecDirect

If you use the rdExecDirect option, RDO uses the SQLExecDirect ODBC API function to execute
the query. In this case, no temporary stored procedure is created to execute the query. This option
can save time if you don't expect to execute the query more than a few times in the course of your
application. In addition, when working with queries that should not be run as stored procedures but

executed directly, this option is mandatory. For example, in queries that create temporary tables for
use by subsequent queries, you must use the rdExecDirect option.

OrdinalPosition Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproOrdinalPositionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproOrdinalPositionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproOrdinalPositionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproOrdinalPositionS"}

Returns the relative position of an rdoColumn object within the rdoColumns collection.

Syntax

object.OrdinalPosition

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The OrdinalPosition property return value is an Integer expression as described in Remarks.

Remarks

Each of these data columns in an rdoResultset is returned in the order specified by the query and
are numbered starting at one. Because of this numbering scheme, the first column of an
rdoResultset (rdoResultset(0)) has an OrdinalPosition of 1.

OrdinalPosition Property Example

This example illustrates how columns are numbered with the OrdinalPosition property.

Private Sub ShowOrdinals()
Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim er As rdoError

On Error GoTo EH
With cn
 .Connect = "uid=;pwd=;server=SEQUEL;" _
 & "driver={SQL Server};database=pubs;" _
 & "DSN='';"
 .CursorDriver = rdUseNone

 .EstablishConnection rdDriverNoPrompt
 Set rs = cn.OpenResultset(_

"select * from titles where Price < 50")
 For Each cl In rs.rdoColumns
 Debug.Print cl.OrdinalPosition, _

cl.Name, cl.Value
 Next
End With
Exit Sub
EH:
 For Each er In rdoErrors
 Debug.Print er.Description
 Next er
 Resume Next
End Sub

Password Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproPasswordC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproPasswordX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproPasswordA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproPasswordS"}

Represents the password used during creation of an rdoEnvironment object.

Syntax

object.Password

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Remarks

The rdoDefaultPassword property of the rdoEngine object is used as a default if no password is
provided. The initial default password is "".

This property setting is write-only — it may only be provided in code, it cannot be read back from the
Password property.

The password is set:

· When the rdoEnvironment is created automatically by the RemoteData control.

· By the first reference to a RemoteData object.

· When the rdoCreateEnvironment method is executed.

· In the connect string via the Connect property or the Connect argument of the OpenConnection
method.

PercentPosition Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproPercentPositionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproPercentPositionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproPercentPositionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproPercentPositionS"}

Returns or sets a value that indicates or changes the approximate location of the current row in the
rdoResultset object based on a percentage of the rows in the rdoResultset.

Syntax

object.PercentPosition [= value]

The PercentPosition property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A number between 0.0 and 100.00. (Data type is
Single)

Remarks

To indicate or change the approximate position of the current row in an rdoResultset, you can check
or set the PercentPosition property. Before you set or check the PercentPosition property, populate
the rdoResultset by moving to the last row. If you use the PercentPosition property before fully
populating the rdoResultset, the amount of movement is relative to the number of rows accessed —
as indicated by the RowCount property. You can move to the last row and populate the rdoResultset
using the MoveLast method.

Note      Using the PercentPosition property to move the current row to a specific row in an
rdoResultset isn't recommended — the Bookmark property or AbsolutePosition property is better
suited for this task.

Once you set the PercentPosition property to a value, the row at the approximate position
corresponding to that value becomes current, and the PercentPosition property is reset to a value
that reflects the approximate position of the current row. For example, if your rdoResultset contains
only five rows, and you set its PercentPosition value to 77, the value returned from the
PercentPosition property might be 80, not 77.

You can use the PercentPosition property with a scroll bar on a Form or TextBox to indicate the
location of the current row in an rdoResultset.

The PercentPosition property is not supported by all cursor types and driver combinations. For
example, this property applies only to keyset-type and dynamic-type rdoResultset objects. If the
setting is not supported, the PercentPosition property returns 50. If the position cannot be set, no
movement occurs.

PercentPosition Property Example

This example illustrates use of the PercentPosition property. In this example a list of publishers is
generated and when one of these is chosen, a list of associated titles is displayed in a DBGrid
control. When the scroll bar associated with the grid is manipulated, the relative location of the
selected row is determined by examining the PercentPosition property and displayed. See the
AbsolutePosition property example for further details on this example.

Dim rs As rdoResultset

Private Sub Form_Load()
Dim Li As Integer
'
' Fill Sections list combo box.
'
Set en = rdoEnvironments(0)
Set cn = en.OpenConnection(dsName:="", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="uid=;pwd=;driver={SQL Server};" _
 & "server=BETAV486;database=pubs;")

MsRdc1.Connect = cn.Connect

Set rs = cn.OpenResultset _
 ("Select distinct Pub_Name, Pub_ID from Publishers", rdOpenStatic,
rdConcurReadOnly)
Do Until rs.EOF
 If rs(0) = Null Then
 Else
 PubList.AddItem " " & rs!Pub_ID & ":" & rs!Pub_Name
 End If
 rs.MoveNext
Loop
PubList.ListIndex = 1
rs.Close

Publist_Click

End Sub

Private Sub MoveCRow_Change()
MoveCRow_Scroll
End Sub

Private Sub MoveCRow_Scroll()
PercentPoint = MoveCRow.Value & "%"
MsRdc1.Resultset.PercentPosition = MoveCRow.Value
End Sub

Private Sub Publist_Click()
SetSQL
If MsRdc1.Resultset.EOF Then
 MoveCRow.Enabled = False
Else
 MoveCRow.Enabled = True

 MsRdc1.Resultset.MoveFirst
End If
End Sub

Sub SetSQL()
Dim PubWanted As String
PubWanted = Trim(Left(PubList, InStr(PubList, ":") - 1))
Screen.MousePointer = vbHourglass

MsRdc1.SQL = "select * from Titles" _
 & " where Pub_ID = '" _
 & PubWanted & "'" _
 & " order by Title"
MsRdc1.Refresh
Screen.MousePointer = vbDefault
End Sub

Prompt Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproPromptC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproPromptX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproPromptA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproPromptS"}

Returns or sets a value that specifies if the ODBC driver manager should prompt for missing connect
string arguments.

Syntax

object.Prompt [= value]

The Prompt property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A constant or Integer as described in Settings.

Settings

The settings for the Prompt property are:

Constant Value Description

rdDriverPrompt 0 The driver manager displays the
ODBC Data Sources dialog box. The
connection string used to establish
the connection is constructed from the
data source name (DSN) selected
and completed by the user via the
dialog boxes. Or, if no DSN is chosen
and the DataSourceName property is
empty, the default DSN is used.

rdDriverNoPrompt 1 The driver manager uses the
connection string provided in connect.
If sufficient information is not
provided, the OpenConnection
method returns a trappable error.

rdDriverComplete 2 If the connection string provided
includes the DSN keyword, the driver
manager uses the string as provided
in connect, otherwise it behaves as it
does when rdDriverPrompt is
specified.

rdDriverCompleteReq
uired

3 (Default) Behaves like
rdDriverComplete except the driver
disables the controls for any
information not required to complete
the connection.

Remarks

When RDO opens a connection based on the parameters of the RemoteData control, the Connect
property is expected to contain sufficient information to establish the connection. If information like the
data source name, user name, or password are not provided, the ODBC driver manager exposes one
or more dialog boxes to gather this information from the user. If you do not want these dialog boxes to

appear, set the Prompt property accordingly to disable this feature.

The constants shown above are also used to set the ODBC prompt behavior for the
EstablishConnection method.

QueryTimeout Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproQueryTimeoutC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproQueryTimeoutX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproQueryTimeoutA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproQueryTimeoutS"}

Returns or sets a value that specifies the number of seconds the ODBC driver manager waits before
a timeout error occurs when a query is executed.

Syntax

object.QueryTimeout [= value]

The QueryTimeout property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A Long integer representing the number of seconds
the driver manager waits before timing out and
returning an error.

Remarks

The default QueryTimeout property setting is 30 seconds. When you're accessing an ODBC data
source using the OpenResultset or Execute methods, there may be delays due to network traffic or
heavy use of the remote server – perhaps caused by your query. Rather than waiting indefinitely, use
the QueryTimeout property to determine how long your application should wait before the
QueryTimeout event is fired and your application trips a trappable error. At this point you have the
option to continue waiting for another 'n' seconds as determined by the QueryTimeout property, or
cancel the query in progress by using the Cancel argument in the QueryTimeout event procedure.

Setting this property to 0 disables the timer so your query will run indefinitely. Setting QueryTimeout
to 0 is not recommended for synchronous operations as your application can be blocked for the entire
duration of the query.

When used with an rdoConnection object, the QueryTimeout property specifies a global value for
all queries associated with the data source.

When you use an rdoQuery object, the rdoConnection object's QueryTimeout property is used as
a default value unless you specify a new value in the rdoQuery object's QueryTimeout property.

When working with asynchronous queries, the StillExecuting property remains True until the query
completes, or the query timeout period is exhausted.

If the specified timeout exceeds the maximum timeout permitted by the data source, or is smaller than
the minimum timeout, the driver substitutes that value and the following error is logged to the
rdoErrors collection: SQLState 01S02: "Option value changed."

QueryTimeout Property, QueryTimeout Event Example

The following example sets up the query event handlers to deal with query timeout contingencies.
Notice that the QueryTimeout event procedure displays a message box that permits the user to
decide if they want to wait for an additional timeout period for the query. The ShowRows procedure
simply dumps the rows returned.

Option Explicit
Dim en As rdoEnvironment
Dim cn As New rdoConnection
Dim rs As rdoResultset
Dim SQL As String
Dim col As rdoColumn
Dim er As rdoError
Public WithEvents Qd As rdoQuery

Private Sub cn_QueryTimeout(_
ByVal Query As RDO.rdoQuery, Cancel As Boolean)

Dim ans As Integer
ans = MsgBox("Query Timed out... Press Retry to continue waiting", _
 vbRetryCancel + vbCritical, "Query Took Too Long")
If ans = vbRetry Then
 Cancel = False
Else
 Cancel = True
End If
End Sub

Private Sub RunQuery_Click()

On Error GoTo RunQueryEH

 Qd(0) = Param1
 Qd.QueryTimeout = 5
 Set rs = Qd.OpenResultset(rdOpenKeyset, _

 rdConcurReadOnly)

 If rs Is Nothing Then Else ShowRows

Exit Sub

RunQueryEH:
Debug.Print Err, Error$
 For Each er In rdoErrors
 Debug.Print er.Description, er.Number
 Next
 rdoErrors.Clear
 Resume Next

End Sub

Private Sub Form_Load()
Set en = rdoEngine.rdoEnvironments(0)
With cn
 .Connect = "uid=;pwd=;database=workdb;dsn=WorkDB;"
 .CursorDriver = rdUseClientBatch

 .EstablishConnection Prompt:=rdDriverNoPrompt
End With

Set Qd = cn.CreateQuery("LongQuery", "")
With Qd
 .SQL = "{call VeryLongStoredProcedure (?,?)}"
 .rdoParameters(1).Direction = rdParamOutput
 .rdoParameters(0).Type = rdTypeVARCHAR
End With

End Sub

BatchCollisionCount Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBatchCollisionCountC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBatchCollisionCountX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproBatchCollisionCountA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproBatchCollisionCountS"}

Returns a value that specifies the number of rows that did not complete the last batch-mode update.

Syntax

object.BatchCollisionCount

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The BatchCollisionCount property return value is a Long expression that specifies the number of
failing rows or 0 if all rows were processed.

Remarks

This property indicates how many rows encountered collisions or otherwise failed to update during the
last batch update attempt. The value of this property corresponds to the number of bookmarks in the
BatchCollisionRows array.

By setting the working rdoResultset object's Bookmark property to bookmark values in the
BatchCollisionRows array, you can position to each row that failed to complete the most recent
BatchUpdate operation.

After the collision rows are corrected, the BatchUpdate method can be called again. At this point
RDO attempts another batch update, and the BatchCollisionRows property again reflects the set of
rows that failed the second attempt. Any rows that succeeded in the previous attempt are not sent in
the current attempt, as they now have a Status of rdRowUnmodified. This process can continue as
long as collisions occur, or until you abandon the updates and close the result set.

BatchCollisionRows Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBatchCollisionRowsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBatchCollisionRowsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproBatchCollisionRowsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproBatchCollisionRowsS"}

Returns an array of bookmarks indicating the rows that generated collisions in the last batch update
operation.

Syntax

object.BatchCollisionRows

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The BatchCollisionRows property return value is a Variant(string) expression as described in
Remarks.

Remarks

This property contains an array of bookmarks to rows that encountered a collision during the last
invocation of the BatchUpdate method. The number of elements in the array is indicated by the
BatchCollisionCount property.

