
 Visual Basic for Windows: Bugs, Fixes, & Updates
Prepared 03/29/94

 Unfixed Bugs

 Fixed Bugs

 Updates Available

THE INFORMATION IN THE MICROSOFT KNOWLEDGE BASE IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND.
MICROSOFT DISCLAIMS ALL WARRANTIES EITHER EXPRESSED OR IMPLIED, INCLUDING THE WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL MICROSOFT CORPORATION OR
ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER INCLUDING DIRECT, INDIRECT, INCIDENTAL,
CONSEQUENTIAL, LOSS OF BUSINESS PROFITS, OR SPECIAL DAMAGES, EVEN IF MICROSOFT CORPORATION OR ITS
SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. SOME STATES DO NOT ALLOW THE
EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES SO THE FORGOING
EXCLUSION OR LIMITATION MAY NOT APPLY.

 Visual Basic for Windows: Bugs, Fixes, & Updates

 Unfixed Bugs
 BUG: TABs Paste Incorrectly as | to VB.EXE's Immediate Window

 BUG: Scroll Box Flashing Not Updated If Bar Resized w/ Focus

 BUG: [Character May Sort Incorrectly in List or Combo Box

 BUG: Can Click in Code Window Without Activating it in VB.EXE

 BUG: Pressing ESC or CTRL+BREAK Makes Mouse Pointer Disappear

 BUG: No Beep When Click Form and the Menu Design Window Is Up

 BUG: Incorrectly Accessing System Menu of Hidden Form

 BUG: ExtFloodFill Won't Fill Over QBColors If AutoRedraw=True

 BUG: Duplicate Procedure Name Alters Original Capitalization

 BUG: No Option Button Active (Dotted) in Frame

 BUG: Italic and Large Fonts Display Poorly in Text Boxes

 BUG: Dir List Box Does Not Give Error 68 Device Unavailable

 BUG: FormName Not in Correct Order After Out of Memory Error

 BUG: LinkTimeOut of -1 Waits Only 6553.5 Secs Before Time Out

 BUG: DateSerial Does Not Give Error for Invalid Month or Day

 BUG: Incorrect Focus Shift for Disabled Control in Break Mode

 BUG: Extra Click Event if Double-Click When Mouse Button Down

 BUG: CTRL+LEFT/RIGHT ARROW Behaves Differently When Edit/Type

 BUG: ToolBox Picture Control Bitmap Too Small on EGA

 BUG: Using Nonstandard Icons Can Cause UAE/GP Fault/Hang

 BUG: Right Mouse Button Causes Remote Control Menus

 BUG: Multiline Text Box Contents Not Gray When Enabled=False

 BUG: Visual Basic Code Window Hides Split View if Resized

 BUG: Invalid outside Sub Error When Copy or Paste to General

 BUG: Resetting ListIndex Property Generates Click Event

 BUG: Some Property Values May Be Incorrect in Maximized Form

 BUG: Option Button w/ Focus Selected When Click Form Caption

 BUG: Click Event May Fail to Occur in Cascading Menu

 BUG: TAB Character Can Incorrectly Cause KeyUp/KeyDown Events

 BUG: MDI Child CTRL+INSERT in Properties List Causes UAE/GPF

 BUG: No Resources Causes Failed to Open Graphics Server Error

 BUG: Gauge Custom Control: No Error for Illegal NeedleWidth

 BUG: MDI Child Left/Top Property Wrong in Properties Bar

 BUG: MDI Child Control: Large Height/Width Value Not Accepted

 BUG: Grid Custom Control: Scroll Bars Displayed Unnecessarily

 BUG: Gauge Custom Control: Valid NeedleWidth Range 1 to 32767

 BUG: 3-D Panel Control Doesn't Resize to Key Status Control

 BUG: Vertical Linear Gauge Loses Upper Border's Bottom Pixels

 BUG: InnerBottom/InnerRight Defines Gauge Fill Area Badly

 BUG: Graph: ExtraData May Not Say: Invalid Property Value

 BUG: 3D Command Button Shows Outline when Outline = False

 BUG: Scroll Control: UAE/GPF If Drag Method in GotFocus Event

 BUG: Grid: No Error Changing FixedAlignment on Non-Fixed Col

 BUG: Graph: AutoInc Increments ThisPoint Instead of ThisSet

 BUG: Animated Button: 8 Pt. Roman/Mdrn Fonts Don't Underline

 BUG: Graph Axis Titles Don't Switch on Horizontal Bar Graphs

 BUG: Menu Can Cover Top of MDI Child Control If BorderStyle=0

 BUG: VB Graph Custom Control: SeeThru Paints Incorrectly

 BUG: Must Call API to Print Color Text on Color Printer in VB

 BUG: Some Controls Not Printed with PrintForm in Windows 3.1

 BUG: THREED.VBX: Command/Group Push Buttons Show Invalid File

 BUG: Common Dialog Custom Controls Don't Display Printer Fonts

 BUG: MDI Child Control Skips Index with Control Array

 BUG: Generic / Text Only Printer Driver Prints 66 Lines

 BUG: Illegal function call / Division By Zero Errors

 BUG: Stack Fault When Move Sets Tiny Width in 2-Item Combo Box

 BUG: GPF/UAE If Multi-Select Controls w/ No Common Properties

 BUG: Type Mismatch Error If Use VAL Function on Big Hex Value

 BUG: Stack Fault May Occur If Trapping Divide By Zero

 BUG: GPF When Close Form That Contains a Single MCI Control

 BUG: Neg ScaleHeight Resizes Control When Form Saved as ASCII

 BUG: Stack Fault When Move Makes Combo Box Width Too Small

 BUG: Unable to Edit LinkNotify Event If Control Has Long Name

 BUG: ODBC Getchunk Method on Non-Memo Field Causes GPF/UAE

 BUG: OLE DataText Prop Doesn't Free Memory When Object Closed

 BUG: Changing Default Printer Doesn't Effect Printer.Fonts

 BUG: Wrong Menu Click Event After Hiding Menu

 BUG: MaskedEdit MaxLength Reset to 64 When Mask=""

 BUG: Overflow Error When CurrentX Or CurrentY Greater Than 32K

 BUG: VB Pro Setup Fails to Correctly Associate .HLP Files

 BUG: Out of Memory Error on Show Next from Debug Menu

 BUG: 3D Button Loses 256-Color Palette When Load 2nd Bitmap

 BUG: Grid Control Repaints When Another Form Is Made Active

 BUG: Unload in 3D GroupPush Button Causes GP Fault

 BUG: Referencing Data Object Gives Error: Object not an Array

 BUG: GPF in Some Video Drivers When Load RLE Bitmaps > 20K

 BUG: Font3D Property Set Incorrectly in THREED.VBX Controls

 BUG: Data Access Setup Can Give Incorrect Error Message

 BUG: Ref to NPV / IRR / MIRR Gives Undefined Functions Error

 BUG: Incorrect Result When Multiple Aggregate Functions in SQL

 BUG: Incorrect Behavior in MaskedEdit BorderStyle Property

 BUG: Problems Printing Projects to HPLJ4

 BUG: ALT+MINUS SIGN Does Not Work with Maximized MDI Forms

 BUG: GP Fault When Opening Menu Design Window in VB.EXE

 BUG: VB Dynasets Incorrectly Bypass Defaults on SQL Server

 BUG: Bad Result If Multiple Aggregate Functions in SQL Stmt

 BUG: Out of Memory w/ Var Named ClientLeft/Top/Width/Height

 BUG: Setup Wizard Error: Sharing Violation Reading Drive C:

 BUG: Domain Functions Available Only Within SQL Statement

 BUG: Can't Load Custom Control DLL: PICCLIP.VBX in Windows 3.0

 BUG: Out of Memory w/ MSOLE2.VBX When SHARE.EXE Not Loaded

 BUG: Invalid Argument Err on Execute Method w/ SQL Passthrough

 BUG: GPF in VB.EXE at 0038:3B6F w/ Compile-Time Error & Set

 BUG: Error 13 (Type Mismatch) & Error 3061 w/ SQL Queries

 BUG: Overflow in VB version 3.0 ICONWRKS Sample Program

 BUG: VB Printer.Width/Height Values Incorrect for Plotter

 BUG: VB Setup Files Modified or Corrupted, Using \WINDOWS Path

 BUG: Name Not Found in This Collection When Deleting Member

 BUG: Incorrect VB Error When Delete Index on Open Table

 BUG: First Item Can Disappear in Outline Control Style 0 or 2

 BUG: Out of Memory Error When Adding 35-50 Pen Controls

 BUG: ActiveControl Property of Screen Object Loses Memory

 Fixed Bugs

 Updates Available

 Visual Basic for Windows: Bugs, Fixes, & Updates

 Unfixed Bugs

 Fixed Bugs
 FIX: VB Debug.Print in MouseMove Event Causes MouseMove Event

 FIX: Overflow in VB Drawing Circle Segment w/ Radius of Zero

 FIX: UAE When Place More than 64K in VB List Box or Combo Box

 FIX: Pull-Down on Drive Box Disabled When Change Width of Box

 FIX: UAE/GPF Changing MS-DOS Win Display If VB at Breakpoint

 FIX: Overflow Error If Print Long String to Form or Printer

 FIX: Control Overlaid by 2nd Control Won't Refresh If Moved

 FIX: Open Project Dialog Misbehaves If Project Dir Deleted

 FIX: Text Not Highlighted When Copy Immediate Win to Clipboard

 FIX: Undocumented Separator Property of a VB Menu Item

 FIX: Can't Have Menu with No Caption Bar/Buttons/Control Box

 FIX: ControlBox Property False Disables Focus w/ Keys in Menus

 FIX: StretchBlt() Gives UAE/GPF with 256-Color Video Drivers

 FIX: Visual Basic List Box Won't Open if Resized at Run Time

 FIX: Text Too Narrow with Italic Fonts in Visual Basic Labels

 FIX: SendKeys Causes Erratic Mouse Behavior on IBM PS/2

 FIX: DDE from Excel to VB Ver 1.0 Uses Up Windows GDI Heap

 FIX: File Not Loaded If No Extension in Load Picture Dialog

 FIX: Panel Custom Control Caption Not Dimmed When Disabled

 FIX: Graph Custom Control Incompatible w/ HP II Series Printer

 FIX: Animated Button Custom Control: Caption May Be Truncated

 FIX: Graph Control's Negative Values Plot As Positive

 FIX: Gauge: Incomplete Paint with Max-Min Difference > 100

 FIX: Grid: Changing Font Properties Resets ColWidth, RowHeight

 FIX: VB Graph Custom Control: BottomTitle Text May Disappear

 FIX: Outline Transparent in 3D Button When Outline=False

 FIX: Graph Custom Control: LabelText May Overlap

 FIX: Graph Custom Control Legends May Print Incorrectly

 FIX: Grid Cell Border May Not Display with Some BackColors

 FIX: Omitting Year for DateValue May Give Unexpected Results

 FIX: Toolkit 3-D Option & Check Controls Don't Repaint in 3.1

 FIX: Toolkit Setup Routine Causes Out of String Space Error

 FIX: Grid Custom Control RemoveItem Does Not Update RowHeight

 FIX: GP Fault or UAE When Unload Form in DragOver Event

 FIX: UAE/GPF Occurs If EXE Uses Variable Length String in Type

 FIX: UAE/GPF When Use Static Array in Event Procedure After F5

 FIX: UAE/GPF When VB Control Name Identical to Property Name

 FIX: UAE/GPF When Square Brackets '[]' Around MSGBOX Function

 FIX: GPF/UAE When Converting String > 32K to Double Precision

 FIX: VB Painting Problem Occurs When Low on System Resources

 FIX: Result Differs When Comparing Single w/ Double Precision

 FIX: GPF/UAE When Closing DDE Application from the Task List

 FIX: GPF/UAE w/ Stop Command in Event Procedure & Deleted Sub

 FIX: GPF When Pasting 8 Bit .DIB File into Anibutton Control

 FIX: VB MCITEST CD Player Sample Displays Incorrect Track

 FIX: GPF/UAE After Undoing Edit of Option Explicit Statement

 FIX: GPF/UAE When Assign NULL to VBM_GETPROPERTY of type HLSTD

 FIX: Using Graphics Method on DB Objects May Cause GPF/UAE

 FIX: Adding Watch Point in VB May Cause UAE in Windows 3.0

 FIX: GPF/UAE When Large Tag w/ MultiSelect of 30+ Controls

 FIX: Setting Add Watch May Cause Your Program to Reset

 FIX: Setting Add Watch May Cause GP Fault or UAE

 FIX: Painting Problems When FontItalic Set True for Text Box

 FIX: Grid Control Paints Incorrectly When Press PGUP or PGDN

 FIX: GPF/UAE When New Project Loaded After Large Previous Proj

 FIX: No Out of Memory Error Generated with Text Box > 32K

 FIX: Attempting to Refresh Null TableDef Field Causes GP Fault

 FIX: GPF When Using 8514 Driver with Long String in Text Box

 FIX: Changing Decimal Separator Causes Load Errors for Form

 FIX: GPF When Making .EXE File If Forms Saved as Binary

 FIX: Bad .MAK File Prevents Display of Make EXE File Dialog

 FIX Large Sub or Function or Module Can Cause GP Fault or UAE

 FIX: GPF/UAE When Create or Use Huge Array w/ Large Elements

 FIX: Error Message: Timeout While Waiting for DDE Response

 FIX: FixedCols Can Cause Paint Problem with Grid Control

 FIX: Problems Calling DoEvents from a Scroll Bar Change Event

 FIX: MAPI: GPF When Attempt to Download 923 or More Messages

 FIX: Extra Chars in Masked Edit Cause Empty InvalidText Box

 FIX: Text Box/Mask Edit in Select Mode If MsgBox in LostFocus

 FIX: Focus Rectangle Remains When Grid Loses Focus

 FIX: GPF When Erase User-Defined Array of Variable Strings

 FIX: Loading Proj Gives Err: Custom control 'Graph' not found

 FIX: GPF When Making EXE If Declare Is Missing Lib & DLL Name

 FIX: Resizing MDIForm with UI Does Not Update Height & Width

 FIX: Scroll Bar Thumb Doesn't Do Change Event as It Should

 FIX: Can't Open ODBCADM.HLP Err Msg During Data Access Setup

 FIX: No Menu Event with Maximized MDI Child

 FIX: Mouse Misbehaves After Changing Graph Visible Property

 FIX: OLE Client: Copying Linked Object Gives Err: Can't Paste

 FIX: GPF/UAE with Huge Array Size as Multiple of 64K Bytes

 FIX: Erase Won't Clear Contents of Huge Fixed Array as Variant

 FIX: VB 2.0 Prof Demo Causes Error: Invalid File Format

 FIX: Repaint Prob Adding Graphical Control as Child of Graph

 FIX: GPF with Long Formulas in Crystal Reports Custom Control

 FIX: Double-Click Still Maximizes/Restores If MaxButton=False

 Updates Available

 Visual Basic for Windows: Bugs, Fixes, & Updates

 Unfixed Bugs

 Fixed Bugs

 Updates Available
 Visual Basic 3.0 Common Troubleshooting Questions & Answers

 UPD: GP Fault in KRNL286 When Run EXE on 286 or w/ NT on MIPs

 UPD: Oracle ODBC Setup and Connection Issues

 UPD: GENERIC Sample Not Provided with Visual Basic

 UPD: New Setup Toolkit & Setup Wizard Available for VB ver 3.0

 UPD: New XBASE Driver Available That Fixes Several Problems

 UPD: New SETUP.EXE Available for Visual Basic Version 3.0

 UPD: Invalid file format Error When Run VB app's EXE File

 UPD: New Setup Kit Files Available for Setup1

 UPD: New MSCOMM control available

 UPD: New Access Engine MSAJT110.DLL Available

 UPD: DOC: Data Access Guide Index -- A through Me

 UPD: DOC: Data Access Guide Index -- Mo through Z

 UPD: List of Updated Files for Visual Basic

 How to Modify Destination Directory of Setupwizard SETUP1.EXE

 UPD: Updated BTRV110.DLL for Btrieve ISAM Driver shipped w/ VB

 UPD: Windows 3.1 Help Compiler & Difficulty w/ Word 6.0 RTF

 UPD: SQORA.DLL Does Not Allow Lengthy SQL Statements

BUG: TABs Paste Incorrectly as | to VB.EXE's Immediate Window
Article ID: Q73700

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

TAB characters may be (from the Windows Clipboard) incorrectly PASTEd into
the Immediate Window in Visual Basic. In Visual Basic, version 1.0, TAB
characters may be incorrectly PASTEd in as pipe [|] symbols. In Visual
Basic, version 2.0, TAB characters may be incorrectly PASTEd in as '\177',
which looks like a small black box.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
programming system for Windows, versions 1.0 and 2.0. We are researching
this problem and will post new information here as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. From Windows, version 3.0, run NOTEPAD.EXE and enter the following text:

 a <TAB> a

 This will be displayed in the following format:

 a a

2. Select the text with the mouse and choose Copy from Notepad's
 Edit menu to copy the text to the Windows Clipboard.

3. Start Visual Basic and press F5 to run the blank program (or from
 the Run menu, choose Start).

4. Break the program by pressing CTRL+BREAK, then click the mouse on
 the Immediate Window.

5. Press SHIFT+INSERT to enter the selected text into the Immediate
 Window. Observe that the Immediate Window incorrectly displays the
 following text:

 a|a

 instead of displaying the following:

 a a

 NOTE: A pipe symbol is displayed in version 1.0, however in version 2.0,
 '\177' is displayed, which looks like a small black box.

6. If you end the program (by choosing the End command from the Run
 menu), you will be able to successfully PASTE (SHIFT+INSERT) the
 correct text into any code window:

 a a

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

BUG: Scroll Box Flashing Not Updated If Bar Resized w/ Focus
Article ID: Q73839

--
The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, versions
 1.0, 2.0, and 3.0
 - Microsoft Windows, versions 3.0 and 3.1
--

SYMPTOMS
========

There is a Microsoft Windows version 3.x (3.0 and 3.1) problem updating
the flashing indicator for the scroll box on a vertical scroll bar. This
Windows problem affects vertical scroll bars in Microsoft Visual Basic
programming system for Windows. This article describes how to work around
this problem.

WORKAROUND
==========

You can work around this problem by doing the following:

1. In step 2 of the More Information section, add additional code so that
 the Form_Click procedure appears as follows:

 Sub Form_Click ()
 Const True = -1, False = 0
 VScroll1.Height = VScroll1.Height * 2
 VScroll1.Enabled = False
 VScroll1.Enabled = True
 End Sub

2. Follow the directions for steps 3, 4, and 5 in the More Information
 section. You should notice that the problem no longer exists. The
 flashing has been updated correctly in the same position as the scroll
 box.

STATUS
======

Microsoft has confirmed this to be a problem with Windows, versions 3.0 and
3.1. We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic and place a vertical scroll bar on a form.

2. Place the following code in the Form_Click event procedure:

 Sub Form_Click ()
 VScroll1.Height = VScroll1.Height * 2
 End Sub

3. From the Run menu, choose Start, or press F5 to run the example.

4. Click and drag the flashing scroll box (on the scroll bar) to
 the middle (down from the top).

5. Click the form to execute the Form_Click procedure, which
 doubles the height of the scroll bar. Observe that the scroll box
 correctly moved to the middle of the longer scroll bar, but the
 flashing indicator failed to also move.

Additional reference words: 1.00 2.00 3.00 3.10
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: [Character May Sort Incorrectly in List or Combo Box
Article ID: Q74132

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 1.0
 - Microsoft Windows, versions 3.0 and 3.1

SYMPTOMS
========

An example below demonstrates a problem using the Sorted property to
sort a string beginning with a bracket ([) in either a list box or
combo box in Microsoft Visual Basic version 1.0 for Windows.

STATUS
======

This sorting problem is caused by Microsoft Windows versions 3.0 or 3.1,
not by Visual Basic. Microsoft is researching this problem and will post
new
information here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. In the Visual Basic environment, choose New Project from the File
 menu.

2. Place two list boxes or two combo boxes on the form.

3. From the Properties Bar, set the Sorted property for either the two
 list boxes or two combo boxes to True.

 Note: Do not invoke List1.Sorted = -1 within the code of an event
 procedure because this causes the run-time error "'Sorted'
 property cannot be set at run time."

4. Now add some code to the Form_Click event procedure. Below are two
 separate examples of the code to add depending on if you are using
 list boxes or combo boxes:

 Sub Form_Click () Sub Form_Click ()
 List1.AddItem "[" Combo1.AddItem "["
 List1.AddItem "\" Combo1.AddItem "\"
 List1.AddItem "a" Combo1.AddItem "a"

 List2.AddItem "a" Combo2.AddItem "a"
 List2.AddItem "\" Combo2.AddItem "\"
 List2.AddItem "[" Combo2.AddItem "["
 End Sub End Sub

5. Run the code by pressing the F5 function key or choosing Start from
 the Run menu.

6. Click the form to see the sequence "a [\" in the first list box
 or combo box and to see the different sequence "[\ a" in the
 second list box or combo box.

This reveals an inconsistency with an internal Windows 3.0 sorting
routine. If you replace the character "[" with the character "b", the
two boxes correctly sort in the same order: "\ a b". The problem is
with sorting the "[" character.

Additional reference words: 1.00 3.00 3.10
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Can Click in Code Window Without Activating it in VB.EXE
Article ID: Q74194

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you have both a form and code window present at design time in
Microsoft Visual Basic with the current focus on the form, clicking the
upper or lower edge of the splitter bar in the code window fails to shift
the focus to the code window. Clicking anywhere else in the code window
correctly shifts the focus and activates the code window.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

To reproduce this problem in Visual Basic, choose the New Project
option from Visual Basic's File menu. Double-click Form1 to open a
code window, then click Form1 to return focus to the form. Now
place the tip of the mouse pointer on the upper or lower edge of the
code window's splitter bar such that the pointer remains an arrow, and
is not an I-beam pointer or splitter pointer. Clicking now fails to
shift the focus to the code window. You can click anywhere else in the
code window and the code window will correctly become the active
window.

Note that the "splitter bar" (the horizontal border just above the
editing area and just above the vertical scroll bar) allows you to
split the code window into two parts, which allows you to view two
different sections of code at once.

Additional reference words: 1.00 3.00
KBCategory:
KBSubcategory: EnvtDes

BUG: Pressing ESC or CTRL+BREAK Makes Mouse Pointer Disappear
Article ID: Q74409

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

In Microsoft Visual Basic, the mouse pointer fails to be displayed if
you press ESC or CTRL+BREAK within the Code window. (The mouse pointer
correctly reappears if you move the mouse.)

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic with a New Project.

2. Double-click the form to bring up the Code window. Notice the
 I-beam mouse pointer within the Code window. If you place the
 mouse pointer outside of the Code window, you will see the I-beam
 change to an arrow.

3. Place the mouse pointer back in the Code window to display the
 I-beam pointer. Press either the ESC key or the key combination
 CTRL+BREAK. The I-beam mouse pointer will temporarily disappear.

4. The pointer will be redisplayed if you move the mouse.

Additional reference words: 1.00 3.00
KBCategory:
KBSubcategory: EnvtRun

BUG: No Beep When Click Form and the Menu Design Window Is Up
Article ID: Q74518

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The Menu Design window, used to create pull-down menus for Visual
Basic forms, is a modal dialog box. Therefore, clicking any other
Visual Basic window when the Menu Design window is visible should fail
to transfer the focus and should generate a beep to notify you that you
cannot act outside the dialog box. However, in Windows version 3.0,
there is no beep when you click the Visual Basic form.

All other Visual Basic windows, such as the ToolBox, Color Palette,
Project Window, and the main Visual Basic menu bar all respond with a
beep when the Menu Design window is active -- as they should. In all
cases, focus is maintained by the Menu Design window -- as it should be.

RESOLUTION
==========

This problem does not occur in Windows version 3.1.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above
when using Windows version 3.0. We are researching this problem and will
post new information here as it becomes available.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtDes

BUG: Incorrectly Accessing System Menu of Hidden Form
Article ID: Q74564

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

It is possible under certain circumstances to incorrectly access the
system menu of a hidden form in Visual Basic.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or choose New Project from the File menu.

2. Set the WindowState property of Form1 to 1 (minimized).

3. Enter the following line of code in the Form_Resize event
 procedure of Form1:

 If WindowState = 2 Then Hide 'WindowState 2 = maximized

4. From the Run menu, choose Start.

5. Click the Form1 icon to bring up the system menu for Form1.

6. From the the Form1 system menu, choose Maximize. Form1 will maximize
 and then hide.

7. Press ALT+SPACE to activate the Form1 system menu.

A system menu will appear in the upper left corner of the screen, even
though Form1 is hidden.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgWindow

BUG: ExtFloodFill Won't Fill Over QBColors If AutoRedraw=True
Article ID: Q75640

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you try to use the ExtFloodFill() API function in Windows version
3.0 or 3.1 along with the QBColor() function that is included in Visual
Basic, the first eight colors are displayed incorrectly on some
computers.

CAUSE
=====

With some computers, this problem causes the Fill Tool of the Iconworks
sample application provided with Microsoft Visual Basic to fail when
attempting to fill over QBColors (1-8).

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above
in both Microsoft Windows version 3.0 and 3.1. We are researching this
problem and will post new information here in the Microsoft Knowledge
Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic and begin a new project.

2. Place a picture box on the Form. In the Properties bar for the picture
 box, set the AutoRedraw property to True and the FillStyle property to
 Solid.

3. Place the the following code in the General Declarations section of
 the code window for Form1, and enter the entire Declare statement on
 one, single line:

 DefInt A-Z
 Declare Function ExtFloodFill% Lib "GDI" (ByVal hdc, ByVal x, ByVal y,
 ByVal crcolor as Long, ByVal wfilltype)

4. Place the following code in the Form_Click event procedure:

 Sub Form_Click ()
 Static I
 I= I + 1
 Picture1.BackColor = QBColor(I)
 x = ExtFloodFill(Picture1.hdc, 1, 1, Picture1.BackColor, 1)
 Print I;x
 Picture1.Refresh
 End Sub

5. Run the sample by pressing the F5 key. Notice that various colors
 are incorrectly displayed for QBColors 1-8 and that the return
 value from ExtFloodFill, held in x, is 0. QBColors 1-8 should be
 displaying black and the value for x should equal 1, not 0.
 QBColors 9-15 are correctly displayed.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

BUG: Duplicate Procedure Name Alters Original Capitalization
Article ID: Q76514

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you enter a Sub statement with a procedure name that duplicates an
existing procedure name in spelling but not in capitalization, you will
receive a "duplicate definition" error message, but the original procedure
name will be changed to match the new capitalization. This also happens if
you choose New Procedure from the Code menu and enter a duplicate name.

STATUS
======

Microsoft has confirmed this to be a problem in Visual Basic versions 1.0,
2.0, and 3.0 for Windows. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

If you choose the OK button after receiving the "duplicate definition"
error message, the old name of the subroutine will be updated to show the
changes in capitalization, even though there was a "duplicate definition"
message.

Steps to Reproduce Problem

Method 1

1. Within a module, create a Sub procedure called "a".

2. From the Code menu, choose New Procedure. Name the procedure "A"
 and choose the OK button when the "duplicate definition" message is
 displayed.

Method 2

1. Within a module, create a Sub procedure called "a".

2. Within the same module, create a Sub named "A" and choose the OK
 button when the "duplicate definition" message is displayed.

The original procedure name is updated with the most recent Sub

procedure name taking the place of the old Sub procedure name, despite
the "duplicate definition" error message. To work around the problem,
change the capitalization.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

BUG: No Option Button Active (Dotted) in Frame
Article ID: Q76520

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you have more than one frame (or group) of option buttons, Visual
Basic correctly marks one button as active (with a dot) in the first
group of option buttons, but initially fails to place a dot anywhere
in additional groups (or frames) of option buttons. You must manually
click an option button in the additional group for the dot to appear
in that group.

WORKAROUND
==========

If you want a particular option button selected (containing the dot)
in a group or frame, set that button's Value property in the Form_Load
event Procedure. For example:

 Option3.Value = -1

This will place a dot in the Option3 button in addition to the dot in
the Option1 button when you run the program again.

Note that you cannot place a dot in both the Option1 button and
the Option2 button if they are both placed in the same frame. By putting
a group of options in one frame, you are specifying that the user may
choose only one of the grouped options.

Note also that buttons on a form outside any frame behave as a group.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic with a new project.

2. Draw two frames on the form, with one frame being half the size of

 the form and the other frame being the other half of the form.

3. Place two option buttons in each of the frames by selecting the
 Option Button tool from the Toolbox and pointing, clicking, and
 dragging the option buttons onto the frames.

4. Run the program by pressing the F5 key. Note that there is only one
 option button containing a dot.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Italic and Large Fonts Display Poorly in Text Boxes
Article ID: Q76555

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Italic letters of any size are incorrectly truncated when typed in a
text box. Also, if you use the BACKSPACE key to delete characters that
are in italic text or large fonts, pieces of characters remain after
the deletion.

CAUSE
=====

This problem is caused by Windows versions 3.0 and 3.1, not by Visual
Basic.

WORKAROUND
==========

To work around this problem, you can use the Refresh method during the
text box change event to correctly update the screen. However, this
will also cause some visible flickering as you type characters into
the text box.

To correct the appearance of the characters in the text box, add the
following code to the text box's Change event.

 Sub Text1_Change ()
 Text1.Refresh
 End Sub

This code forces the text box to update the visual display every time
time a change is made, so it corrects the problem but generates a
flicker of the text box.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Windows
versions 3.0 and 3.1. We are researching this problem and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Place a large text box on a blank form.

2. Set the text box FontSize property to any size above 12 points,
 or set the FontItalic property to True.

3. From the Run menu, choose Start.

4. Type anything in the text box.

5. Press the BACKSPACE key.

Note: If the font size is large, the font will be displayed correctly
until the characters are removed with the BACKSPACE key. Italic
characters will be displayed incorrectly when entered into the text
box, and backspacing will truncate the deleted characters.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Dir List Box Does Not Give Error 68 Device Unavailable
Article ID: Q76628

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Under circumstances described below, error 68 (Device Unavailable)
fails to display in conjunction with drive and directory list boxes.
In the example given below, error 68 should display when drive A's
door is open and the user clicks the directory list box.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start a New Project in Visual Basic. Form1 is created by default.

2. Add a drive list box and a directory list box to Form1.

3. Add the following code to the Sub Drive1_Change event procedure:

 Sub Drive1_Change ()
 On Error GoTo Trap
 Dir1.Path = Drive1.Drive
 Exit Sub
 Trap:
 Print Err
 Resume Next
 End Sub

4. Run the program by pressing the F5 key.

5. Select the down arrow of the drive list box by clicking the left
 mouse button. Select drive A. At this point, an error 68 should appear
 on the form.

6. Select the drive list box down arrow again. This time, select drive C.

7. Place a disk in drive A. Repeat step 5. No error message is displayed.

 The directory list box should be updated to display the A drive.

8. Open the drive A disk door. Then double-click in the directory list box.

Error 68 should be displayed, but isn't. Error 68, "Device Unavailable,"
should display when drive A's door is open and the user clicks the
directory list box.

Additional reference words: 1.00 2.00 3.00 errmsg
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: FormName Not in Correct Order After Out of Memory Error
Article ID: Q76983

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If, when creating a new form, you receive an "Out of memory" error
message, no form will be loaded. However, the default FormName is
still incremented by 1 so that when a new form can be created (for
example, by deleting an already existing form) after getting the
error, the FormName of the newly-created form is not in the correct
sequence.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or choose New Project from the File menu (ALT, F,
 N) if Visual Basic is already running. Form1 is created by default.

2. Create new forms by choosing New Form from the File menu (ALT, F, F)
 until you get an "Out of Memory" error. On one machine, this
 occurred when trying to load Form52. In Visual Basic version 2.0, this
 may not occur until you reach Form100 or more.

3. Choose the OK button to acknowledge the error message.

4. Delete Form51 (or whatever the final form is) by choosing Remove File
 from the File menu (ALT, F, R).

5. Create one more form. Form53 will be the next form, even though
 Form52 was never created.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes PrgOptMemMgt

BUG: LinkTimeOut of -1 Waits Only 6553.5 Secs Before Time Out
Article ID: Q77243

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Contrary to the documentation and online Help for Microsoft Visual
Basic, setting the LinkTimeOut property of a control to -1 will not
cause the control to wait forever for a DDE operation to complete.
Setting the LinkTimeOut property to -1 will cause the control to wait
for 65535 intervals of 1/10 second, for a total of approximately 1
hour and 49 minutes.

WORKAROUND
==========

To work around this problem, you can trap the DDE time-out error using
the On Error statement in Visual Basic. If the error was "Timeout
while waiting for DDE response," you can retry the DDE operation until
it succeeds. The following is a code example:

 Sub DDE_Retry_Forever (Source as Control, commandx$)
 On Local Error Goto Handler

 Source.LinkExecute commandx$
 Exit Sub

 Handler:
 If Err = 286 Then
 Resume
 Else
 Error Err
 End If
 End Sub

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: IAPDDE

BUG: DateSerial Does Not Give Error for Invalid Month or Day
Article ID: Q77393

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The DateSerial function doesn't generate an error when you use values
for the month and the day arguments that are outside the ranges
specified in the "Microsoft Visual Basic: Language Reference" version
1.0 manual.

You can use a numeric expression for each argument representing the
number of days, months, or years before or after a certain date. But
you will get an "Illegal function call" error message if you use a
value for the year that is not between 1753 and 2078 (inclusive). You
also get the error if the date specified by the three arguments either
directly or indirectly evaluates to a date that is before January 1,
1753 or after December 31, 2078.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Page 65 of the "Microsoft Visual Basic: Language Reference" version
1.0 manual states the following:

"...the range of numbers for each DateSerial argument should conform to
the accepted range of values for the unit. These values are 1 to 31
for days, and 1 through 12 for months. You can also specify relative
dates for each argument by using numeric expressions representing the
number of days, months, or years before or after a certain date...."

You can actually have values outside these ranges for the month and
day argument and Visual Basic will not give an error. For example, a
value of 0 for the day evaluates to the last day of the previous
month. A value of 13 for the month translates to the first month
(January) of the next year.

The following are examples of statements that will not produce errors:

 x# = DateSerial(63,7,12) 'evaluates to July 12, 1963
 x# = DateSerial(63,13,5) 'evaluates to January 5, 1964

 x# = DateSerial(63,7,33) 'evaluates to August 2, 1963
 x# = DateSerial(63,10,-1) 'evaluates to September 29, 1963
 x# = DateSerial(63,-1,5) 'evaluates to November 5, 1962

The following statements will generate an "Illegal function call"
error because they produce dates before January 1, 1753 and after
December 31, 2078:

 x# = DateSerial(1750,3,1) 'evaluates to March 1, 1750
 x# = DateSerial(2078,12,40) 'evaluates to January 9, 2079
 x# = DateSerial(1753,-5,20) 'evaluates to July 20, 1752

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: RefsDoc EnvtRun

BUG: Incorrect Focus Shift for Disabled Control in Break Mode
Article ID: Q77734

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

In Break mode in the Microsoft Visual Basic environment (VB.EXE),
disabling a control or making a control invisible does not shift the
focus to the next control in the tab order. Instead, the focus remains
on the disabled control.

At run time, the focus correctly shifts to the next control in the tab
order.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. From the File menu, choose New Project.

2. Place two controls on Form1 (in this example, two command buttons).

3. From the Run menu, choose Start.

4. From the Run menu, choose Break.

5. In the Immediate window, type the following:

 Command1.SetFocus
 Command1.Enabled = 0
 Print Screen.ActiveControl.Caption

 The active control will be Command1.

6. From the Run menu, choose Continue.

 Note: The disabled control, Command1, will still have the focus. To
 shift the focus to the next control in the tab index, press the TAB
 key.

If the example code from step 5 above is used at run time, the focus
will correctly shift from Command1 to Command2.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

BUG: Extra Click Event if Double-Click When Mouse Button Down
Article ID: Q77738

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versiona 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When one mouse button is held down, double-clicking the other button
generates one more Click event than necessary.

The problem does not occur when double-clicking either mouse button
individually.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The following code demonstrates that an extra Click event is generated
when double-clicking one mouse button while holding the other down.

Steps to Reproduce Problem

1. Start Visual Basic and choose New Project from the File menu
 (ALT, F, N).

2. Double-click the form or press F7 to bring up the code window.

3. Enter the following code in the Form_Click event procedure for Form1:

 Sub Form_Click ()
 Print "Click"
 End Sub

4. Enter the following code in the Form_DblClick event procedure:

 Sub Form_DblClick ()
 Print "DblClick"
 End Sub

5. Enter the following code in the Form_MouseDown event procedure:

 Sub Form_MouseDown ()

 Print "Down"; Button
 End Sub

6. Enter the following code in the Form_MouseUp event procedure:

 Sub Form_MouseUp ()
 Print "Up"; Button
 End Sub

7. From the Run menu, choose Start.

8. Using the right mouse button, double-click anywhere on the form.

 The output to Form1 should be as follows:

 Down 2
 Up 2
 Click
 DblClick
 Up 2

9. Press and hold the left mouse button. The output to Form1 should be
 as follows:

 Down 1

10. While holding the left mouse button down, double-click with
 the right mouse button and keep the left mouse button down.
 The output to Form1 should be as follows:

 Down 2
 Up 2
 Click
 DblClick
 Up 2
 Click

The last Click was not generated when double-clicking with the right
mouse button alone (as illustrated in step 8 above). This additional
call to the Click event procedure is not expected behavior and is a
problem with Visual Basic. The problem also occurs when the right
mouse button is held down and you double-click the left mouse button.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: CTRL+LEFT/RIGHT ARROW Behaves Differently When Edit/Type
Article ID: Q77928

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The key combinations CTRL+LEFT ARROW and CTRL+RIGHT ARROW work
differently when editing code in a procedure than when typing in the
Immediate window.

In the Immediate window, CTRL+LEFT ARROW will move the cursor in front
of the preceding word even if that word is one of the following
symbols:

 ! @ # $ % ^ ^ & * () { } : ; , " ' [] < >

In the code editor, these symbols are not treated as words, so the
cursor skips over them when using the ARROW key combinations to position
the insertion point.

STATUS
======

Microsoft has confirmed this to be a bug in the VB.EXE environment of
the products listed above. We are researching this bug and will post
new information here in the Microsoft Knowledge Base as it becomes
available.

MORE INFORMATION
================

In a code window, using the LEFT ARROW key with the CTRL key held down
will move the cursor to the beginning of the preceding word or letter
on that line, disregarding any punctuation marks and other symbols --
that is, any character obtained by typing a number while holding down
the SHIFT key, all punctuation marks, brackets, braces, single quotation
marks, and double quotation marks.

In the Immediate window, only the period is not treated as a word
and is skipped over when using the CTRL+LEFT ARROW or CTRL+RIGHT
ARROW key combination.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, N, P)
 if Visual Basic is already running. Form1 is created by default.

2. Press F7 or double-click Form1 to bring up the code window.

3. Enter the following code in the Form_Click event procedure of Form1:

 Sub Form_Click()
 print "Home."
 End Sub

4. While the cursor is still at the end of the line, press CTRL+LEFT ARROW
 to move the cursor to the beginning of the previous word. The cursor
 should move directly in front of the H in Home.

5. From the Run menu, choose Start to run the program.

6. Press CTRL+BREAK to bring up the Immediate window.

7. Type the following in the Immediate window:

 Print "Home."

9. With the cursor at the end of the line, press CTRL+LEFT ARROW. The
 insertion point should be directly in front of the last double quotation
 mark.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

BUG: ToolBox Picture Control Bitmap Too Small on EGA
Article ID: Q78132

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The bitmap for the picture control (in the Toolbox window) in EGA mode
is 27 by 22 pixels, when it should be 28 by 22 pixels. The result is a
2-pixel thick black line at the left side of the picture control bitmap,
rather than a 1-pixel thick line it should be.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtDes

BUG: Using Nonstandard Icons Can Cause UAE/GP Fault/Hang
Article ID: Q78380

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you create an icon in other than standard .ICO format and attach that
icon to a Visual Basic form, you may get an Unrecoverable Application
Error (UAE) in Windows version 3.0, a General Protection (GP) fault in
Windows version 3.1, or your computer may hang (stop responding) and
require you to turn the computer off to get out of it.

Icons in other than standard format might include a picture of how the
icon looked when minimized or pasted directly to the form.

Nonstandard icons can also cause less severe run-time errors such as
"Invalid Picture." The icon will load at design time but cause problems
at run-time.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Icons created with utilities other than IconWorks -- even those created
with the Windows Software Development Kit (SDK) Paint utility -- can cause
problems because they may not conform to the standard .ICO format.

The standard .ICO format that Visual Basic supports is a 32 by 32 pixel
matrix, which is specified in the icoDIBSize field in the header of the
resource file. Because icons are handled as resources, once they are
incorporated into the .EXE file, they can actually corrupt the code,
which can cause the computer to hang during execution or cause a UAE or
GP fault.

Reference(s):

"Microsoft Windows Software Development Kit: Reference Volume 2,"
version 3.0, page 9-2

"Microsoft Windows Programmer's Reference," Chapter 9, Microsoft
Press, 1990

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgGrap

BUG: Right Mouse Button Causes Remote Control Menus
Article ID: Q78773

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows versions 3.0 and 3.1

SYMPTOMS
========

In Windows version 3.0, the mouse behaves unexpectedly in both Visual
Basic version 1.0 and 2.0 under the following conditions:

 - A Visual Basic program is run from the environment (VB.EXE) or from
 an executable using the run-time module.
 - The program has a form that contains menus.
 - While holding a menu open with the left button, if you click the
 right mouse button, the mouse selection appears to be inactivated.
 - Moving up or down the menu while holding the left button down,
 causes no selection until you get several inches below the pop-up
 (or pull-down) menu. At that point, the mouse causes selection
 again from the remote position.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above
when used with Microsoft Windows version 3.0. This bug was corrected
in Microsoft Windows version 3.1.

MORE INFORMATION
================

This problem occurs when running a Visual Basic program that has
menus. It requires a mouse with two buttons and has been reported with
both the Microsoft and the Logitech mouse.

Steps to Reproduce Problem

1. Run the Cardfile program that comes with Visual Basic. You'll find it
 in the Samples subdirectory.

2. Put the mouse cursor on one of the menu labels and press the left
 mouse button to activate it.

3. While continuing to hold down the left button, move the cursor to a
 menu item within the pop-up menu to highlight the menu item.

4. While holding the left button down, click the right button once.
 The menu item should no longer be highlighted.

5. Move the mouse from the item you were selecting. Observe that the
 mouse no longer activates submenus, and the menu does not retract.

6. Continue to move the mouse down from the menu. At some point, the
 highlighting of the submenu items will be activated again.

7. Upon stopping on a submenu item and releasing the left button, that
 menu command will execute.

Note: This behavior also occurs if you open a menu and, while holding
down the left button, you use the right button to click the screen.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtRun

BUG: Multiline Text Box Contents Not Gray When Enabled=False
Article ID: Q78892

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When the MultiLine property of a text box is True (-1) and the Enabled
property is False (0), text inside the text box displays incorrectly
as black instead of gray.

WORKAROUND
==========

To work around the problem, set the ForeColor property of the text
box to gray when the Enabled property is set to False (-1) as shown in
the example below.

'*** In the global module: ***
Global Const WINDOW_TEXT = &H80000008 ' from CONSTANT.TXT
Global Const GRAY_TEXT = &H80000011 ' from CONSTANT.TXT

' *** In the form: ***
' to disable a multi-line text box
text1.Enabled = 0 ' disable
text1.ForeColor = GRAY_TEXT ' gray

' to enable a multi-line text box
text1.Enabled = -1 ' enable
text1.ForeColor = WINDOW_TEXT ' black

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Visual Basic Code Window Hides Split View if Resized
Article ID: Q79057

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The Visual Basic development environment (VB.EXE) behaves unexpectedly
when a split Code window is resized. Instead of proportionally
resizing the two sub-windows along with the parent window, the lower
split view is obscured. The only indication that a split window is in
effect is that both the horizontal scroll bar and the bottom of the
vertical scroll bar are also obscured.

WORKAROUND
==========

To work around the problem, resize the Code window to a convenient
size before splitting the window.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Open a Code window.

2. Create a split Code window by placing the cursor between the Code
 window header and the top of the Code window and dragging downward.

3. Resize the Code window to a smaller size -- from the top down
 or from the bottom up.

The result is that the lower window is hidden, including any break
points you were trying to track (for example, while watching one set
in each window).

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtDes

BUG: Invalid outside Sub Error When Copy or Paste to General
Article ID: Q79240

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

An "Invalid outside Sub or Function" error occurs in the VB.EXE
environment under the following conditions:

 - A Sub or Function is copied to the general Declarations section of
 a form.
 - The name of the Sub or Function copied to the general Declarations
 section is changed, or the original Sub or Function that was copied
 is deleted.
 - The program is run from the VB.EXE environment.

CAUSE
=====

The problem occurs when you copy a subprogram to the general
Declarations section with Sub subname() and End Sub (or Function
functionname () ... End Function) included. If you change the name of
the original or copied Sub (or Function), the error "Invalid outside
Sub or Function" will occur at run time. After the error occurs, the
Sub or Function header of the copied Sub will be missing.

This problem occurs because the Sub or Function that was changed is
treated as the entry of a new procedure. The body of the Sub or
Function and the End Sub (or End Function) statement are treated as an
existing part of the general Declarations section and are left behind.

The behavior is identical when the Sub (or Function) that was copied
is deleted. The Sub (or Function) heading of the copy, residing in the
general Declarations section, is treated as a new Sub or Function
entry.

WORKAROUND
==========

Follow these steps to work around the problem:

1. Select (highlight) the remaining code fragment in the general
 Declarations section.

2. From the Edit menu, choose Cut (ALT, E, T).

3. From the Procedure box, choose Test2.

4. From the Edit menu, choose Paste to paste the code cut in step 2
 above into the body of the Test2 subprogram.

5. Delete the duplicate End Sub statement.

Use the following steps to copy a subprogram and avoid the problem:

1. Create a new subprogram (such as Sub Test1).

2. Create a second subprogram with a different name (such as Sub Test2).

3. Copy just the body of the code from the first subprogram (Test1)
 into the second subprogram (Test2).

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Enter the following code in the general Declarations of Form1:

 Sub Test1 ()
 Print "Hello"
 End Sub

3. Highlight the code for the Sub and press CTRL+INSERT to copy the
 entire Test1 subprogram.

4. Switch to the general Declarations window.

5. Paste the code copied in step 3 above by pressing SHIFT+INSERT.

6. Change the name of the Sub from Test1 to Test2.

7. From the Run menu, choose Start (ALT, R, S) to run the program.

The error occurs in the general Declarations section on the following
code fragment:

 Print "Hello"
 End Sub

As illustrated above, the first line of the subprogram, Sub Test2 (),
is missing. This is because Visual Basic treats the name change as a
new Sub entry and established a new subprogram (Test2). The Procedure
box will contain Test2 as a subprogram. Visual Basic considers the

remaining part of Test2 (the code fragment above) to be an existing
part of the general Declarations section.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

BUG: Resetting ListIndex Property Generates Click Event
Article ID: Q79241

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Resetting the ListIndex property of a list box, combo box, directory
list box, or a file list box at run time generates a Click event for
the control. For a drive list box, resetting the ListIndex property
generates a Change event.

CAUSE
=====

This is a result of the Windows subclass definition for these
controls. When an item in one of these list boxes is selected, a Click
event (or Change event for drive list box) occurs and the ListIndex
property is updated. Conversely, when the ListIndex property is
changed, a message occurs, generating the corresponding event.

WORKAROUND
==========

Use the MouseUp procedure instead of click, and then call MouseUp when
a key is pressed.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
Microsoft is researching this problem and will post new information here
in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

This behavior is not documented in the Visual Basic documentation or
online Help. This behavior can cause some unexpected results. For example,
if code in a Click (or Change) event procedure is assigning the selected
items in the list box to an array (or directly to the Text property of
another control), resetting the ListIndex property causes another such
assignment, but with the new item.

If the ListIndex is reset to -1, a null item is assigned by the code
because that setting indicates no item is selected.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project if
 Visual Basic is already running. Form1 is created by default.

2. Add a combo box (Combo1) to Form1.

3. Add a text box (Text1) to Form1.

4. Add a command button (Command1) to Form1.

5. Add the following code to the Click event for the list box chosen:

 Sub Combo1_Click ()
 text1.text = combo1.text
 End Sub

 Note that for drive and directory list boxes, change the assignment to:

 text1.text=drive1.list(drive1.ListIndex)

 -or-

 text1.text=dir1.list(dir1.ListIndex)

6. Add the following code to the Click event procedure for Command1:

 Sub Command1_Click ()
 combo1.ListIndex = -1
 End Sub

7. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()
 For n = 1 To 10
 combo1.AddItem Format$(n, "0")
 Next
 End Sub

8. Run the program. Notice that when you click the Command1 button, the
 list box is updated as expected, the code in the Click event procedure
 for the list box is executed, and the Text property of the text box is
 changed.

Reference(s):

"Programming Windows: the Microsoft Guide to Writing Applications for
Windows 3," by Charles Petzold, Microsoft Press, 1990

"Microsoft Windows Software Development Kit: Reference Volume 1,"
version 3.0

WINSDK.HLP file shipped with Microsoft Windows 3.0 Software
Development Kit

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Some Property Values May Be Incorrect in Maximized Form
Article ID: Q79242

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows versions 3.0 and 3.1

SYMPTOMS
========

The Top, Left, ScaleHeight, and ScaleWidth properties of a maximized
Visual Basic for Windows form may return incorrect values. When a form
is maximized, the values returned by these properties should be close to
the resolution of your monitor. The only difference between the
property values returned and the resolution should be due to
BorderStyles, menus, or title bars, and should in no case be greater
than the resolution of your monitor.

CAUSE
=====

In some cases, with a maximized form, the returned property values can
be greater than the screen resolution. This is because of a problem in
the Windows API routine, GetClientRect(), which Visual Basic calls to
get the form properties. This is a problem with Microsoft Windows
versions 3.0 and 3.1, not with Visual Basic.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Windows versions
3.0 and 3.1. We are researching this problem and will post new
information here as it becomes available.

MORE INFORMATION
================

The Left property determines the distance between the internal left edge of
an object and the left edge of its container. The Top property determines
the distance between the internal top edge of an object and the top edge
of its container. ScaleHeight sets or returns the range of the vertical
axis for an object's internal coordinate system, and ScaleWidth sets or
returns the horizontal axis. On a form, the coordinate system includes the
form's internal area, not including borders and title bar.

Steps to Reproduce Problem

To duplicate the problem, experiment with various BorderStyles, set
ScaleMode to pixels, and add the following code:

 Sub Form_Click()
 Print Left,Top,ScaleWidth,ScaleHeight
 End Sub

Run the application and click the form. Note the values printed. With no
border, the values should correspond to the resolution of your monitor,
and should change slightly for each BorderStyle from the addition of
borders, menus, and title bars.

Here's another example. This occurs when you use the following code in a
maximized form with a ScaleMode of 1 (twips) in a 800-by-600 (pixel)
screen resolution:

 Sub Form_Click
 Print "Screen = "; screen.width; ", "; screen.height
 ' Enter each Print statements on one, single line.
 Print "Form = "; form1.width; ", "; form1.height;
 " at "; form1.left; ", "; form1.top
 Print "---
 ------------------------"
 End Sub

The following is the results:

 Screen = 12000, 9000
 Form = 12120, 9120 at -60, -60

Additional reference words: 1.00 2.00 3.00 3.10
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Option Button w/ Focus Selected When Click Form Caption
Article ID: Q79602

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

In Visual Basic, if you run a program that contains an option button
group, and one of the option buttons is not selected but has the
focus, that option button will be selected -- causing the option button
Click event -- when you select the form title bar, Minimize button,
Maximize button, control menu box, or form size handles. This is does
not occur with other Windows programs.

An option button Click event will also occur incorrectly on a form
Load event if the option button is the only control on the form or if
the option button's TabIndex property is set to 0. When the TabIndex
property is 0, the option button is the control that gets the focus,
causing a Click event for the option button. Putting another control
on the form and setting that control's TabIndex to 0 solves the problem.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem Described in First Paragraph Above

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add two option buttons to Form1.

3. From the Run menu, choose Start (ALT, R, S) to run the program.

4. Give the unselected option button the focus. This can be done by
 clicking the unselected option button and holding down the mouse
 button until you have moved the mouse cursor off of the form completely.

5. Click the form's title bar, control menu box, Minimize/Maximize
 button, or the resize handles. This will result in the option
 button being selected.

Additional reference words: 1.00 2.00 3.00

KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Click Event May Fail to Occur in Cascading Menu
Article ID: Q80023

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

There is an inconsistency with the Click events of cascading menus in
Visual Basic. This problem occurs when hidden menus are displayed.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

If you design menus with cascading menus, you can process the Click
event for the menu selection that cascades another submenu. Conversely,
if you initially design the menu so that the menu Visible property is set
to False, you will not always be able to process the Click event for that
menu selection that cascades another menu.

Steps to Reproduce Problem

1. From the menu design dialog box of Visual Basic (VB.EXE), create
 a set of menus using the following table as a guide:

 Caption CtlName (or Name) Level Visible
 --
 A MID_A 1 True
 1 MID_ONE 2
 Cascade 1 CASCADE1 3
 B MID_B 1 False
 2 MID_TWO 2
 Cascade 2 CASCADE2 3

2. Add two command buttons (Command1 and Command2) to the form.

3. Add the following code to your program in the appropriate places:

 Sub Command1_Click ()
 MID_A.Visible = -1
 MID_B.Visible = 0
 End Sub

 Sub Command2_Click ()
 MID_A.Visible = 0
 MID_B.Visible = -1
 End Sub

 Sub MID_TWO_Click ()
 Print "Cascade 2"
 End Sub

 Sub MID_ONE_Click ()
 Print "Cascade 1"
 End Sub

4. Run the program.

5. Click the A menu, then click the 1 menu. Notice that "Cascade 1" is
 printed to the form. Note that you may have to do this twice because
 the menu overlaps the display and erases most of it the first time.

6. Click the Command2 button to hide the A menu and show the B menu. Click
 the B menu, then click the 2 menu. Notice "Cascade 2" does not print to
 the screen as it did in step 5 above.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: TAB Character Can Incorrectly Cause KeyUp/KeyDown Events
Article ID: Q80286

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Under certain circumstances, the TAB key may generate either or both
a KeyDown or KeyUp event for a form or control. The Language Reference
for Visual Basic version 1.0 states on page 160 that KeyDown and KeyUp
events are not generated for the TAB key. This is normally true.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The TAB key is normally used to switch focus from one control to another
in the predefined tab order. This action does not normally produce a
KeyDown or KeyUp event. However, if there is not another control that can
accept the focus, pressing TAB generates a KeyUp and/or KeyDown event.
This problem manifests itself in several situations:

 - A form with no controls
 - A form with only one control
 - A form with all controls disabled (or all except one)
 - A form with all controls invisible (or all except one)
 - A combination of the last two above

Steps to Reproduce Problem

1. Start Visual Basic, or if it is already running, choose New
 Project from the File menu. Form1 is created by default.

2. Draw a command button on Form1.

3. Add the following code to the KeyDown event for the command button:

 Form1.Print KeyCode

4. Run the program.

5. Press the TAB key. The character 9 will appear on the form. The

 character 9 is the ANSI code for the TAB character.

