
Windows NT

Windows Networking APIs

Revision 1.0, August 14 1992

µ1. Overview...3

2. API buffers..3
2.1. API Data Alignment...4

2.2. Enumeration Buffer Lengths..4

2.3. Parameter Error Reporting...4

2.4. Parmnum For SetInfo...4

2.5. Parmnum For GetInfo...4

2.6. Embedded Strings...5

2.7. Enumeration Resume Handles...5

2.8. User-specific information...5

2.9. Enumeration APIs...5

2.10. SetInfo APIs..6

3. Windows Networking APIs..6
3.1. API Status..6

3.2. RPC Buffer Allocation Errors..6

3.3. Obsolete Information Fields...6

3.4. NLS Support...7

4. Windows Networking API Definitions..7
4.1. Buffer Manipulation APIs..7

4.1.1. NetApiBufferAllocate..7

4.1.2. NetApiBufferFree...7

4.1.3. NetApiBufferReallocate...8

4.1.4. NetApiBufferSize...8

4.2. Service APIs..8

4.2.1. NetServiceControl..9

4.2.2. NetServiceEnum...10

4.2.3. NetServiceGetInfo..11

4.2.4. NetServiceInstall...12

4.3. Server APIs...13

4.3.1. NetServerEnum...20

4.3.2. NetServerGetInfo..21

4.3.3. NetServerSetInfo..22

4.3.4. NetServerDiskEnum...23

4.4. Workstation and WorkstationUser APIs...24

4.4.1. NetWkstaGetInfo..32

4.4.2. NetWkstaSetInfo...32

4.4.3. NetWkstaUserGetInfo..33

4.4.4. NetWkstaUserSetInfo...34

4.4.5. NetWkstaUserEnum...34

4.5. Use APIs..35

4.5.1. NetUseAdd..37

4.5.2. NetUseDel...37

4.5.3. NetUseEnum...38

4.5.4. NetUseGetInfo..39

4.6. Share APIs...39

4.6.1. NetShareAdd...41

4.6.2. NetShareEnum..42

4.6.3. NetShareGetInfo...43

4.6.4. NetShareSetInfo..43

4.6.5. NetShareDel..44

4.6.6. NetShareCheck...45

4.7. Session...45

4.7.1. NetSessionEnum...46

4.7.2. NetSessionGetInfo..48

4.7.3. NetSessionDel...48

4.8. Connection APIs...49

4.8.1. NetConnectionEnum..50

4.9. File APIs..51

4.9.1. NetFileEnum...52

4.9.2. NetFileGetInfo..53

4.9.3. NetFileClose...54

4.10. Message APIs..54

4.10.1. NetMessageNameAdd..55

4.10.2. NetMessageNameEnum...55

4.10.3. NetMessageNameGetInfo..56

4.10.4. NetMessageNameDel...57

4.10.5. NetMessageBufferSend..57

4.11. Remote Utility API...58

4.11.1. NetRemoteTOD API..58

4.12. Security Account APIs...59

4.12.1. User APIs..59

4.12.1.1. NetUserAdd..65

4.12.1.2. NetUserEnum...66

4.12.1.3. NetUserGetInfo...67

4.12.1.4. NetUserSetInfo...68

4.12.1.5. NetUserDel...68

4.12.1.6. NetUserGetGroups...69

4.12.1.7. NetUserGetLocalGroups..70

4.12.1.8. NetUserSetGroups..71

4.12.2. User Modal APIS..72

4.12.2.1. NetUserModalsGet...73

4.12.2.2. NetUserModalsSet..74

4.12.3. Global Group APIs...74

4.12.3.1. NetGroupAdd...76

4.12.3.2. NetGroupAddUser..77

4.12.3.3. NetGroupEnum...77

4.12.3.4. NetGroupGetInfo..78

4.12.3.5. NetGroupSetInfo..79

4.12.3.6. NetGroupDel...80

4.12.3.7. NetGroupDelUser...80

4.12.3.8. NetGroupGetUsers...81

4.12.3.9. NetGroupSetUsers..82

4.12.4. Local Group APIs...83

4.12.4.1. NetLocalGroupAdd..84

4.12.4.2. NetLocalGroupAddMember..85

4.12.4.3. NetLocalGroupEnum...86

4.12.4.4. NetLocalGroupGetInfo..87

4.12.4.5. NetLocalGroupSetInfo...87

4.12.4.6. NetLocalGroupDel...88

4.12.4.7. NetLocalGroupDelMember...89

4.12.4.8. NetLocalGroupGetMembers..89

4.12.4.9. NetLocalGroupSetMembers..90

4.12.5. Access APIs..91

4.12.5.1. NetAccessAdd..93

4.12.5.2. NetAccessEnum..94

4.12.5.3. NetAccessGetInfo...95

4.12.5.4. NetAccessSetInfo...96

4.12.5.5. NetAccessDel..97

4.12.5.6. NetAccessGetUserPerms...97

4.12.5.7. NetAccessCheck...98

4.13. Domain APIs...99

4.13.1. NetGetDCName..99

4.14. Transport APIs..100

4.14.1. NetServerTransportAdd...101

4.14.2. NetServerTransportDel..101

4.14.3. NetServerTransportEnum...102

4.14.4. NetWkstaTransportAdd..103

4.14.5. NetWkstaTransportDel...103

4.14.6. NetWkstaTransportEnum...104

4.15. Alert APIs..105

4.15.1. NetAlertRaise..106

4.15.2. NetAlertRaiseEx...107

4.16. Error Logging APIs..107

4.16.1. NetErrorLogClear...109

4.16.2. NetErrorLogRead...109

4.17. Configuration APIs...111

4.17.1. NetConfigGet..111

4.17.2. NetConfigGetAll...112

4.17.3. NetConfigSet...112

4.18. Statistics APIs...113

4.18.1. NetStatisticsGet..116

4.19. Auditing APIs...117

Variable-Length Data..119

4.19.1. NetAuditClear...123

4.19.2. NetAuditRead...124

4.19.3. NetAuditWrite..126

4.20. Replicator APIs...127

4.20.1. Replicator Configuration APIs...127

4.20.1.1. NetReplGetInfo...129

4.20.2. NetReplSetInfo...130

4.20.3. Replicator Export Directory APIs..130

4.20.3.1. NetReplExportDirAdd..132

4.20.4. NetReplExportDirDel...132

4.20.5. NetReplExportDirEnum...133

4.20.6. NetReplExportDirGetInfo..134

4.20.7. NetReplExportDirSetInfo...135

4.20.7.1. NetReplExportDirLock..135

4.20.7.2. NetReplExportDirUnlock..136

4.20.8. Replicator Import Directory APIs..137

4.20.8.1. NetReplImportDirAdd..138

4.20.9. NetReplImportDirDel...139

4.20.10. NetReplImportDirEnum...139

4.20.11. NetReplImportDirGetInfo..140

4.20.11.1. NetReplImportDirLock..141

4.20.11.2. NetReplImportDirUnlock..142

5. Lanman APIs That Are Not Supported In Windows NT..142

5.1. APIs with no 32 bit Net equivalents..143

5.2. APIs that only have support for remoting to downlevel.............................143

6. Interoperabilty Considerations...143
6.1. Requests From 16-bit LANMan Clients..143

6.2. Calling 16-bit LANMan Servers..144

7. Change History..146

1. Overview

For OS/2 based servers the LANMan APIs provided much of the functionality required for a
network operating system which was missing from the local operating system. The Windows NT
operating system will provide this missing set of functionality in the base. However, in order to
make the migration of existing 16-bit applications as easy as possible, it is necessary to still define
32-bit equivalents of some of the LANMan APIs.

The Windows Networking APIs specified in this document are a private set of APIs designed to
provide some of the API functionality that was available in LANManager 2.x. They are not the public
Windows NT networking APIs. Windows NT takes some of the functionality that was previously
supplied by the networking software, and moves this into the base APIs (e.g. error and audit logging,
printing). Windows NT also provides a network independent set of network APIs (the WNet APIs)
that allow network api's to work across different network vendors' products. If a base API or WNet
API exists that could be used by your application, you should convert from the Windows networking
API to the public Windows NT equivalent. There are at least three reasons to make the change now:

1.1. The WNet APIs are network independent, while the Windows networking APIs only work
on LANManager networks.

1.2. The Windows networking APIs specified in this document may not be supported in future
releases on Windows NT. They are provided as a interim set of APIs to assist in the porting
of LANManager applications.

1.3. The Windows Networking APIs, as they are not part of the public Win32 API set, have not
received the rigorous testing that the Win32 APIs have. They have been tested only by their
usage internally.

In this specification, equivalent Win32 APIs will be listed that could be used in place of the
Windows networking API. If at all possible, this is the API that your application should use.

This spec assumes that the reader is familiar with the existing set of 16-bit LANMan APIs. The
32-bit widening of the API data structures is specified here but the description of the functionality for
each field is not covered unless the functionality has changed from that specified in the LANMAN 2.x
Programmer's Reference.

2. API buffers

The RPC runtimes will allocate the buffers required to remote the APIs. This is a requirement for
both efficiency and interoperability. Using the RPC runtimes to allocate the API transmission
buffers results in the two significant differences between a LANMan 2.x API and windows
networking API.

o For a set type API (data to the server) the API caller specifies a buffer containing the info
structure relevant to the API level but does not specify the buffer length.

o For a get type API (data returned from the server) the caller does not pre-allocate a buffer for
the return information. The caller passes a LPBYTE * to the API on input. On successful return
the buffer pointer will contain a pointer to a buffer containing the return information. When the
caller has finished processing the returned information NetApiBufferFree must be called. This
simplifies the calling code as the caller does not need to guess at the size of the buffer required

and will not need to resize and reissue the API as was the case with the LANMan 2.x APIs.

2.1. API Data Alignment

All data structures specified for the Windows networking APIs will be 32-bit word aligned. The
base size for an API structure element will be a DWORD.

2.2. Enumeration Buffer Lengths

Enumeration APIs will take an advisory maximum data length parameter, prefmaxlen, which
allows a control on the number of bytes returned from an enumeration call. The prefered length is
specified in units of 8-bit bytes. The actual API may return more than the prefered maximum
length.

A Windows networking API ennumeration call will not return partial entries.

2.3. Parameter Error Reporting

Add and SetInfo APIs will return an index for a parameter in error. The caller may pass a NULL
pointer for the parm_err parameter indicating that the field should not be set by the API. For
remoted APIs to downlevel servers this field will be returned as PARM_ERROR_UNKNOWN by
the RpcXlate conversion layer.

2.4. Parmnum For SetInfo

In order to reduce the number of RPC interfaces we need for each SetInfo API, there will be no
Parmnum parameter for the 32-bit SetInfo APIs. Instead, the fields that can be set in the
information structures will be set using additional infolevels. Although this will increase the
number of infolevels for a given API, it will be easier to program to them. In an attempt to keep the
mapping to and from downlevel calls simple, the new infolevels will be easily mapped to the old
parmnum values (by subtracting a specific number i.e. PARMNUM_BASE_INFOLEVEL (whose
value will be 1000)).

2.5. Parmnum For GetInfo

There will be no addition of a parmnum field for the GetInfo API.

2.6. Embedded Strings

Windows networking API info structures will not contain embedded strings. This improves the
alignability of the info structures and allows for OEM flexibility in the core APIs. This does not
change the feel of the LANMan 2.x APIs which support string pointers. Code porting merely
requires a pointer assignment rather than a string copy.

Any API information field that is returned in an enumeration call that can be subsequently used as a

key for a GetInfo call is guaranteed to be present in the enumeration buffer. If the variable length
information string that would specify the key field value will not fit then the entire fixed length
structure for the entry is not returned. Other variable-length fields will be returned as a NULL pointer
for the case where the string will not fit as with LANMan 2.x.

2.7. Enumeration Resume Handles

Enumeration resume handles will be identifiers for the actual resume key contained in the instance
data for the API. This is required for security, interoperabilty and to simplify the caller code for the
API.

If a NULL is passed for the pointer to the resume handle, then no handle is stored and the ennumeration
search cannot be continued. This is useful in cases where the application does not want to ennumerate
all the items.

If an error is returned from an enumeration call, the resume handle must be treated as invalid and not
used for any subsequent enumeration calls, i.e. the enumeration should be restarted from the beginning.

2.8. User-specific information

The LANMan 2.x APIs assumed that there would only be one user per machine. Therefore, some
APIs have that assumption built in, e.g. the NetSession APIs. Since this assumption is not valid on
NT, the APIs have had to be modified to take a user name as an additional parameter in order to be
able to uniquely identify the information being queried or set.

2.9. Enumeration APIs

The enumeration APIs all return the number of entries read, the total entries that could have been
returned if the buffer was big enough, a buffer with the entries, and a return code. The following
table details what an application can expect for the various parameters (M is less than N):

Condition entriesread totalentries buffer returncode

No entries 0 0 NULL SUCCESS

>= 1 entry N N NOT NULL SUCCESS

>= 1 entry M N NOT NULL ERROR_MORE_DATA

Failure ? ? ? Error Code

The caller must first examine the returned status before proceeding to examine any of the other
parameters for data.

Note that "totalentries" is the total number of entries that would have been returned if the return buffer
was big enough - i.e. the total number of entries that were available for entries, using the current
resume handle, if any, when the API was called.

2.10. SetInfo APIs

All the SetInfo APIs take a structure that contains the new information to be set. If any of the
pointer fields in the structure are NULL pointers, then the corresponding field is not changed by the
call. This is consistent with LANMan 2.x functionality.

In addition, the infolevels that allow GUEST access to query information do not allow callers with
GUEST access to set the fields, i.e. a caller with GUEST that calls the SetInfo API will probably get an
error back from the SetInfo call.

3. Windows Networking APIs

3.1. API Status

Windows networking APIs will use the LANMan 2.x error reporting convention, i.e. a successful
API call returns 0, a non-zero return code indicates an error in the range of the LANMan 2.x
API/OS2 errors.

An extended error range will be added for NT specific errors.

Since the Windows networking APIs will use RPC the API error definition will also be extended to
include RPC error codes.

3.2. RPC Buffer Allocation Errors

Since the RPC runtime will allocate memory for send and receive buffers the API should expect to
see RPC allocation errors. In the event of an RPC allocation error a resumable API handle is
invalidated. This is a requirement since resumable APIs are not rewindable.

3.3. Obsolete Information Fields

Many of the information fields in the core API information structures will be obsolescent in the NT
service implementation. These fields will remain in the information structure for level compatibility
and will be returned with an intelligent default on NT systems.

3.4. NLS Support

There are only UNICODE versions of the Windows networking APIs. If you use these APIs
you MUST define UNICODE in your source file prior to including any of the LM include
files.

4. Windows Networking API Definitions.

The WIndows Networking APIs are 'stdcall' calling convention functions which return a DWORD
API status;

#define NET_API_STATUS DWORD

#define NET_API_FUNCTION __stdcall

4.1. Buffer Manipulation APIs.

For remotable APIs which return information to the caller the RPC runtime will allocate the buffer
containg the return information. When the caller has completed processing the returned information
NetApiBufferFree must be called. Additional buffer manipulation functions are also supported.

4.1.1. NetApiBufferAllocate

NetApiBufferAllocate allocates ByteCount bytes of memory from the heap.

NET_API_STATUS NET_API_FUNCTION
NetApiBufferAllocate (

IN DWORD ByteCount,
IN LPBYTE * buffer
);

Parameters:

ByteCount __The number of bytes to allocate.
buffer __A pointer to the location to store the pointer to the allocated buffer.

4.1.2. NetApiBufferFree

NetApiBufferFree frees the memory allocated by NetApiBufferAllocate.

NET_API_STATUS NET_API_FUNCTION
NetApiBufferFree (IN LPVOID buffer

);
Parameters:

buffer __A pointer to an API information buffer previously returned on an API call.

4.1.3. NetApiBufferReallocate

NetApiBufferReallocate changes the size of a buffer allocated with NetApiBufferAllocate.

NET_API_STATUS NET_API_FUNCTION
NetApiBufferReallocate (

IN LPVOID OldBuffer,
IN DWORD NewByteCount,
IN LPVOID buffer
);

Parameters:

OldBuffer __A pointer to the buffer to reallocate.
NewByteCount __The new size of the buffer.
buffer __A pointer to an API information buffer previously returned on an API call.

4.1.4. NetApiBufferSize

NetApiBufferSize returns the size in bytes of the buffer allocated via NetApiBufferAllocate.

NET_API_STATUS NET_API_FUNCTION
NetApiBufferSize (

IN LPVOID buffer,
OUT DWORD ByteCount
);

Parameters:

buffer __A pointer to an API information buffer previously returned on an API call.
ByteCount __The size of the buffer.

4.2. Service APIs.

A complete set of Service APIs are provided in the Win32 API set. These should be used in place
of the NetService APIs, unless you have a requirement to control services on a downlevel server.
See the Services overview in WinHelp for more details.

Service API functions control services. A service is an application that an administrator can control
using the Service Controller interfaces.

Services allow administrators to control applications on the network and maintain the integrity of users'
data. On a typical network, applications are shared by many users. If an administrator terminates an
application running on a server, a user who has not finished working with that application can lose
important data. When an application is implemented as a service, the service controller checks the
status before changing the state of the service. NT Networking provides several standard services, such
as the Workstation, Server, and Messenger services.

A service can be started using the Service API functions. At startup time, the service defines whether it
can be stopped, paused, and continued.

NetServiceControl controls the operations of network services, and it can provide time hints to
controlling applications. NetServiceEnum retrieves information about all started services.
NetServiceGetInfo retrieves information about a particular started service. NetServiceInstall starts a

network service. NetServiceStatus sets status and code information for a network service.

The service APIs provide service information at three levels:

typedef struct _SERVICE_INFO_0 {
LPWSTR svci0_name; /* service name */

} SERVICE_INFO_0, *PSERVICE_INFO_0, *LPSERVICE_INFO_0;

typedef struct _SERVICE_INFO_1 {
LPWSTR svci1_name;
DWORD svci1_status;
DWORD svci1_code;
DWORD svci1_pid;

} SERVICE_INFO_1, *PSERVICE_INFO_1, *LPSERVICE_INFO_1;

typedef struct _SERVICE_INFO_2 {
LPWSTR svci2_name;
DWORD svci2_status;
DWORD svci2_code;
DWORD svci2_pid;
LPWSTR svci2_text;
DWORD svci2_specific_error;

} SERVICE_INFO_2, *PSERVICE_INFO_2, *LPSERVICE_INFO_2;
The service APIs are:

4.2.1. NetServiceControl

NetServiceControl controls the operations of network services.

Privilege Level

Admin privilege. Power User or Server Operator privilege is required to successfully execute
NetServiceControl unless the opcode is SERVICE_CTRL_INTERROGATE. In this case, no special
privilege is required.

NET_API_STATUS NET_API_FUNCTION
NetServiceControl (

IN LPWSTR servername OPTIONAL,
IN LPWSTR service,
IN DWORD opcode,
IN DWORD arg,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

service __A pointer to an UNICODE string containing the name of the service to receive the
control command.

opcode __Control code to send to service
SERVICE_CTRL_INTERROGATE Obtain the status of the service
SERVICE_CTRL_PAUSE Pause the service
SERVICE_CTRL_CONTINUE Continue the paused service
SERVICE_CTRL_UNINSTALL Stop the service

arg __Service specific contol argument to send to service

bufptr __A pointer to the return information structure is returned in the address pointed to by
bufptr.

4.2.2. NetServiceEnum

NetServiceEnum retrieves information about all started services, including paused services.

Privilege Level

No special privilege level is required to successfully execute NetServiceEnum.

NET_API_STATUS NET_API_FUNCTION
NetServiceEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required, 0, 1 and 2 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing service search. The handle should be

zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,
then no resume handle is stored..

4.2.3. NetServiceGetInfo

NetServiceGetInfo retrieves information about a particular started service.

Privilege Level

No special privilege level is required to successfully execute NetServiceGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetServiceGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR service,
IN DWORD level,
OUT LPBYTE * bufptr,
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

service __A pointer to an UNICODE string containing the name of the service.

level __Level of information required. 0, 1 and 2 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.2.4. NetServiceInstall

NetServiceInstall starts a network service.

Privilege Level

Admin privilege. Power User or Server Operator privilege is required to successfully execute
NetServiceInstall.

NET_API_STATUS NET_API_FUNCTION
NetServiceInstall (

IN LPWSTR servername OPTIONAL,
IN LPWSTR service,
IN DWORD argc,
IN LPWSTR argv[],
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

service __A pointer to an UNICODE string containing the name of the service to start.

bufptr __On return a pointer to a SERVICE_INFO_2 structure is returned in the address pointed
to by bufptr.

cmdargs __A pointer to a set of command line arguments to pass to the starting service as
command line arguments.

4.3. Server APIs

Server API functions perform administrative tasks on a local or remote server. Any user or
application with admin privilege on a local or remote server can perform administrative tasks on
that server to control its operation, user access, and resource sharing. The low-level parameters that
affect a server's operation can be examined and modified by calling NetServerGetInfo and
NetServerSetInfo.

The LANMan 2.x server API included several fields which logically belong to other LANMan services
and core NT components. For this reason the server information levels available in LANMan 2.x are no
longer available in Windows networking APIs. The server specific information is available in 3 levels
starting at base level 100.

The server APIs information structures are:

System Information -

Level 100 available with guest access -

typedef struct _SERVER_INFO_100 {
DWORD sv100_platform_id;
LPWSTR sv100_name;

} SERVER_INFO_100, *PSERVER_INFO_100, *LPSERVER_INFO_100;

Level 101 available with User access -

typedef struct _SERVER_INFO_101 {
DWORD sv101_platform_id;
LPWSTR sv101_name;
DWORD sv101_version_major;
DWORD sv101_version_minor;
DWORD sv101_type;
LPWSTR sv101_comment;

} SERVER_INFO_101, *PSERVER_INFO_101, *LPSERVER_INFO_101;

Level 102 available with Admin access -

typedef struct SERVER_INFO_102 {
DWORD sv102_platform_id;
LPWSTR sv102_name;
DWORD sv102_version_major;
DWORD sv102_version_minor;
DWORD sv102_type;
LPWSTR sv102_comment;
DWORD sv102_users;
DWORD sv102_disc;
BOOL sv102_hidden;
DWORD sv102_announce;
DWORD sv102_anndelta;
LPWSTR sv102_userpath;

} SERVER_INFO_102, *PSERVER_INFO_102, *LPSERVER_INFO_102;

Level 400-499 OS/2 Server information.

Level 402 available with Admin access -

typedef struct _SERVER_INFO_402 {
DWORD sv402_ulist_mtime;
DWORD sv402_glist_mtime;
DWORD sv402_alist_mtime;
LPWSTR sv402_alerts;
DWORD sv402_security;
DWORD sv402_numadmin;
DWORD sv402_lanmask;
LPWSTR sv402_guestacct;
DWORD sv402_chdevs;
DWORD sv402_chdevq;
DWORD sv402_chdevjobs;
DWORD sv402_connections;
DWORD sv402_shares;
DWORD sv402_openfiles;
DWORD sv402_sessopens;
DWORD sv402_sessvcs;
DWORD sv402_sessreqs;
DWORD sv402_opensearch;
DWORD sv402_activelocks;
DWORD sv402_numreqbuf;
DWORD sv402_sizreqbuf;
DWORD sv402_numbigbuf;
DWORD sv402_numfiletasks;
DWORD sv402_alertsched;
DWORD sv402_erroralert;
DWORD sv402_logonalert;
DWORD sv402_accessalert;
DWORD sv402_diskalert;
DWORD sv402_netioalert;
DWORD sv402_maxauditsz;
LPWSTR sv402_srvheuristics;

} SERVER_INFO_402, *PSERVER_INFO_402, *LPSERVER_INFO_402;

Level 403 available with Admin access -

typedef struct _SERVER_INFO_403 {
DWORD sv403_ulist_mtime;
DWORD sv403_glist_mtime;
DWORD sv403_alist_mtime;
LPWSTR sv403_alerts;
DWORD sv403_security;
DWORD sv403_numadmin;
DWORD sv403_lanmask;
LPWSTR sv403_guestacct;
DWORD sv403_chdevs;
DWORD sv403_chdevq;
DWORD sv403_chdevjobs;
DWORD sv403_connections;
DWORD sv403_shares;
DWORD sv403_openfiles;
DWORD sv403_sessopens;
DWORD sv403_sessvcs;
DWORD sv403_sessreqs;
DWORD sv403_opensearch;
DWORD sv403_activelocks;
DWORD sv403_numreqbuf;
DWORD sv403_sizreqbuf;
DWORD sv403_numbigbuf;
DWORD sv403_numfiletasks;
DWORD sv403_alertsched;
DWORD sv403_erroralert;
DWORD sv403_logonalert;
DWORD sv403_accessalert;
DWORD sv403_diskalert;
DWORD sv403_netioalert;
DWORD sv403_maxauditsz;
LPWSTR sv403_srvheuristics;
DWORD sv403_auditedevents;
DWORD sv403_autoprofile;
LPWSTR sv403_autopath;

} SERVER_INFO_403, *PSERVER_INFO_403, *LPSERVER_INFO_403;

Level 500-599 NT Server information.