By setting the working rdoResultset object's Bookmark property to bookmark values in the
BatchCollisionRows array, you can position to each row that failed to complete the most recent
BatchUpdate operation.

After the collision rows are corrected, the BatchUpdate method can be called again. At this point
RDO attempts another batch update, and the BatchCollisionRows property again reflects the set of
rows that failed the second attempt. Any rows that succeeded in the previous attempt are not sent in
the current attempt, as they now have a Status of rdRowUnmodified. This process can continue as
long as collisions occur, or until you abandon the updates and close the result set.

This array is re-created each time the BatchUpdate method executes.

BatchConflictValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBatchConflictValueC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBatchConflictValueX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproBatchConflictValueA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproBatchConflictValueS"}

Returns a value currently in the database that is newer than the Value property as determined by an
optimistic batch update conflict.

Syntax

object.BatchConflictValue

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The BatchConflictValue property return value is a Variant(String) expression as described in
Remarks.

Remarks

This property contains the value of the column that is currently in the database on the server. During
an optimistic batch update, a collision may occur where a second client modified the same column
and row in between the time the first client fetched the data and the update attempt. When this
happens, the value that the second client set will be accessible through this property.

BatchSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproBatchSizeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproBatchSizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproBatchSizeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproBatchSizeS"}

Returns or sets a value that specifies the number of statements sent back to the server in each batch.

Syntax

object.BatchSize [= value]

The BatchSize property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A Long integer representing the number of statements
sent back to the server in each batch. The default
value is 15.

Remarks

This property determines the batch size used when sending statements to the server during an
optimistic batch update. The value of the property determines the number of statements sent to the
server in one command buffer. By default, 15 statements are sent to the server in each batch. This
property can be changed at any time. If a DBMS doesn’t support statement batching, you can set this
property to 1, causing each statement to be sent separately.

CursorType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproCursorTypeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproCursorTypeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproCursorTypeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproCursorTypeS"}

Returns or sets a value that specifies the default type of cursor to use when opening a result set from
the specified query.

Syntax

object.CursorType [= value]

The CursorType property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Long integer representing the type of cursor as
described by one of the following constants:

Constant Value rdoResultset type

rdOpenForwardOnly 0 (Default) Fixed set, non-scrolling.

rdOpenKeyset 1 Updatable, fixed set, scrollable query
result set cursor.

rdOpenDynamic 2 Updatable, dynamic set, scrollable
query result set cursor.

rdOpenStatic 3 Read-only, fixed set.

Remarks

Determines the cursor type to use when opening an rdoResultset object from this query.

When creating a stand-alone rdoQuery object whose query is to be used as a method, you should
set the CursorType before the query is executed because there is no option to do so when the query
is executed.

The value of the CursorType property is used as the Type argument of the OpenResultset method.

Not all cursor libraries support all types of cursors. For example, the ODBC client-side driver can only
support rdOpenStatic and rdOpenForwardOnly cursor types, while the SQL Server server-side
driver supports all four types. Generally, most drivers support forward-only and static cursors.

CursorType Property Example

Option Explicit
Dim er As rdoError
Dim cn As New rdoConnection
Dim qy As New rdoQuery
Dim rs As rdoResultset
Dim col As rdoColumn

Private Sub Form_Load()

cn.CursorDriver = rdUseClientBatch
cn.Connect = "uid=;pwd=;server=sequel;" _

& "driver={SQL Server};database=pubs;dsn='';"
cn.EstablishConnection

'
' Setup the query
'
With qy
 .Name = "ShowAuthor"
 .SQL = "Select * from Authors " _

& "where Au_LName = ? "
 .LockType = rdConcurReadOnly
 .CursorType = rdOpenForwardOnly
 .RowsetSize = 1
 Set .ActiveConnection = cn
End With

'
' Execute the Query by Name
' Pass in a parameter to the query
'
cn.ShowAuthor "White"
'
' Process the resulting rows
'

If cn.LastQueryResults is Nothing then
Else

Set rs = cn.LastQueryResult
For Each col In rs.rdoColumns

 Print col.Name,
Next
Print String(80, "-")

Do Until rs.EOF
 For Each col In rs.rdoColumns
 Print col,
 Next
 Print
 rs.MoveNext

Loop
End if

End Sub

KeyColumn Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproKeyColumnC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproKeyColumnX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproKeyColumnA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproKeyColumnS"}

Returns or sets a value that specifies if this column is part of the primary key.

Syntax

object.KeyColumn [= value]

The KeyColumn property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Boolean expression as described in Settings.

Settings

The KeyColumn property has these settings:

Setting Description

True If the column is part of the primary key.

False (Default) If the column is not part of the primary key.

Remarks

This property indicates if the column is part of the primary key for the result set. This property will be
read/write when using the client batch cursor library (CursorDriver property set to
rdUseClientBatch) and generates a trappable error when accessed using server-side cursors or
ODBC cursor library.

When using the client batch cursor library, you can set this property to indicate which columns make
up the primary key of the result set. This assists the cursor library when it builds the WHERE clauses
for the update or delete/insert statements during an optimistic batch update.

LastQueryResults Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproLastQueryResultsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproLastQueryResultsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproLastQueryResultsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproLastQueryResultsS"}

Returns a reference to the rdoResultset object generated by the last query – if any.

Syntax

object.LastQueryResults

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The LastQueryResults property return value is an object expression that specifies a valid
rdoResultset or Nothing if there is no result set available.

Remarks

This new property will contain a reference to the rdoResultset object generated by the last query
executed on this connection, if any. The necessity of this property comes from the Queries as
Methods feature, allowing the developer to call their queries and stored procedures as methods of the
parent connection object. Since stored procedures can pass back a return value as well as resultsets,
the developer needs this property in order to get a reference to the result set created during the last
query as method call. The developer would use this property as shown below:

Dim RetCode As Long
Dim rs as rdoResultset
RetCode = MyConnection.MyQuery(x,y,z)
Set rs = MyConnection.LastQueryResults

This property is set back to “Nothing” on the next query execution on the connection. This property
will be set for any query executed on the connection, even if the developer used the OpenResultset or
Execute methods instead of calling the query as a method of the connection object.

Prepared Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproPreparedC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproPreparedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproPreparedA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproPreparedS"}

Returns or sets a value that determines if the query should be prepared using the SQLPrepare or
SQLExecDirect ODBC API function.

Syntax

object.Prepared [= value]

The Prepared property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Boolean expression as described in Settings.

Settings

The Prepared property has these settings:

Setting Description

True The statement is prepared. (Default)

False The statement is not prepared.

Remarks

By default the Prepared property is True. However, you can set this property to False to prohibit
"preparation" of the query. In this case, the query is executed using the SQLExecDirect API.

When the ODBC interface submits a query to the remote server, it either submits the query directly to
the server, or creates a stored procedure to perform the operation. Creating a stored procedure can
slow down the initial operation, but increases performance of all subsequent references to the query.
However, some queries cannot be executed in the form of stored procedures. In these cases, you
must set the Prepare property to False.

Status Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproStatusC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproStatusA"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"rdproStatusX":1}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproStatusS"}

Returns or sets the status of a row.

This property indicates or sets the status of the current row.

Syntax

object.Status [= value]

The Status property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A Long integer representing the type
of cursor as described in Settings:

Settings

The Status property has these settings:

Constant Value Prepared Property Setting

rdRowUnmodified 0 (Default) The row has not been
modified or has been updated
successfully.

rdRowModified 1 The row has been modified and not
updated in the database.

rdRowNew 2 The row has been inserted with the
AddNew method, but not yet inserted
into the database.

rdRowDeleted 3 The row has been deleted, but not yet
deleted in the database.

 rdRowDBDeleted 4 The row has been deleted locally and
in the database.

Remarks

The value of this property indicates if and how this row will be involved in the next optimistic batch
update.

When you use the optimistic batch update cursor library and need to specify which rows are to be
updated in the next batch operation, you set the rdoResultset object's Status property. For example,
suppose you are working with an unbound Grid control filled with rows from a query. The user selects
one of the rows and you detect that a change has been made in the row. At this point you can mark
this row for updating by setting the Status property to rdRowModified. Similarly, if a row is added or
deleted, you can use the appropriate Status property setting to so indicate. When you use the
BatchUpdate method, RDO will submit an appropriate operation to the remote server for each row
based on its Status property.

Once the BatchUpdate operation is complete, you can examine the Status property of each row to
determine if the update is successful. If the Status value does not return rdRowUnmodified after the
BatchUpdate, the operation to update the row could not be completed. In this case you should check
the rdoErrors collection and the BatchCollisionRows property for rows.

UpdateCriteria Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproUpdateCriteriaC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproUpdateCriteriaA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproUpdateCriteriaX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproUpdateCriteriaS"}

Returns or sets a value that specifies how the WHERE clause is constructed for each row during an
optimistic batch update operation.

Syntax

object.UpdateCriteria [= value]

The UpdateCriteria property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A Long integer representing the type
of cursor as described in Settings

Settings

The UpdateCriteria property has these settings:

Constant Value rdoResultset type

rdCriteriaKey 0 (Default). Uses just the key column(s)
in the where clause.

rdCriteriaAllCols 1 Uses the key column(s) and all
updated columns in the where clause.

rdCriteriaUpdCols 2 Uses the key column(s) and all the
columns in the where clause.

rdCriteriaTimeStamp 3 Uses just the timestamp column if
available (will generate a runtime
error if no timestamp column is in the
result set).

Remarks

When a batch mode operation is executed, RDO and the ClientBatch cursor library create a series of
UPDATE statements to make the needed changes. An SQL WHERE clause is created for each
update to isolate the rows that are marked as changed (by the Status property). Because some
remote servers use triggers or other ways to enforce referential integrity, is it often important to limit
the columns being updated to just those affected by the change. This way, only the absolute minimum
amount of trigger code is executed. As a result, the update operation is executed more quickly, and
with fewer potential errors.

You should set the UpdateCriteria property to rdCriteriaKey when BLOB columns are included in
the result set.

Setting this property to a value other than the ones listed here results in a runtime error.

UpdateOperation Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproUpdateOperationC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"rdproUpdateOperationA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproUpdateOperationX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproUpdateOperationS"}

Returns or sets a value that specifies if the optimistic batch update should use an Update statement
or a Delete followed by an Insert.

Syntax

object.UpdateOperation [= value]

The UpdateOperation property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Long integer representing the type of cursor as
described in Settings:

Settings

The UpdateOperation property has these settings:

Constant Value UpdateOperation type

rdOperationUpdate 0 (Default) Uses an Update statement
for each modified row.

 rdOperationDelIns 1 Uses a pair of Delete and Insert
statements for each modified row.

Remarks

Setting the UpdateOperation property to a value other than the ones listed here results in a runtime
error.

This property determines whether the optimistic batch update cursor library uses an update
statement, or a pair of delete and insert statements when sending modifications back to the database
server. In the latter case, two separate operations are required to update the row. In some cases,
especially where the remote system implements Delete, Insert and Update triggers, choosing the
correct UpdateOperation property can significantly impact performance.

Newly added rows will always generate Insert statements and deleted rows will always generate
Delete statements, so this property only applies to how the cursor library updates modified rows.

OriginalValue Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproOriginalValueC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproOriginalValueX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproOriginalValueA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproOriginalValueS"}

Returns the value of the column as first fetched from the database.

Syntax

object.OriginalValue

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The OriginalValue property return value is a Variant value whose datatype is determined by the
datatype of the rdoColumn specified.

Remarks

When working with optimistic batch update operations, you might need to resolve update conflicts by
comparing the column values as originally returned by RDO with the value as supplied by the user.
The OriginalValue property provides this value as first fetched from the database.

rdoDefaultCursorDriver Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprordoDefaultcursordriverC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprordoDefaultCursorDriverX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdprordoDefaultcursordriverA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprordoDefaultCursorDriverS"}

Returns or sets the cursor library    used by the ODBC driver manager.

Syntax

object.rdoDefaultCursorDriver [= value]

The rdoDefaultCursorDriver property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value An Integer constant or value that specifies a type of
ODBC cursor as described in Settings.

Settings

The settings for value are:

Constant Value Description

rdUseIfNeeded 0 (Default)RDO chooses the style of
cursors most appropriate for the
driver. Server-side cursors are used if
they are available.

rdUseODBC 1 RDO    uses the ODBC cursor library.
This option gives better performance
for small result sets, but degrades
quickly for larger result sets.

rdUseServer 2 RDO uses server-side cursors. For
most large operations this gives better
performance, but might cause more
network traffic.

rdUseClientBatch 3 RDO uses the optimistic batch cursor
library as required by all batch mode
operations and dissociate
rdoResultset objects.

rdUseNone 4 RDO does not create a scrollable
cursor. Basically, this is a forward-
only, read-only resultset with a
RowsetSize set to 1. This type of
resultset performs faster than those
that require creation of a cursor.