6. End the program.

The TAB key should never produce a KeyDown or KeyUp event. However,
because this is a problem that may be corrected in future versions,
you should not write code that depends upon this behavior.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: MDI Child CTRL+INSERT in Properties List Causes UAE/GPF
Article ID: Q80777

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

In Visual Basic version 1.0, the MDI Child custom control may generate
an Unrecoverable Application Error (UAE) in Windows version 3.0 or a
General Protection (GP) fault in Windows version 3.1 if you highlight
the value of the Icon property of an MDI child in the Settings box and
repeatedly press CTRL+INSERT.

RESOLUTION
==========

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the custom control obsolete.

STATUS
======

Microsoft has confirmed this to be a bug in the MDI Child custom control
supplied with the Microsoft Professional Toolkit for Microsoft Visual
Basic programming system version 1.0 for Windows. We are researching
this problem and will post new information here in the Microsoft
Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. In the Visual Basic 1.0 programming environment (VB.EXE), choose Add
 File from the File menu, and select MDICHILD.VBX from the Files box.

2. Select the MDI Child tool from the Toolbox.

3. Click and drag on the form to place an MDI child control.

4. Select the Icon property from the Properties list box.

5. Select (highlight) the "(none)" entry in the Settings box.

6. Press CTRL+INSERT (you may need to repeat this sequence of
 keystrokes 10 or more times).

A UAE or GP fault may occur at this point.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: No Resources Causes Failed to Open Graphics Server Error
Article ID: Q80780

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

With the Visual Basic programming environment (VB.EXE) running and
with very low available Windows resources (0 to 1 percent), attempting
to load the GRAPH.VBX Visual Basic custom control generates these
misleading messages:

 Failed to open Graphics Server.
 GSW.EXE must be available via the DOS path.

followed by another error message:

 Can't load the custom control DLL: "C:\VB\GRAPH.VBX"

RESOLUTION
==========

These messages incorrectly imply that the problem is that GSW.EXE is
not in the MS-DOS path, when in fact the custom control could not load
because of a lack of Windows resources (memory).

STATUS
======

Microsoft has confirmed this to be a bug in the GRAPH.VBX custom control
provided with the products listed above. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION
================

A prerequisite to recreate this problem is to deplete Windows system
resources until the Program Manager Help About dialog box reports 1
percent or less resources available. To verify the level of resources
available, from the Program Manager Help menu, choose About.

One way to deplete Windows resources is to launch as many sessions of
NOTEPAD.EXE as possible before getting an error message (start Visual
Basic before all of the Notepad sessions).

Steps to Reproduce Problem

With 1 percent or less resources available, the following procedure
will generate the above error messages:

1. From the File menu, choose New Project. Form1 is created by default.

2. From the File menu, choose Add File, and select the GRAPH.VBX
 custom control.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

BUG: Gauge Custom Control: No Error for Illegal NeedleWidth
Article ID: Q80905

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you use the Gauge custom control, setting the NeedleWidth property
to an invalid value fails to generate an error. Furthermore, attempting
to set the NeedleWidth property outside its valid range will reset the
NeedleWidth property to 1. This behavior occurs at both design time
and run time.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (CTRL+F12), and select
 GAUGE.VBX to add the Gauge control to the Toolbox. The Gauge tool
 will appear in the Toolbox.

3. Add the Gauge control to Form1 and set the gauge's Style property
 to 2 - 'Semi' Needle or 3 - 'Full' Needle.

4. Add the following code to the Form_Click event procedure.

 Sub Form_Click ()
 Gauge1.NeedleWidth = -3
 MsgBox "NeedleWidth = " + Str$(Gauge1.NeedleWidth)
 End Sub

5. From the Run menu, choose Start (ALT, R, S) to run the program.

Notice that clicking the form produces a message box that displays the
value of the gauge's NeedleWidth property. Even though the NeedleWidth is
explicitly set to -3 before the message box is displayed, the NeedleWidth

property resets to a value of 1.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: MDI Child Left/Top Property Wrong in Properties Bar
Article ID: Q80907

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When using the MDI Child custom control supplied with Microsoft
Professional Toolkit for Microsoft Visual Basic version 1.0, if you
set the MDI Child control Left or Top property using the VB.EXE
Properties Bar at design time, the value (the coordinate system)
reported on the right side of the Properties Bar may change from the
value entered. This change is confusing and makes it difficult to
determine what the exact Left and Top coordinates for the MDI child
window are.

If you set the Left or Top property for the MDI child window, then
click the form and then click the same MDI Child window, the Top or
Left value in the coordinate system reported on the far right of the
Properties Bar will change. On the other hand, the Left or Top property
value in the Properties Bar remains as you entered it. Turning off the
Align to Grid feature of the Visual Basic environment has no affect.

RESOLUTION
==========

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the MDI custom control obsolete.

STATUS
======

Microsoft has confirmed this to be a bug in MDI Child custom control
supplied with Microsoft Professional Toolkit for Microsoft Visual Basic
programming system version 1.0 for Windows. This bug was corrected in
Microsoft Visual Basic version 2.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. In the Visual Basic 1.0 programming environment, choose Add File
 from the File menu, and select the MDICHILD.VBX custom control.

2. Click the MDI Child tool in the Toolbox to select it.

3. Click and drag on the form and place an MDI Child control.

4. Select the Left property from the Properties Bar.

5. In the Settings box, enter 500 (a valid number if the ScaleMode
 property for the form is set to twips).

6. Verify that the coordinate system on the far right side of the
 Properties Bar indicates 500 (it is the leftmost figure).

7. Click the form.

8. Click the MDI child window, making sure not to move it.

Note: The Left property on the Properties Bar still indicates 500,
whereas the coordinate system on the Properties Bar indicates that the
left property is 495. This problem occurs even if you change the
ScaleMode property for the form.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: MDI Child Control: Large Height/Width Value Not Accepted
Article ID: Q80908

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you set either the Height or Width property of a MDI child window
to a very large number at design time, the first attempt does not take
the number entered, but reverts to the largest acceptable value, which
depends on the ScaleMode property and the size of the parent form.

The second attempt to enter the large value is accepted, although the
child window does not get any bigger. The largest value you can then
enter for either the Height or Width property of the MDI Child control
is 10000000000 (1 followed by 10 zeros) before Visual Basic generates
an Overflow message. Visual Basic version 1.0 does not trap property
values that are too large on the second attempt unless the value is
grossly out of range.

RESOLUTION
==========

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the MDI custom control obsolete.

STATUS
======

Microsoft has confirmed this to be a bug in MDI custom control supplied
with Microsoft Professional Toolkit for Microsoft Visual Basic
programming system version 1.0 for Windows. This bug was corrected in
Microsoft Visual Basic version 2.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. In the Visual Basic 1.0 programming environment, choose Add File
 from the File menu, and select the MDI.VBX custom control file.

2. Click the MDI Child tool in the Toolbox to select the MDI Child
 control.

3. Click and drag on the form to place an MDI Child control.

4. Choose the Height property from the Properties list box.

5. Change the value of the Height property to any number greater than
 1000000 (1 followed by six zeros). Note the value will then revert
 to the largest acceptable height for the control. (By default, the
 ScaleMode property of the form is set to twips. All ScaleMode
 properties behave the same way.)

6. Repeat step 5 and note that this time the number will be accepted,
 although the MDI child window will not be affected or change in any
 way. The value will displayed in mantissa plus exponential form
 (1.e+007).

 This value is not a valid Height property value for the Height or
 Width property of the MDI Child control, and Visual Basic will only
 disallow the entry the first time.

The expected behavior of Visual Basic is to never allow an invalid
value for the Height or Width property.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Grid Custom Control: Scroll Bars Displayed Unnecessarily
Article ID: Q80967

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

Under the following conditions, the Grid custom control incorrectly
displays horizontal and vertical scroll bars when all the columns and
rows fit in the control (which eliminates the need for scroll bars):

 - The ScrollBars property is set to 3 (Both).
 - The distance between the right column and the right edge of the
 control is less than the default width of a column.
 - The distance between the bottom row and the bottom edge of the
 control is less than the default width a row.

WORKAROUND
==========

To work around this problem, add the following statements to the
Form_Load procedure to set the ScrollBars property to 0 (none), then
back to the original setting.

 Sub Form_Load ()
 save% = Grid1.ScrollBars ' save setting
 Grid1.ScrollBars = 0 ' turn off scroll bars
 Grid1.ScrollBars = save% ' restore setting
 End Sub

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRID.VBX custom control file. The Grid tool appears in the Toolbox.

3. Place a grid named Grid1 on Form1.

4. Set the grid properties Cols and Rows each to 3.

5. Size the grid so that all columns and rows are visible. Leave a
 small space between the grid area and the edge of the control.

6. From the Run menu, choose Start, or press F5 to run the program.
 Both horizontal and vertical scroll bars incorrectly appear.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Gauge Custom Control: Valid NeedleWidth Range 1 to 32767
Article ID: Q81187

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you add the Gauge custom control control to a form, the
NeedleWidth property incorrectly displays a value of 0 in the Settings
box on the Properties bar. After running the Visual Basic application,
the Settings box will display the correct default value of 1, unless
the property was modified during run time.

RESOLUTION
==========

The valid range for the NeedleWidth property of the Gauge custom
control is 1 to 32,767. Attempting to set the NeedleWidth property to
a value outside this range resets the value to 1.

STATUS
======

Microsoft has confirmed this to be a bug in the Gauge custom control
provided with the products listed above. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the GAUGE.VBX file to your project by choosing Add File
 (CTRL+F12) from the File menu and selecting GAUGE.VBX from the
 appropriate directory.

3. Add the Gauge control to Form1.

4. Select the NeedleWidth property from the Properties list box to
 display the default NeedleWidth value. Note that the value is set
 to 0, which is outside the valid range of this property.

5. From the Run menu, choose Start (ALT, R, S) to run the program.

6. Double-click the form's Control box to end the application.

7. Again, select the NeedleWidth property from the Properties list box
 to display the default NeedleWidth Value. Note that the value is
 now set to 1.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: 3-D Panel Control Doesn't Resize to Key Status Control
Article ID: Q81449

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

Unpredictable results occur if a 3-D Panel custom control's AutoSize
property is set to 3 (AutoSize Child To Panel) and you place a Key
Status control with its AutoResize set to True on the 3-D Panel as a
child control. For example, the Key Status control keep may keep its
default size and move to the upper left corner of the panel, and the
Key Status control's top and left sizing handles may flash.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

If a single control is placed on a 3-D Panel custom control with
AutoSize = 3 (AutoSize Child To Panel), the child control resizes to
exactly fit within the panel's inner bevel. This setting for the
AutoSize property has no effect if there are no child controls, more
than one control, or if the panel has no bevels. If the child control
has a fixed dimension (for example, the height of a combo box or a
drive box), then that dimension of the panel will be adjusted to fit
the child control instead while the other dimensions are resized to
fit the panel.

The Key Status custom control has its AutoSize property default set to
True, so its dimensions cannot be changed. However, 3-D Panel does not
resize to the size of the Key Status control. Instead, when you draw a
Key Status control onto a 3-D Panel with AutoSize = 3 and release the
mouse button, the Key Status control keeps its default size and moves
to the upper left corner of the panel, and the Key Status control's
top and left sizing handles will flash. Also, the sizing handles of
the Key Status control that you initially draw remain on the panel.
Notice that the size of the control in the right box on the Properties
bar will alternate between the size of the 3-D Panel and the size of
the Key Status control.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 THREED.VBX custom control file. The 3-D Panel tool will appear in
 the toolbox.

3. Place a 3-D Panel control (Panel3D1) on Form1.

4. Set its AutoSize property to 3 (AutoSize Child To Panel).

5. Draw a Key Status control on the panel.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Vertical Linear Gauge Loses Upper Border's Bottom Pixels
Article ID: Q81460

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The fill area defined by the InnerXXX properties of the Gauge custom
control overwrites the bottom-most line of pixels in the top border as
defined by the InnerTop property. This behavior occurs only with the
vertical linear style gauge.

STATUS
======

Microsoft has confirmed this to be a bug in the Gauge custom control
provided with the products listed above. We are researching this bug
and will post new information here in the Microsoft Knowledge Base as
it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (CTRL+F12). In the Files box,
 select the GAUGE.VBX custom control file. The Gauge tool will
 appear in the toolbox.

3. Add the Gauge control to Form1, and set its properties to
 the following:

 Property Value

 BackColor &H00000000&
 ForeColor &H000000FF&
 InnerTop 1
 Style 1 - Vertical Bar

4. Add the following code to the Gauge_Click event procedure. (Make sure
 you add this code to the Click event procedure, not the Change event.

 Sub Gauge_Click ()
 Gauge1.Value = Gauge1.Max

 End Sub

5. From the Run menu, choose Start (ALT, R, S) to run the program.

When you click the Gauge, the top border of the Gauge will disappear.

Note: If you assign the Picture property to a bitmap and change the
gauge's Value property to greater than 0, the bottom-most line of pixels
in the top border will be redrawn in the Background color.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: InnerBottom/InnerRight Defines Gauge Fill Area Badly
Article ID: Q81461

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you add the Gauge custom control to a form, the fill area defined
by the InnerXXX properties is incorrect. Specifically, the InnerBottom
sets the bottom border (InnerBottom - 1) pixels from the bottom-most
position of the control. Similarly, the InnerRight property sets the
right border (InnerRight - 1) pixels from the rightmost position of
the control. This behavior occurs only in the InnerBottom and
InnerRight properties.

WORKAROUND
==========

To work around the problem, set InnerRight to (InnerLeft - 1) and
InnerBottom to (InnerTop - 1) to create symmetrical borders. Note that
in order to create a border of set width, you must account for the
aspect ratio of your video display.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (CTRL+F12). In the Files box,
 select the GAUGE.VBX custom control file. The Gauge tool will
 appear in the toolbox.

3. Add the Gauge control to Form1 and set the gauge's properties as
 follows:

 Properties Values

 InnerBottom 1
 InnerLeft 1
 InnerRight 1
 InnerTop 1
 ForeColor &H000000FF& (Red)
 Value 100

Notice that the bottom and right borders have completely disappeared.
This problem can also be illustrated by setting BackColor and ForeColor
to different colors. When InnerLeft is equal to InnerRight, the left and
right borders are not symmetrical. The same holds true for the InnerTop
and InnerBottom properties.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Graph: ExtraData May Not Say: Invalid Property Value
Article ID: Q81472

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you use the Graph custom control, the ExtraData property will not
always generate an "Invalid Property Value" error when you assign it
invalid numbers.

CAUSE
=====

ExtraData has different valid ranges, depending on which GraphType
you are using. The widest range is from 0 to 15, inclusive. Even if
values between 0 and 15 are not within the documented range for an
individual GraphType, they may not generate an error.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

If you are using the 3-D bar graph (GraphType = 4), the ExtraData
property holds the color values for the sides of the bars. Color
values range from 0 to 15, so the legal values for ExtraData also
range from 0 to 15. If you are using the 2-D pie graph (GraphType = 1)
or the 3-D pie graph (GraphType = 2), the value of ExtraData will
determine whether or not a pie piece is exploded from the graph. The
documented range for ExtraData with pie graphs is from 0 to 1, where 0
= False and 1 = True. In practice, however, the range for ExtraData
with pie graphs is from 0 to 15, where even values equal False and odd
values equal True.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool will appear in the

 toolbox.

3. Add a graph control (Graph1) to Form1.

4. In the Properties list box, set the following values and properties:

 Property Value

 GraphType 2
 DrawMode 2
 NumSets 1
 NumPoints 5
 ExtraData 0, 1, 14, 15, 16

As you assign the values for ExtraData, you will see:

 - No change when ExtraData is set to 0.
 - The second data point will be exploded when ExtraData is set to 1.
 - No change when ExtraData is set to 14 (even numbers less than
 16 = FALSE).
 - The fourth data point will be exploded when ExtraData is set to 15
 (odd numbers less than 16 = TRUE).
 - An "Invalid Property Value" message generated when ExtraData is set
 to 16.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: 3D Command Button Shows Outline when Outline = False
Article ID: Q81951

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you set the Outline property of the Visual Basic 3D Command
Button custom control to False, the button appears to have an outline
when the button has the focus.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The Visual Basic 3D Command Button custom control has an Outline
property that can be set to True or False. When the property is set to
False, the outline does not appear around the control at design time.
At run time, if the button has the focus, the outline appears around
the control.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 THREED.VBX custom control file. The 3D Command Button tool appears
 in the toolbox.

3. Create one 3D Command Button (Command3D1) and one text box (Text1)
 on the form (Form1).

4. Set the Outline property of Command3D1 to False.

5. Press F5 to run the application. Press TAB to move the focus
 between the two controls on Form1.

When the Command3D1 button does not have the focus, an outline does not
appear. When the Command3D1 button has the focus, an outline appears
around the control, even though the Outline property is set to False.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Scroll Control: UAE/GPF If Drag Method in GotFocus Event
Article ID: Q81955

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

An Unrecoverable Application Error (UAE) in Windows version 3.0 or a
General Protection (GP) fault at address 0012:001E in Windows version 3.1
may occur when you perform a manual drag (using the Drag method) in the
GotFocus event for an Instant Change Scroll Bar custom control
(INSTSCRL.VBX in Visual Basic version 1.0) or the regular Scroll Bars
control (in Visual Basic version 2.0 or 3.0) and change the focus to the
Scroll Bar (or the Instant Change Scroll Bar custom control) in either
the Change or the Changing event.

The Instant Change Scroll Bar custom control comes with the Microsoft
Visual Basic Professional Toolkit version 1.0 for Windows. The
capabilities of the Instant Change Scroll Bar were implemented in the
regular Scroll Bars controls in both the Standard and Professional
editions of Visual Basic versions 2.0 and 3.0.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem in Visual Basic Version 1.0
--
1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 INSTSCRL.VBX custom control file. The Instant Change Scroll Bar
 tools appear in the toolbox.

3. Place an InstHScroll or InstVScroll control and a command
 button on Form1.

4. Double-click the Instant Change Scroll Bar control (or press F7)
 to open the Code window. Enter the following code in the Changing
 event:

 Sub InstHScroll1_Changing ()
 Command1.TabIndex = 0
 InstHScroll1.TabIndex = 1
 End Sub

 Add the following code in the GotFocus event:

 Sub InstHScroll1_GotFocus ()
 InstHScroll1.Drag 1
 End Sub

5. Press F5 to run the example. Click the scroll arrow of the Instant
 Change Scroll Bar and wait a few seconds. A UAE or GP fault will occur.

This problem occurs with both the InstVScroll and InstHScroll controls,
and with the code above in either the Change or Changing events.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Grid: No Error Changing FixedAlignment on Non-Fixed Col
Article ID: Q81998

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

Using the Grid custom control, setting the text alignment of a
non-fixed column with the FixedAlignment property will not generate an
error. Though this value is saved, it does not affect the text
alignment of the specified non-fixed column.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
e are researching this bug and will post new information here in the
icrosoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (CTRL+F12), and select GRID.VBX
 to add the Grid control to the Toolbox. The Grid tool appears in
 the Toolbox.

3. Add a Grid control to Form1.

4. Add the following code to the Grid_Click event procedure:

 Sub Grid_Click ()
 Grid1.ColWidth(1)=2000
 Grid1.Col=1
 Grid1.Row=1
 Grid1.Text="Hello"
 Grid1.FixedAlignment(1)=1 'Right Justify
 End Sub

5. From the Run menu, choose Start (ALT, R, S) to run the program.

Notice that when you click the grid, the FixedAlignment property
accepts the new value, but the alignment of the text does not change.

Note that if you try to do the opposite (that is, attempt to set the
text alignment of a fixed-column with the ColAlignment property), an
"Invalid Column" error message will be displayed.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Graph: AutoInc Increments ThisPoint Instead of ThisSet
Article ID: Q81999

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The Graph custom control version 1.2 has four array properties:
ColorData, LegendText, PatternData, and SymbolData. The values of
these properties directly affect sets of data rather than the
individual points in the sets. With the AutoInc property set to True,
assigning a value to these four arrays will increment ThisPoint rather
than ThisSet. This behavior is a potential cause of logic errors in
code.

WORKAROUNDS

To work around the potential logic problems caused by incrementing
ThisPoint, you should occasionally reset the AutoInc incrementing
position by assigning values for ThisSet and ThisPoint in your code.

A second workaround is to set AutoInc to False (AutoInc=0), and
explicitly set ThisSet and ThisPoint before entering a piece of data.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

There are eight array properties in Graph: GraphData, ExtraData,
LabelText, XPosData, ColorData, LegendText, PatternData, and
SymbolData. To access an individual point in these arrays, you
need to set the ThisSet and ThisPoint properties to indicate that
point. If AutoInc is set to True (AutoInc=1), Graph will
automatically set the ThisPoint and ThisSet properties.

AutoInc increments ThisSet and ThisPoint differently, depending on
which property is being accessed. AutoInc will increment both ThisSet
and ThisPoint when adding data to the GraphData property. For all
other array properties (ExtraData, LabelText, XPosData, ColorData,
LegendText, PatternData, and SymbolData), AutoInc will only increment
ThisPoint. The data that you assign to the ExtraData, LabelText, and
XPosData apply to the individual points of a set, so logically AutoInc
should only increment ThisPoint. However, the data that you assign to

the ColorData, LegendText, PatternData, and SymbolData array
properties apply to the separate sets. In these cases, AutoInc should
logically be incrementing the ThisSet property, but in practice it
increments only the ThisPoint property.

Note: AutoInc is incrementing the proper values internally, so the
data assigned to these four array properties is accurate and will
function properly. AutoInc displays its progress by also incrementing
ThisPoint, which is not always the logical choice.

The following example demonstrates how AutoInc increments ThisPoint and
ThisSet when assigning values to ColorData. To test another array
property, substitute that array name for ColorData.

Steps to Reproduce Problem

1. With Visual Basic running and the Graph custom control loaded,
 create a form (Form1).

2. On Form1, add a command button (Command1), a picture box
 (Picture1), and a graph control (Graph1).

3. Change the following properties for Command1:

 Control Property Value

 Command1 Caption "Start"
 Graph1 AutoInc 1 (true)
 Graph1 NumSets 2
 Graph1 NumPoints 3

4. Add the following code to the Command1 Click event:

 Sub Command1_Click ()

 Command1.Caption = "ColorData" 'set caption equal to array
 'property name to be tested
 Picture1.Cls
 Picture1.Print "ThisSet", "ThisPoint"
 ' loop through full array:
 For i = 1 To Graph1.NumSets * Graph1.NumPoints
 Picture1.Print Graph1.ThisSet, Graph1.ThisPoint
 Graph1.ColorData = 1 'Make some valid assignment so
 ' AutoInc increments
 Next
 Graph1.DrawMode = 2 'display newly assigned values

 End Sub

5. Press F5 to run the program.

When you run the program and click the Command1 button, the program
will display the array property being tested, and the picture box will
display the increment pattern of ThisSet and ThisPoint as the program
loops through the array property. The graph is then updated to display

the newly assigned values.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Animated Button: 8 Pt. Roman/Mdrn Fonts Don't Underline
Article ID: Q82004

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Small (8 point) Roman and Modern fonts will not underline on EGA
systems when using the Animated Button custom control.
(ANIBUTTON.VBX.)

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Professional
Toolkit for Microsoft Visual Basic programming system version 1.0 for
Windows. We are researching this problem and will post new information
here as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

On an EGA system:

1. Run Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by
 default.

2. From the File menu, choose Add File. In the Files box, select the
 ANIBUTON.VBX custom control file. The Animated Button tool appears
 in the toolbox.

3. Create a default Animated Button control by double-clicking the
 animated tool in the toolbox.

4. Set the following properties from the Properties Bar:

 FontName = Modern (or Roman)
 FontSize = 8
 FontUnderline = True

Notice that the caption is not underlined as it is on a VGA system. If
the FontSize is changed to a larger size, the underline will appear.
The underline will also appear on fonts other than Roman or Modern.

Additional reference words: 1.00
KBCategory:
KBSubcategory: APrgGrap

BUG: Graph Axis Titles Don't Switch on Horizontal Bar Graphs
Article ID: Q83463

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The Graph custom control allows you to convert your graph control from a
non-horizontal bar graph to a horizontal bar graph or vice versa. This
conversion will switch all necessary information to its proper
position except for the axis titles. The BottomTitle and LeftTitle
should switch positions, but do not.

WORKAROUND
==========

As a workaround for this problem, test whether the graph is being
converted from or to a horizontal bar graph, and switch the values for
BottomTitle and LeftTitle yourself. The example shown in the More
Information section illustrates the problem and provides code to work
around it.

STATUS
======

Microsoft has confirmed this to be a problem with the Graph custom control
supplied with the products listed above. We are researching this problem
and will post new information here in the Microsoft Knowledge Base as it
becomes available.

MORE INFORMATION
================

Step-by-Step Example

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files list box, select
 the GRAPH.VBX custom control file. The Graph tool appears in the
 toolbox.

3. On Form1, add three command buttons (Command1, Command2, and
 Command3) and a Graph control (Graph1).

4. Change the following properties:

 Control Property Value

 Command1 Caption Make Horizontal
 Command2 Caption Make Vertical
 Command3 Caption Switch Correctly
 Graph1 Width 4000
 Graph1 Height 2500
 Graph1 GraphType 3 (default)
 Graph1 GraphStyle 0 (default)
 Graph1 GraphData 10, 20, 30, 40, 50
 Graph1 BottomTitle Title for axis labeled 1-5
 Graph1 LeftTitle Title for axis labeled 0-50

5. In the Command1 Click event, add the following code:

 Sub Command1_Click ()
 Graph1.GraphStyle = 1 'horizontal
 Graph1.DrawMode = 2 ' redraws graph with new properties
 End Sub

6. In the Command2 Click event, add the following code:

 Sub Command2_Click ()
 Graph1.GraphStyle = 0 'default (vertical)
 Graph1.DrawMode = 2 ' redraws graph with new properties
 End Sub

7. In the Command3 Click event, add the following code:

 Sub Command3_Click ()
 Const TRUE = 1
 OldStyle = Graph1.GraphStyle
 Graph1.GraphType = 3 'or change according to your needs
 Graph1.GraphStyle = 1 'or change according to your needs

 If (Graph1.GraphType=3) Or (Graph1.GraphType=4) Then BarGraph%=TRUE
 ' The next line of code takes advantage of the fact that the
 ' GraphStyle numbers for the horizontal bar graphs are odd and the
 ' vertical are even.
 If (Graph1.GraphStyle + OldStyle) Mod 2 = 1 Then Switched% = TRUE

 If BarGraph% And Switched% Then
 temp$ = Graph1.BottomTitle
 Graph1.BottomTitle = Graph1.LeftTitle
 Graph1.LeftTitle = temp$
 End If
 Graph1.DrawMode = 2
 End Sub

8. Press F5 (or ALT, R, S) to run the program.

When you run the program and click the Command1 button, Graph1 will
redraw itself as a horizontal graph. The left and bottom labels
switched but the LeftTitle and BottomTitle do not. Next, click the
Command2 button. The Command2 Click event will return the graph to its
original appearance.

When you click the Command3 button, Graph1 will redraw itself as a

horizontal graph with all labels and titles switched appropriately.
The code for the Command3 Click event was written to react appropriately,
regardless of which GraphType and GraphStyle are chosen.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Menu Can Cover Top of MDI Child Control If BorderStyle=0
Article ID: Q83858

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

An MDI child window that contains a frame, has its BorderStyle
property set to 0 (none), and is maximized, will appear to slip under
and be partially masked by the title bar of the parent form when the
parent form has a menu.

RESOLUTION
==========

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the MDI custom control obsolete.

STATUS
======

Microsoft has confirmed this to be a bug in the MDI Child custom
control supplied with Microsoft Professional Toolkit for Microsoft
Visual Basic programming system version 1.0 for Windows. This bug
was corrected in Visual Basic version 2.0 for Windows.

MORE INFORMATION
================

Because an MDI Child control with a BorderStyle of 0 (none) cannot be
maximized by the user (there is no Control-menu box for the control), you
must use one of two methods to reproduce the problem:

 - You can maximize an MDI Child window that has a BorderStyle of 0
 (none) by pressing CTRL+BREAK and setting the WindowState to 2
 (maximized) in the Immediate window.

 -or-

 - Set the MDI Child control WindowState property to 2 in code.

The following example uses the former method.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New File. In the Files box, select the
 MDICHILD.VBX custom control file. The MDI Child tool appears in
 the Toolbox.

3. Click the Toolbox to select the MDI Child control.

4. Click and drag the form to place an MDI Child Window control.

5. Click the Toolbox to select the frame control.

6. Click and drag the MDI Child window to place the frame control.
 Place the frame at coordinates 0,0 (top left corner of the MDI
 Child window).

7. Click the MDI child window, choose the BorderStyle property
 from the Properties bar, and set it to 0 (None).

8. From the Window menu, choose Menu Design Window to add a menu to
 the parent form.

9. In the Menu Design dialog box, type "Test" on the caption line and
 again on the CtlName line. Choose the Done button.

10. From the Run menu, choose Start to run the application.

11. Press CTRL+BREAK to break out of run mode.

12. Open the Immediate window, and type the following to maximize the
 MDI Child window.

 MDIChild1.WindowState = 2 'The maximized window style

Note: The MDIChild1 window will now occupy the whole form, and
the frame caption will no longer be visible because it is covered by
the menu bar. If there is no menu item, the maximized MDI Child window
positions itself correctly.

Additional reference words: 1.00 2.00 MDIChild MDI Child
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: VB Graph Custom Control: SeeThru Paints Incorrectly
Article ID: Q84236

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you use the Graph custom control with the SeeThru property set
to True, Graph fails to paint properly. The Graph custom control will
not repaint itself to show a see-through background nor to show updated
information. Often it will create obvious holes through its parent form.

In addition, if anything on the form is under the Graph custom control, the
overlapped region won't print when you execute PrintForm even though you
see it on top when you print. This occurs most often when you have two
overlapped Graph controls -- one with SeeThrough set to True, the other
with SeeThru set to False.

STATUS
======

Microsoft has confirmed this to be a bug in the Graph custom control
supplied with the products listed above. We are researching this bug
and will post new information here in the Microsoft Knowledge Base as
it becomes available.

MORE INFORMATION
================

The Graph SeeThru property is supposed to have a clear background when
it is set to True. This property allows any text or bitmaps displayed
on the parent form to show through. However, the SeeThru property
does not actually behave this way.

When the SeeThru property is first set to True and the graph is
repainted by setting DrawMode = 2, the background color does not
become clear. Also, the graph is not repainted, but rather just
painted again on top of itself. If any other properties or data were
reset before the DrawMode = 2 call is made, the changes might overlap
the old settings, or not appear at all.

If circumstances call for the Graph control to completely repaint
itself (such as when the parent form is minimized and then maximized),
Graph will not repaint at all. Because Windows is expecting Graph to
paint that region, it will not repaint the parent form behind the
control. Graph also does not paint that region, so a hole is left in
the form that shows the desktop behind the parent form. If you try to
force Graph to repaint itself by setting DrawMode = 2, the actual Graph

(without the background) will appear in the hole on top of the desktop
clutter.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool appears in the
 Toolbox.

3. On Form1 add a graph control (Graph1), and two command buttons,
 Command1 and Command2.

4. Change the following properties for the Command buttons:

 Control Property Value
 --
 Command1 Caption SeeThru
 Command2 Caption DrawMode

5. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 Graph1.SeeThru = 1
 End Sub

6. Add the following code to the Command2_Click event:

 Sub Command2_Click ()
 Graph1.DrawMode = 2
 End Sub

7. Press F5 to run the program.

 When you run the program, Graph1 appears normal. If you click the
 Command2 button to repaint Graph1, you will see the old graph being
 erased and then replaced by a new version of it. Because the random
 data generator inherent to Graph was left on, new data will be
 displayed. This is normal behavior. If you minimize and then maximize
 Form1, Graph1 will repaint itself correctly.

8. Click Command1 to turn on the SeeThru property, and then click
 on Command2 to repaint Graph1.

 This time Graph1 does not disappear before being redrawn. Instead,
 the new version of the graph is just painted on top of it and the
 background color is still there. Again, because the random data
 generator was left on, new data should be displayed. If the new
 data values are less than the old values, they won't be seen. The
 bars on Graph1 will appear to continuously rise every time the
 Command2_Click event is triggered.

9. Minimize Form1.

 Look at the area of the desktop where the graph control used to
 be. You will notice that it remains after the form is maximized.

10. Maximize Form1.

 The desktop still appears where the Graph1 control should be. If
 you click the Command2 button, the graph alone will be printed
 in the rectangle where Graph1 should be. Again, the graph will
 paint on top of itself instead of repaint itself every time you
 trigger the Command2_Click event.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Must Call API to Print Color Text on Color Printer in VB
Article ID: Q84269

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
 - Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Visual Basic for Windows does not directly support printing text in
color to a color printer.

WORKAROUND
==========

To print in color, you must first make a call to the Windows API function
SetTextColor(). The example below shows how to implement this call into a
Visual Basic application to allow for printing of colored text.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above. We
are researching this problem and will post more information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The ForeColor property of the Printer object was not fully implemented
in Visual Basic. You can set the property, but the setting has no effect.

To send color output to a color printer, you must use the Windows API
function call SetTextColor() instead of the ForeColor property of the
Printer object.

Do the following to print "Hello" in all of the 16 QBColors:

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. In the Form1 global module, add the following:

 ' Enter the following Declare statement on one, single line:
 Declare Function SetTextColor Lib "GDI" (ByVal hDC As Integer,
 ByVal crColor As Long) As Long

3. In the Form1 Form_Click event procedure, add the following code:

 Sub Form_Click
 For i = 0 to 15

 x& = SetTextColor(Printer.HDC, QBColor(i))
 Printer.Print "Hello"
 Next i
 Printer.EndDoc
 End Sub

4. Press F5 to run the program. Click the form.

The word "hello" will print in 16 different colors.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

BUG: Some Controls Not Printed with PrintForm in Windows 3.1
Article ID: Q84471

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

In Windows version 3.1, if you print a Visual Basic form to a
printer by either selecting Print from the File menu during design
time or by using the PrintForm method during run time, some of the
controls on the form may not be not be printed (such as the frame,
command button, option button, or check box). This problem is known to
occur when using Windows 3.0 video drivers with Windows version 3.1. The
problem is also known to occur with third-party video drivers that
claim to be Windows version 3.1 compatible. The problem does not occur
when you run Visual Basic with Windows version 3.0.

WORKAROUND
==========

To overcome this problem, delete the old video driver and install the new
Windows version 3.1 compatible driver. This can be done through Windows
Setup (see your Windows version 3.1 manual for details).

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

This problem may result when you install Windows version 3.1, because
some of the Windows version 3.0 video drivers may not be updated.

Steps to Reproduce Problem

To reproduce the problem, do the following (using a Windows version 3.0
video driver with Windows version 3.1):

 1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

 2. Add controls to Form1 such as frame, command button, check box,
 and option button.

 3. From the File Menu, choose Print.

 4. In the Print dialog box, select Current and Form.

 5. Choose the OK button to start printing.

 6. Note that the frame, command button, and option button are not
 printed.

 7. Add the following code to the Form1 Click event:

 Form1.PrintForm

 8. Press F5 to run the program.

 9. Click in the form.

10. Note that the frame, command button, and the check box are not
 printed.

To overcome this problem, delete the old video driver and install the
new Windows 3.1 compatible driver. You can do this through Windows
Setup (see your Windows 3.1 manual for details).

Additional reference words: 1.00
KBCategory:
KBSubcategory: APrgPrint

BUG: THREED.VBX: Command/Group Push Buttons Show Invalid File
Article ID: Q84553

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The Picture property for 3-D Command Button and 3-D Group Push Button
custom controls can load certain picture formats. However, the 3-D
Command Button Load Picture dialog box incorrectly shows *.WMF in the
File Name box. This mistakenly indicates that .WMF (Windows metafile)
files can be used for pictures. Also, the 3-D Group Push Button Load
Picture dialog box for the PictureUp, PictureDn, and PictureDisabled
properties incorrectly lists *.WMF and *.ICO in the File Name box.
This mistakenly indicates that .WMF and .ICO files can be used for
pictures.

RESOLUTION
==========

The 3-D Command Button control Picture property can only use .BMP
(bitmap) and .ICO (icon) files. If you attempt to load a .WMF file,
the following error message will be displayed:

 Only picture formats ".BMP" & ".ICO" supported

The 3-D Group Push Button control PictureUp, PictureDn, and
PictureDisabled properties can only use .BMP files. If you attempt to
load a .ICO or .WMF file, the following error message will be
displayed:

 Only picture format ".BMP" supported

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Common Dialog Custom Controls Don't Display Printer Fonts
Article ID: Q84839

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The Common Dialog custom control (COMMDLG.DLL) provided with Microsoft
Professional Toolkit for Microsoft Visual Basic version 1.0 for
Windows will not display printer specific fonts when you use the
ChooseFont dialog box. Regardless of the options chosen, the
ChooseFont dialog box shows only screen fonts.

The Common Dialog custom control provides a Visual Basic interface to
the Windows "common dialog boxes" provided with the COMMDLG.DLL
dynamic link library (DLL). Using the Common Dialog control, you can
provide a common dialog box to allow the user to select from available
fonts. However, even if the proper options are used, the dialog box
provided by the Common Dialog control will only display screen fonts,
not printer fonts.

WORKAROUND
==========

The only workaround for this problem is to write a DLL routine (using
the Windows SDK or equivalent and a language capable of creating
Windows DLLs) that in turn calls the COMMDLG.DLL library to display
the ChooseFont dialog box. By writing your own DLL routine, you can be
certain that the COMMDLG.DLL library uses the correct device context
(hDC) for the printer when determining the fonts available.
Information on the COMMDLG.DLL library is available as part of the
Microsoft Windows 3.1 Software Development Kit (SDK).

STATUS
======

Microsoft has confirmed this to be a problem with the Common Dialog
custom control supplied with Microsoft Professional Toolkit for
Microsoft Visual Basic programming system version 1.0 for Windows. We
are researching this problem and will post new information here as it
becomes available.

Additional reference words: 1.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: MDI Child Control Skips Index with Control Array
Article ID: Q87765

The information in this article applies to:

 - Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

You can create a control array of MDI children in the Visual Basic
environment by copying and pasting an MDI control on to the same form.
You will get the error "MDIChild windows are not allowed to nest,"
when the focus has been set to the previous MDI child before the Paste
command. After correctly pasting the next MDI child on to the form,
the index of that MDI child will skip a value. In other words, you
will not be able to access the MDI child with that Index value.

RESOLUTION
==========

This article does not apply to later versions of Visual Basic. The MDI
Child custom control shipped only with version 1.0. Multiple-document
interface (MDI) forms are built into Visual Basic version 2.0 and later,
making the MDI custom control obsolete.

STATUS
======

Microsoft has confirmed this to be a bug in the MDI child custom
control supplied with the Microsoft Professional Toolkit for
Microsoft Visual Basic programming system version 1.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem in Visual Basic Version 1.0
--
1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MDICHILD.VBX custom control file. The MDI child tool appears in
 the Toolbox.

3. Click the Toolbox to select the MDI child control.

4. Click and drag the form to place an MDI child window control.

5. Make sure that the MDI child control is highlighted (it should be
 highlighted by default). Then choose Copy from the Edit menu.

6. Click the MDI child window to select it. Then choose Paste from

 the Edit menu.

7. A dialog box will display asking you if you want to create a
 control array. Choose Yes.

8. The error message "MDIChild windows are not allowed to nest" will
 appear. Press ENTER to continue.

9. Click the form making sure that the first MDI child is not selected.

10. From the Edit menu, choose Paste to create a control array of
 MDI children.

Note: The new MDI child window has an Index value of 2. This number
should actually be 1 because the first element of the control array is
0. Thus, the Index value 1 is lost and cannot be accessed.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Generic / Text Only Printer Driver Prints 66 Lines
Article ID: Q87767

The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
 - Microsoft Visual Basic programming system for Windows, version 1.0
 - Microsoft Windows versions 3.0 and 3.1
--

SYMPTOMS
========

Choosing the Generic / Text Only printer drivers in Microsoft Windows
versions 3.0 and 3.1 may cause incorrect printing results in Visual
Basic for Windows. Visual Basic expects to print 66 lines per page, but
the generic printer driver only prints 60 lines per page. This results
in six lines being printed on a separate page.

WORKAROUND
==========

To work around the problem, select a different printer driver.

STATUS
======

Microsoft has confirmed this to be a bug in the Generic / Text Only
printer driver with products listed above. We are researching this
bug and will post new information here in the Microsoft Knowledge
Base as it becomes available

MORE INFORMATION
================

When using the Generic / Text Only printer driver, the example below
prints 60 lines on the first page, 6 lines on the second page, and
then 60 lines on the third page. You may also encounter some lines
being overwritten also with the Generic / Text Only driver supplied
with Windows version 3.0.

Steps to Reproduce Problem

1. From the Windows Control Panel, choose the Printers icon.

2. From the Printers option, choose the Add Printer button.

3. Select the Generic / Text Only printer driver.

4. Choose the Install button. There is additional help on pages 145-147 of
 the "Microsoft Windows version 3.0 User's Guide." Note: You may need
 your Windows disks to install the Generic / Text Only driver.

5. After the Generic / Text Only driver has been installed and is the
 default printer, you can proceed to run a test in Visual Basic.

6. Start Visual Basic or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

7. Add the following code to the Form_Click event procedure of Form1:

 Sub Form_Click ()
 For i% = 1 to 200
 Printer.Print "This is a test of line number ";i%
 Next i%
 Printer.EndDoc
 End Sub

8. From the Run menu, choose Start to run the program.

9. Run the same code, by pressing the F5 function key and then click
 Form1 once, to run the test. This should produce five pages of
 text, the first and third pages should have 60 lines of text, while
 the second and fourth pages will only contain 6 lines of text. The
 fifth page should be half covered with lines of text. This is where
 the problem is, Visual Basic sends 66 lines to be printed per page,
 but the Generic / Text Only printer driver is setup to print only
 60 lines. Then the printer driver does a formfeed, after printing
 the 6 lines on the second page to go on to the third page. The
 printer driver may also display a problem on some lines of code
 being overwritten (every fifth line may be overwritten).

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: Illegal function call / Division By Zero Errors
Article ID: Q94778

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- The Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0
- Microsoft Basic Professional Development System (PDS) for MS-DOS,
 version 7.1

SYMPTOMS
========

Certain complex numeric expressions may incorrectly cause "Illegal
function call" or "Division by zero" errors when run in the interpreter
environment of the above mentioned Basic products. This problem only
happens on computers that have a math coprocessor.

These errors, however, do not occur with programs compiled using the
BC.EXE compiler included with Microsoft Basic Professional Development
System for MS-DOS, version 7.1 and the Standard and Professional
Editions of Microsoft Visual Basic for MS-DOS, version 1.0

STATUS
======

Microsoft has confirmed this to be a problem with the products listed at
the top of this article. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

To work around this problem, do one of the following:

 - Break the complex equation into smaller parts that are evaluated
 separately.

 - Turn off use of the coprocessor with SET NO87=x at the DOS
 prompt (PDS and Visual Basic for MS-DOS only).

 - Compile using the alternate math (/FPa) option (PDS and
 the Professional Version of Visual Basic for MS-DOS only).

The following code reproduces the "Illegal Function Call" error on a
computer that has a coprocessor:

 test = 1 + (1 + 1 * (1 * (1 + 1 ^ 1)))

The following code reproduces the "Division by zero" error on a computer
that has coprocessor:

 test = 1 + (1 - 1 * (1 + 1 / 1 ^ 1))

These are not the only expressions that cause the problem.

Additional reference words: 1.00 2.00 3.00 7.10
KBCategory:
KBSubcategory: EnvtDes

BUG: Stack Fault When Move Sets Tiny Width in 2-Item Combo Box
Article ID: Q95197

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SYMPTOMS
========

An Application Error saying that Visual Basic caused a stack fault occurs
when you click the down arrow of a combo box if the combo box contains two
items and you set the Width property of the combo box to less than 378 from
within a Move method. The number it takes to cause the problem depends on
your current video mode. This example uses a 1224 by 768 driver. The lower
your resolution, the higher the number must be to prevent the Application
Error.

WORKAROUND
==========

To work around this problem, set the width of the combo box to 377 in
design mode, and don't set it from within a Move method. As another
alternative, you can remove one of the two items in the Combo Box.

STATUS
======

Microsoft has confirmed this to be a problem in Visual Basic versions 2.0
and 3.0 for Windows. We are researching this problem and will post new
information here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add a combo box (Combo1) to Form1.

3. Add the following code to the Form1_Load event:

 Sub Form_Load()
 Combo1.additem "Item 1"
 Combo1.additem "Item 2"
 Combo1.Move 100, 100, 377 ' Postion 100, 100, with a width of 382
 End Sub

4. From the file menu, choose Run to run the program.

5. Click the down arrow of the combo box.

This results in an Application Error stating a stack fault occurred.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: GPF/UAE If Multi-Select Controls w/ No Common Properties
Article ID: Q95430

The information in this article applies to:

 - The Standard and Professional Editions of Microsoft Visual Basic
 for Windows, versions 2.0 and 3.0

SYMPTOMS
========

A general protection (GP) fault or unrecoverable application error (UAE)
may occur when you select multiple custom controls that have no properties
in common.

For example, if you add the VBSQL.VBX custom control from the Microsoft SQL
Server Programmer's Toolkit for Visual Basic and then select it and the
Timer control while holding down the CTRL key, you will encounter a GP
fault or UAE.

CAUSE
=====

The problem occurs because there are no properties in common between the
Timer control that comes with Visual Basic and the VBSQL.VBX control. This
usually isn't a problem because most custom controls contain at least the
Tag property. There are only a few exceptions.

STATUS
======

Microsoft has confirmed this to be a problem in both the Standard and
Professional Editions of Microsoft Visual Basic versions 2.0 and 3.0
for Windows. We are researching this problem and will post new information
here in the Microsoft Knowledge Base as it becomes available.

Additional reference words: 2.00 3.00 GPF multiselect
KBCategory:
KBSubcategory: EnvtDes

BUG: Type Mismatch Error If Use VAL Function on Big Hex Value
Article ID: Q95431

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Standard and Professional Editions of Microsoft Visual Basic
 for MS-DOS, version 1.0
- Microsoft Basic Professional Development System (PDS) for MS-DOS,
 version 7.1
- Microsoft QuickBASIC for MS-DOS, version 4.5

SYMPTOMS
========

Using the VAL function on a large hexadecimal number (greater than or equal
to the hexadecimal value 80000000) embedded in a string can incorrectly
cause a "Type mismatch" error. This occurs only when the hexadecimal number
contains an ampersand (&) at the end of the string.

WORKAROUND
==========

To reproduce the problem run the following code:

 PRINT VAL("&H80000000&")

You get a "Type mismatch" error. To prevent the error, remove the last
ampersand (&) character.

STATUS
======

Microsoft has confirmed this to be a problem in the products listed
at the beginning of this article. We are researching this problem and
will post new information here in the Microsoft Knowledge Base as it
becomes available.

Additional reference words: 1.00 2.00 3.00 4.50 7.10
KBCategory:
KBSubcategory: PrgOther

BUG: Stack Fault May Occur If Trapping Divide By Zero
Article ID: Q95499

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SYMPTOMS
========

When trapping a divide by zero or divide overflow error (error numbers 11
and 6 respectively) in a Visual Basic program, you may receive a stack
fault if an MS-DOS session is also running. In this situation, the computer
may also hang (stop responding) or automatically reboot.

CAUSE
=====

This problem is caused by the Windows mathematics exception handling, not by
Microsoft Visual Basic.

WORKAROUND
==========

The only way to avoid this problem is to terminate all MS-DOS sessions
before running a Visual Basic application that traps divide by zero or
divide overflow errors.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Windows version
3.1. We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start an MS-DOS session in Windows. If the MS-DOS session appears full
 screen, press ALT+ENTER to make it a windowed session.

2. Minimize the MS-DOS window.

3. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

4. Add the following code to the Form_Click event procedure of Form1:

 Sub Form_Click ()
 On Error Resume Next

 Top:
 x% = DoEvents()
 y% = 1 \ 0 'This will cause a division by zero error
 GoTo top
 End Sub

5. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program.

6. Click in the Form1 form. You may receive a stack fault here. if not,
 continue with step 7.

7. Double-click the minimized MS-DOS session icon to restore it.

You should receive the message "VB caused a Stack Fault in module VB.EXE at
0001:0009."

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

BUG: GPF When Close Form That Contains a Single MCI Control
Article ID: Q95500

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When you have a single MCI control on a form and you set the hWndDisplay
property to the form's hWnd, you will receive a general protection (GP)
fault upon closing Form1 through the System Control of Form1. This problem
does not occur when you have a second control on Form1 in which you
set the HwndDisplay property to the hWnd of the other control.

WORKAROUND
==========

Here's an example that shows how to work around the problem. The code
listed below places a picture box on Form1, changes the BoarderStyle to '0'
(None), and then places an MCI control on Form1:

 Sub Form_Load()
 MMControl1.FileName = "c:\vb\samples\mci\mcitest.mmm"
 '** file in the ..\samples\mci directory of VB 2.0
 MMControl1.hWndDisplay = Picture1.hWnd
 '** note the picture's hWnd is used in place of the form's.
 MMControl1.Command = "Open"
 End Sub

 Sub Form_Unload()
 MMControl1.Command = "Close"
 End Sub

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start VB.EXE.

2. Choose Add File... from the File menu and add the MCI.VBX file.

3. Place an MCI control on Form1.

4. Place the following code in the Form_Load event procedure of Form1:

 Sub Form_Load()
 MMControl1.FileName = "c:\vb\samples\mci\mcitest.mmm"
 '** file in the ..\samples\mci directory of VB 2.0
 MMControl1.hWndDisplay = Form1.hWnd
 '** docerr DisplayHwnd on page 248 of Professional Features
 MMControl1.Command = "Open"
 End Sub

5. Place the following code in Form_Unload event of Form1:

 Sub Form_Unload()
 MMControl1.Command = "Close"
 End Sub

6. Press the F5 key to run the example, which may result in a GP fault
 when you try to close Form1's System Control box. The GP fault
 address is 0001:2817.

Note this example and any example of using the MCI control can be run
only in Windows version 3.1 or in Windows version 3.0 with Multimedia
Extensions. You need add the following line to the Multimedia Extensions
section ([mci extensions]) of your WIN.INI file:

 MMM=MMMovie

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Neg ScaleHeight Resizes Control When Form Saved as ASCII
Article ID: Q95513

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0

SYMPTOMS
========

If you set the ScaleHeight or ScaleWidth property of a container to a
negative value, the Height or Width property of all child controls are
saved incorrectly if the form is saved in ASCII format. When you re-load a
form or its project that was previously saved in ASCII format, it may look
like controls on the container have been removed. Actually, the child
controls still exist, but their Height and Width properties were saved
incorrectly, which results in significantly smaller controls.

WORKAROUND
==========

To work around the problem:

1. Resize the controls to their original size by using the mouse. You must
 use the mouse; you cannot resize the controls by changing the Height and
 Width properties in the Property window. Click the lower right-hand
 corner of the control and drag it down or to the right to make the
 control taller or wider, respectively.

2. Save the form in binary format. From the File menu, choose Save Project
 (ALT, F, V) and clear the Save as Text check box option.

STATUS
======

Microsoft has confirmed this to be a problem in both the Standard and
Professional Editions of Microsoft Visual Basic versions 2.0 and 3.0
for Windows. We are researching this problem and will post new information
here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the Properties window, set the following properties of Form1:

 ScaleMode: 0 (User)
 ScaleHeight: -100

 ScaleWidth: -150
 ScaleTop: -100 Sets upper left hand corner coordinates
 ScaleLeft: -150 of Form1 to (-150,-100)

3. Add a command button (Command1) to Form1.

4. From the Properties window, set the properties of the Command1 button as
 follows to place the command button in the middle of the form.

 Top: -150
 Left: -200

5. From the File menu, choose Save Project (ALT, F, V). Select the Save as
 Text option and save the form using the default name of Form1. Save the
 project (Project1) using the default name.

6. From the File menu, choose Open Project (ALT, F, O). In the Files box,
 select PROJECT1.MAK.

7. From the Window menu, choose Project (ALT, W, R). Using the mouse, click
 View Form in the Project window. Form1 displays, and you can see that
 the Command1 button is significantly smaller, making it difficult to
 pinpoint where it is.

8. Using the mouse, click Form1 to change the focus to Form1.

9. Press the Tab key to move the focus to the command button. Now Command1
 becomes visible and the Properties window shows its properties.

You can resize or move the command button by using the mouse. However, if
you attempt to set the Height property of Command1 to a positive value,
Visual Basic incorrectly changes the property to its minimum value. The
minimum value for the Height property is based on the FontName and FontSize
properties.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOptTips

BUG: Stack Fault When Move Makes Combo Box Width Too Small
Article ID: Q95830

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

A Stack Fault results if a Move method changes the Width property of a
combo box containing two to eight items to a small value.

The optional third parameter to the Move method changes the width property
of the control to which the method applies. Applying the method to the
combo
box with a third parameter of less then 240 when the scale mode is set to
twips, produces a Stack Fault Application Error halting the execution of
your application.

WORKAROUND
==========

Changing the Width property, by using the Move method or by setting the
property directly, to a value as small as 240 practically eliminates the
functionality of the control. At this width, the combo box is barely wide
enough to view the drop-down button. Hence no entries in the combo box are
visible to the user.

If want your application to move the control to a position where the user
can not view the control at that instant, use one of these techniques:

1. Set the Visible property of the combo box to False.
2. Set the Top and Left properties of the combo box to position the control
 outside the visible region of the Form.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed
above. We are researching this problem and will post new information here
in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The Application Error dialog box indicates that Visual Basic caused the
Stack Fault in USER.EXE. However the address differs depending on the
version of Visual Basic. In version 2.00, the address is 0007:0CA3. In
version 1.00, the address is 0001:707A.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a combo box (Combo1) to Form1.

3. Place the following code in the Form_Click event procedure:

 Sub Form_Click ()
 combo1.AddItem "Item 1"
 combo1.AddItem "Item 2" ' Add two items to combo1
 combo1.Move 0, 0, 240 ' New position = (0,0);Width = 240
 End Sub

4. From the Run menu, choose Start (ALT, R, S) to run the program.

5. Using the mouse, click Form1. At this point, the combo box moves to the
 upper-left corner of Form1 and its width changes to 240 twips (The
 default ScaleMode).

6. Using the mouse, click Form1 again. An Application Error dialog appears
 stating the following:

 VB caused a Stack Fault in module USER.EXE at 0007:0CA3

 Running Visual Basic version 1.00 displays a similar message with an
 address of 0001:707A.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

BUG: Unable to Edit LinkNotify Event If Control Has Long Name
Article ID: Q97027

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Visual Basic version 2.0 does not allow you to edit the LinkNotify event
procedure of a Label, Picture Box, or Text Box control if the control
has a 30-character Name property.

CAUSE
=====

The LinkNotify event, an event new in Visual Basic version 2.0, became
the longest (10 characters) event procedure name for Label, Picture Box,
and Text Box controls. In version 1.0, the longest event procedure for
these controls was nine characters long.

The maximum length of the Name property (CtlName property in Visual
Basic version 1.0) is directly related to the length of the control's
longest event procedure, so the maximum length of the Name property for
Label, Picture Box, and Text Box controls in Visual Basic version 2.0 is
one character less than it is in Visual Basic version 1.0.

Therefore, if you load a Visual Basic version 1.0 project into Visual
Basic version 2.0 and a Label, Picture Box, or Text Box control has a
30-character CtlName property, you won't be able to edit the LinkNotify
event in the Visual Basic environment until you reduce the length of the
Name property.

