
 [cover]

White Paper

Jet Database Engine

ODBC Connectivity

Neil Black
Jet Program Management
Stephen Hecht
Jet Development

1

Jet Database Engine

ODBC Connectivity

[Microsoft logo]

2

Contents

µOverview 2
ODBC API Usage 2
Configuration Options for ODBC Connectivity 3
Configuration Table 3
Configuration Initialization File 4
Connection Management 4
Active Statements 5
Cursor Commit/Rollback Behavior 5
Connecting to SQL Server: An Example 5
Connection Sharing 6
Connections Caching/Aging 6
Authentication6
Attaching Tables 7
Unique Indexes ("Bookmarks") 7
Floating-Point Data in the Bookmark 8
Datatype Mapping 8
How ODBC Datatypes are Mapped to Jet Types 8
How Jet Datatypes are Mapped to ODBC Types 9
Data Retrieval 10
Export (Make Table Queries) 10
Dynasets Vs. Snapshots 11
Result Set Population 11
Data Fetching 12
Performance Implications 12
Asynchronous Query Execution 13
Optimization of Find 13
Modifying Server Data 14
Volatile Primary Keys14
Columns Updated/Inserted 15
Security 15
Locking and Concurrency 15
Transactions 16
Performing Bulk Operations 17
Sending Queries to a Server 17
Identifying Remote Processing 17
Processing That Must Be Done Locally 18
Heterogeneous Joins 18
Operations Not Expressible in a Single SQL Statement 18
Operations Not Supported on the Server 18
Restriction Splitting 20
Evaluation of Outputs 20
Remove Execution of Crosstab Queries 21

3

Outer Joins 21
Generating SQL to Send to a Server 21
Wildcards for the LIKE Operator 22
Owner and Table Prefixing 22
Identifier Quoting 22
Hidden SELECT Clause Expressions22
Jet-to-ODBC SQL Tracing 23
ODBC Specification Compliance Errors 24

Overview

This document covers the portion of the Microsoftâ Jet Database Engine that
deals with Open Database Connectivity data. It discusses how Jet uses ODBC and
how, in turn, the Microsoft Accessâ user interface uses Jet. Much of this
document also applies to any application that uses Jet (in particular, the Microsoft
Visual BasicÔ version 3.0 programming system). The discussion pertains only
to Jet version 1.1 (and the Microsoft Access version 1.1 database management
system) and does not indicate the areas in which Jet 1.1 improves over Jet 1.0.
Nor does this document address intentions for future versions of Jet and Microsoft
Access.

This document will be most helpful to readers with a general understanding of
ODBC and the ODBC API. For further details on ODBC and the ODBC API,
please consult the ODBC Programmer's Reference.*

Jet is designed around several basic concepts, including:
Transparent access to data ¾ Jet provides transparent access to any
database in your environment, regardless of the data's location and format.
The data may be on a PC–based DBMS, such as Paradox® or dBASE®,
or in an enterprise system, such as Microsoft SQL Server or ORACLE®.
Regardless of where the data is, Jet makes it all look like the native
format.
Keyset-driven model ¾ Jet is built around a keyset-driven cursor model.
This means data is retrieved and updated based on key values. The keyset
model introduces complexities in how Jet operates against ODBC data
sources. (Traditional relational database environments use a dataset-driven
model; that is, the data in a result set is thought of as one set of records,
with no way of directly addressing a particular record.)

4

ODBC API Usage

All the ODBC API functions used by Jet are defined by ODBC to be at either the
Core or Level 1 level of API conformance. In order for an ODBC driver to be
usable with Jet, the following ODBC APIs must be supported.

SQLAllocConnect
SQLAllocEnv
SQLAllocStmt
SQLCancel
SQLColumns
SQLDescribeCol
SQLDisconnect
SQLDriverConnect
SQLError
SQLExecDirect
SQLExecute
SQLFetch
SQLFreeConnect
SQLFreeEnv
SQLFreeStmt
SQLGetData
SQLGetInfo
SQLGetTypeInfo
SQLNumResultCols
SQLParamData
SQLPrepare
SQLPutData
SQLRowCount
SQLSetConnectOption
SQLSetParam
SQLSetStmtOption
SQLSpecialColumns
SQLStatistics
SQLTables
SQLTransact

Configuration Options for ODBC Connectivity

Configuration Table

The server table MSysConf is a Jet-specific server-based configuration table with
the following structure.