Remarks

When server-side cursors are used, the database engine uses its own resources to store keyset
values. Data values are still transmitted over the network as with client-side cursors, but the impact on
local workstation memory and disk space is reduced.

For SQL Server, server-side cursors are not used if the cursor is read-only and forward-only.

rdoDefaultUser, rdoDefaultPassword Properties
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprordoDefaultrdoUserC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprordoDefaultrdoUserX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdprordoDefaultrdoUserA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprordoDefaultrdoUserS"}

· rdoDefaultUser — returns or sets the default user name assigned to any new rdoEnvironment.

· rdoDefaultPassword — returns or sets the default password assigned to any new
rdoEnvironment.

Syntax

object.rdoDefaultUser [= value]
object.rdoDefaultPassword [= value]

The syntax for the rdoDefaultUser and rdoDefaultPassword properties have these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A string expression that specifies either a user name
or password.

Remarks

Unless other values are supplied in the rdoCreateEnvironment method, the rdoDefaultUser and
rdoDefaultPassword properties determine the user name and password used when the
rdoEnvironment object is created. These properties can also return the name used when an
rdoEnvironment is created.

By default, the value for rdoDefaultUser and rdoDefaultPassword is "" (a zero-length string).

rdoDefaultErrorThreshold Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprordoDefaultErrorThresholdC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprordoDefaultErrorThresholdX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdprordoDefaultErrorThresholdA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprordoDefaultErrorThresholdS"}

Returns or sets a value that indicates the default value for the ErrorThreshold property for rdoQuery
objects.

Note      This property is provided for backward compatibility with RDO version 1.0 code. It should be
replaced with code that implements the rdoEngine object's InfoMessage event which provides
equivalent functionality.

Remarks

In version 4.x of Microsoft SQL Server, it is not possible to set the severity of errors using the
RAISERROR statement. As a result, the ErrorThreshold property was needed to permit your code to
filter those messages beyond a threshold of severity.

Version 6.x of Microsoft SQL Server now supports the inclusion of a severity level in the RAISERROR
statement so it is no longer necessary to use the ErrorThreshold property.

All errors that are returned with a severity of less than 10 are trapped by the ODBC layers and set the
SQL_SUCCESS_WITH_INFO result code. This causes RDO to raise the InfoMessage event but not
stop query processing.

rdoDefaultLoginTimeout Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprordoDefaultLoginTimeoutC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprordoDefaultLoginTimeoutX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdprordoDefaultLoginTimeoutA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprordoDefaultLoginTimeoutS"}

Returns or sets a default value that determines the number of seconds the ODBC driver waits before
abandoning an attempt to connect to a data source.

Syntax

object.rdoDefaultLoginTimeout [= value]

The rdoDefaultLoginTimeout property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Long expression that specifies the number of
seconds as described in Settings.

Settings

The setting for value is the number of seconds to wait for a login request to complete before returning
a trappable error or firing a QueryTimeout event. A setting of 0 indicates the timeout is disabled, and a
connection attempt will wait indefinitely — or until the connection is complete.

Remarks

The rdoDefaultLoginTimeout property is used as an application-wide default unless the
LoginTimeout property of the rdoEnvironment object is used to override this value.

Login requests are made when the RemoteData control creates an rdoConnection object, or when
you use the OpenConnection or EstablishConnection methods of the rdoEnvironment object. The
maximum value is dependent on the data source driver. The ODBC driver determines the maximum
permissible LoginTimeout value — any attempt to set a value higher than this value is reset to this
driver-dependent maximum value.

The default timeout value, if not specified, is 15 seconds.

When the timeout period is exhausted, the ConnectionTimeout event on the parent rdoEnvironment
object fires.

Note      When you use Data Access Objects (DAO), the LOGINTIMEOUT argument is used in the
Connect property, this is not a valid argument for ODBC connect strings. Use the
rdoDefaultLoginTimeout property instead.

rdoLocaleID Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproRdoLocaleIDC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproRdoLocaleIDX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproRdoLocaleIDA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproRdoLocaleIDS"}

Returns or sets a value indicating the locale of the RDO library.

Syntax

object.rdoLocaleID [= value]

The rdoLocaleID property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A constant or value that specifies a locale as
described in Settings.

Settings

The settings for value are:

Constant Value Description

rdLocaleSystem 0 System

rdLocaleEnglish 1 English

rdLocaleFrench 2 French

rdLocaleGerman 3 German

rdLocaleItalian 4 Italian

rdLocaleJapanese 5 Japanese

rdLocaleSpanish 6 Spanish

rdLocaleChinese 7 Chinese

rdLocaleSimplifiedChinese 8 Simplified Chinese

rdLocaleKorean 9 Korean

Remarks

The locale determines which language is used when generating RDO error messages. The
rdoLocaleID defaults to the Windows system locale when the rdoEngine is initialized.

You can override the current locale at any time by setting the rdoLocaleID to any of the supported
values. If you use an unsupported value, a trappable error occurs.

When the rdoLocaleID property is set or changed, RDO loads the appropriate language dynamic-link
library (DLL) to show error messages in the correct language.

If the specified language DLL is not present on the user's machine, RDO is set to rdLocaleEnglish,
which does not require a separate DLL. When this happens, an informational message is placed in
the rdoErrors collection indicating that RDO was unable to load the resource DLL for the specified
locale.

When you distribute your application, be sure to include the appropriate language DLL.

rdoVersion Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdprordoVersionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdprordoVersionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdprordoVersionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdprordoVersionS"}

Returns a value that indicates the version of the RDO library associated with the object.

Syntax

object.rdoVersion

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The rdoVersion property return value is a 5-character string expression.

Remarks

This property identifies the version of the database engine that created the connection. The version is
in the form #.#.####, where the first two digits are the major version number and the last two digits
are the minor version. For example, RDO version 2.0 returns 2.0.0000.

Resultset Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproResultSetC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproResultsetX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproResultSetA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproResultsetS"}

Returns or sets an rdoResultset object defined by a RemoteData control or as returned by the
OpenResultset method.

Syntax

Set object.Resultset [= value]

The Resultset property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value An object expression that evaluates
to an rdoResultset object as
described in Settings.

Settings

The setting for value is an rdoResultset object.

Remarks

The RemoteData control is automatically initialized when your application starts. If the SQL property
is valid, or if you set the SQL property at run time and use the Refresh method, the RemoteData
control attempts to create a new rdoResultset object. This rdoResultset is accessible through the
RemoteData control's Resultset property.

If you create an rdoResultset object using either RDO code or another RemoteData control, you can
set the Resultset property of the RemoteData control to this new rdoResultset. Any existing
rdoResultset in the RemoteData control, and the rdoConnection object associated with it, are
released when a new rdoResultset is assigned to the Resultset property.

You can also create an rdoResultset object using the OpenResultset method and setting the
Resultset property to the resulting rdoResultset object. However, the bound controls using the
RemoteData control must correctly specify the columns of the new rdoResultset. To do so, make
sure the DataField properties of the bound controls connected to the RemoteData control are set to
match the new rdoResultset object's column names.

Type of Result Set

You can also determine the type of rdoResultset cursor by examining or setting the RemoteData
control's ResultsetType property. If you don't request a specific type when using the RemoteData
control, a keyset-type rdoResultset is created. You can determine the type of rdoResultset at run
time by examining the rdoResultset object's Type property or the RemoteData control's
ResultsetType property.

The RemoteData control can create either keyset- or static-type rdoResultset objects when
accessing SQL Server 6. However, if the ODBC driver does not support keyset cursors, they cannot
be created — all drivers support static cursors. A trappable error is triggered if you set the
RemoteData control's Resultset property to an unsupported type of rdoResultset.

Note      When the Resultset property is set, the RemoteData control doesn't close the current
rdoResultset or rdoConnection, but it does release it. If there are no other users, the
rdoConnection is closed automatically. You may want to consider closing the rdoResultset and
rdoConnection associated with the RemoteData control before setting the Resultset property.

All rdoResultset objects created by the RemoteData control are built in rdoEnvironments(0). If you
need to use the RemoteData control to manipulate a database in another rdoEnvironment, use the
technique demonstrated in the example to open the rdoConnection in the desired rdoEnvironment,
create a new rdoResultset, and set the RemoteData control's Resultset property to this new
rdoResultset.

Resultset Property Example

The following example shows how to create an rdoResultset in code and pass it to an existing
RemoteData control:

Option Explicit
Dim qy As rdoQuery
Dim rs As rdoResultset
Dim cn As rdoConnection

Private Sub Form_Load()
Dim SQL As String
Set cn = MSRDC1.Connection

SQL = "{ call ChooseAuthor (?) }"
Set qy = cn.CreateQuery("GetAuthor", SQL)
End Sub

Private Sub Search_Click()
qy(0) = NameWanted.Text
Set MSRDC1.Resultset = qy.OpenResultset(_

rdOpenStatic, rdConcurReadOnly)

End Sub

The stored procedure executed by the query example is shown below:

CREATE PROCEDURE ChooseAuthor (@authorwanted char(20)) as
select t.title from titles t, titleauthor ta, authors a
where t.title_id = ta.title_id
and ta.au_id = a.au_id
and a.au_lname = @authorWanted

ResultsetType Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproResultsetTypeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproResultsetTypeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproResultsetTypeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproResultsetTypeS"}

Returns or sets a value indicating the type of rdoResultset cursor created or to create.

Syntax

object.ResultsetType [= value]

The ResultsetType property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A constant or value that specifies a
type of rdoResultset, as described in
Settings.

Settings

The settings for value are:

Constant Value Description

rdOpenStatic 3 A static-type rdoResultset.

rdOpenKeyset 1 (Default)A keyset-type rdoResultset.

Remarks

Not all drivers support all types of cursors. For example, SQL Server 6 supports both static and
keyset cursors, but SQL Server 4.2 only supports static cursors. If the ODBC driver does not support
keyset cursors, they cannot be created by RDO or the RemoteData control. If the RemoteData
control can't create the type of rdoResultset cursor requested, RDO builds one of the types that can
be created and returns the cursor type in the ResultsetType property.

If you don't specify a ResultsetType before the RemoteData control creates the rdoResultset, a
keyset type rdoResultset is created.

If you create an rdoResultset and set the Resultset property with this new object, the
ResultsetType property of the RemoteData control is set to the Type property of the new
rdoResultset.

ReadOnly Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdProReadOnlyC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproReadOnlyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdProReadOnlyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproReadOnlyS"}

Returns or sets a value that determines whether the control's rdoConnection is opened for read-only
access.

Syntax

object.ReadOnly [= value]

The ReadOnly property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A Boolean expression that determines read/write
access, as described in Settings.

Settings

The settings for value are:

Setting Description

True The RemoteData control's rdoConnection object is
opened with read-only access. Changes to data aren't
allowed.

False (Default) The RemoteData control's rdoConnection
is opened with read/write access to data.

Remarks

Use the ReadOnly property with a RemoteData control to specify whether data in the underlying
rdoConnection can be changed. For example, you might create an application that only displays
data. Accessing a read-only rdoConnection might be faster.

Even if the ReadOnly property is False, a user might not have write access to a database because
the user does not have permission or the type of rdoResultset in use does not support updates.

This property corresponds to the OpenConnection method's readonly argument.

Required Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproRequiredC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproRequiredX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproRequiredA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproRequiredS"}

Returns a value that indicates whether an rdoColumn requires a non-Null value.

Syntax

object.Required

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The return values for the Required property are:

Value Description

True A Null value isn't allowed.

False A Null value is allowed.

Remarks

For an rdoColumn object, you can use the Required property along with the AllowZeroLength
property to determine the validity of the Value property setting for that rdoColumn object. If Required
is set to False, the column can contain Null values as well as values that meet the conditions
specified by the AllowZeroLength property setting.

Restartable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproRestartableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproRestartableX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproRestartableA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproRestartableS"}

Returns a value that indicates whether an rdoResultset object supports the Requery method, which
re-executes the query the rdoResultset is based on.

Syntax

object.Restartable

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Restartable property return values are:

Value Description

True The rdoResultset object supports
the Requery method.

False The rdoResultset object doesn't
support the Requery method.

Remarks

Check the Restartable property before using the Requery method on an rdoResultset. If the
object's Restartable property is set to False, use the OpenResultset method on the underlying
rdoQuery to re-execute the query.

You can use the Requery method to update an rdoResultset object's underlying parameter query
after the parameter values have been changed.

If the rdoQuery does not contain parameters, the Restartable property is always True.