WORKAROUND
==========

Reduce the length of the Name property by one or more characters.

STATUS
======

Microsoft has confirmed this to be a bug in both the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The maximum length of event procedures names is limited to 40 characters
including the control name, the underscore, and the event name. The Name

property therefore has a maximum length that varies depending on the
events supported by the control.

Steps to Reproduce Problem

1. Start Visual Basic version 1.0, or from the File menu, choose New
 Project (ALT, F, N) if Visual Basic is already running. Form1 is created
 by default.

2. Add a Text box (Text1) to Form1.

3. Set the CtlName property of Text1 to the following 30-character name:

 Text56789012345678901234567890

4. From the File menu, choose Save Project (ALT, F, V). Save the form and
 project with their default names, Form1 and Project1.

5. From the File menu, choose Exit to close Visual Basic version 1.0.

6. Start Visual Basic version 2.0.

7. From the File menu, choose Open Project (ALT, F, O) and select Project1.
 Two dialog boxes will appear stating that Form1 and Project1 are saved
 in an older format and will be saved in new format when you save the
 project. Choose the OK button on both dialog boxes.

8. From the View menu, choose Code (ALT, V, C) to open a code window for
 Form1.

9. From the Object List, select Text56789012345678901234567890.

10. From the Procedures List, try to select LinkNotify.

At this point, the Visual Basic environment will not allow you to select
LinkNotify. It returns you to the previously displayed event procedure.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtDes

BUG: ODBC Getchunk Method on Non-Memo Field Causes GPF/UAE
Article ID: Q97082

The information in this article applies to:

 - The Professional Edition of Microsoft Visual Basic for Windows,
 version 2.0

SYMPTOMS
========

Attempting to use the GetChunk method on a Text field or any field that
has a data type other than Memo results in an unrecoverable application
error (UAE) or a general protection (GP) fault.

CAUSE
=====

The GetChunk method returns a string that represents all or a portion of
 a Memo field and only a Memo field in a specified dynaset.

WORKAROUND
==========

To avoid the problem, use code to ensure that the field is a Memo field
before you call the GetChunk method. For example, replace the following
line shown in step 2 of the More Information section of this article:

 string1$ = ds(ds.Fields(NonMemoFieldNum%).Name).GetChunk(0, 50)

with this code:

 If ds.Fields(NonMemoFieldNum%).type = 12 Then
 string1$ = ds(ds.Fields(NonMemoFieldNum%).Name).GetChunk(0, 50)
 End If

STATUS
======

Microsoft has confirmed this to be a bug in the Professional Edition of
Microsoft Visual Basic version 2.0 for Windows. We are researching
this bug and will post new information here in the Microsoft Knowledge
base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start the Professional Edition of VB.EXE with ODBC support already
 installed.

2. Add the following code to the Form_Click event procedure of Form1:

 Form_Click ()
 Dim db As database
 Dim ds As dynaset

 ServerName$ = "aServerName" ' Provide the name of a real server.
 DBName$ = "aDatabase" ' Name of a database on the server.
 TableName$ = "aTable" ' Name of a table in the database.
 UserName$ = "aUser" ' login id
 PW$ = "" ' password
 NonMemoFieldNum% = 1 ' This could be any field in the table that
 ' is not of type "Memo".

 'Connect to the SQL database
 Connect$ = "UID=" + UserName$ + ";PWD=" + PW$ + ";DBQ=" + DBName$

 Set db = OpenDatabase(ServerName$, False, False, Connect$)

 Set ds = db.CreateDynaset(TableName$)
 ' GP fault occurs on the following line:
 string1$ = ds(ds.Fields(NonMemoFieldNum%).Name).GetChunk(0, 50)
 End Sub

3. Press the F5 key or ALT+R+S, and click Form1.

This results in a GP fault usually at address 0009:08EC in VBODBCA.DLL.

Additional reference words: 2.00 GPF
KBCategory:
KBSubcategory: APrgDataODBC

BUG: OLE DataText Prop Doesn't Free Memory When Object Closed
Article ID: Q97136

The information in this article applies to:

- The Professional Edition of Microsoft Visual Basic for Windows,
 version 2.0

SYMPTOMS
========

An OLE destination (OLE client) control (OLECLIEN.VBX) can send data to
the OLE source (OLE server) application by setting the DataText
property, however the memory allocated for this data is not released
until OLECLIEN.VBX is unloaded. The memory is freed when you exit from
the application.

STATUS
======

Microsoft has confirmed this to be a bug in the Professional Edition of
Microsoft Visual Basic version 2.0 for Windows. We are researching this
bug and will post new information here in the Microsoft Knowledge Base
as it becomes available.

MORE INFORMATION
================

Each time an OLE destination object is created and the DataText property
is set, a new private segment is allocated by OLECLIEN.VBX. When working in
the VB.EXE interpreter environment, this segment is deallocated when you
exit from VB.EXE or when you start a new project (ALT+F+N). A Visual
Basic EXE program deallocates this segment when it is unloaded.

The following code uses Microsoft Graph as the OLE source application, but
the memory leak also occurs if OLECLIEN.VBX is used with other OLE source
programs.

To verify that the memory leak occurs, run the code listed below. Then load
a tool like Heap Walker that ships with the Microsoft Windows Software
Development Kit (SDK), and watch the number of private segments allocated
to OLECLIENT change even after the code deletes the OLE objects.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 OLECLIEN.VBX custom control file. The OLE destination (client) tool
 appears in the Toolbox.

3. Place an OLEClient control on Form1.

4. Enter the following code:

 Sub Form_Click ()
 Const OLE_CREATE_NEW = 0
 Const OLE_UPDATE = 6
 Const OLE_ACTIVATE = 7
 Const OLE_CLOSE = 9
 Const OLE_DELETE = 10

 OleClient1.Class = "MSGraph"
 OleClient1.Protocol = "StdFileEditing"
 OleClient1.ServerType = 1
 OleClient1.Action = OLE_CREATE_NEW
 OleClient1.Action = OLE_ACTIVATE
 OleClient1.Format = "CF_TEXT" ' MS Graph accepted format

 Title$ = "This is a title" & Chr$(10)

 ' The data for a graph
 Dim Tb As String ' tab character
 Tb = Chr$(9)
 GraphData$ = "A" & Tb & "3" & Tb & "4" & Tb & "5" & Chr$(10)
 GraphData2$ = "B" & Tb & "9" & Tb & "2" & Tb & "4" & Chr$(10)

 ' Cause a private segment in OLECLIEN to be allocated.
 OleClient1.DataText = Title$ & GraphData$ & GraphData2$

 OleClient1.Action = OLE_UPDATE
 OleClient1.Action = OLE_CLOSE
 OleClient1.Action = OLE_DELETE
 End Sub

6. From the Run menu, choose Start.

7. Run a utility such as Heap Walker to list the number of segments
 allocated to OLEClient.

8. Click the form to creates and deletes an OLE object from Microsoft
 Graph.

At this point, you'll see that the number of private segments allocated to
OLEClient increases by 1.

Additional reference words: 2.00
KBCategory:
KBSubcategory: IAPOLE

BUG: Changing Default Printer Doesn't Effect Printer.Fonts
Article ID: Q99705

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you change the default printer at run time, the Printer.Fonts
enumeration is not updated. The Printer.Fonts enumeration is updated only
after you print to the new default printer and use the EndDoc method.

WORKAROUND
==========

To work around to this bug, choose one of these techniques:

1. Use Printer.Print "" followed by Printer.EndDoc
2. Call a DLL function which in turn calls the Windows API function
 EnumFontFamilies or EnumFonts. For a DLL code sample that shows how
 to enumerate fonts from a DLL, query on the following words in the
 Microsoft Knowledge Base:

 EnumFontFamilies AND EnumFonts

A disadvantage in using workaround 1 is that it will always cause a blank
page to be ejected. A disadvantage of workaround 2 is that you will need
to write a DLL using other Windows programming tools such as Microsoft
Visual C++.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

To reproduce this bug, you will need to set up two printer devices for two
types of printers. For example, you can set up LPT1 to use an Epson printer
driver and LPT2 to use an HP LaserJet printer driver. The default printer
will need to be set to one of these devices.

The steps below demonstrate using the Common Dialog custom control to
change the default printer. This control is provided with the Microsoft
Visual Basic Professional Toolkit version 1.0, the Microsoft Visual Basic
Professional Edition version 2.0, and both the professional and standard
editions of Microsoft Visual Basic version 3.0.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running.

2. Add a common dialog (CMDialog1) control to Form1

3. Add the following code to Form_Click for Form1

 Sub Form_Click ()

 Dim i As Integer
 CMDialog1.PrinterDefault = True

 'Show the Printer dialog
 CMDialog1.Action = 5

 Debug.Print Printer.FontCount

 End Sub

4. From the Run menu, choose Start (ALT, R, S) or press F5 to run the
 program.

5. Click Form1. The Printer Dialog is displayed.

6. Choose the OK button to close the dialog. The number of fonts
 available will be displayed in the Debug Window.

7. Click Form1 again. Select "Setup..." from the Printer dialog.
 The Printer Setup dialog is displayed.

8. Set the default printer to a different printer and choose the OK button
 to close the Setup dialog.

9. Choose the OK button on the Printer Dialog to close it.

The same number of fonts found in Step 6 will be displayed in the Debug
Window. This demonstrates that Visual Basic did not update the Fonts list.
If you step through the fonts in the Printer.Fonts enumeration, you will
see the same set of fonts that were available in Step 6.

To see a different number of fonts displayed for the new default printer,
from the Run menu, choose End (ALT, R, E) to end the program. Then press F5
to run it again, click Form1, and choose OK on the Printer Dialog.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

BUG: Wrong Menu Click Event After Hiding Menu
Article ID: Q99872

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

The wrong menu Click event is executed after hiding and showing menu
items in Visual Basic.

CAUSE
=====

This problem occurs when a menu is made invisible before another
menu item is made visible.

WORKAROUND
==========

Change the order followed to make menus visible and invisible. For example
replace the following code (listed in step 4 in the More Information
section below):

 Sub Command1_Click ()
 MnuFile.Visible = 0
 MnuEdit.Visible = -1
 End Sub

 Sub Command2_Click ()
 MnuEdit.Visible = 0
 MnuFile.Visible = -1
 End Sub

with this code:

 Sub Command1_Click ()
 MnuEdit.Visible = -1
 MnuFile.Visible = 0
 End Sub

 Sub Command2_Click ()
 MnuFile.Visible = -1
 MnuEdit.Visible = 0
 End Sub

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above. We

are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the menu design dialog box of Visual Basic (VB.EXE), create
 a set of menus using the following table as a guide:

 Caption CtlName (or Name) Level Visible
 --
 &File MnuFile 1 False
 &New MnuFileNew 2 True
 &Edit MnuEdit 1 False
 &Copy MnuEditCopy 2 True

3. Add two command buttons (Command1 and Command2) to the form.

4. Add the following code to your program in the appropriate places:

 Sub Command1_Click ()
 MnuFile.Visible = 0
 MnuEdit.Visible = -1
 End Sub

 Sub Command2_Click ()
 MnuEdit.Visible = 0
 MnuFile.Visible = -1
 End Sub

 Sub MnuEdit_Click ()
 Debug.Print "Edit Click"
 End Sub

 Sub MnuEditCopy_Click ()
 Debug.Print "Copy Click"
 End Sub

 Sub MnuFile_Click ()
 Debug.Print "File Click"
 End Sub

 Sub MnuFileNew_Click ()
 Debug.Print "New Click"
 End Sub

5. From the Run menu, choose start (ALT, R, S), or press F5.

6. From the Window menu, choose debug (ALT, W, D), or press CTRL+B.

7. Click Command1. You will see the Edit menu on Form1.

8. Click the Edit menu on Form1. Then click the Copy menu. You will
 see Edit Click and Copy Click displayed in the Debug Window.

9. Click Command2. You will now see the File menu in place of the
 Edit menu on Form1.

10. Click the File menu on Form1. Then click the New menu. You will
 see File Click and New Click in the Debug Window.

11. Repeat steps 7 and 8. Instead of seeing Edit Click and Copy Click
 in the Debug Window, you will now see New Click and Copy Click in
 the Debug Window.

The click event for the previously visible menu is being executed
instead of the click event for the currently visible menu.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: MaskedEdit MaxLength Reset to 64 When Mask=""
Article ID: Q99873

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0

SYMPTOMS
========

When the Mask property of the MaskedEdit custom control is set to two
quotation marks (""), the MaxLength property is incorrectly reset to
64. However, the control continues to correctly limit input based on the
original MaxLength setting, and you can change the value of MaxLength to
establish a different maximum text limit for the control.

WORKAROUND
==========

To work around the problem, store the MaxLength property before setting
the Mask property of the MasedEdit custom control. Then reset the
MaxLength setting after setting the Mask property.

For example, replace the code shown in the Command2_Click event procedure
in step 3 of the More Information section below with this code:

 Sub Command2_Click ()
 Dim ml As Integer
 'Store the current MaxLength property value
 ml = maskededit1.MaxLength
 maskededit1.Mask = ""
 maskededit1.Text = ""
 'Restore the MaxLength property value since
 'it has incorrectly been reset to 64
 maskededit1.MaxLength = ml
 End Sub

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

If you set the mask property to "" at run time the MaxLength property is
incorrectly set to 64, but the amount of text you can enter is still
limited by the original MaxLength setting.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add three Command buttons (Command1, Command2, and Command3) to Form1.

3. Add the following code to your program in the appropriate places:

 Sub Command1_Click ()
 Debug.Print "MaskedEdit1.maxlength", maskededit1.MaxLength
 Debug.Print "Text length", Len(maskededit1.Text)
 End Sub

 Sub Command2_Click ()
 maskededit1.Mask = ""
 maskededit1.Text = ""
 End Sub

 Sub Command3_Click ()
 Debug.Print "MaxLength set to 10"
 maskededit1.MaxLength = 10
 End Sub

4. From the Run menu, choose start (ALT, R, S), or press F5.

5. From the Window menu, choose debug (ALT, W, D) or press CTRL+B. The
 Debug Window will be displayed.

6. Click Command1. You will see the current Maxlength value of 64 and the
 current text length of 0 displayed in the Debug Window.

7. Click Command3 to set MaxLength to 10. This is verified in the Debug
 Window. Type text into the MaskedEdit1 control. Notice that you are
 allowed to enter a maximum of 10 characters.

8. Click Command1. The Debug Window shows that Maxlength is set to 10. The
 current text length will reflect the number of characters you typed into
 the MaskedEdit1 Control.

9. Click Command2. This sets the mask property to "", and clears the text
 in the MaskedEdit1 control.

10. Click Command1 to see that the Maxlength property is now incorrectly
 set to 64. Type text into the MaskedEdit1 control, and note that you
 allowed to enter a maximum of 10 characters.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Overflow Error When CurrentX Or CurrentY Greater Than 32K
Article ID: Q100190

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows,
 versions 2.0 and 3.0

SYMPTOMS
========

An Overflow error results if you attempt to set CurrentX or CurrentY
to a value greater than 32,767 while the current ScaleMode is set to
Twips. When using another ScaleMode such as pixels, the same problem
occurs if the conversion of the CurrentX or CurrentY value to twips
is greater than 32,767.

However, when you use the Print method (or other graphics method) you
can correctly cause the value of CurrentX or CurrentY to exceed 32,767
when the ScaleMode is set to twips.

CAUSE
=====

When CurrentX or CurrentY is set explicitly, Visual Basic incorrectly
converts the value using the current scale mode to twips. If the result
of the conversion to twips is greater the 32,767, an Overflow error
occurs. For example, if the ScaleMode is set to Pixels, CurrentX and
CurrentY cannot exceed approximately 2731 pixels if the twips per pixel
ratio is 12 because 12 times 2731 is 32,772 which is greater than 32767.

When setting CurrentX or CurrentY, Visual Basic should convert the
value using the current ScaleMode to pixels rather than twips before
comparing the result to 32,767. As a result of this bug, CurrentX and
CurrentY are each restricted to a limit 12-14 times smaller (depending on
TwipsPerPixelX or TwipsPerPixelY) than they should be.

WORKAROUND
==========

To work around the problem, call the Windows API functions:

 - Call TextOut to control the position of text in a picture box or a form.
 - Call MoveTo and LineTo to control the position of a line.
 - Call other appropriate Windows API functions to position the output for
 other graphics methods such as the circle method.

An example is shown in the More Information section below.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed
above. We are researching this bug and will post new information

here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Because the ratio of twips per pixel varies from one device (or screen
resolution) to another, you will need to calculate the limit for the device
you are using. To calculate the exact pixel limit of CurrentX, divide 32768
by Screen.TwipsPerPixelX. To calculate the limit of CurrentY, divide 23768
by Screen.TwipsPerPixelY. To find the limit of CurrentX and CurrentY for
your printer, use the Printer object in place of the Screen object in
the calculations above.

Example for Using API Calls as Workaround

The following example shows how to use the three API calls TextOut, MoveTo,
and LineTo to work around the problem. Note that when you call Windows API
functions to print or draw, all X and Y coordinates are measured in pixels
regardless of the current ScaleMode setting.

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following declarations to the General section of Form1

 ' Enter the following Declare statement on one, single line:
 Declare Function TextOut Lib "GDI" (ByVal hDC As Integer,
 ByVal X As Integer, ByVal Y As Integer, ByVal lpString As String,
 ByVal nCount As Integer) As Integer

 ' Enter the following Declare statement on one, single line:
 Declare Function MoveTo Lib "GDI" (ByVal hDC As Integer,
 ByVal X As Integer, ByVal Y As Integer) As Long

 ' Enter the following Declare statement on one, single line:
 Declare Function LineTo Lib "GDI" (ByVal hDC As Integer,
 ByVal X As Integer, ByVal Y As Integer) As Integer

3. Add the following code to the Form_Click event

 Sub Form_Click ()
 X1% = 100
 Y1% = 100
 X2 %= 200
 Y2 %= 200

 retvaL& = TextOut(FORM1.hDC, 100, 100, "ONE LINE", 8)

 retvaL& = MoveTo(FORM1.hDC, X1%, Y1%)

 retvaL& = LineTo(FORM1.hDC, X2%, Y2%)

 End Sub

4. From the Run menu, choose start (ALT, R, S), or press F5 to run the
 program.

5. Click the form, and you will see the words "ONE LINE" on the form and a
 diagonal line from the upper left to the lower right. The line will
start
 at the X1 and Y1 coordinates given in the MoveTo API call and end at the
 X2 and Y2 coordinates given in the LineTo API call. The words "ONE
LINE"
 should appear 100 pixels from the top and 100 pixels from the left. Note
 that TextOut may be used without MoveTo because TextOut gives its own
 coordinates. However using LineTo without using MoveTo results in a line
 stating from the current output position.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: VB Pro Setup Fails to Correctly Associate .HLP Files
Article ID: Q100191

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 3.0

SYMPTOMS
========

If you click a file with the .HLP extension from File Manager, you may
receive this message:

 Cannot Run Program. There is no application associated with this
 file. Choose Associate form the File menu to create an association.

CAUSE
=====

The Setup program in the Professional Edition of Visual Basic version 3.0
for Windows adds the following problem line to the extensions section of
the WIN.INI file if no association for .HLP file currently exists:

 HLP=D:\WINDOWS\SETUPWIZ.INI ^.HLP

If there is already an entry for the HLP file extension in the WIN.INI
file no change is made by the setup program.

WORKAROUND
==========

Locate the following line in the WIN.INI file in the \WINDOWS
directory:

 HLP=D:\WINDOWS\SETUPWIZ.INI ^.HLP

Replace it with this line:

 HLP=WINHELP.EXE ^.HLP

STATUS
======

Microsoft has confirmed this to be a bug in the products listed
above. We are researching this bug and will post new information
here in the Microsoft Knowledge Base as it becomes available.

Additional reference words: 3.00 Help
KBCategory:
KBSubcategory: Setins

BUG: Out of Memory Error on Show Next from Debug Menu
Article ID: Q100192

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

If you choose Show Next Statement from the Debug menu when you are not
stepping through code, Visual Basic gives you an "Out of Memory" error
message.

CAUSE
=====

Visual Basic incorrectly enables the Show Next Statement choice in the
Debug menu when you are not in single-step mode. This menu choice should
be enabled only when you are stepping through code.

WORKAROUND
==========

Avoid using the Show Next Statement option when you are not single
stepping through code. This option should not be available when you are
not single stepping through code.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the Run menu, choose Start (ALT, R, S), or press F5.

3. From the Run menu, choose Break (CTRL BREAK).

4. From the Debug menu, choose Show Next Statement (ALT D W).

Visual Basic will display an "Out of Memory" error message.

Additional reference words: 3.00
KBCategory:

KBSubcategory: PrgCtrlsStd

BUG: 3D Button Loses 256-Color Palette When Load 2nd Bitmap
Article ID: Q100193

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

If a second 256-color bitmap is loaded in another control after loading
a 256-color bitmap in a 3D command button, the palette on the 3D command
button is not restored.

CAUSE
=====

The 3D command button control that is part of THREED.VBX does not restore
its own palette. Instead, it uses the current system palette when a new
256-color bitmap is load into another control in the project. In effect
this causes the 3D command button to use the palette of the new bitmap.

WORKAROUND
==========

To work around this problem, force the current system palette to be the
palette used by the 3D command button and refresh the 3D command button.
For example, make the following changes to the Picture2_Click event
procedure listed in step 4 of the More Information section:

 Sub Picture2_Click ()
 Picture2.Picture = LoadPicture("c:\vb3\rainbow.dib")

 ' Add the following two lines to force the picture that has
 ' the same palette as Command3d1 to the top of the ZOrder:
 Picture1.ZOrder 0
 Command3d1.Refresh

 End Sub

Using the ZOrder method with zero as an argument moves Picture1 to the
top of the ZOrder. This makes the palette for Picture1 the current system
palette. Because Picture1 and Command3d1 have the same bitmap loaded,
you can clear up the problem by forcing the palette of Picture1 to be the
system palette and refreshing the Command3d1 control.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (ALT F, A) and add THREED.VBX to
 your project.

3. Add two picture boxes (Picture1 and Picture2) and one 3D command
 button (Command3d1) to the project.

4. Add the following code to your program in the appropriate places:

 Sub Command3D1_Click ()
 Command3d1.Picture = LoadPicture("c:\windows\256color.bmp")
 End Sub

 Sub Picture1_Click ()
 Picture1.Picture = LoadPicture("c:\windows\256color.bmp")
 End Sub

 Sub Picture2_Click ()
 Picture2.Picture = LoadPicture("c:\vb3\rainbow.dib")
 End Sub

5. From the Run menu, choose start (ALT, R, S), or press F5.

6. Click Picture1.

7. Click Command3d1. Picture1 and Command3d1 should now contain
 the same bitmap image.

8. Click Picture2. Notice that the bitmap in Picture1 has maintained
 its palette and the bitmap in Command3d1 has lost its original colors.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

BUG: Grid Control Repaints When Another Form Is Made Active
Article ID: Q100195

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

If you activate another form while a form containing a Grid control is
showing, the Grid repaints itself.

CAUSE
=====

When the grid loses focus, it automatically repaints the entire grid.
The grid should only paint the section of the grid that was covered or
changed -- not the entire grid -- when it loses focus.

WORKAROUND
==========

There is no known workaround at this time.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed
above. We are researching this bug and will post new information
here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (ALT, F, A) and add GRID.VBX to
 the project and add a grid (Grid1) control to Form1.

3. From the File menu, choose New Form (ALT F, F). Form2 is created.

4. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()

 Grid1.Rows = 20
 Grid1.Cols = 8

 'Initialize the grid with random data

 For I = 0 To 19
 Grid1.Row = I
 For J = 0 To 7
 Grid1.Col = J
 Grid1.Text = Format$(I) + Format$(J)
 Next J
 Next I

 Form2.Show

 End Sub

5. From the Run menu, choose start (ALT, R, S) or press F5.

6. Position Form2 to cover a portion of the grid, click back and forth
 between the two forms, and notice that the grid is repainted each time
 Form2 is activated.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Unload in 3D GroupPush Button Causes GP Fault
Article ID: Q100327

--
The information in this article applies to:

- Professional Edition of the Microsoft Visual Basic Programming
 System for Windows, versions 2.0 and 3.0
- Professional Toolkit for Microsoft Visual Basic Programming
 System for Windows, version 1.0
--

SYMPTOMS
========

A general protection (GP) fault occurs when you place an Unload in the
GroupPush3D1_Click event procedure of the THREED.VBX custom control. A
GP fault also results, but at a different address, when you use the
THREED.VBX custom control shipped with the Professional Edition of
Visual Basic version 3.0 for Windows in a Visual Basic version 2.0 or
1.0 for Windows application.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above. We
are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 THREED.VBX custom control file. The six 3D controls appear in the
 Toolbox. Add Form2 to the project by choosing New Form from the File
 menu.

3. Select the GroupPush3D button tool (with the letters R and B on it)
 from the Toolbox, and draw it on Form1.

4. Next double-click or press F7 to get to the GroupPush3D1_Click event
 procedure. Place the following code in this event procedure:

 Sub GroupPush3D1_Click (Value As Integer)
 Unload Form1 '** result in 3.0, GPF 001D:09C0
 Form2.Show '** result in 2.0, GPF 003B:09AB
 '** result in 1.0, GPF 0057:0040

 '** Or
 '** Form2.Show '** result in 3.0, GPF 001D:09BD

 '** Unload Form1 '** result in 2.0, GPF 003B:09A8
 '** result in 1.0, GPF 005C:0629
 End Sub

5. To run the example, click the Play button, press the F5 key, or choose
 Start from the Run menu. Then click the GroupPush3D button. If you get
 an error, choose the close button, this will result in a GP fault at a
 specific address.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Referencing Data Object Gives Error: Object not an Array
Article ID: Q100367

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

An "Object not an Array" error results when you reference a field of a
dynaset, table, or snapshot object in a form or module that does not
contain a Set statement for that dynaset, table, or snapshot. The error
occurs when Visual Basic attempts to compile your program.

CAUSE
=====

This error is caused by a parsing problem in the Visual Basic programming
environment. The Visual Basic parser does not recognize the object type
because there is no Set statement in the same form or module.

WORKAROUND
==========

Add a dummy Sub procedure to each form or module, and use a Set
statement that refers to the global database / table / dynaset in a
meaningful way (for example, Set myds = db.CreateDynaset(...) not
set myDs = myDs). Give the Sub procedure a name like 'AAAAA_Fix_Parser' so
it will be the first code parsed in that form or module. Make sure the
dynaset set in the dummy Sub procedure is the exact same dynaset that is
causing the problem.

For example, use the following dummy procedure if MyDs is the dynaset
causing the problem:

 Sub AAAAAA_Fix_Parser
 Set MyDs = MyDB.CreateDynaset("...")
 End Sub

You never need to execute the code in the Sub procedure or even call
the Sub procedure. Once you add the Sub, the parser will see the Set
statement(s) before it tries to parse any other code, so it won't have
trouble with the global objects. After adding the Sub procedure, you won't
have to tweak the code every time you reload the project; you can do it
once and save it.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ATL, F, M). Module1 is created.

3. Add a text box (Text1) to Form1.

4. Add the following code to the General section of Module1

 Global MyDs As Dynaset

5. Add the following code to Module1

 Sub main ()
 Dim MyDB As Database
 Dim SQLStmt As String
 Const DB_READONLY = 4 ' Set constant.
 Set MyDB = OpenDatabase("BIBLIO.MDB") ' Open database.

 ' Set text for the SQL statement.
 SQLStmt = "SELECT * FROM Publishers WHERE State = 'NY'"

 ' Create the new Dynaset.
 Set MyDs = MyDB.CreateDynaset(SQLStmt, DB_READONLY)

 form1.Show
 End Sub

6. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()
 Text1.Text = MyDs("state")
 End Sub

7. From the Options menu, choose Project (ALT, O, P). The Projects Options
 dialog is displayed.

8. From the Project Options dialog, set the Start Up Form to Sub Main and
 choose OK.

9. From the Run menu, choose start (ALT, R, S) or press F5.

You will get the error "Object not an Array" on the following line:

 Text1.text = MyDs("state").

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM PrgCtrlsStd

BUG: GPF in Some Video Drivers When Load RLE Bitmaps > 20K
Article ID: Q100610

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, versions 2.0 and 3.0

SYMPTOMS
========

A general protection (GP) fault occurs in some video drivers when an
RLE bitmap file larger than 20K is loaded into a picture box control
or an image control.

CAUSE
=====

This problem is caused by Microsoft Windows, not Visual Basic for
Windows.

WORKAROUND
==========

No workaround is available at this time.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

This problem has been reported with the 8514.DRV driver at address
0007:175D and with the V7VGA.DRV driver at address 0008:1E20. This
problem may also occur with some third-party drivers.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun APrgGrap

BUG: Font3D Property Set Incorrectly in THREED.VBX Controls
Article ID: Q100612

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 3.0

SYMPTOMS
========

If a Visual Basic version 2.0 for Windows form file contains THREED.VBX
controls with the Font3D property set to a value greater than zero,
Visual Basic version 3.0 may incorrectly force other THREED.VBX controls
to have the same Font3D property value.

CAUSE
=====

The THREED.VBX custom control for Visual Basic 2.0 does not write a Font3D
value to the form file if Font3D = 0. When Visual Basic version 3.0 loads
he form, after the Visual Basic environment reads a Font3D value for one
control, it gives the same Font3D property value to all the rest of the
THREED.VBX controls. In other words, if the last THREED.VBX control loaded
is the only one that has a Font3D entry in the form file, none of the
other controls are affected.

WORKAROUND
==========

To work around the problem, edit the Visual Basic version 2.0 form files
that were saved in ASCII text format to add a Font3D = 0 line to any
THREED.VBX controls that do not already have a Font3D entry.

Visual Basic version 2.0 form files that were saved in the binary format
can be changed after they are loaded into Visual Basic version 3.0.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The following is an example of a Visual Basic version 2.0 form file
that was saved in ASCII format with two 3D command buttons. One button
has a Font3D value, and one does not. Note that controls are saved in
the form file in the opposite order in which they were created on
the form.

VERSION 2.00

Begin Form Form1
 Caption = "Form1"
 Height = 6636
 Left = 828
 LinkTopic = "Form1"
 ScaleHeight = 6216
 ScaleWidth = 6420
 Top = 1152
 Width = 6516
 Begin SSCommand Command3D2
 Caption = "Command3D2"
 Font3D = 1 'Raised w/light shading
 Height = 1092
 Left = 720
 TabIndex = 1
 Top = 2640
 Width = 3012
 End
 Begin SSCommand Command3D1
 Caption = "Command3D1"
 Height = 1212
 Left = 720
 TabIndex = 0
 Top = 840
 Width = 3012
 End
End

Notice that there is not a Font3D setting for Command3D1. If this file
were loaded into Visual Basic version 3.0, Command3D1 would have a Font3D
value of 1 instead of 0.

To work around the problem, insert the following line between the Caption
and Height lines for Command3D1 in the ASCII form file shown above:

 Font3D = 0

Now, Visual Basic version 3.0 will read the file correctly.

The Visual Basic 3.0 THREED.VBX writes the Font3D property to the form file
for every THREED.VBX control regardless of its value.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Data Access Setup Can Give Incorrect Error Message
Article ID: Q100613

The information in this article applies to:

- Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

When adding an SQL server with the Microsoft ODBC Setup program, you
may receive the following incorrect message when the server name is
actually correct:

 The server <your server name> was not found on the network.
 Are you sure you want to use it?

CAUSE
=====

The cause of this problem has not yet been determined. We are
researching it.

WORKAROUND
==========

Although Visual Basic Data Access Setup generates this incorrect
message, Visual Basic still adds the correct information to the
ODBC.INI file and the ODBC driver is set up correctly.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run the Data Access Setup program.

2. Select SQL Server in the Install Drivers dialog box. Then click the
 OK button. If the ODBC drivers were installed previously, you will
 get a message box that asks if you want to replace your driver;
 choose Yes.

3. Select the Add option in the Data Sources dialog box.

4. Select SQL Server in the Add Data Source dialog box, and click the
 OK button.

4. In the ODBC SQL Server Setup dialog box, type the name of the data
 source in the Data Source Name field and a valid SQL server name
 in the Server field.

5. Click the OK button. At this point, Visual Basic may generate a
 message box with the following text

 The server <your server name> was not found on the network.
 Are you sure you want to use it?

6. Click the Yes button, and the setup will continue as usual.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM

BUG: Ref to NPV / IRR / MIRR Gives Undefined Functions Error
Article ID: Q101245

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 3.0

SYMPTOMS
========

If you try to run an application that contains a reference to the NPV,
IRR, or MIRR financial function, Visual Basic for Windows generates
this error:

 Reference to undefined Function or Array

CAUSE
=====

Visual Basic does not recognized these as Visual Basic functions
because they were incorrectly referenced in the financial DLL file
(MSAFINX.DLL) that ships with Visual Basic version 3.0.

WORKAROUND
==========

To workaround the problem, declare the NPVC, IRRC, and MIRRC functions
located in MSAFINX.DLL and alias them as NPV, IRR, and MIRR respectively.
The code provided in the More Information section below demonstrates how
to declare and call these functions.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The following example shows how to use the NPV function. It is based
on the example shown in the Visual Basic Help menu, but it also
includes the declarations for the NPV, IRR, and MIRR financial
functions. Without the declarations for these functions, the example
will fail, giving a "Reference to undefined Function or Array" error.

Steps to Work Around the Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add the following code to the General section of Form1:

 ' Enter each Declare statement on one, single line:
 Declare Function MIRRC Lib "MSAFINx.DLL" (values#, ByVal cvalues%,
 ByVal finance#, ByVal reinvest#) As Double
 Declare Function NPVC Lib "MSAFINx.DLL" (ByVal Rate1#, values#,
 ByVal cvalues%) As Double
 Declare Function IRRC Lib "MSAFINx.DLL" (values#, ByVal cvalues%,
 ByVal Guess#) As Double

 Function IRR (values() As Double, ByVal Guess As Double) As Double

 On Error GoTo IrrErr
 iArgMin% = LBound(values)
 cArg% = UBound(values) - iArgMin%
 IRR = IRRC#(values(iArgMin%), cArg%, Guess)
 Exit Function
IrrErr:
 MsgBox (Str$(Err))
 Exit Function

 End Function

 ' Enter the following Function statement on one, single line:
 Function MIRR (values() As Double, ByVal finance As Double,
 ByVal reinvest As Double) As Double

 On Error GoTo MirrErr
 iArgMin% = LBound(values)
 cArg% = UBound(values) - iArgMin%
 MIRR = MIRRC#(values(iArgMin%), cArg%, finance, reinvest)
 Exit Function
MirrErr:
 MsgBox (Str$(Err))
 Exit Function

 End Function

 Function NPV (ByVal Rate1 As Double, values() As Double) As Double

 On Error GoTo NpvErr
 iArgMin% = LBound(values)
 cArg% = UBound(values) - iArgMin%
 NPV = NPVC#(Rate1, values(iArgMin%), cArg%)
 Exit Function
NpvErr:
 MsgBox (Str$(Err))
 Exit Function

 End Function

3. Add the following code to your program in the Form_Click event:

 Sub Form_Click ()
 Static Values(5) As Double ' Set up array.
 Fmt = "###,##0.00" ' Define money format.
 Guess = .1 ' Guess starts at 10%.

 RetRate = .0625 ' Set fixed internal rate.
 Values(0) = -70000 ' Business start-up costs.
 ' Positive cash flows reflecting income for four successive years.
 Values(1) = 22000: Values(2) = 25000
 Values(3) = 28000: Values(4) = 31000
 NetPVal = NPV(RetRate, Values()) ' Calculate net present value.
 Msg = "The net present value of these cash flows is "
 Msg = Msg & Format(NetPVal, Fmt) & "."
 MsgBox Msg ' Display net present value.
 End Sub

4. From the Run menu, choose start (ALT, R, S) or press the F5 key to
 run the program. You will see a message box that contains the correct
 Net Present Value result of 19,312.57.

Additional reference words: 3.00 errmsg
KBCategory:
KBSubcategory: PrgOther

BUG: Incorrect Result When Multiple Aggregate Functions in SQL
Article ID: Q101256

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When an SQL query statement contains multiple aggregate functions, the
result incorrectly shows the same value for all the functions. The result
of the first aggregate function is duplicated in the result column of all
of the other functions.

CAUSE
=====

Aggregate functions typically do not contain explicit column names for
expressions in the SQL query. In SQL queries containing multiple
aggregate function calls, the Access database layer does not uniquely
identify the return columns for any functions past the first. Therefore,
it duplicates the result column of the first function in the result
columns of the succeeding functions

This problem did not occur in Visual Basic version 2.0. In Visual Basic
version 3.0, the Microsoft Access engine was integrated into the data
access functionality. The Microsoft Access engine tracks the column by
name, whereas Visual Basic version 2.0 tracks the column by the column
offset.

WORKAROUND
==========

Use aliases for the aggregate functions to solve the problem. Replace
the SQL statement shown below in the "Steps to Reproduce Problem"
section with the following SQL statement, which contains the aliases
One and Two for the column names for the separate SUM expressions:

 Select SUM(PubID) as One, SUM(Au_ID) as Two From Titles

The Alias names can be anything other than the column name and must
be unique within the statement.

After inserting the aliases, run the SQL statement again and notice
that the two fields now correctly show the different results.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic.

2. From the File menu, choose Open Project (ALT, F, O). Open
 VISDATA.MAK from the VB\SAMPLES\VISDATA directory.

3. From the Run menu, choose start (ALT, R, S) or press F5 to run the
 program.

4. From the Visual Data File menu, choose OpenDatabase. From the sub
 menu choose MS Access.

5. From the Open MS Access Database dialog box, select the BIBLIO.MDB
 file.

6. For the Recordset Form Type, select Grid.

7. Enter the following SQL statement in the SQL Statement window:

 Select SUM(PubID), SUM(Au_ID) From Titles

8. Click the Execute SQL command Button.

9. The result shows in a grid window. The two fields have the same
 value. They should be different.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataIISAM

BUG: Incorrect Behavior in MaskedEdit BorderStyle Property
Article ID: Q101257

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 3.0

SYMPTOMS
========

Setting the BorderStyle property of the Masked Edit control to None at
design time results in an "Invalid property value" error at run time.
In addition, setting the Mask property to anything and then setting the
BorderStyle property back to Single causes unusual characters to appear
in the Mask property.

CAUSE
=====

The cause of the problem is unknown at this time.

WORKAROUND
==========

There is no known work around at this time.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (ALT F, A), and add MSMASKED.VBX
 to your project.

3. Place a Masked Edit control (MaskedEdit1) on Form1.

4. Set the BorderStyle Property of MaskedEdit1 to 0 - None.

5. From the Run menu, choose start (ALT, R, S), or press the F5 key to
 run the program.

6. Visual Basic will generate an "Invalid Property Value" error. Click OK

 in the error message to return to Visual Basic.

7. Set the Mask Property of MaskedEdit1 to #### and set the BorderStyle
 Property back to 1 - Single.

8. Now check the Mask Property. It contains unusual characters, but it
 should still contain ####.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Problems Printing Projects to HPLJ4
Article ID: Q101379

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, versions 2.00 and 3.00

SYMPTOMS
========

All the Form text and/or code will be printed together on a single page
if from the VB.EXE programming environment, you select one or more of
the combinations listed below from the Print dialog and print to an HP
LaserJet 4/4M printer using the HPLJ4 printer driver (the HPPCL5E file
version 31.V1.08).

Here are the problem combinations:

 - Form & Form Text
 - Form & Code
 - Form & Form Text & Code

CAUSE
=====

This is caused by a bug in the HPLJ4 printer driver (HPPCL5E.DRV version
31.V1.08).

WORKAROUND
==========

There are two possible ways to work around this problem:

 - Print each piece of the project separately. First print the
 Form, and then print the Form text and/or code.

 - Use the HPLJIII printer driver (HPPCL5.DRV) with the HPLJ4 printer.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

This problem does not occur if you do not print the Form graphic. If
you print only the Form text and/or code, it will print as expected.

Selecting Current or All from the Print dialog does not effect the
problem.

When an updated driver is available that solves this problem we will
post that information here in the Microsoft Knowledge Base.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgPrint

BUG: ALT+MINUS SIGN Does Not Work with Maximized MDI Forms
Article ID: Q101380

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, versions 2.00 and 3.00

SYMPTOMS
========

When you press the ALT+MINUS SIGN key combination in an application that
has an MDI Form and MDI child form, the control box on the MDI child form
should receive the focus and the system menu should drop down. But this
does not happen if the MDI child form is maximized.

WORKAROUND
==========

Instead of using the ALT+MINUS SIGN key combination, use the following
two steps to drop down the system menu for a maximized MDI child form:

1. Press the ALT Key to activate the control box for the maximized MDI
 child form
2. Press the ENTER key to drop down the system menu.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: GP Fault When Opening Menu Design Window in VB.EXE
Article ID: Q101381

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

SYMPTOMS
========

At times, you may receive a general protection (GP) fault when opening the
Menu Design window in Visual Basic for Windows. This can result in the
loss of all current additions and changes you made to your project since
you last saved it.

CAUSE
=====

This is caused by a bug in the VB.EXE environment where a pointer is
referenced after being invalidated. In this case, it happens when you
assign text to a Tag property for one of the menu items already on the
form and you do not save your form immediately prior to opening the Menu
Design Window.

WORKAROUND
==========

To avoid this occasional GP fault, either do not set the Tag property of
a menu item at design time or always save your work before opening the Menu
Design Window.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above. We
are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

More Information:

Additional reference words: 3.00
KBCategory:
KBSubcategory: EnvtDes

BUG: VB Dynasets Incorrectly Bypass Defaults on SQL Server
Article ID: Q101522

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When inserting a row into a SQL Data Source using dynasets, you may see
one of the following behaviors:

 - The row is not inserted due to a NON-NULL integrity conflict.
 - The row is inserted but the default for a column is bypassed.

The behavior depends on the table definition (can it be made NULL or not)
for the default-bound column. If default(s) exist on the table in SQL
Server and the dynaset column corresponding to the default-bound column
is not given a value before the insert, one the behaviors listed above will
occur:

CAUSE
=====
On the Update method for the Dynaset, the following SQL code is generated
by Jet Engine used by both Microsoft Access and Visual Basic version 3.0:

 Insert into Customer (Name, City) values ("bob", NULL)

For example, look at the schema definition shown in the More Information
section below. If the table definition is as in A, the Insert fails because
it is an attempt to insert NULL into a non-null column. If the table
definition is as in B, the Insert command inserts "bob" and Null into the
table -- bypassing the default of "Seattle" for City

To correct the problem, the Jet Engine should construct the SQL Statement
to enforce defaults:

 Insert into Customer (Name) values ("bob")

This would correctly insert "bob" and "Seattle" into the Customer table.

STATUS
======

Microsoft has confirmed this to be a bug in Visual Basic version 3.0. We
are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Example to Reproduce Problem

The following example demonstrates this incorrect behavior:

// SQL Server schema definition

// A) City is defined 'non-nullable' for behavior (1) to manifest
 Create table Customer
 (Name char(30) not null , City char(30) not null)

// B) City is defined 'nullable' for behavior (2) to manifest
 Create table Customer
 (Name char(30) not null , City char(30) null)

 Create Unique Index Customer_ndx on Customer(name)
 Create Default city_default as "Seattle"
 sp_bindefault city_default, 'table.city'

// VB Code to insert a new row into SQL Server
 Dim DS as Dynaset
 DS = DB.Createdynaset ("Customer")
 DS.AddNew
 DS("Name") = "bob"
// No code to set the value for 'City'
 DS.Update
 DS.Close

If the table definition for Customer is as in A, an attempt to
insert a new row into SQL Server fails with the following message
from SQL Server:

 Column 'Name' in table 'Customer' may not be NULL.

If the table definition for Customer is as in B, the row is
inserted into SQL Server, but the default has been bypassed. The
values "bob" and Null are inserted into the table

Additional reference words: 3.00 Access JET default update
KBCategory:
KBSubcategory: APrgDataODBC

BUG: Bad Result If Multiple Aggregate Functions in SQL Stmt
Article ID: Q101553

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When an SQL query statement contains multiple aggregate functions, the
result set incorrectly contains the same value for all the functions.
The result of the first aggregate function is duplicated in the result
column of all of the other functions.

CAUSE
=====
Aggregate functions typically do not contain explicit column names for
expressions in the SQL query. In SQL queries containing multiple
aggregate function calls, the Access database layer does not uniquely
identify the return columns for any functions past the first. Therefore,
it duplicates the result column of the first function in the result
columns of the succeeding functions

This problem did not occur in Visual Basic version 2.0. In Visual Basic
version 3.0, the Microsoft Access engine was integrated into the data
access functionality. The Microsoft Access engine tracks the column by
name, whereas Visual Basic version 2.0 tracks the column by the column
offset.

WORKAROUND
==========

Use aliases for the aggregate functions to solve the problem. Replace
the SQL statement shown below in the "Steps to Reproduce Problem"
section with the following SQL statement, which contains the aliases
One and Two for the column names for the separate SUM expressions:

 Select SUM(PubID) as One, SUM(Au_ID) as Two From Titles

The Alias names can be anything other than the column name and must
be unique within the statement.

After inserting the aliases, run the SQL statement again and notice
that the two fields now correctly show the different results.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic.

2. From the File menu, choose Open Project (ALT, F, O). Open
 VISDATA.MAK from the VB\SAMPLES\VISDATA directory.

3. From the Run menu, choose start (ALT, R, S) or press F5 to run the
 program.

4. From the Visual Data File menu, choose OpenDatabase. From the sub
 menu choose MS Access.

5. From the Open MS Access Database dialog box, select the BIBLIO.MDB
 file.

6. For the RecordSet Form Type, select Grid.

7. Enter the following SQL statement in the SQL Statement window:

 Select SUM(PubID), SUM(Au_ID) From Titles

8. Click the Execute SQL command Button.

9. The result shows in a grid window. The two fields have the same
 value. They should be different.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

BUG: Out of Memory w/ Var Named ClientLeft/Top/Width/Height
Article ID: Q102069

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When you use a variable named ClientLeft, ClientTop, ClientWidth, or
ClientHeight without explicitly defining the variable with Dim or Global,
Visual Basic incorrectly generates the error "Out of memory - insufficient
variable space," error code 3761.

WORKAROUND
==========

Define the variable using Dim or Global. For example:

 Dim ClientLeft As Single

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

Sub Form_Click ()
 ' any of the following statements cause the error
 Print ClientLeft
 Print ClientTop
 Print ClientWidth
 Print ClientHeight
End Sub

Additional reference words: buglist3.00
KBCategory:
KBSubcategory: PrgOther

BUG: Setup Wizard Error: Sharing Violation Reading Drive C:
Article ID: Q102478

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

SYMPTOMS
========

The error message "Sharing Violation on drive C:" is displayed during the
compression stage when using the Setup Wizard tool included with Visual
Basic version 3.0 for Windows.

CAUSE
=====

This is caused by the combination of the file sharing utility SHARE.EXE,
the compression utility COMPRESS.EXE, and the Setup Wizard tool
SETUPWIZ.EXE. The problem occurs when the compression utility tries
to open the files SETUPKIT.DLL, VBRUN300.DLL, COMMDLG.DLL, and/or
CMDIALOG.VBX.

This problem does not occur when running under Windows for Workgroups
version 3.1 in Enhanced mode, because it does not use the file sharing
utility SHARE.EXE. It uses its own file sharing utility (VSHARE.386).

WORKAROUND
==========

If you need to use the file sharing utility SHARE.EXE, copy SETUPKIT.DLL,
VBRUN300.DLL, COMMDLG.DLL, and CMDIALOG.VBX from the \WINDOWS\SYSTEM
directory to the directory where the SETUPWIZ.EXE file is located. Then
SETUPWIZ.EXE and COMPRESS.EXE will not try to use the same files at the
same time. Set the read-only attribute of all four files, regardless of
their actual location.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above. We
are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 3.00
KBCategory: Tls
KBSubcategory: TlsSetWiz

BUG: Domain Functions Available Only Within SQL Statement
Article ID: Q102479

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

SYMPTOMS
========

If you try to use the domain aggregate function examples provided in the
Microsoft Visual Basic version 3.0 for Windows Help file, you will
receive this error message:

 Reference to undefined Function or array

CAUSE
=====

The examples for the domain aggregate functions are incorrect. The domain
aggregate functions, like the SQL aggregate functions, can be used only
within an SQL statement.

WORKAROUND
==========

Use the domain aggregate functions within an SQL statement, as in the
following example. Enter the following as one, single line:

 Set Dn = Db.CreateDynaset("Select DAvg(""AU_ID"", ""AUTHORS"")
 FROM Authors")

STATUS
======

Microsoft has confirmed this to be a problem in the Visual Basic version
3.0 Help file.

MORE INFORMATION
================

Step-by-Step Example

The following example demonstrates how to print to the form an average of
all the AU_ID values in the Authors table from the BIBLIO.MDB database that
comes with Microsoft Visual Basic version 3.0 for Windows:

1. Start Visual Basic or from the File menu, choose New Project if Visual
 Basic is already running. Form1 is created by default.

2. Add the following code to the Click event of Form1:

 Sub Form_Click()
 Dim Db As Database
 Dim Dn As Dynaset

 Set Db = OpenDatabase("C:\VB\BIBLIO.MDB")
 ' Note: enter the following Set Dn code as one, single line.
 Set Dn = Db.CreateDynaset("Select DAvg(""AU_ID"", ""AUTHORS"")
 FROM Authors")
 Print Dn(0) ' This is the equivelant of
 ' Form1.Print Dn.Fields(0).Value
 ' It is always a good idea to close the database objects:
 Dn.Close
 Db.Close

 End Sub

3. Run the example. Then click the form.

All the other domain aggregate functions work in a similar way. It is only
the example that is incorrect in the Visual Basic Help file. The other
information explaining how to use the function parameters is correct.

The Following are the Domain Aggregate Functions:

 DAvg
 DCount
 DFirst
 DLast
 DLookup
 DMin
 DMax
 DStDev
 DStDevP
 DSum
 DVar
 DVarP

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

BUG: Can't Load Custom Control DLL: PICCLIP.VBX in Windows 3.0
Article ID: Q102649

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic programming system
 for Windows, version 3.0

SYMPTOMS
========

You receive the following error when you try to run the Professional
Edition of Microsoft Visual Basic version 3.0 for Windows using the
Microsoft Windows version 3.0 operating system.

 Can't load Custom Control DLL: 'C:\WINDOWS\SYSTEM\PICCLIP.VBX'

WORKAROUND
==========

Update your operating system to Microsoft Windows version 3.1, or edit
the AUTOLOAD.MAK file to delete the reference to the PICCLIP.VBX file.
Then restart Visual Basic for Windows.

STATUS
======

Microsoft has confirmed this to be a bug when using the product listed
above with the Microsoft Windows version 3.0 operating system. We are
researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic in Microsoft Windows version 3.0.

2. If you have not modified the AUTOLOAD.MAK, you will receive the error:

 Can't load Custom Control DLL: 'C:\WINDOWS\SYSTEM\PICCLIP.VBX'

Additional reference words: 3.00
KBCategory: Envt
KBSubcategory: EnvtDes

BUG: Out of Memory w/ MSOLE2.VBX When SHARE.EXE Not Loaded
Article ID: Q103438

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0.

SYMPTOMS
========

You receive an "Out of Memory" error after adding the MSOLE2.VBX control
to a form. That is, after adding the MSOLE2.VBX control to a form, you
proceed to select an item from the list. Once you press the OK button,
you get the "Out of Memory" error. This is an incorrect error message.

CAUSE
=====

This error can be caused by not having SHARE.EXE loaded in memory. The
MSOLE2.VBX control requires that SHARE.EXE be loaded in memory before you
use the MSOLE2.VBX control. The problem is that the error message is
incorrect. You are not out of memory. Instead of "Out of Memory," the
error message should say "SHARE.EXE required to perform this operation."

WORKAROUND
==========

Close Windows. Go to the \DOS directory and run SHARE.EXE to load it
into memory. Then restart Windows and Visual Basic. Now you can add a
MSOLE2.VBX control to your form, select an option from the list, and
choose OK to see the desired embedded object appear on your form.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above. We
are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a MSOLE2.VBX control to Form1.

3. Once the control displays the Insert Object window, select an object
 from the list provided, and choose the OK button. This should result
 in the "Out of Memory" error.

Additional reference words: 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

BUG: Invalid Argument Err on Execute Method w/ SQL Passthrough
Article ID: Q103976

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

When you open a database using ODBC and use the Execute method of the
Database object or property with the SQL passthrough option (value 64)
specified, the error "Invalid argument" (number 3001) incorrectly
occurs.

WORKAROUND
==========

Here are two possible workarounds. Use either one.

 - Use the ExecuteSQL. Its default is DB_SQLPASSTHROUGH:

 i = db.ExecuteSQL("action statement")

 - Use CreateDynaset or CreateSnapshot with the SQL passthrough option to
 execute an SQL action statement. Then close the resulting recordset
 object immediately. Here's an example:

 Dim ds As Dynaset
 Set ds = db.CreateDynaset("action statement", SQL_PASSTHROUGH)
 ds.Close

 If you are using the data control, specify datacontrol.Database as the
 database variable as in this example:

 ' Enter the following two lines as one, single line:
 Set ds = Data1.Database.CreateDynaset("action statement",
 SQL_PASSTHROUGH)

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

The following program results in the incorrect "Invalid argument" error.

 Const DB_SQLPASSTHROUGH = &H40
 Dim db As Database
 Set db = OpenDatabase("", False, False, "ODBC")
 db.Execute "action statement", DB_SQLPASSTHROUGH

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataODBC

BUG: GPF in VB.EXE at 0038:3B6F w/ Compile-Time Error & Set
Article ID: Q105140

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When you try to run a program within the development environment, a
general protection (GP) fault occurs immediately in module VB.EXE at
0038:3B6F.

CAUSE
=====

The problem can occur when there is a compile-time error (such as a
syntax error) followed by a Set statement where the left hand side of
the Set is not a simple object variable. The compile-time error does not
have to involve an object variable. Examples of object variables that
are not simple are object arrays and nested OLE objects.

 Static a(10) As Form
 Set a(i) = Form1 ' setting an object array element

 Static b As Object
 Set b = CreateObject(...)
 Set b.c = ... ' setting an object variable within an object

WORKAROUND
==========

Find and correct the compile-time error. This takes some effort because
the GP fault occurs before VB.EXE shows the location of the error. To
narrow down the search for the statement causing the error, remove Set
statements from your code until the GP fault no longer occurs. Then correct
all compile-time errors, and put the Set statements back in.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

The following code reproduces the problem:

 Sub Form_Load ()
 Static a(0) As Form

 Print 1 >= "a" ' type-mismatch error
 Set a(0) = Nothing
 End Sub

Additional reference words: 3.00 UAE GPF
KBCategory: Envt
KBSubCategory: EnvtDes

BUG: Error 13 (Type Mismatch) & Error 3061 w/ SQL Queries
Article ID: Q105171

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

Incorrect SQL syntax can cause either of the following error messages:

 - Type Mismatch (Error 13)
 - 1 parameter expected but only 0 were supplied (Error 3061)

The problem is with the error messages. The error message should state
that the SQL syntax was incorrect.

You may get a 'Type Mismatch' error with a database object on a line of
code that contains a SQL statement. You may also get a 'Type Mismatch'
error on a .Refresh statement when you are working with a Data control
that has a .RecordSource statement containing a SQL query prior to the
.Refresh statement.

In some situations, you could get error 3061 (1 parameter expected but
only 0 were supplied) instead of error 13 (Type Mismatch).