Level 502 available with Admin access -

typedef struct _SERVER_INFO_502 {
DWORD sv502_sessopens;
DWORD sv502_sessvcs;
DWORD sv502_opensearch;
DWORD sv502_sizreqbuf;
DWORD sv502_initworkitems;
DWORD sv502_maxworkitems;
DWORD sv502_rawworkitems;
DWORD sv502_irpstacksize;
DWORD sv502_maxrawbuflen;
DWORD sv502_sessusers;
DWORD sv502_sessconns;
DWORD sv502_maxpagedmemoryusage;
DWORD sv502_maxnonpagedmemoryusage;
BOOL sv502_enablesoftcompat;

 BOOL sv502_enableforcedlogoff;
BOOL sv502_timesource;
BOOL sv502_acceptdownlevelapis;
BOOL sv502_lmannounce;

} SERVER_INFO_502, *PSERVER_INFO_502, *LPSERVER_INFO_502;
typedef struct _SERVER_INFO_503 {
 DWORD sv503_sessopens;
 DWORD sv503_sessvcs;
 DWORD sv503_opensearch;

DWORD sv503_sizreqbuf;
DWORD sv503_initworkitems;
DWORD sv503_maxworkitems;
DWORD sv503_rawworkitems;
DWORD sv503_irpstacksize;
DWORD sv503_maxrawbuflen;
DWORD sv503_sessusers;
DWORD sv503_sessconns;
DWORD sv503_maxpagedmemoryusage;
DWORD sv503_maxnonpagedmemoryusage;
BOOL sv503_enablesoftcompat;
BOOL sv503_enableforcedlogoff;
BOOL sv503_timesource;
BOOL sv503_acceptdownlevelapis;
BOOL sv503_lmannounce;
LPTSTR sv503_domain;
DWORD sv503_maxcopyreadlen;
DWORD sv503_maxcopywritelen;
DWORD sv503_minkeepsearch;
DWORD sv503_maxkeepsearch;
DWORD sv503_minkeepcomplsearch;
DWORD sv503_maxkeepcomplsearch;
DWORD sv503_threadcountadd;
DWORD sv503_numblockthreads;

DWORD sv503_scavtimeout;
DWORD sv503_minrcvqueue;
DWORD sv503_minfreeworkitems;
DWORD sv503_xactmemsize;
DWORD sv503_threadpriority;
DWORD sv503_maxmpxct;
DWORD sv503_oplockbreakwait;
DWORD sv503_oplockbreakresponsewait;
BOOL sv503_enableoplocks;
BOOL sv503_enableoplockforceclose;
BOOL sv503_enablefcbopens;
BOOL sv503_enableraw;
BOOL sv503_enabledpc;
BOOL sv503_enablemdlio;
BOOL sv503_enablefastio;

} SERVER_INFO_503, *PSERVER_INFO_503, *LPSERVER_INFO_503;

The following infolevels are only valid for NetServerSetInfo and replace the older way of passing in a
Parmnum to set a specific field.

The following are supported on downlevel systems (i.e. LANMan 2.x) as well:

typedef struct _SERVER_INFO_1005 {
DWORD sv1005_comment;

} SERVER_INFO_1005, *PSERVER_INFO_1005, *LPSERVER_INFO_1005;

typedef struct _SERVER_INFO_1107 {
DWORD sv1107_users;

} SERVER_INFO_1107, *PSERVER_INFO_1107, *LPSERVER_INFO_1107;

typedef struct _SERVER_INFO_1010 {
DWORD sv1010_disc;

} SERVER_INFO_1010, *PSERVER_INFO_1010, *LPSERVER_INFO_1010;
typedef struct _SERVER_INFO_1016 {

BOOL sv1016_hidden;
} SERVER_INFO_1016, *PSERVER_INFO_1016, *LPSERVER_INFO_1016;

typedef struct _SERVER_INFO_1017 {
DWORD sv1017_announce;

} SERVER_INFO_1017, *PSERVER_INFO_1017, *LPSERVER_INFO_1017;

typedef struct _SERVER_INFO_1018 {
DWORD sv1018_anndelta;

} SERVER_INFO_1018, *PSERVER_INFO_1018, *LPSERVER_INFO_1018;

typedef struct _SERVER_INFO_1037 {
DWORD sv1037_alertsched;

} SERVER_INFO_1037, *PSERVER_INFO_1037, *LPSERVER_INFO_1037;

typedef struct _SERVER_INFO_1038 {
DWORD sv1038_erroralert;

} SERVER_INFO_1038, *PSERVER_INFO_1038, *LPSERVER_INFO_1038;

typedef struct _SERVER_INFO_1039 {
DWORD sv1039_logonalert;

} SERVER_INFO_1039, *PSERVER_INFO_1039, *LPSERVER_INFO_1039;

typedef struct _SERVER_INFO_1040 {
DWORD sv1040_accessalert;

} SERVER_INFO_1040, *PSERVER_INFO_1040, *LPSERVER_INFO_1040;

typedef struct _SERVER_INFO_1041 {
DWORD sv1041_diskalert;

} SERVER_INFO_1041, *PSERVER_INFO_1041, *LPSERVER_INFO_1041;

typedef struct _SERVER_INFO_1042 {
DWORD sv1042_netioalert;

} SERVER_INFO_1042, *PSERVER_INFO_1042, *LPSERVER_INFO_1042;

typedef struct _SERVER_INFO_1043 {
DWORD sv1043_maxauditsz;

} SERVER_INFO_1043, *PSERVER_INFO_1043, *LPSERVER_INFO_1043;

The following do not do anything on downlevel systems (i.e. LANMan 2.x) since they cannot be
modified on the fly on those systems:

typedef struct _SERVER_INFO_1009 {
DWORD sv1009_users;

} SERVER_INFO_1009, *PSERVER_INFO_1009, *LPSERVER_INFO_1009;

typedef struct _SERVER_INFO_1021 {
LPWSTR sv1021_userpath;

} SERVER_INFO_1021, *PSERVER_INFO_1021, *LPSERVER_INFO_1021;

typedef struct _SERVER_INFO_1022 {
DWORD sv1022_chdevs;

} SERVER_INFO_1022, *PSERVER_INFO_1022, *LPSERVER_INFO_1022;

typedef struct _SERVER_INFO_1028 {
DWORD sv1028_sessopens;

} SERVER_INFO_1028, *PSERVER_INFO_1028, *LPSERVER_INFO_1028;

typedef struct _SERVER_INFO_1029 {
DWORD sv1029_opensearch;

} SERVER_INFO_1029, *PSERVER_INFO_1029, *LPSERVER_INFO_1029;

The following are not supported on downlevel systems (i.e. LANMan 2.x) since these are NT-only
fields:

typedef struct _SERVER_INFO_1001 {
DWORD sv1001_maxworkitems;

} SERVER_INFO_1001, *PSERVER_INFO_1001, *LPSERVER_INFO_1001;

typedef struct _SERVER_INFO_1002 {
DWORD sv1002_maxrawbuflen;

} SERVER_INFO_1002, *PSERVER_INFO_1002, *LPSERVER_INFO_1002;

typedef struct _SERVER_INFO_1003 {
DWORD sv1003_sessusers;

} SERVER_INFO_1003, *PSERVER_INFO_1003, *LPSERVER_INFO_1003;

typedef struct _SERVER_INFO_1004 {
DWORD sv1004_sesscons;

} SERVER_INFO_1004, *PSERVER_INFO_1004, *LPSERVER_INFO_1004;

typedef struct _SERVER_INFO_1006 {
DWORD sv1006_enablesoftcompat;

} SERVER_INFO_1006, *PSERVER_INFO_1006, *LPSERVER_INFO_1006;

For NetServerSetInfo, parmnum values refer to the fields in the _SERVER_INFO structures as
follows. These values are used when indicating an error in a specific parameter via parm_err.

parmnum value Field in server_info struct

SV_NAME_PARMNUM sv_name
SV_VERSION_MAJOR_PARMNUM sv_version_major
SV_VERSION_MINOR_PARMNUM sv_version_minor
SV_TYPE_PARMNUM sv_type
SV_COMMENT_PARMNUM sv_comment
SV_USERS_PARMNUM sv_users
SV_DISC_PARMNUM sv_disc
SV_HIDDEN_PARMNUM sv_hidden
SV_ANNOUNCE_PARMNUM sv_announce
SV_ANNDELTA_PARMNUM sv_anndelta
SV_USERPATH_PARMNUM sv_userpath
SV_ULIST_MTIME_PARMNUM sv_ulist_mtime
SV_GLIST_MTIME_PARMNUM sv_glist_mtime
SV_ALIST_MTIME_PARMNUM sv_alist_mtime
SV_ALERTS_PARMNUM sv_alerts
SV_SECURITY_PARMNUM sv_security
SV_NUMADMIN_PARMNUM sv_numadmin
SV_LANMASK_PARMNUM sv_lanmask
SV_GUESTACC_PARMNUM sv_guestacc
SV_CHDEVS_PARMNUM sv_chdevs
SV_CHDEVQ_PARMNUM sv_chdevq
SV_CHDEVJOBS_PARMNUM sv_chdevjobs
SV_CONNECTIONS_PARMNUM sv_connections
SV_SHARES_PARMNUM sv_shares
SV_OPENFILES_PARMNUM sv_openfiles
SV_SESSOPENS_PARMNUM sv_sessopens
SV_SESSVCS_PARMNUM sv_sessvcs
SV_SESSREQS_PARMNUM sv_sessreqs
SV_OPENSEARCH_PARMNUM sv_opensearch
SV_ACTIVELOCKS_PARMNUM sv_activelocks
SV_NUMREQBUF_PARMNUM sv_numreqbuf
SV_SIZREQBUF_PARMNUM sv_sizreqbuf
SV_NUMBIGBUF_PARMNUM sv_numbigbuf
SV_NUMFILETASKS_PARMNUM sv_numfiletasks
SV_ALERTSCHED_PARMNUM sv_alertsched
SV_ERRORALERT_PARMNUM sv_erroralert
SV_LOGONALERT_PARMNUM sv_logonalert
SV_ACCESSALERT_PARMNUM sv_accessalert
SV_DISKALERT_PARMNUM sv_diskalert
SV_NETIOALERT_PARMNUM sv_netioalert
SV_MAXAUDITSZ_PARMNUM sv_maxauditsz
SV_SRVHEURISTICS_PARMNUM sv_srvheuristics
SV_AUDITEDEVENTS_PARMNUM sv_auditedevents
SV_AUTOPROFILE_PARMNUM sv_autoprofile
SV_MAXWORKITEMS_PARMNUM sv_maxworkitems
SV_RAWWORKITEMS_PARMNUM sv_rawworkitems
SV_IRPSTACKSIZE_PARMNUM sv_irpstacksize
SV_SESSUSERS_PARMNUM sv_sessusers
SV_SESSCONNS_PARMNUM sv_sessconns
SV_MAXNONPAGEDMEMORYUSAGE_PARMNUM sv_maxnonpagedmemoryusage

SV_MAXPAGEDMEMORYUSAGE_PARMNUM sv_maxpagedmmeoryusage
SV_ENABLEOFTCOMPAT_PARMNUM sv_enablesoftcompat

The server APIs are:

4.3.1. NetServerEnum

Use the WNetEnumResource Win32 API if the information you require is returned by it. The
WNetEnumResource will return the type (disk, printer, ...), name and comment for a server.

NetServerEnum lists all servers of the specified type(s) that are visible in the specified domain(s). For
example, an application can call NetServerEnum to list all domain controllers only or all SQL servers
only.

Privilege Level

No special privilege level is required to successfully execute NetServerEnum.

NET_API_STATUS NET_API_FUNCTION
NetServerEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN DWORD servertype,
IN LPWSTR domain,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 100 and 101 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

servertype __A DWORD mask which filters server entries to return from the enumeration. The defines
mask bits are:
SV_TYPE_WORKSTATION 0x00000001 All LAN Manager workstation
SV_TYPE_SERVER 0x00000002 All LAN Manager server
SV_TYPE_SQLSERVER 0x00000004 Any server running with SQL server
SV_TYPE_DOMAIN_CTRL 0x00000008 Primary domain controller
SV_TYPE_DOMAIN_BAKCTRL 0x00000010 Backup domain controller
SV_TYPE_TIMESOURCE 0x00000020 Server running the timesource service
SV_TYPE_AFP 0x00000040 Apple File Protocol servers
SV_TYPE_NOVELL 0x00000080 Novell servers
SV_TYPE_DOMAIN_MEMBER 0x00000100 Domain Member
SV_TYPE_PRINT 0x00000200 Server sharing print queue
SV_TYPE_DIALIN 0x00000400 Server running dialin service.
SV_TYPE_XENIX_SERVER 0x00000800 Xenix server
SV_TYPE_NT 0x00001000 NT server
SV_TYPE_WFW 0x00002000 Server running Windows for Workgroups
SV_TYPE_POTENTIAL_BROWSER 0x00010000 Server that can run the browser service
SV_TYPE_BACKUP_BROWSER 0x00020000 Server running a browser service as backup
SV_TYPE_MASTER_BROWSER 0x00040000 Server running the master browser service
SV_TYPE_DOMAIN_MASTER 0x00080000 Server running the domain master browser
SV_TYPE_ALL 0xffffffff All servers

domain __A pointer to an UNICODE string containing the name of the domain for which a list of
servers is to returned. The domain must be the primary domain, one of the other domains
for the workstation or the logon domain.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing server search. The handle should be zero
on the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored..

4.3.2. NetServerGetInfo

NetServerGetInfo retrieves information about the specified server.

Privilege Level

Admin privilege or accounts, comm, print, or server operator privilege is required to successfully
execute NetServerGetInfo at level 102 or higher. No special privilege is required for level 100 or level
101 calls.

NET_API_STATUS NET_API_FUNCTION
NetServerGetInfo (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 100, 101 and 102 are valid for all platforms. 302, 402,
403, 502 are valid for the appropriate platform.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.3.3. NetServerSetInfo

NetServerSetInfo sets a server's operating parameters; it can set them individually or collectively.
This information is stored such that it remains in effect after the system has been reinitialized.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetServerSetInfo.

NET_API_STATUS NET_API_FUNCTION
NetServerSetInfo (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information to set. 100, 101 and 102 are valid for all platforms. 302, 402, 403,
502 are valid for the appropriate platform. In addition, 1001 - 1006, 1009 - 1011, 1016 -
1018, 1021, 1022, 1028, 1029, 1037 - 1043 are valid based on the restrictions for
downlevel systems described above.

buf __A pointer to a buffer containing the server information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.3.4. NetServerDiskEnum

NetServerDiskEnum retrieves a list of disk drives on a server.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetServerDiskEnum
on a remote computer. No special privilege is required for local calls.

NET_API_STATUS NET_API_FUNCTION
NetServerDiskEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 0 is the only valid level.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing server disk search. The handle should be
zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,
then no resume handle is stored..

4.4. Workstation and WorkstationUser APIs

Wksta API functions perform administrative tasks on a local or remote workstation. Any user or
application with admin privilege on a local or remote server can perform administrative tasks on
that workstation to control its operation, user access, and resource sharing. The low-level
parameters that affect a workstation's operation can be examined and modified by calling
NetWkstaGetInfo and NetWkstaSetInfo.

The workstation API data structures are restructured from those of LANMan 2.x to allow the
information to be grouped by type and privilege. The LANMan 2.x workstation information format is
discontinued due to the following problems:

o The base level (0 and 1) were not grouped by accessibility such that a non superset level (level
10) was required to allow guest access to the information.

o Platform specific implementation information was included in the base levels such that every

platform had to return all information including a default for non-relevant fields. This grew the
size of the information structures unneccessarily, making the API cumbersome to use.

The workstation APIs allow access to two discrete groups of workstation information:

o System information.

o Platform specific information (NT, OS/2, DOS, etc.)

The WkstaUser APIs allow access to user-specific information. The user-specific information is
separated from the workstation information because there can be more than one user on a workstation.

Within each group the fields are categorized by security access such that the guest accessible fields are
a subset of the user accessible fields which are a subset of the admin accessible fields.
The system information structure contains a platform base number which identifies the levels and
format of the platform specific information structures.

The workstation APIs information structures are:

System Information -

Level 100 available with guest access -

typedef struct _WKSTA_INFO_100 {
DWORD wki100_platform_id;
LPWSTR wki100_computername;
LPWSTR wki100_langroup;
DWORD wki100_ver_major;
DWORD wki100_ver_minor;

} WKSTA_INFO_100, *PWKSTA_INFO_100, *LPWKSTA_INFO_100;

Level 101 available with User access -

typedef struct _WKSTA_INFO_101 {
DWORD wki101_platform_id;
LPWSTR wki101_computername;
LPWSTR wki101_langroup;
DWORD wki101_ver_major;
DWORD wki101_ver_minor;
LPWSTR wki101_lanroot;

} WKSTA_INFO_101, *PWKSTA_INFO_101, *LPWKSTA_INFO_101;

Level 102 available with Admin access -

typedef struct _WKSTA_INFO_102 {
DWORD wki102_platform_id;
LPWSTR wki102_computername;
LPWSTR wki102_langroup;
DWORD wki102_ver_major;
DWORD wki102_ver_minor;
LPWSTR wki102_lanroot;
DWORD wki102_logged_on_users;

} WKSTA_INFO_102, *PWKSTA_INFO_102, *LPWKSTA_INFO_102;

Platform Specific Information

Level 300-399 Dos Workstation information.

Level 300 available with guest access -

Level 302 available with Admin access -

typedef struct _WKSTA_INFO_302 {
DWORD wki302_char_wait;
DWORD wki302_collection_time;
DWORD wki302_maximum_collection_count;
DWORD wki302_keep_conn;
DWORD wki302_keep_search;
DWORD wki302_max_cmds;
DWORD wki302_num_work_buf;
DWORD wki302_siz_work_buf;
DWORD wki302_max_wrk_cache;
DWORD wki302_sess_timeout;
DWORD wki302_siz_error;
DWORD wki302_num_alerts;
DWORD wki302_num_services;
DWORD wki302_errlog_sz;
DWORD wki302_print_buf_time;
DWORD wki302_num_char_buf;
DWORD wki302_siz_char_buf;
LPWSTR wki302_wrk_heuristics;
DWORD wki302_mailslots;
DWORD wki302_num_dgram_buf;

} WKSTA_INFO_302, *PWKSTA_INFO_302, *LPWKSTA_INFO_302;
Level 400-499 OS/2 Workstation information.
Level 402 available with Admin access -

typedef struct _WKSTA_INFO_402 {
DWORD wki402_char_wait;
DWORD wki402_collection_time;
DWORD wki402_maximum_collection_count;
DWORD wki402_keep_conn;
DWORD wki402_keep_search;
DWORD wki402_max_cmds;
DWORD wki402_num_work_buf;
DWORD wki402_siz_work_buf;
DWORD wki402_max_wrk_cache;
DWORD wki402_sess_timeout;
DWORD wki402_siz_error;
DWORD wki402_num_alerts;
DWORD wki402_num_services;
DWORD wki402_errlog_sz;
DWORD wki402_print_buf_time;
DWORD wki402_num_char_buf;
DWORD wki402_siz_char_buf;
LPWSTR wki402_wrk_heuristics;
DWORD wki402_mailslots;
DWORD wki402_num_dgram_buf;
DWORD wki402_max_threads;

} WKSTA_INFO_402, *PWKSTA_INFO_402, *LPWKSTA_INFO_402;

Level 500-599 NT Workstation information.

Level 502 available with Admin access -

typedef struct _WKSTA_INFO_502 {
DWORD wki502_char_wait;
DWORD wki502_collection_time;
DWORD wki502_maximum_collection_count;
DWORD wki502_keep_conn;
DWORD wki502_max_cmds;
DWORD wki502_sess_timeout;
DWORD wki502_siz_char_buf;
DWORD wki502_max_threads;
DWORD wki502_lock_quota;
DWORD wki502_lock_increment;
DWORD wki502_lock_maximum;
DWORD wki502_pipe_increment;
DWORD wki502_pipe_maximum;
DWORD wki502_cache_file_timeout;
DWORD wki502_dormant_file_limit;
DWORD wki502_read_ahead_throughput;
DWORD wki502_num_mailslot_buffers;
DWORD wki502_num_srv_announce_buffers;

DWORD wki502_dgreceiver_threads;
BOOL wki502_use_opportunistic_locking;
BOOL wki502_use_unlock_behind;
BOOL wki502_use_close_behind;
BOOL wki502_buf_named_pipes;
BOOL wki502_use_lock_read_unlock;
BOOL wki502_utilize_nt_caching;
BOOL wki502_use_raw_read;
BOOL wki502_use_raw_write;
BOOL wki502_use_write_raw_data;
BOOL wki502_use_encryption;
BOOL wki502_buf_files_deny_write;
BOOL wki502_buf_read_only_files;
BOOL wki502_force_core_create_mode;
BOOL wki502_use_512_byte_max_transfer;

} WKSTA_INFO_502, *PWKSTA_INFO_502, *LPWKSTA_INFO_502;
This format of workstation information allows for a more logical future extension. When new
information is to be added to any set of guest,user and admin information a new set of levels is created
to include the current infromation plus the new information.
The following infolevels are only valid for NetWkstaSetInfo and replace the older way of passing in a
Parmnum to set a specific field.