RowCount Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproRowCountC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproRowCountX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproRowCountA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproRowCountS"}

Returns the number of rows accessed in an rdoResultset object.

Syntax

object.RowCount

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The RowCount property return value is a Long integer as discussed in Remarks.

Remarks

Use the RowCount property to find out how many rows in an rdoResultset object have been
accessed, or if the rdoResultset returned any rows at all. RowCount doesn't indicate how many
rows will be returned by an rdoResultset query until all rows have been accessed. After all rows
have been accessed, the RowCount property reflects the total number of rows in the rdoResultset.

Referencing the RowCount property causes RDO to fully-populate the result set — just as if you had
executed a MoveLast method.

Depending on the driver and data source, the RowCount property might return either -1 to indicate
that the number of rows is not available, or 0 to indicate that no rows were returned by the
rdoResultset. If the driver is capable of returning a row count, the RowCount property returns the
number of rows in the rdoResultset.

Using the Requery method on an rdoResultset resets the RowCount property, just as it does when
a query is run for the first time.

RowCount Property Example

This example illustrates use of the RowCount property to determine if any rows resulted from the
query and how many rows have been processed after each MoveNext method is executed and how
many rows are in the result set once all rows are processed.

Option Explicit
Dim ps As rdoPreparedStatement
Dim rs As rdoResultset
Dim cn As rdoConnection

Private Sub Form_Load()
Dim SQL As String
Set cn = MSRDC1.Connection

SQL = "{call ChooseAuthor (?)}"
Set ps = cn.CreatePreparedStatement("GetAuthor", SQL)
End Sub

Private Sub Search_Click()
ps(0) = NameWanted.Text
Set MSRDC1.Resultset = ps.OpenResultset(_

rdOpenKeyset, rdConcurReadOnly)
With MSRDC1.Resultset
 If .RowCount = 0 Then
 MsgBox "No titles by that author were found."
 NameWanted.SetFocus
 Else
 Do Until .EOF
 .MoveNext

TitlesFound = .RowCount ' How many so far
 Loop
 TitlesFound = .RowCount ' Total rows found
 End If
 .MoveFirst
End With
End Sub

RowsAffected Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproRowsAffectedC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproRowsAffectedX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproRowsAffectedA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproRowsAffectedS"}

Returns the number of rows affected by the most recently invoked Execute method.

Syntax

object.RowsAffected

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The RowsAffected property return value is a Long value ranging from 0 to the number of rows
affected by the most recently invoked Execute method on either an rdoConnection or rdoQuery
object.

Remarks

RowsAffected contains the number of rows deleted, updated, or inserted when running an action
query. When you use the Execute method to run an rdoQuery, the RowsAffected property setting is
the number of rows affected. For example, when you execute a query that deletes 50 rows from a
table, the RowsAffected property returns 50.

This property is especially useful when you need to determine how many rows were affected in an
action query with an ambiguous WHERE clause. For example, in a query that deletes all rows where
the Price column is greater than 10, the RowsAffected property would indicate how many rows
actually qualified and were deleted.

RowsAffected Property Example

This example illustrates use of the RowsAffected property to determine the number of rows changed
by an ambiguous update statement. In this case we do not know how many authors live in Salt Lake
City, but once the update takes place, we can determine how many rows were updated by checking
the RowsAffected property of the rdoQuery object.

Option Explicit
Dim SQL As String
Dim cn as rdoConnection
Dim qd as rdoQuery

Private Sub Form_Load()
Set cn = rdoEnvironments(0).OpenConnection(_
 dsname:="WorkDB", _
 Prompt:=rdDriverNoPrompt, _
 Connect:="uid=;pwd=;database=pubs")

SQL = "Update Authors Set Zip = ?" _
 & " Where City = ?"
Set qd = cn.CreateQuery("FixZip", SQL)
End Sub

Private Sub UpdateButton_Click()
qd(0) = NewZip ' From a TextBox
qd(1) = CityToFind' From a TextBox
ps.Execute
NumberChanged = qd.RowsAffected
End Sub

RowsetSize Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproRowsetsizeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproRowsetsizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproRowsetsizeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproRowsetsizeS"}

Returns or sets a value that determines the number of rows in an rdoResultset cursor.

Syntax

object.RowsetSize [= value]

The RowsetSize property syntax has these parts:

Part Description

object An object expression that evaluates to an object in the
Applies To list.

value A value that specifies the size of the rowset as
described in Settings. (Data type is a Long
expression.)

Settings

The upper limit of the RowsetSize is determined by the data source driver. The lower limit for value is
1, and the default value is 100.

Remarks

The RowsetSize property determines how many rows of the keyset are buffered by the application.
RDO uses the RowsetSize property to determine how many rows are read into memory with the
ODBC SQLExtendedFetch function. Tuning the size of RowsetSize can affect performance and the
amount of memory required to maintain the keyset buffer.

This property must be set before creating an rdoResultset object.

Impact on Pessimistic Cursors

In addition, the RowsetSize property determines how many rows (and data pages) are locked when
using Pessimistic (rdConcurLock) concurrency. For example, if you set the RowsetSize property to
100 and execute an rdoQuery object with the rdConcurLock option, the first 100 rows of the result set
and every page associated with each row is locked until the cursor is closed or you move the current
row pointer toward the end of the result set. In any case, at least RowsetSize rows are locked.

Size Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproSizeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproSizeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdproSizeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproSizeS"}

Returns a value that indicates the maximum size, in bytes, of the underlying data of an rdoColumn
object that contains text or the fixed size of an rdoColumn object that contains text or numeric
values.

Syntax

object.Size

The object placeholder is an object expression that evaluates to an object in the Applies To list.

Return Values

The Size property return value is a Long value. The value depends on the Type property setting of
the rdoColumn object, as discussed in Remarks.

Remarks

For columns that return character values, the Size property indicates the maximum number of
characters that the data source column can hold. For numeric columns, the Size property indicates
how many bytes of data source storage are required for the column data. This value depends on the
data source implementation.

For data source columns that require the use of GetChunk and AppendChunk methods, the Size
property is always 0 — you can use the ColumnSize method to return correct size information. The
maximum size of a chunk-type column is limited only by your system resources or the maximum size
of the database.

Source Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproSourceC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproSourceX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproSourceA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproSourceS"}

Returns a value that indicates the source of a remote data access error.

Syntax

object.Source

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Source property return value is a string expression as described in Remarks.

Remarks

When an error occurs during an ODBC operation, an rdoError object is appended to the rdoErrors
collection. If the error occurred within RDO, the return value begins with "MSRDO20". The object
class that caused the error might also be appended to the value of the Source property.

SourceColumn Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproSourceColumnSourceTableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproSourceColumnSourceTableX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproSourceColumnSourceTableA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"rdproSourceColumnSourceTableS"}

The SourceColumn property returns a value that indicates the name of the column that is the original
source of the data for an rdoColumn object.

This property is not available at design time and is read-only at run time.

Syntax

object.SourceColumn

The object placeholder is an object expression that evaluates to an object in the Applies To list.

Return Values

The SourceColumn property returns a string expression that specifies the name of the column that is
the source of data.

Remarks

This property indicates the original column name associated with an rdoColumn object. For example,
you could use this property to determine the original source of the data in a query column whose
name is unrelated to the name of the column in the underlying table.

For columns in rdoResultset objects, the SourceColumn and SourceTable properties return the
column name and table name of the base table or the columns and table(s) used to define the query.

SourceTable Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproSourceTableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproSourceTableX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproSourceTableA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproSourceTableS"}

SourceTable returns a value that indicates the name of the table that is the original source of the
data for an rdoColumn object.

This property is not available at design time and is read-only at run time.

Syntax

object.SourceTable

The object placeholder is an object expression that evaluates to an object in the Applies To list.

Return Values

The SourceTable property returns a string expression that specifies the name of the table that is the
source of data.

Remarks

This property indicates the original table name associated with an rdoColumn object. For example,
you could use these properties to determine the original source of the data in a query column whose
name is unrelated to the name of the column in the underlying table.

For columns in rdoResultset objects, the SourceColumn and SourceTable properties return the
column name and table name of the base table or the columns and table(s) used to define the query.

SQL Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproSQLC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproSQLX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdproSQLA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproSQLS"}

Returns or sets the SQL statement that defines the query executed by an rdoQuery object or a
RemoteData control.

Syntax

object.SQL [= value]

The SQL property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A string expression that contains a
value as described in Settings. (Data
type is String.)

Settings

The settings for value are:

Setting Description

A valid SQL statement An SQL query using syntax
appropriate for the data source.

A stored procedure The name of a stored procedure
supported by the data source
preceded with the keyword "Execute".

An rdoQuery The name of one of the rdoQuery
objects in the rdoConnection
object's rdoQueries collection.

An rdoResultset The name of one of the rdoResultset
objects in the rdoConnection
object's rdoResultsets collection.

A table name The name of one of the populated
rdoTable objects defined in the
rdoConnection object's rdoTables
collection.

Remarks

The SQL property contains the structured query language statement that determines how rows are
selected, grouped, and ordered when you execute a query. You can use a query to select rows to
include in an rdoResultset object. You can also define action queries to modify data without returning
rows.

You cannot provide a table name at design time for the SQL property. However, you can either use a
simple query like SELECT * FROM <table>, or at runtime, populate the rdoTables collection and use
one of the table names returned in the collection. The rdoTables collection is populated as soon as it
is associated with an active connection and referenced.

The SQL syntax used in a query must conform to the SQL dialect as defined by the data source query
processor. The SQL dialect supported by the ODBC interface is defined by the X/Open standard.
Generally, a driver scans an SQL statement looking for specific escape sequences that are used to

identify non-standard operands like timestamp literals and functions.

When you need to return rows from a query, you generally provide a SELECT statement in the SQL
property. The SELECT statement specifies:

· The name of each column to return or "*" to indicate all columns of the specified tables are to be
returned. Ambiguous column names must be addressed to include the table name as needed. You
can also specify aggregate expressions to perform arithmetic or other functions on the columns
selected.

· The name of each table that is to be searched for the information requested. If you specify more
than one table, you must provide a WHERE clause to indicate which column(s) are used to cross-
reference the information in the tables. Generally, these columns have the same name and
meaning. For example the CustomerID column in the Customers table and the Orders table might
be referenced.

· (Optionally) a WHERE clause to specify how to join the tables specified and how to limit or filter the
number and types of rows returned. You can use parameters in the WHERE clause to specify
different sets of information from query to query.

· (Optionally) other clauses such as ORDER BY to set a particular order for the rows or GROUP BY
to structure the rows in related sets.

Each SQL dialect supports different syntax and different ancillary clauses. See the documentation
provided with your remote server for more details.

Specifying Parameters

If the SQL statement includes question mark parameter markers (?) for the query, you must provide
these parameters before you execute the query. Until you reset the parameters, the same parameter
values are applied each time you execute the query. To use the rdoParameters collection to manage
SQL query parameters, you must include the "?" parameter marker in the SQL statement. Input,
output, input/output and return value parameters must all be identified in this manner. In some cases,
you must use the Direction property to indicate how the parameter will be used.

Note      When executing stored procedures that do not require parameters, do not include the
parenthesis in the SQL statement. For example, to execute the "MySP" procedure use the following
syntax: {Call MySP }.

Note      When using Microsoft SQL Server 6 as a data source, the ODBC driver automatically sets the
Direction property. You also do not need to set the Direction property for input parameters, as this is
the default setting.

If the user changes the parameter value, you can re-apply the parameter value and re-execute the
query by using the Requery method against the rdoResultset (MyRs).

Cpw(0) = Text1.Text
MyRs.Requery

You can also specify parameters in any SQL statement by concatenating the parameters to the SQL
statement string. For example, to submit a query using this technique, you can use the following
code:

QSQL$ = "SELECT * FROM Authors WHERE Au_Lname = '" _
 & Text.Text & "'"
Set CPw = cn.CreateQuery("",QSQL$)
Set MyRs = Cpw.OpenResultSet()

In this case, the rdoParameters collection is not created and cannot be referenced. To change the
query parameter, you must rebuild the SQL statement with the new parameter value each time the
query is executed, or before you use the Requery method.

The SQL statement may include an ORDER BY clause to change the order of the rows returned by
the rdoResultset or a WHERE clause to filter the rows.

Note      You can't use the rdoTable object names until the rdoTables collection is referenced. When
your code references the rdoTables collection by enumerating one or more of its members, RDO
queries the data source for table meta data. This results in population of the rdoTables collection.
This means that you cannot simply provide a table name for the value argument without first
enumerating the rdoTables collection.

RemoteData Control

When used with the RemoteData control, the SQL property specifies the source of the data rows
accessible through bound controls on your form.

If you set the SQL property to an SQL statement that returns rows or to the name of an existing
rdoQuery, all columns returned by the rdoResultset are visible to the bound controls associated with
the RemoteData control.