5

Column
Name

Datatype Description

Config SMALLINT The number of the configuration
option

chValue VARCHAR(2
55)

The text value of the configuration
option

nValue INTEGER The integer value of the configuration
option

Comment VARCHAR(2
55)

A description of the configuration
option

This table's existence is purely optional. Immediately after connecting to a server,
Jet executes a query to read its contents. If any errors occur, Jet ignores them and
assumes that MSysConf does not exist.

Currently, only one option is defined: Config = 101. If the corresponding nValue
is non-zero, it is ignored. But if nValue = 0, Jet will never store userid and
password information in tables attached from this server. The Attach Table check
box "Save login ID and password locally" will be ignored. Users will be forced to
type a userid and password upon first using the attached table. This option was
created to permit database administrators concerned about security to eliminate
the possibility of unauthorized users gaining access to data through using another
person's computer.

The query Jet uses to read this table contains
SELECT ... FROM MSysConf ...

so it must be publicly accessible using exactly this syntax, if it exists at all. For
example, on a server that supports multiple databases, MSysConf might or might
not exist in a given database.

6

Configuration Initialization File

The configuration file for Microsoft Access is msaccess.ini; for Visual Basic, it is
vb.ini; for an application created with Visual Basic, it is determined by the
application. The following entries affect Jet's use of ODBC and server data. The
RmtTrace entry belongs in the [Debug] section of the .ini file; all others reside in
the [ODBC] section.

Entry Value Effect

RmtTrace 0 Use asynchronous query execution if possible (default)

8 Trace ODBC API calls into file "odbcapi.txt"

16 Force synchronous query execution

24 Trace ODBC API calls; force asynchronous query
execution

TraceSQLMode 1 Trace SQL Jet sends to ODBC into file "sqlout.txt"

0 No Jet-level SQL tracing (default)

QueryTimeout S Cancel queries that don't finish in S seconds (default: 60)

LoginTimeout S Cancel login attempts that don't finish in S seconds
(default: 20)

ConnectionTimeo
ut

S Close cached connections after S seconds idle time
(default: 600)

7

AsyncRetryInterv
al

M Ask server "Is query done?" every M milliseconds (default:
500)

AttachCaseSensit
ive

0 Attach to first table matching specified name (default),
regardless of case

1 Attach only to table exactly matching specified name

SnapshotOnly 0 Call SQLStatistics at attach time, to allow dynasets
(default)

1 Don't call SQLStatistics, forces snapshots

AttachableObject
s

string List of server object types to allow attaching to (default:
'TABLE','VIEW','SYSTEM TABLE',
'ALIAS','SYNONYM')

Connection Management

Microsoft Access offers several advanced data access features, such as:

· Simultaneous browsing of multiple tables and queries, including
"background" query execution.

· Direct updating of tables and queries during browsing.

· Forms controls (list boxes, subforms, and so on) that may be based on
tables and queries.

8

Depending on the capabilities of a server and the corresponding ODBC driver,
Microsoft Access might require multiple connections to implement such features.
Two server/driver attributes are most important in this respect.

Active Statements

An active statement is a query whose results have not been completely fetched
from the server. Some servers/drivers do not allow any other statements to be
executed on a single connection if there is an active statement on that connection.
In this case, Jet may use multiple connections (for example, when updating a
record before the entire dynaset is fetched). The alternatives—
discarding unfetched results or forcing completion of the active statement before
allowing updates—would be too disruptive to users. Other servers allow multiple
partially fetched statements on a single connection. In this case, Jet uses a single
connection for all server interaction. Jet asks the ODBC driver for the
SQL_ACTIVE_STATEMENTS info value to determine whether multiple active
statements are supported.

Cursor Commit/Rollback Behavior

Jet maintains several internal cursors in support of dynaset operations (for
example, update/delete/data-fetch). For efficiency, these cursors are kept in a
prepared state. A query in a prepared state is available in a persistent state that
can be reexecuted without requiring it to restate the query. Also, as noted above,
some cursors may be active, that is, half-fetched. Servers/drivers differ in the way
transactions affect all prepared/active cursors on a connection. Because Jet wraps
data modifications in transactions, Jet takes steps to insulate itself from these
effects.

Jet identifies the cursor behavior to use by analyzing the most limiting behavior
of two ODBC info values: SQL_ACTIVE_STATEMENTS and
SQL_CURSOR_COMMIT_BEHAVIOR.

· Cursor behavior = 2: Cursors are not affected by transactions. Jet takes
no special precautionary actions.

· Cursor behavior = 1: Prepared cursors remain prepared, but unfetched
results on active cursors are discarded. Jet insulates active cursors by
pretending that SQL_ACTIVE_STATEMENTS = 1. In this way,
transactions are never done on connections with active statements.