CAUSE
=====

The SQL syntax is incorrect.

WORKAROUND
==========

Correct the SQL syntax. Workarounds are provided below in the Steps to
Reproduce Problem section.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above.
We are researching this problem and will post new information here
in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
====================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a data control and two command buttons to Form1.

3. Set the following properties for the Data1 control:

 Control Property Value Set
 --
 Data1 DataBaseName C:\VB\BIBLIO.MDB
 Data1 RecordSource Authors

4. Add the following code to the Command1 Click event procedure:

 Sub Command1_Click ()
 data1.RecordSource = "Select * from authors where author = 4"
 data1.Refresh '* this gives type mismatch error
 End Sub

 NOTE: If you change the SQL query to the following, you will receive
 the 3061 error (1 parameter expected but only 0 were supplied):

 data1.RecordSource = "Select * from authors where author = brown"

 The following query corrects the SQL syntax. It should work correctly
 without giving an error:

 data1.RecordSource = "Select * from authors where author = 'brown'"

5. Add the following code to the Command2 Click event procedure:

 Sub Command2_Click ()
 Dim db As database
 Dim ds As dynaset
 Set db = OpenDatabase("C:\VB\BIBLIO.MDB")
 sqlquery1$ = "Select * from authors where author = 4"
 Set ds = db.CreateDynaset(sqlquery1$)'* this gives type mismatch
error
 End Sub

 NOTE: If you change the SQL query to the following, you will receive
 the 3061 error (1 parameter expected but only 0 were supplied):

 sqlquery1$ = "Select * from authors where author = brown"

 The following query corrects the SQL syntax. It should work correctly
 without giving an error:

 sqlquery1$ = "Select * from authors where author = 'brown'"

6. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program. Click the Command1 button to get the error. Then restart
 the program, and click the Command2 button to get the error.

Additional reference words: 3.00
KBCategory:
KBSubcategory: APrgDataAcc

BUG: Overflow in VB version 3.0 ICONWRKS Sample Program
Article ID: Q105808

--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.00
--

SYMPTOMS
========

The ICONWRKS (Icon Works) sample program that shipped with Visual
Basic version 3.0 can fail with an "Overflow" error when you attempt
to do a File+Open from the Editor form, on some high-resolution
monitors. ICONWRKS is installed by default under the subdirectory
\SAMPLES\ICONWRKS.

CAUSE
=====

ICONWRKS fails with "Overflow" in the Extract_Image_And_Mask procedure
in ICONWRKS.BAS on the following line:

R = SetBitmapBits(editor.Pic_Image.Image, ImageSize, Lpicon + 12 + 128)

The statement DEFINT A-Z at the top of the module makes the variable R
an integer. However, the API function SetBitmapBits returns a Long
Integer when run on some high-resolution monitors. NOTE: This problem
may also occur on other lines with other API calls.

This sample program was developed under Visual Basic version 1.0 and
was not updated for 3.0.

RESOLUTION
==========

To correct the problem, add the following statement to ICONWRKS.GBL:

 Global R As Long

STATUS
======

Microsoft has confirmed this to be a bug in the product listed
above. This problem is corrected as described in the RESOLUTION
section above.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOther

BUG: VB Printer.Width/Height Values Incorrect for Plotter
Article ID: Q106495

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

If you set up the HP Draftmaster II plotter with a paper size of A0 in the
Windows Control Panel, Visual Basic returns incorrect values for the
Printer.Width and Printer.Height properties. If you set the plotter's
paper size to A3 or A4, then Printer.Width and Printer.Height return
correct values.

CAUSE
=====

The Printer.Width and Printer.Height properties are designed to receive an
integer only. Plotter paper sizes often exceed an integer. This causes an
overflow in the Width and Height properties.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above. We
are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Choose the Printers dialog from the Windows Control Panel.

2. Select the "HP Draftmaster II (HP Plotter)" and click Add. Click Install
 to add this printer to the Installed Printers list.

 NOTE: Windows for WorkGroups installs the necessary files in the
 WINDOWS\SYSTEM directory.

3. Make "HP Draftmaster II (HP Plotter)" the default printer.

4. Click Setup. Select the options DEVICE.DRAFTMASTER II and SIZE.A0.
 Click OK.

5. Click Close to close the Printers dialog.

6. Start Visual Basic.

7. Press the F5 key followed by CTRL+BREAK.

8. Activate the Debug window and execute the following statements:

 Debug.Print Printer.Width
 Debug.Print Printer.Height

The problem is that Printer.Width and Printer.Height return incorrect
values such as 161.

Additional reference words: 3.00 Hewlett-Packard H-P
KBCategory: Prg
KBSubcategory: PrgOther

BUG: VB Setup Files Modified or Corrupted, Using \WINDOWS Path
Article ID: Q106496

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

When you run SETUP.EXE to install Visual Basic version 3.0, you may receive
the following error message:

 Setup Files Have Been Modified or Corrupted.

This message is misleading and incorrect.

CAUSE
=====

This behavior will occur if your PATH statement contains

 \WINDOWS

If you modify the path to read C:\WINDOWS, SETUP.EXE works correctly. You
can confirm your current PATH by running the PATH command at the MS-DOS
prompt.

This problem occurs in Visual Basic version 3.0 SETUP, but does not
occur in SETUP for earlier versions.

RESOLUTION
==========

To correct this problem, modify the PATH statement in your AUTOEXEC.BAT
file to be C:\WINDOWS instead of \WINDOWS.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above. We
are researching this bug and will post new information here in the
Microsoft Knowledge Base as it becomes available.

Additional reference words: 3.00
KBCategory: SetIns
KBSubcategory: SetIns

BUG: Name Not Found in This Collection When Deleting Member
Article ID: Q107362

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 version 3.0

SYMPTOMS
========

The Delete method incorrectly reports the following message for the
existing member under certain conditions:

 Name not found in this collection. Error 3265.

This occurs when you use the OpenDatabase function to open a database, and
then immediately, as the first change to the database's structure, execute
a Delete method on a member of a TableDefs or Indexes collection. The
member can be a TableDef or Index.

CAUSE
=====

The problem occurs when a Delete method is the first data definition
language (DDL) operation after you open the database.

WORKAROUND
==========

To work around the bug, use the Refresh method on the Indexes collection
before using the Delete method. An example is shown in "Workaround Example"
under the More Information section below.

NOTE: A program will correctly give the above error message when the name
truly is not found in the collection. As soon as a Delete method succeeds
on a specified TableDef or Index member of a collection, that name will no
longer be found in the collection.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above. We
are researching this problem and will post new information here in the
Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start a new project in Visual Basic. Form1 is created by default.

2. Copy the file BIBLIO.MDB from your Visual Basic directory to the root
 directory (C:\BIBLIO.MDB). The program created below modifies the copy
 of BIBLIO.MDB instead of the master file. The BIBLIO.MDB sample
 database file is a bibliographical reference.

3. Add a command button to Form1.

4. Add the following code to the Command1 Click event:

 Sub Command1_Click()
 Dim db as Database
 Set db = OpenDatabase ("c:\BIBLIO.MDB")
 ' db.TableDefs("Titles").Indexes.Refresh ' Add this for workaround
 db.Tabledefs("Titles").Indexes.Delete "PubID" '<- Problem line
 End Sub

5. Start the program or press the F5 key. The program gives the incorrect
 error, "Name not found in this collection."

Workaround Example

To work around this bug, use the Refresh method before using the Delete
method:

 db.TableDefs("Titles").Indexes.Refresh

As an alternative workaround, replace the Delete line with this command:

 ' Enter the following two lines as one, single line:
 db.TableDefs("Titles").Indexes.Delete
 db.TableDefs("Titles").Indexes("PubID")

This command expands "PubID" into its complete reference:

 db.TableDefs("Titles").Indexes("PubID")

This refreshes the Indexes collection before PubID is deleted in the same
statement.

NOTE: If you run the program twice using the workaround, the program
correctly gives the error, "Name not found in this collection." The error
is correct this time because the PubID index member was successfully
deleted and no longer exists.

Additional reference words: 3.00
KBCategory: APrg
KBSubcategory: APrgDataOther

BUG: Incorrect VB Error When Delete Index on Open Table
Article ID: Q107363

--
The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0
--

SYMPTOMS
========

If you attempt to delete an index on an open table, you correctly get an
error but the message is incorrect.

The program example given in the More Information section gives the
following incorrect error when attempting to delete an index from an
open Microsoft Access table:

 ODBC-call failed.

This message is misleading because the program uses no ODBC. This is
error number 3146, returned by the Err function.

CAUSE
=====

The ODBC-call failed message is incorrect. The message should instead
say the table is currently open and cannot be locked.

You cannot delete an index from a table if the table is Open. This is
behavior is by design. You must be able to lock the table before you can
delete an index. You cannot lock the table if the table is open by
anyone.

WORKAROUND
==========

Close the table before deleting an index. You may also need to use
the Refresh method on the TableDefs collection before using the Delete
method.

STATUS
======

Regarding the incorrect error message, Microsoft has confirmed this to
be a problem in the products listed above. We are researching this
problem and will post new information here in the Microsoft Knowledge
Base as it becomes available.

All other behavior described in this article is by design.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following code to the Form Load event:

 Sub Form_Load ()

 Const DB_LANG_GENERAL = ";LANGID=0x0809;CP=1252;COUNTRY=0"
 Dim db As database
 If Dir$("c:\t.mdb") <> "" Then Kill "c:\t.mdb"
 Set db = CreateDatabase("c:\t.mdb", DB_LANG_GENERAL)

 Dim f1 As New field
 Dim f2 As New field
 f1.Name = "field1"
 f1.Type = 3 ' integer
 f2.Name = "field2"
 f2.Type = 3 ' integer

 Dim td As New TableDef
 td.Name = "table1"
 td.Fields.Append f1
 td.Fields.Append f2

 Dim ix As New Index
 ix.Name = "index1"
 ix.Fields = "field1;field2"
 td.Indexes.Append ix

 ' create the table
 db.TableDefs.Append td

 ' add records to the table
 Dim tb As table
 Set tb = db.OpenTable("table1")
 tb.AddNew
 tb.Fields("field1").Value = 1
 tb.Fields("field2").Value = 2
 tb.Update
 tb.AddNew
 tb.Fields("field1").Value = 4
 tb.Fields("field2").Value = 5
 tb.Update
 tb.AddNew
 tb.Fields("field1").Value = 7
 tb.Fields("field2").Value = 8
 tb.Update

 tb.Index = "index1"
 tb.Seek "=", 4, 5
 Print tb.NoMatch
 Print tb.Fields("field1").Value

 ' Delete the index:
 Dim td2 As TableDef
 Set td2 = db.TableDefs("table1")

 ' The following line causes "ODBC-call failed" error message:
 td2.Indexes.Delete db.TableDefs("table1").Indexes("Index1")
 ' The workaround is to move this statement to after the table Close

 tb.Close
 ' Workaround: move the statement from above to here:
 ' td2.Indexes.Delete db.TableDefs("table1").Indexes("Index1")
 db.Close

 End Sub

3. Start the program or press the F5 key.

This program gives the incorrect error message "ODBC-call failed",
err=3146, when attempting to delete an index from the Access database.
This message is misleading because the program uses no ODBC.

To work around the problem, close the table before doing the Delete
method.

NOTE: If the first data definition language (DDL) operation is a Delete
method, the Delete will fail with the error, "Name not found in this
collection." This is a separate bug and is explained in another article
in the Microsoft Knowledge Base. To work around this bug, execute the
db.TableDefs.Refresh method before attempting a Delete.

Additional reference words: 3.00 erase remove how-to create
KBCategory: APrg
KBSubcategory: APrgDataOther

BUG: First Item Can Disappear in Outline Control Style 0 or 2
Article ID: Q108659

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

When an Outline custom control has both:

 - Style property value of 0 or 2
 - Indent property value of 0 on an item

the first visible item in the outline incorrectly disappears when you
initially click any other item at run time. The problem occurs both in
the Visual Basic environment and in compiled EXE files.

By design, the item that has an Indent property of 0 should not display.
However this should not have any effect on the items that do display.

WORKAROUND
==========

The first item reappears as soon as you select it with the mouse or
keyboard. The keyboard interface for the Outline control includes
LEFT ARROW, RIGHT ARROW, UP ARROW, DOWN ARROW, HOME, END, PAGE UP, PAGE
DOWN, plus sign (+), and minus sign (-).

You can prevent the disappearance of the first item as follows:

 - Do not use an Indent value of 0 on items in an Outline control that uses
 Style property values of 0 or 2. Instead, use an Indent value of 1 or
 greater.

or

 - Add the Outline1.ListIndex=1 statement after you add all items and
 indents to the Outline control. This ListIndex method selects the first
 item automatically, working around the problem.

STATUS
======

Microsoft has confirmed this to be a bug in the Professional Edition of
Microsoft Visual Basic version 3.0 for Windows. We are researching this
problem and will post new information here as it becomes available.

MORE INFORMATION
================

NOTE: An item that has an Indent property of 0 will be visible when you
use Style property values of 1, 3, 4, and 5, which include pictures or

tree lines. The bug mentioned in this article does not occur for these
styles.

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. From the File menu, choose Add File. Add the MSOUTLIN.VBX control file
 from your WINDOWS\SYSTEM directory.

3. Add an Outline custom control to the form.

4. Select the Outline control and press the F4 key to display the
 Properties window. Set the Style property to 0 or 2:

 0 - Text Only
 or
 2 - Plus/Minus and Text

5. Double-click the form to display the code window. Add the following code
 to the Form Load event:

 Sub Form_Load ()
 For i = 0 To 4
 ' Note that item 0 will not be visible, by design.
 outline1.AddItem Str$(i)
 outline1.Indent(i) = i
 Next
 For i = 1 To 4
 outline1.Expand(i - 1) = True
 Next
 ' Add the following statement to work around the bug:
 ' Outline1.ListIndex=1
 End Sub

6. Start the program, or press the F5 key. To duplicate the problem, click
 any item except the first. The first item, 1, incorrectly disappears.

 As long as you click any item except the first, the first item remains
 invisible. As soon as you click the first item, it correctly appears.

To work around the problem, add Outline1.ListIndex=1 to the end of the
code listed in step 5. The ListIndex method selects the first item
automatically.

REFERENCES
==========

 - "Microsoft Visual Basic Version 3.0: Professional Features Book 1:
 Custom Control Reference." See the Outline control, pages 256-257.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

BUG: Out of Memory Error When Adding 35-50 Pen Controls
Article ID: Q110989

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, versions 2.0 and 3.0

SYMPTOMS
========

You will receive an "Out of Memory" error message if you attempt to
add more than approximately 36 HEdit or approximately 50 BEdit Pen
Controls to an individual Form.

WORKAROUND
==========

You can edit in only one control at a time, so use only one of each
of the Pen Controls on top of multiple Labels or Picture Box Controls.
This will display the result of the edit when you move the focus to
another control.

The examples in the More Information section below will demonstrate how
to do this for each of the Pen Controls.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
We are researching this problem and will post new information here in
the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Here are two examples showing how to work around this bug:

Step-by-Step Example One

The following example demonstrates how to use multiple Picture Boxes
and one HEdit Control with the DelayRecog = True. This will allow the
user to input signatures into a field which will then remain as written,
no recognition is performed.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following controls, and set the indicated properties:

 Control Property Value
 --
 Picture Box Name PictureB
 Index 0

 AutoRedraw True

 Picture Box Name PictureB
 Index 1
 AutoRedraw True

 HEdit Control Name HEdit1
 DelayRecog True
 Text <blank>

 Command Button Name Command1
 Caption Clear

3. Add the following code to the General Declarations section of Form1:

 'Enter each of the following Declare statements on one, single line:
 Declare Function GetDC Lib "USER" (ByVal hWnd As Integer) As Integer
 Declare Function BitBlt Lib "GDI" (ByVal hDestDC As Integer,
 ByVal x As Integer, ByVal y As Integer, ByVal nWidth As Integer,
 ByVal nHeight As Integer, ByVal hSrsDC As Integer,
 ByVal xSrc As Integer, ByVal ySrc As Integer, ByVal dwRop) As Integer

 Const SRCCOPY &H00CC0020& ' Will be used in the call to BitBlt
 Dim LastPos As Integer ' Will be used to keep track of the
 ' last edited field.
 Dim InkArray(2) As String ' This array will be used to store the
 ' InkDataString for each of the fields.

4. Add the following code to the appropriate Control's event procedures:

 Sub Command1_Click ()
 HEdit1.InkDataString = "" ' Clear the field.
 End Sub

 Sub Form_Load ()
 Call PictureB_Click(0) ' Position the HEdit control over the
 End Sub ' first field.

 Sub Picture1_Click (index As Integer)
 ' Copy the image in the HEdit control to the Picture Box
 destDC = GetDC(HEdit.hWnd)
 ' Enter the following three lines as one, single line:
 dummy% = BitBlt(PictureB(LastPos).HDC, 0, 0,
 PictureB(LastPos).ScaleWidth-2, PictureB(LastPos).ScaleHeight-2,
 destDC, 1, 1)
 InkArray(LastPos) = HEdit1.InkDataString
 ' Save the Ink data for this field. It will be reassigned
 ' to the HEdit control the next time that field is selected
 ' and the HEdit control is positioned on top of it.
 LastPos = index ' Update LastPos to the current field.
 HEdit1.Visible = False ' This prevent a flicker when the
 ' control is moved.
 HEdit1.Top = PictureB(index).Top ' Move the HEdit Control on
 HEdit1.Left = PictureB(index).Left ' top of the selected Picture
 HEdit1.Width = PictureB(index).Width ' box field.
 HEdit1.Height = PictureB(index).Height
 HEdit1.InkDataString = InkArray(index) ' Reset the Ink in the

 ' Hedit Control to that
 ' stored for this field.
 HEdit1.Visible = True
 End Sub

Step-by-Step Example Two

The following example demonstrates how to use multiple Labels and one
HEdit Control with DelayRecog = False. This works using a BEdit control
as well. This allows the user to input hand-written characters into a
field where those characters will then be recognized and converted into
font characters.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following controls, and set the indicated properties:

 Control Property Value

 Label Name LabelF
 Index 0
 Caption <blank>

 Label Name LabelF
 Index 1
 Caption <blank>

 HEdit Control Name HEdit1
 DelayRecog False
 Text <blank>

3. Add the following code to the General Declarations section of Form1:

 Dim LastPos As Integer

4. Add the following code to the appropriate event procedures:

 Sub Form_Load ()
 Call LabelF_Click (0)
 End Sub

 Sub LabelF_Click (index As Integer)
 LabelF(LastPos).Caption = HEdit.Text ' Copy the contents of
 ' the HEdit Control to the
 ' Label Control.
 LastPos = index ' Update LastPos to the current field.
 HEdit1.Visible = False ' This prevent a flicker when the
 ' control is moved.
 HEdit1.Top = LabelF(index).Top ' Move the HEdit Control on
 HEdit1.Left = LabelF(index).Left ' top of the selected Picture
 HEdit1.Width = LabelF(index).Width ' Box field.
 HEdit1.Height = LabelF(index).Height
 HEdit1.Text = LabelF(index).Caption ' Reset the Ink in the HEdit
 ' Control to that stored for
 ' this field.
 HEdit1.Visible = True

 End Sub

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

BUG: ActiveControl Property of Screen Object Loses Memory
Article ID: Q113031

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

It is possible to receive an "Out of Memory" error when using the
ActiveControl property of the Visual Basic Screen object.

CAUSE
=====

The ActiveControl property of the screen object can leak memory when used
with the Is operator.

RESOLUTION
==========

Use a temporary variable to work around the problem. For example, change
the command click event in the code listed in the More Information section
below to this code:

Sub Command1_Click ()
 Dim l As Long
 Dim ActControl As control
 Do
 l = l + 1
 Text1.Text = l
 ' Use a temporary object variable
 Set ActControl = Screen.ActiveControl
 If ActControl Is Command1 Then
 End If
 Loop
End Sub

This code should run indefinitely.

STATUS
======

Microsoft has confirmed this to be a bug in Visual Basic version 3.0
for Windows. We are researching this problem and will post new information
here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start a new project in Visual Basic. Form1 is created by default.

2. Put a command button (Command1) and a text box (Text1) on the form.

3. Add the following code to the command button's click event:

 Sub Command1_Click ()
 Dim l As Long
 Do
 l = l + 1
 Text1.Text = l
 If Screen.ActiveControl Is Command1 Then
 End If
 Loop
 End Sub

4. Run the program, and you will receive an "Out of Memory" error
 eventually.

Additional reference words: 3.00
KBCategory: Prg
KBSubcategory: PrgOptMemMgt

FIX: VB Debug.Print in MouseMove Event Causes MouseMove Event
Article ID: Q72679

--
The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 1.0
--

SYMPTOMS
========

Debug.Print used within the MouseMove event procedure of a form or
control causes a MouseMove event. If the mouse cursor is located
within the form or control, an endless stream of output to the
Immediate Window will occur. This behavior occurs for a program run in
the Visual Basic development environment. An .EXE program does not
utilize the Immediate Window and the Debug object so this behavior
does not apply to a .EXE program. The problem does not occur if a
Print method is issued to any other form or control in the program.

STATUS
======

This is not a problem with Visual Basic, but rather the nature of the
Microsoft Windows operating environment. This problem does not occur in
Visual Basic version 2.0 or 3.0.

MORE INFORMATION
================

If Debug.Print is used within the MouseMove event procedure of a form
or control, an endless stream of output is sent to the Immediate
Window. This occurs whenever the mouse cursor is within the form or
control. This behavior occurs because the Debug.Print statement causes
the focus to change briefly to the Immediate Window. When the focus
returns to the form or control, Windows generates a MouseMove event
that is processed by Visual Basic. There is no way for Visual Basic to
suppress MouseMove events that are generated by Windows. The easiest
way to overcome this behavior is to send debug output to another form
or control.

To duplicate this behavior, create a picture control (Picture1) within
the default form (Form1). Add the following code segment to the
MouseMove event procedure of Picture1:

 Sub Picture1_MouseMove (Button As Integer, Shift As Integer,
 X As Single, Y As Single)
 ' You must write the above Sub statement on just one line.
 Static i%
 i% = i% + 1
 Debug.Print i%
 End Sub

If you want output to be sent only when the mouse is moved, then all
Debug.Print statements within the MouseMove event procedure should be

changed to Print methods to other forms or controls. Below is a
description of how to modify the example above such that output is
produced only when the mouse is moved.

Add another form (Form2) to the project by selecting New Form from the
File menu (ALT F+F). Change the Debug.Print statement in the MouseMove
event procedure for Picture1 to Form2.Print. Below is a copy of the
above sample modified to send output to another form.

 Sub Picture1_MouseMove (Button As Integer, Shift As Integer,
 X As Single, Y As Single)
 ' You must write the above Sub statement on just one line.
 Static i%
 i% = i% + 1
 Form2.Print i%
 End Sub

In the example above, all output that scrolls off the form will be
lost. A more sophisticated routine will be required to keep track of
all output to the form. Such a routine is beyond the scope of this
article.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes PrgCtrlsStd

FIX: Overflow in VB Drawing Circle Segment w/ Radius of Zero
Article ID: Q73280

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When using the Circle statement to draw a segment of a circle with a
radius of 0, an "Overflow" error incorrectly occurs.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual
Basic programming system for Windows, versions 1.0 and 2.0. This problem
was corrected in version 3.0.

MORE INFORMATION
================

The following statement demonstrates the problem:

 Circle (0,0), 0,, 4, 5

When you run the above statement, an "Overflow" error incorrectly
occurs.

In contrast, using the Circle statement to draw an entire circle of
radius 0 works correctly without an error (correctly drawing nothing);
for example:

 Circle (0,0), 0

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

FIX: UAE When Place More than 64K in VB List Box or Combo Box
Article ID: Q73374

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows, versions 3.0 and 3.1

SYMPTOMS
========

Attempting to add more than 64K of data into a Visual Basic list box
or combo box will result in a Windows Unrecoverable Application
Error (UAE), when running under Windows version 3.0.

RESOLUTION
==========

This problem does not occur when running under Windows version 3.1.
However, attempting to add more than 64K of data into a Visual Basic list
box or combo box will result in an "out of memory" error message, when
running under Windows, version 3.1.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
programming system for Windows, versions 1.0 and 2.0. We are researching
this problem and will post new information here as it becomes
available.

MORE INFORMATION
================

Each item of a list box or combo box can contain a string up to 1K in
length; however, if the total of all items exceeds 64K, a UAE will be
generated. The .List() property for list boxes and combo boxes is
given its own segment up to 64K in size. If an attempt to exceed this
limit is made, an "Out of memory" or "Out of string space" error
message should result, but instead a UAE occurs and the program
terminates.

Steps to Reproduce Problem

1. Create a New Project.

2. Draw a list box on Form1.

3. Add the following code to Form1's Click() event procedure:

 Sub Form_Click()

 Do
 List1.Additem String$(1024, "X")
 I = I + 1
 Debug.Print I
 Loop
 End Sub

When the UAE occurs, note that the value of the variable "I" displayed
in the Immediate window will be 63. The UAE occurred when adding the
64th item, which caused the total size of the data in the list box to
exceed 64K. The actual limit is slightly under 64K due to a small
amount of overhead to manage the .List() property because it is a
property array.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

FIX: Pull-Down on Drive Box Disabled When Change Width of Box
Article ID: Q73809

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you change the Width property of a drive list box at run time, the
pull-down list of drives no longer work.

WORKAROUND
==========

Add the following code to the form's click event procedure to work around
the problem:

Sub Form_Click ()
 Drive1.Width = Drive1.Width * 2
 Drive1.Refresh '* fixes the problem
End Sub

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
programming system for Windows, versions 1.0 and 2.0. This bug was
corrected in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic. Form1 is created by default.

2. Add a drive list box to Form1.

3. In the Click event of Form1, add the following code:

 Sub Form_Click ()
 Drive1.Width = Drive1.Width * 2
 End Sub

4. Run the application (press F5).

5. Click the down arrow on the drive box to display the list.

6. Choose a drive; everything works as it should.

7. Click Form1; the width of the drive box changes.

8. Click the down arrow on the drive box.

Note that the list fails to display.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: UAE/GPF Changing MS-DOS Win Display If VB at Breakpoint
Article ID: Q74193

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When using some Windows display drivers, the following steps may cause
Microsoft Visual Basic to abort with an Unrecoverable Application
Error (UAE) in Windows version 3.0 or a general protection (GP) fault
in Windows version 3.1:

1. Start Microsoft Visual Basic.

2. Add a line of code to the Form_Click event procedure, such as
 "X = 5".

3. Set a break point on the line added in step 2.

4. Start a simultaneous MS-DOS session in Windows.

5. Run the Visual Basic program (F5); click the form to stop at
 the break point.

6. Activate (double-click) the MS-DOS window.

7. Press ALT+ENTER to change the MS-DOS window to a full screen window.

Pressing ALT+ENTER to change the MS-DOS window to a full screen MS-DOS
session may result in a UAE or GP fault.

STATUS
======

This behavior is a result of problems with certain Windows display drivers,
and not a problem with Visual Basic. This problem does not occur in Visual
Basic version 2.0 or 3.0 for Windows.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Overflow Error If Print Long String to Form or Printer
Article ID: Q74517

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

An "Overflow" error message may occur when you print a long string in
Microsoft Visual Basic for Windows.

When a character is printed using the Print method, the CurrentX and
CurrentY coordinates are also updated for the object being printed to.
If the string being printed is long enough to cause the value of the
CurrentX property to exceed 32,767 twips, an "Overflow" error will
occur. This behavior is by design.

"Overflow" can be caused by printing a single long string or by
repeatedly printing shorter strings that are appended onto the end of
the last string -- using the Visual Basic semicolon (;) operator.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
versions 1.0 and 2.0 for Windows. This problem was corrected in Microsoft
Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or choose New Project from the File menu.

2. Place a label control on Form1.

3. Add the following code to the Form_Click event:

 Sub Form_Click()
 For index% = 1 to 1000
 Print "A";
 Label1.Caption = Str$(CurrentX)
 Next
 End Sub

4. From the Run menu, choose Start.

5. Click Form1.

An "Overflow" error will occur. You can examine the label caption to
see that the value of Form1.CurrentX plus the TextWidth of "A"
exceeded 32767 at the time of the error.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Control Overlaid by 2nd Control Won't Refresh If Moved
Article ID: Q74519

The information in this article applies to:

 - Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

Visual Basic version 1.0 for Windows does not support overlapping controls.
Having overlapping controls can result in portions of a control not
refreshing correctly. If controls are moved over each other, then one
or both of the controls may not correctly refresh even when the
controls are moved apart. This is known to happen when controls are
resized at run time using the Move method or by changing the Height
and Width properties as a result of a Form_Resize event. Because
controls must be resized one at a time, it is possible that one
control will briefly overlap another control during the resize
process at run time. The control that was briefly overlapped may not
refresh properly. An example of this behavior is given in the More
Information section below.

WORKAROUND
==========

This behavior can be improved by performing the Refresh method
(CtrlName.Refresh) on every overlapping control at run time, after an
overlapped control has been moved or after a form that contains
overlapping controls has been resized.

STATUS
======

This is not a problem with Visual Basic. It is the nature of overlapping
controls in Visual Basic version 1.0. This behavior occurs at run time in
the Visual Basic development environment or as an .EXE program.

This problem does not occur in Visual Basic version 2.0 or 3.0 for
Windows where overlapping controls are supported.

MORE INFORMATION
================

For more information about Visual Basic and overlapping controls,
query in this knowledge base on the following words:

 overlapping and controls and Visual and Basic

Steps to Reproduce Problem

1. From the File menu, choose New Project (ALT, F, P).

2. Add a picture control (Picture1) to the default form (Form1).

3. Add a command button (Command1) to Form1.

4. Add a vertical scroll bar (VScroll1) to Form1.

5. Using the mouse, double-click Form1 to bring up the code
 window.

6. Within the Resize event procedure of Form1, add the following code:

 Sub Form_Resize ()
 Picture1.Move 0, 0, ScaleWidth - VScroll1.Width, _
 ScaleHeight - Command1.Height
 VScroll1.Move ScaleWidth - VScroll1.Width, 0, _
 VScroll1.Width, ScaleHeight - Command1.Height
 Command1.Move 0, ScaleHeight - Command1.Height, _
 ScaleWidth, Command1.Height
 End Sub

Note: The underscores (_) in the above code example indicate that
the line should be concatenated with the next line in the Visual Basic
environment (VB.EXE).

7. Run the program.

8. Using the mouse, resize the form by extending the bottom or right
 sides. When the bottom edge of the form is extended, the command
 button (Command1) will not refresh. When the right edge of Form1
 is extended, the scroll bar will not refresh. The refresh problems
 are caused because Picture1 is expanded and temporarily overlaps
 the control. When the control (VScroll1 or Command1) is moved out
 of the way, it is not refreshed.

To work around this behavior, use the Refresh method for Picture1,
VScroll1, and Command1 after the controls have be moved. Add the
following statements to Sub Form_Resize (after the Command1.Move
statement) above to overcome the behavior:

 Picture1.Refresh
 VScroll1.Refresh
 Command1.Refresh

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Open Project Dialog Misbehaves If Project Dir Deleted
Article ID: Q75519

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you currently have a project loaded in Visual Basic version 1.0 from
a network drive and, from a simultaneous DOS session in Windows, you
delete that project and its subdirectory, then the next Open Project
command will incorrectly default to the nonexistent directory when
you reselect the network drive.

CAUSE
=====

The problem is due to the Windows operating environment and is not a
problem with Visual Basic 1.0. The problem is in the API function
DlgDirList() which is built into Windows versions 3.0 and 3.1.

WORKAROUND
==========

To work around the problem, type the network drive (for example, Z:\
or Z:*.MAK) in the text box to reset to the root directory on the
network drive.

STATUS
======

This problem occurs when using Visual Basic version 1.0 in both Windows
version 3.0 and 3.1. However it does not occur when using Visual Basic
version 2.0 in either Windows version 3.0 or 3.1. In other words, you
will not run into this problem at all in Visual Basic version 2.0.

MORE INFORMATION
================

Steps to Reproduce Problem

1. In Visual Basic version 1.0, open a project, and save the project in a
 subdirectory such as Z:\TEST on a network drive.

2. Without exiting Visual Basic, go to the Windows File Manager or the
 MS-DOS prompt and delete the directory (Z:\TEST) that contains the
 project on the network drive.

3. In Visual Basic version 1.0, choose Open Project from the File menu.
 Visual Basic will notice that the subdirectory is gone, so it resets the
 Open Project dialog box to the startup drive.

4. Click the network drive letter in the Open Project list box. The Open
 Project dialog box now incorrectly displays the nonexistent subdirectory
 Z:\TEST as the current directory.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Text Not Highlighted When Copy Immediate Win to Clipboard
Article ID: Q75762

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When you copy text from the Immediate window to the Windows system
clipboard, the selected text is not highlighted. Also, the cursor is
not visible. However, the copy operation works as it should.

STATUS
======

Microsoft has confirmed this to a bug in the products listed above.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

The following steps reproduce the problem:

1. Run the Windows Clipboard utility usually found in the Main group in
 Microsoft Windows Program Manager.

2. Start Visual Basic and press the F5 key.

3. Press CTRL+BREAK to bring up the Immediate window.

4. Press F5 to continue.

5. Click the Immediate window to give it the focus.

6. Press CTRL+HOME to move to the beginning of the text in the Immediate
 window.

7. Press SHIFT+CTRL+END to select all text in the Immediate window. Note
 that you cannot select text with the Mouse at this point.

8. Press CTRL+INS to copy the selected text in the Immediate window to the
 Windows clipboard.

The text goes onto the Windows clipboard as it should, but the text in the
Immediate window is not highlighted as it should be, and the cursor is not
visible.

Additional reference words: 1.00 2.00 3.00
KBCategory:

KBSubcategory: APrgOther

FIX: Undocumented Separator Property of a VB Menu Item
Article ID: Q76550

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

You may encounter an undocumented property for menu items that allows
you to toggle between the caption and a separator bar. A separator bar
in a menu is a horizontal line that separates menu item groups.

CAUSE
=====

Microsoft did not intend to leave the Separator property in the Visual
Basic product.

RESOLUTION
==========

The Separator property is not documented in Visual Basic's manuals or
online Help. Microsoft recommends that you not use the Separator
property in your Visual Basic applications. The Separator property
no longer exists in Visual Basic version 3.0.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows by removing the Separator property.

MORE INFORMATION
================

Separator Property (Applies to Menu Items)
--
Description: Denotes if a menu item is a separator bar. Prevents
 or allows the value of the Caption property of the
 menu item to be displayed versus a separator bar.

Usage: [form.][menuitem.]Separator[= boolean%]

Remarks: The Separator property settings are as follows:

 Setting Description

 True (-1) Disables the display of the value of
 the Caption property as the menu item.

 Instead, a separator bar is displayed.

 False (0) (Default) for all other menu items.
 The menu item will display the value
 of the Caption property for that item.

 When a menu item is created in the menu design window,
 the value of its separator property defaults to 0 unless
 the caption of that menu item is set to a dash (-), in
 which case, the Separator property defaults to -1 and a
 separator bar is displayed for that item instead of the
 value of the Caption property.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Can't Have Menu with No Caption Bar/Buttons/Control Box
Article ID: Q76553

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

You can't add a menu that has no caption, no maximize/minimize buttons,
and no control-menu box to a form.

CAUSE
=====

This feature is not supported in Visual Basic in Windows version 3.0
or 3.1 because of a bug in the Microsoft Windows menu driver that
prevents Windows from painting menus correctly.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Windows versions
3.0 and 3.1. This problem does not occur in Visual Basic version 3.0 in
Microsoft Windows version 3.1.

MORE INFORMATION
================

If you place a menu on a form with no caption bar or associated buttons,
the result is a menu bar that does not refresh correctly.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Delete the contents of the Caption property.

3. Set the ControlBox, MaxButton, and MinButton properties to False.

4. Using the Menu Design window, create a single menu item. Set the
 Caption property to Test and the control name property to Test.

5. Press the F5 key to run the application.

Note how the menu bar does not repaint correctly. This causes the image
immediately behind the form to be visible through the menu bar.

If you place any other form over the menu bar and then remove it, the

portion that was covering the menu bar area remains.

This problem occurs because the Microsoft Windows menu driver does not
paint the menus correctly.

For this reason, this particular form configuration is not supported
by Visual Basic at this time even though you are able to create the
configuration in the editing environment.

For more information about a related problem with the menu bar and the
Fixed Double border style, query on the following words in the
Microsoft Knowledge Base:

 Visual and Basic and menu and fixed and double and border

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: EnvtDes

FIX: ControlBox Property False Disables Focus w/ Keys in Menus
Article ID: Q76556

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When the ControlBox property on a form is set to False, (disabling the
Control Box), the ability to change focus within menus using the
keyboard (such as by using the ARROW keys) is lost. This is because of
a limitation of Windows; it is not a problem with Visual Basic.

STATUS
======

Microsoft has confirmed this to be a problem with Windows version 3.0.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

This problem only applies to changing focus between menu items. The
ARROW keys work correctly to change focus with other controls (for
example, two command buttons), even with the ControlBox disabled.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic.

2. From the Window menu, choose Menu Design Window.

3. Enter Test1 and Test2 as the caption and CtlName of two separate
 top level menu items. Choose the Done button to close the Menu
 Design window.

4. From the Properties box, select ControlBox.

5. From the Settings box, set the ControlBox property to False. (This
 removes the ControlBox from the form at run time.)

6. Press F5 to run the application.

Notice that the mouse can be used to select either the Test1 or Test2
menu, but pressing the ALT key followed by the LEFT or RIGHT ARROW
keys will not allow you to move between the menus. You will only be
able to select the Test1 menu by pressing the ALT key.

Setting the ControlBox property to True will re-enable the LEFT/RIGHT
ARROW keys to select menu items.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: StretchBlt() Gives UAE/GPF with 256-Color Video Drivers
Article ID: Q77314

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic Programming System for Windows, version 1.0

SYMPTOMS
========

An Unrecoverable Application Error (UAE) in Windows version 3.0 or a
General Protection (GP) fault in Windows version 3.1 can occur when a
Visual Basic application calls the StretchBlt() Windows API function and
uses a Windows 256-color video driver under these conditions:

 - The destination object's AutoRedraw property is set to TRUE.
 - The destination object's size is an exact multiple of the source
 object's size.

This problems occurs in both Windows versions 3.0 and 3.1 with Visual
Basic version 1.0, but it occurs only in Windows version 3.0 with
Visual Basic version 2.0. It does not occur when using Visual Basic
version 2.0 with Windows version 3.1; however, changing the size of
the picture box may result in a dithered picture.

CAUSE
=====

This problem is caused by the StretchBlt() function. The problem occurs
only when the destination object's size is an exact multiple of the
source object's size, the destination object's AutoRedraw property is
set to TRUE, and you are using a 256-color Windows video driver.

STATUS
======

Microsoft has confirmed this to be a bug with the Windows StretchBlt()
function. We are researching this bug and will post new information
here in the Microsoft Knowledge Base as it becomes available.

MORE INFORMATION
================

Steps to Reproduce Problem

Note that this error occurs only when using a 256-color video driver.

1. Start Visual Basic for Windows, or choose New Project from the
 File menu.

2. Place two picture controls on Form1. Load a bitmap into Picture1

 by assigning the Picture1.Picture property.

3. Place the following Declare as one, single line of code in the
 GLOBAL.BAS module:

 Declare Function StretchBlt% Lib "GDI" (ByVal hDC%, ByVal X%, ByVal Y%,
 ByVal nWidth%, ByVal nHeight%, ByVal hSrcDC%, ByVal XSrc%,
 ByVal YSrc%, ByVal nSrcWidth%, ByVal nSrcHeight%, ByVal dwRop&)

4. Place the following code in the Form_Click event procedure, ensuring
 that the StretchBlt function is placed on one, single line when you
 type it into the Visual Basic for Windows code window.

 ' Initialize source object's (Picture1) size.
 Form1.ScaleMode = 3
 Picture1.BorderStyle = 0
 Picture2.BorderStyle = 0
 Picture1.Height = 64
 Picture1.Width = 64
 Picture1.ScaleMode = 3 ' StretchBlt uses pixels.
 Picture2.ScaleMode = 3
 Picture2.AutoRedraw = -1 ' Turn on Autoredraw for destination.

 ' Set destination object size to a multiple of the source's size.
 Picture2.Height = 2 * Picture1.Height
 Picture2.Width = 2 * Picture1.Width

 hdestdc% = picture2.hDC
 X% = 0: Y% = 0
 nWidth% = picture2.scalewidth
 nHeight% = picture2.scaleheight

 ' Assign information of the source bitmap.
 hSrcDC% = picture1.hDC
 XSrc% = 0: YSrc% = 0
 nsrcwidth% = picture1.scalewidth
 nsrcheight% = picture1.scaleheight

 ' Assign the constant to the Raster operation (dWrop&).
 dwRop& = &HCC0020 'to simply copy

 ' Enter the following two lines as one, single line in Visual Basic:
 ret% = StretchBlt(hdestdc%, X%, Y%, nWidth%, nHeight%, hSrcDC%,
 XSrc%, YSrc%, nsrcwidth%, nsrcheight%, dwRop&)

 Picture2.Picture = Picture2.Image

5. Run the program by pressing the F5 key. Click the background of Form1.
 If you are using a 256-color Windows display driver, a UAE may occur
 in Windows version 3.0 or a GP fault may occur in Windows version 3.1.
 After the error, you should exit Windows entirely and restart your
 computer to avoid subsequent errors.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: APrgOther

FIX: Visual Basic List Box Won't Open if Resized at Run Time
Article ID: Q79030

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When you click the down arrow of the drive list box control, the drive
list box will not open if it has been resized at run time. The Width
property is Read/Write at run time. However, if it is changed at run
time, the drive list box won't open. This is true even if it is
restored to its original value before attempting to open it.

Note also that Page 11 of the "Microsoft Visual Basic: Language
Reference" version 1.0, says the Height property of the drive list box
is Read/Write at run time. Height is actually Read-Only at run time.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Note that neither the directory list box nor the file list box are
affected by run-time resizing.

Steps to Reproduce Problem

1. Click the drive list box control icon on the Toolbox. Draw a
 drive list box on the form. Resize the drive list box to any size.
 At run time, the drive list box will correctly open when you click
 the down arrow.

2. Add three command buttons to the form, giving them these captions:
 Narrow, Wider, and Restore.

3. Insert the following code:

 Note: The example assumes a starting dimension of 2055 wide (user
 alterable) by 315 high (the standard height in twips).

 Sub Command1_Click ()
 drive1.WIDTH = 1025 ' Narrow
 End Sub

 Sub Command2_Click ()
 drive1.WIDTH = 4110 'Wider
 End Sub

 Sub Command3_Click ()
 drive1.WIDTH = 2055 'Restore
 End Sub

4. Run the example.

5. Open the drive list box. Click the Narrow or Wider button.

6. Try to open the drive list box again. It fails to open.

7. Click the Restore button. Again try to open the drive list box.
 It fails to open.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Text Too Narrow with Italic Fonts in Visual Basic Labels
Article ID: Q79117

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When the FontItalic property of a label control is set to True (-1),
the text in the caption property is incorrectly formatted into lines
that are about half as wide as the label width.

When the FontItalic property is set to False (0), the text is
correctly formatted so that each line of text correctly occupies the
width of the label.

WORKAROUND
==========

To work around this problem, use any one of the following alternatives:

 - Make the label wider so that the text appears as desired.
 - Set the AutoSize property on the label to True (-1). Note that this
 will format the label caption into one line of text.
 - Create several labels, one for each line of text.
 - Set the FontItalic property to False (0).

RESOLUTION
==========

This problem occurs in both Visual Basic verion 1.0 and 2.0 when using
Microsoft Windows version 3.0, but it does not occur when using Visual
Basic version 2.0 with Windows version 3.1.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
programming system version 1.0 for Windows. This bug was corrected in
Microsoft Visual Basic version 2.0 for Windows when using Windows
version 3.1.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Place a label (Label1) on Form1.

3. Set the label's Caption property to this: This is a line of text.

4. Make the label just wide enough to display the entire caption on one,
 single line. Make the label tall enough to display three or four lines
 of text.

4. Set the FontItalic property to True. The caption is incorrectly
 formatted as two lines.

5. If you reduce the width of the label, it incorrectly formats the lines
 to about half the new width of the label.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: SendKeys Causes Erratic Mouse Behavior on IBM PS/2
Article ID: Q79603

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Windows version 3.0

SYMPTOMS
========

When a Visual Basic program executes the SendKeys statement on an IBM
PS/2 computer, Windows behaves erratically when you move the mouse
until it is shut down.

CAUSE
=====

The erratic behavior is caused by continuous phantom mouse clicks and
mouse movements.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Windows version
3.0. This bug was corrected in Microsoft Windows version 3.1.

MORE INFORMATION
================

If you are running Microsoft Windows 3.0 on a PS/2 computer and you
press the NUM LOCK key while moving the mouse, the mouse events become
erratic. The Visual Basic SendKeys statement affects the NUM LOCK key,
so this problem results -- just as if NUM LOCK were pressed.

When you move the mouse, phantom Click events result in symptoms such
as applications unexpectedly launching, or the mouse pointer jumping
around the screen.

This problem has been reported to happen on the IBM PS/2 Model
50, Model 50z, Model 60, and Model 80.

Additional reference words: 1.00 3.00 3.10 NUMLOCK
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: DDE from Excel to VB Ver 1.0 Uses Up Windows GDI Heap
Article ID: Q80440

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0
- Microsoft Excel for Windows, versions 1.x, 2.x, 3.x, and 4.x
- Microsoft Windows, versions 3.0 and 3.1

SYMPTOMS
========

Microsoft Windows may eventually hang (stop responding) when memory
is not released during a dynamic data exchange (DDE) conversation
between a Microsoft Visual Basic picture control and a Microsoft Excel
for Windows cell range to which it is automatically or manually linked.

Updates to individual Excel cells are not deleted from memory. This
problem does not occur when a Visual Basic label control or text box
is automatically or manually linked to Excel.

CAUSE
=====

When data in the Excel spreadsheet is constantly updated, resources
are consumed and not discarded; as a result, Microsoft Windows version
may eventually hang.

RESOLUTION
==========

The memory is not released when either or both the Visual Basic and
Excel applications are exited. To release the memory, you must exit
from Windows.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
programming system version 1.0 for Windows and in Microsoft Visual
Basic version 2.0 when it is used with Windows version 3.0. This
bug was corrected in Microsoft Visual Basic version 2.0 for Windows
when used with Windows version 3.1.

MORE INFORMATION
================

Using the Heap Walker utility provided with the Microsoft Windows
Software Development Kit (SDK), you can verify that unrecoverable
memory is being allocated during a DDE conversation between Visual
Basic and Excel. Below are the steps necessary to confirm that memory
is being lost during a DDE conversation between Visual Basic and Excel:

Steps to Reproduce Problem

1. Start an Excel session.

2. Enter data into cells R1C1 through R3C3 (that is, cells A1, A2,
 A3, B1, B2, B3, C1, C2, C3).

3. Select these cells.

4. Press CTRL+INS to copy the cells onto the clipboard.

5. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

6. Add a Picture control (Picture1) to Form1.

7. From the Edit menu, choose Paste Link. A graphic image of the Excel
 cell range should be displayed in Picture1.

8. From the Run menu, choose Start (ALT, R, S) to run the Visual Basic
 program.

9. Run Heap Walker (a tool provided with the Windows SDK).

10. From the Sort menu, choose Module and Label Segments.

11. From the Walk menu, choose GC(-1) And Walk. This command attempts
 to discard all discardable objects and then display the memory
 heap.

12. Select all segments labeled GDI by holding down the left mouse
 button and dragging the mouse downward from the first GDI segment.
 The window should scroll up as the segments (or lines) are
 selected. Release the mouse button when the last GDI segment in
 the block has been selected.

13. With all the segments highlighted, choose the Add! menu to get a
 total of the segments and bytes used. Make note of these values
 for comparison.

14. Activate Excel.

15. Change the values in the selected cell range of Excel a number of
 times.

 Note: By using repeated patterns such as filling the cells with
 the value 999999, later when using the Show submenu of the Object
 menu to see the contents of a GDI segment, you can verify that a
 segment is a leftover from the DDE conversation. Scrolling through
 the segment, toward the end of the segment you will see the digits
 you entered on the right side of the display.

16. Repeat steps 12 through 15.

17. Compare the values returned by Add!. The later value should be

 significantly larger.

18. Activate Heap Walker.

19. From the Object menu, choose Show to view the heap owned by the
 Windows GDI library.

After performing several changes to the data in the range, Heap Walker
should report several new segments marked as discardable (a D should
appear in the FLG field), but these segments still remain in memory as
nondiscardable segments.

Every update to the Excel cells accessed through the DDE link will
create a SHARED segment owned by GDI that contains the data. These
segments will be approximately equal in size. (The actual size depends
on the length of data that was entered in the cells and the size of
the selected range.) If you view the contents of these SHARED segments
by choosing Show from the Object menu, you will see each data change
performed in Excel. The contents of the DDE message will be located
around offset 0600 in the segment view mode through Heap Walker.

Reference(s):

Microsoft Windows version 3.0 Software Development Kit

Additional reference words: 1.00 2.00 hot cold
KBCategory:
KBSubcategory: IAPDDE

FIX: File Not Loaded If No Extension in Load Picture Dialog
Article ID: Q80643

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When loading a Windows bitmap, icon, or metafile into the Picture
property of a Visual Basic form or picture control by using the Load
Picture dialog box (activated by choosing the ellipsis button to the
right of the Properties list box), the default filename extension
(BMP, WMF, ICO) is not automatically added if you enter a base
filename without an extension.

RESOLUTION
==========

Type in the extension at the end of the filename. To correctly load a
file, you must specify both the base filename and the extension.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
This bug was corrected in Microsoft Visual Basic version 3.0 for
Windows. In Visual Basic version 3.0, .BMP is added as the extension
if none is specified.

MORE INFORMATION
================

Normally, a Windows file list dialog box that displays one or more
default extensions will automatically locate and open a file with any
of the default extensions if given the base name. However, this does
not occur when you select a file for the Picture property by using the
Load Picture dialog box.

Steps to Reproduce Problem

1. From the File menu, choose New Project.

2. Select the Picture property from the Properties list box.

3. Choose the ellipsis button on the right of the Settings box to
 bring up the Load Picture dialog box.

4. Type the name of one of the files listed in the Files box without
 its extension and choose the OK button.

A "File Not Found" error message displays telling you the selected file was
not loaded.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun APrgGrap

FIX: Panel Custom Control Caption Not Dimmed When Disabled
Article ID: Q80868

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When the 3-D Panel custom control is disabled by setting the Enabled
property to False(0), the controls on the 3-D Panel (if any) are
disabled but the caption displayed for the 3-D Panel control is not
dimmed.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Like the standard Frame and Picture controls in Visual Basic, the 3-D
Panel can also be used to group other controls together. When these
containers or parent controls are disabled by setting the Enabled
property to False(0), the controls they contain, or the child controls,
are also disabled. In addition, the caption on the frame is dimmed.
However, the caption of the 3-D Panel custom control is not dimmed, even
though the child controls on it are disabled.

Steps to Reproduce Problem

1. Start Visual Basic, or choose New Project from the File menu (ALT F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File, and select the THREED.VBX
 custom control file. The 3-D Panel tool will appear in the Toolbox.

3. Place a panel control (Panel3D1) on the form.

4. Draw a command button (Command1) within the boundaries of the panel
 control. Make sure the caption of the panel control is still visible.

5. Draw another command button (Command2) on the form outside the panel
 control, and change its Caption property to Disable panel. This button
 will be used to disable/enable the panel, which will in turn
 disable/enable the Command1 button on the panel control.

6. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()
 MsgBox "You clicked the button!"
 End Sub

7. Add the following code to the Command2_Click event procedure:

 Sub Command2_Click()
 Panel3D1.Enabled = Not Panel3D1.Enabled 'Enable/Disable panel
 If Panel3D1.Enabled Then
 Command2..Caption = "Disable panel"
 Else
 Command2.Caption = "Enable panel"
 End If
 End Sub

8. Press the F5 key to run the program.

With the panel disabled, the Command1 button will produce the message box
when clicked. If you click the Command2 button, the Command1 button is
disabled as expected. The panel control is disabled but its caption is not
dimmed.

Additional reference words: 1.00 2.00 3.00 gray grey grayed greyed
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Graph Custom Control Incompatible w/ HP II Series Printer
Article ID: Q80912

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The Visual Basic Graph custom control cannot successfully print
directly to a Hewlett-Packard (HP) II series LaserJet. This is a
compatibility issue between the Graph custom control and the HP II
series only. It is not a problem with Visual Basic.

WORKAROUND
==========

To work around the problem, add an additional form to the project,
transfer the graph's image to the form, and then print the form. This
method bypasses the DrawMode=5 (print) method and the incompatibility
issue. The example in the More Information section demonstrates how
how to implement this workaround.

Note: Unless you know that your graph will never be printed on an HP
II Series LaserJet, you may wish to always use this print method.

STATUS
======

Microsoft has confirmed this to be a bug in the Graph custom control
supplied with the products listed above. This bug was corrected in
Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

The Visual Basic Graph custom control version 1.2 allows you to send a
graph image directly to your printer by setting the graph's DrawMode
property to 5 (print). However, the Graph control is incompatible with
the HP II LaserJet family. When using the DrawMode=5 (print) method to
print to an HP II LaserJet, only a portion of the graph will print.

Step-by-Step Example

1. Start a new project in Visual Basic. Form1 is created by default.

2. From the File menu, choose Add File, and select the GRAPH.VBX
 custom control file. The Graph tool will appear in the Toolbox.

3. Add another form (Form2).

4. Change the following properties for Form2:

 Property Value

 ControlBox False
 MaxButton False
 MinButton False
 Caption False

5. On Form1, create a Graph control (Graph1) and a command button
 (Command1). Set the Caption property for Command1 to "Print."

6. Size and edit Graph1 so that it appears the way you want it to print.

7. Add the following code to the Command1_Click event:

 Sub Command1_Click ()

 'change to black/white for clearer printing
 Graph1.DrawStyle = 0
 'update change to black/white
 Graph1.DrawMode = 2

 Load Form2
 'size Form2 and transfer Graph1's image
 Form2.width = Graph1.width
 Form2.height = Graph1.height
 Form2.picture = Graph1.picture
 Form2.visible = 1 'optional

 Form2.PrintForm

 'return Graph1 to display in color (optional)
 Graph1.DrawStyle = 1
 'update display to color
 Graph1.DrawMode = 2

 End Sub

8. From the Run menu, choose Start (ALT R, S) and click the Print button.

Unless you specify otherwise, Graph1 will originally be displayed in color.
Once the Command1_Click event is triggered, the graph will convert to
black and white. If you exclude the optional line Form2.visible=1, a
dialog box will appear stating that Form2 is being printed. Graph1 will
convert back to a color display, and the program will end.

If you included the optional line Form2.visible=1, you will see Form2
appear and resize with the black and white graph image as its picture.
A dialog box will appear stating that Form2 is being printed. Graph1
will convert back to a color display and the program will end.

Additional reference words: 1.00 2.00 3.00 H-P HPII
KBCategory:
KBSubcategory: PrgCtrlsCus APrgPrint

FIX: Animated Button Custom Control: Caption May Be Truncated
Article ID: Q81223

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The Caption property of the Animated Button custom control allows up
to 255 characters to be entered, but only displays a varying number of
those characters. The number of characters displayed depends on the
FontSize and the width of the characters. The larger the font, or the
wider the characters, the less the number of characters that will
appear in the caption.