The following are supported on downlevel systems (i.e. LANMan 2.x) as well:

typedef struct _WKSTA_INFO_1010 {
DWORD wki1010_char_wait;

} WKSTA_INFO_1010, *PWKSTA_INFO_1010, *LPWKSTA_INFO_1010;

typedef struct _WKSTA_INFO_1011 {
DWORD wki1011_collection_time;

} WKSTA_INFO_1011, *PWKSTA_INFO_1011, *LPWKSTA_INFO_1011;

typedef struct _WKSTA_INFO_1012 {
DWORD wki1012_maximum_collection_count;

} WKSTA_INFO_1012, *PWKSTA_INFO_1012, *LPWKSTA_INFO_1012;

typedef struct _WKSTA_INFO_1027 {
DWORD wki1027_errlog_sz;

} WKSTA_INFO_1027, *PWKSTA_INFO_1027, *LPWKSTA_INFO_1027;

typedef struct _WKSTA_INFO_1028 {
DWORD wki1028_print_buf_time;

} WKSTA_INFO_1028, *PWKSTA_INFO_1028, *LPWKSTA_INFO_1028;

typedef struct _WKSTA_INFO_1032 {
DWORD wki1032_wrk_heuristics;

} WKSTA_INFO_1032, *PWKSTA_INFO_1032, *LPWKSTA_INFO_1032;

typedef struct _WKSTA_INFO_1035 {

LPWSTR wki1035_oth_domains;
} WKSTA_INFO_1035, *PWKSTA_INFO_1035, *LPWKSTA_INFO_1035;

The following do nothing on downlevel systems (i.e. LANMan 2.x) since these fields cannot be set on
them:

typedef struct _WKSTA_INFO_1013 {
DWORD wki1013_keep_conn;

} WKSTA_INFO_1013, *PWKSTA_INFO_1013, *LPWKSTA_INFO_1013;

typedef struct _WKSTA_INFO_1018 {
DWORD wki1018_sess_timeout;

} WKSTA_INFO_1018, *PWKSTA_INFO_1018, *LPWKSTA_INFO_1018;

typedef struct _WKSTA_INFO_1023 {
DWORD wki1023_siz_char_buf;

} WKSTA_INFO_1023, *PWKSTA_INFO_1023, *LPWKSTA_INFO_1023;

typedef struct _WKSTA_INFO_1033 {
DWORD wki1033_max_threads;

} WKSTA_INFO_1033, *PWKSTA_INFO_1033, *LPWKSTA_INFO_1033;

The following are not supported on downlevel systems (i.e. LANMan 2.x):

typedef struct _WKSTA_INFO_1041 {
DWORD wki1041_lock_quota;

} WKSTA_INFO_1041, *PWKSTA_INFO_1041, *LPWKSTA_INFO_1041;

typedef struct _WKSTA_INFO_1042 {
DWORD wki1042_lock_increment;

} WKSTA_INFO_1042, *PWKSTA_INFO_1042, *LPWKSTA_INFO_1042;

typedef struct _WKSTA_INFO_1043 {
DWORD wki1043_lock_maximum;

} WKSTA_INFO_1043, *PWKSTA_INFO_1043, *LPWKSTA_INFO_1043;

typedef struct _WKSTA_INFO_1044 {
DWORD wki1044_pipe_increment;

} WKSTA_INFO_1044, *PWKSTA_INFO_1044, *LPWKSTA_INFO_1044;

typedef struct _WKSTA_INFO_1045 {
DWORD wki1045_pipe_maximum;

} WKSTA_INFO_1045, *PWKSTA_INFO_1045, *LPWKSTA_INFO_1045;

typedef struct _WKSTA_INFO_1046 {
DWORD wki1046_dormant_file_limit;

} WKSTA_INFO_1046, *PWKSTA_INFO_1046, *LPWKSTA_INFO_1046;

typedef struct _WKSTA_INFO_1047 {
DWORD wki1047_cache_file_timeout;

} WKSTA_INFO_1047, *PWKSTA_INFO_1047, *LPWKSTA_INFO_1047;

typedef struct _WKSTA_INFO_1048 {
BOOL wki1048_use_opportunity_locking;

} WKSTA_INFO_1048, *PWKSTA_INFO_1048, *LPWKSTA_INFO_1048;

typedef struct _WKSTA_INFO_1049 {
BOOL wki1049_use_unlock_behind;

} WKSTA_INFO_1049, *PWKSTA_INFO_1049, *LPWKSTA_INFO_1049;

typedef struct _WKSTA_INFO_1050 {
BOOL wki1050_use_close_behind;

} WKSTA_INFO_1050, *PWKSTA_INFO_1050, *LPWKSTA_INFO_1050;

typedef struct _WKSTA_INFO_1051 {
BOOL wki1051_buf_named_pipes;

} WKSTA_INFO_1051, *PWKSTA_INFO_1051, *LPWKSTA_INFO_1051;

typedef struct _WKSTA_INFO_1052 {
BOOL wki1052_use_lock_read_unlock;

} WKSTA_INFO_1052, *PWKSTA_INFO_1052, *LPWKSTA_INFO_1052;

typedef struct _WKSTA_INFO_1053 {
BOOL wki1053_utilize_nt_caching;

} WKSTA_INFO_1053, *PWKSTA_INFO_1053, *LPWKSTA_INFO_1053;

typedef struct _WKSTA_INFO_1054 {
BOOL wki1054_use_raw_read;

} WKSTA_INFO_1054, *PWKSTA_INFO_1054, *LPWKSTA_INFO_1054;

typedef struct _WKSTA_INFO_1055 {
BOOL wki1055_use_raw_write;

} WKSTA_INFO_1055, *PWKSTA_INFO_1055, *LPWKSTA_INFO_1055;

typedef struct _WKSTA_INFO_1056 {
BOOL wki1056_use_write_raw_data;

} WKSTA_INFO_1056, *PWKSTA_INFO_1056, *LPWKSTA_INFO_1056;

typedef struct _WKSTA_INFO_1057 {
BOOL wki1057_use_encryption;

} WKSTA_INFO_1057, *PWKSTA_INFO_1057, *LPWKSTA_INFO_1057;

typedef struct _WKSTA_INFO_1058 {
BOOL wki1058_buf_files_deny_write;

} WKSTA_INFO_1058, *PWKSTA_INFO_1058, *LPWKSTA_INFO_1058;

typedef struct _WKSTA_INFO_1059 {
BOOL wki1059_buf_read_only_files;

} WKSTA_INFO_1059, *PWKSTA_INFO_1059, *LPWKSTA_INFO_1059;

typedef struct _WKSTA_INFO_1060 {
BOOL wki1060_force_core_create_mode;

} WKSTA_INFO_1060, *PWKSTA_INFO_1060, *LPWKSTA_INFO_1060;

typedef struct _WKSTA_INFO_1061 {
BOOL wki1061_use_512_byte_max_transfer;

} WKSTA_INFO_1061, *PWKSTA_INFO_1061, *LPWKSTA_INFO_1061;

typedef struct _WKSTA_INFO_1062 {
DWORD wki1062_read_ahead_throughput;

} WKSTA_INFO_1062, *PWKSTA_INFO_1062, *LPWKSTA_INFO_1062;

The WkstaUser API information structures are:

Level 0 and 1 available with User access -

typedef struct _WKSTA_USER_INFO_0 {
LPWSTR wkui0_username;

} WKSTA_USER_INFO_0, *PWKSTA_USER_INFO_0, *LPWKSTA_USER_INFO_0;

typedef struct _WKSTA_USER_INFO_1 {
LPWSTR wkui1_username;
LPWSTR wkui1_logon_domain;
LPWSTR wkui1_logon_server;
LPWSTR wkui1_oth_domains;

} WKSTA_USER_INFO_1, *PWKSTA_USER_INFO_1, *LPWKSTA_USER_INFO_1;

typedef struct _WKSTA_USER_INFO_1101 {
LPTSTR wkui1101_oth_domains;

} WKSTA_USER_INFO_1101, *PWKSTA_USER_INFO_1101,
 *LPWKSTA_USER_INFO_1101;

For NetWkstaSetInfo, parmnum values refer to the fields in the wksta_info structure as follows. These
values are used when indicating an error in a specific parameter via parm_err.
parmnum value Field in wksta_info struct

WKSTA_PLATFORM_ID_PARMNUM wki_platform_id
WKSTA_COMPUTERNAME_PARMNUM wki_computername
WKSTA_LANGROUP_PARMNUM wki_langroup
WKSTA_OTH_DOMAINS_PARMNUM wki_oth_domains
WKSTA_VER_MAJOR_PARMNUM wki_ver_major
WKSTA_VER_MINOR_PARMNUM wki_ver_minor
WKSTA_LOGGED_ON_USERS_PARMNUM wki_logged_on_users
WKSTA_LANROOT_PARMNUM wki_lanroot
WKSTA_LOGON_DOMAIN_PARMNUM wki_logon_domain
WKSTA_LOGON_SERVER_PARMNUM wki_logon_server
WKSTA_CHARWAIT_PARMNUM wki_char_wait
WKSTA_CHARTIME_PARMNUM wki_collection_time
WKSTA_CHARCOUNT_PARMNUM wki_maximum_collection_count
WKSTA_KEEPCONN_PARMNUM wki_keep_conn
WKSTA_KEEPSEARCH_PARMNUM wki_keep_search
WKSTA_MAXCMDS_PARMNUM wki_max_cmds
WKSTA_NUMWORKBUF_PARMNUM wki_num_work_buf
WKSTA_MAXWRKCACHE_PARMNUM wki_max_wrk_cache
WKSTA_SESSTIMEOUT_PARMNUM wki_sess_timeout
WKSTA_SIZERROR_PARMNUM wki_siz_error
WKSTA_NUMALERTS_PRAMNUM wki_num_alerts
WKSTA_NUMSERVICES_PARMNUM wki_num_services
WKSTA_ERRLOGSZ_PARMNUM wki_errlog_sz
WKSTA_PRINTBUFTIME_PARMNUM wki_print_buf_time
WKSTA_NUMCHARBUF_PARMNUM wki_num_char_buf
WKSTA_SIZCHARBUF_PARMNUM wki_siz_char_buf
WKSTA_WRKHEURISTICS_PARMNUM wki_wrk_heuristics
WKSTA_MAILSLOTS_PRAMNUM wki_mailslots
WKSTA_MAXTHREADS_PARMNUM wki_max_threads
WKSTA_SIZWORKBUF_PARMNUM wki_siz_work_buf
WKSTA_DORMANTTIMEOUT_PARMNUM wki_dormant_timeout
WKSTA_LOCKQUOTA_PARMNUM wki_lock_quota
WKSTA_LOCKINCREMENT_PARMNUM wki_lock_increment
WKSTA_LOCKMAXIMUM_PARMNUM wki_lock_maximum
WKSTA_PIPEINCREMENT_PRAMNUM wki_pipe_increment
WKSTA_PIPEMAXIMUM_PARMNUM wki_pipe_maximum
WKSTA_RAWREADTHRESHOLD_PARMNUM wki_raw_read_threshold
WKSTA_USEOPLOCKING_PARMNUM wki_use_opportunistic_locking
WKSTA_USEOPBATCH_PARMNUM wki_use_op_batch
WKSTA_USEUNLOCKBEHIND_PARMNUM wki_use_unlock_behind
WKSTA_USECLOSEBEHIND_PARMNUM wki_use_close_behind
WKSTA_BUFNAMEDPIPES_PARMNUM wksta_buf_named_pipes
WKSTA_USELOCKANDREADANDUNLOCK_PARMNUM wki_use_lock_and_read_and_unlock
WKSTA_UTILIZENTCACHING_PARMNUM wki_utilize_nt_caching
WKSTA_USERAWREAD_PARMNUM wki_use_raw_read
WKSTA_USEWRITERAWWITHDATA_PARMNUM wki_use_write_raw_with_data
WKSTA_USEENCRYPTION_PARMNUM wki_use_encryption
WKSTA_BUFFILESWITHDENYWRITE_PARMNUM wki_buf_files_with_deny_write
WKSTA_BUFREADONLYFILES_PRAMNUM wki_buf_read_only_files
WKSTA_FORCECORECREATEMODE_PARMNUM wki_force_core_create_mode
WKSTA_USE512BYTESMAXTRANSFER_PARMNUM wki_use_512_bytes_max_transfer

The workstation APIs are:

4.4.1. NetWkstaGetInfo

NetWkstaGetInfo returns information about the configuration elements for a workstation.

Privilege Level

Privilege requirements are described with the data structures for the infolevels above.

NET_API_STATUS NET_API_FUNCTION
NetWkstaGetInfo (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 100, 101, 102, 302, 402 and 502 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.4.2. NetWkstaSetInfo

NetWkstaSetInfo configures a workstation. This information is stored such that it remains in effect
after the system has been reinitialized.

Privilege Level

Admin privilege is required to successfully execute NetWkstaSetInfo.

NET_API_STATUS NET_API_FUNCTION
NetWkstaSetInfo (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information to set. 100, 101, 102, 201, 202, 302, 402, and 502 are valid. In
addition, 1010 - 1013, 1018, 1023, 1027, 1028, 1032, 1033, 1035, and 1041-1062 are valid
based on the restrictions mentioned above.

buf __A pointer to a buffer containing the wksta information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

The WkstaUser APIs are:

4.4.3. NetWkstaUserGetInfo

NetWkstaUserGetInfo returns the user-specific information about the configuration elements for a
workstation.

Privilege Level

Privilege requirements are described with the data structures for the infolevels above. This API only
works locally.

NET_API_STATUS NET_API_FUNCTION
NetWkstaUserGetInfo (

IN LPWSTR reserved,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

reserved __This field must be set to zero.

level __Level of information required. 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.4.4. NetWkstaUserSetInfo

NetWkstaUserSetInfo sets the user-specific information about the configuration elements for a
workstation.

Privilege Level

Privilege requirements are described with the data structures for the infolevels above. This API only
works locally.

NET_API_STATUS NET_API_FUNCTION
NetWkstaUserSetInfo (

IN LPWSTR reserved,
IN DWORD level,
OUT LPBYTE * bufptr.
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

reserved __This field must be set to zero.

level __Level of information required. 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.4.5. NetWkstaUserEnum

NetWkstaUserEnum lists information about all current users on the workstation.

Privilege Level

Admin privilege is required to successfully execute NetWkstaUserEnum both locally and on a remote
server.

NET_API_STATUS NET_API_FUNCTION
NetWkstaUserEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information provided. Must be 0 or 1.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing use search. The handle should be zero on
the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored..

4.5. Use APIs

The WNetAddConnection(2) and WNetCancelConnection(2) APIs should be used instead of the
NetUse APIs.

Use API functions examine or control connections (uses) between workstations and servers.
Connections are distinguished from sessions: a session is established the first time a workstation makes
a connection to a shared resource on the server; all further connections between the workstation and the
server are part of this same session until the session ends. Two types of connections can be made:
devicename connections (which can only be explicit) and universal-naming convention (UNC)
connections (which can be explicit or implicit).

Connections are made on a per user basis. A connection made by a user is deleted when that user logs
off. For this reason the NetUse API are local only, since a connection set up by a remote user would
not be accessible to any other users, even the user that was interactively logged onto that machine.

NetUseAdd creates a devicename connection or an explicit UNC connection. Implicit UNC
connections are made by the function responsible for the connection.

NetUseAdd establishes an explicit connection between the local computer and a resource shared on a
server by redirecting a local devicename to the sharename of a remote server resource (\
\servername\sharename). Once a devicename connection is made, users or applications can use the
remote resource by specifying the local devicename. To establish an implicit UNC connection, an
application passes the sharename of a resource to any function that accepts UNC pathnames.. The
function accepts the UNC name and makes a connection to the specified sharename. All further
requests on this connection require the full sharename.

NetUseDel ends a connection to a shared resource. NetUseEnum enumerates all current connections
between the local computer and resources on remote servers. NetUseGetInfo returns information about
a connection to a shared resource.

The Use APIs are available at three information levels.

typedef struct _USE_INFO_0 {
LPWSTR ui0_local;
LPWSTR ui0_remote;

} USE_INFO_0, *PUSE_INFO_0, *LPUSE_INFO_0;

typedef struct _USE_INFO_1 {
LPWSTR ui1_local;
LPWSTR ui1_remote;
LPWSTR ui1_password;
DWORD ui1_status;
DWORD ui1_asg_type;
DWORD ui1_refcount;
DWORD ui1_usecount;

} USE_INFO_1, *PUSE_INFO_1, *LPUSE_INFO_1;

Infolevel 2 is not available if the API is remoted to a downlevel system - ERROR_NOT_SUPPORTED
will be returned in that case.

typedef struct _USE_INFO_2 {
LPWSTR ui2_local;
LPWSTR ui2_remote;
LPWSTR ui2_password;
DWORD ui2_status;
DWORD ui2_asg_type;
DWORD ui2_refcount;
DWORD ui2_usecount;
LPWSTR ui2_username;
LPWSTR ui2_domainname;

} USE_INFO_2, *PUSE_INFO_2, *LPUSE_INFO_2;
The use APIs are:

4.5.1. NetUseAdd

WNetAddConnection(2) should be used in place of NetUseAdd.

NetUseAdd establishes a connection between a local or NULL devicename and a shared resource by
redirecting the local or NULL (UNC) devicename to the shared resource.

NET_API_STATUS NET_API_FUNCTION
NetUseAdd (

IN LPWSTR reserved OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

reserved __Must be NULL.

level __Level of information to set. 1 and 2 are valid.

buf __A pointer to a buffer containing the use information structure.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.5.2. NetUseDel

WNetCancelConnection(2) should be used in place of NetUseDel.

NetUseDel ends a connection to a shared resource.

Privilege Level

This API cannot be executed on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetUseDel (

IN LPWSTR reserved OPTIONAL,
IN LPWSTR usename,
IN DWORD ucond
);

Parameters:

reserved __Must be NULL.

usename __A pointer to an UNICODE string containing the path of the use to delete.

ucond __Level of force to use in deleting the use.

4.5.3. NetUseEnum

WNetEnumResource should be used in place of NetUseEnum.

NetUseEnum lists all current connections between the local computer and resources on remote servers.

Privilege Level

This API cannot be executed on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetUseEnum (

IN LPWSTR reserved OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

reserved __Must be NULL.

level __Level of information provided. Must be 0, 1 or 2.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing use search. The handle should be zero on
the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored..

4.5.4. NetUseGetInfo

WNetGetConnection should be used in place of NetUseGetInfo.

NetUseGetInfo retrieves information about a connection to a shared resource.

NET_API_STATUS NET_API_FUNCTION
NetUseGetInfo (

IN LPWSTR reserved OPTIONAL,
IN LPWSTR usename,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

reserved __Must be NULL.

usename __A pointer to an UNICODE string containing the local or remote name active use to
return information on.

level __Level of information required. 0, 1 and 2 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.6. Share APIs

Share API functions control shared resources. A shared resource is a local resource on a server (for
example, a disk directory, print device, or named pipe) that can be accessed by users and
applications on the network.

NetShareAdd allows a user or application to share a resource of a specific type using the specified
sharename. NetShareAdd requires the sharename and local devicename to share the resource. A user
or application must have an account on the server to access the resource.

LAN Manager defines three types of special sharenames for interprocess communication (IPC) and
remote administration of the server:

o IPC$, reserved for interprocess communication.

o ADMIN$, reserved for remote administration.

o A$, B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk
devices.

Share APIs are available at three information levels.

typedef struct _SHARE_INFO_0 {
LPWSTR shi0_netname;

} SHARE_INFO_0, *PSHARE_INFO_0, *LPSHARE_INFO_0;

typedef struct _SHARE_INFO_1 {
LPWSTR shi1_netname;
DWORD shi1_type;
LPWSTR shi1_remark;

} SHARE_INFO_1, *PSHARE_INFO_1, *LPSHARE_INFO_1;

typedef struct _SHARE_INFO_2 {
LPWSTR shi2_netname;
DWORD shi2_type;
LPWSTR shi2_remark;
DWORD shi2_permissions;
DWORD shi2_max_uses;
DWORD shi2_current_uses;
LPWSTR shi2_path;
LPWSTR shi2_passwd;

} SHARE_INFO_2, *PSHARE_INFO_2, *LPSHARE_INFO_2;

The following infolevels are only valid for NetShareSetInfo and replace the older way of passing in a
Parmnum to set a specific field.

The following are supported on downlevel systems (i.e. LANMan 2.x) as well:

typedef struct _SHARE_INFO_1004 {
LPWSTR shi1004_remark;

} SHARE_INFO_1004, *PSHARE_INFO_1004, *LPSHARE_INFO_1004;

typedef struct _SHARE_INFO_1006 {
DWORD shi1006_max_uses;

} SHARE_INFO_1006, *PSHARE_INFO_1006, *LPSHARE_INFO_1006;

For NetShareSetInfo, parmnum values refer to the fields in the share_info structure as follows. These
values are used when indicating an error in a specific parameter via parm_err.

parmnum value Field in share_info struct

SHI_NETNAME_PARMNUM shi_netname
SHI_TYPE_PARMNUM shi_type
SHI_REMARK_PRAMNUM shi_remark
SHI_PERMISSIONS_PARMNUM shi_permissions
SHI_MAX_USES_PARMNUM shi_max_uses
SHI_CURRENT_USES_PARMNUM shi_current_uses
SHI_PATH_PARMNUM shi_path
SHI_PASSWD_PARMNUM shi_passwd

The Share APIs are:

4.6.1. NetShareAdd

NetShareAdd shares a server resource.

Privilege Level

Do we still have comm operator and comm device queues?

This is now sticky, correct?

Admin privilege or comm, print, or server operator privilege is required to successfully execute

NetShareAdd on a remote server or on a computer that has local security enabled. The print operator
can add only printer queues. The comm operator can add only communication-device queues.

NET_API_STATUS NET_API_FUNCTION
NetShareAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information provided. Must be 2.

buf __A pointer to a buffer containing the share information structure.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.6.2. NetShareEnum

WNetEnumResource should be used in place of NetShareEnum.

NetShareEnum retrieves information about each shared resource on a server.

Privilege Level

Admin privilege or comm, print, or server operator privilege is required to successfully execute
NetShareEnum at level 2 on a remote server or on a computer that has local security enabled. No
special privilege is required for level 0 or level 1 calls.

NET_API_STATUS NET_API_FUNCTION
NetShareEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on

which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 0, 1 and 2 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing share search. The handle should be zero
on the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored..

4.6.3. NetShareGetInfo

NetShareGetInfo retrieves information about a particular shared resource on a server.

Privilege Level

Admin privilege or comm, print, or server operator privilege is required to successfully execute
NetShareGetInfo at level 2 on a remote server or on a computer that has local security enabled. No
special privilege is required for level 0 or level 1 calls.

NET_API_STATUS NET_API_FUNCTION
NetShareGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR netname,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

netname __A pointer to an UNICODE string containing the netname of the share to return
information on.

level __Level of information required. 0, 1 and 2 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.6.4. NetShareSetInfo

NetShareSetInfo sets the parameters of a shared resource.

Is this SetInfo also sticky?

Privilege Level

Admin privilege or comm, print, or server operator privilege is required to successfully execute
NetShareSetInfo on a remote server or on a computer that has local security enabled. The print
operator can set information only about printer queues. The comm operator can set information only
about communication-device queues.

NET_API_STATUS NET_API_FUNCTION
NetShareSetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR netname,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

netname __A pointer to an UNICODE string containing the netname of the share to set
information on.

level __Level of information to set. 1, 2, 1004 - 1006 and 1009 are valid.

buf __A pointer to a buffer containing the share information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.6.5. NetShareDel

NetShareDel deletes a sharename from a server's list of shared resources, disconnecting all
connections to the shared resource.

Privilege Level

Admin privilege or comm, print, or server operator privilege is required to successfully execute
NetShareDel on a remote server or on a computer that has local security enabled. The print operator
can delete only printer queues. The comm operator can delete only communication-device queues.

NET_API_STATUS NET_API_FUNCTION
NetShareDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR netname,
IN DWORD reserved
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

netname __A pointer to an UNICODE string containing the netname of the share to delete.

reserved __Reserved, must be zero.

4.6.6. NetShareCheck

NetShareCheck checks whether or not a server is sharing a device.

Privilege Level

No special privilege level is required to successfully execute NetShareCheck.

NET_API_STATUS NET_API_FUNCTION
NetShareCheck (

IN LPWSTR servername OPTIONAL,
IN LPWSTR device,
OUT LPDWORD type
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

device __A pointer to an UNICODE string containing the name of the device to check for shared
access.

type __On return the address pointed to by the type parameter contains the type of share the
device is offered with. This field is only set if success was returned.

4.7. Session

Session API functions control network sessions established between workstations and servers. They
require that the Server service be started on the specified server. A session is a link between a
workstation and a server. It is established the first time a workstation makes a connection with a
shared resource on the server. Until the session ends, all further connections between the
workstation and the server are part of this same session. To end a session, an application on the
server end of a connection calls NetSessionDel. This deletes all current connections between the

workstation and the server. NetSessionEnum returns information about all sessions established for
a server. NetSessionGetInfo returns information about a particular session.

Per-user information is managed by the NetSession APIs via the use of the username parameter. Since
there can be multiple users per session, this parameter is necessary in order to access the user-specific
information for the session.

Session APIs are available at four information levels.

typedef struct _SESSION_INFO_0 {
LPWSTR sesi0_cname;

} SESSION_INFO_0, *PSESSION_INFO_0, *LPSESSION_INFO_0;

typedef struct _SESSION_INFO_1 {
LPWSTR sesi1_cname;
LPWSTR sesi1_username;
DWORD sesi1_num_opens;
DWORD sesi1_time;
DWORD sesi1_idle_time;
DWORD sesi1__flags;

} SESSION_INFO_1, *PSESSION_INFO_1, *LPSESSION_INFO_1;

typedef struct _SESSION_INFO_2 {
LPWSTR sesi2_cname;
LPWSTR sesi2_username;
DWORD sesi2_num_opens;
DWORD sesi2_time;
DWORD sesi2_idle_time;
DWORD sesi2_flags;
LPWSTR sesi2_cltype_name;

} SESSION_INFO_2, *PSESSION_INFO_2, *LPSESSION_INFO_2;

typedef struct _SESSION_INFO_10 {
LPWSTR sesi10_cname;
LPWSTR sesi10_username;
DWORD sesi10_time;
DWORD sesi10_idle_time;

} SESSION_INFO_10, *PSESSION_INFO_10, *LPSESSION_INFO_10;

sesi_username cannot be NULL. sesi1_flags and sesi2_flags can take the following bits:

SESS_GUEST 0x00000001
SESS_NONENCRYPTION 0x00000002

The session APIs are:

4.7.1. NetSessionEnum

NetSessionEnum provides information about all current sessions.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetSessionEnum at
level 1 or level 2. No special privilege is required for level 0 or level 10 calls.