· Cursor behavior = 0: All statements (prepared or active) are destroyed

9

completely. This is so disruptive that Jet simply prevents transactions
altogether by considering the database to be read-only.

As a special case, if the driver indicates that transactions are not supported at all
(the SQL_TXN_CAPABLE info value), then Jet ignores the cursor behavior
value and skips the above analysis. The database is then considered to be read-
only.

Connecting to SQL Server: An Example

To better illustrate the use of SQL_ACTIVE_STATEMENTS and
SQL_CURSOR_COMMIT_BEHAVIOR, here is an example of how this
functionality works when using the Microsoft SQL Server ODBC Driver. Jet
makes ODBC API calls to get the appropriate information from the driver. The
SQL Server driver returns SQL_ACTIVE_STATEMENTS = 1,
SQL_CURSOR_COMMIT_BEHAVIOR = 1, and
SQL_CURSOR_ROLLBACK_BEHAVIOR = 1; Jet will therefore consider the
cursor behavior of the driver to be 1. SQL_ACTIVE_STATEMENTS = 1 means
only one statement can be active per connection, so Jet will require two
connections when performing dynaset operations against SQL Server data. (See
"Dynasets Vs. Snapshots," later in this paper.)

Connection Sharing

Jet multiplexes ODBC connections internally as much as possible. After
accounting for transaction effects and active statement limits (as described
above), Jet shares connections based on connect strings. Two connect strings are
considered equal only if both of the following criteria are met:

1. The DSN value in both connect strings match.
2. Either the DATABASE value in both connect strings match, or neither
connect string has a DATABASE value.

Connections Caching/Aging

Jet maintains connections even when they are not explicitly in use, to avoid
constantly disconnecting and reconnecting. This is invisible to the user. The
number of idle connections maintained depends on the value of
SQL_ACTIVE_STATEMENTS:

· If 1, then two idle connections are maintained.
· If greater than 1, then one idle connection is maintained.

10

During idle time, these cached connections are aged and eventually closed down.
This is also invisible to the user, and when the connection is needed again,
reconnection is automatic. The ConnectionTimeout value in the [ODBC] section
of the .ini file controls how long Jet keeps these connections. It defaults to 600
seconds. Regardless, when the application exits, all connections are closed down.

Authentication

When you use an attached table without a stored userid and password, or if the
stored userid and password are no longer valid, Jet will attempt to log in using the
userid and password used to log in the local Jet database; this can be convenient if
local and remote userids and passwords are kept consistent. If this login attempt
fails, you will be prompted for a userid and password by the ODBC driver's login
dialog box, which will not let you change any other dialog fields.
Once you log on to a remote server, Jet remembers the userid and password
entered until the application exits, so you aren't prompted for it every time
reconnection is necessary. This cached userid and password apply only to the
remote database you originally logged on to with it; if you connect to another
server/database, you'll be prompted for the userid and password that apply there.

Due to connection sharing, once you establish a connection to a server using a
given userid and password, you'll retain that identity even if you use attached
tables with different userids and passwords stored in them. If you need varying
levels of security on multiple tables, you should configure the server's security so
that each individual user has the access rights desired, rather than design your
application around multiple identities.

Attaching Tables

In Microsoft Access, links to tables in an ODBC data source can be created; these
links are called attached tables. Attaching ODBC tables allows you to use them
transparently within Microsoft Access, but to implement this transparency, Jet
must ask the ODBC driver for a great deal of information about the table and
cache it locally. This process can be expensive and complex: After establishing a
connection to the desired data source, Jet calls the ODBC API function
SQLTables to obtain a list of tables (and other similar objects) in the ODBC data
source. These are presented in a list (excluding system tables, unless you set
"Show System Objects" to "Yes" in the View Options dialog). When you select
one, Jet calls SQLColumns, SQLStatistics, SQLSpecialColumns, and various
ODBC info functions to acquire information about the selected table.

11

Unique Indexes ("Bookmarks")

To allow updating of attached ODBC tables, Jet creates dynasets over them.
There must be a unique index on the table (if not, Jet creates a snapshot, which is
not updatable). The unique key values of a row are also called the row's bookmark
because they uniquely identify and allow direct access to the row.
During attachment, Jet elects the first unique index (if any) returned by
SQLStatistics to be the primary index—its key columns will comprise the
bookmark. SQLStatistics returns Clustered, Hashed, and other indexes, in that
order, and alphabetically within each group. Thus, Jet can be forced to elect a
particular unique index as primary by renaming the index such that it appears first
alphabetically.