After changing the value of the SQL property at run time, you must use the Refresh method to
activate the change.

Note      Whenever your rdoQuery or SQL statement returns a value from an expression, the column
name of the expression is determined by the wording of the SQL query. In most cases you'll want to
alias expressions so you know the name of the column to bind to the bound control.

Make sure each bound control has a valid setting for its DataField property. If you change the setting
of a RemoteData control's SQL property and then use Refresh, the rdoResultset identifies the new
object. This may invalidate the DataField settings of bound controls and cause a trappable error.

SQL Property Example

For example, to execute a procedure that accepts two input parameters and returns a return value
and an output parameter, you can use the following code. The example creates an rdoQuery object
whose SQL property is set to the string specified by QSQL$. This query calls a stored procedure that
returns a return status, and an output argument as well as accepting two input arguments.

Dim Cqy as new rdoQuery
Dim MyRs as rdoResultset
Cqy.SQL = "{ ? = call sp_MyProc (?, ?, ?) }"
Cqy(0).Direction = rdReturnValue
Cqy(1).Direction = rdParamInput
Cqy(2).Direction = rdParamInput
Cqy(3).Direction = rdParamOutput
Cqy(1) = "Victoria"
Cqy(0) = 21
Set MyRs = Cqy.OpenResultSet(rdOpenForwardOnly)

SQLRetCode Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproSqlretcodeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproSqlretcodeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproSqlretcodeA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproSqlretcodeS"}

Returns the ODBC error return code from the most recent RDO operation.

Syntax

object.SQLRetCode

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The SQLRetCode property return value is a Long value that corresponds to one of the following
constants:

Constant Value Description

rdSQLSuccess 0 The operation is successful.

rdSQLSuccessWithInfo 1 The operation is successful, and
additional information is available.

rdSQLNoDataFound 100 No additional data is available.

rdSQLError -1 An error occurred performing the
operation.

rdSQLInvalidHandle -2 The handle supplied is invalid.

SQLState Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproSqlstateC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproSqlstateX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproSqlstateA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproSqlstateS"}

Returns a value corresponding to the type of error as defined by the X/Open and SQL Access Group
SQL.

Syntax

object.SQLState

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The SQLState return value is a five-character string expression, as described in Remarks.

Remarks

When an RDO operation returns an error, or completes an operation, the SQLState property of the
rdoError object is set. If the error is not caused by ODBC or if no SQLState is available, the
SQLState property returns an empty string.

The character string value returned by the SQLState property consists of a two-character class value
followed by a three-character subclass value. A class value of "01" indicates a warning and is
accompanied by a return code of rdSQLSuccessWithInfo.

Class values other than "01", except for the class "IM", indicate an error and are accompanied by a
return code of rdSQLError. The class    "IM" is specific to warnings and errors that derive from the
implementation of ODBC itself. The subclass "000" in any class is for implementation-defined
conditions within the given class. The assignment of class and subclass values is defined by ANSI
SQL-92.

StillExecuting Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproStillExecutingC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproStillExecutingX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproStillExecutingA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproStillExecutingS"}

Returns a Boolean value that indicates whether a query is still executing.

Syntax

object.StillExecuting

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The StillExecuting property return values are:

Value Description

True The query is still executing.

False The query is ready to return the result
set.

Remarks

Use the StillExecuting property to determine if a query is ready to return the first result set. Until the
StillExecuting property is False, the associated object cannot be accessed. However, unless you
use the rdAsyncEnable option, your application will block until the query is completed and ready to
process the result set.

Once the StillExecuting property returns False, the first or next result set is ready for processing.
When you use the MoreResults method to complete processing of a result set, the StillExecuting
property is reset to True while the next result sets is retrieved.

The StillExecuting property also changes to True when you execute a Move method. For example
executing MoveLast against an rdoResultset resets the StillExecuting property to True as long as
RDO continues to fetch rows from the remote server.

You can also use the QueryComplete event to indicate when a query has completed and the
associated rdoResultset object is ready to process.

Use the Cancel method to terminate processing of an executing query, including all statements in a
batch query.

StillExecuting Property Example

This example illustrates use of the StillExecuting property to monitor the progress of a query that is
expected to take more than a few seconds. By enabling RDO's asynchronous mode, control returns
to the application long before the query is complete. While waiting for the StillExecuting property to
return False, we display a progress bar that has been programmed to reflect the length of time that
the query is expected to take. Note that if this time is exceeded, the progress bar is re-calibrated to
reflect the longer duration.

Dim rdoCn As New rdoConnection
Dim rdoRs As rdoResultset
Dim SQL As String
Dim TimeExpected As Single
Dim Ts As Single, Tn As Single

With rdoCn
 .Connect = "UID=;PWD=;Database=WorkDB;" _
 & "Server=SEQUEL;Driver={SQL Server}" _
 & "DSN='';"
 .LoginTimeout = 5
 .EstablishConnection rdDriverNoPrompt, True

 SQL = "Execute VeryLongProcedure"
 TimeExpected = 20 ' We expect this to take 60 sec.

 Set rdoRs = .OpenResultset(Name:=SQL, _
 Type:=rdOpenForwardOnly, _
 LockType:=rdConcurReadOnly, _
 Option:=rdAsyncEnable)
 Ts = Timer
 ProgressBar1.Max = TimeExpected
 While rdoRs.StillExecuting
 Tn = Int(Timer - Ts)
 If Tn < TimeExpected Then
 ProgressBar1 = Tn
 Else
 ProgressBar1.Max = ProgressBar1.Max + 10
 TimeExpected = ProgressBar1.Max
 End If
 DoEvents
 Wend
 Status = "Query done. Duration:" & Int(Timer - Ts)

End With
rdoRs.Close
rdoCn.Close

Transactions Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproTransactionsC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproTransactionsX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproTransactionsA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproTransactionsS"}

Returns a value that indicates whether an object supports the recording of a series of changes that
can later be rolled back (undone) or committed (saved).

Syntax

object.Transactions

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Transactions property return values are:

Value Description

True The object supports transactions.

False The object doesn't support
transactions.

Remarks

Check the Transactions property before using the BeginTrans method to make sure that
transactions are supported. When Transactions is False, using the BeginTrans, CommitTrans, or
RollbackTrans method has no effect.

The Transactions property calls the ODBC SQLGetInfo function to determine if the ODBC driver is
capable of supporting transactions, not if the current result set is updatable. You can always call the
BeginTrans method on the rdoConnection object if the Transactions property is True — even for
read-only rdoResultset objects.

Type Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproTypeC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproTypeX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdproTypeA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproTypeS"}

Returns or sets a value that indicates the type or data type of an object.

Syntax

object.Type [= value]

The Type property syntax has these parts:

Part Description

object An object expression that evaluates
to an object in the Applies To list.

value A constant or Integer value that
specifies a datatype, as described in
Return Values.

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

For an rdoColumn or rdoParameter object, the Type property returns an Integer. You can also set
the Type property on the rdoParameter object to indicate the datatype of a specific procedure
argument. The valid values are:

Constant Value Description

rdTypeCHAR 1 Fixed-length character string. Length
set by Size property.

rdTypeNUMERIC 2 Signed, exact, numeric value with
precision p and scale s (1    p 15; 0   
s    p).

rdTypeDECIMAL 3 Signed, exact, numeric value with
precision p and scale s (1    p 15; 0   
s    p).

rdTypeINTEGER 4 Signed, exact numeric value with
precision 10, scale 0 (signed: -231   
n    231-1; unsigned:    0    n    232-1).

rdTypeSMALLINT 5 Signed, exact numeric value with
precision 5, scale 0 (signed: -32,768
n    32,767, unsigned: 0    n    65,535).

rdTypeFLOAT 6 Signed, approximate numeric value
with mantissa precision 15 (zero or
absolute value 10-308 to 10308).

rdTypeREAL 7 Signed, approximate numeric value
with mantissa precision 7 (zero or
absolute value 10-38 to 1038).

rdTypeDOUBLE 8 Signed, approximate numeric value
with mantissa precision 15 (zero or
absolute value 10-308 to 10308).

rdTypeDATE 9 Date — data source dependent.

rdTypeTIME 10 Time — data source dependent.

rdTypeTIMESTAMP 11 TimeStamp — data source
dependent.

rdTypeVARCHAR 12 Variable-length character string.
Maximum length 255.

rdTypeLONGVARCHA
R

-1 Variable-length character string.
Maximum length determined by data
source.

rdTypeBINARY -2 Fixed-length binary data. Maximum
length 255.

rdTypeVARBINARY -3 Variable-length binary data.
Maximum length 255.

rdTypeLONGVARBINA
RY

-4 Variable-length binary data.
Maximum data source dependent.

rdTypeBIGINT -5 Signed, exact numeric value with
precision 19 (signed) or 20
(unsigned), scale 0; (signed: -263    n
263-1; unsigned: 0    n    264-1).

rdTypeTINYINT -6 Signed, exact numeric value with
precision 3, scale 0; (signed: -128    n
127, unsigned: 0    n    255).

rdTypeBIT -7 Single binary digit.

For an rdoQuery object, the Type property returns an Integer. The return values are:

Constant Value Query type

rdQSelect 0 Select

rdQAction 1 Action

rdQProcedures 2 Procedural

rdQCompound 3 The query contains both action and
select statements

For an rdoResultset object, the Type property returns an Integer that determines the type of
rdoResultset. The return values are:

Constant Value rdoResultset type

rdOpenForwardOnly 0 Fixed set, non-scrolling.

rdOpenKeyset 1 Updatable, fixed set, scrollable query
result set cursor.

rdOpenDynamic 2 Updatable, dynamic set, scrollable
query result set cursor.

rdOpenStatic 3 Read-only, fixed set.

Note      Not all ODBC drivers or data sources support every type of rdoResultset cursor type. If you
choose a cursor that is not supported, the ODBC driver attempts to revert to a supported type. If no
supported type is available, a trappable error is fired.

For an rdoTable object, the Type property returns a String. The settings for value are determined by
the data source driver.

Typically, this string value is "TABLE", "VIEW", "SYSTEM TABLE", "GLOBAL TEMPORARY". "LOCAL
TEMPORARY", "ALIAS", "SYNONYM" or some other data source-specific type identifier.

Remarks

Depending on the object, the Type property indicates:

Object Type indicates

rdoColumn, rdoParameter Object data type

rdoQuery Type of query

rdoResultset Type of rdoResultset

rdoTable Type of table on data source

In some cases, you must override the Type property assignment made by RDO when creating some
types of parameter queries. For example, if a parameter is passed to an expression inside of an SQL
statement, the ODBC driver might not be able to determine the correct type. In these cases, you can
force a specific parameter to be handled as the correct type by simply setting the rdoParameter
object's Type property. This is the only situation that permits you to change the Type property. In all
other cases, this property is read-only.

Updatable Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproUpdatableC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproUpdatableX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproUpdatableA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproUpdatableS"}

Returns a Boolean value that indicates whether changes can be made to a remote data object.

Syntax

object.Updatable

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Updatable property return values are:

Value Description

True The object can be changed or
updated.

False The object can't be changed or
updated. This is the only setting for
static-type rdoResultset objects.

Remarks

If the Updatable property setting is True, the specified:

· rdoConnection object refers to an updatable data source.

· rdoQuery object refers to an updatable result set.

· rdoResultset contains updatable rows.

· rdoTable object refers to a table whose data can be changed through use of a query.

· rdoColumn object refers to data that can be changed. Only rdoColumn objects which are part of
an rdoResultset object can be changed.

You can use the Updatable property with all types of rdoResultset objects.

Many types of rdoResultset objects can contain columns that can't be updated. For example, you
can create a forward-only rdoResultset that is derived from nonupdatable sources or that contains
computed or derived columns.

If the object contains only nonupdatable columns, the value of the Updatable property is False.
When one or more columns are updatable, the property's value is True. You can edit only the
updatable columns. A trappable error occurs if you try to assign a new value to a nonupdatable
column.

Because an updatable object can contain columns that cannot be updated, check the Updatable
property of each rdoColumn before editing a row in the rdoResultset.

Even when a cursor cannot be updated, it might still be possible to update the data through use of an
action query. In many cases, database tables are protected and not updatable by design — as they
are protected from direct access by the system administrator and the remote system's permission
scheme. If this is the case, check with your system administrator for the availability of stored
procedures or special login accounts that permit you to perform your changes.

UserName Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproUserNameC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproUserNameX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproUserNameA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproUserNameS"}

Returns or sets a value that represents a user of an rdoEnvironment object. Use the UserName
property with the Password property to connect to an ODBC data source.

Syntax

object.UserName [= value]

The UserName property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value A string expression that contains a user name as
described in Settings. (Data type is String.)