NET_API_STATUS NET_API_FUNCTION
NetSessionEnum (

IN LPWSTR servername OPTIONAL,
IN LPWSTR clientname OPTIONAL,
IN LPWSTR username OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

clientname __A pointer to an UNICODE string containing the name of the computer session for
which information is to be returned. A NULL pointer or string specifies that all computer
sessions on the server are to be ennumerated.

username __A pointer to an UNICODE string containing the name of the the user for which to
ennumerate the sessions. A NULL pointer or string specifies that sessions for all users are
to be ennumerated.

level __Level of information required. 0, 1, 2 and 10 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing session search. The handle should be
zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,

then no resume handle is stored.

4.7.2. NetSessionGetInfo

NetSessionGetInfo retrieves information about a session established between a particular server
and workstation.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetSessionGetInfo at
level 1 or level 2. No special privilege is required for level 0 or level 10 calls.

NET_API_STATUS NET_API_FUNCTION
NetSessionGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR clientname,
IN LPWSTR username,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

clientname __A pointer to an UNICODE string containing the name of the computer session for
which information is to be returned. This field cannot be NULL.

username __A pointer to an UNICODE string containing the name of the user whose session
information is to be returned. This field cannot be NULL.

level __Level of information required. 0, 1, 2 and 10 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.7.3. NetSessionDel

NetSessionDel ends a session between a server and a workstation.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetSessionDel.

NET_API_STATUS NET_API_FUNCTION
NetSessionDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR clientname,
IN LPWSTR username,
IN DWORD reserved
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

clientname __A pointer to an UNICODE string containing the computer name of the client to
disconnect. If clientname is NULL, then all the sessions of the user in username will be
deleted on the server specified.

username __A pointer to an UNICODE string containing the name of the user whose session is to
be terminated. A NULL indicates that all users' sessions from the clientname specified are
to be terminated.

reserved __reserved, must be zero.

4.8. Connection APIs

WNetConnection APIs should be used in place of NetConnection APIs.

The Connection API function, NetConnectionEnum, lists server connections. A computer accesses a
shared resource on a server by means of a connection. A connection is a software link between a
computer and a server, made by assigning a local or NULL devicename to the shared resource on the
server. The NetUseAdd function establishes connections.

NetConnectionEnum lists information about all connections to a server made by a specified computer,
or about all connections made to a specified sharename.

Connection APIs are available at two information levels:

typedef struct _CONNECTION_INFO_0 {
DWORD coni0_id;

} CONNECTION_INFO_0, *PCONNECTION_INFO_0, *LPCONNECTION_INFO_0;

typedef struct _CONNECTION_INFO_1 {
DWORD coni1_id;
DWORD coni1_type;
DWORD coni1_num_opens;
DWORD coni1_num_users;
DWORD coni1_time;
LPWSTR coni1_username;
LPWSTR coni1_netname;

} CONNECTION_INFO_1, *PCONNECTION_INFO_1, *LPCONNECTION_INFO_1;

The connection APIs are:

4.8.1. NetConnectionEnum

WNetEnumResource should be used in place of NetConnectionEnum.

NetConnectionEnum lists all connections made to a shared resource on the server or all connections
established from a particular computer. If there is more than one user using this connection, then it is
possible to get more than one structure for the same connection, but with different username.

Privilege Level

Admin privilege or server, print, or comm operator privilege is required to successfully execute
NetConnectionEnum.

NET_API_STATUS NET_API_FUNCTION
NetConnectionEnum (

IN LPWSTR servername OPTIONAL,
IN LPWSTR qualifier,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

qualifier __A pointer to an UNICODE string containing a sharename or computername for the
connections of interest. If it is a sharename, then all the connections made to that
sharename are listed. If it is a computername (i.e. it starts with two backslash characters),
then NetConnectionEnum lists all connections made from that computer to the server
specified.

level __Level of information required. 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing connection search. The handle should be
zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,
then no resume handle is stored..

4.9. File APIs

File API functions provide a way to monitor and close the file, device, and pipe resources open on a
server. NetFileClose forces a server resource closed. This function can be used when a system error
prevents normal closure. NetFileEnum returns information about resources open on a server. A file
can be opened one or more times by one or more applications. Each file opening is uniquely
identified. NetFileEnum returns an entry for each file opening. NetFileGetInfo returns information
about one particular opening of a resource.

File APIs are available at information levels 2 and 3 only. Levels 0 and 1 are not supported.

typedef struct _FILE_INFO_2 {
DWORD fi2_id;

} FILE_INFO_2, *PFILE_INFO_2, *LPFILE_INFO_2;

typedef struct _FILE_INFO_3 {
DWORD fi3_id;
DWORD fi3_permissions;
DWORD fi3_num_locks;
LPWSTR fi3_pathname;
LPWSTR fi3_username;

} FILE_INFO_3, *PFILE_INFO_3, *LPFILE_INFO_3;

The file APIs are:

4.9.1. NetFileEnum

NetFileEnum supplies information about some or all open files on a server, allowing the user to
supply a resume handle and get required information through repeated calls to the function.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetFileEnum.

NET_API_STATUS NET_API_FUNCTION
NetFileEnum (

IN LPWSTR servername OPTIONAL,
IN LPWSTR basepath,
IN LPWSTR username,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

basepath __A pointer to an UNICODE string containing a qualifier for the returned information.
If NULL then all open resources are enumerated, else only resources which have basepath
as a prefix are enumerated. A prefix is the path component up to a back-slash.

username __A pointer to an UNICODE string that specifies the name of the user. If not NULL,
username serves as a qualifier to the ennumeration. The files returned are limited to those
that have usernames matching the qualifier. If username is NULL, no username qualifier is
used.

level __Level of information required. 2 and 3 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing file search. The handle should be zero on
the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored..

4.9.2. NetFileGetInfo

NetFileGetInfo retrieves information about a particular opening of a server resource.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetFileGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetFileGetInfo (

IN LPWSTR servername OPTIONAL,
IN DWORD fileid,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

fileid __The fileid of the open resource to return information on. The fileid value must be that
returned in a previous enumeration call.

level __Level of information required. 2 and 3 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.9.3. NetFileClose

NetFileClose forces a resource to close. This function can be used when an error prevents closure
by other means.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetFileClose.

NET_API_STATUS NET_API_FUNCTION
NetFileClose (

IN LPWSTR servername OPTIONAL,
IN DWORD fileid
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

fileid __The fileid of the opened resource instance to be closed.

4.10. Message APIs

Message API functions send and receive messages and manipulate message aliases. A message is a
buffer of text data sent to a user or application on the network. To receive a message, a user or
application must register a message alias in a computer's table of message names. This can be done
by using NetMessageNameAdd. A message name table contains a list of registered message
aliases (users and applications) permitted to receive messages.

The aliases registered in the message name table are case insensitive. NetMessageNameDel deletes a
specific message alias from the message name table. NetMessageNameEnum lists all the aliases
stored in the message name table. NetMessageNameGetInfo retrieves information about a particular
message alias in the message name table.

To send a message, an application calls NetMessageBufferSend.
Applications can also send broadcast messages to all users in a domain or to all computers on a
network using NetMessageBufferSend.

Message APIs are available at two information levels.

MSG_INFO_1 only exists for compatability. The NT messenger will not forward names or allow
names to be forwarded to it.

typedef struct _MSG_INFO_0 {
LPWSTR msgi0_name;

} MSG_INFO_0, *PMSG_INFO_0, *LPMSG_INFO_0;

typedef struct _MSG_INFO_1 {
LPWSTR msgi1_name;
DWORD msgi1_forward_flag;
LPWSTR msgi1_forward;

} MSG_INFO_1, *PMSG_INFO_1, *LPMSG_INFO_1;

The Message APIs are:

4.10.1. NetMessageNameAdd

NetMessageNameAdd registers a message alias in the message name table.
NetMessageNameAdd requires that the Messenger service be started.

Privilege Level

Admin privilege is required to successfully execute NetMessageNameAdd on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetMessageNameAdd (

IN LPWSTR servername OPTIONAL,
IN LPWSTR msgname
};

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

msgname __A pointer to an UNICODE string of limit 15 characters containing the message name
to be added.

Note. The forward action flag from the LANMan 2.x NetMessageNameAdd is no longer a parameter
as message forwarding is no longer supported. If the NetMessageNameAdd API detects that a
forwarded version of msgname exists on the network then the API will fail with error
NERR_Already_Exists.

4.10.2. NetMessageNameEnum

NetMessageNameEnum lists the message aliases that will receive messages on a specified
computer. NetMessageNameEnum requires that the Messenger service be started.

Privilege Level

Admin privilege is required to successfully execute NetMessageNameEnum on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetMessageNameEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing message name search. The handle should
be zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,
then no resume handle is stored..

4.10.3. NetMessageNameGetInfo

NetMessageNameGetInfo retrieves information about a particular message alias in the message
name table. NetMessageNameGetInfo requires that the Messenger service be started.

Privilege Level

Admin privilege is required to successfully execute NetMessageNameGetInfo on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetMessageNameGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR msgname,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

msgname __A pointer to an UNICODE string containing the message name to return information
on.

level __Level of information required. 0 & 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.10.4. NetMessageNameDel

NetMessageNameDel deletes a message alias from the table of message aliases on a computer.
NetMessageNameDel requires that the Messenger service be started.

Privilege Level

Admin privilege is required to successfully execute NetMessageNameDel on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetMessageNameDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR msgname
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

msgname __A pointer to an UNICODE string of limit 15 characters containing the message name
to be deleted.

4.10.5. NetMessageBufferSend

NetMessageBufferSend sends a buffer of information to a registered message alias.

Privilege Level

No special privilege is required to execute NetMessage buffer send locally. Admin, accounts, print, or
server operator privilege is required to successfully execute NetMessageBufferSend on a remote
server.

NET_API_STATUS NET_API_FUNCTION
NetMessageBufferSend (

IN LPWSTR servername OPTIONAL,
IN LPWSTR msgname,
IN LPWSTR fromname,
IN LPBYTE buf,
IN DWORD buflen
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

msgname __A pointer to an UNICODE string containing the message name to which the
message buffer should be sent.

fromname __A pointer to an UNICODE string containing the message name sending the
information. fromname is a new parameter for Windows networking. This parameter is
needed for sending alerts from the computer name rather than the logged on user. If a
NULL is specified the message is send from the logged on user as with LANMan 2.x.

buf __A pointer to a buffer of message text.

buflen __The length in bytes of the message text in buf.

4.11. Remote Utility API

Remote Utility API functions enable applications to access the time-of-day information on a remote
server.

NetRemoteTOD returns time-of-day information from a remote server.

4.11.1. NetRemoteTOD API

The remote time of day information is available at one information level:

typedef struct _TIME_OF_DAY_INFO {
DWORD tod_elapsedt;
DWORD tod_msecs;
DWORD tod_hours;
DWORD tod_mins;
DWORD tod_secs;
DWORD tod_hunds;
LONG tod_timezone;
DWORD tod_tinterval;
DWORD tod_day;
DWORD tod_month;
DWORD tod_year;
DWORD tod_weekday;

} TIME_OF_DAY_INFO, *PTIME_OF_DAY_INFO, *LPTIME_OF_DAY_INFO;

NetRemoteTOD returns a server's time of day.

Privilege Level

No special privilege level is required to successfully execute NetRemoteTOD.

NET_API_STATUS NET_API_FUNCTION
NetRemoteTOD (

IN LPWSTR servername OPTIONAL,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

4.12. Security Account APIs

4.12.1. User APIs

User API functions control a user's account in the security database. Each user or application that
accesses resources must have an account in the security database. The NT Security system (SAM)
uses this user account to verify that the user or application has permission to use a resource. When a
user or an application requests access to a resource, the security system checks for an appropriate
user account or group account to permit the access.

NetUserEnum can be used to list all user accounts in a domain. An application can change a user's
privilege level by calling NetUserSetInfo. It can also change the user's resource access privileges by
modifying that user's groups (for more information, see the Group category API functions).
Individually assigned user privileges take precedence over group privileges. An application can verify
the groups to which a user belongs by calling NetUserGetGroups, which returns a list of global
groupnames. The NetUserGetLocalGroups function does the same for local groups. When a user
account is no longer needed, use NetUserDel to delete the account from the server. Once the account is
removed, the user can no longer access the server, except by using the guest account. Because the
user's password is confidential, it is not returned by NetUserEnum or NetUserGetInfo. The password
is initially assigned when NetUserAdd is called. NetUserSetInfo sets the password and other elements
of a user account.

User account information is available at five levels:

typedef struct _USER_INFO_0 {
LPWSTR usri0_name;

} USER_INFO_0, *PUSER_INFO_0, *LPUSER_INFO_0;

typedef struct _USER_INFO_1 {
LPWSTR usri1_name;
LPWSTR usri1_password;
DWORD usri1_password_age;
DWORD usri1_priv;
LPWSTR usri1_home_dir;
LPWSTR usri1_comment;
DWORD usri1_flags;
LPWSTR usri1_script_path;

} USER_INFO_1, *PUSER_INFO_1, *LPUSER_INFO_1;

typedef struct _USER_INFO_2 {
LPWSTR usri2_name;
LPWSTR usri2_password;
DWORD usri2_password_age;
DWORD usri2_priv;
LPWSTR usri2_home_dir;
LPWSTR usri2_comment;
DWORD usri2_flags;
LPWSTR usri2_script_path;
DWORD usri2_auth_flags;
LPWSTR usri2_full_name;
LPWSTR usri2_usr_comment;
LPWSTR usri2_parms;
LPWSTR usri2_workstations;
DWORD usri2_last_logon;
DWORD usri2_last_logoff;
DWORD usri2_acct_expires;
DWORD usri2_max_storage;
DWORD usri2_units_per_week;
LPBYTE usri2_logon_hours;
DWORD usri2_bad_pw_count;
DWORD usri2_num_logons;
LPWSTR usri2_logon_server;
DWORD usri2_country_code;
DWORD usri2_code_page;

} USER_INFO_2, *PUSER_INFO_2, *LPUSER_INFO_2;

typedef struct _USER_INFO_3 {
 LPWSTR usri3_name;

LPWSTR usri3_password;
DWORD usri3_password_age;
DWORD usri3_priv;
LPWSTR usri3_home_dir;
LPWSTR usri3_comment;
DWORD usri3_flags;
LPWSTR usri3_script_path;
DWORD usri3_auth_flags;
LPWSTR usri3_full_name;
LPWSTR usri3_usr_comment;
LPWSTR usri3_parms;
LPWSTR usri3_workstations;
DWORD usri3_last_logon;
DWORD usri3_last_logoff;
DWORD usri3_acct_expires;
DWORD usri3_max_storage;
DWORD usri3_units_per_week;
PBYTE usri3_logon_hours;
DWORD usri3_bad_pw_count;

DWORD usri3_num_logons;
LPWSTR usri3_logon_server;
DWORD usri3_country_code;
DWORD usri3_code_page;
DWORD usri3_user_id;
DWORD usri3_primary_group_id;
LPWSTR usri3_profile;
LPWSTR usri3_home_dir_drive;
DWORD usri3_password_expired;

}USER_INFO_3, *PUSER_INFO_3, *LPUSER_INFO_3;

typedef struct _USER_INFO_10 {
LPWSTR usri10_name;
LPWSTR usri10_comment;
LPWSTR usri10_usr_comment;
LPWSTR usri10_full_name;

} USER_INFO_10, *PUSER_INFO_10, *LPUSER_INFO_10;
typedef struct _USER_INFO_11 {

LPWSTR usri11_name;
LPWSTR usri11_comment;
LPWSTR usri11_usr_comment;
LPWSTR usri11_full_name;
DWORD usri11_priv;
DWORD usri11_auth_flags;
DWORD usri11_password_age;
LPWSTR usri11_home_dir;
LPWSTR usri11_parms;
DWORD usri11_last_logon;
DWORD usri11_last_logoff;
DWORD usri11_bad_pw_count;
DWORD usri11_num_logons;
LPWSTR usri11_logon_server;
DWORD usri11_country_code;
LPWSTR usri11_workstations;
DWORD usri11_max_storage;
DWORD usri11_units_per_week;
LPBYTE usri11_logon_hours;
DWORD usri11_code_page;

} USER_INFO_11, *PUSER_INFO_11, *LPUSER_INFO_11;

typedef struct _USER_INFO_20 {
LPWSTR usri20_name;
LPWSTR usri20_full_name;
LPWSTR usri20_comment;
DWORD usri20_flags;
DWORD usri20_user_id;

}USER_INFO_20, *PUSER_INFO_20, *LPUSER_INFO_20;

The following infolevels are only valid for NetUserSetInfo and replace the older way of passing in a
Parmnum to set a specific field.
The following are supported on downlevel systems (i.e. LANMan 2.x) as well:

typedef struct _USER_INFO_1003 {
LPWSTR usri1003_password;

} USER_INFO_1003, *PUSER_INFO_1003, *LPUSER_INFO_1003;

typedef struct _USER_INFO_1005 {
DWORD usri1005_priv;

} USER_INFO_1005, *PUSER_INFO_1005, *LPUSER_INFO_1005;

typedef struct _USER_INFO_1006 {
LPWSTR usri1006_home_dir;

} USER_INFO_1006, *PUSER_INFO_1006, *LPUSER_INFO_1006;

typedef struct _USER_INFO_1007 {
LPWSTR usri1007_comment;

} USER_INFO_1007, *PUSER_INFO_1007, *LPUSER_INFO_1007;

typedef struct _USER_INFO_1008 {
DWORD usri1008_flags;

} USER_INFO_1008, *PUSER_INFO_1008, *LPUSER_INFO_1008;

typedef struct _USER_INFO_1009 {
LPWSTR usri1009_script_path;

} USER_INFO_1009, *PUSER_INFO_1009, *LPUSER_INFO_1009;

typedef struct _USER_INFO_1010 {
DWORD usri1010_auth_flags;

} USER_INFO_1010, *PUSER_INFO_1010, *LPUSER_INFO_1010;

typedef struct _USER_INFO_1011 {
LPWSTR usri1011_full_name;

} USER_INFO_1011, *PUSER_INFO_1011, *LPUSER_INFO_1011;

typedef struct _USER_INFO_1012 {
LPWSTR usri1012_usr_comment;

} USER_INFO_1012, *PUSER_INFO_1012, *LPUSER_INFO_1012;

typedef struct _USER_INFO_1013 {
LPWSTR usri1013_parms;

} USER_INFO_1013, *PUSER_INFO_1013, *LPUSER_INFO_1013;

typedef struct _USER_INFO_1014 {
LPWSTR usri1014_workstations;

} USER_INFO_1014, *PUSER_INFO_1014, *LPUSER_INFO_1014;

typedef struct _USER_INFO_1017 {
DWORD usri1017_acct_expires;

} USER_INFO_1017, *PUSER_INFO_1017, *LPUSER_INFO_1017;

typedef struct _USER_INFO_1018 {
DWORD usri1018_max_storage;

} USER_INFO_1018, *PUSER_INFO_1018, *LPUSER_INFO_1018;

typedef struct _USER_INFO_1020 {
DWORD usri1020_units_per_week;
LPBYTE usri1020_logon_hours;

} USER_INFO_1020, *PUSER_INFO_1020, *LPUSER_INFO_1020;
typedef struct _USER_INFO_1023 {

LPWSTR usri1023_logon_server;
} USER_INFO_1023, *PUSER_INFO_1023, *LPUSER_INFO_1023;

typedef struct _USER_INFO_1024 {
DWORD usri1024_country_code;

} USER_INFO_1024, *PUSER_INFO_1024, *LPUSER_INFO_1024;

typedef struct _USER_INFO_1025 {
DWORD usri1025_code_page;

} USER_INFO_1025, *PUSER_INFO_1025, *LPUSER_INFO_1025;

typedef struct _USER_INFO_1051 {
 DWORD usri1051_primary_group_id;
} USER_INFO_1051, *PUSER_INFO_1051, *LPUSER_INFO_1051;

typedef struct _USER_INFO_1052 {
LPWSTR usri1052_profile;

} USER_INFO_1052, *PUSER_INFO_1052, *LPUSER_INFO_1052;

typedef struct _USER_INFO_1053 {
LPWSTR usri1053_home_dir_drive;

} USER_INFO_1053, *PUSER_INFO_1053, *LPUSER_INFO_1053;
For NetUserSetInfo, parmnum values refer to the fields in the user_info structure as follows. These
values are used when indicating an error in a specific parameter via parm_err.

parmnum value Field in user_info struct

USER_NAME_PARMNUM usri_name
USER_PASSWORD_PARMNUM usri_password
USER_PASSWORD_AGE_PARMNUM usri_password_age
USER_PRIV_PARMNUM usri_priv
USER_HOME_DIR_PARMNUM usri_home_dir
USER_COMMENT_PARMNUM usri_comment
USER_FLAGS_PARMNUM usri_flags
USER_SCRIPT_PATH_PARMNUM usri_script_path
USER_AUTH_FLAGS_PARMNUM usri_auth_flags
USER_FULL_NAME_PARMNUM usri_full_name
USER_USR_COMMENT_PARMNUM usri_usr_comment
USER_PARMS_PARMNUM usri_parms
USER_WORKSTATIONS_PARMNUM usri_workstations
USER_LAST_LOGON_PARMNUM usri_last_logon
USER_LAST_LOGOFF_PARMNUM usri_last_logoff
USER_ACCT_EXPIRES_PARMNUM usri_acct_expires
USER_MAX_STORAGE_PARMNUM usri_max_storage
USER_UNITS_PER_WEEK_PARMNUM usri_units_per_week
USER_LOGON_HOURS_PARMNUM usri_logon_hours
USER_PAD_PW_COUNT_PARMNUM usri_bad_pw_count
USER_NUM_LOGONS_PARMNUM usri_num_logons
USER_LOGON_SERVER_PARMNUM usri_logon_server
USER_COUNTRY_CODE_PARMNUM usri_country_code
USER_CODE_PAGE_PARMNUM usri_code_page
USER_PRIMARY_GROUP_PARMNUM usri_primary_group_id USER_PROFILE

usri_profile USER_HOME_DIR_DRIVE_PARMNUM
usri_home_dir_drive

4.12.1.1. NetUserAdd

NetUserAdd adds a user account.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserAdd.

NET_API_STATUS NET_API_FUNCTION
NetUserAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information provided. Must be 1, 2 or 3.

buf __A pointer to a buffer containing the user information structure.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.1.2. NetUserEnum

NetUserEnum provides resumable enumeration of information about each user account in a
domain.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserEnum at
levels 1 and 2. No special privilege is required at level 0 or 10.

NET_API_STATUS NET_API_FUNCTION
NetUserEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN DWORD filter,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 0, 1, 2, 3, 10, 11 and 20 are valid.

filter__Specifies a filter of account types ot enumerate. 0 implies all account types. Allowable
values are:

FILTER_TEMP_DUPLICATE_ACCOUNTS
FILTER_NORMAL_ACCOUNT
FILTER_INTERDOMAIN_TRUST_ACCOUNT
FILTER_WORKSTATION_TRUST_ACCOUNT
FILTER_SERVER_TRUST_ACCOUNT

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the

current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing user search. The handle should be zero
on the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored..

4.12.1.3. NetUserGetInfo

NetUserGetInfo retrieves information about a particular user account on a server.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserGetInfo at
level 1 and 2. No special privilege is required at levels 0 or 10. A user may call NetUserGetInfo on
his/her own account at level 11.

NET_API_STATUS NET_API_FUNCTION
NetUserGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR username,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user account on which
to return information.

level __Level of information required. 0, 1, 2, 3,10,11 and 20 are valid.

bufptr __A pointer to the return information structure is returned in the address pointed to by
bufptr.

4.12.1.4. NetUserSetInfo

NetUserSetInfo sets the parameters of a user account.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserSetInfo. A
user may call NetUserSetInfo to set certain information on his/her own account.

NET_API_STATUS NET_API_FUNCTION
NetUserSetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR username,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user account to set
information on.

level __Level of information to set. 0, 1, 2, 3, or 20.

buf __A pointer to a buffer containing the user information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.1.5. NetUserDel

NetUserDel deletes a user account from the accounts database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserDel.

NET_API_STATUS NET_API_FUNCTION
NetUserDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR username
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user account to delete

4.12.1.6. NetUserGetGroups

NetUserGetGroups retrieves a list of global groups to which a specified user belongs.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserGetGroups.