Jet does not call SQLSpecialColumns(SQL_BEST_ROWID) and makes no
attempt to use a server's native record identifier (for example, Oracle's "rowid") in
lieu of a unique index. The longevity of such identifiers varies among servers, and
after inserting a new record, there is no efficient, unambiguous way for Jet to
receive the new record identifier.

A server view may be attached but will be treated exactly like an attached table
with no indexes. Thus an attached view, and any query based on one, will be a
nonupdatable snapshot. Server-based Stored Procedures might not be attached
because these do not resemble tables and views closely enough.

Floating-Point Data in the Bookmark

Because servers vary in how precise they can be in their handling of floating-
point data, sometimes precision loss can occur. Floating-point data is defined as
data with digits to the right of the decimal point. Very large or very small
floating-point values might lose some accuracy when being tranferred from some
servers to Jet. The actual difference is slight enough to be inconsequential, but if
the data forms part of a table's bookmark, Jet might think the row has been
deleted ("#Deleted" appears in a Microsoft Access datasheet/form). This is
because Jet asked the server for the row by its key values, but no exact match was
found (due to precision loss). Jet cannot distinguish this situation from that of a
genuine record deletion by another user.
If this occurs and another unique index on the table does not involve floating-
point data, you should reattach the table, forcing Jet to elect the other unique
index as "primary" (as described in the previous section).

12

Datatype Mapping

In most cases, there is not a one-to-one correspondence between the datatypes
supported by Jet and the datatypes supported by a given server. But to allow
transparent access, Jet must choose an "effective" type for each column in an
attached table. How the ODBC driver maps server-specific types to the ODBC–
defined standard types depends on the implementation of the driver. The
following describes only the mappings between ODBC standard types and Jet
datatypes.

How ODBC Datatypes Are Mapped to Jet Types

When attaching a table, Jet calls SQLColumns to enumerate ODBC column
information for each column in the table. For each column in the table,
SQLColumns returns:

fSqlType ODBC datatype
lPrecision ODBC precision of column
wScale ODBC scale of column

For documentation on ODBC types and ODBC's concept of precision and scale,
see Appendix D of the ODBC Programmer's Reference.

Jet maps these three values to a Jet datatype. This is the datatype stored in the
attached table definition, and it is what the user sees. The ODBC type information
is saved, per column, and fed back into ODBC whenever Jet "uses" the column
(SELECTing, UPDATEing, INSERTing the column, and parameterizing queries
by it).

The type mapping is done as follows:

ODBC
Datatype

Microsoft Access Datatype

SQL_BIT Yes/No

SQL_TINYINT
SQL_SMALLINT

Number -- Size: Integer

13

SQL_INTEGER Number -- Size: Long Integer

SQL_REAL Number -- Size: Single

SQL_FLOAT
SQL_DOUBLE

Number -- Size: Double

SQL_TIMESTAMP
SQL_DATE
SQL_TIME

DateTime

SQL_CHAR
SQL_VARCHAR

if lPrecision <= 255, then Text (Field Size =
lPrecision)
if lPrecision > 255, then Memo

SQL_BINARY
SQL_VARBINARY

if lPrecision <= 255, then Binary (Field Size =
lPrecision)
if lPrecision > 255, then OLE Object

SQL_LONGVARBIN
ARY

OLE Object

SQL_LONGVARCHA
R

Memo

SQL_DECIMAL
SQL_NUMERIC

if wScale = 0, then
 if lPrecision <= 4, then Number -- Size: Integer
 if lPrecision <= 9, then Number -- Size: Long
Integer
 if lPrecision <= 15, then Number -- Size: Double
if wScale > 0, then

14

 if lPrecision <= 15, then Number -- Size: Double
Special cases for SQL Server/Sybase:
 if lPrecision = 19 and wScale = 4, then Currency
 if lPrecision = 10 and wScale = 4, then Currency

Anything not covered above is mapped to Text(Field Size = 255)

How Jet Datatypes Are Mapped to ODBC Types

When executing a SELECT INTO query with an ODBC destination (this includes
File Export in Microsoft Access), Jet maps each source column type to a
destination column type. A CREATE TABLE statement and multiple INSERT
statements are sent to the server using these destination types. Jet calls
SQLGetTypeInfo to get ODBC type info for all datatypes supported by the back
end. A collection of internal data structures is built, describing the type info in a
Jet-digestible format. The type mapping is described in the following table.
In the mapping below, replace SQL_SMALLINT with SQL_NUMERIC(5,0) if
SQL_SMALLINT is not supported by the server. Replace SQL_INTEGER with
SQL_NUMERIC(10,0) if SQL_INTEGER is not supported. Replace
SQL_VARCHAR with SQL_CHAR if SQL_VARCHAR is not supported by the
server. If SQL_CHAR is also not supported, the query fails.