WORKAROUND
==========

To work around the problem, make the font for the caption as small as
feasible, and whenever possible, use the smallest size of characters.

STATUS
======

Microsoft has confirmed this to be a bug in the Animated Button custom
control provided with the products listed above. This problem was
corrected in Animated Button custom control provided with Microsoft
Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 ANIBUTTON.VBX custom control file. The Animated Button tool will
 appear in the toolbox.

3. Place an Animated Button control on Form1.

4. From the Properties list box, select the Caption property for the
 Animated Button control. Enter 255 W characters. Notice that the
 caption of the Animated Button control is now filled with W characters.

5. Maximize Form1 by clicking the maximize button in the upper-right
 corner of Form1.

6. Stretch the right side of the Animated Button control so that you
 can see the whole caption. (To do this, click the control, and
 pull the handle on the right side of the control.)

If you change the W characters to I characters, you will be able see
more of the characters in the caption before they are truncated because
I characters takes proportionately less space than W characters.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Graph Control's Negative Values Plot As Positive
Article ID: Q81451

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

Negative values used with certain GraphType and GraphStyle properties
in the Graph custom control will not appear to be negative, but will
instead appear to be positive values. This only occurs in certain
graph types where negative data is either invalid or confusing.

The data itself is not changed when this occurs, it is simply graphed
as positive values. The values can be shown to still be negative by
changing the graph type or style to one where negative data can be
shown.

STATUS
======

This behavior is by design in Visual Basic version 1.0. It was modified
in Visual Basic version 2.0 so that the negative numbers are no longer
graphed as positive values.

MORE INFORMATION
================

The GraphType properties that will not show negative data are in Visual
Basic version 1.0 are:

 - Stacked-bar types (2-D and 3-D)
 - Pie charts (2-D and 3-D)
 - Gantt charts
 - Log/Lin charts

MORE INFORMATION
================

Steps to Reproduce Behavior in Visual Basic Version 1.0

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool will appear in the
 toolbox.

3. Double-click the Graph tool to create a Graph custom control (Graph1).

4. In the Properties Bar, set the following properties for Graph1:

 - GraphStyle = 2 (Stacked Bar)
 - Height = 2000
 - Width = 3000
 - NumPoints = 2
 - NumSets = 2

Notice Graph1 has two sets of data, with two blue and green bars.
Change the values from the random defaults by changing the values for
the GraphData property on the Properties Bar. Enter 20, 40, 60, and 40.
You must enter these values individually; you cannot enter the values
all at once. Graph1 still contains two blue and two green bars.
GraphData will cycle back to the first point in the first set. Change
its value from 20 to -20. It will appear as though nothing happened;
the graph remains the same. If you change the next value, 40, to -80,
the bar to the right will grow higher. Now change the GraphStyle from
2 - Stacked to 0 - Default. You will now see the blue bars plotted
under the x-axis, reflecting their negative values.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Gauge: Incomplete Paint with Max-Min Difference > 100
Article ID: Q81462

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you use the Gauge custom control, a linear gauge (Style 0) will
fail to fill the leftmost column of pixels in the fill area whenever
Gauge1.Max - Gauge1.Min is greater than 100. Similarly, the bottom-most
row of pixels in the fill area of the horizontal gauge will not be
filled given the same condition. The column or row of pixels not
filled are cleared to the BackGround color because the inner area is
cleared using the BackGround color whenever the Gauge's fill area is
updated.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem in Visual Basic Version 1.0
--
1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (CTRL+F12). In the Files box,
 select the GAUGE.VBX custom control file. The Gauge tool will
 appear in the Toolbox.

3. Add the Gauge control to Form1, and set the Gauge's properties to
 the following:

 Properties Value

 BackColor &H00000000& (Black)
 ForeColor &H00C00C00& (Light Gray)
 Max 101
 Picture "SPEEDO.BMP"

 Note that the SPEEDO.BMP is not available in Visual Basic version 2.0.

4. Add the following code to the Gauge_Click event procedure.

 Sub Gauge1_Click ()
 For i=Gauge1.Min to Gauge1.Max
 Gauge1.Value = i
 Next i
 End Sub

5. From the Run menu, choose Start (ALT, F, N) to run the program.

Note that when you click the Gauge control, there is a black vertical
line in the leftmost part of the inner area that isn't filled.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Grid: Changing Font Properties Resets ColWidth, RowHeight
Article ID: Q81463

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

Changing the FontBold, FontName, or FontSize property of the Grid
custom control at run time will reset the Grid's ColWidth and
RowHeight properties to the default values for the newly specified
font property. As a result, you may need to reset the ColWidth and
RowHeight properties when you change a Font property at run time.

STATUS
======

This behavior is by design in Visual Basic version 1.0, but it was
modified in Visual Basic version 2.0 so that you no longer have
to reset the ColWidth and RowHeight properties when you change a
Font property at run time.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (CTRL+F12). In the Files box,
 select the GRID.VBX custom control file. The Grid tool will appear
 in the toolbox.

3. Add the Grid control to Form1 and set the Grid's properties as
 follows:

 Property Value

 Height 950
 Width 2650

4. Add the following code to the Form_Load event procedure.

 Sub Form_Load ()
 Grid1.ColWidth(0) = 2000
 Grid1.RowHeight(0) = 500
 Grid1.Row = 0
 Grid1.Col = 0

 Grid1.Text = "Howdy, Cowboy!!!"
 End Sub

5. Add the following code to the Grid_Click event procedure.

 Sub Grid_Click ()
 Grid1.FontBold = 0 ' Any of these statements will
 ' Grid1.FontSize = 12 ' cause the ColWidth and
 ' Grid1.FontName = "Courier" ' RowHeight to reset.
 End Sub

6. From the Run menu, choose Start (ALT, R, S) to run the program.

When you run the program, the upper left cell is large enough to contain
the phrase "Howdy, Cowboy!!!". Notice that clicking the Grid control to
change a Font property causes the cell size to reset to its default size,
and the phrase "Howdy, Cowboy!!!" is no longer completely displayed.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: VB Graph Custom Control: BottomTitle Text May Disappear
Article ID: Q81950

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

If the Height property of a graph made with the Graph custom
control is set to less than approximately 1.75 inches (depending on
monitor size and type), the text contained in the BottomTitle will
disappear from the graph.

CAUSE
=====

This behavior occurs because the Graph custom control chooses the text
font automatically based on control size. When the smallest size text
font is exhausted, it blanks out the BottomTitle text.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool appears in the
 toolbox.

3. Place a Graph control on Form1.

4. Size the Graph control to about 3 inches by 3 inches.

5. Change the Graph BottomTitle property to "This is a test." Notice
 that the title, "This is a test," is displayed at the bottom of
 the chart.

6. Notice that as you size the form to be shorter, the typeface scales
 down automatically. Eventually it will disappear off the graph.

 This occurs when the Height property is less than approximately
 1.75 inches (depending on monitor size and type), regardless of the
 form's ScaleMode setting.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Outline Transparent in 3D Button When Outline=False
Article ID: Q82160

The information in this article applies to:

- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

If you set the Outline property of a 3D Command Button custom control
to False, the outline will be transparent. Unless the 3D Command
Button control has the focus, it does not receive all the necessary
paint events (such as when the form is minimized then maximized), so
it is not painted correctly. Whatever is behind the form containing
the 3D Command Button control (usually the Windows desktop) may show
through the one pixel area where the outline would normally be when
the outline of the control becomes transparent.

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft Professional
Toolkit for Microsoft Visual Basic programming system version 1.0 for
Windows. This bug was corrected in the Professional Edition of
Microsoft Visual Basic version 2.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 THREED.VBX custom control file. The 3D Command Button tool appears
 in the toolbox.

3. Add a 3D Command Button control (Command3D1) to Form1.

4. Add another 3D Command Button control (Command3D2) in a different
 location.

5. Set the Outline property to False for both controls.

6. Minimize Form1.

7. Maximize Form1.

 Note that the control without the focus has a transparent outline
 until you select the control and it receives the focus.

8. Press F5 to run the program.

9. Minimize, then maximize Form1. This produces the same results.

Additional reference words: 1.00 2.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

FIX: Graph Custom Control: LabelText May Overlap
Article ID: Q82874

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

When you use the Graph custom control, the LabelText strings may
overlap. Graph has complete control over the LabelText placement on the
x-axis and the size of the font used to display these strings. Each
string contained in the LabelText array can be up to 80 characters long.
Therefore, depending on the size of the graph and the length of each
LabelText string, the labels may overlap on the graph.

STATUS
======

Microsoft has confirmed this to be a bug in the the Graph custom control
shipped with the products listed above. This problem was corrected in
the Graph custom control shipped with Microsoft Visual Basic version 3.0
for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool appears in the
 toolbox.

3. Add a Graph control (Graph1) to Form1.

4. Change the following properties for Graph1:

 Property Value
 --

 Top 0
 Left 0
 Width 3500
 Height 2500
 LabelText aaaaaaaaaaaaaaaaaaaa (20 a's)
 bbbbbbbbbbbbbbbbbbbb (20 b's)
 ccccccccccccccccccccccc (20 c's)

 dddddddddddddddddddd (20 d's)
 eeeeeeeeeeeeeeeee (17 e's)

As you set the properties in step 3, Graph1 will continuously update.
Due to the length of the LabelText strings, the labels will stagger
themselves on the graph. They can only stagger for three layers before
returning to the original level. When you enter the fourth and fifth
string (the d's and e's), the labels will overlap with the first and
second strings (the a's and b's).

If you reset the Graph1 Width property to 4000, the overlapping
disappears.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

FIX: Graph Custom Control Legends May Print Incorrectly
Article ID: Q82875

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

The Graph custom control allows you to place a legend on a graph so
that each set of numerical data has a corresponding LegendText property.
If one or more of the LegendText properties is a null string, Graph may
space the legend texts incorrectly or make them overlap.

WORKAROUND
==========

To work around the problem, add a string of text other than the null
string to the LegendText. If you do not want any text to appear, you
can add a string of spaces.

Note that this problem is related to your computer's configuration. It
can appear worse on some computers, or it may not appear at all.
Occasionally, the problem can be circumvented by changing the Width
and/or Height property of the graph. However, you cannot calculate the
amount necessary to correct the problem, and it may not prove to be a
permanent solution. For these reasons we do not suggest this method as
a viable workaround.

STATUS
======

Microsoft has confirmed this to be a bug in the Graph custom control
supplied with the products listed above. This problem was corrected
in the Graph custom control shipped with Microsoft Visual Basic
version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file. The Graph tool appears in the
 toolbox.

3. On Form1, add a command button (Command1) and a Graph control (Graph1).

4. Change the following properties:

 Control Property Value

 Command1 Caption Create Legends
 Graph1 NumSets 3
 Graph1 Width 3500
 Graph1 Height 2100

4. In the Command1 Click event, add the following code:

 Sub Command1_Click ()
 Graph1.LegendText = "legend 1"
 Graph1.LegendText = ""
 Graph1.LegendText = "legend 3"
 Graph1.DrawMode = 2 'redraws graph to show new legend texts
 End Sub

5. Press F5 to run the program, and click the Command1 button.

When you run the program and click the Command1 button, the graph
will update with the three LegendText properties. The second one is a
null string and does not appear, but its corresponding colored box
does. On most computers, this colored box appears lower than expected,
and may be partially overlapped by the legend's third colored box. By
changing the Width and/or Height property of Graph1, you can change
the placement of the second colored box.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

FIX: Grid Cell Border May Not Display with Some BackColors
Article ID: Q83759

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

There are some BackColor property values for the Grid custom control
that will cause the cell borders to become invisible. The borders of
Grid cells are light gray. If you set the BackColor of the Grid to
light gray, you will not be able to distinguish the borders from the
background of the Grid control.

WORKAROUND
==========

To work around this behavior, you should change the Grid default
BackColor(&H00000000&) to a color other than light gray.

STATUS
======

Microsoft has confirmed this to be a bug in the Grid custom control
supplied with the products listed above. This problem was corrected
in the Grid custom control shipped with Microsoft Visual Basic
version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Behavior

There are two ways to lose the outline of Grid cell borders:

 - Set the Grid BackColor property, at design time or run time, to light
 gray (&H00C0C0C0&).
 - Set the Windows Background color to gray from the Windows Control
 Panel. Note that users of your application may encounter this
 behavior simply by customizing the window colors from the Windows
 Control Panel.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus APrgGrap

FIX: Omitting Year for DateValue May Give Unexpected Results
Article ID: Q84115

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you omit the year portion of the DateValue function argument,
DateValue uses the current year from the computer's system date.
However, if you also pass an invalid day for the month, DateValue
interprets the month as the year and the day will default to 1. For
example, 3/30 will be interpreted as 3/30/92, but 3/44 will not
produce an error message, and will be interpreted as 3/1/44.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

The DateValue function returns a serial number that represents the
date of the string argument. The date string can be in various forms.
For example:

 3/30/92
 3/30/1992
 March 30, 1992
 Mar. 30, 1992
 30-Mar-1992
 30 March 92

The year portion of the string argument may be omitted, in which case
the current year of the computer's system date is used. For example,
3/30 will cause DateValue to return the serial number that represents
3/30/92 (if 1992 is the year of the system date).

However, if the year is omitted and the day is not a valid day for
that month of the current year, the month will be interpreted as
the year and the day will default to 1. So 3/44 will be interpreted
as 3/1/44.

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT,

 F, N) if Visual Basic is already running. Form1 is created by default.

2. Add the following code to the Form_Load event procedure:

 Sub Form_Load ()
 Debug.Print "3/30 ="; DateValue("3/30")
 Debug.Print "3/30/92 ="; DateValue("3/30/92")
 Debug.Print
 Debug.Print "3/44 ="; DateValue("3/44")
 Debug.Print "3/1/44 ="; DateValue("3/1/44")
 End Sub

3. Press F5 to run the program.

Notice in the Immediate window that the serial numbers returned by the
DateValue function for 3/30 and 3/30/92 are the same (assuming 1992 is
the current year of the system date), and the serial numbers for 3/44
and 3/1/44 are the same. Also, no error message was produced.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: APrgOther

FIX: Toolkit 3-D Option & Check Controls Don't Repaint in 3.1
Article ID: Q84475

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Visual Basic programming system
 for Windows, version 1.0

SYMPTOMS
========

The 3-D Option Button and 3-D Check Box custom controls in the
THREED.VBX file do not paint properly if their Value property is
changed while the form is loaded (hidden) before being shown. The
caption area appears transparent (not painted) until the user clicks
it or until the Value is changed in code after the form is shown. This
problem occurs only in Windows version 3.1, not Windows version 3.0.

CAUSE
=====

This problem occurs because of changes in the Windows GDI routines
to optimize screen refresh performance. For that reason, Windows
version 3.1 eliminates what it considers redundant paints.

WORKAROUND
==========

You can work around this problem by assigning the Caption property of
the affected controls to themselves when the form is shown again. This
code would be placed after the Form2.Show. For example:

 Form.Control.Caption = Form.Control.Caption

This forces a refresh of the area not being painted. Here are the steps
to implement this workaround:

1. Add the following code to the Command2_Click event:

 Sub Command2_Click ()
 Option3D3.Value=1
 Check3D3.Value=1
 Form2.Show
 Form2.Option3D1.Caption = Form2.Option3D1.Caption
 Form2.Option3D2.Caption = Form2.Option3D2.Caption
 Form2.Option3D3.Caption = Form2.Option3D3.Caption
 Form2.Check3D1.Caption = Form2.Check3D1.Caption
 Form2.Check3D2.Caption = Form2.Check3D2.Caption
 Form2.Check3D3.Caption = Form2.Check3D3.Caption
 End Sub

2. Run the program. Change the values by clicking some checks and
 options.

3. Click Form2 to hide it.

4. Click the Second Show and notice that the paint is now handled
 correctly.

You can also work around this problem by explicitly doing a SetFocus
call on the control(s) in question. If you are using control array(s),
it should be fairly easy. For example, if you had a five-element
control array of Check3D1 check boxes, use this code:

 Sub Form_Paint()
 For a% = 0 to 4
 Check3D1(a%).SetFocus
 Next
 End Sub

RESOLUTION
==========

Sheridan Software, manufacturer of the 3-D Check Box and 3-D Option
Button controls, has issued an update to THREED.VBX that corrects the
painting problems experienced in Windows version 3.1. To obtain this
update, call the Sheridan BBS at (516) 753-5452 (2400 baud) or (516)
753-6510 (9600 baud).

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above
when used in Microsoft Windows version 3.1. This problem was corrected
in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default. Add a
 second form (Form2).

2. From the File menu, choose Add File. In the Files box, select the
 THREED.VBX custom control file. The 3-D tools appear in the Toolbox.

3. Add the following controls to the forms, and set their properties as
 indicated:

 Form1:

 Control Property Setting
 --
 Form FormName Form1
 Command button CtlName Command1
 Command button Caption First Show
 Command button CtlName Command2

 Command button Caption Second Show

 Form2:

 Control Property Setting
 --
 Form FormName Form2
 3-D Check box CtlName Check3D1
 3-D Check box CtlName Check3D2
 3-D Check box CtlName Check3D3
 3-D Option button CtlName Option3D1
 3-D Option button CtlName Option3D2
 3-D Option button CtlName Option3D3

4. Add the following code to the Command1_Click event procedure for Form1:

 Sub Command1_Click
 Form2.Option3D1.Value=1 ' Set values for first show.
 Form2.Check3D1.Value=1
 Form2.Show
 End Sub

5. Add the following code to the Command2_Click event procedure for Form1:

 Sub Command2_Click ()
 Form2.Option3D3.Value=1
 Form2.Check3D3.Value=1
 Form2.Show
 End Sub

6. Add the following code to the Form_Click event procedure for Form2:

 Sub Form_Click ()
 Form2.Hide
 End Sub

7. Run the program.

When you click the First Show button, the paint occurs properly for
all controls, including the controls whose values were changed in code
prior to the show. On Form2, click an option box and a check box to
change Values.Click on Form2 to hide the form. Click the Second Show
button. The controls whose values changed prior to the form being
shown are only painted around the area with the check box or option
box. The rest of the area is unpainted.

Reference(s):

Sheridan Software Systems, Inc.
65 Maxess Road
Melville, NY 11747

Phone: (516) 753-0985
Fax: (516) 293-4155

Additional reference words: 1.00 2.00 3.00 3.10
KBCategory:

KBSubcategory: PrgCtrlsCus

FIX: Toolkit Setup Routine Causes Out of String Space Error
Article ID: Q85155

--
The information in this article applies to:

 - Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0
--

SYMPTOMS
========

If you try to copy a file using the Setup routines provided with the
Microsoft Professional Toolkit for Microsoft Visual Basic version 1.0
for Windows, and the the source file is just under 64K in size, you
will receive an "Out of String Space" error.

CAUSE
=====

This error occurs because of the way Visual Basic 1.0 handles
variable-length strings.

When Visual Basic makes the following two assignments

 FileData = String$(32500, 32)
 FileData = String$(32767, 32)

the data from the first assignment is not removed from memory until
the memory space for the second allocation is obtained. Setup has a
problem with this because when your file is just under a 64K segment
size, there is not enough memory in the segment to make the second
allocation because of other local variable length strings.

In the Setup example provided with the Professional Toolkit in the
global code module SETUP1.BAS, locate the subprogram CopyFile. About
15 lines from the bottom of this subprogram, find the following
assignment:

 FileData = String$(BlockSize, 32)

Because BlockSize is equal to 32767 in this assignment, if the
following previous assignment (about six lines up)

 FileData = String$(LeftOver, 32)

was near the 32767 mark, you will get the error discussed above.

WORKAROUND
==========

To avoid this error, add the following line ABOVE the BlockSize
assignment:

 FileData = ""

This will free up the string space, thus ensuring the successful
completion of the assignment:

 FileData = String$(BlockSize, 32)

RESOLUTION
==========

This problem doesn't occur in Visual Basic version 2.0 for Windows,
which was enhanced with better memory management.

Additional reference words: 1.00 2.00 setup kit
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Grid Custom Control RemoveItem Does Not Update RowHeight
Article ID: Q85436

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0
- Microsoft Professional Toolkit for Microsoft Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

If you change the RowHeight property of a Grid control, and then delete
a row by using the RemoveItem method, the grid adjusts the height of the
rows below the deleted row to their default size. However, it does not
update the RowHeight property for those rows. If you reset the RowHeight
property to its current value, the Grid does not re-draw the rows to
the size given by RowHeight.

WORKAROUND
==========

To work around the problem, set RowHeight to a different value and
then change it back to the original value.

For example, replace the code shown in the Command1 Click event in step
6 of the More Information section below with this code:

 Sub Command1_Click ()
 For count% = 0 To Grid1.Rows - 1
 Grid1.RowHeight(count%) = 399
 Next count%

 For count% = 0 To Grid1.Rows - 1
 Grid1.RowHeight(count%) = 400
 Next count%
 End Sub

STATUS
======

Microsoft has confirmed this to be a bug in the Grid custom control
supplied with the products listed above. This problem was corrected
in the Grid custom control shipped with Microsoft Visual Basic version
3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or from the File menu, choose New Project (ALT,
 F, N) if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRID.VBX custom control file. The Grid tool will appear in the toolbox.

3. Place a Grid control (Grid1) on Form1.

4. Set the Grid1 Rows and Cols properties to 5.

5. Place two command buttons (Command1 and Command2) on Form1.

6. Place the following code in the Command1 Click event:

 Sub Command1_Click ()
 For count% = 0 To Grid1.Rows - 1
 Grid1.RowHeight(count%) = 400
 Next count%
 End Sub

7. Place the following code in the Command2 Click event:

 Sub Command2_Click ()
 Grid1.RemoveItem 1
 For count% = 0 To Grid1.Rows - 1
 Debug.Print Grid1.RowHeight(count%)
 Next count%
 End Sub

8. Press F5 to run the program. Click the Command1 button to set
 the RowHeight properties to 400. Click Command2 to remove a row.

 Notice that the grid rows are re-sized even though the output in the
 Immediate window shows that the RowHeight property has not changed.

9. Click Command1. Note that the rows do not re-size.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: GP Fault or UAE When Unload Form in DragOver Event
Article ID: Q93233

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

If you place an Unload statement in the DragOver event procedure, a general
protection (GP) fault or Unrecoverable Application Error (UAE) occurs
depending on which version of Windows you are using.

WORKAROUND
==========

Do not place an Unload statement in a DragOver event procedure, or use
code to check to make sure that you are done dragging before trying to
unload a form. For example, you might use a Timer control. Enable the
timer in the DragOver event procedure by setting it to True. Then place
the Unload statement in the Timer1_Timer event procedure, and disable the
timer by setting the Enabled property to False in the Unload event
procedure.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
programming system for Windows, version 2.0. This problem was corrected
in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu choose New Project if
 Visual Basic is already running. Form1 is created by default.

2. Place a Label (Label1) on Form1.

3. Set the DragMode property of Label1 to 1(= Automatic).

4. Add the following code to the Form_DragOver event procedure:

 Unload Form1

5. Press the F5 key to run the example and try to drag Label1. A GP fault
 or UAE occurs.

Additional reference words: 2.00 3.00 GPF
KBCategory:

KBSubcategory: PrgCtrlsStd PrgCtrlsCus

FIX: UAE/GPF Occurs If EXE Uses Variable Length String in Type
Article ID: Q93256

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

An Unrecoverable Application Error (UAE) or general protection (GP fault
can occur in the resulting executable program under the following
conditions:

 - Your program assigns text to a variable length string
 - The variable length string is an element of a user defined type
 - You ran the program in the Visual Basic environment immediately before
 you made the executable version of the program.

The UAE or GP fault occurs when the EXE is run after the VB.EXE environment
has been closed. If the project used to generate the EXE is still loaded
in the VB.EXE environment, the EXE will run without incident.

WORKAROUND
==========

Load the project and compile it (make the EXE file) without executing the
project first. This will create an EXE which will operate without causing
the GP fault or UAE.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
programming system for Windows, version 2.0. This problem was corrected
in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start VB.EXE.

2. Add Module1.BAS to the project by selecting New Module... from the
 File menu.

3. Add the following code in Module1.BAS:

 Type VBSAMPLE
 X as String
 End Type
 Dim Y as VBSAMPLE

 Sub main ()
 Y.X = "hello"
 End Sub

4. From the Options menu, choose Project... Double-click the text 'Form1.'
 A dropdown box should display the options 'Sub Main' and 'Form1.'
 Select 'Sub Main.' Then choose the OK button.

5. Press the F5 key to run the example. Then from the File menu, choose
 Make EXE... Name the executable T1.EXE.

6. Close VB.EXE. (You do not need to save the project, unless you want
 to use it for future purposes.)

7. From the File Manager, try to run the T1.EXE program. This results
 in a UAE or GP fault and the loss of the mouse cursor.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: UAE/GPF When Use Static Array in Event Procedure After F5
Article ID: Q93257

The information in this article applies to:

- The Standard Edition of Microsoft Visual Basic for Windows, version 2.0

SYMPTOMS
========

Under very specific conditions, if you add a Static array to an event
procedure, a General Protection Fault (GPF) or Unrecoverable Application
Error (UAE) can occur. This problem is described in further detail below.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard Edition of
Microsoft Visual Basic for Windows, version 2.0. This problem was corrected
in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start VB.EXE.

2. Press F5 to run the current project and then choose the 'End' option fro
 the 'Run' menu to stop.

3. Add the following line of code to the Form_Load event procedure of
 Form1:

 static F(10) As String ' ** Do not hit the Enter or Return key
 ' ** to proceed to the next line. Keep
 ' ** the focus on the same line, you
 ' ** should not see any blue colored
 ' ** text, you should only see black text.

4. With the cursor on the same line as the 'static' statement, minimize the
 code window by clicking the minimize arrow of the code window.

5. Press the F5 key to run the project and a GPF or UAE occurs. However,
 if you press the Enter key after typing the line in the Form_Load event
 procedure, you will not encounter this problem. You should now see the
 words 'Static', 'As' and 'String' in the color of blue text. This
 informs you that the line of code has been parsed by the P-code
 interpreter.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: UAE/GPF When VB Control Name Identical to Property Name
Article ID: Q93424

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 for Windows, version 2.0

SYMPTOMS
========

If you try to change the Name of a control to the same name as an existing
Property name, an Unrecoverable Application Error (UAE) or General
Protection (GP) fault occurs when you attempt to run the program.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard and
Professional Editions of Microsoft Visual Basic for Windows, version 2.0.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start VB.EXE.

2. Add a combo box and a text box to Form1.

3. Press the F4 key to activate the Properties Window. Select the Name
 property of the Text1 text box. Change the name from 'Text1' to 'Text'.

4. Add the following code to the Form_Load event procedure of Form1:

 Forms(0).text.height = 30
 Print Forms(0).combo1.text

5. Press the F5 key to run the program, and a UAE/GP Fault error occurs.

To prevent this error from occurring, change the Name property back to
'Text1'.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: UAE/GPF When Square Brackets '[]' Around MSGBOX Function
Article ID: Q93425

The information in this article applies to:

- Standard Edition of Microsoft Visual Basic for Windows, version 2.0

SYMPTOMS
========

If you enclose an identifier which has a total length of 40 or more
characters in square brackets ("[]"), an Unrecoverable Application Error
(UAE) or General Protection (GP) fault occurs.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard Edition of
Microsoft Visual Basic for Windows, version 2.0. This problem was corrected
in Microsoft Visual Basic version 3.0 for Windows.

Square brackets are used when you have an identifier with the same name as
a reserved word, and you need to specify that this occurrence of the word
is an identifier, and not a use of a reserved word). Identifiers in Visual
Basic for Windows, version 2.0 are limited to 40 characters in length.

MORE INFORMATION
================

The following steps can be used to reproduce this problem:

1. Start VB.EXE.

2. Select the New Module routine from the File menu to add Module1.BAS.

3. Add the following to the general declarations section of Module1.BAS:

 ' The following statement should appear on one line.
 [BUTTON = MSGBOX("SOME OR ALL OF THE DATES ARE OUT OF RANGE OR
 WERE NOT PROPERLY FORMATTED AND HAVE BEEN RESET TO TODAY'S DATE.
 THE VALID RANGE FOR DATES IS " + RANGE + " AND SHOULD BE IN THE
 FORMA]

4. Note the above section of text is on four lines. Place the cursor at the
 end of the first line and press the Delete key, this appends the second
 line to the end of the first line. Press the End key to place the cursor
 at the end of the new first line, and then press the Delete key again,
 this should append the third line to end of the first line. Proceed on
 by pressing the End key one more time to place the cursor at the end of
 the first line. Then press the Delete key again, and this should append
 the fourth and last line to the first line.

5. With the cursor at the end of new long first line, press the Enter
 or Return key. A UAE or GPF occurs.

 Note: If you try the example above in an event procedure of a procedure
 defined by the user, the same problem occurs.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: GPF/UAE When Converting String > 32K to Double Precision
Article ID: Q93435

The information in this article applies to:

- The Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0

SYMPTOMS
========

When converting a large string that is greater than 32K into a double
precision number, a General Protection (GP) fault or Unrecoverable
Application Error (UAE) can occur. An example of this problem is described
in detail further below. This problem also occurs with the functions CCur,
CInt, CLng, CSng as well as CDbl.

WORKAROUND
==========

To work around the problem, break the string into two parts, an x part and
a y part. Then you can print both parts one after the other and the error
does not occur because each part is less than 32K. Here is an example:

 Show
 x = String(20000, "1")
 y = String(20000, "1")
 Print CDbl(x);CDbl(y)

STATUS
======

Microsoft has confirmed this to be a problem in the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

The following steps can be used to reproduce this problem:

1. Start VB.EXE.

2. Add the following code to the Form_Load event procedure:

 Show
 x = String(40000, "1")
 Print CDbl(x)

3. Press the F5 key to run the example and a GPF or a UAE occurs.

Additional reference words: 2.00 3.00
KBCategory:

KBSubcategory: EnvtDes

FIX: VB Painting Problem Occurs When Low on System Resources
Article ID: Q93436

The information in this article applies to:

- The Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0

SYMPTOMS
========

Painting problems can occur if you have a large project with many forms,
or you have a small project and are low on system resources at the time the
small project is loaded.

CAUSE
=====

These painting problems occur in the Visual Basic programming environment.
They usually occur after the environment displays an "Out of Memory" error.
This error may mean that your system is very low on system resources and
the Visual Basic for Windows programming environment is unable to use any
additional system resources to paint the next form or control.

An "Out of Memory" error can occur while coding in the design mode if you
place too much code or text into a module or form; there is a limit of 64K
of code for each form and module. Or it can occur if you try to add another
form or control to a project and are too low on system resources to perform
the operation.

WORKAROUND
==========

It is a good idea to stop adding forms, controls, or code once you get this
error while the environment is in design mode. You need to close some of
your other Windows applications or reduce the number of forms or controls
that take up resources. A way to obtain the amount of available resources
is to check the About Program Manager... dialog box in the Help menu of the
Program Manager. This dialog box displays a percentage of the system
resources; if the percentage is getting below 10% or so, you are getting
close to receiving an "Out of Memory" error in the Visual Basic for Windows
programming environment.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard and
Professional Editions of Microsoft Visual Basic for Windows, version 2.0.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start VB.EXE.

2. Press the far left button on the Title Bar that contains a picture
 resembling a form icon and Form2 should display.

3. Repeat step 2 until you get an "Out of Memory" error. Note that the
 number of forms that can be displayed before getting this error depends
 on the amount of free system resources that you started with.

4. Once you get this error, try to bring up the Menu Design Windows, by
 selecting the Window menu. Or try to move the Toolbox, Title Bar or
 other Windows that are part of the Visual Basic for Windows programming
 environment. Moving any of these tools may result in a painting problem.

5. Visual Basic for Windows tries to continue working even after the "Out
 of Memory" error occurs which ends up causing the painting problem.
 The painting problem occurs because Windows has no resources to give to
 the Visual Basic for Windows programming environment to perform a
 repaint of the screen.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Result Differs When Comparing Single w/ Double Precision
Article ID: Q93437

--
The information in this article applies to:

- The Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
--

SYMPTOMS
========

When you compare a real number stored as a Single precision variable to the
same real number stored as a Double precision variable, the result may be
that they are not equal. Storage of real numbers is different within the
two data types. Therefore, the number may be represented differently, so
a check for equivalence can return false.

WORKAROUND
==========

In Microsoft Visual Basic version 2.0 for Windows, this problem occurs
only on computers that do not have coprocessors. If your computer does
not have a coprocessor, add some extra code when comparing data stored
in Single data types to those stored in Double data types.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
It was corrected in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce the Problem

1. Start VB.EXE.

2. Add the following in the Form_Click event procedure of Form1:

 Print 12.3! = 12.3# '** Note the '#' sign disappears.

3. Press the F5 key to run the example, and click Form1. If the
 result is '0' then a coprocessor is not installed, if the result
 is '-1' then a coprocessor is installed or you are on a 486 with a
 built in coprocessor.

Note if you run this same example in Microsoft Visual Basic for Windows,
version 1.0, the result is '0' with or without a coprocessor installed.

Additional reference words: 2.00 3.00
KBCategory:

KBSubcategory: EnvtDes

FIX: GPF/UAE When Closing DDE Application from the Task List
Article ID: Q94166

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
=======+

A General Protection (GP) fault or an Unrecoverable Application Error (UAE)
occurs under the following conditions:

- A Visual Basic application is actively communicating via a Dynamic
 Data Exchange (DDE) link
- The Visual Basic application is acting as the destination (or client) in
 the DDE conversation.
- You close the application by choosing End Task from the Windows task list
 while the DDE link is still active.

WORKAROUND
==========

To work around the problem, ensure that the DDE conversion terminates
before the Visual Basic application terminates by setting the LinkMode
property to zero in an event other than the Unload or QueryUnload events
for Form1. To do this, you need to enable a timer within the Form_Unload
(or Form_QueryUnload) event. Within the Timer event, set the LinkMode
property to zero to terminate the DDE conversation.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

The following steps reproduce this problem:

1. Run Microsoft Excel. Sheet1 is created by default.

2. From the Edit menu, choose Copy to copy cell R1C1 (row 1, column 1) to
 the clipboard.

3. Run Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

4. Add a Text box (Text1) to Form1.

5. With the Text box highlighted, choose Paste Link from the Edit menu
 (ALT, E, L).

6. Type some text in R1C1 in Excel. You should see the result in Text1 of
 Visual Basic.

7. Make an executable program in Visual Basic by choosing Make .EXE File
 from the File menu. Name the executable file P1.EXE.

8. From the Windows Program Manager or Windows File Manager, run P1.EXE.

9. Press CTRL+ESC to bring up the Task List.

10. Select Project1 from the list of programs running.

11. From the Task List, choose the End Task button.

At this point, a GP fault or UAE occurs at address 0011:026A.

To summarize, you can avoid the entire problem by inserting the following
steps (4a - 4c) after step 4 shown above. Then redo steps 1 through 11.

4a. Add a timer control (Timer1) to Form1
4b. Add the following code to the Form_Unload event of Form1:

 Sub Form_Unload (Cancel As Integer)

 'Cause the DDE conversation to terminate from within the Timer
 'event
 Timer1.Interval = 1
 Timer1.Enabled = True

 'Allow the timer event to occur
 DoEvents

 End Sub

4c. Add the following code to the Timer1_Timer event:

 Sub Timer1_Timer ()
 'Terminate the DDE conversation
 Text1.LinkMode = 0

 'Timer has served its purpose, so disable it.
 Timer1.Enabled = False
 End Sub

Additional reference words: 1.00 2.00 3.00 GPF
KBCategory:
KBSubcategory: IAPDDE EnvtRun

FIX: GPF/UAE w/ Stop Command in Event Procedure & Deleted Sub
Article ID: Q94167

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

In Microsoft Visual Basic version 2.0 for Windows, a General Protection
(GP) fault or an Unrecoverable Application Error (UAE) occurs when you
attempt to delete a Sub or Function when in break mode. This problem does
not occur in Microsoft Visual Basic version 1.0 for Windows.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

The following steps reproduce the problem:

1. Run Visual Basic, or if Visual Basic is already running choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Enter one line of code into the Form_Load event procedure of Form1:

 Stop

3. In the general section enter the following procedure:

 Sub YourName ()
 '** no code is needed
 End Sub

4. From the Run menu, choose Start (ALT, R, S). After execution is stopped,
 go to the YourName procedure, highlight the entire Sub, and then delete
 it.

5. You will receive this error: "You will have to restart your program
 after this edit-proceed anyway?" Choose the OK button.

At this point, a GP fault or UAE occurs.

This problem occurs only when you delete the Sub or Function that you were
viewing before you ran the program. If you had been viewing the Form_Load
event instead of Sub YourName before running the above program, the problem
would not have occurred.

Additional reference words: 1.00 2.00 3.00 GPF
KBCategory:
KBSubcategory: EnvtDes

FIX: GPF When Pasting 8 Bit .DIB File into Anibutton Control
Article ID: Q94168

The information in this article applies to:

- Standard Edition of Microsoft Visual Basic for Windows, version 2.0

SYMPTOMS
========

If you directly paste a 8 bit color .DIB picture from Paint Brush that
comes with Windows, versions 3.0 or 3.1 into the AniButton.VBX control with
the Standard Edition of Microsoft Visual Basic for Windows, version 2.0 you
may receive a General Protection (GP) fault when using Windows, version
3.1 or an Unrecoverable Application Error (UAE) when using Windows,
version 3.0. A GP fault or UAE does not occur if you load the .DIB picture
through the Picture property in design mode. Instead, an "Invalid format"
error is returned.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard Edition of
Microsoft Visual Basic for Windows, version 2.0. This problem was corrected
in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

The following steps can be used to reproduce this problem:

1. Start Paint Brush (Pbrush.EXE) from the Windows subdirectory.

2. Open and load a 8 bit color .DIB file into Paint Brush from the File
 menu.

3. Click the upper right hand icon that looks like a pair or scissors to
 cut out the picture of the 8 bit color .DIB file. Cut out a copy of the
 picture.

4. Select the Copy routine from the Edit menu to make a copy of the clipped
 area.

5. Start VB.EXE.

6. Select Add File... from the File menu to add the Anibutton.VBX control
 to the project.

7. Place the Antibutton control on Form1.

8. Press the F4 key to bring up the Properties Window. Select the Frame
 property and press the '...' button.

9. Once the '...' button is pushed, the 'Select Frame' Window is displayed.

 Press the Paste key, and an UAE or GPF occurs.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: VB MCITEST CD Player Sample Displays Incorrect Track
Article ID: Q94185

The information in this article applies to:

 - The Professional Edition of Microsoft Visual Basic for Windows,
 version 2.0

SYMPTOMS
========

The CD Player component of the MCITEST.MAK sample program incorrectly
displays random numbers in the field labeled "Track."

STATUS
======

Microsoft has confirmed this to be a bug in the MCITEST sample
application supplied with the Professional Edition of Microsoft Visual
Basic for Windows, version 2.0. This problem was corrected in Microsoft
Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

To correct the above problem, add the following code to module GLOBAL.BAS:

 Global Const MCI_FORMAT_TMSF = 10

Steps to Reproduce Problem

1. Run Visual Basic.

2. From the File menu, select Open Project (press ALT, F, O). Select
 MCITEST.MAK from the directory VB\SAMPLES\MCI, where "VB" is
 subdirectory where Visual Basic is located.

3. From the Run menu, select Start.

4. From the Devices menu, select CDAudio, click the Load button, and
 click the Play button. The track number starts at 1, then incorrectly
 displays random numbers.

Additional reference words: 2.00 3.00 multimedia
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: GPF/UAE After Undoing Edit of Option Explicit Statement
Article ID: Q94216

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

A General Protection (GP) fault or Unrecoverable Application Error (UAE)
occurs if you attempt to undo the edit of an Option Explicit statement
while in break mode.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

The following steps reproduce this problem:

1. Run Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.
2. Under the general declarations section for Form1, enter the statement
 "Option Explicit" if it is not already there.
3. From the Run menu, choose Start (ALT, R, S)
4. Press CTRL+BREAK to break execution.
5. Edit the Option Explicit statement in the general declarations section
 of Form1 by pressing the BACKSPACE key to delete the last character
 from the statement. In other words, delete the t so that you end up with
 Option Explici.
6. From the Edit menu, choose Undo (ALT, E, U) to undo the edit.
7. Choose the Cancel button when you see this message: "You will have to
 restart your program after this edit-proceed anyway?"
8. Choose the Cancel button again when you see the same message again: "You
 will have to restart your program after this edit-proceed anyway?"

At this point, you will experience a GP fault in Windows version 3.1 or a
UAE in Windows version 3.0.

Additional reference words: 1.00 GPF 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: GPF/UAE When Assign NULL to VBM_GETPROPERTY of type HLSTD
Article ID: Q94217

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

When you return a NULL in response to the VBM_GETPROPERTY message for a
custom property of data type HLSTR, a General Protection (GP) fault or
Unrecoverable Application Error (UAE) occurs.

Because of this problem, you cannot simply use the PF_fGetData flag with
a custom property of data type HLSTR. What's more, you must use the
PF_fGetMsg flag to ensure that the value of the property is never set to
NULL. This information is taken from the CDK.TXT file provided with
Microsoft Visual Basic Professional Edition version 2.0 for Windows.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
Professional Edition version 2.0 for Windows. This problem was corrected
in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Below is the information provided in the CDK.TXT file:

DT-HLSTR Properties and PF_fGetData

DT_HLSTR properties cannot use PF_fGetData by itself. They must also
use PF_fGetMsg to avoid returning a NULL hlstr. See the MyTag property
in the PIX example (PIX.C) for a guide for how to properly declare a
HLSTR property and process the VBM_GETPROPERTY message.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: TlsCDK

FIX: Using Graphics Method on DB Objects May Cause GPF/UAE
Article ID: Q94242

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

You may receive a General Protection (GP) fault or Unrecoverable
Application Error (UAE) when you try to perform a graphics method on a
Database object in Microsoft Visual Basic version 2.0 for Windows.

This problem could happen under many different circumstances. There are
eight graphics methods and eight database functions yielding a total of 64
different possible combinations each of which may cause a GP fault or UAE.

CAUSE
=====

The Database functions are not designed to support graphics methods
(methods that create graphics in an application). No graphics methods are
mentioned in the ODBC section of the "Microsoft Visual Basic Professional
Features" manual, version 2.0. However, instead of a GP fault or UAE, you
should see an error message such as, "Method not applicable" or error 421.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

The following steps reproduce the problem:

1. Start VB.EXE.

2. Add the following code to the Form_Click event procedure of Form1:

 Dim mydb as Database
 Set mydb = OpenDatabase("NWIND", False, False, Connect)
 mydb.Print "This is a test"

3. Press the F5 key to run the example, and click Form1.

The result may be a GP fault or a UAE.

Additional reference words: 2.00 3.00 GPF
KBCategory:
KBSubcategory: APrgDataODBC

FIX: Adding Watch Point in VB May Cause UAE in Windows 3.0
Article ID: Q94243

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows,
 versions 2.0 and 3.0
- Windows version 3.0

SYMPTOMS
========

An Unrecoverable Application Error (UAE) can occur in Windows version 3.0
if you try to add a Watch point for an expression involving a property of
the PICCLIP control.

However, performing the same steps in Windows version 3.1 does not cause
a general protection (GP) fault.

This problem does not occur when using the Microsoft Visual Basic version
1.0 Professional Toolkit for Windows because version 1.0 does not support
watch points.

STATUS
======

Microsoft has confirmed this to be a bug in the Professional Edition of
Microsoft Visual Basic for Windows, versions 2.0 and 3.0. This problem is
corrected by using Windows version 3.1.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File (ALT, F, D). Add the PICCLIP.VBX
 custom control file. This file should be located in the \WINDOWS\SYSTEM
 directory.

3. Place a Picture control (Picture1) and a PicClip (PicClip1) control on
 Form1.

4. Add the picture PASTEL.DIB to the picture property of the Picclip1
 control. This file should be in the Visual Basic (\VB) directory.

5. Add the following code to the Form_Load event procedure of Form1:

 Sub Form_Load ()
 PicClip1.ClipX = 0
 PicClip1.ClipY = 0

 PicClip1.ClipWidth = PicClip1.Width
 PicClip1.ClipHeight = PicClip1.Height
 PicClip1.ClipWidth = PicClip1.Width
 PicClip1.StretchX = PicClip1.Width + 10
 PicClip1.StretchY = PicClip1.Height + 10
 Picture1.Picture = PicClip1.Clip
 End Sub

6. Press the F8 key to single step through the above code. Stop at the
 second line of code (PicClip1.ClipY = 0).

7. From the Debug menu, choose Add Watch (ALT, D, A). Enter
 PicClip1.StretchX as the watch expression.

8. From the Add Watch dialog box, choose OK.

9. From the Run menu, choose Continue (ALT, R, C) or press the F5 key
 to continue running. This will result in a UAE.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: GPF/UAE When Large Tag w/ MultiSelect of 30+ Controls
Article ID: Q94244

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

If you repeatedly select multiples of several controls on a form, and
then attempt to set the Tag property of the controls to a long string,
Visual Basic may display an out of memory error followed by a General
Protection (GP) fault or Unrecoverable Application Error (UAE).

This problem occurs only in the Visual Basic development environment
(VB.EXE), not when running the application.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

To reproduce the problem, repetitively select 30 or more controls and then
enter a considerable amount of text for the Tag property. The likelihood of
this problem occurring goes up with the number of controls selected and the
amount of text assigned to the Tag property.

Steps to Reproduce Problem

1. Start Visual Basic or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. Add 30 or more controls to Form1.

3. Select all of the controls on Form1.

4. Assign a large amount of text to the Tag property of the controls on
 Form1. For example, hold down the A key for about one minute to assign
 a long string of A characters to the Tag property.

5. Repeat steps 3 and 4 above. Eventually, you will receive an out of
 memory error. After you get the error, Visual Basic will stop responding
 (hang) by continually displaying the out of memory message or you will
 encounter a GP fault or a UAE.

Additional reference words: 2.00 3.00 GPF
KBCategory:

KBSubcategory: EnvtDes

FIX: Setting Add Watch May Cause Your Program to Reset
Article ID: Q94290

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

You may encounter the error message, "Module has changed; must reset"
after which the program ends and returns to design mode. Setting
a watch point contributes to the problem.

In general, this problem occurs under the following conditions:

 - A global, form, or module-level watch point is set.
 - The watch point refers to a Visual Basic object such as a form or
 control.
 - The watch point is evaluated from break mode when a modal form is
 showing.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This bug was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or from the File menu, choose New Project
 (ALT, F, N) if Visual Basic is already running.

2. From the File menu, choose Open Project and open the sample program
 MDINOTE.MAK. This sample is located in the SAMPLES\MDI directory in your
 Visual Basic directory.

3. From the Debug menu, choose Add Watch (ALT, D, A).

4. In the Add Watch dialog, enter Forms.Count as the watch expression and
 choose the OK button.

5. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the sample.

6. From the File menu of the MDINOTE sample program, choose Open
 (ALT, F, O).

7. From the Visual Basic Debug menu, choose Break (ALT, R, k) or press

 CTRL+BREAK to break execution.

8. Locate the cmdcancel_Click event procedure within FILEOPEN.FRM.
 From the Debug menu, choose Toggle breakpoint (ALT, D, T) or press the
 F9 key to set a break point on the following statement:

 FileForm.txtFileName.Text = Empty

9. From the Run menu, choose Continue (ALT, R, C) or press the F5 key to
 continue running.

10. Choose the Cancel button. Execution stops at the break point you set
 in step 8.

11. From the Debug menu, choose Single step (ALT, D, S) or press the F8 key
 to single step.

12. Repeat step 11 until you receive the following error message:

 Module has changed; must reset

13. Choose the OK button, and Visual Basic will reset from break mode and
 return to design mode.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Setting Add Watch May Cause GP Fault or UAE
Article ID: Q94292

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

You may encounter the error message, "Module has changed; must reset"
after which the program ends and returns to design mode. Setting a
watch point contributes to the problem. In one case, you may receive
the error and then get a general protection (GP) fault or an unrecoverable
application error (UAE).

In general, this problem occurs under the following conditions:

 - A global, form, or module-level watch point is set.
 - The watch point refers to a Visual Basic object such as a form or
 control.
 - The watch point is evaluated from break mode when a modal form is
 showing.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

The following steps reproduce the problem:

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running.

2. From the File menu, choose New form (ALT, F, F). Form2 will be created.

3. Add the following code to the Form_Click event procedure of Form1:

 Sub Form_Click ()
 Form2.Show 1 '** Show the form modal
 End Sub

4. From the Debug menu, choose Add watch (ALT, D, A).

5. From the Add Watch dialog, add the expression Forms.Count, select
 the Form/Module context option for Form1.Frm, and choose the OK
 button.

6. Add the following code to the Form_Click event procedure of

 Form2, and press the F9 key to set a break point on the End Sub
 statement.

 Sub Form_Click()
 Form2.Hide
 End Sub '** Set the break point on this line, press F9

7. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the sample program.

8. Click in the Form1 form. Form2 will be displayed.

9. From the Debug menu, choose Break (ALT, D, K) or press CTRL+BREAK
 to break execution. This causes the watch expression to be evaluated.

10. From the Run menu, choose Continue (ALT, R, C) or press the F5 key
 to continue.

11. Click in the Form2 form. The click event of the Form2 form will cause
 execution to break.

12. From the Debug menu, choose Single step (ALT, D, S) or press the F8
 key to single step.

13. Repeat step 12 until you see the "Module has change; must reset" error
 message.

14. Choose the OK button.

This results in a GP fault or UAE. In the case of a GP fault, the GP fault
normally occurs at address 0001:7F8A in module VB.EXE.

This problem also occurs if you select a global-level watch context in
step 5. However, the problem doesn't occur if you select a procedure-level
watch context in step 5.

To avoid the problem, either don't set a watch point on an expression that
contains a Visual Basic object or don't break execution while a modal form
is being shown.

Additional reference words: 2.00 3.00 GPF
KBCategory:
KBSubcategory: EnvtDes

FIX: Painting Problems When FontItalic Set True for Text Box
Article ID: Q94293

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

When you use a text box for input in a program, you will encounter painting
problems when the FontItalic property is set to True.

CAUSE
=====

This problem is because of spacing. Italic fonts take up more room for each
character entered, but the text box does not account for this. The problem
occurs only when you type text into the text box. If you assign text to the
Text property at run-time, the problem does not occur.

WORKAROUND
==========

To work around the problem, use the Refresh method to refresh the text box
each time a character is pressed. For best results, you should enable a
timer from within the KeyPress event for the text box. From within the
timer event, you can then use the Refresh method to refresh the contents
of the text box.

For example, you can work around the problem by adding the following steps
to those listed in the "More Information" section:

6. Add a timer (Timer1) to Form1.

7. Add the following code to the Text1_KeyPress event:

 Sub Text1_KeyPress (KeyAscii As Integer)
 Timer1.Interval = 1
 Timer1.Enabled = True
 End Sub

8. Add the following code to the Timer1_Timer event for Timer1.

 Sub Timer1_Timer ()
 Text1.Refresh

 'Disable the timer since you do not want the timer event
 'to be continually executed
 Timer1.Enabled = False

 End Sub

9. From the Run menu, choose Start (ALT, R, S).

10. Enter some text in the Text1 text box. The characters should now
 paint correctly.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a text box (Text1) to Form1.

3. Set the FontItalic property to True in the Properties Window.

4. From the Run menu, choose Start (ALT, R, S) or press the F5 key to
 run the program.

5. Type ffff (4 f characters) in Text1.

Notice that when you press a character, the previous character does not
paint correctly. For example, in the case of using the letter f, only the
bottom half of the character paints.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Grid Control Paints Incorrectly When Press PGUP or PGDN
Article ID: Q94296

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

The grid control may paint incorrectly when you press the PGUP or PGDN key.
Specifically, when you press the PGDN key to scroll down within a grid
control, the data in one column is painted in the next column.

WORKAROUND
==========

This problem does not occur when you use the arrow keys or the mouse to
scroll within the grid.

You can work around the problem by refreshing the grid from within a timer.
The timer should be activated when the PGUP or PGDN key is pressed. Below
are the steps necessary to implement such a workaround:

1. Add a timer control (Timer1) to Form1.

2. Add the following code to the KeyDown event of Grid1:

 Sub Grid1_KeyDown (KeyCode As Integer, Shift As Integer)

 'Key codes for the pageup and pagedown keys
 Const VK_PGUP = &H21 'VK_PRIOR
 Const VK_PGDN = &H22 'VK_NEXT

 If KeyCode = VK_PGUP Or KeyCode = VK_PGDN Then
 Timer1.Interval = 1
 Timer1.Enabled = True
 End If

 End Sub

3. Add the following code to the Timer1_Timer event:

 Sub Timer1_Timer ()
 Grid1.Refresh
 Timer1.Enabled = False
 End Sub

When you press the PGUP or PGDN key, the timer event refreshes the grid.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic

version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or if Visual Basic is already running choose New
 Project from the File menu (ALT, F, N). Form1 is created by default.

2. From the File menu, choose Add File (ALT, F, D), and load GRID.VBX into
 the project if it is not already loaded.

3. Place a grid control (Grid1) on Form1.

4. Set the following properties for Grid1 to these values:

 Property Value

 Rows 12
 Cols 3
 FixedRows 2
 FixedCols 1

5. To make the PGUP and PGDN keys applicable, size the grid so that it has
 fewer than the 12 rows and 3 columns you specified.

6. Add the following code to the Form_Load event of Form1:

 Sub Form_Load ()
 Dim i As Integer
 Grid1.Col = 1

 'Fill the first non-fixed column with number from 1 to 11
 For i = 2 To grid1.Rows - 1
 Grid1.Row = i
 Grid1.Text = Format$(i - 1, "0")
 Next
 End Sub

7. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program.

8. Set the focus to the grid.

9. Press the PGDN key repetitively until the cursor is at the bottom of the
 grid. Items from the first non-fixed column (the second column) are
 incorrectly repeated in the second non-fixed column (the third column).

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: GPF/UAE When New Project Loaded After Large Previous Proj
Article ID: Q94351

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

A general protection (GP) fault or an unrecoverable application error (UAE)
may occur when you choose New Project from the Files menu and the previous
project loaded had over 3900 procedures. The problem can occur when one
.BAS file has more than 3900 Subs or Functions.

WORKAROUND
==========

To avoid the problem, keep the number of procedures in a single .BAS file
under 3900. Try using more than one .BAS file to hold the 3900 procedures
instead of having all 3900 procedures in one .BAS file.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

You may encounter this problem with less then 3900 procedures if lack of
memory is a problem. Each procedure can hold a large amount of code and
create a problem even though you have less than 3900 procedures.

Steps to Reproduce Problem

1. Start VB.EXE.

2. Choose New Module from the File menu.

3. Add the following procedure to MODULE1.BAS (the default module
 name) in the (general) section:

 Sub main ()
 Open "test1.bas" For Output As #1
 For i% = 1 To 4000
 Print #1, "sub sub" + Trim$(Str$(i%))
 Print #1, "end sub"
 Next
 Close
 End Sub

4. Choose Project... from the Options menu. In the Project window, select
 the Start Up Form line and change it from the default Form1 to Sub Main.

5. Press the F5 key or ALT+R+S to run and build the TEST1.BAS file.

6. Choose New Project from the File menu. You don't have to save the
 project outlined in steps 1 through 5 above.

7. Once a New Project is running, choose Add File... from the File menu.

8. Select the file TEST1.BAS from the Add File window. This is a large
 (4000 empty procedures) file, so it will take some time to load.