NET_API_STATUS NET_API_FUNCTION
NetUserGetGroups (

IN LPWSTR servername OPTIONAL,
IN LPWSTR username,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user to return global
group membership for.

level __Level of information required. Only 0 or 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr. The returned information is an array of GROUP_USERS_INFO_x structures..

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

4.12.1.7. NetUserGetLocalGroups

NetUserGetLocalGroups retrieves a list of local groups to which a specified user belongs.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetUserGetLocalGroups.

NET_API_STATUS NET_API_FUNCTION
NetUserGetLocalGroups (

IN LPWSTR servername OPTIONAL,
IN LPWSTR username,
IN DWORD level,
IN DWORD flags,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user to return global
group membership for.

level __Level of information required. Only 0 is valid.

flags __Bitmask of flags. Currently, only LG_INCLUDE_INDIRECT is defined. If this bit is set,
the function will also return localgroups the user is a member of indirectly (ie. by the virtue
of being in a globalgroup that itself is a member of one or more localgroups).

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr. The returned information is an array of LOCALGROUP_USERS_INFO_0
structures..

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

4.12.1.8. NetUserSetGroups

NetUserSetGroups sets global group memberships for a specified user account.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserSetGroups.

NET_API_STATUS NET_API_FUNCTION
NetUserSetGroups (

IN LPWSTR servername OPTIONAL,
IN LPWSTR username,
IN DWORD level,
IN LPBYTE bufptr,
IN DWORD num_entries
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user to set global group
memberships for.

level __Level of information required. Only 0 or 1 are valid.

bufptr __A pointer to an array of global groups information structures.

num_entries__Number of global group information structures contained in the array pointed to
by bufptr.

4.12.2. User Modal APIS

The user modal API functions control the system wide parameters which affect the NT Security
system behaviour.

User modal information is available at three levels

typedef struct _USER_MODALS_INFO_0 {
DWORD usrmod0_min_passwd_len;
DWORD usrmod0_max_passwd_age;
DWORD usrmod0_min_passwd_age;
DWORD usrmod0_force_logoff;
DWORD usrmod0_password_hist_len;

} USER_MODALS_INFO_0, *PUSER_MODALS_INFO_0, LPUSER_MODALS_INFO_0;

typedef struct _USER_MODALS_INFO_1 {
DWORD usrmod1_role;
LPWSTR usrmod1_primary;

} USER_MODALS_INFO_1, *PUSER_MODALS_INFO_1, *LPUSER_MODALS_INFO_1;

typedef struct _USER_MODALS_INFO_2 {
LPWSTR usrmod2_domain_name;
PSID usrmod2_domain_id;

}USER_MODALS_INFO_2, *PUSER_MODALS_INFO_2, *LPUSER_MODALS_INFO_2;
The following infolevels are only valid for NetUserModalsSet and replace the older way of passing in
a Parmnum to set a specific field.

The following are supported on downlevel systems (i.e. LANMan 2.x) as well. NOTE that the mapping
from the old parmnum to the infolevel does not apply to the role and primary fields.

typedef struct _USER_MODALS_INFO_1001 {
DWORD usrmod1001_min_passwd_len;

} USER_MODALS_INFO_1001, *PUSER_MODALS_INFO_1001,
*LPUSER_MODALS_INFO_1001;

typedef struct _USER_MODALS_INFO_1002 {
DWORD usrmod1002_max_passwd_age;

} USER_MODALS_INFO_1002, *PUSER_MODALS_INFO_1002,
*LPUSER_MODALS_INFO_1002;

typedef struct _USER_MODALS_INFO_1003 {
 DWORD usrmod1003_min_passwd_age;
} USER_MODALS_INFO_1003, *PUSER_MODALS_INFO_1003,
*LPUSER_MODALS_INFO_1003;

typedef struct _USER_MODALS_INFO_1004 {
DWORD usrmod1004_force_logoff;

} USER_MODALS_INFO_1004, *PUSER_MODALS_INFO_1004,
*LPUSER_MODALS_INFO_1004;

typedef struct _USER_MODALS_INFO_1005 {
DWORD usrmod1005_password_hist_len;

} USER_MODALS_INFO_1005, *PUSER_MODALS_INFO_1005,
*LPUSER_MODALS_INFO_1005;

typedef struct _USER_MODALS_INFO_1006 {
DWORD usrmod1006_role;

} USER_MODALS_INFO_1006, *PUSER_MODALS_INFO_1006,
*LPUSER_MODALS_INFO_1006;

typedef struct _USER_MODALS_INFO_1007 {
LPWSTR usrmod1007_primary;

} USER_MODALS_INFO_1007, *PUSER_MODALS_INFO_1007,
*LPUSER_MODALS_INFO_1007;

For NetUserModalsSet, parmnum values refer to the fields in the modals_info structure as follows.
These values are used when indicating an error in a specific parameter via parm_err.

parmnum value Field in modals_info struct

MODALS_MIN_PASSWD_LEN_PARMNUM usrmod_min_passwd_len
MODALS_MAX_PASSWD_AGE_PARMNUM usrmod_max_passwd_age
MODALS_MIN_PASSWD_AGE_PARMNUM usrmod_min_passwd_age
MODALS_FORCE_LOGOFF_PARMNUM usrmod_force_logoff
MODALS_PASSWD_HIST_LIST_PARMNUM usrmod_passwd_hist_list
MODALS_ROLE_PARMNUM usrmod_role
MODALS_PRIMARY_PARMNUM usrmod_primary
MODALS_DOMAIN_NAME_PARMNUM usrmod_domain_name
MODALS_DOMAIN_ID_PARMNUM usrmod_domain_id

The User Modal APIs are:

4.12.2.1. NetUserModalsGet

NetUserModalsGet retrieves global information for all users and global groups in the user account
database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetUserModalsGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetUserModalsGet (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level__Level of information required. 0 1, and 2 are valid.

bufptr __A pointer to the return information structure is returned in the address pointed to by
bufptr.

4.12.2.2. NetUserModalsSet

NetUserModalsSet sets global information for all users and global groups in the user account
database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetUserModalsSet.

NET_API_STATUS NET_API_FUNCTION
NetUserModalsSet (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user account to set
information on.

level __Level of information to set. 0, 1 and 2 are valid.

buf __A pointer to a buffer containing the user modals information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.3. Global Group APIs

The global group API functions control global groups of users in a way that can be used across
domains. A global group is a set of users who share common permissions in the security database.
Group API functions create or delete global groups, and review or adjust the membership of the
global groups. The global group has a groupname that specifies the usernames of global group
members.

To create a global group, an application calls NetGroupAdd, supplying a groupname. Initially, the
global group has no members. To assign members to the global group, call NetGroupSetUsers. To add
a user to an existing global group, call NetGroupAddUser. To set general information about the global
group, call NetGroupSetInfo.

NetGroupDelUser deletes a specified username from a global group, and NetGroupDel disbands a
global group. NetGroupDel works whether or not the global group has any members.

Three Group category API functions retrieve information about the global groups on a server:
NetGroupEnum produces a list of all global groups; NetGroupGetUsers lists all members of a
specified global group; and NetGroupGetInfo returns general information about the global group.
Each user account automatically belongs to one of the special global groups Domain Users or None,
according to the user's privilege level. Membership of these global groups is indirectly controlled by
the NetUserAdd, NetUserDel, and NetUserSetInfo functions. For more information, see the User
category API functions.

Group API functions control groups of users.

Group account information is available at two levels:

typedef struct _GROUP_INFO_0 {
LPWSTR grpi0_name;

} GROUP_INFO_0, *PGROUP_INFO_0, *LPGROUP_INFO_0;

typedef struct _GROUP_INFO_1 {
LPWSTR grpi1_name;
LPWSTR grpi1_comment;

} GROUP_INFO_1, *PGROUP_INFO_1, *LPGROUP_INFO_1;

typedef struct _GROUP_INFO_2 {
LPWSTR grpi2_name;
LPWSTR grpi2_comment;
DWORD grpi2_group_id;
DWORD grpi2_attributes;

}GROUP_INFO_2, *PGROUP_INFO_2;

The Groups to which a user belongs may be obtained at one information level.
typedef struct _GROUP_USERS_INFO_0 {

LPWSTR grui0_name;
} GROUP_USERS_INFO_0, *PGROUP_USERS_INFO_0, *LPGROUP_USERS_INFO_0;

typedef struct _GROUP_USERS_INFO_1 {
LPWSTR grui1_name;

 DWORD grui1_attributes;
} GROUP_USERS_INFO_1, *PGROUP_USERS_INFO_1, *LPGROUP_USERS_INFO_1;

The following infolevels are only valid for NetGroupSetInfo and replace the older way of passing in a
Parmnum to set a specific field.

The following are supported on downlevel systems (i.e. LANMan 2.x) as well:

typedef struct _GROUPINFO_1002 {
LPWSTR grpi1002_comment;

} GROUP_USERS_INFO_1002, *PGROUP_USERS_INFO_1002,
*LPGROUP_USERS_INFO_1002;

typedef struct _GROUP_INFO_1005 {
DWORD grpi1005_attributes;

} GROUP_INFO_1005, *PGROUP_INFO_1005, *LPGROUP_INFO_1005;
For NetGroupSetInfo, parmnum values refer to the fields in the group_info structure as follows. These
values are used when indicating an error in a specific parameter via parm_err.

parmnum value Field in group_info struct

GROUP_NAME_PARMNUM grpi_name
GROUP_COMMENT_PARMNUM grpi_comment
GROUP_ATTRIBUTES_PARMNUM grpi_attributes
The Group APIs are:

4.12.3.1. NetGroupAdd

NetGroupAdd creates a global group in the security database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupAdd.

NET_API_STATUS NET_API_FUNCTION
NetGroupAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information provided. Must be 0 1, or 2.

buf __A pointer to a buffer containing the global group information structure.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.3.2. NetGroupAddUser

NetGroupAddUser gives an existing user account membership in an existing global group.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupAddUser.

NET_API_STATUS NET_API_FUNCTION
NetGroupAddUser (

IN LPWSTR servername OPTIONAL,
IN LPWSTR GroupName,
IN LPWSTR username
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

GroupName __A pointer to an UNICODE string containing the name of the global group to
which the user is to be given membership.

Username __A pointer to an UNICODE string containing the name of the user to be given global
group membership.

4.12.3.3. NetGroupEnum

NetGroupEnum retrieves information about each global group account.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupEnum.

NET_API_STATUS NET_API_FUNCTION
NetGroupEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing global group search. The handle should
be zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,
then no resume handle is stored..

4.12.3.4. NetGroupGetInfo

NetGroupGetInfo retrieves information about a particular global group account on a server.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetGroupGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the global group account
to return information on.

level __Level of information required. 0, 1 and 2 are valid.

bufptr __A pointer to the return information structure is returned in the address pointed to by
bufptr.

4.12.3.5. NetGroupSetInfo

NetGroupSetInfo sets the parameters of a global group account.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupSetInfo.

NET_API_STATUS NET_API_FUNCTION
NetGroupSetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the global group account
to set information on.

level __Level of information to set. Only 0, 1 and 2 are valid.

buf __A pointer to a buffer containing the global group information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.3.6. NetGroupDel

NetGroupDel deletes a global group account from the accounts database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupDel.

NET_API_STATUS NET_API_FUNCTION
NetGroupDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the global group account
to delete

4.12.3.7. NetGroupDelUser

NetGroupDelUser removes a user from a particular global group in the user account database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupDelUser.

NET_API_STATUS NET_API_FUNCTION
NetGroupDelUser (

IN LPWSTR servername OPTIONAL,
IN LPWSTR GroupName,
IN LPWSTR Username
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

GroupName __A pointer to an UNICODE string containing the name of the global group from
which the user membership is to be removed.

Username __A pointer to an UNICODE string containing the name of the user to remove from
the global group.

4.12.3.8. NetGroupGetUsers

NetGroupGetUsers retrieves a list of the members of a particular global group in the user account
database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupGetUsers
except when the request is made by a user who has membership in the specified global group in which
case no special privilege is required.

NET_API_STATUS NET_API_FUNCTION
NetGroupGetUsers (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the global group whose
members are to be listed.

level __Level of information required. Only 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing usergroup search. The handle should be
zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,

then no resume handle is stored..

4.12.3.9. NetGroupSetUsers

NetGroupSetUsers sets the global group membership for the specified global group. Each user
specified is made a member of the global group. Users that are not specified but are currently
members of the global group will have their membership revoked.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetGroupSetUsers
on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetGroupSetUsers (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
IN LPBYTE buf,
IN DWORD totalentries
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the global group to which
the specified users belong.

level __Level of information supplied. Only 0 is valid.

buf __Points to the buffer in which the data to be set is stored. This data consists of a sequence of
_GROUP_USERS_INFO_0 data structures.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

4.12.4. Local Group APIs

A local group is a set of users who share common permissions in the security database. A local
group can have members which are either users or global groups (global groups can only contain
users). The local group API functions control members of local groups in a way that can only be
used by the systems within a "cluster". A "cluster" is the individual workstation if the system is a
Windows NT system, but it contains all the NT Advanced Servers of a domain if the system is a NT
Advanced Server. Thus, a local group defined on a workstation can only be used on that
workstation, but a local group defined on an Advanced Server can be used by any other Advanced
Server within the same domain. The local group API functions create or delete local groups, and
review or adjust the memberships of local groups.

A member can be added to a local group by specifying the security identifier (SID) of the member.
The Win32 LookupAccountName API can be used to translate a member account name to a SID.

To create a local group, an application calls NetLocalGroupAdd, supplying a local group name.
Initially, the local group has no members. To assign members to the local group, call
NetLocalGroupSetMembers. To add a member to an existing local group, call
NetLocalGroupAddMember. To set general information about the local group, call
NetLocalGroupSetInfo.

NetLocalGroupDelMember deletes a specified member from a local group, and NetLocalGroupDel
disbands a local group, deleting all existing members of the local group first.

Three local group category API functions retrieve information about the local groups on a server:
NetLocalGroupEnum produces a list of all local groups; NetLocalGroupGetMembers lists all
members of a specified local group; and NetLocalGroupGetInfo returns general information about the
local group.

Group account information is available at three levels:

typedef struct _LOCALGROUP_INFO_0 {
LPWSTR lgrpi0_name;

} LOCALGROUP_INFO_0, *PLOCALGROUP_INFO_0, LPLOCALGROUP_INFO_0;

typedef struct _LOCALGROUP_INFO_1 {
LPWSTR lgrpi1_name;
LPWSTR lgrpi1_comment;

} LOCALGROUP_INFO_1, *PLOCALGROUP_INFO_1, LPLOCALGROUP_INFO_1;

typedef struct _LOCALGROUP_INFO_1002 {
LPWSTR lgrpi1002_comment;

} LOCALGROUP_INFO_1002, *PLOCALGROUP_INFO_1002, LPLOCALGROUP_INFO_1002;

The local group to which a member belongs may be obtained at two information level.

typedef struct _LOCALGROUP_MEMBERS_INFO_0 {
PSID lgrmi0_sid;

} LOCALGROUP_MEMBERS_INFO_0, *PLOCALGROUP_MEMBERS_INFO_0,
*LPLOCALGROUP_MEMBERS_INFO_0;

typedef struct _LOCALGROUP_MEMBERS_INFO_0 {
PSID lgrmi0_sid;

} LOCALGROUP_MEMBERS_INFO_0, *PLOCALGROUP_MEMBERS_INFO_0,
*LPLOCALGROUP_MEMBERS_INFO_0;

typedef struct _LOCALGROUP_MEMBERS_INFO_1 {
PSID lgrmi1_sid;
SID_NAME_USE lgrmi1_sidusage;
LPWSTR lgrmi1_name;

} LOCALGROUP_MEMBERS_INFO_1, *PLOCALGROUP_MEMBERS_INFO_1,
*LPLOCALGROUP_MEMBERS_INFO_1;

typedef struct _LOCALGROUP_USERS_INFO_0 {
LPWSTR lgrui0_name;

} LOCALGROUP_USERS_INFO_0, *PLOCALGROUP_USERS_INFO_0,
*LPLOCALGROUP_USERS_INFO_0;

For NetLocalGroupSetInfo, parmnum values refer to the fields in the group_info structure as follows.
These values are used when indicating an error in a specific parameter via parm_err.

parmnum value Field in group_info struct

LOCALGROUP_NAME_PARMNUM lgrpi_name
LOCALGROUP_COMMENT_PARMNUM lgrpi_comment

The Local Group APIs are:

4.12.4.1. NetLocalGroupAdd

NetLocalGroupAdd creates a local group in the security database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetLocalGroupAdd.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information provided. Must be 0 or 1.

buf __A pointer to a buffer containing the local group information structure.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.4.2. NetLocalGroupAddMember

NetLocalGroupAddMember gives an existing user account or global group membership in an
existing local group.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetLocalGroupAddMember.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupAddMember (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN PSID membersid
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the local group to which
the user or global group is to be given membership.

membersid __A pointer to the SID of a user or global group from the local, primary, or trust
domains to be given local group membership.

4.12.4.3. NetLocalGroupEnum

NetLocalGroupEnum retrieves information about each local group account.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetLocalGroupEnum.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing local group search. The handle should be
zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,
then no resume handle is stored..

4.12.4.4. NetLocalGroupGetInfo

NetLocalGroupGetInfo retrieves information about a particular local group account on a server.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetLocalGroupGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the local group account
to return information on.

level __Level of information required. 0 and 1 are valid.

bufptr __A pointer to the return information structure is returned in the address pointed to by
bufptr.

4.12.4.5. NetLocalGroupSetInfo

NetLocalGroupSetInfo sets the parameters of a local group.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute

NetLocalGroupSetInfo.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupSetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the local group account
to set information on.

level __Level of information to set. 0, 1, and 1002 are valid.

buf __A pointer to a buffer containing the local group information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.4.6. NetLocalGroupDel

NetLocalGroupDel deletes a local group account and all its members from the accounts database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute NetLocalGroupDel.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the local group account
to delete

4.12.4.7. NetLocalGroupDelMember

NetLocalGroupDelMember removes a member from a particular local group in the security
database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetLocalGroupDelMember.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupDelMember (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN PSID membersid
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the local group from
which the user membership is to be removed.

membersid __A pointer to a SID of a user or global group to remove from the local group.

4.12.4.8. NetLocalGroupGetMembers

NetLocalGroupGetMembers retrieves a list of the members of a particular local group in the
security database.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetLocalGroupGetMembers except when the request is made by a user who has membership in the
specified local group in which case no special privilege is required.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupGetMembers (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the local group whose
members are to be listed.

level __Level of information required. Levels 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing usergroup search. The handle should be
zero on the first call and left unchanged for subsequent calls. If resumehandle is NULL,
then no resume handle is stored..

4.12.4.9. NetLocalGroupSetMembers

NetLocalGroupSetMembers sets the local group membership for the specified local group. Each
user or global group specified is made a member of the local group. Users or global groups that are
not specified but are currently members of the local group will have their membership revoked.

Privilege Level

Admin privilege or account operator privilege is required to successfully execute
NetLocalGroupSetMembers on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetLocalGroupSetMembers (

IN LPWSTR servername OPTIONAL,
IN LPWSTR groupname,
IN DWORD level,
IN LPBYTE buf,
IN DWORD totalentries
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

groupname __A pointer to an UNICODE string containing the name of the local group to which
the specified users or global groups belong.

level __Level of information supplied. Only 0 is valid.

buf __Points to the buffer in which the data to be set is stored. This data consists of a sequence of
LOCALGROUP_MEMBERS_INFO_0 data structures.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

4.12.5. Access APIs

A full set of Access setting APIs exist in Win32. These should be used in place of the NetAccess
APIs. The NetAccess APIs only work when remoted to a downlevel system.

Access Permissions API functions examine or modify user or group access permissions for specified
resources. An access control list (ACL) contains the name of a resource, an audit attribute field, and a
list of access control entries. An access control entry (ACE) is a username or groupname and its
corresponding access permissions.

The audit attribute field defines what type of events will be audited for that resource. It is possible to
audit various types of events, depending on whether the resource is a file or a directory. It is possible
to audit events such as opening, writing, and deleting a file; creating or deleting a directory; and
changing the ACL of the resource.

NetAccessAdd creates an ACL for a resource and sets username or groupname access permissions.
NetAccessDel deletes the ACL for a resource. NetAccessGetInfo returns the ACL for a particular
resource. NetAccessEnum returns information about all ACLs.

Only users or applications with admin privilege or special permission for the resource can define or
examine access permissions on a remote server or on a computer that has local security. Users have
special permissions for a resource when they are granted ACCESS_PERM permission for that
resource; this is also known as P permission.

NetAccessCheck verifies whether a user has permission to perform a specified operation on a
particular resource. If access permission is needed, you can use NetAccessSetInfo to change the ACL.
NetAccessGetUserPerms returns a specified user's or group's permission for a specified resource.

Access Permission information is available at two levels:

typedef struct _ACCESS_INFO_0 {
LPWSTR acc0_resource_name;

} ACCESS_INFO_0, *PACCESS_INFO_0, *LPACCESS_INFO_0;

typedef struct _ACCESS_INFO_1 {
LPWSTR acc1_resource_name;
DWORD acc1_attr;
DWORD acc1_count;

} ACCESS_INFO_1, *PACCESS_INFO_1, *LPACCESS_INFO_1;

Access list information is available at one levels

typedef struct _ACCESS_LIST {
LPWSTR acl_ugname;
DWORD acl_access;

} ACCESS_LIST, *PACCESS_LIST, *LPACCESS_LIST;

The following infolevels are only valid for NetAccessSetInfo and replace the older way of passing in a
Parmnum to set a specific field.

The following are supported on downlevel systems (i.e. LANMan 2.x) as well:

typedef struct _ACCESS_INFO_1002 {
DWORD acc1002_attr;

} ACCESS_INFO_1002, *PACCESS_INFO_1002, *LPACCESS_INFO_1002;

For NetAccessSetInfo, parmnum values refer to the fields in the access_info structure as follows.
These values are used when indicating an error in a specific parameter via parm_err.

parmnum value Field in access_info struct

ACCESS_RESOURCE_NAME_PARMNUM acc_resource_name
ACCESS_ATTR_PARMNUM acc_attr
ACCESS_COUNT_PARMNUM acc_count
ACCESS_ACCESS_LIST_PARMNUM array following acc1_count

The following are defined for the bits in the acc1_attr field of _ACCESS_INFO_1:

ACCESS_AUDIT 0x001
ACCESS_SUCCESS_OPEN 0x010
ACCESS_SUCCESS_WRITE 0x020
ACCESS_SUCCESS_DELETE 0x040
ACCESS_SUCCESS_ACL 0x080
ACCESS_SUCCESS_MASK 0x0F0
ACCESS_FAIL_OPEN 0x100
ACCESS_FAIL_WRITE 0x200
ACCESS_FAIL_DELETE 0x400
ACCESS_FAIL_ACL 0x800
ACCESS_FAIL_MASK 0xF00
ACCESS_FAIL_SHIFT 0x004

The Access Permission APIs are:

4.12.5.1. NetAccessAdd

Only works when remoted to a downlevel system. Use Win32 (GetFileSecurity, SetFileSecurity)
APIs for NT.

NetAccessAdd creates a new Access Control List (ACL) for a resource.

Privilege Level

Admin privilege is required to successfully execute NetAccessAdd.

NET_API_STATUS NET_API_FUNCTION
NetAccessAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information provided. Must be 1.

buf __A pointer to a buffer containing the access information structure.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.5.2. NetAccessEnum

Only works when remoted to a downlevel system. Use Win32 (GetFileSecurity, SetFileSecurity)

APIs for NT.

NetAccessEnum retrieves information about each access permision record.

NetAccessEnum is being phased out and is only available at levels 0 and 1 for Windows networking. It
is recommended that NetAccessEnum not be used because it is unlikely to be supported in future
releases.

Privilege Level

NetAccessEnum does not require admin privilege to execute but will only return records for entries for
which the user has 'P' permission if the caller does not have admin privilege.

NET_API_STATUS NET_API_FUNCTION
NetAccessEnum (

IN LPWSTR servername OPTIONAL,
IN LPWSTR basepath,
IN DWORD recursive,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

basepath __A pointer to an UNICODE string that contains a base pathname for the resources. A
NULL pointer or NULL string means no base path is to be used. The path can be specified
as a universal naming convention (UNC) pathname.

recursive __A flag to enables or disable recursive searching. If recursive is 0, NetAccessEnum
returns entries only for the resource named as the base path by basepath and for the
resources directly below that base path. If recursive is nonzero, NetAccessEnum returns
entries for all access control lists (ACLs) that have basepath at the beginning of the
resource name.

level __Level of information required. Only 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing access search. The handle should be zero
on the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored..