Microsoft
Access
Datatype

ODBC Datatype

Yes/No SQL_BIT, if supported, else
SQL_SMALLINT, if supported, else
SQL_INTEGER, if supported, else
SQL_VARCHAR(5)

Number --Size: Byte
Number --Size:Integer

SQL_SMALLINT, if supported, else
SQL_INTEGER, if supported, else
SQL_VARCHAR(10)

Number --Size: Long
Integer

SQL_INTEGER, if supported, else
SQL_VARCHAR(20)

15

Currency SQL_DECIMAL(19,4), if SQL Server/Sybase,
else
SQL_FLOAT, if supported, else
SQL_VARCHAR(30)

Number --Size:Single SQL_REAL, if supported, else
SQL_FLOAT, if supported, else
SQL_VARCHAR(30)

Number --Size:Double SQL_FLOAT, if supported, else
SQL_VARCHAR(40)

DateTime SQL_TIMESTAMP, if supported, else
SQL_VARCHAR(40)

Text(Field Size) SQL_VARCHAR(MIN(Field Size,ServerMax))

Binary(Field Size) SQL_VARBINARY(MIN(Field
Size,ServerMax)), if supported, else
query fails

Memo SQL_LONGVARCHAR(ServerMax), if
supported, else
SQL_VARCHAR(2000), if ServerMax >= 2000,
else
query fails

OLE Object SQL_LONGVARBINARY(ServerMax), if
supported, else
SQL_VARBINARY(2000), if ServerMax >=
2000, else
query fails

16

Data Retrieval

As explained in "Datatype Mapping," earlier in this white paper, at attach time,
Jet chooses a Jet datatype for each column in the attached table. When fetching
data for this column, Jet must sometimes convert the data into the assigned Jet
datatype. If this conversion fails, the value is treated as NULL. This should rarely
happen because Jet chooses datatypes conservatively; for example, Jet chooses
Text when no other Jet type has a large enough value range.

Jet and Microsoft Access have no internal or user interface provisions for
handling zero-length text values and NULL text values differently. Therefore, a
zero-length text value fetched from a server is treated as if a NULL value had
been fetched.

Export (Make Table Queries)

The Export command in the Microsoft Access File menu uses a Make Table
query to export to an ODBC data source. A Make Table query sends a CREATE
TABLE statement to the server, followed by a series of INSERT statements, one
per row exported. No indexes are created on the new server table, so if it is
immediately attached, it will support only read-only snapshots. You must
manually create a unique index on the new table before attaching it if you want to
update the data.
When constructing the CREATE TABLE statement, Jet replaces all non-SQL-
standard characters on table and column names with underscores. For example,
exporting a table named "Sales Jan-Mar" will produce a table named
"Sales_Jan_Mar" on the server. However, no check is made for exceeding the
server's maximum name length. You might need to shorten very long table and
column names before exporting.

If the driver supports an identifier quoting character, Jet surrounds the table and
column names in the CREATE TABLE statement with this character. Other
applications that do not do automatic identifier quoting might have difficulties
accessing the new table, especially if the server is case-sensitive regarding
identifier names. For example, if you use a simple, command-line–oriented SQL
interface to double-check your exported data, you might need to explicitly quote
the new table's name and column names.

17

Dynasets Vs. Snapshots

When Jet executes a query, the result set returned is either a dynaset or a
snapshot. A dynaset is a live, updatable view of the data in the underlying tables.
Changes to the data in the underlying tables are reflected in the dynaset, and
changes to the dynaset data are immediately reflected in the underlying tables. A
snapshot is a nonupdatable, unchanging view of the data in the underlying tables.
The result sets for dynasets and snapshots are populated in different manners.

Result Set Population

A snapshot is populated by executing a query that pulls back all the selected
columns of the rows meeting the query's criteria. A dynaset, on the other hand, is
populated by a query that selects only the bookmark (primary key) columns of
each qualifying row. These queries are called population queries. In both cases,
these result sets are stored in memory (overflowing to disk if very large), allowing
you to scroll around arbitrarily.
Microsoft Access is optimized to return answers to you as quickly as possible; as
soon as the first screenful of result data is available, Microsoft Access paints it.
The remainder is fetched as follows:

· User scrolling: Many user actions (for example, page down, go to last
record, and search) require Microsoft Access to partially or completely
populate the query's result set. A snapshot fetches all data up to the
position scrolled to; a dynaset fetches bookmarks (primary keys) up to that
point and then fetches a small amount of data surrounding that position.
(See the following text for details.)
· Idle time: While you are inactive, Microsoft Access populates the
query's result set in the background. This allows faster operations when
you become active again. A snapshot fetches and stores all selected
columns; a dynaset fetches and stores only bookmarks, and no other data.