9. Once the TEST1.BAS file is loaded, choose View Code from the Project
 window with the TEST1.BAS file highlighted. Then you can view the 4000
 empty procedures under the (declarations) section.

10. Choose New Project from the File menu. Choose the No button on saving
 FORM1.FRM, and choose the No button on saving PROJECT1.MAK.

After choosing the second No button, you may receive a UAE or GP fault.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: No Out of Memory Error Generated with Text Box > 32K
Article ID: Q94698

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

The text box in Microsoft Visual Basic version 2.0 for Windows has the
capacity to hold up to 32K of text. The problem is that when
you try to place more than 32K of text in a text box, no error is
generated and no text is added to the text box.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a text box (Text1) to Form1.

3. Set the Multiline property of Text1 to True.

4. Set the Scrollbars property of Text1 to 2 - Vertical.

5. Add the following code to the Form_Click event procedure in Form1:

 Sub Form_Click ()
 For i% = 1 to 10000
 text1.seltext = Format$(i%, "00000") + Chr$(13) + Chr$(10)
 Next i%
 End Sub

6. Press the F5 key to run the procedure and click the Form1 form.

You will see text being added to the text box, but the adding of the text
(numbers) stops around the number 04285 and no error is generated. Visual
Basic should give you an Out of Memory error message, but it doesn't.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Attempting to Refresh Null TableDef Field Causes GP Fault
Article ID: Q94773

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

A general protection (GP) fault occurs when you attempt to refresh a Null
Fields collection of a TableDef. Instead, you should receive this error:
"Method not applicable to this object."

When the Fields collection for a TableDef is not Null, the Refresh method
works as expected.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

The following steps reproduce the problem:

1. Start the Professional Edition of VB.EXE with ODBC support already
 installed.

2. Add the following code to the Form_Click event procedure of Form1:

 Form_Click ()
 Dim db As Database
 Dim tDef As TableDef
 DBName$ = "Server1"
 Set db = OpenDatabase(DBName$) '* DBName$ name of Database
 '* that is already setup on
 '* the SQL Server. This
 '* DBName$ should be set to
 '* server name that listed in
 '* the ODBC.INI file.
 Set tDef = db.TableDefs(0)

 Set db = OpenDatabase(DBName$)
 tDef.Fields.Refresh '* This should result in a
 '* error, but instead results
 '* in a GP Fault.
 End Sub

 In order to reproduce the problem, the first TableDef in the database,
 TableDefs(0), cannot have any fields associated with it.

3. Press the F5 key or ALT+R+S.

At this point, a GP fault occurs -- usually at address 0008:0083 in
VBODBCA.DLL.

To avoid the problem, make sure the Fields collection is not Null before
using the Refresh method. To do this, replace the tDef.Fields.Refresh
statement in step 2 above with the following code:

 If Not tDef.Fields = Null Then
 tDef.Fields.Refresh
 End If

Additional reference words: 2.00 3.00 GPF
KBCategory:
KBSubcategory: APrgDataODBC

FIX: GPF When Using 8514 Driver with Long String in Text Box
Article ID: Q94774

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

A general protection (GP) fault may occur when you attempt to assign a
string longer than 256 characters to a text box. This problem is known to
occur when using an ATI Ultra video system with the 8514 Windows video
driver.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows when using Windows version 3.1 and the 8514 Windows
video driver. This problem was corrected in Microsoft Visual Basic version
3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Load the Windows 8514 driver (8514.DRV) by using the Windows Setup
 program.

2. Start Visual Basic, or from the File menu, choose New Project if Visual
 Basic is already running. Form1 is created by default.

3. Add a text box (Text1) to Form1.

4. Press the F4 key to select the Properties Window. Set the Multiline
 property to True and the ScrollBars property to 3 - Both.

5. Add the following code to the Form_Click event procedure of Form1:

 For i% = 1 To 100
 text1.SelStart = Len(text1.Text)
 text1.SelText = "This is a test"
 Next i%

6. Press the F5 key to run the code.

At this point, you may encounter a GP fault when the length of the string
being built in the text box is longer than 256 characters. Note that on
some computers, the GP Fault may occur earlier when the total length of
the text reaches about 150 characters.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Changing Decimal Separator Causes Load Errors for Form
Article ID: Q94776

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, versions 2.0 and 3.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you change the decimal separator by choosing the International icon from
the Windows Control Panel, you can get the error "Errors during load. Refer
to ..." when loading a form that was saved as text.

STATUS
======

Microsoft has confirmed this to be a problem with Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

From the Windows Control Panel, you can change the decimal separator for
numbers by choosing the International icon. By changing the decimal
separator, you can affect the way decimal numbers look when output by
statements such as the PRINT method.

However, if you change the decimal separator, you may get the following
error when you load a form that had was saved as text (the default):
"Errors during load. Refer to" followed by the name of a log file that
contains the error information.

When a form is saved as text, all information about the form is saved
to the file, this includes all the properties that were changed from
their default. Any properties that where written as a decimal number,
such as the FontSize property, may not be recognized if you have
changed the decimal separator.

Steps to Reproduce Problem

1. Start the Windows Control Panel located, by default, in the Main group
 of the Windows Program Manager.

2. Choose the International icon from the Control Panel to specify
 international settings.

3. Choose the Change button next to Number Format.

4. Change the decimal separator to a comma (,).

5. Start Microsoft Visual Basic version 2.0.

6. From the File menu, choose Open Project (Press ALT, F, O).

7. Open the Calculator sample program. This is installed in the SAMPLES
 directory under the CALC subdirectory.

8. From the Project Window, double-click CALC.FRM to load the form.

At this point, you should get the error "Errors during load. Refer to"
followed by the name of a log file that contains the error information.
Note that although the loading problem was corrected in Visual Basic
version 3.0, the Calculator program is not designed ot accept a comma (,)
in place of a decimal point. Using a comma causes a "Type mismatch" error.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: GPF When Making .EXE File If Forms Saved as Binary
Article ID: Q94892

The information in this article applies to:

- The Standard Edition of Microsoft Visual Basic for Windows,
 version 2.0.

SYMPTOMS
========

In version 2.0, a general protection (GP) fault can occur when you replace
text boxes originally created in version 1.0 with the new version 2.0
Masked Edit Text boxes, and then use the existing code. The GP fault
occurs in version 2.0 when you try to turn the Visual Basic project into
an executable (.EXE) program.

WORKAROUND
==========

To work around the problem, save the project's forms and code in Text
format rather than the default Binary format.

Use the following steps to save the code in Text format:

1. Select each form one by one from the Project window.

2. With each form, go to a code window of that form by double-clicking
 the form or by pressing the F7 key.

3. From the File menu, choose Save Text... to save each form's code as a
 .TXT file. Then from the File menu, choose Load Text... and highlight
 the .TXT file just created; then choose the Replace button.

4. After completing steps 1 through 3 for each form in the project, restart
 Visual Basic and load the project by choosing Open Project... from the
 File menu.

5. From the File menu, choose Make Exe...

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Bad .MAK File Prevents Display of Make EXE File Dialog
Article ID: Q94939

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

The Make EXE File dialog box is not displayed and the program is not
compiled if you try to make an executable file when the project (.MAK)
file was saved incorrectly. Specifically, this problem occurs if the
.MAK file was saved with an invalid path to the executable file.

The project file is saved incorrectly if the directory name containing
your project files is derived from the Visual Basic working (or current)
directory name. This problem occurs if the working directory for Visual
Basic has this pattern:

 C:\XXXYYY

and your project is in a directory that has this pattern:

 C:\XXX\TEMP

where XXX represents the same pattern of characters.

For example, if you run Visual Basic from a directory called C:\VB2 and
your project is in C:\VB\CALC, you will encounter this problem. The Make
EXE dialog is not displayed, and your program is not compiled.

WORKAROUND
==========

To work around the problem, use a text editor such as Notepad to delete the
line containing "Path=" from your project's .MAK file. Then save the .MAK
file, and reload your project in Visual Basic. You will now be able to
display the Make EXE dialog box. You will need to delete this statement
each time you make an .EXE file.

Another alternative workaround is to place all the files for your project
in a new directory where the directory name is not derived from the Visual
Basic working directory name. You can then delete the "Path=" statement
from the .MAK file using a text editor such as Windows Notepad.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION

================

Steps to Reproduce Problem

To reproduce this problem, set the working directory of Visual Basic to the
directory where VB.EXE is stored (C:\VB). To do this, highlight the Visual
Basic icon in Program Manager and choose Properties from the File menu of
Program Manager (PROGMAN.EXE). Then in the Properties dialog box, set the
working directory path the same path where VB.EXE is located.

1. Create a directory with the same name as the directory where Visual
 Basic is located excluding the right most character. For example, if
 Visual Basic is in C:\VB2, create a directory called C:\VB.

2. Create a subdirectory named CALC on the new directory (C:\VB\CALC).

3. Copy all of the files from the Visual Basic SAMPLES\CALC directory to
 the C:\VB\CALC directory.

4. Start Visual Basic and open the CALC.MAK project in the new C:\VB\CALC
 directory.

5. From the File menu, choose Make EXE File (ALT, F, K) and choose the OK
 button to have Visual Basic create an executable using the default name.

6. From the File menu, choose Save Project (ALT, S, V). The project .MAK
 file will be saved incorrectly. Specifically an invalid relative path
 such as Path="..2" will be added to the project .MAK file.

7. From the File menu, choose Open Project (ALT, F, O) and open the
 CALC project.

8. From the File menu, choose Make EXE File (ALT, F, K) and choose the OK
 button to have Visual Basic create an executable using the default name.

The Make EXE dialog will not be displayed and your program will not be
compiled.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX Large Sub or Function or Module Can Cause GP Fault or UAE
Article ID: Q95285

The information in this article applies to:

- Standard and Professional editions of Microsoft Visual Basic programming
 system for Windows, version 2.0

SYMPTOMS
========

You can get a general protection (GP) fault in Windows version 3.1 or an
unrecoverable application error (UAE) in Windows version 3.0 when making
an .EXE file when you approach the maximum size limit of a sub or
function or when a form or code module is larger than about 400K.

WORKAROUND
==========

To work around the problem, break up the code in the large sub, function,
or module. In most cases, you will need to identify the largest sub,
function, or module in your project and work on breaking it up. If this
problem persists after breaking up the largest procedure or module, break
up other large procedures or modules until you overcome the problem.

STATUS
======

Microsoft has confirmed this to be a problem in Visual Basic version 2.0
for Windows. This problem was corrected in Microsoft Visual Basic version
3.0 for Windows.

MORE INFORMATION
================

The problem occurs with a sub or function because Visual Basic attempts
to generate more than 64K of code for the sub or function. However,
when you run it from the VB.EXE programming environment, it is possible
that the amount of interpreted code generated for the sub or function is
slightly less than 64K.

The problem occurs with a code module when the compiler attempts to exceed
a compiler segment limit.

Because of these problems, it is usually possible to run the program
successfully from the operating environment, but you cannot make an
.EXE file.

In Windows version 3.0, there is no way to know whether a large procedure
or module is the source of the problem. However, in Windows version 3.1, a
GP fault occurs at the address 0067:4C4D if a sub or function is too large
or at 0067:4C4E if compiler segment limits were exceeded when you attempted
to make an .EXE file.

Additional reference words: 2.00 3.00 GPF
KBCategory:
KBSubcategory: EnvtDes

FIX: GPF/UAE When Create or Use Huge Array w/ Large Elements
Article ID: Q95290

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

A general protection (GP) fault or unrecoverable application error (UAE)
may occur when you try to run or compile a program if an array meets all
of the following criteria:

 - It is a huge array (greater then 64k in total size).
 - The size of the array elements are large (usually 512 bytes or
 greater). This will usually occur only when the array elements
 are user-defined type variables.
 - An array element contains either one or more variant or variable
 length string variables.

WORKAROUND
==========

To work around the problem, change the element size of the array elements.
In general, the smaller the element size, the less likely the problem.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start VB.EXE.

2. From the File menu, choose New Module (the default is Module1.BAS).

3. Add the following code to Module1.BAS:

 Type MyType
 va(1200) As Variant
 End Sub
 Dim ma(20) As MyType

4. Press the F5 key to run the code. Then from the Run menu, choose End. At
 this point a GP fault or UAE may occur.

5. Change the array 'va(1200) As Variant' to 'va(1200) As String'. Note
 that because String variables are 6 bytes and Variants are 16 bytes,
 this change reduces the size of the user-defined type and therefore
 reduces the element size of the array.

6. Press the F5 key to run the code. Then from the Run menu, choose End.

Because you reduced the element size of the array, you may not encounter
a GP fault or UAE this time.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOther

FIX: Error Message: Timeout While Waiting for DDE Response
Article ID: Q95428

The information in this article applies to:

 - Standard and Professional editions of Microsoft Visual Basic
 programming system for Windows, version 2.0

SYMPTOMS
========

You can get the error "Timeout while waiting for DDE response" if you
execute DDE commands within a DDE event. This occurs due to a limitation
of the Dynamic Data Exchange Management Library (DDEML.DLL) that provides
support for DDE under Windows. This problem may also occur if you place DDE
commands in an event that is triggered by a DDE command such as the Change
event of a text box.

CAUSE
=====

The problem occurs because changing the text under the Destination Data
section of the DDE source causes a Text1_Change event. Since this is a DDE
related event, attempting to perform a DDE operation such as
text2.LinkRequest results in the timeout error message.

WORKAROUND
==========

To work around the problem, perform all DDE operations in non-DDE
related events. If you need to perform a DDE operation in a DDE related
event, you can put the DDE operations in a timer event that will execute
after the DDE related event has finished. Here is an example:

1. Follow steps 1 through 7 in the More Information section below.

2. Place a timer control (Timer1) on Form1.

3. Set the Interval property of Timer1 to 1.

4. Set the Enabled property of Timer1 to False.

5. In the Text1_Change event, enter the following code:

 Sub Text1_Change ()
 Timer1.Enabled = True
 End Sub

6. In the Timer1_Timer event, enter the following code:

 Sub Timer1_Timer ()
 text2.LinkRequest
 Timer1.Enabled = False
 End Sub

7. Run the program.

8. Change the text in the Destination Data section of the compiled DDE
 sample application.

Text1 should correctly display the text typed into the Destination Data
section of the compiled DDE sample application without producing an error.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard and
Professional editions of Microsoft Visual Basic version 2.0 for Windows.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or from the File menu, choose New Project
 (ALT, F, N) if Visual Basic is already running.

2. Open the DDE sample program located in the \SAMPLES\DDE directory.

3. From the File menu, choose Make EXE File (ALT, F, K).

4. Start the compiled .EXE program from Program Manager or File Manager.

5. From the File menu, choose New Project (ALT, F, N). Form1 is created
 by default.

6. Place two text boxes on Form1.

7. In the Form_Load event, enter the following code:

 Sub Form_Load ()

 text1.LinkMode = 0
 text1.LinkTopic = "dde|system"
 text1.LinkItem = "txtdata"
 text1.LinkMode = 1 'Establish an automatic link

 text2.LinkMode = 0
 text2.LinkTopic = "dde|system"
 text2.LinkItem = "txtdata"
 text2.LinkMode = 2 'Establish a manual link

 End Sub

8. In the Text1_Change event, enter the following code:

 Sub Text1_Change ()
 text2.LinkRequest

 End Sub

9. Run the program.

10. Change the text in the Destination Data section of the compiled DDE
 sample application.

After approximately five seconds, you will receive the error "Timeout
while waiting for DDE response."

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: IAPDDE

FIX: FixedCols Can Cause Paint Problem with Grid Control
Article ID: Q95429

The information in this article applies to:

 - The Standard and Professional Editions of Microsoft Visual Basic
 for Windows, version 2.0

SYMPTOMS
========

Sometimes if the FixedCols property of the GRID.VBX control is set while
designing a form, paint problems can occur when the program is run.

WORKAROUND
==========

To work around the problem, set the FixedCols property in code rather than
at design time.

STATUS
======

Microsoft has confirmed this to be a problem in both the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

This problem appears to happen when the FixedRows property is set to 1 and
the FixedCols property is set to something other than 0 or 1. This problem
occurs only when you set properties at design time.

Steps to Reproduce Problem

1. Start Visual Basic.

2. From the File menu, choose Add File and add the GRID.VBX custom
 control.

3. Place a grid control on the form.

4. In the Properties Window, set the Cols property to 3 and the FixedCols
 property to 2.

5. Run the program.

You should notice some paint problems with the grid control. The grid
continues to paint incorrectly until you set the FixedCols property
back to 0 or 1 and run the program again.

To avoid the problem, set the FixedCols property at runtime in code:

 grid1.FixedCols = 2

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Problems Calling DoEvents from a Scroll Bar Change Event
Article ID: Q95498

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

Two problems can occur when DoEvents is called from the Change event of a
scroll bar.

 - Clicking either the up or down directional arrows of a scroll bar causes
 the change event to fire repeatedly and generate an "Out of Stack Space"
 error.
 - Moving the scroll bar's thumb after clicking either of the directional
 arrows leads to painting problems with the scroll bar.

WORKAROUND
==========

To work around the problem, move code containing DoEvents calls from the
change event to a timer event. Then from the scroll bar change event,
enable the timer. For example, add the following steps to those listed in
the "More Information" section to implement this workaround:

7. Add a Timer control (Timer1) to Form1.

8. Place the following code in the Timer1_Timer event procedure:

 Sub Timer1_Timer ()
 s! = Timer
 Do
 x% = DoEvents ()
 Loop While Timer - s! <= .25
 timer1.Enabled = 0
 End Sub

9. Place the following code in the HScroll1 Change event procedure to
 replace the code added in step 3.

 Sub HScroll1_Change ()
 Print "We are in the Change Event"
 timer1.Interval = 2000
 timer1.Enabled = -1
 End Sub

10. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program.

Now you should be able to click the directional arrows of the scroll bar
and move the scroll thumb without encountering either of the two problems.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic version
2.0. This problem was corrected in Microsoft Visual Basic version 3.0.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or from the File menu, choose New Project if Visual
 Basic is already running. Form1 is created by default.

2. Add a horizontal scroll bar (HScroll1) to Form1.

3. Add the following code in the HScroll1_Change event procedure of Form1:

 Sub HScroll1_Change ()

 Print "We are in the Change Event"

 s! = Timer
 Do
 x% = DoEvents ()
 Loop While Timer - s! <= .25

 End Sub

4. From the Run menu, choose Start (ALT, R, S) or press the F5 key to run
 the program.

To demonstrate the problem of Change events being fired repeatedly, click
either of the scroll bar's directional arrow buttons and leave the mouse
cursor over the directional arrow. This will eventually lead to an "Out of
stack space" error message.

To demonstrate the painting problems, click either of the arrows. Then move
the scroll thumb of the scroll bar in any direction. The scroll bar will be
painted incorrectly. This will also lead to an "Out of stack space" error
message.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: MAPI: GPF When Attempt to Download 923 or More Messages
Article ID: Q95501

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

The MAPI messages control causes a general protection (GP) fault when you
try to download more than 923 messages from the inbox after setting the
Action property to MSG_FETCH.

CAUSE
=====

This problem occurs because the internal 64K limit is exceeded when more
than 923 messages are fetched into the message set.

WORKAROUND
==========

The only way to avoid this problem is to limit the number of messages
downloaded by using the FetchMsgType and FetchUnreadOnly properties to
limit the message set to a particular set of messages.

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Extra Chars in Masked Edit Cause Empty InvalidText Box
Article ID: Q95508

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0

SYMPTOMS
========

Entering more characters than specified in the Mask property of a Masked
Edit control generates a ValidationError event, and the InvalidText
parameter is set to the empty string.

The InvalidText parameter should be set to the value of the Text property
for the masked edit control, including the invalid character.

STATUS
======

Microsoft has confirmed this to be a bug in the Professional Edition
of Microsoft Visual Basic version 2.0 for Windows. This problem was
partially corrected in Microsoft Visual Basic version 3.0 for Windows.
In version 3.0, the InValidText returned has only as many characters as
allowed by the Mask. For example, if the Mask is "##" and you type "123"
the InvalidText returned is "12"

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 MSMASKED.VBX custom control file. The Masked Edit tool appears in the
 Toolbox. In Visual Basic version 3.0, MSMASKED.VBX is automatically
 installed.

3. Add a masked edit control (MaskedEdit1) to Form1 and change its Mask
 property to ##.

4. Add the following code to MaskedEdit1_ValidationError:

 Sub MaskedEdit1_ValidationError (InvalidText As String,
 StartPosition As Integer) 'This must be on a single line.
 MsgBox InvalidText
 End Sub

5. From the Run menu, choose Start (ALT, R, S) to run the program.

6. Type 123 into the masked edit control.

At this point, you'll see an empty message box. Instead of being empty,
the message box should display "12" -- the masked portion of the "123"
entered in step 6.

Additional reference words: 2.00 3.00 blank
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: Text Box/Mask Edit in Select Mode If MsgBox in LostFocus
Article ID: Q95509

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

If you use the mouse to click a text box or a Masked Edit control moving
the focus off a control that executes a MsgBox statement in its LostFocus
or ValidateError event, the insertion point goes into select mode once the
message box is closed. After closing the message box, if you move the mouse
cursor from side to side of the Text Box or Masked Edit control, text in
the control is selected based on the point where the mouse was clicked to
move focus to the Text Box or Masked Edit control. Clicking the mouse
anywhere within the Text Box or Masked Edit control turns off select mode.

STATUS
======

Microsoft has confirmed this to be a problem in the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows and
in Microsoft Visual Basic programming system version 1.0 for Windows. This
problem was corrected in Microsoft Visual Basic version 3.0 for Windows.

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a text box (Text1) to Form1.

3. Add a command button (Command1) to Form1.

4. Add the following code to Command1_LostFocus.

 Sub Command1_LostFocus
 MsgBox "Command1 LostFocus Event"
 End Sub

5. From the Run menu, choose Start (ALT, R, S) to run the program.

6. Click the Command1 button to bring the focus to it.

7. Click the x in Text1 in the text box. The message box appears. Click the
 OK button to Close the message box.

8. Move the mouse cursor over the word Text1 in the text box and then move
 it left or right.

When you move the mouse cursor from side to side of the Text Box, you
select the text on either side of the x in Text1. The insertion point
should not select text; it should only represent the entry point for any
text entered.

Additional reference words: 1.00 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus PrgCtrlsStd

FIX: Focus Rectangle Remains When Grid Loses Focus
Article ID: Q95514

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0

SYMPTOMS
========

When a grid control loses focus, the focus rectangle surrounding the
active cell incorrectly remains on the cell.

This behavior differs from that of the grid control that shipped with
the Professional Toolkit for Visual Basic version 1.0. The active cell,
with the focus rectangle, can be differentiated from other cells in the
grid by its wider border when GridLines is set to True or by the fact
that it is the only cell with a border when GridLines is set to False.

WORKAROUND
==========

To work around the problem, change the active cell to one in a fixed row
or column so that no cell has a focus rectangle. Selected cells are
unaffected by changing the active cell. For example, add the following
code to the LostFocus event of a grid control named grid1:

 Sub Grid1_LostFocus ()
 Grid1.Row = 0
 Grid1.Col = 0
 End Sub

STATUS
======

Microsoft has confirmed this to be a problem in both the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRID.VBX custom control file. The grid tool appears in the Toolbox.
 In Visual Basic version 3.0, GRID.VBX is automatically installed.

3. Add a grid control (Grid1) to Form1 with the following properties:

 Rows: 5
 Cols: 5

4. Add a text box (Text1) to Form1.

5. From the Run menu, choose Start (ALT, R, S) to run the program. Grid1
 gets the focus on startup and the focus rectangle is around R1C1.

6. Tab to the text box. Focus changes from Grid1 to Text1. Even though
 focus changed to Text1, the focus rectangle on R1C1 on the Grid1
 incorrectly remains.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: GPF When Erase User-Defined Array of Variable Strings
Article ID: Q95525

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 2.0

SYMPTOMS
========

If you try to erase an user-defined type array of a variable-length
strings, you may encounter a general protection (GP) fault or
unrecoverable application error (UAE).

WORKAROUND
==========

This problem doesn't occur if you use an array of fixed-length strings
or an array of type Variant in place of the array of variable-length
strings. Therefore, you can work around the problem by using an array
such as the following with a user-defined type and fixed-length
strings.

 Type mytype
 mystrings(1) As String * 10 'array of fixed length string
 End Type

 Global test As mytype

You can also work around the problem by using an array of variants instead
of an array of strings, as this example shows:

 Type mytype
 mystrings(1) As Variant 'array of variant type
 End Type

 Global test As mytype

A third alternative is to erase the elements in the variable-length string
array manually instead of using the Erase statement, as follows:

 Form_Click()
 For i% = 0 to UBound(test.mystrings)
 test.mystrings(i%) = ""
 Next i%
 End Sub

STATUS
======

Microsoft has confirmed this to be a problem in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or if Visual Basic is already running choose New
 Project from the File menu (ALT, F, N). Form1 is created by
 default.

2. From the File menu, choose New Module (ALT, F, M). Module1 will be
 created.

3. Add the following code to the general declarations section of Module1:

 Type mytype
 mystrings(1) As String
 End Type

 Global test As mytype

3. Next add the following code to the Form_Click event procedure of Form1:

 Form_Click()
 Erase test.mystrings(1)
 End Sub

4. Press the F5 key and click Form1.

At this point, you will encounter a GP fault or UAE.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgOptTips

FIX: Loading Proj Gives Err: Custom control 'Graph' not found
Article ID: Q95590

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Visual Basic programming system for Windows, version 1.0

SYMPTOMS
========

When loading a project in Visual Basic for Windows, you see the following
error message:

 Custom control 'Graph' not found

Or an unrecoverable application error (UAE) in Windows version 3.0 or
a general protection (GP) fault in VBRUN100.DLL at 0058:0485 in Windows
version 3.1 may occur as a result of an executable (.EXE) file created
in Visual Basic version 1.0.

CAUSE
=====

If you have the Professional Toolkit for Visual Basic version 1.0 for
Windows installed on your computer and you install the Professional Edition
of Visual Basic version 2.0 for Windows on the same computer, the new
installation may replace the version 1.0 GRAPH.VBX, GSWDLL.DLL, and GSW.EXE
files with the Professional Edition of Visual Basic version 2.0 for
Windows files.

WORKAROUND
==========

To work around the problem, replace any version 1.0 Graph controls on
your forms with the new version 2.0 Graph controls, or re-install the
earlier versions of GRAPH.VBX, GSWDLL.DLL, and GSW.EXE. For the best
results, you should upgrade the entire project to Visual Basic version
2.0, and then use the newer version 2.0 controls.

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above. This
problem was corrected in the Graph control provided with Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic version 1.0.

2. From the File menu, choose Add File and add the version 1.0 graph
 control (GRAPH.VBX) to the project.

3. Choose the Graph icon from the toolbox and draw a graph on the form.

4. Save all changes and exit Visual Basic.

5. Replace the files GRAPH.VBX, GSWDLL.DLL, and GSW.EXE with the new
 version 2.0 files.

6. Start Visual Basic and load the project you created.

You will get the error "Custom control 'Graph' not found." To work
around this problem, replace any version 1.0 Graph controls on your
forms with the new version 2.0 Graph controls or re-install the
earlier versions of GRAPH.VBX, GSWDLL.DLL, and GSW.EXE.

Additional reference words: 1.00 2.00 3.00 GPF errmsg
KBCategory:
KBSubcategory: EnvtDes

FIX: GPF When Making EXE If Declare Is Missing Lib & DLL Name
Article ID: Q95829

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0

SYMPTOMS
========

A general protection (GP) fault or unrecoverable application error (UAE)
can occur when the EXE is created if you omitted the Lib keyword and DLL
name in an external procedure Declare statement in a Visual Basic code
module. Unlike Visual Basic for MS-DOS, the Lib keyword and library name
are required in Declare Statements for Visual Basic for Windows.

CAUSE
=====

The syntax checker in Visual Basic incorrectly allows a Declare statement
to be entered in a Code Module without these two required elements, which
allows the program to be run from within the Visual Basic environment. But
any attempt to compile the code fails.

WORKAROUND
==========

Because the Sub and Function procedures in a code module are global to
other code and form modules, you only need to declare external procedures
within a DLL. The syntax for declaring a procedure in a DLL requires that
the keyword Lib and the DLL name be used in the Declare statement. If the
Declare includes both the Lib and DLL name using the correct syntax, the
GP fault can be avoided.

Here are the two possible syntax structures for a Declare statement:

Syntax 1:

 Declare Sub globalname Lib "libname" [Alias "aliasname"]
 [([argumentlist])] ' Enter entire Declare on a single line.

Syntax 2:

 Declare Function globalname Lib "libname" [Alias "aliasname"]
 [([argumentlist])] [As type] ' Enter entire Declare on a single line.

STATUS
======

Microsoft has confirmed this to be a problem in both the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose New Module (ALT, F, M). Module1 is created by
 default.

3. Add the following code to the General Declarations section of Module1:

 Declare Function doesntexist () ' No Lib keyword or the DLL name.

4. From the File menu, choose Make EXE File... and press Enter
 to create PROJECT1.EXE.

Instead of creating a valid .EXE file and returning to the editing
environment, an Application Error dialog box appears stating that a GP
fault occurred in Module VB.EXE at 006A:0148. If you close the
Application Error dialog box and attempt to run the partially created
.EXE file may cause a "cannot start application" error message.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtDes

FIX: Resizing MDIForm with UI Does Not Update Height & Width
Article ID: Q96097

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0

SYMPTOMS
========

If a user resizes a MDIForm at run time with the mouse, the Height and
Width properties for the MDIForm incorrectly retain their previous values.
Resizing the form by using the user interface (the mouse or the system
menus) should change the Height and Width properties to reflect the new
size of the MDIForm. Changing the Height and Width properties in code does
correctly update the properties.

WORKAROUND
==========

This problem occurs only when a user uses the user interface to change the
size of the MDIForm. Therefore, to work around the problem, you can use
code to change the Width and Height properties.

The GetWindowRect Windows API function retrieves the dimensions of the
bounding rectangle of a given window, including the title bar, border, and
scroll bars, if present. You can use the GetWindowRect, to update the Width
and Height properties in a program as the properties change in the Resize
event of the MDIForm.

The following example demonstrates this workaround:

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Set the MDIChild property to True for Form1.

3. From the File menu, choose New Module (ALT, F, M). Module1 is created
 by default.

4. Add the following code to the General Declarations section of Module1:

 Declare Sub GetWindowRect Lib "USER.EXE" (ByVal h%, rect As Any)
 Type RectShort
 X As Integer
 y As Integer
 dx As Integer
 dy As Integer
 End Type

5. From the File menu, choose New MDI Form (ALT, F, I). MDIForm1 is
 created by default.

6. Add the following code to MDIForm1's MDIForm_Resize event procedure:

 Sub MDIForm_Resize ()
 Dim rect As RectShort

 Call GetWindowRect(Me.hWnd, rect)

 If (rect.dx - rect.X) * Screen.TwipsPerPixelX <> Width Then
 Me.Width = (rect.dx - rect.X) * Screen.TwipsPerPixelX
 End If

 If (rect.dy - rect.y) * Screen.TwipsPerPixelY <> Height Then
 Me.Height = (rect.dy - rect.y) * Screen.TwipsPerPixelY
 End If

 End Sub

7. Add the following code to the Form1_Click event:

 Sub Form1_Click ()
 Print "Width = "; Format$(MDIForm1.Width)
 Print "Height = "; Format$(MDIForm1.Height)
 End Sub

8. From the Run menu, choose Start (ALT, R, S) to run the program.

9. Using the mouse, grab the lower right-hand corner border of MDIForm1.
 Resize it so that the MDIform is taller and wider than its current size.

10. Click the command button.

At this point, the current Height and Width properties for MDIForm1 are
printed on Form1.

11. Repeat steps 9 and 10.

The current Height and Width properties for MDIForm1 are printed on Form1
reflecting their new values.

STATUS
======

Microsoft has confirmed this to be a problem in both the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Run Visual Basic, or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Set the MDIChild property to True for Form1.

3. Add the following code to Form1's Form_Click event procedure.

 Sub Form_Click ()
 Print mdiform1.Width, mdiform1.Height
 Print mdiform1.ScaleWidth, mdiform1.ScaleHeight
 End Sub

4. From the File menu, choose New MDI Form (ALT, F, I). MDIForm1 is
 created by default.

5. From the Run menu, choose Start (ALT, R, S) to run the program.

6. Use the mouse and click Form1.

The Width and Height property values for Form1 are printed on the first
line of Form1, and its ScaleHeight and ScaleWidth are printed on the
second line.

7. Use the mouse to grab the lower right-hand corner border of MDIForm1.
 Resize it so that the MDIform is taller and wider than the default size
 it had originally.

8. Using the mouse, click Form1.

The Width and Height property values for Form1 are printed on the third
line of Form1, and its ScaleHeight and ScaleWidth are printed on the
fourth line.

As expected, the ScaleHeight and ScaleWidth values on the fourth line are
larger than their corresponding values on the second line. The Width and
Height properties on line three, however, are identical with line one.
Like the ScaleHeight and ScaleWidth, the Height and Width values should
change reflecting the form's new size.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Scroll Bar Thumb Doesn't Do Change Event as It Should
Article ID: Q96798

--
The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
--

SYMPTOMS
========

A Change event is generated when Visual Basic code sets a scroll bar's
Value property. However, if the user then drags the thumb (scroll box) on
the scroll bar to either its minimum or maximum value, a change event
should occur but may not. The change event is generated correctly when the
thumb on the scroll bar is dragged to any point other then its minimum or
maximum after Visual Basic code sets the Value property.

STATUS
======

Microsoft has confirmed this to be a bug in the Standard and Professional
Editions of Microsoft Visual Basic version 2.0 for Windows. This problem
was corrected in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a horizontal scroll bar (HScroll1) to Form1.

3. Add a label (Label1) to Form1.

4. Add a command button (Command1) to Form1.

5. Add the following code to Form1's Form_Load event procedure:

 Sub Form_Load ()
 Form1.Show
 HScroll1.Value = 1
 HScroll1.Min = 1
 HScroll1.Max = 100
 End Sub

6. Add the following code to the Command1_Click event procedure:

 Sub Command1_Click ()
 HScroll1.Value = HScroll1.Max
 End Sub

7. Add the following code to the HScroll1_Change event procedure:

 Sub HScroll1_Change ()
 Label1.Caption = Str$(HScroll1.Value)
 End Sub

8. From the Run menu, choose Start (ALT, R, S) to run the program.

9. Choose the command button. The thumb on the scroll bar correctly
 moves to its maximum position and the label displays the Max property
 of HScroll1, 100.

10. Drag and drop the thumb on the scroll bar back to its minimum position.
 The label incorrectly continues to display the Max property for
 HScroll1, 100. A change event should have occurred in HScroll1 when
 the thumb was dragged back to its minimum position, and the caption
 should have changed to 1. But the change event was not generated.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: EnvtRun

FIX: Can't Open ODBCADM.HLP Err Msg During Data Access Setup
Article ID: Q97083

The information in this article applies to:

 - The Professional Edition of Microsoft Visual Basic for Windows,
 version 2.0

SYMPTOMS
========

While setting up data access, you receive this error message:

 Unable to open the file ODBCADM.HLP

This occurs while running the Data Access Setup program either upon
completion of setting up Visual Basic version 2.0 or later by choosing
the icon created in Program Manager by the Visual Basic setup program
and then choosing to install ODBC in the VBDIR\ODBC directory. The
VBDIR in VBDIR\ODBC is the directory (default C:\VB) where you installed
Visual Basic.

WORKAROUND
==========

Choose one of the following to work around the problem:

 - Install ODBC in a directory other than VBDIR\ODBC.
 - While installing data access, choose not to install the ODBC
 Administration Utility.

The ODBC Administration Utility is recommended for managing the data
sources for ODBC, so installing ODBC in a directory other than
VBDIR\ODBC is the best of the two alternatives.

STATUS
======

Microsoft has confirmed this to be a bug in the Professional Edition
of Microsoft Visual Basic version 2.0 for Windows. This problem was
corrected in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce the Problem

1. Run the Visual Basic 2.0 Professional Edition Setup program.

2. Select C:\VB as directory to install Visual Basic.

3. Select Option to Install Data Access.

4. Select C:\VB\ODBC as the destination directory for ODBC.

Midway through copying the files over, the Data Access Setup program
displays the following error message and you are forced to cancel setup:

 Unable to open the file ODBCADM.HLP. It is in use by another application

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: APrgDataODBC

FIX: No Menu Event with Maximized MDI Child
Article ID: Q97135

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0

SYMPTOMS
========

A top level menu's click event on an MDI form isn't fired as it should
be when the MDI child is maximized and a sub-menu item exists for that
top level menu. There is no click event generated regardless of whether
the menu is part of the MDI child or the MDI parent.

STATUS
======

Microsoft has confirmed this to be a bug in both the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows.
This problem was corrected in Microsoft Visual Basic version 3.0 for
Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start VB.EXE.

2. Change the MDIChild property of Form1 to True.

3. From the File menu, choose New MDI Form (ALT+F+I)

4. From the Window menu, choose Menu Design (ALT+W+M), and add two menu
 items. Indent the second item once.

 Caption Name
 ------- -----
 &Top Level mTopLevel
 &SubMenu mTopLevelSubMenu

5. Add the following code to their respective event procedures:

 Sub mTopLevel_Click ()
 Form1.Print "TopLevel"
 End Sub

 Sub mTopLevelSubMenu_Click ()
 Form1.Print "SubMenu"
 End Sub

 Sub MDIForm_Load ()
 Form1.Show
 End Sub

6. From the Run menu, choose Start.

7. Select the Top Level menu item to see a message printed on Form1.

8. Maximize Form1 and Select the Top Level menu item. A message should
 be printed but is not.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Mouse Misbehaves After Changing Graph Visible Property
Article ID: Q97588

The information in this article applies to:

- The Professional Edition of Microsoft Visual Basic for Windows,
 version 2.0

SYMPTOMS
========

If you set the Visible property of a graph control (GRAPH.VBX) to False
from the Change event of a scroll bar, the mouse behaves as if its
button is being held down even after you release it.

STATUS
======

Microsoft has confirmed this to be a bug in the Professional Edition of
Microsoft Visual Basic version 2.0 for Windows. This problem was
corrected in Microsoft Visual Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Add File. In the Files box, select the
 GRAPH.VBX custom control file.

3. Place a horizontal scroll bar named HScroll1 on Form1. Set the Maximum
 property to 3.

4. Add four graphs to Form1 using the same name for each one to make it
 into a control array.

5. Add the following code to the Form_Load event:

 Sub Form_Load ()
 Graph1(0).Visible = True
 Graph1(1).Visible = False
 Graph1(2).Visible = False
 Graph1(3).Visible = False
 End Sub

6. Add the following code to the HScroll1_Change event:

 Sub HScroll1_Change ()
 For i = 0 To 3
 ' Set graph Visible property to true if i matches scroll var value

 ' otherwise to false.
 Graph1(i).Visible = (i = HScroll1.Value)
 Next
 End Sub

7. Run the program. Click the scroll bar right arrow without moving the
 mouse pointer away. Instead of displaying the next graph control in the
 control array, the program incorrectly scrolls through all the graph
 controls leaving the scroll bar at its maximum value.

Additional reference words: 2.00 3.00
KBCategory:
KBSubcategory: PrgCtrlsCus

FIX: OLE Client: Copying Linked Object Gives Err: Can't Paste
Article ID: Q97619

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
- Microsoft Professional Toolkit for Visual Basic programming
 system for Windows, version 1.0

SYMPTOMS
========

If you use the OLE client control to paste a linked OLE object onto the
clipboard and then later copy the same OLE object from the clipboard
back to the OLE client control, you may see this error message:

 Can't Paste

This occurs whether the linked OLE object is created from an existing
file (OleClient1.Action = 1) or from an OLE object on the clipboard
(OleClient1.Action = 4). This problem occurs only with a linked object,
not with an embedded object.

STATUS
======

Microsoft has confirmed this to be a bug in both the Standard and
Professional Editions of Microsoft Visual Basic version 2.0 for Windows
and in the Microsoft Professional Toolkit for Visual Basic programming
system version 1.0 for Windows. This bug was corrected in Visual Basic
version 3.0 for Windows.

MORE INFORMATION
================

The following example uses Microsoft Excel version 4.0 as the application
associated with the OLE object, however the bug does not depend on Excel;
it occurs no matter which application is associated with the OLE object.

Steps to Reproduce Problem

1. Start Microsoft Excel. The Sheet1 worksheet is created by default.

2. In the R1C1 cell, enter Fixed Assets.

3. From the Edit menu, choose Copy (ALT+E+C).

4. Start Visual Basic or from the File menu, choose New Project (ALT+F+N)
 if Visual Basic is already running. Form1 is created by default.

5. From the File menu, choose Add File. In the Files box, select the
 OLECLIEN.VBX custom control file. The OLE client tool appears in the

 Toolbox.

6. Add an OLE client control (OleClient1) to Form1.

7. Add a command button (Command1) to Form1.

8. Add the following code to the Command1_Click event:

 Sub Command1_Click ()
 Const OLE_LINKED = 0
 Const OLE_COPY = 4
 Const OLE_PASTE = 5
 Const OLE_UPDATE = 6
 Const OLE_DELETE = 10

 If OleClient1.PasteOK Then
 OleClient1.Protocol = "StdFileEditing"
 OleClient1.ServerType = OLE_LINKED
 OleClient1.Action = OLE_PASTE ' Get object from clipboard
 OleClient1.Action = OLE_COPY ' Copy the object back onto the
 ' clipboard
 OleClient1.Action = OLE_UPDATE ' Display object
 OleClient1.Action = OLE_PASTE ' Attempt to paste the
 ' object onto the clipboard
 OleClient1.Action = OLE_DELETE
 Else
 MsgBox "Contents of the Clipboard in unacceptable format"
 End If
 End Sub

9. From the Run menu, choose Start (ALT+R+S) to run the program.

10. Click the Command1 button. It should work, but instead the program
 stops and gives the "Can't paste" error message. The Excel object is
 successfully linked to OleClient1 and displayed, and the linked object
 is also copied successfully onto the clipboard.

Additional reference words: 1.00 2.00 3.00 errmsg
KBCategory:
KBSubcategory: IAPOLE

FIX: GPF/UAE with Huge Array Size as Multiple of 64K Bytes
Article ID: Q98990

The information in this article applies to:

- Standard and professional editions of Microsoft Visual Basic programming
 system for Windows, version 2.0

SYMPTOMS
========

A general protection (GP) fault or Unrecoverable Application Error (UAE)
may result when you define a huge array using DIM, REDIM, or GLOBAL and
specify a size that's a multiple of 64K.

CAUSE
=====

Huge arrays that cause a GP fault or UAE are a(n), where n is 4094 + 4095*i
for i = 1 to 7 (assuming 16-byte element sizes). The problem occurs when
the array plus its overhead fills a space of 128K and each increment of 64K
exactly.

WORKAROUND
==========

To work around the problem, add or subtract one element in the array.

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This bug was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce the Problem

1. Start Visual Basic, or if Visual Basic is already running, choose New
 Project from the File menu (ALT, F, N).

2. Add the following code to the Form_Click event procedure of Form1:

 Form_Click ()
 ReDim A(32759) As Variant
 End Sub

3. From the Run menu, choose Start (ALT, R, S).

At this point, a GP fault or UAE occurs. The GP fault address is 0001:0CA2.

Additional reference words: 2.00

KBCategory:
KBSubcategory: EnvtRun

FIX: Erase Won't Clear Contents of Huge Fixed Array as Variant
Article ID: Q99457

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic programming
 system for Windows, versions 2.0 and 3.0

SYMPTOMS
========

The Erase statement fails to erase huge static arrays of type Variant. This
problem occurs with the Variant data type only.

The problem does not occur if the size of the array is less than 64K or if
you use a huge dynamic array of type Variant.

CAUSE
=====

This problem occurs with huge static arrays of the variant data type. An
array is static when you dimension it with the Static keyword or if you
use the DIM keyword to dimension the array in the general-declaration
section of a form or module.

The problem occurs because the Erase statement corrupts the array
descriptor for a huge static array of variants. However, only the
references to the 64K data segments other than the first segment are
corrupted. Any elements in the first 64K segment of the array are always
erased properly. All elements stored in other segments are not erased.

The Erase statement is only effective the first time you erase the elements
of a huge static variant array. Any additional attempt to Erase elements
of
the array will fail and the elements in the array in data segments other
than the first segment will not be erased.

WORKAROUND
==========

To work around the problem, clear each element of the array manually by
setting each element to Empty. Replace the "Erase a" statement in step 2
shown below with this code:

 For i% = 0 to 5000
 a(i%) = Empty '** Empty = 0
 Next i%

STATUS
======

Microsoft has confirmed this to be a bug in Microsoft Visual Basic
version 2.0 for Windows. This problem was corrected in Microsoft Visual
Basic version 3.0 for Windows.

MORE INFORMATION
================

Steps to Reproduce Problem

1. Start Visual Basic, or choose New Project from the File menu (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Enter the following procedure into the general section of Form1:

 Sub test()

 Static a(5000) As Variant 'Huge static variant array

 a(1) = 1 '*element 1 is in the first segment
 a(100) = 2 '*element 100 is in the first segment
 a(5000) = 3 '*element 5000 is in the second segment

 Debug.Print "Before the Erase:"
 Debug.Print "a(1) = "; a(1)
 Debug.Print "a(100) = "; a(100)
 Debug.Print "a(5000) = "; a(5000)
 Debug.Print ""

 Erase a '*erase the elements

 Debug.Print "After the Erase:"
 Debug.Print "a(1) = "; a(1)
 Debug.Print "a(100) = "; a(100)
 Debug.Print "a(5000) = "; a(5000)
 Debug.Print ""

 End Sub

3. Place the following code in the Form_Click event procedure for Form1:

 Form_Click ()
 Call test
 End Sub

4. Press F5 to run the example. Click Form1 to see the following results
 in the Debug Window:

 Before the Erase:
 a(1) = 1
 a(100) = 2
 a(5000) = 3

 After the Erase:
 a(1) =
 a(100) =
 a(5000) =

 But if you click again, you will see different results:

 Before the Erase
 a(1) = 1
 a(100) = 2
 a(5000) = 3

 After the Erase
 a(1) =
 a(100) =
 a(5000) = 3

This shows that the elements of the huge static Variant array were not
cleared, but the elements of a smaller Variant array were cleared.

Additional reference words: 1.00
KBCategory:
KBSubcategory: EnvtRun

FIX: VB 2.0 Prof Demo Causes Error: Invalid File Format
Article ID: Q100611

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 2.0

SYMPTOMS
========

Running the Professional Edition Demo for Visual Basic version 2.0 for
Windows may immediately cause an "Invalid File Format" error. This
problem may also occur when you run a Visual Basic program that uses the
common dialog custom control.

CAUSE
=====

This error is usually caused by an incorrect version of the common dialog
VBX (CMDIALOG.VBX) file in the \WINDOWS directory. The Visual Basic
version 1.0 Professional Toolkit installs the common dialog VBX into the
\WINDOWS directory, whereas the version 2.0 Professional Edition installs
the common dialog VBX into the \WINDOWS\SYSTEM directory leaving the old
version of the common dialog VBX in the \WINDOWS directory.

When the version 2.0 professional demo is run, the demo finds the old
common dialog VBX in the Windows directory first and gives the error
"Invalid File Format."

WORKAROUND
==========

To work around the problem, delete or move the Visual Basic version 1.0
version of the CMDIALOG.VBX out of the \WINDOWS directory. This will
leave the correct version of the common dialog VBX in the \WINDOWS\SYSTEM
directory.

STATUS
======

Microsoft has confirmed this to be a bug in the product listed above. This
bug was corrected in Microsoft Visual Basic version 3.0 for Windows. In
Visual Basic version 3.0, the Common dialog control ships with both the
Standard and Professional editions, so the version 3.0 Professional
edition demo doesn't discuss the Common dialog control, which avoids the
the error. Version 3.0 of the Common dialog control replaces version 2.0
of the control.

Additional reference words: 2.00 errmsg 3.00
KBCategory:
KBSubcategory: PrgCtrlsStd

FIX: Repaint Prob Adding Graphical Control as Child of Graph
Article ID: Q102606

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 2.0

SYMPTOMS
========

In Visual Basic version 2.0 if you add one of the graphical controls
(label, image, or line control) as a child to the graph control, the
graph image within the graph control is repainted incorrectly and the
graphical control moved behind the graph image. The problem does not
occur when non-graphical controls are used.

CAUSE
=====

This is caused by a bug in the graph control where the repainting of the
graph image cannot handle the graphical controls as child controls.

WORKAROUND
==========

To avoid this problem, place a picture box as a child on the graph. Then
place the graphical control in the picture box. This works well when using
the label control but is not very useful when using the other graphical
controls.

The only other way to work around this problem in Visual Basic version 2.0
is to not add a graphical control as a child of the Graph control; that is,
use only non-graphical controls.

STATUS
======

Microsoft has confirmed this to be a bug in Visual Basic version 2.0 for
Windows. This problem was corrected in Visual Basic version 3.0 for Windows

MORE INFORMATION
================

This problem was fixed in Visual Basic version 3.0 with the new version of
the graph control (GRAPH.VBX version 2.0). The solution was to remove the
ability of the graph control to support child controls. Therefore, in
Visual Basic version 3.0, you cannot add any control as a child to the
graph control.

Additional reference words: 2.00 3.00
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

FIX: GPF with Long Formulas in Crystal Reports Custom Control
Article ID: Q108658

The information in this article applies to:

 - Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SYMPTOMS
========

Loading the Formulas array property with long strings at run time can cause
a general protection (GP) fault. The following problem applies to
CRYSTAL.VBX, the Crystal Report custom control file.

CAUSE
=====

This is a memory management problem in the CRYSTAL.VBX control that ships
with Visual Basic version 3.0.

RESOLUTION
==========

The newest version of CRYSTAL.VBX corrects this problem. You can
download the latest CRYSTAL.VBX file by modem from the Crystal Services
bulletin board system (BBS) at (604) 681-9516. In the Crystal Services
BBS, download the VBVBX.ZIP file from the Files section.

STATUS
======

This bug is corrected by the latest version of CRYSTAL.VBX.

MORE INFORMATION
================

Steps to Reproduce Behavior

1. Start a new project in Visual Basic. Form1 is created by default.

2. Choose Add File from the File menu. Add the CRYSTAL.VBX file from your
 WINDOWS\SYSTEM directory. CRYSTAL.VBX is the Crystal custom control
 file.

3. Add a Crystal custom control to Form1.

4. Double-click the form to open the code window. Add the following code to
 the Form Load event:

 Sub Form_Load ()
 For i = 0 to 10
 Report1.Formulas(i) = Space$(200)
 Next i

 End Sub

5. Start the program, or press the F5 key. A GP fault may occur on some
 computers.

If you replace Space$(200) with Space$(110), the form loads but the GP
fault may occur when you unload the form. If you change to Space$(100), the
program may run without error. The exact behavior depends upon the
current memory state of your Windows session.

REFERENCES
==========

For a complete list of Crystal Reports support offerings, see the last
three pages (PSS-1 to PSS-3) of the Microsoft Visual Basic Version 3.0,
"Professional Features Book 2" in the Crystal Reports User's Manual
section.

Additional reference words: 3.00 GPF
KBCategory: Prg
KBSubcategory: PrgCtrlsCus

FIX: Double-Click Still Maximizes/Restores If MaxButton=False
Article ID: Q110309

--
The information in this article applies to:

 - Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 2.0
--

SYMPTOMS
========

Setting the MaxButton property of a form to False removes the Maximize item
in the Control-menu box and removes the maximize button in the upper right
corner of the form. However, double-clicking the title-bar still maximizes
the form or toggles back to the default size.

The Control-menu box is also known as the System-menu box in other products
for Windows.

CAUSE
=====

By default, double-clicking the title bar has the same effect as choosing
Maximize or Restore from the Control-menu box -- it acts as a toggle
between the normal window size and the maximized window size. This behavior
is by design in standard Microsoft Windows. Setting the MaxButton property
of the form to False fails to suppress this behavior in Visual Basic
version 2.0.

WORKAROUND
==========

To prevent a double-click on the title bar from causing Maximize or
Restore, call Windows API functions as shown in the sample program
in the More Information section below.

STATUS
======

Microsoft has confirmed this to be a problem in Visual Basic version 2.0
for Windows. This problem was corrected in version 3.0. In version 3.0,
setting the form's MaxButton property to False correctly ignores double-
clicks on the title bar.

MORE INFORMATION
================

The default Control-menu box in the upper left-hand corner of a Visual
Basic form contains the following nine entries including separators:

 Restore
 Move
 Size
 Minimize

 Maximize

 Close Alt+F4

 Switch to... Ctrl+Esc

These are numbered 0 through 8 from the top down. You may remove any or all
entries. Be sure to remove items in reverse sequence, from 8 to 0, or else
the numbering will become confused.

NOTE: To remove the Control-menu box, set the ControlBox property to False.
To remove the minimize button, set the MinButton property to False. To
remove the maximize button, set the MaxButton property to False.

Steps to Work Around the Behavior

The following program removes the Maximize feature from a Visual Basic
form. This code can be used in Visual Basic versions 2.0 and 3.0.

1. Start a new project in Visual Basic. Form1 is created by default.

2. Add the following to the Form Load event code:

 Sub Form_Load ()

 Dim hSysMenu%, r%, j%, dw&, rr&
 Const MF_BYPOSITION = &H400

 ' Set the default size of the form:
 Form1.Height = Screen.Height + 45 ' Works on VGA.
 Form1.Width = Screen.Width + 60 ' Works on VGA.
 Form1.Left = -15 ' Works on VGA.
 Form1.Top = -15 ' Works on VGA.

 hSysMenu = GetSystemMenu(Form1.hWnd, 0)
 For j = 8 To 4 Step -1
 r = RemoveMenu(hSysMenu, j, MF_BYPOSITION)
 Next j
 For j = 2 To 1 Step -1
 r = RemoveMenu(hSysMenu, j, MF_BYPOSITION)
 Next j
 ' Leave Restore and Minimize in the Control-menu box.
 dw& = GetWindowLong(Form1.hWnd, -16) 'Window style
 dw& = dw& And &HFFFEFFFF 'Turn off Maximize button
 rr& = SetWindowLong(Form1.hWnd, -16, dw&)

 End Sub

3. Add a command button to the form. Double-click the command button and
 add the following code to the Command1 click event:

 Sub Command1_Click ()
 End
 End Sub

 This button lets you end the program because Close is removed from the

 Control-menu box.

4. Add the following Declare statements to the general declarations
 section:

 ' Enter each of the following Declare statements as one, single line:
 Declare Function RemoveMenu% Lib "User" (ByVal hMenu%, ByVal nPosition%,
 ByVal wFlags%)
 Declare Function GetSystemMenu% Lib "User" (ByVal hWnd%, ByVal revert%)
 Declare Function GetWindowLong Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer) As Long
 Declare Function SetWindowLong Lib "User" (ByVal hWnd As Integer,
 ByVal nIndex As Integer, ByVal dwNewLong As Long) As Long

5. Start the program, or press the F5 key.

The form's Control-menu box shows Restore (greyed) and Minimize. Double-
clicking the title-bar has no effect, as desired.

Clicking the Minimize arrow or choosing the Minimize menu item minimizes
the form to an icon. A single-click on that icon does not open a control
menu, unlike normal Visual Basic application icons. A double-click is
required to restore the form to its full-screen state.

NOTE: In the above program, the following Form properties should be left
with their design-time default: ControlBox = True, MaxButton = True,
MinButton = True. The API functions take care of any necessary property
changes.