4.12.5.3. NetAccessGetInfo

Only works when remoted to a downlevel system. Use Win32 (GetFileSecurity, SetFileSecurity)
APIs for NT.

NetAccessGetInfo retrieves the access control information for a specific resource.

Privilege Level

Admin privilege or P permission is required to successfully execute NetAccessGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetAccessGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR resource,
IN DWORD level,
OUT LPBYTE * bufptr,
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

resource __A pointer to an UNICODE string containing the name of the resource on which to
return access control information.

level __Level of information required. 0 and 1 are valid.

bufptr __A pointer to the return information structure is returned in the address pointed to by
bufptr.

4.12.5.4. NetAccessSetInfo

Only works when remoted to a downlevel system. Use Win32 (GetFileSecurity, SetFileSecurity)
APIs for NT.

NetAccessSetInfo changes the access control list for a resource.

Privilege Level

Admin privilege or P permission for the resource is required to successfully execute NetAccessSetInfo.

NET_API_STATUS NET_API_FUNCTION
NetAccessSetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR resource,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

resource __A pointer to an UNICODE string containing the name of the resource for which the
access information shoule be changed.

level __Level of information to set. Only 1 and 1002 are valid.

buf __A pointer to a buffer containing the access entry information.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.12.5.5. NetAccessDel

Only works when remoted to a downlevel system. Use Win32 (GetFileSecurity, SetFileSecurity)
APIs for NT.

NetAccessDel deletes the access control list for a particular resource.

Privilege Level

Admin privilege or P permission for the resource is required to successfully execute NetAccessDel.

NET_API_STATUS NET_API_FUNCTION
NetAccessDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR resource
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

resource __A pointer to an UNICODE string containing the name of the resource for which to
remove the access control entry.

4.12.5.6. NetAccessGetUserPerms

Only works when remoted to a downlevel system. Use Win32 (GetFileSecurity, SetFileSecurity)
APIs for NT.

NetAccessGetUserPerms returns a specified user's or group's access permissions for a particular
resource..

Privilege Level

Admin privilege or P permission for the resource is required to successfully execute
NetAccessGetUserPerms.except when users request their own access permissions to a resource. In
this case no special privilege is required.

NET_API_STATUS NET_API_FUNCTION
NetAccessGetUserPerms (

IN LPWSTR servername OPTIONAL,
IN LPWSTR UGname,
IN LPWSTR resource,
OUT LPDWORD Perms
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

UGname __A pointer to an UNICODE string containing the name of the user or group to query
permissions for.

resource __A pointer to an UNICODE string containing the resource for which to query user
permissions.

Perms __Points to a DWORD in which the user permissions for the specified resource are
returned.

4.12.5.7. NetAccessCheck

Only works when remoted to a downlevel system. Use Win32 (AccessCheck) API for NT.

NetAccessCheck verifies that a user has permission to perform a specified operation on a particular
resource.

Privilege Level

Admin privilege is required to successfully execute NetAccessCheck.

NET_API_STATUS NET_API_FUNCTION
NetAccessCheck (

IN LPWSTR servername OPTIONAL,
IN LPWSTR username,
IN LPWSTR resource,
IN DWORD operation,
OUT LPDWORD result
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

username __A pointer to an UNICODE string containing the name of the user to check for access
to the resource.

resource __A pointer to an UNICODE string containing the resource for which to check user
permissions.

operation __Points to a DWORD specifying the type of access operation requested.

ACCESS_READ 0x01 Permission to read data from a resource
and, by default, execute the resource.

ACCESS_WRITE 0x02 Permission to write data to the
 resource.
ACCESS_CREATE 0x04 Permission to create an instance of the

resource (for example, a file); data
can be written to the resource when
 creating it.

ACCESS_EXEC 0x08 Permission to execute the resource.
ACCESS_DELETE 0x10 Permission to delete the resource.
ACCESS_ATRIB 0x20 Permission to modify the resource's

attributes (for example, the date and
time a file was last modified).

ACCESS_PERM 0x40 Permission to modify the permissions
(read, write, create, execute, and
delete) assigned to a resource for a
user, group, or application.

ACCESS_ALL 0x7F Permission to read, write, create,
execute, or delete a resource, or to
modify attributes or permissions.in
which the user permissions for the
specified resource are returned.

result __Points to a DWORD in which the result of the access check is returned.

4.13. Domain APIs

Domain API functions retrieve information about a domain. They require that the workstation
service be started.

The Domain APIs are:

4.13.1. NetGetDCName

NetGetDCName returns the name of the Primary Domain Controller for the specified domain.

Privilege Level

No special privilege is required to successfully execute NetGetDCName.

NET_API_STATUS NET_API_FUNCTION
NetGetDCName (

IN LPWSTR servername OPTIONAL,
IN LPWSTR domainname,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

domainname __A pointer to an UNICODE string containing the name of the domain. A NULL
pointer or string indicates that the name of the domain controller for the primary domain is
to be returned.

bufptr __A pointer to the buffer containing the domain controller name is returned in the address
pointed to by bufptr.

4.14. Transport APIs

Transport APIs handle binding and unbinding of transports to/from the server and redirector, and
also ennumerate the transports used by a component. The ServerTransport APIs deal with
transports managed by the server, and the WkstaTransport APIs deal with transports managed by
the redirector.

NetServerTransportAdd allows the user to bind the transport to the server. NetServerTransportDel
allows the user to unbind the server from the transport. NetServerTransportEnum ennumerates the
transports that are managed by the server.

NetWkstaTransportAdd/Del/Enum perform equivalent operations for the workstation.

ServerTransport APIs are available at one information level.

typedef struct _SERVER_TRANSPORT_INFO_0 {
DWORD svti0_number_of_vcs;
LPWSTR svti0_transport_name;
LPBYTE svti0_transport_address;
DWORD svti0_transportaddresslength;
LPWSTR svti0_networkaddress;

} SERVER_TRANSPORT_INFO_0, *PSERVER_TRANSPORT_INFO_0,
*LPSERVER_TRANSPORT_INFO_0;

WkstaTransport APIs are available at one information level.
typedef struct _WKSTA_TRANSPORT_INFO_0 {

DWORD wkti0_quality_of_service;
DWORD wkti0_number_of_vcs;
LPWSTR wkti0_transport_name;
LPWSTR wkti0_transport_address;

} WKSTA_TRANSPORT_INFO_0, *PWKSTA_TRANSPORT_INFO_0,
*LPWKSTA_TRANSPORT_INFO_0;

The APIs are:

4.14.1. NetServerTransportAdd

NetServerTransportAdd binds the server to the transport.

Privilege Level

Admin privilege is required to successfully execute NetServerTransportAdd.

NET_API_STATUS NET_API_FUNCTION
NetServerTransportAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. Only 0 is valid.

buf __A pointer to a buffer containing the server transport information structure.

4.14.2. NetServerTransportDel

NetServerTransportDel unbinds the transport from the server.

Privilege Level

Admin privilege is required to successfully execute NetServerTransportDel.

NET_API_STATUS NET_API_FUNCTION
NetServerTransportDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR transportname
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

transportname __A pointer to an UNICODE string containing the name of the transport from
which to unbind.

4.14.3. NetServerTransportEnum

NetServerTransportEnum supplies information about transports that are managed by the server.

Privilege Level

No special privilege is required to successfully execute NetServerTransportEnum.

NET_API_STATUS NET_API_FUNCTION
NetServerTransportEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. Only 0 is valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing server transport search. The handle
should be zero on the first call and left unchanged for subsequent calls. If resumehandle is
NULL, then no resume handle is stored..

4.14.4. NetWkstaTransportAdd

NetWkstaTransportAdd binds the redirector to the transport.

Privilege Level

Admin privilege is required to successfully execute NetWkstaTransportAdd.

NET_API_STATUS NET_API_FUNCTION
NetWkstaTransportAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. Only 0 is valid.

buf __A pointer to a buffer containing the server transport information structure.

4.14.5. NetWkstaTransportDel

NetWkstaTransportDel unbinds the transport from the redirector.

Privilege Level

Admin privilege is required to successfully execute NetWkstaTransportDel.

NET_API_STATUS NET_API_FUNCTION
NetWkstaTransportDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR transportname,

 IN DWORD ucond
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

transportname __A pointer to an UNICODE string containing the name of the transport from
which to unbind.

ucond __Force level to delete connections on the transport binding.

4.14.6. NetWkstaTransportEnum

NetWkstaTransportEnum supplies information about transports that are managed by the
redirector.

Privilege Level

No special privilege is required to successfully execute NetWkstaTransportEnum.

NET_API_STATUS NET_API_FUNCTION
NetWkstaTransportEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to an UNICODE string containing the name of the remote server on
which the function is to execute. A NULL pointer or string specifies the local machine.

level __Level of information required. Only 0 is valid.

bufptr __On return a pointer to the return information structure is returned in the address pointed
to by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

entriesread __On return the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing workstation transport search. The handle
should be zero on the first call and left unchanged for subsequent calls. If resumehandle is
NULL, then no resume handle is stored..

4.15. Alert APIs

Alert API functions notify network service programs and applications of network events. An event
is a particular instance of a process or state of hardware as defined by an application. The Alert API
functions allow applications to indicate when predefined events occur.

NetAlertRaise is used to indicate that an event has occurred.

The fixed-length header contains the standard alert data structure. The STD_ALERT data structure has
the following format:

typedef struct _STD_ALERT {
DWORD alrt_timestamp;
WCHAR alrt_eventname[EVLEN+1];
WCHAR alrt_servicename[SNLEN+1];

} STD_ALERT, *PSTD_ALERT, *LPSTD_ALERT;

The ADMIN_OTHER_INFO data structure has this format:

typedef struct _ADMIN_OTHER_INFO {
DWORD alrtad_errcode;
DWORD alrtad_numstrings;

} ADMIN_OTHER_INFO, *PADMIN_OTHER_INFO, *LPADMIN_OTHER_INFO;

/* Followed by consecutive UNICODE strings; the count
 is in the alrtad_numstrings element. */

WCHAR mergestrings[];

The ERRLOG_OTHER_INFO data structure has this format:

typedef struct _ERRLOG_OTHER_INFO {
DWORD alrter_errcode;
DWORD alrter_offset;

} ERRLOG_OTHER_INFO, *PERRLOG_OTHER_INFO, *LPERRLOG_OTHER_INFO;

The PRINT_OTHER_INFO data structure has this format:

typedef struct _PRINT_OTHER_INFO {
DWORD alrtpr_jobid;
DWORD alrtpr_status;
DWORD alrtpr_submitted;
DWORD alrtpr_size;

} PRINT_OTHER_INFO, *PPRINT_OTHER_INFO, *LPPRINT_OTHER_INFO;
/* Followed by consecutive UNICODE strings. */

WCHAR computername[];
WCHAR username[];
WCHAR queuename[];
WCHAR destname[];
WCHAR status_string[];

The USER_OTHER_INFO data structure has this format:

typedef struct _USER_OTHER_INFO {
DWORD alrtus_errcode;
DWORD alrtus_numstrings;

} USER_OTHER_INFO, *PUSER_OTHER_INFO, *LPUSER_OTHER_INFO;
/*
 * Followed by a number of consecutive UNICODE strings;
 * the count is in the alrtus_numstrings element. */
 */

WCHAR mergestrings[];

/* Further followed by two more consecutive UNICODE strings. */
WCHAR username[];
WCHAR computername[];

The APIs are:

4.15.1. NetAlertRaise

NetAlertRaise notifies all registered clients that a particular event occurred.

Privilege Level

No special privilege level is required to successfully execute NetAlertRaise.

NET_API_STATUS NET_API_FUNCTION
NetAlertRaise (

IN LPWSTR event,
IN LPBYTE buffer,
IN DWORD numbytes
);

Parameters:

event __Points to an UNICODE string that specifies which type of alert to raise.

buffer __Points to the data to be sent to the clients listening for this alert. The data should consist
of the STD_ALERT data structure followed by any additional alert data.

numbytes __Specifies the size of the buffer in bytes.

4.15.2. NetAlertRaiseEx

NetAlertRaiseEx simplifies the raising of an admin alert.

Privilege Level

No special privilege level is required to successfully execute NetAlertRaiseEx.

NET_API_STATUS NET_API_FUNCTION
NetAlertRaiseEx (

IN LPWSTR event,
IN LPVOID VariableInfo,
IN DWORD VariableInfoSize,
IN LPWSTR ServiceName
);

Parameters:

event __Points to an UNICODE string that specifies which type of alert to raise.

VariableInfo __Information to put into the admin alert.

VariableInfoSize __Number of bytes of variable information.

ServiceName __Name of the service raising the admin alert.

4.16. Error Logging APIs

Only use these for remoting to downlevel. For NT use the EventLog API (ReadEventlog,
ReportEvent, ...)

Windows NT uses an integrated Eventlogging mechanism for reporting both errors and audits. The
NetError and NetAudit APIs are provided to access downlevel LANMan logs. They will report

ERROR_NOT_SUPPORTED if called to an Windows NT system.

The error log is a file that stores error messages (in binary format). It contains information about LAN
Manager software internal errors, MS OS/2 and MS-DOS internal errors, and network service errors.

NetErrorLogRead reads entries from the error log; and NetErrorLogClear clears the error log and,
optionally, saves the entries in a backup file.

NetErrorLogRead uses the ERROR_LOG data structure to read entries from and write entries to the
error log. An entry consists of a fixed-length data structure. The data structure can be followed by
UNICODE strings (el_text) that describe the error message, and a block of raw data (el_data) related
to the cause of the error. Because of the variable lengths and structures of the el_data and el_text
portions of the entry, only the fixed-length data structure is defined in the ERROR_LOG data
structure.

The error log entry has the following format:

typedef struct _ERROR_LOG {
DWORD el_len;
DWORD el_reserved;
DWORD el_time;
DWORD el_error;
LPWSTR el_name
LPWSTR el_text;
LPBYTE el_data;
DWORD el_data_size;
DWORD el_nstrings;

} ERROR_LOG, *PERROR_LOG, *LPERROR_LOG;

/*
 * Variable-length raw data specific to the error. el_len will be preceded by pad bytes
 * as required for proper alignment. There may also be pad byes after the end of the
 * fixed length structure, before el_data. Use the pointer in the fixed length structure
 * to reference this data.
 */

BYTE el_data[]; /* Raw data */
DWORD el_len2;

The error log handle is defined as follows:
typedef struct _HLOG {

DWORD time;
DWORD last_flags;
DWORD offset;
DWORD rec_offset;

} HLOG, *PHLOG, *LPHLOG;

The error log APIs are:

4.16.1. NetErrorLogClear

NetErrorLogClear clears the error log and optionally saves the entries in a backup file.

Privilege Level

Admin privilege is required to successfully execute NetErrorLogClear on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetErrorLogClear (

IN LPWSTR server,
IN LPWSTR backupfile OPTIONAL,
IN LPBYTE reserved OPTIONAL
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetErrorLogClear. A NULL pointer or NULL string specifies the local computer.

backupfile __Points to an UNICODE string that assigns a name for an optional backup file. The
calling application must have write permission for the path specified by backupfile. A
NULL pointer indicates not to back up the error log.

reserved __Reserved. Must be NULL.

4.16.2. NetErrorLogRead

NetErrorLogRead reads from the specified error log.

Privilege Level

No special privilege level is required to successfully execute NetErrorLogRead.

NET_API_STATUS NET_API_FUNCTION
NetErrorLogRead (

IN LPWSTR server,
IN LPWSTR reserved1 OPTIONAL,
IN LPHLOG errloghandle,
IN DWORD offset,
IN LPDWORD reserved2 OPTIONAL,
IN DWORD reserved3,
IN DWORD offsetflag,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD bytesread,
OUT LPDWORD totalbytes
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetErrorLogClear. A NULL pointer or NULL string specifies the local computer.

reserved1 __Reserved. Must be NULL.

errloghandle __Points to the error log handle. An application calling NetErrorLogRead for the
first time must initialize the 128-bit error log handle.

offset __Specifies the record offset at which to begin reading. This parameter is ignored unless bit
1 of offsetflag is set. If used, offset is taken as an offset of the record number (not bytes) at
which to begin reading. Note that the record offset parameter is zero-based from both
directions, depending upon the direction it is read.

reserved2 __Reserved. Must be NULL.

reserved3 __Reserved. Must be zero.

offsetflag __Specifies the open flags, bitmapped as follows:

Bit(s) Value

4.16.2.1. If 0, the log is read forward. If 1, the log
is read backward and records are returned in
reverse chronological order.

4.16.2.2. If 0, the read proceeds normally
(sequentially). If 1, the read proceeds from
the nth record from the start of the log,
where n is the offset parameter.

4.16.2.3. Reserved; must be 0.

bufptr __On return a pointer to the return information buffer is returned in the address pointed to
by bufptr.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

bytesread __On return the actual number of bytes read into the buffer is located in the DWORD
pointed to by bytesread.

totalbytes __On return the total bytes available to be read from the log is located in the DWORD
pointed to by totalbytes.

4.17. Configuration APIs

These are only for downlevel support. Use the Registry APIs to retrieve configuration information
on NT.

Configuration API functions retrieve network configuration information.

Configuration APIs are available at one information level.

typedef struct _CONFIG_INFO_0 {
LPWSTR cfgi0_key;
LPWSTR cfgi0_data;

} CONFIG_INFO_0, *PCONFIG_INFO_0, *LPCONFIG_INFO_0;

The Configuration APIs are:

4.17.1. NetConfigGet

NetConfigGet retrieves the value of a single specified entry for a particular component on the local
computer or on a remote server.

Privilege Level

Admin privilege or accounts, comm, print, or server operator privilege is required to successfully
execute NetConfigGet on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetConfigGet (

IN LPWSTR server,
IN LPWSTR component,
IN LPWSTR parameter,
OUT LPBYTE * bufptr
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetConfigGet. A NULL pointer or NULL string specifies the local computer.

component __Points to an UNICODE string that specifies which configuration component to

search.

parameter __Points to an UNICODE string that specifies the entry for the component specified
whose value is to be returned.

bufptr __On return a pointer to the returned information is returned in the address pointed to by
bufptr.

4.17.2. NetConfigGetAll

NetConfigGetAll retrieves all the configuration information for a given component on a local or a
remote computer.

Privilege Level

Admin privilege or account, comm, print, or server operator privilege is required to successfully
execute NetConfigGetAll on a remote server.

NET_API_STATUS NET_API_FUNCTION
NetConfigGetAll (

IN LPWSTR server,
IN LPWSTR component,
OUT LPBYTE * bufptr
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetConfigGet. A NULL pointer or NULL string specifies the local computer.

component __Points to an UNICODE string that specifies which configuration component to
search.

bufptr __On return a pointer to the returned information is returned in the address pointed to by
bufptr.

4.17.3. NetConfigSet

NetConfigSet sets the value of a single specified entry for a particular component on the local
computer or on a remote server.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetConfigSet on a
remote server.

NET_API_STATUS NET_API_FUNCTION
NetConfigSet (

IN LPWSTR server,
IN LPWSTR reserved1 OPTIONAL,
IN LPWSTR component,
IN DWORD level,
IN DWORD reserved2,
IN LPBYTE buf,
IN DWORD reserved3
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetConfigSet. A NULL pointer or NULL string specifies the local computer.

reserved1 __Reserved. Must be NULL.

component __Points to an UNICODE string that specifies which configuration component to set.

level __Infolevel of request. Must be zero.

reserved2 __Reserved. Must be zero.

buf __Buffer containing a CONFIG_INFO_0 structures.

reserved3 __Reserved. Must be zero.

4.18. Statistics APIs

LAN Manager accumulates a set of operating statistics for workstations and servers from the time
that the Workstation or Server service is started. NetStatisticsGet is called to get those statistics.
The Statistics API function, NetStatisticsGet, retrieves the operating statistics for workstations and
servers. Since NT and downlevel workstations collect a different set of statistics, the caller must
know whether the server is NT or downlevel (which can be discovered via the NetServerGetInfo
API) and interpret the returned buffer accordingly.

The way lmstats.h is defined now, you can't define both an uplevel and downlevel structure
without standing on your head (doing undef's etc). We need to fix this so both structures
have unique names.

NetStatisticsGet returns a STAT_WORKSTATION_0 data structure when workstation statistics are
requested; it returns a STAT_SERVER_0 data structure when server statistics are requested.

The downlevel STAT_WORKSTATION_0 data structure has this format:

typedef struct _STAT_WORKSTATION_0 {
DWORD stw0_start;
DWORD stw0_numNCB_r;
DWORD stw0_numNCB_s;
DWORD stw0_numNCB_a;
DWORD stw0_fiNCB_r;
DWORD stw0_fiNCB_s;
DWORD stw0_fiNCB_a;
DWORD stw0_fcNCB_r;
DWORD stw0_fcNCB_s;
DWORD stw0_fcNCB_a;
DWORD stw0_sesstart;
DWORD stw0_sessfailcon;
DWORD stw0_sessbroke;
DWORD stw0_uses;
DWORD stw0_usefail;
DWORD stw0_autorec;
DWORD stw0_bytessent_r_hi;
DWORD stw0_bytessent_r_lo;
DWORD stw0_bytesrcvd_r_hi;
DWORD stw0_bytesrcvd_r_lo;
DWORD stw0_bytessent_s_hi;
DWORD stw0_bytessent_s_lo;
DWORD stw0_bytesrcvd_s_hi;
DWORD stw0_bytesrcvd_s_lo;
DWORD stw0_bytessent_a_hi;
DWORD stw0_bytessent_a_lo;
DWORD stw0_bytesrcvd_a_hi;
DWORD stw0_bytesrcvd_a_lo;
DWORD stw0_reqbufneed;
DWORD stw0_bigbufneed;

} STAT_WORKSTATION_0, *PSTAT_WORKSTATION_0, *LPSTAT_WORKSTATION_0;

The NT STAT_WORKSTATION_0 data structure has this format:

typedef struct _STAT_WORKSTATION_0 {
LARGE_INTEGER StatisticsStartTime;
LARGE_INTEGER BytesReceived;
LARGE_INTEGER SmbsReceived;
LARGE_INTEGER PagingReadBytesRequested;
LARGE_INTEGER NonPagingReadBytesRequested;
LARGE_INTEGER CacheReadBytesRequested;
LARGE_INTEGER NetworkReadBytesRequested;
LARGE_INTEGER BytesTransmitted;
LARGE_INTEGER SmbsTransmitted;
LARGE_INTEGER PagingWriteBytesRequested;
LARGE_INTEGER NonPagingWriteBytesRequested;

LARGE_INTEGER CacheWriteBytesRequested;
LARGE_INTEGER NetworkWriteBytesRequested;
DWORD InitiallyFailedOperations;
DWORD FailedCompletionOperations;
DWORD ReadOperations;
DWORD RandomReadOperations;
DWORD ReadSmbs;
DWORD LargeReadSmbs;
DWORD SmallReadSmbs;
DWORD WriteOperations;
DWORD RandomWriteOperations;
DWORD WriteSmbs;
DWORD LargeWriteSmbs;
DWORD SmallWriteSmbs;
DWORD RawReadsDenied;
DWORD RawWritesDenied;
DWORD NetworkErrors;
// Connection/Session counts
DWORD Sessions;
DWORD FailedSessions;
DWORD Reconnects;
DWORD CoreConnects;
DWORD Lanman20Connects;
DWORD Lanman21Connects;
DWORD LanmanNtConnects;
DWORD ServerDisconnects;
DWORD HungSessions;
DWORD UseCount;
DWORD FailedUseCount;
//

 // Queue Lengths (updates protected by RdrMpxTableSpinLock NOT
// RdrStatisticsSpinlock)
//
DWORD CurrentCommands;

} STAT_WORKSTATION_0, *PSTAT_WORKSTATION_0, *LPSTAT_WORKSTATION_0;

The STAT_SERVER_0 data structure has this format:

typedef struct _STAT_SERVER_0 {
DWORD sts0_start;
DWORD sts0_fopens;
DWORD sts0_devopens;
DWORD sts0_jobsqueued;
DWORD sts0_sopens;
DWORD sts0_stimedout;
DWORD sts0_serrorout;
DWORD sts0_pwerrors;
DWORD sts0_permerrors;
DWORD sts0_syserrors;
DWORD sts0_bytessent_low;
DWORD sts0_bytessent_high;
DWORD sts0_bytesrcvd_low;
DWORD sts0_bytesrcvd_high;
DWORD sts0_avresponse;
DWORD sts0_reqbufneed;
DWORD sts0_bigbufneed;

} STAT_SERVER_0, *PSTAT_SERVER_0, *LPSTAT_SERVER_0;

4.18.1. NetStatisticsGet

NetStatisticsGet retrieves, and optionally clears, operating statistics for a service. Currently, only
the Workstation and Server services are supported.