When the population query reaches the end of the result set, a snapshot does no
further data fetching; a dynaset does no more key fetching but will continue to
fetch clusters of rows based on those bookmarks, as you scroll around (see
below). In addition, if a connection is needed solely for this key-fetching query, it
is closed, unless either:

1. It is parameterized. The connection is maintained to allow fast requery
(for subforms and parameterized combo boxes), or
2. This would counteract connection-caching, as described above.

18

Data Fetching

When rows of data are needed (for example, to paint a datasheet), a snapshot has
the data available locally. A dynaset, on the other hand, has only keys and must
use a separate query to ask the server for the data corresponding to those
bookmarks. Jet asks the server for clusters of rows specified by their bookmarks,
rather than one at a time, to reduce the querying traffic.
The dynaset behind an Microsoft Access datasheet/form does in fact cache a small
window of data (roughly 100 rows surrounding the current record). This slightly
reduces the "liveness" of the data but greatly speeds moving around within a
small area. The data can be refreshed quickly with a single keystroke and is
periodically refreshed by Microsoft Access during idle time. This contrasts with a
snapshot, which caches the entire result data set and cannot be refreshed except by
complete reexecution of the query.

In addition to background key fetching, a dynaset also fills its 100-row data
window during idle time. This allows you to page up or down "instantly" once or
twice, provided you give Microsoft Access at least a little idle time.

Performance Implications

Snapshots and dynasets differ in several performance characteristics due to their
different methods of retrieving and caching data. Several points are worth noting:

· Snapshots are faster to open and scroll through than dynasets. If your
result set is small and you don't need to update data or see changes made
by other users, use a snapshot. Set the form's Allow Updating property to
"No Tables" to force the form to run on a snapshot. In Basic, use the
CreateSnapshot method.
· For larger result sets, a dynaset is faster and more efficient. For
example, moving to the end of a snapshot requires the entire result set to
be downloaded to the client. But a dynaset downloads only the bookmark
columns and then fetches the last screenful of data corresponding to those
keys.
· Dynaset open time and scrolling speed are affected most negatively by
the number of columns you select and the number of the query's tables that
are output. Select only the columns you need; outputting all columns using
Table.* is more convenient but slower. Sometimes joins are used simply
as restrictions and don't need to be output at all.
· When a dynaset fetches the data for a given set of keys, Memo columns
are not fetched unless they are visible on the screen. If scrolling causes
them to become visible, they are then fetched. You can improve

19

performance by designing your form so that, by default, Memo columns
are not visible. Either place the Memo off the right/bottom edge of the
screen or add a button that renders the Memo visible when pushed. In any
case, Memos are cached within the dynaset caching window, once fetched.
· OLE objects are never fetched in bunches, nor are they stored in the
dynaset caching window, because they tend to be quite large. When a row
is displayed, the OLE objects are fetched if they are visible. However, the
current row's OLE objects are cached, so simple screen-repainting does
not require re-fetching.

Asynchronous Query Execution

Jet executes ODBC queries asynchronously if this is supported by the ODBC
driver, the network software, and the server. This allows you to cancel a long-
running query in Microsoft Access or to switch to another task in the Windows™
operating system while the query runs on the server. Jet asks the server if the
query is finished every M milliseconds, where M is configurable, and defaults to
500 milliseconds.
When you cancel a query (or simply close a query before all results have been
fetched), Jet calls the ODBC function SQLCancel. SQLCancel discards any
pending results and returns control to the user. However, some servers (or their
network communication software) do not implement an efficient query-canceling
mechanism, so you might still have to wait some time before regaining control.

Asynchronous processing might cause unpredictable results with some network
libraries and some servers. These network libraries are often more robust when
operating synchronously, owing chiefly to the added complexities of handling
multiple asynchronous connections. Client applications are often written to
operate fully synchronously, even if interactive; this is simpler to implement and
test. You can force Jet to operate synchronously by setting an .ini file option
(described earlier in this paper). Also notify your network/server vendor; an
upgrade or patch might be available for these problems.

Jet will automatically cancel a long-running query after a configurable amount of
time (the default is 60 seconds). If this happens, it does not necessarily mean that
the server did not respond during that time or that you have become disconnected.
It simply means the query did not return results in the time allotted. If you know a
certain query will take a very long time to execute, increase the QueryTimeout
setting in the .ini file.