Settings

The user name syntax depends on the ODBC data source.

Return Values

The UserName property represents the user of an rdoEnvironment object. The user name is set
when the rdoEnvironment is either created automatically by the RemoteData control, by the first
reference to a remote data object, or when the rdoCreateEnvironment method is executed.

You can determine the default user name with the rdoDefaultUser property of the rdoEngine object.
If no specific user name is supplied in UserName, the value of the rdoDefaultUser property is used.

Value Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproValueC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproValueX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdproValueA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproValueS"}

Returns or sets the value of an object.

Syntax

object.Value [= value]

The Value property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value An expression that evaluates to a value appropriate
for the data type, as specified by the Type property of
an object. (Data type is Variant.)

Remarks

Use the Value property to retrieve and alter data in rdoResultset objects. The data type of the data
returned is indicated by the Type property of the object.

The Value property is the default property of the rdoColumn and rdoParameter objects. Therefore,
the following lines of code are equivalent (assuming Column1 is at the first ordinal position):

Dim MyResultset As rdoResultset
X = MyResultset!Column1
X = MyResultset!Column1.Value
X = MyResultset(0)
X = MyResultset(0).Value
X = MyResultset("Column1").Value
X = MyResultset("Column1")
X = RemoteData1.Resultset("Column1")
X = RemoteData1.Resultset(0)
F$ = "Column1" : X = MyResultset(F$).Value
X = MyResultset(F$)
Set X = MyResultset(0): X.Value : X

Version Property (Remote Data)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproVersionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproVersionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproVersionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproVersionS"}

Returns a value that indicates the version of the data source associated with the object.

Syntax

object.Version

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The Version property return value is a 10-character string expression.

Remarks

For an rdoConnection object, this property identifies the version of the data source used when the
connection was created. This value is the version of ODBC to which the driver manager conforms.
The version is in the form ##.##.####, where the first two digits are the major version number, the
next two digits are the minor version, and the last four digits are the build number.

ActiveConnection Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproActiveConnectionC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproActiveConnectionX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproActiveConnectionA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproActiveConnectionS"}

Returns or sets an object reference indicating the connection this query should be associated with.

Syntax

object.ActiveConnection [= value]

The ActiveConnection property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

value An expression that evaluates to a valid
rdoConnection or derived object. Value defaults to
the rdoConnection used to create the object or
Nothing.

Remarks

The ActiveConnection property holds a reference to the connection associated with the rdoQuery
or rdoResultset object. All database statements executed by the object are executed against this
connection.

When working with an rdoQuery object, the ActiveConnection property can be set to Nothing
which dissociates the object from a specific connection. You can subsequently re-associate the
rdoQuery object to another rdoConnection object by setting the ActiveConnection object. Using
this technique, a query can be executed against a set of connections.

When working with the rdoResultset object and the Client Batch cursor library, you can set the
ActiveConnection property to Nothing. In this case, if the result set is created with a static cursor
and the rdConcurBatch concurrency option, the rdoResultset data is still available and you are free
to make changes or additions to the result set. Once you set the ActiveConnection to an open
rdoConnection object, you can use the BatchUpdate method to post these changes to the remote
database.

ActiveConnection Property Example

The following examples illustrates use of the ActiveConnection property to select an
rdoConnection. In this case, the application opens two separate connections and uses the same
rdoQuery against each.

Dim rdoCn As New rdoConnection
Dim rdoCn2 As New rdoConnection
Dim rdoQy As New rdoQuery
Dim rdoRs As rdoResultset
Dim rdoCol As rdoColumn
Dim rdoEn As rdoEnvironment

Private Sub Form_Load()
On Error GoTo CnEh

Set rdoEn = rdoEnvironments(0)

With rdoCn

 .Connect = "UID=;PWD=;Database=WorkDB;" _
 & "Server=Betav486;Driver={SQL Server}" _
 & "DSN='';"
 .LoginTimeout = 5
 .EstablishConnection rdDriverNoPrompt, True
 rdoEn.rdoConnections.Add rdoCn
End With

With rdoCn2
 .Connect = "UID=;PWD=;Database=Pubs;" _
 & "Server=Betav486;Driver={SQL Server}" _
 & "DSN='';"
 .LoginTimeout = 5
 .EstablishConnection rdDriverNoPrompt, True
 rdoEn.rdoConnections.Add rdoCn2
End With

With rdoQy
 Set .ActiveConnection = rdoCn
 .SQL = "Select Name, refDate " _

& " from Sysobjects where type = 'U' "
 .LockType = rdConcurReadOnly
 .RowsetSize = 1
 .CursorType = rdUseServer
End With

For Each rdoCn In rdoEn.rdoConnections
 Set rdoQy.ActiveConnection = rdoCn
 Set rdoRs = rdoQy.OpenResultset(rdOpenForwardOnly)
 With rdoRs
 For Each rdoCol In rdoRs.rdoColumns
 Debug.Print rdoCol.Name,
 Next
 Debug.Print
 Do Until rdoRs.EOF
 For Each rdoCol In rdoRs.rdoColumns
 Debug.Print rdoCol

 Next
 rdoRs.MoveNext
 Loop
 End With
Next ' Next Connection

Exit Sub
CnEh:
Dim er As rdoError
 Debug.Print Err, Error
 For Each er In rdoErrors
 Debug.Print er.Description, er.Number
 Next er
 Resume Next
End Sub

StillConnecting Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproStillConnectingC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproStillConnectingX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"rdproStillConnectingA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproStillConnectingS"}

Returns a value that indicates if the connection has been established.

Syntax

object.StillConnecting

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values

The StillConnecting property return values are:

Value Description

True The connection is being made asynchronously but
has not been established.

False The connection has been established.

Remarks

This property works very similarly to the StillExecuting property, except that it is True while an
asynchronous connection to the server is being performed. This property is set to False again after
the connection has been established.

All method and property access of the connection object (with the exception of this property and the
Cancel method) will result in trappable errors while an asynchronous connection is in progress.

StillConnecting Property Example

This example illustrates use of the StillConnecting property when establishing a connection using
the rdAsyncEnable option.

Dim rdoCn As New rdoConnection
Dim TimeExpected As Single
Dim Ts As Single, Tn As Single

TimeExpected = 15
With rdoCn
 .Connect = "UID=;PWD=;Database=WorkDB;" _
 & "Server=FarAway;Driver={SQL Server}" _
 & "DSN='';"
 .LoginTimeout = 45
 .EstablishConnection rdDriverNoPrompt, _

 True, rdAsyncEnable
 Ts = Timer
 ProgressBar1.Max = TimeExpected ' time to Open
 While .StillConnecting
 Tn = Int(Timer - Ts)
 If Tn < TimeExpected Then
 ProgressBar1 = Tn
 Else
 ProgressBar1.Max = ProgressBar1.Max + 10
 TimeExpected = ProgressBar1.Max
 End If
 DoEvents
 Wend
 Status = "Duration:" & Int(Timer - Ts)

End With
rdoCn.Close
Exit Sub

Item Property (RDO)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"rdproItemC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"rdproItemX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies To":"rdproItemA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"rdproItemS"}

Returns a specific member of an Remote Data Objects (RDO) collection object either by position or
by key.

Syntax

object.Item(index)

The Item property syntax has these parts:

Part Description

object An object expression that evaluates to an object in
the Applies To list.

index Required. An expression that specifies the position of
a member of the collection. If a numeric expression,
index must be a number from 1 to the value of the
collection's Count property. If a String expression,
index must correspond to the key argument specified
when the member referred to was added to the
collection.

Remarks

Basically, the Item property is used to choose a member of the collection either by ordinal number or
by a key value.

If the value provided as index doesn’t match any existing member of the collection, an error occurs.

The Item property is the default method for a collection and is rarely used to reference collection
members. Therefore, the following lines of code are equivalent:

Print MyCollection(1)
Print MyCollection.Item(1)

Change Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtChangeEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtChangeEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtChangeEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtChangeEventControlsPlaceholderS"}

Click Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtClickEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtClickEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtClickEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtClickEventControlsPlaceholderS"}

DblClick Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDblClickEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtDblClickEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtDblClickEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDblClickEventControlsPlaceholderS"}

DragDrop Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDragDropEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtDragDropEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtDragDropEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDragDropEventControlsPlaceholderS"}

DragOver Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDragOverEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtDragOverEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtDragOverEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDragOverEventControlsPlaceholderS"}

KeyDown Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyDownEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyDownEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtKeyDownEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyDownEventControlsPlaceholderS"}

KeyPress Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyPressEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyPressEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtKeyPressEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyPressEventControlsPlaceholderS"}

KeyUp Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtKeyUpEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtKeyUpEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtKeyUpEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtKeyUpEventControlsPlaceholderS"}

MouseDown Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseDownEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseDownEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseDownEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseDownEventControlsPlaceholderS"}

MouseMove Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseMoveEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseMoveEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseMoveEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseMoveEventControlsPlaceholderS"}

MouseUp Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtMouseUpEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtMouseUpEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtMouseUpEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtMouseUpEventControlsPlaceholderS"}

OLECompleteDragEvent (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbevtOLECompleteDragEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLECompleteDragEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLECompleteDragEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLECompleteDragEventControlsPlaceholderS"}

OLEDragDrop Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragDropEventPHolderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragDropEventPHolderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEDragDropEventPHolderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragDropEventPHolderS"}

OLEDragOver Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEDragOverEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEDragOverEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEDragOverEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEDragOverEventControlsPlaceholderS"}

OLEGiveFeedback Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbevtOLEGiveFeedbackEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEGiveFeedbackEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEGiveFeedbackEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEGiveFeedbackEventControlsPlaceholderS"}

OLESetData Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLESetDataEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLESetDataEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLESetDataEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLESetDataEventControlsPlaceholderS"}

OLEStartDrag Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtOLEStartDragEventControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtOLEStartDragEventControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtOLEStartDragEventControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtOLEStartDragEventControlsPlaceholderS"}

Refresh Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRefreshMethodControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthRefreshMethodControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRefreshMethodControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRefreshMethodControlsPlaceholderS"}

OLEDrag Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthOLEDragMethodControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthOLEDragMethodControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthOLEDragMethodControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthOLEDragMethodControlsPlaceholderS"}

Appearance Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAppearancePropertyControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproAppearancePropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproAppearancePropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproAppearancePropertyControlsPlaceholderS"}

BackColor Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBackColorPropertyControlsPlaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproBackColorPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproBackColorPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBackColorPropertyControlsPlaceholderS"}

Caption Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCaptionPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproCaptionPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproCaptionPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCaptionPropertyControlsPlaceholderS"}

Enabled Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproEnabledPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproEnabledPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproEnabledPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproEnabledPropertyControlsPlaceholderS"}

Font Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontPropertyControlsPlaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproFontPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontPropertyControlsPlaceholderS"}

ForeColor Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproForeColorPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproForeColorPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproForeColorPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproForeColorPropertyControlsPlaceholderS"}

IntegralHeight Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIntegralHeightPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproIntegralHeightPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIntegralHeightPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIntegralHeightPropertyControlsPlaceholderS"}

Locked Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLockedPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproLockedPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproLockedPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproLockedPropertyControlsPlaceholderS"}

MouseIcon Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMouseIconPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproMouseIconPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMouseIconPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMouseIconPropertyControlsPlaceholderS"}

MousePointer Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMousePointerPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproMousePointerPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMousePointerPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMousePointerPropertyControlsPlaceholderS"}

OLEDragMode Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproOLEDragModePropertyControlsPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragModePropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDragModePropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragModePropertyControlsPlaceholderS"}

OLEDropMode Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproOLEDropModePropertyControlsPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDropModePropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDropModePropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDropModePropertyControlsPlaceholderS"}

SelLength Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelLengthPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproSelLengthPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelLengthPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelLengthPropertyControlsPlaceholderS"}

SelStart Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelStartPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproSelStartPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelStartPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelStartPropertyControlsPlaceholderS"}

SelText Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproSelTextPropertyControlsPlaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproSelTextPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelTextPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelTextPropertyControlsPlaceholderS"}

Style Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproStylePropertyControlsPlaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproStylePropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproStylePropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproStylePropertyControlsPlaceholderS"}

Text Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTextPropertyControlsPlaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproTextPropertyControlsPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTextPropertyControlsPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextPropertyControlsPlaceholderS"}

Keyword Not Found
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic"}

The keyword you've selected can't be found in Visual Basic Help. It's possible that:

· The keyword is misspelled

· You selected too much or too little text

· You asked for help on a word that is not a valid Visual Basic keyword.

The easiest way to get help on a specific keyword is to position the insertion point anywhere within
the keyword you want help on and press F1. You do not need to select the keyword. In fact, if you
select only a portion of the keyword, or more than a single word, Help will not find what you're looking
for.