Privilege Level

Admin privilege or server operator privilege is required to successfully execute NetStatisticsGet on a
remote server.

NET_API_STATUS NET_API_FUNCTION
NetStatisticsGet (

IN LPWSTR server,
IN LPWSTR service,
IN DWORD level,
IN DWORD options,
OUT LPBYTE * bufptr
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetConfigGet. A NULL pointer or NULL string specifies the local computer.

service __Points to an UNICODE string that contains the name of the service about which to get
the statistics. Only the values SERVER and WORKSTATION are currently allowed.

level __Specifies the level of detail requested; must be 0.

options __Specifies the options flags.

Bit(s) Meaning
4.18.1.1. Clear statistics.
4.18.1.2. Reserved; must be 0.

bufptr __On return a pointer to the returned information is returned in the address pointed to by
bufptr.

4.19. Auditing APIs

These are for downlevel only. NT automatically records audits on failed accesses when
AccessCheckAndAudit is used. To read audits, use the Eventlog ReadEventlog API.

Windows NT uses an integrated Eventlogging mechanism for reporting both errors and audits. The
NetError and NetAudit APIs are provided to access downlevel LANMan logs. They will report
ERROR_NOT_SUPPORTED if called to an Windows NT system.

Auditing API functions control the audit log. Auditing API functions monitor operations on the
specified server. If auditing is enabled, each monitored operation generates an audit entry. For example,
when a user establishes a connection to the server, a single audit entry is generated.

Audit entries are stored in a binary file called an audit trail or audit log. All Auditing API functions
perform their operations on this file. LAN Manager defines many types of audit entries.

NetAuditRead reads the audit log. NetAuditClear clears the audit log.

Data Structures

All audit entries include a fixed-length header used in conjunction with variable-length data specific to
the entry type. Because of the variable lengths and structures of the ae_data element of the audit entry
(it is possible for ae_data to be zero bytes), only the fixed header is defined in the audit_entry data
structure.

The variable-length portion of the audit entry can contain an offset to a variable-length UNICODE
string. The offset values are DWORDs. To determine the value of the pointer to this string, add the
offset value to the address of the ae_data data structure.

The following example illustrates this procedure. Assume that pAE points to a buffer that contains a
complete audit entry and that the ae_type element of the audit_entry data structure contains the value
AE_CONNSTOP, which specifies the predefined AE_CONNSTOP data structure. To point the
variable pszComputerName to the UNICODE string that contains the name of the client whose
connection was stopped, an application would perform the following algorithm:

PAUDIT_ENTRY pAE; /* Fixed part of audit entry */
LPAE_CONNSTOP pAEvar; /* Variable-length structure */
LPWSTR pszComputerName; /* Pointer to var-length string*/

/* Calculate the offset to the variable-length structure. */
pAEvar = (_LPAE_CONNSTOP) (((LPBYTE) pAE) + pAE->ae_data_offset);

/* Calculate the offset to the computername. */
pszComputerName = ((LPBYTE) pAEvar) + pAEvar->ae_cp_compname;

Fixed-Length Header

The audit_entry data structure has this format:

typedef struct _AUDIT_ENTRY {
DWORD ae_len;
DWORD ae_reserved;
DWORD ae_time;
DWORD ae_type;
DWORD ae_data_offset; /* Offset from beginning

 address of audit_entry */

DWORD ae_data_size;
} AUDIT_ENTRY, *PAUDIT_ENTRY, *LPAUDIT_ENTRY;

/* Variable-length data specific to type of audit entry. There may be pad bytes after
 ae_data_size for alignment purposes.
*/

BYTE ae_data[];

/* Terminating length indicator. Preceded by pad bytes for proper alignment.*/

DWORD ae_len2;
where

ae_len and ae_len2 Specify the length of the audit entry. Both have the same value. The
ae_len element is included at the beginning and at the end of the audit entry to enable both
backward and forward scanning of the log.

ae_reserved Reserved.

ae_time Specifies when the audit entry was generated. The value is stored as the number of
seconds elapsed since 00:00:00, January 1, 1970.

ae_type Specifies the type of audit entry. Type values from 0x0000 through 0x07FF are
reserved. OEMs and other applications programmers can reserve values from 0x0800
through 0xFFFF.

ae_data_offset Specifies the byte offset from the beginning of the audit entry to the beginning of
the variable-length portion (ae_data) of the audit entry.

ae_data Specifies the variable-length portion of the audit entry; it differs depending on the type

of entry specified by ae_type. The information begins at ae_data_offset bytes from the top
of the audit entry. For information about the structure of each entry type defined by LAN
Manager, see the following section.

Variable-Length Data

The following data structuresare specific to the audit entry type The structures follow the audit_entry
header, but they are not necessarily contiguous.

The _AE_SRVSTATUS data structure is associated with an audit entry of type AE_SRVSTATUS.

typedef struct _AE_SRVSTATUS {
DWORD ae_sv_status;

}AE_SRVSTATUS , * PAE_SRVSTATUS ;

The _AE_SESSLOGON data structure is associated with an audit entry of type AE_SESSLOGON.

typedef struct _AE_SESSLOGON {
DWORD ae_so_compname;
DWORD ae_so_username;
DWORD ae_so_privilege;

}AE_SESSLOGON , * PAE_SESSLOGON ;

The _AE_SESSLOGOFF data structure is associated with an audit entry of type AE_SESSLOGOFF.

typedef struct AE_SESSLOGOFF {
DWORD ae_sf_compname;
DWORD ae_sf_username;
DWORD ae_sf_reason;

}AE_SESSLOGOFF , * PAE_SESSLOGOFF;

The _AE_SESSPWERR data structure is associated with an audit entry of type AE_SESSPWERR.

typedef struct _AE_SESSPWERR {
DWORD ae_sp_compname;
DWORD ae_sp_username;

}AE_SESSPWERR , * PAE_SESSPWERR ;

The _AE_CONNSTART data structure is associated with an audit entry of type AE_CONNSTART.

typedef struct _AE_CONNSTART {
DWORD ae_ct_compname;
DWORD ae_ct_username;
DWORD ae_ct_netname;
DWORD ae_ct_connid;

}AE_CONNSTART , * PAE_CONNSTART ;

The _AE_CONNSTOP data structure is associated with an audit entry of type AE_CONNSTOP.

typedef struct _AE_CONNSTOP {
DWORD ae_cp_compname;
DWORD ae_cp_username;
DWORD ae_cp_netname;
DWORD ae_cp_connid;
DWORD ae_cp_reason;

}AE_CONNSTOP , * PAE_CONNSTOP ;

The _AE_CONNREJ data structure is associated with an audit entry of type AE_CONNREJ.

typedef struct _AE_CONNREJ {
DWORD ae_cr_compname;
DWORD ae_cr_username;
DWORD ae_cr_netname;
DWORD ae_cr_reason;

}AE_CONNREJ , * PAE_CONNREJ ;

The _AE_RESACCESS data structure is associated with an audit entry of type AE_RESACCESS.

typedef struct _AE_RESACCESS {
DWORD ae_ra_compname;
DWORD ae_ra_username;
DWORD ae_ra_resname;
DWORD ae_ra_operation;
DWORD ae_ra_returncode;
DWORD ae_ra_restype;
DWORD ae_ra_fileid;

}AE_RESACCESS , * PAE_RESACCESS ;

The _AD_RESACCESSREJ data structure is associated with an audit entry of type
AE_RESACCESSREJ.

typedef struct _AE_RESACCESSREJ {
DWORD ae_rr_compname;
DWORD ae_rr_username;
DWORD ae_rr_resname;
DWORD ae_rr_operation;

}AE_RESACCESSREJ , * PAE_RESACCESSREJ ;

The _AD_CLOSEFILE data structure is associated with an audit entry of type AE_CLOSEFILE.

typedef struct _AE_CLOSEFILE {
DWORD ae_cf_compname;
DWORD ae_cf_username;
DWORD ae_cf_resname;
DWORD ae_cf_fileid;
DWORD ae_cf_duration
DWORD ae_cf_reason;

}AE_CLOSEFILE , * PAE_CLOSEFILE ;

The _AE_SERVICESTAT data structure is associated with an audit entry of type
AE_SERVICESTAT.

typedef struct _AE_SERVICESTAT {
DWORD ae_ss_compname;
DWORD ae_ss_username;
DWORD ae_ss_svcname;
DWORD ae_ss_status;
DWORD ae_ss_code;
DWORD ae_ss_text;
DWORD ae_ss_returnval;

}AE_SERVICESTAT , * PAE_SERVICESTAT ;

The _AE_ACLMOD data structure is associated with audit entries of type AE_ACLMOD and
AE_ACLMODFAIL.

struct _AE_ACLMOD {
DWORD ae_am_compname;
DWORD ae_am_username;
DWORD ae_am_resname;
DWORD ae_am_action;
DWORD ae_am_datalen;

}AE_ACLMOD, * PAE_ACLMOD;

The _AE_UASMOD data structure is associated with an audit entry of type AE_UASMOD.

typedef struct _AE_UASMOD {
DWORD ae_um_compname;
DWORD ae_um_username;
DWORD ae_um_resname;
DWORD ae_um_rectype;
DWORD ae_um_action;
DWORD ae_um_datalen;

}AE_UASMOD , * PAE_UASMOD ;

The _AE_NETLOGON data structure is associated with an audit entry of type AE_NETLOGON.

typedef struct _AE_NETLOGON {
DWORD ae_no_compname;
DWORD ae_no_username;
DWORD ae_no_privilege;
DWORD ae_no_authflags;

}AE_NETLOGON , * PAE_NETLOGON ;

The _AE_NETLOGOFF data structure is associated with an audit entry of type AE_NETLOGOFF.

typedef struct _AE_NETLOGOFF {
DWORD ae_nf_compname;
DWORD ae_nf_username;
DWORD ae_nf_reserved1;
DWORD ae_nf_reserved2;

}AE_NETLOGOFF , * PAE_NETLOGOFF ;

The _AE_ACCLIM data structure is associated with an audit entry of type AE_ACCLIMITEXCD.

typedef struct _AE_ACCLIM {
DWORD ae_al_compname;
DWORD ae_al_username;
DWORD ae_al_resname;
DWORD ae_al_limit;

}AE_ACCLIM , * PAE_ACCLIM ;

The _AE_LOCKOUT data structure is associated with an audit entry of type AE_LOCKOUT.

typedef struct AE_LOCKOUT {
DWORD ae_lk_compname;
DWORD ae_lk_username;
DWORD ae_lk_action;
DWORD ae_lk_bad_pw_count;

}AE_LOCKOUT , PAE_LOCKOUT ;
The _AE_GENERIC data structure is associated with an audit entry of type AE_GENERIC.

typedef struct _AE_GENERIC {
DWORD ae_ge_msgfile;
DWORD ae_ge_msgnum;
DWORD ae_ge_params;
DWORD ae_ge_param1;
DWORD ae_ge_param2;
DWORD ae_ge_param3;
DWORD ae_ge_param4;
DWORD ae_ge_param5;
DWORD ae_ge_param6;
DWORD ae_ge_param7;
DWORD ae_ge_param8;
DWORD ae_ge_param9;

}AE_GENERIC , * PAE_GENERIC ;

The audit log handle is defined as follows:

typedef struct _HLOG {
DWORD time;
DWORD last_flags;
DWORD offset;
DWORD rec_offset;

} HLOG, *PHLOG, *LPHLOG;

4.19.1. NetAuditClear

NetAuditClear clears the audit log on a server and, optionally, saves the entries in a backup file.

Privilege Level

Admin privilege is required to successfully execute NetAuditClear on a remote server or on a
computer that has local security enabled.

NET_API_STATUS NET_API_FUNCTION
NetAuditClear (

IN LPWSTR server,
IN LPWSTR backupfile OPTIONAL,
IN LPWSTR service OPTIONAL
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetAuditClear. A NULL pointer or NULL string specifies the local computer.

backupfile __Points to an UNICODE string that contains a name for the optional backup file. The
calling application must have create and write permissions for the path specified by
backupfile, and the path must already exist. A NULL pointer specifies not to back up the
audit log.

service __Points to an UNICODE string that contains the name of the service that owns the
desired audit log to which the operation is to be performed.

4.19.2. NetAuditRead

NetAuditRead reads from the audit log on a server.

Privilege Level

Admin privilege or accounts, comm, print, or server operator privilege is required to successfully
execute NetAuditRead on a remote server or on a computer that has local security enabled.

NET_API_STATUS NET_API_FUNCTION
NetAuditRead (

IN LPWSTR server,
IN LPWSTR service OPTIONAL,
IN LPHLOG auditloghandle,
IN DWORD offset,
IN LPDWORD reserved1 OPTIONAL,
IN DWORD reserved2,
IN DWORD offsetflag,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD bytesread,
OUT LPDWORD totalavailable
);

Parameters:

server __Points to an UNICODE string that contains the name of the server on which to execute
NetAuditRead. A NULL pointer or NULL string specifies the local computer.

service __Points to an UNICODE string that contains the name of the service that owns the
desired audit log to which the operation is to be performed.

auditloghandle __Points to the handle for the audit log. An application calling NetAuditRead for
the first time must initialize the audit log handle as follows. The most significant bit (MSB)
is the leftmost bit; the least significant bit (LSB) is the rightmost bit. After the first call,
each call to NetAuditRead must be given the value for the handle returned by the previous
call.

auditloghandle Value

4.19.2.1. (MSB) - 64 0
4.19.2.2. - 0 (LSB) 1

offset __Specifies the record offset at which to begin reading. This parameter is ignored unless bit
1 in the offsetflag parameter is set. If offsetflag bit 1 is set, offset is taken as an offset based
on the record number (not bytes) at which the returned data should begin. Note that the
record offset parameter is zero-based from both directions, depending upon the direction of
the read. If reading backward, record 0 is the last record in the log. If reading forward,
record 0 is the first record in the log.

reserved1 __Reserved. Must be NULL.

reserved2 __Reserved. Must be zero.

offsetflag __Specifies the open flags, as follows:

Bit(s) Meaning

4.19.2.3. If 0, the log is read forward. If 1, the log is
read backward and records are returned in the

buffer in reverse chronological order (newest
records first).

4.19.2.4. If 0, reading proceeds sequentially. If 1,
reading proceeds from the nth record from the
start of the log, where n is the offset
parameter.

4.19.2.5. Reserved; must be 0.

bufptr __On return a pointer to the returned information is returned in the address pointed to by bufptr.
After a successful read operation, this buffer contains a sequence of audit entries with the
accompanying variable-length data structures.

prefmaxlen __Prefered maximum length of returned data (in 8-bit bytes).

bytesread __On return the actual number of bytes read into the buffer is located in the DWORD
pointed to by bytesread.

totalavailable __On return the total bytes available to be read from the log is located in the
DWORD pointed to by totalavailable.

4.19.3. NetAuditWrite

This looks like a local only API. If so, remove it since these are for downlevel support only.

NetAuditWrite writes an audit entry to the local audit log.

Privilege Level

No special privilege level is required to successfully execute NetAuditWrite.

NET_API_STATUS NET_API_FUNCTION
NetAuditWrite (

IN DWORD type,
IN LPBYTE buf,
IN DWORD numbytes
IN LPWSTR service,
IN LPBYTE reserved,
);

Parameters:

type __Specifies the type of entry to write to the audit log.

buf __Points to a buffer that contains the data structure associated with the specified audit entry.

numbytes __Specifies the size (in bytes) of the buffer pointed to by buf.

service __Points to an UNICODE string that contains the name of the service that owns the
desired audit log to which the operation is to be performed.

reserved __Reserved. Must be NULL.

4.20. Replicator APIs

The NT Replicator APIs control how the NT Replicator service updates selective directories from
an export server to one or more clients. In addition to providing compatible LAN Manager 2.x
functionality in a well-defined manner, this new set of LAN Manager APIs allow for specific API
(operation) security checking.

The change from the file system based control on LAN Manager 2.x to Replicator API control on NT
has the following implications:

o Applications can no longer delete a directory in the import path of a client to stop receiving
updates from its master.

o Applications can no longer use the REPL.INI file in each replicated directory on a master to
control the method of replication.

o Applications can no longer lock or unlock a directory on a master from being replicated by
creating or deleting the USERLOCK.* file(s).

o Applications can no longer lock or unlock a directory on a client from receiving updates from
its master by creating or deleting the USERLOCK.* file(s).

o Applications which depend on the LAN Manager 2.x behavior of ignoring locks for file
integrity trees will need to be modified. (NT policy differs from LAN Manager 2.x policy;
under NT the locks are always respected.)

Each of the intended operations listed above can be specified to the NT Replicator service through an
appropriate API.

Any user or application which belongs to the admin or server operator group on a local or remote
export server can modify the parameters which control the replication master.

There are three categories of Replicator APIs:

o Replicator Configuration APIs

o Replicator Export Directory APIs

o Replicator Import Directory APIs.

4.20.1. Replicator Configuration APIs

The configuration parameters of the Replicator service can be examined using NetReplGetInfo.
They can be modified using NetReplSetInfo.

The Replicator service configuration parameters are:

role - Role of the Replicator service which is either REPL_ROLE_IMPORT (client),
REPL_ROLE_EXPORT (master), or REPL_ROLE_BOTH. On a Advanced Server, any of
these values are allowed. Under Windows/NT systems, only REPL_ROLE_IMPORT is
allowed.

exportpath - Fully-qualified path name to the master tree in which directories are created and
replicated from. This path must include the drive letter.

exportlist - List of machine and domain names to send update announcements to. If this list is
not provided, then update announcements will be sent to the server's domain. The list
entries are separated by semicolons; machine names in the list must not have leading
backslashes

importpath - Fully-qualified path name to the client tree in which directories are created to
receive the replicas of the master. This path must include the drive letter.

importlist - List of machines and domain names to receive updates from. If this list is not
provided, then update announcements are received from the server's domain. The list
entries are separated by semicolons; machine names in the list must not have leading
backslashes.

logonusername - User account name belonging to the replicator group which the client logs on
with to read files from its master(s). This field is ignored by the NT replicator, but is
provided for possible future use.

interval - Time in minutes within which the master checks for changes in all the replicated
directories. This field may be ignored by the NT replicator, but is provided for possible
future use.

pulse - Time in number of intervals within which the master notifies its clients of the current
replica version when no updates are necessary. This field may be ignored by the NT
replicator, but is provided for possible future use.

guardtime - Time in minutes which a REPL_INTEGRITY_TREE level integrity directory must
be stable before a client is allowed to update from it. (See explanation on integrity in
section 4.20.2). The default guard time is 2 minutes.

random - A value in seconds sent by a master to its clients so that the clients can use the 0 -
random range to generate a random time to wait on before updating from the master.

The configuration parameters (except the importpath and exportpath)
values are all dynamically settable.

These APIs can be called whether the Replicator service is running or not. If the Replicator service is
already running, any modification (except to the importpath and exportpath) to the replication
configuration takes effect immediately, and is persistent after the Replicator service has been stopped.
If the Replicator service is not started, the parameters are stored as persistent information and will take
effect when the Replicator service starts up. The service must be stopped to set the importpath and
exportpath values.

The Replicator configuration APIs information structures are:

typedef struct _REPL_INFO_0 {
DWORD rp0_role;
LPWSTR rp0_exportpath;
LPWSTR rp0_exportlist;
LPWSTR rp0_importpath;
LPWSTR rp0_importlist;

LPWSTR rp0_logonusername;
DWORD rp0_interval;
DWORD rp0_pulse;
DWORD rp0_guardtime;
DWORD rp0_random;

} REPL_INFO_0, *PREPL_INFO_0, *LPREPL_INFO_0;

typedef struct _REPL_INFO_1000 {
DWORD rp1000_interval;

} REPL_INFO_1000, *PREPL_INFO_1000, *LPREPL_INFO_1000;

typedef struct _REPL_INFO_1001 {
DWORD rp1001_pulse;

} REPL_INFO_1001, *PREPL_INFO_1001, *LPREPL_INFO_1001;

typedef struct _REPL_INFO_1002 {
DWORD rp1002_guardtime;

} REPL_INFO_1002, *PREPL_INFO_1002, *LPREPL_INFO_1002;

typedef struct _REPL_INFO_1003 {
DWORD rp1003_random;

} REPL_INFO_1003, *PREPL_INFO_1003, *LPREPL_INFO_1003;

4.20.1.1. NetReplGetInfo

NetReplGetInfo retrieves the Replicator service configuration information.

Security

No special group membership is required to successfully execute NetReplGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetReplGetInfo (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

level __Level of information required. Only level 0 is valid.

bufptr __On return a pointer to the return information structure is written in the address pointed
to by bufptr.

4.20.2. NetReplSetInfo

NetReplSetInfo modifies the Replicator service configuration information.

Security

Admin or server operator group membership is required to successfully execute NetReplSetInfo.

NET_API_STATUS NET_API_FUNCTION
NetReplSetInfo (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

level __Level of information to set 0, 1000, 1001, 1002, and 1003 are valid levels.

buf __A pointer to a buffer containing the configuration information structure which corresponds
to the specified level.

parm_err __Optional pointer to a DWORD to return the identifier of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.20.3. Replicator Export Directory APIs

The ReplExportDir APIs control top-level directories under the export path on the master. A user
can create a new directory under the export path and the Replicator service will automatically
replicate that directory. Or, a directory under the export path can be registered using
NetReplExportDirAdd. When adding a directory to be replicated via these APIs, the replication
controls (integrity and extent) are specified via the NetReplExportDirAdd API. If the directory is
created in the file system and no replicator APIs are called, then the directory is treated as having
file integrity and tree extent.

Integrity determines when a master updates a client. When integrity is REPL_INTEGRITY_FILE,
the client gets a replica of a file within the directory when it is not in use (being changed or replicated).
When integrity is set to REPL_INTEGRITY_TREE, every file and directory within the replicated
directory must be stable for the amount of time specified by the guardtime parameter before the client
is updated. Extent determines whether the entire tree within the directory is replicated
(REPL_EXTENT_TREE) or only the files in the first-level directory is replicated
(REPL_EXTENT_FILE).

The replication controls of each replicated directory can be examined using

NetReplExportDirGetInfo, and dynamically modified using NetReplExportDirSetInfo. These
control fields used to be specified in the REPL.INI file within each replicated directory on LAN
Manager 2.x, and they were not dynamically settable. On NT, the REPL.INI file is not used and will
be ignored in the replication process.

NetReplExportDirEnum returns a list of directories that are currently replicated.
NetReplExportDirDel deregisters a directory so that it is no longer replicated.

The lock status information is returned in two fields: lockcount and locktime. Lockcount indicates
the number of outstanding locks on a directory. Locktime is the time (in seconds since 1970, GMT)
when the directory was first locked, or is 0 if the directory is not locked at the present time.

NetReplExportDirLock locks a directory so that it is not replicated, by incrementing a lock reference
count for the directory. A lock on a directory can be unlocked using NetReplExportDirUnlock. The
replication does not resume unless all outstanding locks on that directory are released, and the lock
reference count is returned to 0. (The locktime field is automatically set to 0 when lockcount is 0.)

The ReplExportDir APIs can be called whether the Replicator service is running or not. If the
Replicator service is running as a master, any modification to the directory controls takes effect
immediately, and is persistent after the Replicator service has been stopped. If the Replicator service is
not started, the controls for the directory is stored as persistent information and will take effect when
the Replicator service starts up.