20

Optimization of Find

Against server data, the Find command in the Microsoft Access Edit menu and
the Find method in Basic are implemented using one of two strategies: an
optimized find or an unoptimized find. The optimized version is used only if:

1. The table/query is a dynaset, not a snapshot.

2. The column is indexed.

3. The Find command on the Edit menu: Match Whole Field or Start of
Field, not Any Part of Field.

4. The Find command on the Edit menu: Current Field, not All Fields.

5. The Find command on the Edit menu: not Search as Formatted.

6. Basic: the find restriction is column = value or column LIKE value.

7. Basic: the LIKE string is smith or smith*.

8. Basic: the server supports the LIKE operator on text columns.

The optimized algorithm first executes a query of the following form.

SELECT <bookmark-columns>
FROM table
WHERE <find-restriction>

The resulting bookmarks are sought in the dynaset (which stores
bookmarks, not data). Currency is positioned on the first matching
bookmark, if any. To find (or not find) a matching bookmark, the dynaset
might need to fetch more bookmark column values from the server.

The unoptimized algorithm simply iterates through the rows of the snapshot or
dynaset, evaluating the find restriction on each row until a match is found or until
the end of the records is reached. Again, this may require substantial fetching
from the server.

Modifying Server Data

Users change, add, and delete server data in several ways, including:

21

· Direct editing in a datasheet or form.
· Running "action" queries (for example, bulk UPDATEs).
· Using Microsoft Access Basic and Visual Basic data access objects.

In all cases, Jet can change/delete only data in attached server tables with a unique
key (a bookmark). When a row is updated/deleted in a datasheet, Jet sends an
UPDATE/DELETE to the server, qualified by a WHERE clause specifying the
key values for that row. This controls exactly which row is updated/deleted and
protects against inadvertent multirow updates/deletes.

Inserting new records generally also requires the existence of a bookmark. The
dynaset supporting a datasheet must keep track of newly added records. (They
become indistinguishable from previously existing records.) Additionally, if the
query does not output all the columns constituting the bookmark, inserting new
records is not allowed. Exceptions to the rule occur, however; Append and
MakeTable action queries do not require a unique key on the remote table.

Volatile Primary Keys

If another user changes a bookmark column of a row, Jet loses its handle to the
record and considers it to be deleted. (Reexecuting the query will remedy this
situation, provided the record still meets the query's criteria.)
Because of this, if a trigger on the server changes the key values at the time of an
update/insert, Jet might fail to update/insert the row. Or, Jet might successfully
update/insert the row, but Microsoft Access will immediately display it as
"#Deleted."

Columns Updated/Inserted

When an update/insert is performed on a datasheet, Jet supplies values for every
updatable field in the datasheet, whether or not it was changed or set explicitly.
This allows Jet to use a single UPDATE/INSERT statement for all updates/inserts
rather than constructing a new statement every time. This can cause any of three
unexpected behaviors:

· A trigger that fires when a column is changed will activate, even if the
column is being "changed" to its current value. You can alter the trigger to
do nothing if the old and new values match.
· Inserts will fail if columns that do not allow NULL are not included in
your query. Also, you must supply values for the columns, or the NULL
that Jet supplies will cause an error.
· Server defaults are overridden on insert by the explicit NULL supplied

22

by Jet.

You can force an updatable query output column to be nonupdatable (and exclude
it from such update/insert statements) by wrapping it in an expression such as
IntCol + 0 or StringCol & ''.

If a table has a "timestamp" column, Jet prevents you from updating it manually
because the server maintains its value.

Security

Jet neither enforces nor overrides server-based security. Additional client-side
security may be set up on attached tables and their queries, but beyond the initial
connection-time login, Jet remains strictly ignorant of server security. Security
violations caused by Jet queries done in support of dynaset operations will bring
up dialog boxes with server-specific error messages.

Locking and Concurrency

Jet does no explicit server-based locking of any kind; the server's/driver's default
concurrency mechanisms are used at all times. Several points are worth noting:

· The "Record Locks" form property may only be "No Locks"; "Edited
Record" is ignored; and "All Records" is illegal. Similarly, the "Exclusive"
option to Basic's CreateDynaset is illegal.
· Datasheet updates are done using optimistic concurrency: The row is not
locked during editing but is checked for conflict at update time by further
restricting the bookmark-qualified UPDATE statement. If a "timestamp"
column exists in the table—as reported by
SQLSpecialColumns(SQL_ROWVER)—it is qualified with its current
value. If not, all columns, excluding Memo and OLE Object columns, are
qualified with their former values. The former method is preferable,
especially considering the precision-loss problems described earlier in this
paper, in "Floating-Point Data in the Bookmark."
· Jet wraps most data-modifying operations in short transactions, but
longer transactions can sometimes occur.