REFERENCES
==========

 - "PC Magazine's Visual Basic Programmer's Guide to the Windows API" by
 Daniel Appleman (of Desaware), published by Ziff-Davis Press, pages 414
 and 418. This reference describes most Windows API functions that can
 be used from within Visual Basic.

Additional reference words: 2.00
KBCategory: Prg
KBSubcategory: PrgOther

Visual Basic 3.0 Common Troubleshooting Questions & Answers
Article ID: Q92548

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

1. Q. When using the Setup Wizard tool that comes with Microsoft
 Visual Basic version 3.0 for Windows, I get the following error
 message during the compression process:

 Sharing violation on drive C:

 Why?

 A. There is a known problem with the SHARE.EXE utility in Microsoft
 Windows version 3.1. To avoid this problem, copy the files
 SETUPKIT.DLL and VBRUN300.DLL from the \WINDOWS\SYSTEM directory
 to the directory where the SETUPWIZ.EXE file is located. This way
 SETUPWIZ.EXE and COMPRESS.EXE will not try to use the same files
 at the same time.

2. Q. I am having problems with the Setup Wizard & Setup Kit that comes
 with Microsoft Visual Basic version 3.0 for Windows. At various
 times, it reports trouble copying files as well as other errors.
 Is there a known problem with the Setup Wizard?

 A. Yes, there are a number of known problems with the Setup Wizard
 and the Setup Kit files that it uses. There are updates available
 for the following Setup Wizard and Setup Kit files: SETUPWIZ.EXE,
 SETUP.EXE, and the SETUP1 project files. To obtain the updated files,
 download SETUPK.EXE, a self-extracting file, from the Microsoft
 Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for SETUPK.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SETUPK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SETUPK.EXE

 For more information on the problems these updates fix, please see
 the following article in the Microsoft Knowledge Base:

 ARTICLE-ID: Q100003
 TITLE : New Setup Toolkit & Setup Wizard Available for VB ver 3.0

3. Q. What updates are available for Microsoft Visual Basic version 3.0
 for Windows?

 A. There are several files, including dynamic link library files,
 that were updated after Visual Basic for Windows shipped. For a
 complete list of these files please see the following article in
 the Microsoft Knowledge Base:

 ARTICLE-ID: Q104863
 TITLE : UPD: List of Updated Files for Visual Basic

 To obtain this article by Fax, please call 1-800-936-4300 and request
 item number 104863.

4. Q. I wrote an application that connects to a Microsoft Access database.
 I can run the application from the Visual Basic environment with no
 problem, but if I make an EXE and try to run it, I receive this error
 message:

 Could not find Installable ISAM

 Why?

 A. When using any of the database features with any of the installable
 ISAMs, you must have an "Installable ISAM" section within an .INI
 file that has the same name as your .EXE file. For more information
 on the contents and purpose of this .INI file, please see page 148
 in the "Microsoft Visual Basic version 3.0 Professional Features
 Book 2" manual.

5. Q. I am having trouble getting my ODBC application to connect to
 my database on the server, what could I be doing wrong?

 A. There are several help files and text files that deal specifically
 with ODBC setup and connections issues. You can find a list of these
 and other information files by following three steps:

 1. Open the Visual Basic help file.
 2. Choose the Contents button.
 3. Select "Other Information sources."

6. Q. Where can I find more information about ODBC and how to create an
 ODBC driver?

 A. Order the ODBC SDK by calling (206)936-2655. The ODBC SDK is free.

Additional reference words: 3.00 ivrfax fasttips softlib update3.00 S14616
KBCategory:
KBSubcategory: EnvtDes

UPD: GP Fault in KRNL286 When Run EXE on 286 or w/ NT on MIPs
Article ID: Q99251

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SYMPTOMS
========

You may encounter a general protection (GP) fault in KRNL286 at 0001:259F
or 0001:4FEC when you try to run a Visual Basic executable (.EXE) file in
Windows on a 286 computer or in Windows NT on a MIPs computer.

This problem will not occur when running a Visual Basic application from
the Visual Basic design environment on a 286 or MIPs computer.

RESOLUTION
==========

This problem has been fixed in a post-release version of VBRUN300.DLL,
which is available as part of self-extracting file named VBRUN300.EXE from
the Microsoft Software Library.

Download VBRUN300.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for VBRUN300.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download VBRUN300.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get VBRUN300.EXE

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft Visual Basic
programming system for Windows, version 3.0. To correct the problem, obtain
the post-release version of VBRUN300.DLL.

MORE INFORMATION
================

This bug occurs because of a problem with VBRUN300.DLL. The date,
time, size and version number of the VBRUN300.DLL file that leads to

this problem is as follows:

 Date: 04-APR-1993
 Time: 12:00 a.m.
 Size: 394384
 Version: 03.00.0537

The date, time, size and version number of the VBRUN300.DLL file that
fixes this problem is as follows:

 Date: 12-MAY-1993
 Time: 12:00 a.m.
 Size: 398416
 Version: 03.00.0538

VBRUN100.DLL & VBRUN200.DLL Also Available in Self-Extracting Files
--

For your convenience, you can also obtain the .DLL files for Visual Basic
versions 1.0 (VBRUN100.DLL in VBRUN100.EXE) and 2.0 (VBRUN200.DLL in
VBRUN200.EXE). These files are not updates but are provided for your
convenience.

Download VBRUN100.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for VBRUN100.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download VBRUN100.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get VBRUN100.EXE

Download VBRUN200.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for VBRUN200.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download VBRUN200.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get VBRUN200.EXE

Steps to Reproduce Problem in Visual Basic Version 3.0
--

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. From the File menu, choose Make EXE File (ALT, F, k) and use the
 default name of PROJECT1.EXE.

3. Copy PROJECT1.EXE and VBRUN300.DLL to a 286 computer running Windows or
 a MIPs computer running Windows NT.

4. Run PROJECT1.EXE.

A GP fault occurs in KRNL286 at 0001:259F or 0001:4FEC.

Additional reference words: 3.00 GPF softlib update3.00 S14633 S14632
S14631
KBCategory:
KBSubcategory: EnvtRun

UPD: Oracle ODBC Setup and Connection Issues
Article ID: Q99706

The information in this article applies to:

- Professional Edition of Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

The information given further below was taken from the latest version
of the ORACLE.TXT file. A version of ORACLE.TXT was provided with Visual
Basic version 3.0, but a later version (the one shown below) was provided
with Microsoft Access version 1.1 for Windows. This updated version is
provided in the More Information section below.

To install the earlier version of ORACLE.TXT on your computer, run Data
Access Setup and install the Oracle ODBC driver. The ORACLE.TXT file will
be installed in your WINDOWS\SYSTEM directory. Then you can update the
file with the new information provided in the More Information section
below.

The ORACLE.TXT file fails to mention that the SQL*NET drivers are not
provided with Visual Basic. In order to use the information in this
article, you must acquire the SQL*NET drivers from Oracle. You can
contact Oracle at 1-800-345-DBMS.

MORE INFORMATION
================

SETTING UP THE ODBC ORACLE DRIVER FOR USE WITH THE SQL*NET FOR WINDOWS DLLs

This file discusses how to set up the ODBC ORACLE driver to run with your
ORACLE Server software. To use the ODBC ORACLE driver with any large
application, such as Microsoft Access, you must use the SQL*Net for Windows
DLLs. Because the ODBC ORACLE driver is designed to use ORACLE Server
version 6 and the SQL*Net for Windows DLLs are designed to use ORACLE
Server version 7, you must be careful to configure your system correctly.

If you do not have the SQL*Net for Windows DLLs, or, after following the
instructions in this file, you are still unable to connect to ORACLE Server
with SQL*Net, you can contact Oracle Corp. at 1-800-345-DBMS.

If ORACLE Server version 6 is already installed on your system
--

To set up the ODBC ORACLE driver and the SQL*Net for Windows DLLs if you
already have ORACLE Server version 6 on your system:

1. Make sure you have the correct versions of ORACLE products, including
 at least one SQL*Net protocol.

 Product Version
 -------------------------------- -----------

 ORACLE Installer 3.0.8.3.7
 Required Support Files 7.0.12.1.0
 SQL*Net Named Pipes for Windows 1.1.1.3
 SQL*Net SPX for Windows 1.1.1.5
 SQL*Net TCP/IP for Windows 1.1.7.6

2. Test your current SQL*Net connection by using an ORACLE tool such as
 SQL*Plus for Windows.

3. Search for and delete all copies of ORA6WIN.DLL from your system. A new
 (backwards compatible) version of ORA6WIN.DLL will be installed with
 the ODBC ORACLE driver.

4. Run the ORACLE Installer program. When asked for your ORACLE
 installation directory, use the suggested default directory C:\ORAWIN.

5. Run the ORACLE Installer in the ORACLE group in the Program Manager:

 a) Install the files from the Required Support Files disk.

 b) Install the SQL*Net protocol you will be using. For more
 information, see the ORACLE documentation.

6. If the following line exists, remove it from your AUTOEXEC.BAT file:

 SET CONFIG=<oracle_configuration_file>

 Add the following line to your AUTOEXEC.BAT file:

 SET CONFIG_FILES=C:\WINDOWS\ORACLE.INI

 NOTE: If you are using the MS-DOS 6.0 operating system, add the
 following line to the end of your AUTOEXEC.BAT file:

 SET CONFIG=

 ORACLE Server first checks the CONFIG environment variable for the path
 of the ORACLE configuration file. If the CONFIG variable is not set,
 ORACLE Server checks the CONFIG_FILES variable. Because MS-DOS 6.0 can
 use the CONFIG environment variable during system startup, you must
 clear this variable before leaving your AUTOEXEC.BAT file. Otherwise,
 ORACLE Server will use its value as the path of the ORACLE
 configuration file.

7. Make sure your PATH variable includes the BIN subdirectories of your
 <oraclehome> directory and the \ORAWIN directory. For example, if your
 <oraclehome> directory is C:\ORACLE6, add the following line to your
 AUTOEXEC.BAT file:

 SET PATH=%PATH%;C:\ORACLE6\BIN;C:\ORAWIN\BIN

8. Paste the contents of your CONFIG.ORA file at the start of your
 ORACLE.INI file. For example, if your CONFIG.ORA file contains:

 LANGUAGE=American_America.US7ASCII
 ORACLE_HOME=C:\ORACLE6
 MACHINE_TYPE=J

 SQLPATH=C:\ORACLE6
 WIN_REMOTE_SESSIONS=3
 LOCAL=p:MyServer

 and your ORACLE.INI file contains:

 [Oracle]
 ORACLE_HOME=C:\ORAWIN
 LANGUAGE=American_America.US7ASCII
 NLS_LANG=ENGLISH
 WIN_LOCAL_SESSIONS=1
 TCP_VENDOR=LANMAN
 TCP_SERVICES_FILE=C:\WINDOWS\SERVICES

 then your modified ORACLE.INI file should contain:

 LANGUAGE=American_America.US7ASCII
 ORACLE_HOME=C:\ORACLE6
 MACHINE_TYPE=J
 SQLPATH=C:\ORACLE6
 WIN_REMOTE_SESSIONS=3
 LOCAL=p:MyServer

 [Oracle]
 ORACLE_HOME=C:\ORAWIN
 LANGUAGE=American_America.US7ASCII
 NLS_LANG=ENGLISH
 WIN_LOCAL_SESSIONS=1
 TCP_VENDOR=LANMAN
 TCP_SERVICES_FILE=C:\WINDOWS\SERVICES

 Note that the ORACLE_HOME variable is set twice, once to point to the
 version 6 <oraclehome> directory and once to point to C:\ORAWIN.

9. If it is not already running, start Windows. Insert the ODBC Setup disk
 in drive A, choose Run from the Windows Program Manager (or File
 Manager) File menu, and then type "a:\setup.exe" in the Command Line
 box. For information about using the ODBC Setup program, see the online
 Help.

10. Run the ODBC Control Panel option and add a data source for your ORACLE
 server. For information about using the ODBC Control Panel option, see
 the online Help.

You should now be able to run the ODBC ORACLE driver. You should also be
able to run ORACLE version 6 and version 7 tools and applications written
for Windows. All of these can run over SQL*Net for Windows DLLs.

NOTE: Due to differences in memory use, this configuration may not allow
you to run ORACLE MS-DOS-only tools or applications.

If ORACLE Server is not installed on your system
--

To set up the ODBC ORACLE driver and the SQL*Net for Windows DLLs if you do
not have any versions of ORACLE Server on your system:

1. Make sure that you have the correct versions of ORACLE products,
 including at least one SQL*Net protocol.

 Product Version
 -------------------------------- -----------
 ORACLE Installer 3.0.8.3.7
 Required Support Files 7.0.12.1.0
 SQL*Net Named Pipes for Windows 1.1.1.3
 SQL*Net SPX for Windows 1.1.1.5
 SQL*Net TCP/IP for Windows 1.1.7.6

2. Install the network software connecting your client workstation to the
 server and check that a connection can be made. For example, for the
 TCP/IP protocol, type "ping <servername>". This connection must work
 before you install the SQL*Net for Windows DLLs.

3. Run the ORACLE Installer program. When asked for your ORACLE
 installation directory, use the suggested default directory C:\ORAWIN.

4. Run the ORACLE Installer in the ORACLE group in the Program Manager:

 a) Install the files from the Required Support Files disk.

 b) Install the SQL*Net protocol you will be using. For more
 information, see the ORACLE documentation.

5. Add the following line to your AUTOEXEC.BAT file:

 SET CONFIG_FILES=C:\WINDOWS\ORACLE.INI

 NOTE: If you are using MS-DOS 6.0, add the following line to the end
 of your AUTOEXEC.BAT file:

 SET CONFIG=

 ORACLE Server first checks the CONFIG environment variable for the path
 of the ORACLE configuration file. If the CONFIG variable is not set,
 ORACLE Server checks the CONFIG_FILES variable. Because MS-DOS 6.0 can
 use the CONFIG environment variable during system startup, you must
 clear this variable before leaving your AUTOEXEC.BAT file. Otherwise,
 ORACLE Server will use its value as the path of the ORACLE
 configuration file.

6. Make sure your PATH variable includes the C:\ORAWIN\BIN directory. To
 do this, add the following line to your AUTOEXEC.BAT file:

 SET PATH=%PATH%;C:\ORAWIN\BIN

7. So that the ODBC ORACLE driver can use ORACLE version 7 error messages,
 copy the version 7 error messages to the directory where the ODBC
 ORACLE driver searches for error messages:

 COPY C:\ORAWIN\RDBMS70*.MSB C:\ORAWIN\DBS

8. Search for and delete all copies of ORA6WIN.DLL from your system. A new
 (backwards compatible) version of ORA6WIN.DLL will be installed with
 the ODBC ORACLE driver.

9. If it is not already running, start Windows. Insert the ODBC Setup disk
 in drive A, choose Run from the Windows Program Manager (or File
 Manager) File menu, and then type "a:\setup.exe" in the Command Line
 box. For information about using the ODBC setup program, see the online
 Help.

10. Run the ODBC Control Panel option and add a data source for your ORACLE
 server. For information about using the ODBC Control Panel option, see
 the online Help.

You should now be able to run the ODBC ORACLE driver.

ORACLE Error Messages

The following section explains what to do when you encounter various error
messages from ORACLE Server through the ODBC ORACLE driver.

ORA-xxxxx Message not found; product = RDBMS facility = ORA language = NULL

The ODBC ORACLE driver searches for error messages in the subdirectory that
normally contains the ORACLE version 6 error messages. If you receive this
error, it means that the ODBC ORACLE driver cannot find the error messages.
To fix this:

1. Check that the CONFIG_FILES variable is set in your AUTOEXEC.BAT file
 and that it points to your ORACLE configuration file (ORACLE.INI). If
 you are using MS-DOS 6.0, check that the CONFIG environment variable is
 either not set or is cleared in the last line of your AUTOEXEC.BAT
 file.

2. Check that the ORACLE_HOME variable is set correctly in your
 C:\WINDOWS\ORACLE.INI file.

 If ORACLE Server version 6 was already installed on your system,
 ORACLE_HOME should be set twice. The first time, it should be set to
 your version 6 <oraclehome> directory, usually C:\ORACLE6. The second
 time, in the [Oracle] section of the file, it should be set to
 C:\ORAWIN.

 If ORACLE Server was not installed on your system, ORACLE_HOME should
 be set to C:\ORAWIN.

3. If you did not have any ORACLE software on your workstation, make sure
 that you copied all the .MSB files from C:\ORAWIN\RDBMS70 to
 C:\ORAWIN\DBS.

The ODBC ORACLE driver should now be able to print the ORACLE Server error
message, enabling you to fix the problem that generated the error.

ORA-03121 No interface driver connected -- function not performed
--

The ODBC ORACLE driver cannot find ORA6WIN.DLL or one of the SQL*Net
components. Check the following:

1. Without running the ODBC ORACLE driver, make sure the network
 connection is valid. For example, type "ping <servername>" for a TCP/IP
 connection.

2. Search for and delete old versions of ORA6WIN.DLL. The correct version
 of the ORA6WIN.DLL was installed by the ODBC ORACLE driver in the
 SYSTEM subdirectory of your Windows directory.

3. Check that the PATH variable contains the BIN subdirectory of the
 <oraclehome> directory (usually C:\ORACLE6\BIN or C:\ORAWIN\BIN).

4. Check that the CONFIG_FILES variable is set in your AUTOEXEC.BAT file
 and that it points to your ORACLE configuration file (ORACLE.INI). If
 you are using MS-DOS 6.0, check that the CONFIG environment variable
 is either not set or is cleared in the last line of your AUTOEXEC.BAT
 file.

5. Check that SQLTCP.DLL (for TCP/IP), SQLSPX.DLL (for Novell NetWare
 IPX/SPX), or SQLNMP.DLL (for Named Pipes) is in the ORACLE BIN
 directory specified in the PATH variable. (If not, SQL*Net was not
 installed correctly.)

6. Check that ORA7WIN.DLL and COREWIN.DLL are in the ORACLE BIN directory
 specified in the PATH variable. (If not, SQL*Net was not installed
 correctly.)

ORA-06120 NETTCP: network driver not loaded
--

This error can occur when ORA6WIN.DLL is loaded but cannot find another
SQL*Net component, such as SQLTCP.DLL.

1. Check that the directories containing the SQL*Net components are in
 your PATH variable.

2. Check that the ORACLE_HOME variable is set correctly in your
 C:\WINDOWS\ORACLE.INI file.

 If ORACLE Server version 6 was already installed on your system,
 ORACLE_HOME should be set twice. The first time, it should be set to
 your version 6 <oraclehome> directory, usually C:\ORACLE6. The second
 time, in the [Oracle] section of the file, it should be set to
 C:\ORAWIN.

 If ORACLE Server was not installed on your system, ORACLE_HOME should
 be set to C:\ORAWIN.

3. Search for and delete old versions of ORA6WIN.DLL. The correct version
 of the ORA6WIN.DLL was installed by the ODBC ORACLE driver in the
 SYSTEM subdirectory of your Windows directory.

4. Check that you have followed all the instructions for the SQL*Net
 driver you are using. For example, for the SQL*Net for TCP/IP driver,
 make sure that all the TSRs, such as NMTSR and SOCKTSR, are loaded.
 (If not, SQL*Net was not installed correctly.)

ODBC Error Messages

The following section explains what to do when you encounter various ODBC
error messages.

IM003 Driver specified by data source could not be loaded

The ODBC Driver Manager is attempting to load the ODBC ORACLE driver
(SQORA.DLL). SQORA.DLL loads ORA6WIN.DLL to connect to the ORACLE server.
You can receive this message if it cannot find ORA6WIN.DLL or finds the
wrong version of ORA6WIN.DLL.

1. Search for and delete old versions of ORA6WIN.DLL. The correct version
 of the ORA6WIN.DLL was installed by the ODBC ORACLE driver in the
 SYSTEM subdirectory of your Windows directory.

2. Make sure that ORA6WIN.DLL was installed when the ODBC ORACLE driver
 was installed.

Additional reference words: 3.00 ODBC
KBCategory:
KBSubcategory: APrgDataODBC

UPD: GENERIC Sample Not Provided with Visual Basic
Article ID: Q99888

The information in this article applies to:

- Professional Edition of Visual Basic for Windows, version 3.0

SYMPTOMS
========

Appendix E of the Control Development Guide in the "Microsoft Visual Basic
Version 3.0 Professional Features Book 1" manual refers to a sample called
GENERIC that it says is in the \SAMPLES\GENERIC subdirectory of Visual
Basic. However, this sample was not provided with Visual Basic.

RESOLUTION
==========

You can get the GENERIC sample files by downloading a self-extracting file
(GENERIC.EXE) from the Microsoft Software Library. After downloading the
file, run it to obtain the GENERIC sample files.

Download GENERIC.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for GENERIC.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download GENERIC.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get GENERIC.EXE

STATUS
======

Microsoft has confirmed this to be a bug in the Microsoft Visual Basic
programming system version 3.0 for Windows. This problem can be corrected
by downloading the GENERIC sample files.

Additional reference words: 3.00 update3.00 softlib S14634
KBCategory:
KBSubcategory: Setins

UPD: New Setup Toolkit & Setup Wizard Available for VB ver 3.0
Article ID: Q100003

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Several bugs were fixed in the Visual Basic Setup Toolkit and Setup Wizard
after Visual Basic version 3.0 was released. The latest release of each of
these updated files (version 1.00.002 of SETUP.EXE, version 1.00.002 of the
Setup1 project files, and version 1.00.550 of the Setup Wizard) can be
found in the self-extracting .ZIP file SETUPK.EXE.

Download SETUPK.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for SETUPK.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SETUPK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SETUPK.EXE

MORE INFORMATION
================

The following sections outline the bugs that were fixed and give specific
instructions on how to install the updated files.

Installation

Copy the following files to the following locations on top of the existing
files by the same name. (This assumes that you have installed Visual Basic
in to the default directory C:\VB.)

 SETUP.EXE to C:\VB\SETUPKIT\KITFILES\SETUP.EXE
 SETUP1.FRM to C:\VB\SETUPKIT\SETUP1\SETUP1.FRM
 SETUP1.FRX to C:\VB\SETUPKIT\SETUP1\SETUP1.FRX
 SETUP1.BAS to C:\VB\SETUPKIT\SETUP1\SETUP1.BAS
 SETUPWIZ.EXE to C:\VB\SETUPKIT\KITFILES\SETUPKIT.EXE
 SETUPWIZ.INI to C:\VB\SETUPKIT\KITFILES\SETUPWIZ.INI
 and/or C:\VB\WINDOWS\SETUPWIZ.INI

Distribution

You can distribute these files royalty free with any Visual Basic
application that you create.

Setup Wizard Notes

To check the internal version number of your SETUPWIZ.EXE, open a copy
of the file in an editor, and search for the string "ver:" This will
show the version number. Visual Basic version 3.0 for Windows shipped
with SETUPWIZ.EXE version 1.00.532.

Version Bugs Fixed
------------ --
1.00.533 When using "Save Template," you must enter a file name
 with extension. The extension is no longer required.
1.00.533 The "max" setting for the horizontal scrollbar on the Step
 Five screen is so large that the middle button of the
 scroll bar really can't be used. The max has been reset to
 a smaller value.
1.00.533 The standard command .PIF file may not have the EXECUTION =
 EXCLUSIVE on some computers. As a result, the DOS shells
 for compressing files may sit in the background. Now shell
 with parameter makes the task active with focus.
1.00.534 Minor tweaks to the user interface to widen the TEMPLATE
 buttons, added an accelerator to the R in Rebuild, and
 changed the accelerator in Exit to the 'x' key.
1.00.535 Start SetupWiz. Enter C:\. Click NEXT. This causes an
 untrapped error: "Path/file access error."
1.00.536 Removed line FILE10=OLE2UI.DLL under the [MSOLE2.VBX]
 section in SETUPWIZ.INI.
1.00.536 Try using Setup Wizard to create setup disks for the
 OLE2DEMO sample application after removing the OLE2UI entry
 from SETUPWIZ.INI. In step 2, select OLE. The Next button
 doesn't work. The Back button does work, and the Next
 button works if nothing is selected in step 2. The Finish
 button also works. This problem affected any OLE
 application.
1.00.537 Selecting more than 40 files with the Common Dialog during
 ADD FILES was not handled before. Now it is.
1.00.538 Cleaned up the MSOLE2.VBX and OLE Automation sections in
 SETUPWIZ.INI.
1.00.539 A PATH pointing to non-existing directories or drives
 resulted in a "User-defined error." Now Setup Wizard
 returns the correct error message and continues.
1.00.542 Fixed compression problems when running under Windows NT.
1.00.543 Fixed an invalid keyword in some common dialogs that asked
 where a file is located.
1.00.543 Fixed problem: if a template's .EXE file was deleted or
 moved.
1.00.544 SetupWizard incorrectly added VER.DL_ to the SETUP.LST
 file. Setup Wizard no longer adds this file to SETUP.LST.
1.00.545 SETUPWIZ.INI added two files to the CRYSTAL.VBX section.
1.00.546 Fixed problem where after adding files in step 5, you can
 get a "File not Found" or "Compress error."

1.00.546 Fixed problem where after deleting your project's EXE
 (such as MYAPP.EXE), you'd get an "Illegal function call in
 CreateVBSetup1."
1.00.547 Fixed problem where MYAPP.EXE in same dir as MAK file,
 and PATH= in MAK file points to different drive. Thus
 wrong file was added to list.
1.00.548 Fixed problem when a compressed file is larger than 1.2
 meg. This fix also requires 4 changes in the SETUP1.MAK
 project.
1.00.548 Fixed problem when SETUP1.MAK has a .VBX or .DLL file.
1.00.548 Fixed problem where after adding multiple files, another
 'point to a file' dialog came up asking for a support file
 location resulting in a path with no filename is listed in
 the file distribution box.
1.00.549 Fixed problems where SETUP1.FRM grows beyond an assumed
 size. SetupWizard is now not dependent on SETUP1.FRM's
 size.
1.00.550 Fix to the SETUP1.MAK files for concatenating split files back
 together.

SETUP.EXE Notes

To check the internal version number of your SETUP.EXE, open a copy of the
file in an editor, and search for the string "FileVersion" to show the
version number. Note, This version information was added only after version
1.00.002.

Version Bug Fix/Feature Comments

1.00.002 VER.DLL is truncated to SETUP.EXE now checks to see
 zero bytes if it is not if VER.DL_ exists on your
 found or has an incorrect distribution disk. If it is
 name on the distribution not found, the following error
 disk. error is displayed and then
 SETUP.EXE terminates:
 "Error - File not found:
 A:\VER.DL_. This file is
 required by Setup."

1.00.002 SETUP.EXE does not run When running SETUP.EXE in
 in Windows version 3.0. Microsoft Windows version 3.0,
 you will receive the error "This
 application requires a newer
 version of Windows." This error
 causes SETUP.EXE to terminate.
 This bug has been fixed so that
 SETUP.EXE will run successfully
 in Microsoft Windows version
 3.0.

1.00.002 The Visual Basic version This problem occurs because
 3.0 THREED.VBX does not the file type of THREED.VBX
 overwrite the Visual Basic changed from "APP" to "DLL"
 version 2.0 THREED.VBX. between version 2.0 and 3.0.
 SETUP.EXE now ignores file
 type differences and will

 install any file where the
 source and destination names
 are the same when the source
 file is the same or a newer
 version.

1.00.002 This error message: The error messages are now
 "Could not open or read "Error - Could not open file:
 file: <filename>" was <filename>" and "Error - Could
 replaced with two not read file: <filename>."
 separate error messages. Both errors cause SETUP.EXE to
 terminate.

1.00.002 New error message added: The new error message replaces:
 "Error - Insufficient "Error - Could not copy file:
 disk space on drive <source filename> ->
 <drive letter>:" This <destination filename>"
 error causes SETUP.EXE when there is insufficient
 to terminate. disk space.

1.00.002 Version information was The version number 1.00.002
 added to SETUP.EXE. was added to SETUP.EXE.
 Previous versions of SETUP.EXE
 have no version number.

1.00.003 Running SETUP.EXE This problem has been fixed so
 version 1.00.002 from a that you can run SETUP.EXE from
 subdirectory causes a subdirectory. SETUP.EXE
 "Error - Could not open provided with Visual Basic
 file: <path name> SETUP.LST version 3.0 does not have this
 problem.

1.00.003 VER.DL_ on distribution SETUP.EXE now copies VER.DL_
 disk does not copy over when the file/date time stamp of
 VER.DLL in destination the destination VER.DLL file is
 directory if the file date/ the same.
 time stamp is the same for
 both files.

1.00.004 A "Cannot copy file ..." SETUP.EXE no longer gives an
 error message occurs when error when the source file has
 attempting to copy a file an older version number than
 referenced in SETUP.LST that the destination file.
 has an older version number
 than the same file on the
 destination drive. This
 error causes SETUP.EXE to
 terminate.

1.00.004 SETUP.EXE copies over the SETUP.EXE no longer attempts to
 same or older version of copy VER.DLL if it is already in
 VER.DLL if it is in use use. It assumes that it can use
 by another application such an older version of VER.DLL if
 as File Manager. This can it exists and is in use.
 lead to a General Protection
 Fault (GP fault).

SETUP1 Project Files Notes

To check the internal version number of the Setup1 project files, check the
general declarations section of SETUP1.FRM. Note, This version information
was added only after version 1.00.002 of the Setupkit.

Version Bug Comments
-------- --------------------------------- --------------------------------
1.00.001 SETUP1.EXE fails to copy the This problem occurs because the
 Visual Basic version 3.0 file type of THREED.VBX changed
 THREED.VBX over the Visual from APP to DLL between Visual
 Basic version 2.0 THREED.VBX. Basic versions 2.0 and 3.0.
 The CopyFile function in
 SETUP1.BAS was modified so that
 any file will be copied
 regardless of its type as long
 as the source file is the same
 or newer version when compared
 to the destination file.

1.00.001 SETUP1.EXE fails when attempting A problem in CreateProgManItem
 to show a Program Manager group when executing the ShowGroup DDE
 under Norton Desktop command causes SETUP1.EXE to
 fail under Norton Desktop. The
 syntax on the call to the
 ShowGroup DDE command was fixed
 to overcome this problem.

1.00.001 Unnecessary code included in SETUP1.FRM contains code that
 Form_Load event procedure of has been disabled by making it
 SETUP1.FRM. into a comment. This code was
 useful in the Visual Basic
 version 1.0 of the Setup
 Toolkit. However, the features
 demonstrated by this code were
 removed from the Visual Basic
 version 2.0 and 3.0 Setup
 Toolkit. This code was removed.

1.00.001 Incorrect references to Messages containing references
 "Test Application" to "Test Application" were
 changed to reference the actual
 name of the application.

1.00.002 Setup Wizard is not able to Changes to the Setup Wizard
 break large files (greater version 1.00.548 to fix this
 than 1.2 meg in size) problem required changes to the
 across multiple disks CopyFile and ConcatSplitFiles
 routines in SETUP1.BAS.

1.00.002 A version number was added Check the general declarations
 to a comment in the general section of SETUP1.FRM to
 declarations section of determine the current version
 SETUP1.FRM. number of SETUP1.

Below are the changes that were made to the CopyFile and ConcateSplitFiles
routines in SETUP1.BAS

Old SETUP1 Code

In Function CopyFile:
 If InFileVer$ <= OutFileVer$ Then

In Sub ConcatSplitFiles:
 CopyLeftOver& = outfileLen& Mod 10
 CopyChunk# = (outfileLen& - CopyLeftOver&) / 10
 filevar$ = String$(CopyLeftOver&, 32)
 Get #fh2%, , filevar$
 Put #fh1%, , filevar$
 filevar$ = String$(CopyChunk#, 32)
 iFileMax% = 10

New SETUP1 Code

In Function CopyFile:
 If InFileVer$ <= OutFileVer$ And SourcePath <> DestinationPath Then

In Sub ConcatSplitFiles:
 CopyLeftOver& = outfileLen& Mod 100
 CopyChunk# = (outfileLen& - CopyLeftOver&) / 100
 filevar$ = String$(CopyLeftOver&, 32)
 Get #fh2%, , filevar$
 Put #fh1%, , filevar$
 filevar$ = String$(CopyChunk#, 32)
 iFileMax% = 100

Problems or Limitations

 - COMPRESS.EXE will take only a limited length command line. If
 SetupWizard is in a subdirectory that is nested too deep, COMPRESS
 will not work correctly. You encounter a 'File does not exist' error
 when the file does exist. To work around this problem, move the
 SETUPKIT subdirectory up one or more directory levels until COMPRESS
 works.

 - The error message "Sharing Violation on drive C:" may be displayed
 during the compression stage (Step 6) when using the Setup Wizard. This
 is caused by the combination of the file sharing utility SHARE.EXE, the
 compression utility COMPRESS.EXE, and the Setup Wizard tool
 SETUPWIZ.EXE. The problem occurs when the compression utility tries to
 open the files SETUPKIT.DLL, VBRUN300.DLL, COMMDLG.DLL, or CMDIALOG.VBX.

 To work around this problem, copy SETUPKIT.DLL, VBRUN300.DLL,
 COMMDLG.DLL, and CMDIALOG.VBX from the \WINDOWS\SYSTEM directory to the
 directory where the SETUPWIZ.EXE file is located. Then SETUPWIZ.EXE and
 COMPRESS.EXE files will not try to use the same files at the same time.
 Set the read-only attribute of all four files. This can be done by using
 File Manager in Windows or by using the Attrib command from the MS-DOS

 prompt.

 For more information on this Bug, please see the following article in
 the Microsoft Knowledge Base:

 ARTICLE-ID: Q102478
 TITLE : BUG: Setup Wizard Error: Sharing Violation Reading Drive C:

Additional reference words: 3.00 update3.00 softlib S14616
KBCategory:
KBSubcategory: TlsSetWiz

UPD: New XBASE Driver Available That Fixes Several Problems
Article ID: Q100514

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

A new XBase IISAM driver XBS110.DLL version 1.10.0002 is available. This
driver fixes several bugs documented below. It is the same driver that is
provided with Microsoft Access version 1.10.

To obtain the new driver, download XBS110.EXE, a self-extracting file, from
the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for XBS110.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download XBS110.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get XBS110.EXE

MORE INFORMATION
================

If you have Windows for Workgroups, you can use the following steps to get
the version number of your XBase driver:

1. Start File Manager

2. Find the XBS110.DLL file, and select it. This file is usually located
 in the WINDOWS\SYSTEM directory.

3. From the File menu, choose Properties.

The item marked "Version:" is the XBase version number for XBS110.DLL.

Bugs Fixed by XBS110.DLL Version Number 1.10.0002

PROBLEM ID: 2186

 Relates to DBase III

 An update is allowed that violates unique index. Using the XB110.DLL

 driver that shipped with Visual Basic, it is possible to add multiple
 records that share the same unique index. The new version of the
 driver does not allow you to update the database with a record that
 contains the same unique index value as an existing record.

PROBLEM ID: 2390

 Relates to FoxPro 2.5

 A general protection (GP) fault occurs when updating the record
 immediately preceding a record locked by another user. The GP fault
 occurs in XBS110.DLL at 0002:11DA.

PROBLEM ID: 2418

 Relates to DBase III

 A unique index is corrupted after an update query. The symptom of
 this problem is that the first 239 items in the table are not found.

PROBLEM ID: 2432

 Relates to DBase III, IV and Fox Pro 2.0, 2.5

 SeekEQ on NULL returns first non-null record when there are no NULL
 records in the column.

PROBLEM ID: 2457

 Relates to: FoxPro 2.5

 Attempting to update a record results in a GP Fault in XBS110.DLL
 at 0013:144A when the IDX index type is used.

PROBLEM ID: 2487

 Relates to FoxPro 2.5

 A GP fault in XBS110.DLL occurs at 001A:05F6 when using INSERT INTO on
 the same table as the FROM clause uses -- that is, when copying records
 from a table into itself.

PROBLEM ID: 2511

 Relates to FoxPro 2.0 and 2.5

 A GP fault in XBS110.DLL occurs at 0002:11DA when inserting the 98th
 record in table that has one index.

Additional reference words: 3.00 update3.00 softlib S14644
KBCategory:
KBSubcategory: EnvtRun

UPD: New SETUP.EXE Available for Visual Basic Version 3.0
Article ID: Q101145

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Several bugs were fixed in SETUP.EXE (provided as part of the Setup
Toolkit) after Visual Basic version 3.0 was released. To get the latest
release of SETUP.EXE, download SETUPK.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for SETUPK.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SETUPK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SETUPK.EXE

After downloading SETUPK.EXE, run it to obtain the latest version of the
Visual Basic SETUP.EXE file. For more information about the contents of
SETUPK.EXE, including a list of fixed bugs and instructions on how to
install the new versions, please see the following article in the Microsoft
Knowledge Base:

ARTICLE-ID: Q100003
TITLE : UPD: New Setup Toolkit & Setup Wizard Available for VB ver 3.0

This article is available by fax on FastTips by calling 1-800-936-4300 and
requesting item number 100003.

Additional reference words: 3.00 update3.00 softlib S14616
KBCategory: Tls
KBSubcategory: TlsSetWiz

UPD: Invalid file format Error When Run VB app's EXE File
Article ID: Q101261

The information in this article applies to:

- The Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

You may encounter the following error when running a Visual Basic
executable (EXE) file:

 Invalid file format

Or you may encounter the following error when loading a Visual Basic
project or form:

 Error loading '<form filename>'. A control could not be loaded due
 to a load error. Continue?

CAUSE
=====

This problem will occur when you have installed a new version of a
custom control and the internal property list of the control has
incorrectly changed in a way that breaks backward compatibility.

This problem is known to occur when you have installed the Visual
Basic version 3.0 GRID.VBX file over an earlier version of the grid.
Specifically, the problem will occur for an existing Visual Basic
application, built using a previous version of the grid, that sets the
HelpContextID property of the grid.

In the case where the problem occurs when you load a project into
Visual Basic that contains a grid, the problem will only occur when
the form file(s) containing the grid have been saved in binary format.

This problem is also known to occur when using Visual Basic version
2.0 and the CMDIALOG.VBX control. For more information on this problem,
please see the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q100611
TITLE : FIX: VB 2.0 Prof Demo Causes Error: Invalid File Format

WORKAROUND
==========

There are several ways that you can work around this problem:

If you are using a Visual Basic version 3.0 application and you encounter
this problem, you can:

 - Acquire an updated copy of GRID.VBX from Microsoft (see instructions in

 the More Information section below).

 - Replace the Visual Basic version 3.0 of GRID.VBX with an earlier
 version. A disadvantage of this strategy is that applications requiring
 the Visual Basic version 3.0 grid will not run.

If you are a developer of a Visual Basic version 3.0 application that uses
the grid, you can:

 - Acquire an updated copy of GRID.VBX from Microsoft (see instructions in
 the More Information section below). You will need to build your
 application using this grid.

 - Rename GRID.VBX to a different name such as MSGRID3.VBX and rebuild the
 application using the renamed grid. A disadvantage of this strategy is
 that the grid will not be automatically updated when a new version of
 the grid (such as a version of the grid containing bug fixes) is
 released.

The following shows the date, time, size, and version number of the
GRID.VBX file that leads to this problem:

 Date: 28-APR-1993
 Time: 12:00 a.m.
 Size: 44667
 Version: Not Marked

The following shows the date, time, size, and version number of the
GRID.VBX file that fixes this problem:

 Date: 15-JUNE-1993
 Time: 5:26 p.m.
 Size: 45136
 Version: 03.00.0538

STATUS
======

Microsoft has confirmed this to be a bug in the products listed above.
The problem is corrected by the updated version of GRID.VBX.

MORE INFORMATION
================

How to Obtain Updated Copy of GRID.VBX

To obtain the updated copy of GRID.VBX, download VBGRID.EXE, a self-
extracting file, from the Microsoft Software Library (MSL) on the following
services:

 - CompuServe
 GO MSL
 Search for VBGRID.EXE
 Display results and download

 - Microsoft Download Service (MSDL)

 Dial (206) 936-6735 to connect to MSDL
 Download VBGRID.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get VBGRID.EXE

Steps to Reproduce Problem

1. Start Visual Basic or from the File menu, choose New Project (ALT, F, N)
 if Visual Basic is already running. Form1 is created by default.

2. Add a Visual Basic version 1.0 or 2.0 version of GRID.VBX to Form1.

3. Put a grid control (Grid1) on Form1

4. Set the HelpContextID property of Grid1 to 1 (or some non-zero value).

5. From the File menu, choose Make EXE File (ALT, F, K) and create an EXE
 called PROJECT1.EXE.

6. Replace the older version of grid with the Visual Basic version 3.0
 version of GRID.VBX, which has a date and time of 28-APR-1993 12:00 am.

7. Run the PROJECT1.EXE file created in step 5.

You should encounter an "Invalid file format" error. If you replace the
Visual Basic version 3.0 grid with the version of the grid used in Step 2
and re-run PROJECT1.EXE, the program should run correctly.

Additional reference words: 3.00 softlib update3.00 S14643
KBCategory:
KBSubcategory: PrgCtrlsStd

UPD: New Setup Kit Files Available for Setup1
Article ID: Q101624

The information in this article applies to:

- Microsoft Visual Basic for Windows, version 3.0

SUMMARY
=======

The following files have been made available in the Microsoft Software
Library in a self-extracting ZIP file called SETUPK.EXE:

 SETUP1.FRM
 SETUP1.BAS

To obtain these new Setup Kit files, download SETUPK.EXE, a self-extracting
file, from the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for SETUPK.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SETUPK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SETUPK.EXE

After downloading SETUPK.EXE, run it to obtain the files it contains. For
more information about the contents of SETUPK.EXE, including a list of
fixed bugs and instructions on how to install the new versions, please see
the following article in the Microsoft Knowledge Base:

ARTICLE-ID: Q100003
TITLE : UPD: New Setup Toolkit & Setup Wizard Available for VB ver 3.0

This article is available by fax on FastTips by calling 1-800-936-4300 and
requesting item number 100003.

Additional reference words: 3.00 update3.00 softlib S14616
KBCategory:
KBSubcategory: TlsSetWiz

UPD: New MSCOMM control available
Article ID: Q101944

The information in this article applies to:

- Microsoft Visual Basic for Windows, versions 2.0 and 3.0

SUMMARY
=======

A new version of the MSCOMM.VBX control is available. To obtain it,
download MSCOMM.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for MSCOMM.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MSCOMM.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get MSCOMM.EXE

This new control fixes a problem where the OnComm event will not fire when
communicating with some 14.4K baud modems.

MORE INFORMATION
================

The date, time, size, and version number of the MSCOMM.VBX file that
shipped with Visual Basic version 3.0 is:

 Date: 28-APR-1993
 Time: 12:00 a.m.
 Size: 34304
 Version: 2.0.9000.7

The date, time, size, and version number of the updated MSCOMM.VBX file
is as follows:

 Date: 12-MAY-1993
 Time: 12:21 p.m.
 Size: 34816
 Version: 2.1.0.1

When using the MSCOMM.VBX provided with Visual Basic version 2.0 or 3.0 to
communicate with a 14.4K baud modem, the OnComm event may not fire. The
revised version of the MSCOMM.VBX control available on CompuServe fixes
this problem by introducing a new Notification property. The problem

relates to using Windows version 3.1 event driven communications. The new
property fixes the problem by allowing you to use Windows version 3.0
polling techniques instead.

The Notification property is not available at design time, but you can get
and set its property value at run time. It's default value of zero (0)
tells the control to use Windows version 3.0 polling techniques. A value of
1 tells the control to use Windows version 3.1 event driven communications.

Microsoft recommends that you set the property value to 1 if you are
using the MSCOMM control to communicate with a modem that has a baud rate
lower than 14.4K baud.

One other change was made. The default property setting for the Interval
property was changed from 1000 to 55.

Installation

To install the new control, copy the updated version to the WINDOWS\SYSTEM
directory on your computer. Also check to make sure that no other copies of
MSCOMM.VBX exist on your computer. If you find an older version of the
MSCOMM.VBX file, delete it or rename it.

NOTE: When installing the updated MSCOMM.VBX, make sure no existing Visual
Basic applications that used the original MSCOMM.VBX are broken. The
updated MSCOMM.VBX (Version: 2.1.0.1) is not compatible with Visual Basic
application .EXE files compiled with the original version of the MSCOMM.VBX
(Version: 2.0.9000.7). These applications must be recompiled with the
2.1.0.1 version of the MSCOMM.VBX in order to work correctly with this
updated .VBX file. The updated version of MSCOMM.VBX fixes a problem where
the OnComm event will not fire when communicating with some 14.4 baud
modems. If the specific problem fixed by the updated MSCOMM.VBX is not a
concern and there are existing Visual Basic applications for which the
source code is not available, use the original MSCOMM.VBX -- not the
updated one.

Additional reference words: 2.00 3.00 update3.00 softlib S14642
KBCategory:
KBSubcategory: PrgCtrlsCus

UPD: New Access Engine MSAJT110.DLL Available
Article ID: Q102481

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic
 programming system for Windows, version 3.0

SUMMARY
=======

A new Microsoft Access engine library MSAJT110.DLL version 1.10.0001 is
available. To obtain it, download MSAJT.EXE, a self-extracting file, from
the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for MSAJT.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download MSAJT.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get MSAJT.EXE

MORE INFORMATION
================

This updated version of the MSAJT110.DLL is provided for compatibility. It
is identical to the one that shipped with (and is required by) Microsoft
Access version 1.1.

To get the version number of your current Access engine library, perform
these steps:

1. Start File Manager.

2. Find the file MSAJT110.DLL, and select it. This file is usually located
 in the \WINDOWS\SYSTEM directory.

3. From the File menu, choose Properties.

The item marked "Version:" is the version number for MSAJT110.DLL.

Additional reference words: 3.00 1.10.0001 update3.00 softlib S14641
KBCategory: APrg
KBSubcategory: APrgDataAcc

UPD: DOC: Data Access Guide Index -- A through Me
Article ID: Q103702

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Below is the A-Me index for the Data Access Guide in the Microsoft Visual
Basic version 3.0 for Windows "Professional Features Book 2" manual. This
index was not included in the manual. The index in the very back of the
manual is for the Crystal Reports section of the manual only.

For the Mo through Z portion of the index, please see the following article
in the Microsoft Knowledge Base:

ARTICLE-ID: Q103703
TITLE : DOC: Data Access Guide Index -- Mo through Z

The entire index is also avaiable as one, single file. To obtain it,
download DATAINDX.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DATAINDX.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DATAINDX.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get DATAINDX.EXE

MORE INFORMATION
================

" (double quotes) 66
' (single quotes) 66
! symbol 66, 78, 79, 97
.CDX (FoxPro) index files 140, 142
.DBF (dBASE) files 140
.DDF (Btrieve) files 12
.IDX (FoxPro) index files 140, 142
.INF (information) files 140, 142
.INI (initialization) files
See also VB.INI
<Appname>.INI 148
external databases 134

ODBC.INI 14, 15, 27, 151, 154
purpose 40
setting name and location 41
WIN.INI 144, 149
.LDB (Visual Basic) locking support files 121
.MDA Access (database) files 120
.MDB Access (dBASE) index files 12, 14, 28
.MDX files 140, 142
.NDX files 140, 142
.PX (Paradox) files 139
.386 files 123
3D check box control 117
3D panel control 117

Access See Microsoft Access
Access engine 1, 41
Action part See Programmer's Guide, Chapter 20
Action queries
 Execute method 101
 ExecuteSQL method 102
 making bulk changes 70
 passing to ODBC server 59
Adding
 Field objects 28, 33
 Index objects 28, 37 - 38
 records 54, 86
 TableDef objects 28, 29, 33
 tables 33
AddNew method
 adding records 86
 cloning recordset variables 102
AddNew method (continued)
 Dynaset 53
 Snapshot 57
Admin username 120
Administrative privileges 120
Aggregate functions 126, 132, 147
Alias names 147
ALL statement (SQL) 127
ALTER statement (SQL) 127
Alternatives to data objects 3
AND statement (SQL) 132
ANSI SQL
 compared to Microsoft Access SQL 126
 data types 126
 features not supported 127
APP (application name) 15
Append method 29
 collections 29
 example 32
 Field object 31, 33
 Fields collection 33
 Index object 31
 TableDef object 31
 TableDefs collection 31
Append only constant (DB_APPENDONLY) 58
AppendChunk method

 handling large fields 98, 100
 large fields 35
Application name as a connect parameter 15
AS statement (SQL) 127
ASC statement (SQL) 127, 131
Ascending sorts 39, 64
ASCII files, support in Visual Basic 3,134
Attached tables
 bookmarks 76
 connect string 19, 61
 indicating data sources 37
 source table name 61
 using 50
Attaching tables
 See also Tables: External databases; specific database
 formats
 from external databases 30, 133
 from Microsoft Access databases 146 - 147
 from ODBC tables 149 - 150
Attributes field, ListTables snapshot 23
Attributes options, setting 21
Attributes property 36
 Fields collection 22
 system tables 21
 TableDef object 19, 20, 135, 149
AUTOEXEC.BAT 122

Background processing 45
Beginning a transaction 104
BeginTrans method 54
BeginTrans statement
 multiple transactions 106
 transaction logging 108
 using transactions 104
BETWEEN statement (SQL) 126
BIBLIO.MDB 9
Binary data type 35
Binary file-access, support in Visual Basic 3
Binary object data type 35
BINARY statement (SQL) 127, 128, 129
BIT statement (SQL) 127
BOF property
 defined 62
 Move methods 71
 positioning the current record 68
Bookmark property
 defined 62
 positioning methods compared 69
 recordsets 61
 using 76
Bookmarkable property 61
Bookmarks
 current record, positioning 76
 defined 62
 external databases 76
 multiple transactions 106
 sharing in cloned Dynasets 102

BOOLEAN statement (SQL) 129
Bound controls
 See also Data control; Programmer's Guide, Chapter 20
 events, methods, and properties (list) 7
 using 116 - 117
Btrieve databases
 See also External databases; VB.INI; WIN.INI
 accessing 133
Btrieve driver 144
BTRIEVE.TXT 143
 data-type conversions 145
 FIELD.DDF 143
 FILE.DDF 143
 ISAM 149
 Microsoft Access security 120
 Novell Btrieve for Windows 144
 Novell Netware SQL 144
 opening databases 11
 opening files 143 - 145
 passwords 135
 primary keys 136
 support in Visual Basic 3
 WBTRCALL.DLL 144
 WIN.INI file settings 144
 Xtrieve 143
Bulk operations
 Execute method 101
 ExecuteSQL method 102
 transaction logging 108
 using action queries 70
BY statement (SQL) 127
BYTE statement (SQL) 128, 129

Cannot find installable ISAM 134
Changing records 54, 82 - 84
CHAR[ACTER] statement (SQL) 127, 128, 129
Character data type 35
Check box control 116
Client/server databases, support in Visual Basic 3
Clone method 50, 114
Cloning recordset variables 102
Close method
 databases 27
 recordsets 68
Closing
 databases 17, 27
 queries 93
 recordsets 68
Code page information 26
Coding rules for SQL queries 102, 125 - 132
Collating order 22, 36
Collating sequences 26, 37
CollatingOrder property
 Field object 36
 Fields collection 22
 mapping object properties 19
CollatingSequence 148

Collections
 Fields 6
 Indexes 6
 methods 28 - 29
 members 28
 names 77
 summarized 5
 Tabledefs 6
 types supported 28
CommitLockRetry 148
Committing transactions 104
CommitTrans method 54
CommitTrans statement
 transaction logging 108
 using transactions 104
CompactDatabase statement
 Access version 44
 destinationname part 43
 locale part 44
 options part 44
 overview 42
 packing .DBF files 141
 sourcename part 43
 when repairing databases 45
Compacting a database 42 - 44
Comparison strings, Seek method 74
CONFIG.ORA (Oracle) 153
Connect parameters 15
Connect part 11
Connect property
 attaching external tables 145
 login timeout 152
 mapping object properties 19
 ODBC parameters 15
 OpenDatabase function 11 - 15
 recordsets 61
 Refresh method 30
 TableDef object 19
Connect strings 135, 61
Connections, managing See file PERFORM.TXT
Consistent updates 58
Contents overview 2
Control, yielding 45
Controls
 See also individual controls
 Bound controls 118
Corruption, data 121
Count property, TableDefs collection 19
Count function (SQL) 132
Count(*) function (SQL) 132
Counter data type 36
Counter fields 36
CREATE statement (SQL) 127
CreateDatabase function 25 - 27
CreateDynaset method
 append only constant (DB_APPENDONLY) 58
 consistent updates 58

creating Dynaset variables 50
 deny read constant (DB_DENYREAD) 58
 deny write constant (DB_DENYWRITE) 58
 in SQL queries 100
 inconsistent updates 58
 read only constant (DB_READONLY) 58
 recordsets 57, 58
 sorting records 64
 SQL PassThrough 58, 59
CreateQueryDef method
 in SQL queries 100
 recordsets 58
 SQLPassThrough option 59
CreateSnapshot method
 append only constant 58
 consistent updates 58
 creating Snapshot variables 56
 deny read constant 58
 deny write constant 58
 in SQL queries 100
 inconsistent updates 58
 read only constant 58
 recordsets 57, 58
 sorting records 64
 SQL PassThrough 58
 SQLPassThrough option 59
Creating
 data object variables 113
 Database object 10
 Database object variable 25
 database variables 49
 databases 24 - 28
 databases with Data Manager 24
 Dynaset variables 50 - 55
 Dynasets 48 - 68
 external databases 27
 indexes 31, 37 - 38
 new query 92
 new table 31
 ODBC-accessible database 27
 programs 47 - 108
 recordsets 48 - 68
 Snapshots 48 - 68
 table variables 49
 TableDef object 31
 Tables 48 - 68
Crosstab queries 126
Currency data type 35
CURRENCY statement (SQL) 127, 128, 129
Current record
 positioning 68 - 76
 undefined 68
Custom controls, support in Visual Basic 3

Danish rules (locale constant) 26, 37, 44
Data control
 See also Programmer's Guide, Chapter 20

 accessing fields 82
 bookmarks 76
 bound controls 116
 Connect property 151
 creating Dynaset variables 50
 current record 68
 DatabaseName property 151
 events (list) 6
 exclusive access 88
 general tips and techniques 112 - 114
 methods (list) 6
 opening databases 10
 opening external tables 137
 overview 10
 properties (list) 6
 Recordset property 82
 refreshing 30
 unbound controls 118
 using in the Professional edition 110 - 114
 with the OpenDatabase function 14
Data corruption 45
Data Definition Language (DDL) 127
Data Manager application 25
 See also DATAMGR.HLP
Data Manipulation Language (DML) 47
Data object variables 113
Data source as a connect parameter 15
Data Source Name (DSN) 15, 27
Data types
 Btrieve data-type conversions 145
 dBASE data-type conversions 142
 Field object 35
 Microsoft FoxPro data-type conversions 142
 Paradox data-type conversions 140
DATA_ACTIONUNLOAD 68
Data1.Recordset in SQL queries 100
Database as a connect parameter 15
Database engine
 described 1
 initializing 41
Database formats supported in Visual Basic 3
Database object
 creating 10
 creating database variables 25, 49
 default collection 77
 default property 77
 properties and methods (list) 5
DATABASE (ODBC parameter) 15
Database property, using in the Professional edition 110
DATABASE statement (SQL) 127
Database structure, modifying 28 - 40
Database variables
 creating 25, 49
 creating a Dynaset 50
 Global 17
 Static 17
Databasename part