The ReplExportDir APIs are available at the following information levels:

typedef struct _REPL_EDIR_INFO_0 {
LPWSTR rped0_dirname;

} REPL_EDIR_INFO_0, *PREPL_EDIR_INFO_0, *LPREPL_EDIR_INFO_0;

typedef struct _REPL_EDIR_INFO_1 {
LPWSTR rped1_dirname;
DWORD rped1_integrity;
DWORD rped1_extent;

} REPL_EDIR_INFO_1, *PREPL_EDIR_INFO_1, *LPREPL_EDIR_INFO_1;

typedef struct _REPL_EDIR_INFO_2 {
LPWSTR rped2_dirname;
DWORD rped2_integrity;
DWORD rped2_extent;
DWORD rped2_lockcount;
DWORD rped2_locktime;

} REPL_EDIR_INFO_2, *PREPL_EDIR_INFO_2, *LPREPL_EDIR_INFO_2;

typedef struct _REPL_EDIR_INFO_1000 {
DWORD rped1000_integrity;

} REPL_EDIR_INFO_1000, *PREPL_EDIR_INFO_1000, *LPREPL_EDIR_INFO_1000;

typedef struct _REPL_EDIR_INFO_1001 {
DWORD rped1001_extent;

} REPL_EDIR_INFO_1001, *PREPL_EDIR_INFO_1001, *LPREPL_EDIR_INFO_1001;

4.20.3.1. NetReplExportDirAdd

NetReplExportDirAdd registers an existing directory in the export path to be replicated. The
default values for locktime and lockcount (both 0) are assumed.

Security

Admin or server operator group membership is required to successfully execute
NetReplExportDirAdd.

NET_API_STATUS NET_API_FUNCTION
NetReplExportDirAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

level __Level of information to add. Only level 1 is valid.

buf __A pointer to a buffer containing the directory control information structure.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.20.4. NetReplExportDirDel

NetReplExportDirDel deregisters a replicated directory.

Privilege Level

Security

Admin or server operator group membership is required to successfully execute
NetReplExportDirDel.

NET_API_STATUS NET_API_FUNCTION
NetReplExportDirDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the name of a replicated
directory to deregister.

4.20.5. NetReplExportDirEnum

NetReplExportDirEnum lists the replicated directories in the export path.

Security

No special group membership is required to successfully execute NetReplExportDirEnum.

NET_API_STATUS NET_API_FUNCTION
NetReplExportDirEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

level __Level of information to return. Levels 0,1, and 2 are valid.

bufptr __On return, an array of the specified information structure is returned in the address
pointed to by bufptr.

prefmaxlen __Preferred maximum length of returned data (in 8-bit bytes). A value of
0xFFFFFFFF indicates that all available entries should be returned.

entriesread __On return, the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return, the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing use search. The handle should be zero on
the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored.

4.20.6. NetReplExportDirGetInfo

NetReplExportDirGetInfo retrieves a replicated directory control information.

Security

No special group membership is required to successfully execute NetReplExportDirGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetReplExportDirGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the directory name to
return control information about.

level __Level of information to return. Levels 0, 1, and 2 are valid.

bufptr __On return a pointer to the return information structure is written in the address pointed
to by bufptr.

4.20.7. NetReplExportDirSetInfo

NetReplExportDirSetInfo modifies the control information of a replicated directory.

Security

Admin or server operator group membership is required to successfully execute
NetReplExportDirSetInfo.

NET_API_STATUS NET_API_FUNCTION
NetReplExportDirSetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the directory name to
return control information about.

level __Level of information to set. Levels 1, 1000, and 1001 are valid.

buf __A pointer to a buffer containing the control information structure which corresponds to the
specified level.

parm_err __Optional pointer to a DWORD to return the identifier of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.20.7.1. NetReplExportDirLock

NetReplExportDirLock locks a replicated directory so that replication from it can be suspended.
This function increments the lock reference count for the specified directory.

Security

Admin or server operator group membership is required to successfully execute
NetReplExportDirLock.

NET_API_STATUS NET_API_FUNCTION
NetReplExportDirLock (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the directory name to
lock.

4.20.7.2. NetReplExportDirUnlock

NetReplExportDirUnlock unlocks a directory so that replication from it can resume. This
function decrements the lock reference count for the specified directory.

Security

Admin or server operator group membership is required to successfully execute
NetReplExportDirUnlock.

NET_API_STATUS NET_API_FUNCTION
NetReplExportDirUnlock (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname,
IN DWORD unlockforce
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the directory name to
unlock.

unlockforce __A value which indicates the force level to unlock the directory.

Force levels:

REPL_UNLOCK_NOFORCE - Unlocks the directory by decrementing the lock
reference count. The lock reference count may or may not return to 0, so the
directory could still be locked.

REPL_UNLOCK_FORCE - Unlocks the directory completely by removing all
outstanding locks on the directory. The lock reference count is set to 0.

4.20.8. Replicator Import Directory APIs

The ReplImportDir APIs designate the top-level directories under the import path to receive
updates on. They also return status information about a replicated directory on the client. On LAN
Manager 2.x, a user must create a directory under the import path and the Replicator service
automatically replicates to it. On NT, import directories are automatically added if they are
exported by an export server from which importer is importing. Another way to register a directory
in advance of it being exported, is to use the NetReplImportDirAdd API. This API does not
create the directory itself. This is useful if you wish to modify some of the properties of the import
directory (for example, to lock it) prior to it first beginning to import this directory.

NetReplImportDirDel deregisters a directory. This is used to clean up a directory that is no longer
being exported. It will not stop replication if there is an active exporter, since it will be re-registered

the next time the exporter tells the importer what directories it is exporting. If you wish to prevent
importing of an actively exported directory, use the NetReplImportDirLock API.

NetReplImportDirEnum lists all the directories that are replicated to a client, and
NetReplImportDirGetInfo returns the status of a specified directory.

The status information of a directory consists of the replication state, the UNC computername of the
master (mastername), and the time (in seconds since 1970, GMT) when the directory was last updated
(last_update_time). If the state is REPL_STATE_OK, the directory currently has a master, and is
receiving regular update notices from it. If the state is REPL_STATE_NO_MASTER, the directory is
not supported by any master, and it is normally empty. If the state is REPL_STATE_NO_SYNC, the
directory has a master, but the master has not sent any update notices within the interval time period.
This may be due to a communication failure, the master crashing, the directory being locked, files in
the client directory being opened at update time, or an unstable REPL_INTEGRITY_TREE integrity
directory on the master. If the client Replicator service is not started the state is
REPL_STATE_NEVER_REPLICATED, mastername is a NULL string, and last_update_time is
0.NetReplImportDirLock locks a directory so that it does not receive updates, by incrementing a lock
reference count for the directory. A lock on a directory can be unlocked using
NetReplImportDirUnlock. The directory is not updated unless all outstanding locks on that directory
are released, and the lock reference count is returned to 0.

The lock status information is returned in two fields: lockcount and locktime. Lockcount indicates
the number of outstanding locks on a directory. Locktime is the time (in seconds since 1970, GMT)
when the directory was first locked. (locktime is set to 0 whenever lockcount goes to 0.)

The ReplImportDir APIs can be called whether the Replicator service is running or not. If the
Replicator service is running as a client, directory adds or deletes take effect immediately, and is
persistent after the Replicator service has been stopped. If the Replicator service is not started, any
added directory will receive updates when the Replicator service starts up (if there exists a master
which exports the directory).

The ReplImportDir APIs are available at the following information levels:

typedef struct _REPL_IDIR_INFO_0 {
LPWSTR rpid0_dirname;

} REPL_IDIR_INFO_0, *PREPL_IDIR_INFO_0, *LPREPL_IDIR_INFO_0;

typedef struct _REPL_IDIR_INFO_1 {
LPWSTR rpid1_dirname;
DWORD rpid1_state;
LPWSTR rpid1_mastername;
DWORD rpid1_last_update_time;
DWORD rpid1_lockcount;
DWORD rpid1_locktime;

} REPL_IDIR_INFO_1, *PREPL_IDIR_INFO_1, *LPREPL_IDIR_INFO_1;

4.20.8.1. NetReplImportDirAdd

NetReplImportDirAdd registers an existing directory in the import path to receive replication

from a master.

Security

Admin or replicator group membership is required to successfully execute NetReplImportDirAdd.

NET_API_STATUS NET_API_FUNCTION
NetReplImportDirAdd (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
IN LPBYTE buf,
OUT LPDWORD parm_err OPTIONAL
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

level __Level of information to add. Only level 0 is valid.

buf __A pointer to a buffer containing the directory name.

parm_err __Optional pointer to a DWORD to return the index of the first parameter in error
when ERROR_INVALID_PARAMETER is returned. If NULL the parameter is not
returned on error.

4.20.9. NetReplImportDirDel

NetReplImportDirDel deregisters directory so that it no longer receives updates from the master.
Note that this API does not actually delete the directory from the file system. Also, the directory
may be automatically re-registered by the Replicator service at any time. To prevent importing of a
directory that is being exported by some Replicator service, use the NetReplImportDirLock API
instead.

Privilege Level

Security

Admin or replicator group membership is required to successfully execute NetReplImportDirDel.

NET_API_STATUS NET_API_FUNCTION
NetReplImportDirDel (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote

server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the name of a replicated
directory to deregister.

4.20.10. NetReplImportDirEnum

NetReplImportDirEnum lists the replicated directories in the import path.

Security

No special group membership is required to successfully execute NetReplImportDirEnum.

NET_API_STATUS NET_API_FUNCTION
NetReplImportDirEnum (

IN LPWSTR servername OPTIONAL,
IN DWORD level,
OUT LPBYTE * bufptr,
IN DWORD prefmaxlen,
OUT LPDWORD entriesread,
OUT LPDWORD totalentries,
IN OUT LPDWORD resumehandle OPTIONAL
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

level __Level of information to return. Levels 0 or 1 are valid.

bufptr __On return, an array of the specified information structure is returned in the address
pointed to by bufptr.

prefmaxlen __Preferred maximum length of returned data (in 8-bit bytes). A value of
0xFFFFFFFF indicates that all available entries should be returned.

entriesread __On return, the actual enumerated element count is located in the DWORD pointed
to by entriesread.

totalentries __On return, the total number of entries that could have been enumerated from the
current resume position is located in the DWORD pointed to by totalentries.

resumehandle __On return, a resume handle is stored in the DWORD pointed to by
resumehandle, and is used to continue an existing use search. The handle should be zero on
the first call and left unchanged for subsequent calls. If resumehandle is NULL, then no
resume handle is stored.

4.20.11. NetReplImportDirGetInfo

NetReplImportDirGetInfo retrieves the status information on a client replicated directory.

Security

No special group membership is required to successfully execute NetReplImportDirGetInfo.

NET_API_STATUS NET_API_FUNCTION
NetReplImportDirGetInfo (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname,
IN DWORD level,
OUT LPBYTE * bufptr
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the directory name to
return control information about.

level __Level of information to return. Levels 0 and 1 are valid.

bufptr __On return a pointer to the return information structure is written in the address pointed
to by bufptr.

4.20.11.1. NetReplImportDirLock

NetReplImportDirLock locks a replicated directory so that replication to it can be suspended.
This function increments the lock reference count for the specified directory.

Security

Admin or replicator group membership is required to successfully execute NetReplImportDirLock.

NET_API_STATUS NET_API_FUNCTION
NetReplImportDirLock (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the directory name to
lock.

4.20.11.2. NetReplImportDirUnlock

NetReplImportDirUnlock unlocks a directory so that replication to it can resume. This function
decrements the lock reference count for the specified directory.

Security

Admin or replicator group membership is required to successfully execute NetReplImportDirUnlock.

NET_API_STATUS NET_API_FUNCTION
NetReplImportDirUnlock (

IN LPWSTR servername OPTIONAL,
IN LPWSTR dirname,
IN DWORD unlockforce
);

Parameters:

servername __A pointer to a NULL terminated Unicode string containing the name of the remote
server on which the function is to execute. A NULL pointer or string specifies the local
machine.

dirname __A pointer to a NULL terminated Unicode string containing the directory name to
unlock.

unlockforce __A value which indicates the force level to unlock the directory.

Force levels:

REPL_UNLOCK_NOFORCE - Unlocks the directory by decrementing the lock
reference count. The lock reference count may or may not return to 0, so the
directory could still be locked.

REPL_UNLOCK_FORCE - Unlocks the directory completely by removing all
outstanding locks on the directory. The lock reference count is set to 0.

5. Lanman APIs That Are Not Supported In Windows NT
The following section lists the 16-bit LANMan APIs that are no longer supported in the 32-bit API
set. In general, the rule we have followed is to not support anything that was marked as obsolete in
LANMan 2.x. In addition, there are some APIs that no longer make sense in NT, and those have
been removed as well. Another set of APIs has been folded into the NT base or Win32 API set .

5.1. APIs with no 32 bit Net equivalents

- NetAlertStop, NetAlertStart
- NetBiosClose, NetBiosEnum, NetBiosGetInfo, NetBiosOpen, NetBiosSubmit
- NetCharDev and NetCharDevQ APIs
- NetErrorLogWrite
- NetLogonEnum
- NetHandleGetInfo levels 2 and 3
- NetMessageFileSend, NetMessageLogFileGet, NetMessageLogFileSet, NetMessageNameFwd,

NetMessageNameUnFwd
- NetRemoteCopy, NetRemoteExec, NetRemoteMove
- NetServerAdminCommand
- NetWkstaSetUID

5.2. APIs that only have support for remoting to downlevel
- NetAccess APIs
- NetAudit APIs
- NetConfig APIs
- NetError APIs

6. Interoperabilty Considerations

6.1. Requests From 16-bit LANMan Clients

NT provides support for most remote API called from downlevel clients. However, the following
calls are NOT supported when remoted from a downlevel client to an NT server. In some of the
below, there is a more current "2" version of the API which is supported (e.g. NetServerEnum).

NetFileEnum
NetFileGetInfo
NetFileClose
NetServerAdminCommand
NetAuditOpen
NetAuditClear
NetErrorLogOpen
NetErrorLogClear
NetMessageNameFwd
NetMessageNameUnFwd
NetMessageFileSend
NetMessageLogFileSet
NetMessageLogFileGet
NetUserAdd
NetUserSetInfo
NetUserPasswordSet
NetWkstaSetUID
NetUseEnum
NetUseAdd
NetUseDel
NetUseGetInfo
NetProfileSave
NetProfileLoad
NetStatisticsGet
NetStatisticsClear
NetNetBiosEnum
NetNetBiosGetInfo
NetServerEnum
NetConfigGet2
NetConfigGetAll2
NetHandleGetInfo
NetHandleSetInfo
NetAuditRead
NetUserValidate2
NetAccessCheck
NetAlertRaise
NetAlertStart
NetAlertStop
NetAuditWrite
NetServiceStatus
DosPrintDriverEnum
DosPrintQProcessorEnum
DosPrintPortEnum
DosPrintDest
NetConfigSet

6.2. Calling 16-bit LANMan Servers
When an RPC based API fails to connect to the appropriate interface the client-side stub may

attempt to initiate a down-level API request to the server selected. For most of the Windows
networking APIs specified in this document, and any API where the functionality and data formats
are changed only for 32-bit usage, the conversion is straightforward. For components which offer
new functionality the caller of the API should generally be aware of the destination type. When the
new API offers a superset of the functionality of the down-level station the same API is used for
both destinations, but the new API fields must have either a reserved value of an associated field to
inform the conversion layer the field may be ignored if going downlevel. This is required so that an
API caller is not misled as to the action performed when the API was called.

	1. Overview
	2. API buffers
	o For a set type API (data to the server) the API caller specifies a buffer containing the info structure relevant to the API level but does not specify the buffer length.
	o For a get type API (data returned from the server) the caller does not pre-allocate a buffer for the return information. The caller passes a LPBYTE * to the API on input. On successful return the buffer pointer will contain a pointer to a buffer containing the return information. When the caller has finished processing the returned information NetApiBufferFree must be called. This simplifies the calling code as the caller does not need to guess at the size of the buffer required and will not need to resize and reissue the API as was the case with the LANMan 2.x APIs.
	2.1. API Data Alignment
	2.2. Enumeration Buffer Lengths
	2.3. Parameter Error Reporting
	2.4. Parmnum For SetInfo
	2.5. Parmnum For GetInfo
	2.6. Embedded Strings
	2.7. Enumeration Resume Handles
	2.8. User-specific information
	2.9. Enumeration APIs
	2.10. SetInfo APIs

	3. Windows Networking APIs
	3.1. API Status
	3.2. RPC Buffer Allocation Errors
	3.3. Obsolete Information Fields
	3.4. NLS Support

	4. Windows Networking API Definitions.
	4.1. Buffer Manipulation APIs.
	4.1.1. NetApiBufferAllocate
	4.1.2. NetApiBufferFree
	4.1.3. NetApiBufferReallocate
	4.1.4. NetApiBufferSize

	4.2. Service APIs.
	4.2.1. NetServiceControl
	4.2.2. NetServiceEnum
	4.2.3. NetServiceGetInfo
	4.2.4. NetServiceInstall

	4.3. Server APIs
	4.3.1. NetServerEnum
	4.3.2. NetServerGetInfo
	4.3.3. NetServerSetInfo
	4.3.4. NetServerDiskEnum

	4.4. Workstation and WorkstationUser APIs
	o The base level (0 and 1) were not grouped by accessibility such that a non superset level (level 10) was required to allow guest access to the information.
	o Platform specific implementation information was included in the base levels such that every platform had to return all information including a default for non-relevant fields. This grew the size of the information structures unneccessarily, making the API cumbersome to use.
	o System information.
	o Platform specific information (NT, OS/2, DOS, etc.)
	4.4.1. NetWkstaGetInfo
	4.4.2. NetWkstaSetInfo
	4.4.3. NetWkstaUserGetInfo
	4.4.4. NetWkstaUserSetInfo
	4.4.5. NetWkstaUserEnum

	4.5. Use APIs
	4.5.1. NetUseAdd
	4.5.2. NetUseDel
	4.5.3. NetUseEnum
	4.5.4. NetUseGetInfo

	4.6. Share APIs
	o IPC$, reserved for interprocess communication.
	o ADMIN$, reserved for remote administration.
	o A$, B$, C$ (and other local disk names followed by a dollar sign), assigned to local disk devices.
	4.6.1. NetShareAdd
	4.6.2. NetShareEnum
	4.6.3. NetShareGetInfo
	4.6.4. NetShareSetInfo
	4.6.5. NetShareDel
	4.6.6. NetShareCheck

	4.7. Session
	4.7.1. NetSessionEnum
	4.7.2. NetSessionGetInfo
	4.7.3. NetSessionDel

	4.8. Connection APIs
	4.8.1. NetConnectionEnum

	4.9. File APIs
	4.9.1. NetFileEnum
	4.9.2. NetFileGetInfo
	4.9.3. NetFileClose

	4.10. Message APIs
	4.10.1. NetMessageNameAdd
	4.10.2. NetMessageNameEnum
	4.10.3. NetMessageNameGetInfo
	4.10.4. NetMessageNameDel
	4.10.5. NetMessageBufferSend

	4.11. Remote Utility API
	4.11.1. NetRemoteTOD API

	4.12. Security Account APIs
	4.12.1. User APIs
	4.12.1.1. NetUserAdd
	4.12.1.2. NetUserEnum
	4.12.1.3. NetUserGetInfo
	4.12.1.4. NetUserSetInfo
	4.12.1.5. NetUserDel
	4.12.1.6. NetUserGetGroups
	4.12.1.7. NetUserGetLocalGroups
	4.12.1.8. NetUserSetGroups

	4.12.2. User Modal APIS
	4.12.2.1. NetUserModalsGet
	4.12.2.2. NetUserModalsSet

	4.12.3. Global Group APIs
	4.12.3.1. NetGroupAdd
	4.12.3.2. NetGroupAddUser
	4.12.3.3. NetGroupEnum
	4.12.3.4. NetGroupGetInfo
	4.12.3.5. NetGroupSetInfo
	4.12.3.6. NetGroupDel
	4.12.3.7. NetGroupDelUser
	4.12.3.8. NetGroupGetUsers
	4.12.3.9. NetGroupSetUsers

	4.12.4. Local Group APIs
	4.12.4.1. NetLocalGroupAdd
	4.12.4.2. NetLocalGroupAddMember
	4.12.4.3. NetLocalGroupEnum
	4.12.4.4. NetLocalGroupGetInfo
	4.12.4.5. NetLocalGroupSetInfo
	4.12.4.6. NetLocalGroupDel
	4.12.4.7. NetLocalGroupDelMember
	4.12.4.8. NetLocalGroupGetMembers
	4.12.4.9. NetLocalGroupSetMembers

	4.12.5. Access APIs
	4.12.5.1. NetAccessAdd
	4.12.5.2. NetAccessEnum
	4.12.5.3. NetAccessGetInfo
	4.12.5.4. NetAccessSetInfo
	4.12.5.5. NetAccessDel
	4.12.5.6. NetAccessGetUserPerms
	4.12.5.7. NetAccessCheck

	4.13. Domain APIs
	4.13.1. NetGetDCName

	4.14. Transport APIs
	4.14.1. NetServerTransportAdd
	4.14.2. NetServerTransportDel
	4.14.3. NetServerTransportEnum
	4.14.4. NetWkstaTransportAdd
	4.14.5. NetWkstaTransportDel
	4.14.6. NetWkstaTransportEnum

	4.15. Alert APIs
	4.15.1. NetAlertRaise
	4.15.2. NetAlertRaiseEx

	4.16. Error Logging APIs
	4.16.1. NetErrorLogClear
	4.16.2. NetErrorLogRead

	4.17. Configuration APIs
	4.17.1. NetConfigGet
	4.17.2. NetConfigGetAll
	4.17.3. NetConfigSet

	4.18. Statistics APIs
	4.18.1. NetStatisticsGet

	4.19. Auditing APIs
	PAUDIT_ENTRY pAE; /* Fixed part of audit entry */ LPAE_CONNSTOP pAEvar; /* Variable-length structure */ LPWSTR pszComputerName; /* Pointer to var-length string*/ /* Calculate the offset to the variable-length structure. */ pAEvar = (_LPAE_CONNSTOP) (((LPBYTE) pAE) + pAE->ae_data_offset); /* Calculate the offset to the computername. */ pszComputerName = ((LPBYTE) pAEvar) + pAEvar->ae_cp_compname;
	Variable-Length Data
	4.19.1. NetAuditClear
	4.19.2. NetAuditRead
	4.19.3. NetAuditWrite

	4.20. Replicator APIs
	o Applications can no longer delete a directory in the import path of a client to stop receiving updates from its master.
	o Applications can no longer use the REPL.INI file in each replicated directory on a master to control the method of replication.
	o Applications can no longer lock or unlock a directory on a master from being replicated by creating or deleting the USERLOCK.* file(s).
	o Applications can no longer lock or unlock a directory on a client from receiving updates from its master by creating or deleting the USERLOCK.* file(s).
	o Applications which depend on the LAN Manager 2.x behavior of ignoring locks for file integrity trees will need to be modified. (NT policy differs from LAN Manager 2.x policy; under NT the locks are always respected.)
	o Replicator Configuration APIs
	o Replicator Export Directory APIs
	o Replicator Import Directory APIs.
	4.20.1. Replicator Configuration APIs
	4.20.1.1. NetReplGetInfo

	4.20.2. NetReplSetInfo
	4.20.3. Replicator Export Directory APIs
	4.20.3.1. NetReplExportDirAdd

	4.20.4. NetReplExportDirDel
	4.20.5. NetReplExportDirEnum
	4.20.6. NetReplExportDirGetInfo
	4.20.7. NetReplExportDirSetInfo
	4.20.7.1. NetReplExportDirLock
	4.20.7.2. NetReplExportDirUnlock

	4.20.8. Replicator Import Directory APIs
	4.20.8.1. NetReplImportDirAdd

	4.20.9. NetReplImportDirDel
	4.20.10. NetReplImportDirEnum
	4.20.11. NetReplImportDirGetInfo
	4.20.11.1. NetReplImportDirLock
	4.20.11.2. NetReplImportDirUnlock

	5. Lanman APIs That Are Not Supported In Windows NT
	5.1. APIs with no 32 bit Net equivalents
	- NetAlertStop, NetAlertStart
	- NetBiosClose, NetBiosEnum, NetBiosGetInfo, NetBiosOpen, NetBiosSubmit
	- NetCharDev and NetCharDevQ APIs
	- NetErrorLogWrite
	- NetLogonEnum
	- NetHandleGetInfo levels 2 and 3
	- NetMessageFileSend, NetMessageLogFileGet, NetMessageLogFileSet, NetMessageNameFwd, NetMessageNameUnFwd
	- NetRemoteCopy, NetRemoteExec, NetRemoteMove
	- NetServerAdminCommand
	- NetWkstaSetUID
	5.2. APIs that only have support for remoting to downlevel
	- NetAccess APIs
	- NetAudit APIs
	- NetConfig APIs
	- NetError APIs

	6. Interoperabilty Considerations
	6.1. Requests From 16-bit LANMan Clients
	6.2. Calling 16-bit LANMan Servers