To use the built-in Help search dialog box, press the Help Topics button on the toolbar.

One option to possibly find what you're looking for is to view the ReadMe file that comes with Visual
Basic. This document contains information regarding last-minute changes, additions, and deletions
that did not make it into the final documentation.

Left, Top Properties (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproLeftTopPropertiesPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproLeftTopPropertiesPlaceholderS"}

Height, Width Properties (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHeightWidthPropertiesPlaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHeightWidthPropertiesPlaceholderS"}

Tag Property (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTagPropertyPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTagPropertyPlaceholderS"}

ToolTipText Property (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproToolTipTextPropertyPlaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproToolTipTextPropertyPlaceholderS"}

Count Property (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCountPropertyPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCountPropertyPlaceholderS"}

Item Method (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproItemMethodPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthItemMethodPlaceholderS;vbproItemMethodPlaceholderS"}

Hwnd Property (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHwndPropertyPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHwndPropertyPlaceholderS"}

TabStop Property (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTabStopPropertyPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTabStopPropertyPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTabStopPropertyPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabStopPropertyPlaceholderS"}

Visible Property (Placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproVisiblePropertyPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVisiblePropertyPlaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproVisiblePropertyPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVisiblePropertyPlaceholderS"}

Picture Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPicturePropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPicturePropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproPicturePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPicturePropertyplaceholderS"}

Max, Min Properties (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMaxMinPropertiesplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMaxMinPropertiesplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMaxMinPropertiesplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaxMinPropertiesplaceholderS"}

Add Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAddMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAddMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAddMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAddMethodplaceholderS"}

Clear Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthClearMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthClearMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearMethodplaceholderS"}

Container Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproContainerPropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproContainerPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproContainerPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproContainerPropertyplaceholderS"}

Controls Collection (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolControlsCollectionplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolControlsCollectionplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolControlsCollectionplaceholderP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolControlsCollectionplaceholderM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolControlsCollectionplaceholderE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolControlsCollectionplaceholderS"}

Copies Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproCopiesPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCopiesPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproCopiesPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCopiesPropertyplaceholderS"}

DataBinding Object (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjDataBindingObjectplaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbobjDataBindingObjectplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjDataBindingObjectplaceholderP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjDataBindingObjectplaceholderM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjDataBindingObjectplaceholderE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDataBindingObjectplaceholderS"}

DataBindings Collection (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolDataBindingsCollectionplaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbcolDataBindingsCollectionplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolDataBindingsCollectionplaceholderP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolDataBindingsCollectionplaceholderM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolDataBindingsCollectionplaceholderE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolDataBindingsCollectionplaceholderS"}

Filename Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFilenamePropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFilenamePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFilenamePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFilenamePropertyplaceholderS"}

FontBold, FontItalic, FontStrikeThru Properties (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontBoldFontItalicFontStrikeThruPropertiesplaceholderS"}

FontName Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontNamePropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproFontNamePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontNamePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontNamePropertyplaceholderS"}

FontSize Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFontSizePropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontSizePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontSizePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontSizePropertyplaceholderS"}

GetData Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetDataMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetDataMethodplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthGetDataMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetDataMethodplaceholderS"}

GetFormat Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetFormatMethodplaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthGetFormatMethodplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthGetFormatMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetFormatMethodplaceholderS"}

HelpFile Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHelpFilePropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHelpFilePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHelpFilePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHelpFilePropertyplaceholderS"}

Item Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproItemPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproItemPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproItemPropertyplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproItemPropertyplaceholderS"}

Remove Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveMethodplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveMethodplaceholderS"}

SetData Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetDataMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetDataMethodplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthSetDataMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetDataMethodplaceholderS"}

Align Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAlignPropertyplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproAlignPropertyplaceholderS"}

DragIcon Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDragIconPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDragIconPropertyplaceholderS"}

DragMode Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDragModePropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproDragModePropertyplaceholderS"}

HelpContextID Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHelpContextIDPropertyplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHelpContextIDPropertyplaceholderS"}

TabIndex Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTabIndexPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTabIndexPropertyplaceholderS"}

Alignment Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstAlignmentConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Border Property Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstBorderPropertyConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

BorderStyle Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstBorderStyleConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

BorderStyle Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproBorderStylePropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStylePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproBorderStylePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStylePropertyActiveXControlsplaceholderS"}

Clear Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthClearMethodActiveXControlsplaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthClearMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthClearMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthClearMethodActiveXControlsplaceholderS"}

Clipboard Object Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstClipboardObjectConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Color Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstColorConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

CommonDialog Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbcstCommonDialogControlConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

CommonDialog Error Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstCommonDialogErrorConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstControlConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

DataBindings Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataBindingsPropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproDataBindingsPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataBindingsPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataBindingsPropertyplaceholderS"}

DDE Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstDDEConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Drag-and-Drop Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstDragandDropConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Drawing Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstDrawingConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

FetchVerbs Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFetchVerbsMethodC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthFetchVerbsMethodX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthFetchVerbsMethodA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFetchVerbsMethodS"}

Form Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstFormConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Graphics Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstGraphicsConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Grid Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstGridControlConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Help Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstHelpConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

HideSelection Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproHideSelectionPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHideSelectionPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionPropertyActiveXControlsplaceholderS"}

HideSelection Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproHideSelectionPropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHideSelectionPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionPropertyplaceholderS"}

Image Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproImagePropertyActiveXControlsplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproImagePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproImagePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproImagePropertyActiveXControlsplaceholderS"}

ImageList Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproImageListPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproImageListPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproImageListPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproImageListPropertyActiveXControlsplaceholderS"}

Index Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIndexPropertyActiveXControlsplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproIndexPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIndexPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexPropertyActiveXControlsplaceholderS"}

Index Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIndexPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproIndexPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproIndexPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexPropertyplaceholderS"}

Key Code Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstKeyCodeConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Key Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproKeyPropertyActiveXControlsplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproKeyPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproKeyPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyPropertyActiveXControlsplaceholderS"}

Menu Accelerator Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMenuAcceleratorConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Menu Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMenuControlConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Miscellaneous Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMiscellaneousConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

MousePointer Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstMousePointerConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

OLE Container Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstOLEContainerControlConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Picture Object Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstPictureObjectConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Printer Object Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstPrinterObjectConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

RasterOp Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstRasterOpConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Remove Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbmthRemoveMethodActiveXControlsplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveMethodActiveXControlsplaceholderS"}

ShowInTaskbar Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstShowInTaskbarPropertyplaceholderC;vbproBooksOnlineJumpTopic"}

ShowTips Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproShowTipsPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproShowTipsPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproShowTipsPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproShowTipsPropertyActiveXControlsplaceholderS"}

ShowWhatsThis Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthShowWhatsThisMethodplaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthShowWhatsThisMethodplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthShowWhatsThisMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthShowWhatsThisMethodplaceholderS"}

Text Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproTextPropertyActiveXControlsplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproTextPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTextPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextPropertyActiveXControlsplaceholderS"}

Value Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproValuePropertyActiveXControlsplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproValuePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproValuePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproValuePropertyActiveXControlsplaceholderS"}

Variant Type Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstVariantTypeConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

Visual Basic Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstVisualBasicConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

WhatsThisButton Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWhatsThisButtonPropertyplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisButtonPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproWhatsThisButtonPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisButtonPropertyplaceholderS"}

WhatsThisHelp Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWhatsThisHelpPropertyplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisHelpPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproWhatsThisHelpPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisHelpPropertyplaceholderS"}

WhatsThisHelpID Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproWhatsThisHelpIDPropertyplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproWhatsThisHelpIDPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproWhatsThisHelpIDPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproWhatsThisHelpIDPropertyplaceholderS"}

WhatsThisMode Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthWhatsThisModeMethodplaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbmthWhatsThisModeMethodplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthWhatsThisModeMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthWhatsThisModeMethodplaceholderS"}

Windows 95 Control Constants (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcstWindows95ControlConstantsplaceholderC;vbproBooksOnlineJumpTopic"}

ColIsVisible Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColIsVisiblePropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproColIsVisiblePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproColIsVisiblePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproColIsVisiblePropertyplaceholderS"}

ColPos Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproColPosPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproColPosPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproColPosPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproColPosPropertyplaceholderS"}

DataObject Object (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataObjectObjectplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataObjectObjectplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataObjectObjectplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjDataObjectObjectplaceholderS;vbproDataObjectObjectplaceholderS"}

DataObjectFiles Collection (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolDataObjectFilesCollectionplaceholderC;vbproBooksOnlineJumpTopic"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbcolDataObjectFilesCollectionplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbcolDataObjectFilesCollectionplaceholderP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbcolDataObjectFilesCollectionplaceholderM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbcolDataObjectFilesCollectionplaceholderE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolDataObjectFilesCollectionplaceholderS"}

DataSource Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDataSourcePropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproDataSourcePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataSourcePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataSourcePropertyplaceholderS"}

Drag Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthDragMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthDragMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthDragMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthDragMethodplaceholderS"}

DrawMode Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproDrawModePropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproDrawModePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDrawModePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDrawModePropertyplaceholderS"}

FixedAlignment Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproFixedAlignmentPropertyplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproFixedAlignmentPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFixedAlignmentPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFixedAlignmentPropertyplaceholderS"}

GotFocus Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtGotFocusEventplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtGotFocusEventplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtGotFocusEventplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtGotFocusEventplaceholderS"}

GridLineWidth Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproGridLineWidthPropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproGridLineWidthPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproGridLineWidthPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproGridLineWidthPropertyplaceholderS"}

Index Property (Control Array) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproIndexPropertyControlArrayplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproIndexPropertyControlArrayplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproIndexPropertyControlArrayplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproIndexPropertyControlArrayplaceholderS"}

LostFocus Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtLostFocusEventplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtLostFocusEventplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtLostFocusEventplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtLostFocusEventplaceholderS"}

Move Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthMoveMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthMoveMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthMoveMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthMoveMethodplaceholderS"}

Name Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproNamePropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproNamePropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproNamePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproNamePropertyplaceholderS"}

Object Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproObjectPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproObjectPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproObjectPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproObjectPropertyplaceholderS"}

Parent Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproParentPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproParentPropertyplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproParentPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproParentPropertyplaceholderS"}

RowColChange Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtRowColChangeEventplaceholderC;vbproBooksOnlineJumpTopic"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbevtRowColChangeEventplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbevtRowColChangeEventplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbevtRowColChangeEventplaceholderS"}

RowIsVisible Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRowIsVisiblePropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproRowIsVisiblePropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRowIsVisiblePropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRowIsVisiblePropertyplaceholderS"}

RowPos Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRowPosPropertyplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRowPosPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRowPosPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRowPosPropertyplaceholderS"}

SetFocus Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSetFocusMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSetFocusMethodplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthSetFocusMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSetFocusMethodplaceholderS"}

ZOrder Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthZOrderMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthZOrderMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthZOrderMethodplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthZOrderMethodplaceholderS"}

Files Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthFilesMethodplaceholderC;vbproBooksOnlineJumpTopic"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthFilesMethodplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthFilesMethodplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthFilesMethodplaceholderS"}

Connect Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproConnectEventplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproConnectEventplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproConnectEventplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproConnectEventplaceholderS"}

HScrollSmallChange, VScrollSmallChange Properties (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproHScrollSmallChangeVScrollSmallChangePropertiesplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHScrollSmallChangeVScrollSmallChangePropertiesplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHScrollSmallChangeVScrollSmallChangePropertiesplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHScrollSmallChangeVScrollSmallChangePropertiesplaceholderS"}

MinHeight, MinWidth Properties (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproMinHeightMinWidthPropertiesplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproMinHeightMinWidthPropertiesplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMinHeightMinWidthPropertiesplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMinHeightMinWidthPropertiesplaceholderS"}

Property Pages Dialog Box (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproPropertryPagesDialogBoxplaceholderC"}
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproPropertryPagesDialogBoxplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproPropertryPagesDialogBoxplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPropertryPagesDialogBoxplaceholderS"}

RemoteHost Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRemoteHostPropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproRemoteHostPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRemoteHostPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRemoteHostPropertyplaceholderS"}

RemotePort Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBooksOnlineJumpTopic;vbproRemotePortPropertyplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproRemotePortPropertyplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRemotePortPropertyplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRemotePortPropertyplaceholderS"}

ViewportHeight, ViewportLeft, ViewportTop, ViewportWidth
Properties (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See
Also":"vbproBooksOnlineJumpTopic;vbproViewportHeightViewportLeftViewportTopViewportWidthPropertiesplaceholderC"}
{ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproViewportHeightViewportLeftViewportTopViewportWidthPropertiesplaceholderX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproViewportHeightViewportLeftViewportTopViewportWidthPropertiesplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproViewportHeightViewportLeftViewportTopViewportWidthPropertiesplaceholderS"}