 See also Programmer's Guide, Chapter 20
 CreateDatabase function 26
 OpenDatabase function 11
DatabaseName property 30
Databases
 accessing external databases 133 - 154
 adding tables 33
 changing locale 42
 changing version 42
 closing 17, 27
 compacting 42 - 44
 creating 24 - 28
 decrypting 44
 deleting 28
 encrypting 27, 44
 external, accessing 133 - 154
 initializing 40 - 45
 locking 87 - 91
 management 9 - 45
 mapping 18 - 24
 modifying 28 - 40
 opening
 as exclusive 12
 as read-only 13
 as shared 12
 Microsoft Access databases 41, 42
 possible problems 13
 special conditions 13
 types of databases 14
 repairing 45
 sharing 121, 122
 validating 45
DataChanged property 116
DATACONS.TXT See specific constants
DataField property 116
DataSource property 116
Datasource type 15
Date/Time data type 35
DateCreated field, ListTables snapshot 23
DateCreated property
 recordsets 61
 TableDef object 19
DATETIME statement (SQL) 127, 128, 129
DB-Library, support in Visual Basic 3
DB_APPENDONLY 58
DB_ATTACHEDODBC 20
DB_ATTACHEDTABLE 20
DB_ATTACHEXCLUSIVE 20
DB_ATTACHSAVEPWD 20, 30, 135, 149
DB_AUTOINCRFIELD 36
DB_BINARY 35
DB_BOOLEAN 35
DB_BYTE 35
DB_CONSISTENT 58, 59
DB_CURRENCY 35
DB_DATE 35
DB_DECRYPT 44

DB_DENYREAD 58, 59, 89
DB_DENYWRITE 58, 59, 89
DB_DOUBLE 35
DB_ENCRYPT 27, 44
DB_FIXEDFIELD 36
DB_INCONSISTENT 58, 59
DB_INTEGER 35
DB_LANG_DUTCH 26, 44
DB_LANG_GENERAL 26, 44
DB_LANG_ICELANDIC 26, 44
DB_LANG_NORDIC 44
DB_LANG_NORWDAN 26, 44
DB_LANG_SPANISH 26, 44
DB_LANG_SWEDFIN 26, 44
DB_LONG 35
DB_LONGBINARY 35
DB_MEMO 35
DB_OPTIONINITPATH 41
DB_READONLY 58, 59
DB_SINGLE 35
DB_SQLPASSTHROUGH 58, 59, 101
DB_SYSTEMOBJECT 20
DB_TEXT 35
DB_UPDATABLEFIELD 36
DB_VERSION10 27, 44
dBASE III, IV databases
 See also External databases; VB.INI
 .MDX files 140
 .NDX files 140
 accessing 133
 creating 25
 data-type conversions 142
 deleting records 137, 148
 driver 148
 files 140
 indexes 140, 142
 Microsoft Access security 120
 opening databases 11, 12, 14
 opening files 11, 12, 14, 140
 primary keys 136, 140, 142
 support in Visual Basic 3
 versions supported 11
 dBASE ISAM 148
DDL (Data Definition Language) 127
DECIMAL statement (SQL) 128
Default collections, names, and properties 77
Default database as an ODBC connect parameter 15
Delete method
 collections 29
 deleting records 86
 tables 34
DELETE statement (SQL) 127, 129
 Deleting
.MDB files 28
 databases 28
 fields 34
 Index objects 28

 indexes 38
 queries 93
 records 54, 86
 TableDef objects 28
 tables 34
Deny read constant (DB_DENYREAD) 58
Deny write constant (DB_DENYWRITE) 58
DESC statement (SQL) 127, 131
Descending sorts 39, 64
Destinationname (CompactDatabase statement) 43
Dim statement 113
Directories, making
 Search Help for MKDIR
 See also External databases
DISTINCT statement (SQL) 127, 129
DISTINCTROW statement (SQL) 127
DLLs (Dynamic link libraries)
 in Visual Basic and Microsoft Access 120
 required See Programmer's Guide pages 579 - 582
 support in Visual Basic 3
DML (Data Manipulation Language) 47
DoEvents function 45
Domain functions 120
Double data type 35
DOUBLE statement (SQL) 128, 129
DOUBLE PRECISION statement (SQL) 128
DROP statement (SQL) 127
DSN (Data Source Name)
 ODBC databases 15
 registering 27
Dutch rules (locale constant) 26, 37, 44
Dynaset object
 default collection 77
 default property 77
 properties and methods (list) 5
Dynaset variables
 creating 50 - 55
 creating a subset 50
 updating multiple tables 84
 using 53
Dynasets
 See also Recordsets; Snapshots; Tables;
 Programmer's Guide, Chapter 20
 accessing fields 80 - 82
 adding records 54
 AddNew method 53
 changing records 54
 cloning 102
 creating 48 - 68
 deleting records 54
 Edit method 53, 54
 editing 53
 Filter property 50, 66
 inconsistent 84
 locking 54, 89
 management approaches 55
 membership 48, 53

 Microsoft Access SQL 125
 multiuser considerations 53
 options 58
 overview 48
 rebuilding 55
 screening data 53
 Sort property 50
 sorting 64
 SQL PassThrough 59
 Transactions property 104
 Update method 54

Edit method
 deleting records 86
 Dynaset 53
 editing records 82
 handling errors 83, 86
 locking dynasets 54
 pessimistic locking 90
 Snapshot 56
Editing records 82 - 84
EFGPI rules (English, French, German, Portuguese, Italian) 37
Embedded functions in queries 119
Encryption
 changing 42, 44
 external databases 135
 setting 27
English rules (locale constant) 26, 37, 44
EOF property
 Move methods 71
 positioning the current record 68
 recordsets 61
Errors
 See also Help files DRVORACL.HLP, DRVSSRVR.HLP
 'Cannot find installable ISAM' 134
Edit method 83
 handling 83
 optimistic locking 84
 pessimistic locking 84
 too many pending transactions 106
 trappable errors
 # 2004 108
 # 7745 154
 when adding records 86
 when deleting records 86
Events 6
Exclusive mode 12, 30
Exclusive part 12
Exclusive property 30
Execute method
 append only constant 58
 consistent updates 58
 deleting records 86
 deny read constant 58
 deny write constant 58
 described 100, 101
 in SQL queries 100, 101

 inconsistent updates 58
 ODBC 58, 59
 read only constant (DB_READONLY) 58
 recordsets 58
 SQL PassThrough 58, 59
ExecuteSQL method, described 100, 102
External databases
 accessing 54, 134 - 154
 achieving optimal performance 147
 alias names 147
 attaching tables 30
 attaching tables from Microsoft Access
 databases 146 - 147
 Btrieve tables, accessing 143 - 145
 'Cannot find installable ISAM' 134
 combining data with Visual Basic tables 30
 connect parameters 15
 creating 27
 creating database variables 49
 creating databases 24
 dBASE tables, accessing 140 - 142
 deleting records 137
 encrypting 135
 exclusive mode 30
 general tips 134 - 137
 initialization parameters 134
 initialization statements 41 - 42
 locking 54
 Microsoft FoxPro tables, accessing 140 - 142
 opening databases 11
 opening tables 137 - 138
 Paradox tables, accessing 138 - 140
 passwords 135
 performance See file PERFORM.TXT
 primary keys 136
 SourceField property 37, 145
 SourceTableName property 37, 145
 support in Visual Basic 3
 TableDef attributes 20

Features (data control)
 ANSI SQL 126, 127
 database types supported 3
 file types supported 3
 Microsoft Access SQL 126
 overview 2
 Professional Edition vs. Standard Edition 4
Field collating order 22
Field names 34
Field objects
 adding 28, 31
 append order 37
 bytes used 35
 data types 35
 default collection 77
 default property 77
 deleting 34

 methods (list) 6
 Name property 34
 Ordinal property 81
 properties 6, 34 - 37
 properties within Field collections 34 - 37
 Size property 35
 Type property 35
FIELD.DDF (Btrieve) 143
Fields
 See also Field object; Fields collection
 accessing 80 - 82
 adding to a table 33
 changing 34
 data types 35
 handling large fields 98 - 100
 LargeBinary fields 98
 (list) 23
 Memo fields 98, 99, 100
 Null value 80
 Value property 80 - 82
Fields collection
 adding a field 33
 addressing Field object properties 34 - 37
 deleting Field members 34
 mapping definitions 22
 members 28
 methods (list) 6
 Name property 34
 properties (list) 6
Fields property 39
FieldSize method
 handling large fields 98, 99
 large fields 35
File types supported 3
FILE.DDF (Btrieve) 143
Files
 See also Tables
 manipulating
 Get statement 3
 Input statement 3
 Print statement 3
 Put statement 3
 required See Programmer's Guide, Chapter 25, 579 - 582
Filter property
 Dynaset 50, 53
 recordsets 61, 66
Find methods, current record, positioning 68, 72
FindLast method, positioning methods compared 69
Finnish rules (locale constant) 26, 37, 44
First function (SQL) 132
FLOAT statement (SQL) 127, 128, 129
Forms, default 77
FreeLocks statement 45
French rules (locale constant) 26, 37, 44
FROM statement (SQL) 127
Functions (data access)
 aggregate functions 126

 domain functions 132
 embedded functions in queries 120
 usable for data access 7

German rules (locale constant) 26, 37, 44
Get statement, manipulating files 3
GetChunk method
 handling large fields 98, 99
 large fields 35
Global recordset variables 68
Graphics, implementation differences vs.
 Microsoft Access 119
GROUP statement (SQL) 127
GROUP BY statement (SQL) 130

Handling errors 83
Handling large fields 98 - 100
HAVING statement (SQL) 127, 130
Host servers, sharing tables 30

Icelandic rules (locale constant) 26, 37, 44
Idle time, managing 45
IEEESINGLE statement (SQL) 127
Image control (bound control)
 described 116
 using with Microsoft Access databases 119
Importing data into Visual Basic database 133
IN statement (SQL) 127, 131
Inconsistent Dynaset 84
Inconsistent updates 58
Index objects
 adding 28
 adding new 31
 creating indexes 37 - 38
 default collection 77
 default property 77
 deleting 28
 listing properties 40
 methods (list) 6
 properties 6, 39
 properties within Index collections 34 - 37
 secondary indexes 39
Index property
 recordsets 61
 Seek method 74
 Tables 63
Indexes
 See also Index object; Indexes collection
 creating 31, 37 - 38
 dBASE tables 142
 deleting 38
 external databases 136, 139, 142
 (list) 23
 (list) properties 40
 Microsoft FoxPro tables 142
 Paradox databases 139
 primary key 54

 properties 39
 secondary indexes 39
 unique indexes 54
Indexes collections
 addressing Index object properties 34 - 37
 addressing index properties 39
 creating indexes 37 - 38
 Delete method 29
 (list) properties 40
 members 28
 methods (list) 6
 properties (list) 6
 secondary indexes 39
 Tables 63
Initialization files
 general tips for external databases 134
 ODBC.INI 151
 VB.INI 148
 WIN.INI 144, 149
Initialization parameters 134
Initializing
 database engine 41, 42
 Database variable 10
 databases 40 - 45
INNER statement (SQL) 127, 130
Input # statement, importing ASCII data 134
Input statement, manipulating files 3
INSERT statement (SQL) 127, 129
INSERT INTO statement (SQL) 129
Installable ISAMs 148
INSTCAT.48 (Sybase) 154
INSTCAT.SQL (SQL) 154
InStr function, mapping Field properties 22
Integer data type 35
INT[EGER] statement (SQL) 127, 129
INTO statement (SQL) 127, 129
IS statement (SQL) 131
ISAM databases See specific database formats
ISAM files, support in Visual Basic 3
Italian rules (locale constant) 26, 37, 44

JOIN statement (SQL) 127, 130
Joins
 coding 126, 130
 inner 130
 Microsoft Access SQL vs. ANSI SQL 126
 many-to-many 84
 one-to-many 84
 one-to-one 84
 outer 130
 relational 84

Language
 See also Locale
 as a connect parameter 15
 CreateDatabase function 26
 language and code page information 26

LargeBinary fields 98
Last function (SQL) 132
LastModified property
 bookmarks 76
 recordsets 61
LastUpdated field, ListTables snapshot 23
LastUpdated property
 recordsets 61
 TableDef object 19
LEFT statement (SQL) 127, 130
LEVEL statement (SQL) 127
LIKE statement (SQL) 126, 131
ListFields method 23
ListIndexes method 23
Listing
 fields 23
 indexes 23
 parameters 23
 queries 23
 tables 23
ListParameters method
List methods 23
 parameter queries 96
 using 24
ListTables method
List methods 23
 system tables 21
Locale
 changing 42
 CollatingOrder property 36
 CompactDatabase statement 44
 converting 44
 CreateDatabase function 25
 setting 25
LockEdits property
 optimistic locking 91
 pessimistic locking 90
 with other recordset properties 61
Locking
 data 87 - 91
 databases 88
 Dynasets 54, 89
 Edit method 90
 Microsoft SQL Server 87
 ODBC databases 87
 OpenDatabase function 88
 optimistic 91
 Oracle databases 87
 pages 90
 pessimistic 90
 recordset properties 61
 support file 121
 Tables 89
 Update method 83, 90
LockRetry 148
Logging transactions 104, 108
Login names 13, 15

Login timeout 15, 152
LOGINTIMEOUT 15, 152
LoginTimeout parameter 15, 17
Long data type 35
LONG statement (SQL) 127, 128, 129
LONGBINARY statement (SQL) 127, 128, 129
LONGTEXT statement (SQL) 127, 128, 129

Manipulating data 47 - 108
Many-to-many joins 84
Mapping databases
 Field properties 22
 List methods 23
 object properties 19
 overview 18
 system tables 21
 table definitions 19
 TableDef object 21
Masked edit control 117
Max function (SQL) 132
MaxBufferSize 148
Members, collections 28
Membership
 Dynaset 53
 recordsets 48
Memo fields
 data type 35
 handling large fields 98, 99, 100
 Microsoft SQL Server 35
Methods
 See also Quick Reference chart on back cover
 AddNew method 86
 Append method 29
 AppendChunk method 98, 99, 100
 Clone method 102
 Close method 17, 27, 68
 CreateDynaset method 50
 CreateQueryDef method 70, 92
 CreateSnapshot method 56
 Data control 6
 Database object 5
 Delete method 29
 Dynaset object 5
 Edit method 83
 Execute method 101
 ExecuteSQL method 102
 Field object 6
 Fields collection 6
 Find method 72
 GetChunk method 98, 99
 Index object 6
 Indexes collection 6
 ListFields method 23
 ListIndexes method 23

Additional reference words: 3.00 update3.00 softlib S14640
KBCategory:

KBSubcategory: APrgDataAcc

UPD: DOC: Data Access Guide Index -- Mo through Z
Article ID: Q103703

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0

SUMMARY
=======

Below is the Mo-Z portion of the index for the Data Access Guide in the
Microsoft Visual Basic version 3.0 for Windows "Professional Features Book
2" manual. This index was not included in the manual. The index in the very
back of the manual is for the Crystal Reports section of the manual only.

For the A through Me portion of the index, please see the following article
in the Microsoft Knowledge Base:

ARTICLE-ID: Q103702
TITLE : DOC: Data Access Guide Index -- A through Me

Insert this index in front of the Crystal Reports section in "Professional
Features Book 2." The entire index is also avaiable as one, single file. To
obtain it, download DATAINDX.EXE, a self-extracting file, from the
Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for DATAINDX.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download DATAINDX.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get DATAINDX.EXE

MORE INFORMATION
================

Move method 71
 QueryDef object 6
 Recordset objects 5
 recordsets 57 - 59
 Refresh method 30
 Seek method 74
 Snapshot object 5
 Table object 5
 TableDef object 6
 TableDefs collection 6
 Update method 82

 using SQL methods 100 - 102
Microsoft Access
 creating databases 24
 database engine, described 1
 databases in Visual Basic 3
 TableDef attributes 20
Microsoft Access databases
 accessing OLE graphics 109
 changing version 42
 combining data with external format databases 30
 compacting 42 - 44
 creating 25
 See also CreateDatabase function
 database readable by version 1.0 27
 DLLs 119
 errors opening 13
 exclusive access 12
 implementation differences vs. Visual Basic 119
 initialization statements 41 - 42
 locking 54
 locale, setting 25, 42
 login names 13
 making readonly 12
 opening 11
 passwords 13
 permissions, setting or modifying 42
 repairing 45
 security 120
 sharing 12
 using the Visual Basic database engine 119
 versions 1.0 and 1.1 44, 119
Microsoft Access SQL
 See also SQL; Microsoft SQL Server
 compared to ANSI SQL
 ANSI SQL data types 126
 BETWEEN 126
 INSERT 129
 LIKE 126
 wildcard characters 126
 enhanced features 126
 overview 125
 reserved words table 127
 syntax 128
Microsoft FoxPro databases
 See also External databases; VB.INI
 accessing 133
 data-type conversions 142
 deleting records 137
 indexes 142
Microsoft Access security 120
 opening databases 11
 opening files 140
 primary keys 136
 support in Visual Basic 3
Microsoft LAN Manager 154
Microsoft SQL Server
 See file DRVSSRVR.HLP

 See also External databases; SQL; Microsoft Access SQL
 accessing
 ODBC data sources 149
 SQL Server databases 133, 154
 connections 154
 connection timeout See file PERFORM.TXT
 default database 154
 ExecuteSQL method 59
 INSTCAT.48 (Sybase) 154
 INSTCAT.SQL (SQL) 154
 locking 87
 login ID 154
Memo fields 35
Microsoft LAN Manager 154
 network location 154
 opening databases 11
 opening tables 49, 50
 permissions 154
 security 154
 SQLPassThrough option 59
 SQLSRVR.HLP 154
 See also file DRVSSRVR.HLP
 support in Visual Basic 3
 TableDef attributes 20
Microsoft Windows for Workgroups 122
Min function (SQL) 132
MKDIR 27
Modifying
 databases 28 - 40
 existing queries 94
Move methods
 current record, positioning 71
 deleting records 86
 positioning methods compared 69
 positioning the current record 68
MoveFirst method 69
MoveLast method
 positioning methods compared 69
 recordsets 63
MoveNext method
 positioning methods compared 69
 recordsets 63
MovePrevious method 69
Multiple databases, transaction processing 106
Multitasking, managing idle time 45
Multiuser considerations
 Dynasets 53
multiuser databases, locking 87 - 91
 SHARE.EXE 121, 122
 sharing SYSTEM.MDA 123

Name field, ListTables snapshot 23
Name property 39
 Field object 34
 Fields collection 22
 mapping object properties 19
 recordsets 61

 TableDef object 19
National language as an ODBC connect parameter 15
Native databases See Microsoft Access databases
Nested transactions 106
Networks, accessing external tables 135
NoMatch property
 Find methods 72
 positioning the current record 68
 recordsets 61
 Seek method 74
Nordic rules (locale constant) 37, 44
Norwegian rules (locale constant) 26, 37, 44
NOT statement (SQL) 131
Novell Btrieve for Windows 144
Novell Netware SQL 144
NULL statement (SQL) 131, 132
Null values 54, 73, 80, 117
Number data type 35
NUMBER statement (SQL) 128
NUMERIC statement (SQL) 128

Object names, determining 18
Object properties, determining 18
Object variables, creating 25
Objects
 Database 5
 default form 77
 default names 77
 default property 77
 Dynaset 5
 Field 6
 Index 6
 (list) 23
 names
 ! syntax 79
 brackets ([]) 79
 embedded spaces 79
 QueryDef 6
 Recordset 5
 Snapshot 5
 summarized 5
 syntax for addressing objects 77
 Table 5
 TableDef 6
ODBC API libraries, support in Visual Basic 3
ODBC databases
 Search Help for SQL Server ODBC driver; ODBC
 See also External databases
 accessing 54, 133
 accessing ODBC data sources 149 - 153
 achieving optimal performance 147
 connect parameters 15
 connect string 14
 creating 27
 creating database variables 49
 default database 15
 deleting 28

 DSN (Data Source Name) 14
 ExecuteSQL method 102
 locking 54, 87 - 91
 LOGINTIMEOUT 152
 LoginTimeout parameter 17
ODBC control panel 151
ODBC keywords 151
ODBC.INI 14, 15, 27, 151, 154
opening 11, 14
Oracle databases 153
 See also file DRVORACL.HLP
 passwords 15, 135
 primary keys 136
 QUERYTIMEOUT 152
 QueryTimeout property 16
 RegisterDatabase function 151
 setting
 default database 15
 password 15
 timeout values 152
 user ID 15
 SQL Server databases 154
 See also file DRVSSRVR.HLP
 SQL PassThrough 59, 100 - 102, 106
 support in Visual Basic 3
 Table objects 149
 TableDef attributes 20
 TableName 19
 transaction control 106
 user ID 15
 using 14 - 17
 workstation ID 15
ODBC libraries, support in Visual Basic 3
ODBC servers, SQLPassThrough option 59
ODBC.INI 14, 15, 27, 151, 154
OLE graphics, implementation differences vs. Microsoft Access 119
One-to-many joins 84
One-to-one joins 84
OpenDatabase function
 connect argument 138
 connect part 11
 connect string 149
 creating external databases 27
 databasename part 11
 example 10
 exclusive mode 12
 exclusive part 12, 88
 initializing the database engine 41
 login timeout 152
 LoginTimeout parameter 17
ODBC databases 151
 opening
 Btrieve tables 143
 databases 10
 dBASE tables 140
 external tables 137, 138
 Microsoft FoxPro tables 140

 overview 10
 passwords 135
 readonly part 13, 88
 shared mode 12
 special conditions 13
 syntax 10
 using with the data control 14
Opening
 Btrieve tables 143 - 145
 databases 10
 as exclusive 12
 as read-only 13
 as shared 12
 different types of databases 14
 initialization statements 41 - 42
 possible problems 13
 programmatically 10 - 14
 special conditions 13
 with the data control 10
 dBASE tables 140
 external tables 137 - 138
 Microsoft FoxPro tables 140
 Paradox tables 138 - 140
OpenTable method
 against ODBC tables 49, 50
 append only constant (DB_APPENDONLY) 58
 consistent updates 58
 creating table variables 49
 deny read constant (DB_DENYREAD) 58
 deny write constant (DB_DENYWRITE) 58
 inconsistent updates 58
opening
 Btrieve tables 143
 dBASE tables 140
 external tables 138
 Microsoft FoxPro tables 140
 read only constant (DB_READONLY) 58
 recordsets 58
 SQLPassThrough option 59
Optimistic locking
 handling errors 83
 locking the Dynaset 54
 pages 91
 recordset properties 61
OPTION statement (SQL) 127
Options, compacting database 44
Options argument, create recordset methods 58 - 59
Options constants 59
Options part, CreateDatabase function 27
Options property, Refresh method 30
OR statement (SQL) 132
ORA6WIN.DLL (Oracle) 153
Oracle databases
 See also External databases; VB.INI
 See also file DRVORACL.HLP
 accessing 133, 153
 accessing ODBC data sources 149

 AUTOEXEC.BAT 153
 CONFIG.ORA (Oracle) 153
 locking 88
 Microsoft Access security 120
ODBC driver 153
 opening
 databases 11
 tables 49, 50
ORA6WIN.DLL 153
ORACLE.HLP 153
ORACLE.TXT 153
 SQLPassThrough option 59
 support in Visual Basic 3
 TableDef attributes 20
ORACLE.HLP 153
ORACLE.TXT 153
ORDER statement (SQL) 127
ORDER BY statement (SQL) 131
ORDER BY clause 61, 64
Ordering records 50
Ordering recordsets 63 - 64
Ordinal property, accessing fields 81
OrdinalPosition property
 Fields collection 22
 Field object 37
OWNERACCESS statement (SQL) 127

Packing .DBF files 140
Pages
 locking 54, 90
 removing 42 - 44
PageTimeout 148
Paradox databases
 See also External databases; VB.INI
 accessing 133, 138 - 140
 bookmarks 76
 data-type conversions 140
 indexes 139
 Microsoft Access security 120
 opening databases 11
 passwords 135
 primary keys 136, 139
 support in Visual Basic 3
 TableDef attributes 20
ParadoxNetPath 148
ParadoxUserName 148
Parameter queries 96
Parameters, (list) 23
PARAMETERS statement (SQL) 126, 127, 128
Passing action queries to ODBC server 59
Passwords
 Admin username 120
 as a connect parameter 15
 external databases 135
 initialization statements 41, 42
 opening databases 13
Paradox databases 135

PWD (password) 15, 135
 saving 20, 135
 saving in link information 30
 SetDefaultWorkspace statement 135
Performance tuning See file PERFORM.TXT
Permissions
 implementation differences vs. Microsoft Access 120
 setting or modifying 42
Pessimistic locking
 handling errors 83
 locking the Dynaset 54
 pages 90
 recordset properties 61
Picture box control (bound control)
 described 116
 using with Microsoft Access databases 119
PICTURE statement (SQL) 128
PIVOT statement (SQL) 127, 129
Portuguese rules (locale constant) 36, 37
Positioning methods 69
Positioning the current record 68 - 76
Primary keys 136, 139, 54, 64
Primary property 39
Print statement, manipulating files 3
PROCEDURE statement (SQL) 127
Professional Edition
 features 4
 using the data control 110 - 114
Programs, creating 47 - 108
Properties
 See also individual properties; Quick Reference chart on
 back cover
 Data control 6
 Database object 5
 default 77
 Dynaset object 5
 Field object 6
 Fields collection 6
 Index object 6
 Indexes collection 6
 QueryDef object 6
 Recordset objects 5
 recordsets 61
 Snapshot object 5
 Table object 5
 TableDef object 6
 TableDefs collection 6
Put statement, manipulating files 3
PWD (password) 15, 135

Queries
 action queries 70
 building dynamically 95
 closing 93
 coding rules for SQL queries 102
 creating a new query 92
 crosstab queries 126

 deleting 93
 embedded functions 120
 (list) 23
 modifying existing 94
 overview 48
 parameter queries 93, 96
 parameters 24
 passing action queries to ODBC server 59
 performance issues 147
 RecordCount property 61
 running 93
 saving a predefined query 91
 subqueries 127
 summary value queries 112
 temporary space allocations 137
 using existing 93
 using QueryDef variables 91 - 96
Query timeout 152
QueryDef object
 creating Dynaset variables 50
 default collection 77
 default property 77
 methods (list) 6
 properties (list) 6
QueryDefs
 building queries dynamically 95
 closing 93
 creating 92
 declaring 91
 deleting 93
 manipulating recordsets 95
 Microsoft Access SQL 125
 modifying existing queries 94
 parameter queries 96
 running 93
 SQL property 94
 using 91 - 96
QUERYTIMEOUT 152
QueryTimeout property
 mapping object properties 19
 ODBC databases 152
 ODBC queries 16
Quotation marks
 double (") 66
 single (') 66

Random file-access, support in Visual Basic 3
Read only constant (DB_READONLY) 58
ReadAheadPages 148
Readonly part 13
ReadOnly property, Refresh method 30
REAL statement (SQL) 127, 128, 129
Rebuilding
 dynasets 55
 recordsets 30
RecordCount field, ListTables snapshot 23
RecordCount property

 Dynasets 61
 ODBC queries 61
 recordsets 61
 Snapshots 61
Records
 See also Dynasets; recordsets; Snapshots, Tables
 adding 54, 86
 changing 54
 deleting 137, 54, 86
 editing 82 - 84
 errors when adding records 86
 ordering 50
 positioning 68 - 76
 selecting 50, 66
 sharing in cloned Dynasets 102
 sorting 63 - 64
Recordset objects
 properties and methods (list) 5
 rebuilding 30
Recordset property
 See also Dynasets
 creating Dynaset variables 50
 data control 82
 using in the Professional edition 111
Recordset variables 48
Recordsets
 See also Dynasets, Snapshots, Tables
 action queries 70
 append only constant 58
 bulk changes 70
 cloned recordsets 76
 cloning recordset variables 102
 closing 68
 creating 48 - 68
 current record, positioning 68 - 76
 data sources and attributes 61
 DATA_ACTIONUNLOAD 68
 deny read constant (DB_DENYREAD) 58
 deny write constant (DB_DENYWRITE) 58
 Filter property 66
 filtering and sorting 61
 locking 61
 managing
 bookmarks 61
 pointer 61
 manipulating data 77 - 91
 manipulating with QueryDef variables 95
 methods, specifying arguments 57 - 59
 multiple recordsets 114
 options argument 58
 options constants 59
 ordering 63 - 64
 positioning methods compared 69
 properties 61
 read only constant (DB_READONLY) 58
 selecting records 66
 sharing bookmarks 76

 source argument 57
 SQLPassThrough option 59
 transaction processing 61
RecordSource property, SQL queries 111
Referential integrity
 implementation differences vs. Microsoft Access 119
 system tables 21
 using multiple tables 85
Refresh method 30, 41, 55
Refreshing the data control 30
RegisterDatabase statement
 DSN (Data Source Name) argument 27, 151
 Microsoft SQL Server databases 154
 ODBC databases 151
 ODBC driver 151
 ODBC driver dialogs 151
Registering the DSN (Data Source Name) 27
Releasing resources 17
Removing discarded pages 42 - 44
RepairDatabase statement 45
Resources, releasing 17
RIGHT statement (SQL) 127, 130
Rollback method
 Dynaset 54
 pessimistic locking 90
Rollback statement
 transaction logging 108
 using transactions 104
Running queries 93

Secondary indexes 39
Security settings, implementation differences vs. Microsoft
 Access 119
Seek method
 comparison strings 74
 current record, positioning 74
 deleting records 86
 key arguments 74
 positioning methods compared 69
 positioning the current record 68
SELECT statement (SQL) 127, 129
Selecting records 50
Sequential file-access, support in Visual Basic 3
Servers
 ExecuteSQL method 102
 ODBC server accounts 149
 'Server cannot be found' error 17
 server name as a connect parameter 15
 sharing tables 30
Sessions, transaction operations 106
Set statement 25
SET statement (SQL) 127, 129
SetDataAccessOption statement
 initializing the engine 41
 initialization parameters 134
 specifying location of SYSTEM.MDA 120
SetDefaultWorkspace statement

 opening a secured database 42
 password-protected files 135
 setting UserID and password 120
SHARE.EXE
 See also file README.TXT
 data corruption 121
 Microsoft Windows for Workgroups 122
Sharing
 databases 121
 shared mode 12
 sharing SYSTEM.MDA 123
SHORT statement (SQL) 127, 128, 129
Single data type 35
SINGLE statement (SQL) 128, 129
Size property 22, 35
SMALLINT statement (SQL) 127, 128, 129
Snapshot object
 default collection 77
 default property 77
 properties and methods (list) 5
 system tables 21
Snapshots
 See also Dynasets, Recordsets, Tables
 accessing fields 80 - 82
 bookmarks 76
 creating from existing Dynaset 56
 creating 48 - 68
 Filter property 66
 membership 48
 Microsoft Access SQL 125
 options 58
 overview 48
 read/write privileges 56
 sorting 64
 SQL PassThrough 59
 SQL query processing 56
 table update procedures 56
Sort order 22, 36, 39, 53, 63 - 64
Sort property
 Dynaset 50, 53
 recordsets 61, 66
Snapshots 64
Sorting 63 - 64
Source argument 57
SourceField property
 Field object 37
 Fields collection 22
Sourcename 43
SourceTable property 37
SourceTableName property
 alias names 147
 attaching external tables 145
 Field properties 37
 Fields collection 22
 recordsets 61
 TableDef object 19
Spanish rules (locale constant) 26, 37, 44

SQL
 See also SQL Statements; Microsoft Access SQL; ANSI
SQL
 ! symbol 66
 action queries 101
 ANSI SQL 126
 Avg 132
 bulk operations 101
 coding rules for SQL queries 102
 creating Dynaset variables 50
 data types compared, ANSI vs.
 Microsoft Access SQL 128
 domain functions 132
 embedded SQL statements 70
 in queries 48
 in RecordSource property 111
 joins 126
 passing action queries to ODBC server 59
 reserved words table 127
SQL views 149
SQLPassThrough option 59
 support in Visual Basic 3
 using QueryDef variables 91 - 96
 using SQL methods 100 - 102
 wildcard characters 126
SQL PassThrough
 multiple transactions 106
 recordset methods 58
SQL property, modifying existing queries 94
SQL functions and statements
 ALL 127
 ALTER 127
 AND 132
 AS 127
 ASC 127, 131
 BETWEEN 126, 130
 BINARY 127, 128, 129
 BIT 127
 BOOLEAN 129
 BY 127
 BYTE 128, 129
 CHAR[ACTER] 127, 128, 129
 Count 132
 Count(*) 132
 CREATE 127
 CURRENCY 127, 128, 129
 DATABASE 127
 DATETIME 127, 128, 129
 DECIMAL 128
 DELETE 127, 129
 DESC 127, 131
 DISTINCT 127, 129
 DISTINCTROW 127
 DOUBLE 128, 129
 DOUBLE PRECISION 128
 DROP 127
 First 132

 FLOAT 127, 128, 129
 FROM 127
 GROUP 127
 GROUP BY 130
 HAVING 127, 130
 IEEESINGLE 127
 IN 127, 131
 INNER 127, 130
 INSERT 127, 129
 INSERT INTO 129
 INT[EGER] 127, 128, 129
 INTO 127, 129
 IS 131
 JOIN 127, 130
 Last 132
 LEFT 127, 130
 LEVEL 127
 LIKE 126, 131
 LONG 127, 128, 129
 LONGBINARY 127, 128, 129
 LONGTEXT 127, 128, 129
 Max 132
 Min 132
 NOT 131
 NULL 131, 132
 NUMBER 128
 NUMERIC 128
 OPTION 127
 OR 132
 ORDER 127
 ORDER BY 131
 ORDER BY clause 61, 64
 OWNERACCESS 127
 PARAMETERS 126, 127, 128
 PARAMETERS declaration 96
 PICTURE 128
 PIVOT 127, 129
 PROCEDURE 127
 REAL 127, 128, 129
 RIGHT 127, 130
 SELECT 127, 129
 SELECT queries 93
 SET 127, 129
 SHORT 127, 128, 129
 SINGLE 128, 129
 SMALLINT 127, 128, 129
 StDev 132
 StDevP 132
 Sum 132
 TABLEID 127
 TEXT 127, 128, 129
 TIMESTAMP 128
 TRANSFORM 126, 127, 129
 UNION 127
 UPDATE 127, 129
 VALUE 127
 Var 132

 VARCHAR 128, 129
 VarP 132
 WHERE 127, 129, 132
 WHERE clauses 66, 68, 72
 WITH 127
 WITHOWNERACCESS OPTION 129
SQLSRVR.HLP 154
 See also file DRVSSRVR.HLP
Standard Edition features 4
Statements, usable for data access 7
Static recordset variables 68
StDev function (SQL) 126, 132
StDevP function (SQL) 132
StrComp function, mapping Field properties 22
String data types 35
String variables 98
Structure
 modifying 28 - 40
 mapping
 object properties 19
 overview 18
 table definitions 19
Structured Query Language (SQL)
 See SQL; Microsoft Access SQL; ANSI SQL;
 individual SQL functions and statements
Subqueries 127
Sum function (SQL) 132
Swedish rules (locale constant) 26, 37, 44
SYBASE SQL Server, support in Visual Basic 3
Syntax
 ! operator 66, 78, 79, 97
 addressing objects 77
 brackets 77, 80
 coding rules for SQL queries 102
 embedded spaces 77
 Microsoft Access SQL syntax 128
SQL syntax 125
System tables 21
SYSTEM.MDA 42, 120, 123

Table object
 default collection 77
 default property 77
 properties and methods (list) 5
Table variables
 adding records 86
 creating 49
 selecting records 66
 using 50
TableDef object
 adding 28
 adding to TableDefs collection 33
 append order 37
 attributes 20
 Attributes property 19, 149
 Connect property 19
 creating 31

 current settings 20
 DateCreated property 19
 default collection 77
 default property 77
 deleting 28
 LastUpdated property 19
 login timeout 152
 mapping 19, 21
 methods (list) 6
 Name property 19
 properties (list) 6
 SourceTableName property 19
 Updatable property 19
TableDefs collection
 adding new TableDef 33
 Append method 29, 31
 Count property 19
 creating indexes 37 - 38
 mapping 19
 members 28
 methods (list) 6
 properties (list) 6
 system tables 21
TABLEID statement (SQL) 127
TableName 19
Table objects
 See also Dynasets, Recordsets, Snapshots; TableDef
 object; TableDefs collection
 accessing
 fields 80 - 82
 Paradox tables 138 - 140
 adding a field 33
 adding to a database 33
 alias names 147
 attached tables, TableDef properties 19
 attaching
 a table (example) 145
 from external databases 30
 tables from Microsoft Access databases 146 - 147
 creating 48 - 68
 deleting 34
 indexes 63
 (list) 23
 locking 89
 membership 48
 ODBC tables 49, 50
 overview 48
 referential integrity 84
 sorting 63
 SQL PassThrough 49, 50, 59
 updating multiple tables 84
TableType field, ListTables snapshot 23
TEMP environment variable 137
Text box control (bound control) 116
TEXT statement (SQL) 127, 128, 129
Time-out errors 16, 17
Timeout values 152 - 153

TIMESTAMP statement (SQL) 128
TinyInt data type 35
Transactions
 beginning 104
 committing changes 104
 logging 108
 multiple databases 106
 multiple transactions 106
 nested transactions 106
 rolling back changes 104
 supported methods 104
 supported statements 104
 too many pending transactions 106
 transaction logging 108
 trappable error # 2004 108
 using 104 - 108
Transactions property
 mapping object properties 19
 recordsets 61
TRANSFORM statement (SQL) 126, 127, 129
True/False data type 35
Type property
 Field object 35
 Fields collection 22

UID (User ID name) 15
Unbound controls 118
UNC (Universal Naming Convention) file names 26, 135
UNION statement (SQL) 127
Unique indexes 54
Unique property 37, 39
Updatable property
 mapping object properties 19
 recordsets 61
 TableDef object 19
Update method
 adding records 86
 editing records 82
 handling errors 83
 locking dynasets 54
 pessimistic locking 90
 Snapshot 56
UPDATE statement (SQL) 127, 129
Updates, consistent and inconsistent 58
User ID name as a connect parameter 15
User-defined functions
 implementation differences vs. Microsoft Access 120
 including in SQL statements 126
Username 120

Validating a database 45
Value property
 Fields collection 22
 fields 80 - 82
VALUE statement (SQL) 127
Var function (SQL) 132
VARCHAR statement (SQL) 128, 129

Variant variables
 bookmarks 76
 handling large fields 98
 Null values 80
VarP function (SQL) 126
VB.INI
 See also file PERFORM.TXT
 Btrieve 148
 'Cannot find installable ISAM' error 134
 changing name of the system database 120
 CollatingSequence 148
 CommitLockRetry 148
 dBASE III, IV 148
 default settings 148
 DELETED parameter 137
 DELETED setting 140
 initializing the database engine 41
 installable ISAMs 148
 LockRetry 148
 MaxBufferSize 148
 Microsoft FoxPro 148
 PageTimeout 148
 Paradox 148
 ParadoxNetPath 148
 ParadoxUserName 148
 ReadAheadPages 148
VBSQL See Microsoft SQL Server
Visual Basic format databases See Microsoft Access databases
Visual Basic SQL Libraries, support in Visual Basic 3
Visual Basic, implementation differences vs. Microsoft Access 119
VSHARE.386 (Enhanced mode) 122

WBTRCALL.DLL 144
WHERE clauses 66, 68, 72, 129, 132
WHERE statement (SQL) 127, 129, 132
Wildcard characters 126
WIN.INI file settings 144, 149
WITH statement (SQL) 127
WITHOWNERACCESS OPTION (SQL) 129
Workstation ID as a connect parameter 15
WSID (Workstation ID) 15

Xtrieve 143

Yielding control 45

Additional reference words: 3.00 update3.00 softlib S14640
KBCategory:
KBSubcategory: APrgDataAcc

UPD: List of Updated Files for Visual Basic
Article ID: Q104863

The information in this article applies to:

- Standard and Professional Edition of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

This article lists those files that were updated after Visual Basic
version 3.0 shipped.

MORE INFORMATION
================

The following list shows the date of latest update, the name of the self-
extracting .EXE file that contains the updated files, the names of the
individual files that have been updated, and a brief description of what
each file is used for in Visual Basic.

You can download the self-extracting files from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for <filename.EXE>
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download <filename.EXE>

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get <filename.EXE>

 File to Updated
Date Download Files Description

3/7/94 BTR110.EXE BTRV110.DLL Btrieve IISAM Driver
3/7/94 DATAINDX.EXE DATAINDX.DOC Index for the "Data Access Guide"
3/7/94 GENRIC.EXE \VB\CDK\GENERIC Sample custom control source code
 <15 files>
3/7/94 VBGRID.EXE GRID.VBX Grid control
3/7/94 VBHC505.EXE HC.EXE Standard mode WinHelp Compiler
 HC.ERR Error messages list for HC.EXE
 HCP.EXE Protected mode WinHelp Compiler
 HCP.ERR Error messages list for HCP.EXE
3/7/94 MSAJT.EXE MSAJT110.DLL Microsoft Access Database Engine
3/8/94 MSCOMM.EXE MSCOMM.VBX Serial Communications control
3/7/94 ORA110.EXE ORACLE.TXT New updated ORACLE.TXT file

 SQORA.DLL Oracle ODBC Driver file
 SQORASTP.DLL Oracle ODBC Driver file
3/7/94 SETUPK.EXE SETUP.EXE Setup Toolkit
 SETUP1.FRM Setup Toolkit
 SETUP1.FRX Setup Toolkit
 SETUP1.BAS Setup Toolkit
 SETUPWIZ.EXE Application Setup Wizard
 SETUPWIZ.INI Setup Wizard configuration file
3/7/94 VBRUN300.EXE VBRUN300.DLL Visual Basic Runtime Library
3/7/94 XBS110.EXE XBS110.DLL XBase IISAM Driver

There is an article in the Microsoft Knowledge Base that points to each of
these files and that provides more detailed information about the update.
To find these articles, query the Microsoft Knowledge Base using the file
name and this word:

 update3.00

Additional reference words: 3.00 update3.00 softlib
KBCategory:
KBSubCategory: RefsDoc Setins

How to Modify Destination Directory of Setupwizard SETUP1.EXE
Article ID: Q110395

The information in this article applies to:

- Standard and Professional Editions of Microsoft Visual Basic for
 Windows, version 3.0

SUMMARY
=======

Using the Visual Basic Setup Toolkit, you can modify the setup program that
was created by Setupwizard.

The example shown below makes your setup program install your program file
to the Windows directory instead of to the directory specified by the user.
You can do this by changing the SETUP1A.FRM source code. You can then
make a new SETUP1.EXE file and new SETUP1.EX_ file on your distribution
disk.

MORE INFORMATION
================

Step-by-Step Example

1. Run the Setupwizard to create the master distribution disks for your
 product's files.

2. Start Visual Basic and open the SETUP1A.MAK project. SETUP1A.MAK is
 already on the most recently opened list on the File menu because
 the Setupwizard used it once. The Setupwizard created the SETUP1A.MAK
 project in the C:\VB\SETUPKIT\SETUP1 directory.

3. Go to the Form Load event for the SETUP1A.FRM form. Find the lines of
 code that copy your file, which will appear as follows -- but on one,
 single line:

 If Not CopyFile(SourcePath$, destPath$, "yours.EX_", "yours.EXE")
 Then GoTo ErrorSetup

 If you want to install your file <yours>.EXE into the user's Windows
 directory, change the destPath$ variable to WinDir$ as follows:

 ' Enter the following on one, single line:
 If Not CopyFile(SourcePath$, WinDir$, "yours.EX_", "yours.EXE")
 Then GoTo ErrorSetup

 You might want to change the destination to another directory, depending
 on your setup design.

4. From the File menu, choose Make EXE File to recreate the file SETUP1.EXE
 in the C:\VB\SETUPKIT\SETUP1 directory.

5. Compress and copy this new SETUP1.EXE file to your distribution disk.
 For example, the following command at the MS-DOS prompt compresses
 SETUP1.EXE into SETUP1.EX_ and copies SETUP1.EX_ to Drive A:

 C:\VB\SETUPKIT\KITFILES\COMPRESS -r SETUP1.EXE A:\

 This replaces the old SETUP1.EX_ that was created on the distribution
 disk by the Setupwizard.

Updated Setup Toolkit Files

The following Setup Toolkit files were updated after Visual Basic version
3.0 shipped. The list shows the directories where the files are usually
located relative to the Visual Basic directory.

 File Purpose

 \WINDOWS\SETUPWIZ.INI Setupwizard configuration file
 SETUPKIT\KITFILES\SETUP.EXE Setup toolkit
 SETUPKIT\KITFILES\SETUPWIZ.EXE Application Setupwizard
 SETUPKIT\SETUP1\SETUP1.BAS Setup toolkit
 SETUPKIT\SETUP1\SETUP1.FRM Setup toolkit

To obtain these updated files, download SETUPK.EXE, a self-extracting file,
from the Microsoft Software Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for SETUPK.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download SETUPK.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get SETUPK.EXE

Visual Basic Setup Toolkit and SetupWizard
--

The following section is taken from the SetupWizard topic in the Visual
Basic Help menu:

SETUP.EXE is the bootstrap program provided by the Visual Basic Setup
Toolkit in the KITFILES subdirectory. SETUP.EXE pre-installs files listed
in SETUP.LST and then runs SETUP1.EXE.

SETUP1.EXE is the Visual Basic setup program created by the SetupWizard.
The source files for the Visual Basic Setup Toolkit's SETUP1.EXE file are
in the SETUPKIT\SETUP1 subdirectory.

SETUP.LST is a file required by SETUP.EXE. It allows files needed by your
Visual Basic setup program to be pre-installed into the Windows System

directory. SETUP.LST lists the files to be pre-installed by the SETUP.EXE
bootstrap. Each line contains a single file. The Visual Basic setup program
(SETUP1.EXE) must be the first entry. SETUP.LST is created automatically by
the SetupWizard. The files in SETUP.LST can be compressed. Here is a sample
SETUP.LST file:

SETUP1.EX_
VBRUN300.DL_
SETUPKIT.DL_
GRID.VB_

The Visual Basic SetupWizard is a tool used with the Visual Basic Setup
Toolkit. The SetupWizard takes you through six steps to create master
distribution disks for your Visual Basic application.

The first time you run the SetupWizard, you are prompted for the location
of several important files. This information is then kept in the
SETUPWIZ.INI file in your Windows directory. The SetupWizard creates a
standard SETUP1.EXE file based on the information in your .MAK file and the
information you provide in the SetupWizard. The SetupWizard supports
multiple disks and can split large files to fit on your disk media.

NOTE: The SetupWizard is geared toward Visual Basic developers and is not a
general Windows Setup Tool. Use the GUI Setup Toolkit provided in the
Windows SDK. The SetupWizard is designed to handle most setup scenarios
that a Visual Basic developer may encounter. Some scenarios may require you
to create a custom SETUP1.EXE file.

The SetupWizard is not a diskcopy tool. Use MS-DOS's DiskCopy or File
Manager's Disk Copy Disk menu choice to make copies of your master
distribution disks.

REFERENCES
==========

 - See the SetupWizard topic in Visual Basic's Help menu.

Additional reference words: 3.00 installing update3.00 softlib S14616
KBCategory: Tls
KBSubcategory: TlsSetWiz

UPD: Updated BTRV110.DLL for Btrieve ISAM Driver shipped w/ VB
Article ID: Q112444

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0
- Microsoft Access, version 1.1

SUMMARY
=======

An updated Btrieve driver (BTRV110.DLL) is available for use by
registered owners of:

 - Microsoft Access version 1.1
 - Professional Edition of Visual Basic version 3.0

By downloading the new driver, you are indicating that you own one or both
of these two products.

MORE INFORMATION
================

How to Get the New Driver

To get the updated driver (BTRV110.DLL), download BTR110.EXE, a self-
extracting file, from the Microsoft Software Library (MSL) on the following
services:

 - CompuServe
 GO MSL
 Search for BTR110.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download BTR110.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get BTR110.EXE

What the Update Does for You

The updated BTRV110.DLL now uses text indexes, with exceptions as described
in the section titled "Using Btrieve Indexes" of the file BTRIEVE.TXT,
which ships with Microsoft Access version 1.1 and Visual Basic version 3.0.

How to Find Out If You Have the Updated Btrieve Driver Installed
--

The BTRV110.DLL file, which resides in the \WINDOWS\SYSTEM (local install)
or the \ACCESS (network install) directory, should have a file size of
104560. The previous (old) driver had a file size of 104432.

If you have Microsoft Windows for Workgroups, you can use File Manager to
determine if you have the correct version. Choose Properties from the File
menu in File Manager to view information including the file version. The
version of the updated BTRV110.DLL is 1.10.0011. The previous (old) driver
file version was 1.10.0001.

How to Install the Update for Single-User Installations

Make a backup of your current BTRV110.DLL file by renaming the file or by
copying it to another location. Then simply copy the updated BTRV110.DLL to
your \WINDOWS\SYSTEM subdirectory.

How to Install the Update for Network Installations

Ask the network administrator to:

 - Make a backup of the current BTRV110.DLL by renaming the file or by
 copying it to another location.
 - Replace the old BTRV110.DLL file on the network in the \ACCESS
 directory with the updated BTRV110.DLL file.
 - Make the new file available for those who installed Microsoft Access
 or Visual Basic on their local hard drives. In such a case, those users
 should also copy this file to their \WINDOWS\SYSTEM subdirectory.

==
************************** WARNING *******************************
Due to the nature of Microsoft Access' setup program, if setup is
run after updating the BTRV110.DLL file, the updated file will be
replaced with an older version of the file unless:

1. Setup /n is run and "No" is selected in answer to the question
 "Do you want to install Microsoft Access on your hard disk?" OR
2. The Custom Installation option is chosen, and then from the
 Microsoft Access Setup Options dialog the "xBASE, Paradox,
 Btrieve drivers" option is unchecked (or the Select button for
 this option is used to deselect the Btrieve option), OR
3. The Minimum Installation option is chosen.
==

Additional reference words: 3.00 softlib update3.00 S14639
KBCategory: Refs
KBSubCategory: RefsProd

UPD: Windows 3.1 Help Compiler & Difficulty w/ Word 6.0 RTF
Article ID: Q112445

The information in this article applies to:

 - Microsoft Word for Windows, version 6.0
 - Microsoft Windows operating system version 3.1
 - Microsoft Visual Basic programming system for Windows, version 3.0

SYMPTOMS
========

The Windows version 3.1 Help Compiler version 3.10.504 (and earlier
versions) will not function correctly with Microsoft Word version 6.0 rich-
text format (RTF) output. You may receive a general protection (GP) fault
during help file compilation or the help file may be compiled using only
the Windows system font.

CAUSE
=====

This is caused by the way previous versions of the Help Compiler interpret
new RTF controls relating to the font header information that Word version
6.0 generates when saving as RTF.

WORKAROUND
==========

The latest release of these updated Compiler (HC.EXE and HCP.EXE version
3.10.505) can be found in the self-extracting file HC505.EXE.

Download VBHC505.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for VBHC505.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download VBHC505.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get VBHC505.EXE

MORE INFORMATION
================

Files in VBHC505.EXE

HC.EXE -- Standard mode Help Compiler
HCP.EXE -- Protected mode Help Compiler (Uses Expanded Memory)
HC.ERR -- Error file used by HC.EXE
HCP.ERR -- Error file used by HCP.EXE

Additional Problems Corrected

 - More entries (approximately 8,000) are allowd in the .HPJ file in
 the map section and alias sections.

 - A larger number of bitmap definitions (approximately 2,970) are allowed
 in an RTF input file.

 - The internal compiler limit was increased from 32K to 64K.

Additional reference words: textconv conversion converted converts transfer
transfers translation translate problem 6.00 gpfault gpf hang hung crash
crashed locks locked frozen freezes crashing quit quits stopped 3.00
update3.00 softlib S14638
KBCategory: Refs
KBSubCategory: RefsProd

UPD: SQORA.DLL Does Not Allow Lengthy SQL Statements
Article ID: Q112446

The information in this article applies to:

- Microsoft Visual Basic programming system for Windows, version 3.0
- Microsoft Access, version 1.1

SYMPTOMS
========

If the table and field names are long or the query is complex, executing a
query or updating a record in an Oracle table results in the following
error message:

 Statement was longer then allowable maximum 2000+ chars

CAUSE
=====

This occurs because of a problem with SQORA.DLL, the Oracle ODBC driver.

RESOLUTION
==========

Obtain and install the updated driver (instructions are provided in the
More Information section below), or use queries to do updates rather than
updating records with the Oracle table in Datasheet view. The query should
yield only the columns to be updated. For complex queries, reduce both the
number of tables or joins in the query and the number of fields used or
shown in the query. This reduces the lengths of SQL statements.

STATUS
======

Microsoft has confirmed this to be a problem in the Oracle ODBC driver
shipped with Microsoft Access version 1.1 and the Professional Edition of
Microsoft Visual Basic version 3.0. An updated driver that corrects
this specific problem is available for owners of Microsoft Access version
1.1 or the Professional Edition of Microsoft Visual Basic version 3.0.

MORE INFORMATION
================

How to Obtain the Updated Driver

The updated Oracle ODBC driver (SQORA.DLL) is available for use by
registered owners of:

 - Microsoft Access version 1.1
 - Professional Edition of Visual Basic version 3.0

By downloading the new driver, you are indicating that you own one or both

of these two products. To obtain the updated driver, download and then run
ORA110.EXE, a self-extracting file.

Download ORA110.EXE, a self-extracting file, from the Microsoft Software
Library (MSL) on the following services:

 - CompuServe
 GO MSL
 Search for ORA110.EXE
 Display results and download

 - Microsoft Download Service (MSDL)
 Dial (206) 936-6735 to connect to MSDL
 Download ORA110.EXE

 - Internet (anonymous FTP)
 ftp ftp.microsoft.com
 Change to the \softlib\mslfiles directory
 Get ORA110.EXE

Contents of ORA110.EXE

README.TXT
BTRV110.DLL
ORACLE.TXT
SQORA.DL_
SQORASTP.DL_
ODBC.INF
SETUP.EXE

NOTE: The SETUP.EXE file is called by the ODBC control panel facility
and will not run as a stand-alone file.

How to Install the Updated Driver

1. Start Windows if it is not running.

 - If you are running Windows 3.1, open Control Panel.
 - If you are running Windows 3.0 or NT, select the ODBC program group.

2. Double-click the ODBC icon.

3. From the Data Sources dialog, select the Drivers... button.

4. From the Drivers dialog, select Add...

5. Enter the drive letter and directory from which you are installing.

6. Select Oracle from the list of available drivers, and choose OK. ODBC
 setup will install the driver at this point. If an ODBC Oracle driver
 of the same version number or higher exists on the hard disk, ODBC
 setup will ask if you want to replace it. In most cases, you will want
 to stay with the most recent version.

7. Choose close, and you are finished.

What ODBC Setup Installed

The ODBC installation installed a new SQORA.DLL, a new SQORASTP.DLL, and a
new ORACLE.TXT to your Window's system directory.

 Old New

SQORA.DLL Version: 1.00.2816 Version: 1.00.3112
 Size: 143,600 bytes Size: 144,096 bytes
 Date: 4/16/93 Date: 7/12/93

SQORASTP.DLL Version: 1.00.2403 Version: 1.00.3106
 Size: 9,328 bytes Size: 9,632 bytes
 Date: 5/7/93 Date: 7/6/93

Oracle drivers are manufactured by Oracle Corporation and Btrieve drivers
by Novell, Inc. These two vendors are independent of Microsoft; we make
no warranty, implied or otherwise, regarding these products' performance or
reliability.

Additional reference words: 1.10 3.00 update3.00 softlib S14637
KBCategory: Refs
KBSubCategory: RefsProd