Resync Method (Remote Data) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthResyncMethodRemoteDataplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthResyncMethodRemoteDataplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthResyncMethodRemoteDataplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthResyncMethodRemoteDataplaceholderS"}

ContainedVBControls Collection (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbcolContainedVBControlsCollectionplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbcolContainedVBControlsCollectionplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbcolContainedVBControlsCollectionplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbcolContainedVBControlsCollectionplaceholderS"}

Member Object (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMemberObjectplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMemberObjectplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproMemberObjectplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMemberObjectplaceholderS"}

Members Collection (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMembersCollectionplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMembersCollectionplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMembersCollectionplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMembersCollectionplaceholderS"}

VBComponentsEvents Object (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproVBComponentsEventsObjectplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVBComponentsEventsObjectplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproVBComponentsEventsObjectplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVBComponentsEventsObjectplaceholderS"}

VBProjectsEvents Object (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproVBProjectsEventsObjectplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVBProjectsEventsObjectplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproVBProjectsEventsObjectplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVBProjectsEventsObjectplaceholderS"}

Files Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscFilesPropertyplaceholderC"}

Alignment Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscAlignmentPropertyplaceholderC"}

AboutBox Method (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscAboutBoxMethodplaceholderC"}

Col, Row Properties (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscColRowPropertiesplaceholderC"}

RowHeight Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscRowHeightPropertyplaceholderC"}

Scroll Event (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscScrollEventplaceholderC"}

ScrollBars Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscScrollBarsPropertyplaceholderC"}

SelEndCol, SelStartCol, SelEndRow, SelStartRow Properties
(placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscSelEndColPropertiesplaceholderC"}

ScrollBars Property (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscScrollBarsPropertyplaceholderC"}

Appearance Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproAppearancePropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproAppearancePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproAppearancePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproAppearancePropertyActiveXControlsplaceholderS"}

BackColor, ForeColor Properties (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBackColorForeColorPropertiesActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBackColorForeColorPropertiesActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproBackColorForeColorPropertiesActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBackColorForeColorPropertiesActiveXControlsplaceholderS"}

BorderStyle Constants (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBorderStyleConstantsActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStyleConstantsActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproBorderStyleConstantsActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStyleConstantsActiveXControlsplaceholderS"}

Caption Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCaptionPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCaptionPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproCaptionPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCaptionPropertyActiveXControlsplaceholderS"}

Change Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproChangeEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproChangeEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproChangeEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproChangeEventActiveXControlsplaceholderS"}

Clear Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproClearMethodActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproClearMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproClearMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproClearMethodActiveXControlsplaceholderS"}

Click Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproClickEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproClickEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproClickEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproClickEventActiveXControlsplaceholderS"}

Clipboard Object Constants (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproClipboardObjectConstantsActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproClipboardObjectConstantsActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproClipboardObjectConstantsActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproClipboardObjectConstantsActiveXControlsplaceholderS"}

Count Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproCountPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproCountPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproCountPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproCountPropertyActiveXControlsplaceholderS"}

DataObject Object (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDataObjectObjectActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataObjectObjectActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataObjectObjectActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataObjectObjectActiveXControlsplaceholderS"}

DataObjectFiles Collection (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDataObjectFilesCollectionActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataObjectFilesCollectionActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataObjectFilesCollectionActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataObjectFilesCollectionActiveXControlsplaceholderS"}

DataSource Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDataSourcePropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDataSourcePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDataSourcePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDataSourcePropertyActiveXControlsplaceholderS"}

DblClick Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDblClickEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDblClickEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDblClickEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDblClickEventActiveXControlsplaceholderS"}

Drag-and-Drop Constants (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproDragandDropConstantsActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproDragandDropConstantsActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproDragandDropConstantsActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproDragandDropConstantsActiveXControlsplaceholderS"}

Enabled Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproEnabledPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproEnabledPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproEnabledPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproEnabledPropertyActiveXControlsplaceholderS"}

FetchVerbs Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFetchVerbsMethodActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFetchVerbsMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFetchVerbsMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFetchVerbsMethodActiveXControlsplaceholderS"}

Files Method (ActiveX Controls) (placeholders)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFilesMethodActiveXControlsplaceholdersC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFilesMethodActiveXControlsplaceholdersX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFilesMethodActiveXControlsplaceholdersA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFilesMethodActiveXControlsplaceholdersS"}

Font Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFontPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontPropertyActiveXControlsplaceholderS"}

FontName Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFontNamePropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontNamePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontNamePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontNamePropertyActiveXControlsplaceholderS"}

FontSize Property (ActiveX placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproFontSizePropertyActiveXPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproFontSizePropertyActiveXPlaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproFontSizePropertyActiveXPlaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproFontSizePropertyActiveXPlaceholderS"}

GetData Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproGetDataMethodActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproGetDataMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproGetDataMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproGetDataMethodActiveXControlsplaceholderS"}

GetFormat Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproGetFormatMethodActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproGetFormatMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproGetFormatMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproGetFormatMethodActiveXControlsplaceholderS"}

HideSelection Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHideSelectionPropertyActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHideSelectionPropertyActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHideSelectionPropertyActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHideSelectionPropertyActiveXControlscomplaceholderS"}

hWnd Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHWndPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHWndPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHWndPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHWndPropertyActiveXControlsplaceholderS"}

Item Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproItemMethodActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproItemMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproItemMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproItemMethodActiveXControlsplaceholderS"}

Key Code Constants (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproKeyCodeConstantsActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyCodeConstantsActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproKeyCodeConstantsActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyCodeConstantsActiveXControlsplaceholderS"}

Key Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproKeyPropertyActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyPropertyActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproKeyPropertyActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyPropertyActiveXControlscomplaceholderS"}

KeyDown, KeyUp Events (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproKeyDownKeyUpEventsActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyDownKeyUpEventsActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproKeyDownKeyUpEventsActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyDownKeyUpEventsActiveXControlsplaceholderS"}

KeyPress Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproKeyPressEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproKeyPressEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproKeyPressEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproKeyPressEventActiveXControlsplaceholderS"}

Max, Min Properties (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMaxMinPropertiesActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMaxMinPropertiesActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMaxMinPropertiesActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMaxMinPropertiesActiveXControlsplaceholderS"}

MouseDown, MouseUp Events (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMouseDownMouseUpEventsActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMouseDownMouseUpEventsActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMouseDownMouseUpEventsActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMouseDownMouseUpEventsActiveXControlsplaceholderS"}

MouseIcon Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMouseIconPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMouseIconPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMouseIconPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMouseIconPropertyActiveXControlsplaceholderS"}

MouseMove Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMouseMoveEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMouseMoveEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMouseMoveEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMouseMoveEventActiveXControlsplaceholderS"}

MousePointer Constants (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMousePointerConstantsActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMousePointerConstantsActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMousePointerConstantsActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMousePointerConstantsActiveXControlsplaceholderS"}

MousePointer Property (ActiveX Controls) (placeholder
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproMousePointerPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproMousePointerPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproMousePointerPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproMousePointerPropertyActiveXControlsplaceholderS"}

OLECompleteDrag Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLECompleteDragEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLECompleteDragEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLECompleteDragEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLECompleteDragEventActiveXControlsplaceholderS"}

OLEDrag Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDragMethodActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDragMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragMethodActiveXControlsplaceholderS"}

OLEDragDrop Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDragDropEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragDropEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDragDropEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragDropEventActiveXControlsplaceholderS"}

OLEDragMode Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDragModePropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragModePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDragModePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragModePropertyActiveXControlsplaceholderS"}

OLEDragOver Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDragOverEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDragOverEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDragOverEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDragOverEventActiveXControlsplaceholderS"}

OLEDropMode Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEDropModePropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEDropModePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEDropModePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEDropModePropertyActiveXControlsplaceholderS"}

OLEGiveFeedback Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEGiveFeedbackEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEGiveFeedbackEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEGiveFeedbackEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEGiveFeedbackEventActiveXControlsplaceholderS"}

OLESetData Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLESetDataEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLESetDataEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLESetDataEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLESetDataEventActiveXControlsplaceholderS"}

OLEStartDrag Event (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproOLEStartDragEventActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproOLEStartDragEventActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproOLEStartDragEventActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproOLEStartDragEventActiveXControlsplaceholderS"}

Picture Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPicturePropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPicturePropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproPicturePropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPicturePropertyActiveXControlsplaceholderS"}

Property Pages Dialog Box (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPropertyPagesDialogBoxActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPropertyPagesDialogBoxActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproPropertyPagesDialogBoxActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPropertyPagesDialogBoxActiveXControlsplaceholderS"}

RemoteHost Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRemoteHostPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRemoteHostPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRemoteHostPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRemoteHostPropertyActiveXControlsplaceholderS"}

RemotePort Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRemotePortPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRemotePortPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproRemotePortPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRemotePortPropertyActiveXControlsplaceholderS"}

SelLength, SelStart, SelText Properties (ActiveX Controls)
(placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSelLengthSelStartSelTextPropertiesActiveXControlsplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproSelLengthSelStartSelTextPropertiesActiveXControlsplaceholderX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproSelLengthSelStartSelTextPropertiesActiveXControlsplaceholderA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSelLengthSelStartSelTextPropertiesActiveXControlsplaceholderS"}

SetData Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSetDataMethodActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSetDataMethodActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproSetDataMethodActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproSetDataMethodActiveXControlsplaceholderS"}

ShowTips Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproShowTipsPropertyActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproShowTipsPropertyActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproShowTipsPropertyActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproShowTipsPropertyActiveXControlscomplaceholderS"}

Text Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTextPropertyActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTextPropertyActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTextPropertyActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTextPropertyActiveXControlscomplaceholderS"}

Value Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproValuePropertyActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproValuePropertyActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproValuePropertyActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproValuePropertyActiveXControlscomplaceholderS"}

hDC Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHDCPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHDCPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHDCPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHDCPropertyActiveXControlsplaceholderS"}

Height, Width Properties (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHeightWidthPropertiesActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHeightWidthPropertiesActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproHeightWidthPropertiesActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproHeightWidthPropertiesActiveXControlsplaceholderS"}

Index Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthIndexPropertyActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthIndexPropertyActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthIndexPropertyActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthIndexPropertyActiveXControlscomplaceholderS"}

Left, Top Properties (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLeftTopPropertiesActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLeftTopPropertiesActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproLeftTopPropertiesActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproLeftTopPropertiesActiveXControlsplaceholderS"}

Tag Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproTagPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproTagPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproTagPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproTagPropertyActiveXControlsplaceholderS"}

Visible Property (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproVisiblePropertyActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproVisiblePropertyActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproVisiblePropertyActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproVisiblePropertyActiveXControlscomplaceholderS"}

Remove Method (ActiveX Controls) (complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthRemoveMethodActiveXControlscomplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthRemoveMethodActiveXControlscomplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthRemoveMethodActiveXControlscomplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthRemoveMethodActiveXControlscomplaceholderS"}

Object Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthObjectPropertyActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthObjectPropertyActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbmthObjectPropertyActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbmthObjectPropertyActiveXControlsplaceholderS"}

Property Pages (ActiveX controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproPropertyPagesActiveXControlsplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproPropertyPagesActiveXControlsplaceholderX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Applies To":"vbproPropertyPagesActiveXControlsplaceholderA"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproPropertyPagesActiveXControlsplaceholderS"}

No fonts exist (Error 24574) (Common Dialog Control)
(complaceholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproNoFontsExistError24574CommonDialogControlcomplaceholderC"}                 
{ewc HLP95EN.DLL,DYNALINK,"Example":"vbproNoFontsExistError24574CommonDialogControlcomplaceholderX":1}
{ewc HLP95EN.DLL,DYNALINK,"Applies To":"vbproNoFontsExistError24574CommonDialogControlcomplaceholderA"}
{ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproNoFontsExistError24574CommonDialogControlcomplaceholderS"}

Help Contents placeholder
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproHelpContentsPlaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproHelpContentsPlaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproHelpContentsPlaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproHelpContentsPlaceholderS"}

BorderStyle Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBorderStyleplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBorderStyleplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBorderStyleplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBorderStyleplaceholderS"}

RightToLeft Property (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRightToLeftplaceholderC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproRightToLeftplaceholderX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRightToLeftplaceholderA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproRightToLeftplaceholderS"}

Refresh Method (ActiveX Controls) (placeholder)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscRefreshMethodActiveXControlsplaceholderC"}