1. Large action queries: Jet wraps the entire bulk operation within a
single transaction.
2. Multirow datasheet operations, such as multirow pastes and
deletes. These are wrapped in a transaction until you confirm them.
3. Transactions in Microsoft Access Basic and Visual Basic: You
are responsible for the length and breadth of your transactions,
which can be arbitrarily long.
 Long-running transactions over large amounts of data can lock

23

out or block other users, depending on the server's concurrency
model.

· Automatic idle-time population does not apply to snapshot and dynaset
objects in Basic code. If you stop moving through the result set and "sit on
a row" for a long time, the server might hold a lock on that row or page,
depending on the server's concurrency model. Due to Jet's buffering
schemes, this is no longer a concern once you reach the end of the result
set. This comment also applies to list boxes and combo boxes based on
large server-based result sets—they also do not enjoy background
population.
· When performing an ORDER BY, some servers lock all the data
involved until sorting is finished and results are returned. This is beyond
Jet's control.

Some of these caveats are relevant in any client-server environment, regardless of
the front-end application. In order to be a "good citizen" in such an environment,
you should make judicious use of transactions and cursors on reasonably sized
result sets and be familiar with your server's default locking behavior.

Transactions

Multiple concurrent transactions against dynasets against a single server are
actually a single transaction because a single connection is being used to service
updates for both dynasets. You should structure your transactions so that they do
not overlap; transactions are intended to be atomic units.
If the server supports transactions at all, as Jet determines by calling
SQLGetInfo(SQL_TXN_CAPABLE), Jet assumes only single-level support, that
is, no nesting of transactions. Therefore, if your Basic code nests transactions,
only the outermost Begin, Commit, and Rollback are actually sent to the server.

BeginTrans does not "carry into" opening a dynaset on server data; before
opening the dynaset, a connection to the server may not even exist. In the
following code the Rollback statement does not undo the changes made using the
dynaset.

BeginTrans
Set ds = d.CreateDynaset(...)
<data modifications using ds>
ds.Close
Rollback

 The proper way to structure this operation is as follows.

24

Set ds = d.CreateDynaset(...)
BeginTrans
<data modifications using ds>
Rollback
ds.Close

Because the dynaset exists when the BeginTrans and Rollback statements
are reached, Jet knows what server to pass them along to.

If you use the following sequence on remote data, a Rollback is sent to the server.

Set ds = d.CreateDynaset(...)
BeginTrans
<data modifications using ds>
ds.Close

You must explicitly commit these data changes before closing the dynaset.
This is consistent with Jet-defined behavior on native Jet tables.

Performing Bulk Operations

Due to the keyset-driven model used by Jet, it is important to note how bulk
operations (action queries, such as INSERT, UPDATE, DELETE, and
MAKETABLE) are performed. First the keyset for the records that will be
affected is built. Then the appropriate operation is performed, one record at a
time, for each record in the keyset. Although this is slower than performing a
single qualified bulk operation on the server, it allows for partially successful bulk
queries as well as bulk queries that cannot be executed by the server.

Sending Queries to a Server

The Jet query processor supports advanced capabilities such as heterogeneous
joins, queries based on other queries, and arbitrary expressions, including user-
defined functions. But Jet must communicate with a server in standard SQL terms
and refer only to functionality and data on that server. For any given query, Jet
must determine what portions may be sent to each server involved for remote
processing. The overriding goal is to send as much of the query to the server as
possible, but some operations must be performed locally.

Generic query optimization techniques should not be ignored when using attached
server tables. Given that Jet attempts to send as much of a query as possible to the
server for evaluation, you should be familiar with the capabilities of the server.
For example, equality and range restrictions should still be done on indexed
fields.

25

Identifying Remote Processing

The query compiler generates an execution plan for a query in the form of a tree
of operations, where the leaves are tables and the root is the final query result set.
Jet walks this tree from the bottom up, collapsing subtrees into SQL statements to
be sent to a server. The collapsing stops when an operation matches any or all of
the following conditions.

· It joins data from multiple data sources.
· It would not be expressible in a single SQL statement.
· It is not supported on the server.

Each of these conditions is covered in detail in the following text.

Processing That Must Be Done Locally

The key to query performance on attached server tables is ensuring that little or no
data filtering is done on the client. Client-side data processing data increases
network traffic and prevents you from leveraging advanced server hardware; it
effectively reduces a client/server system to a file server system. You can better
optimize performance by being aware of what query operations Jet must evaluate
on the client.

Heterogeneous Joins

Joins spanning multiple data sources must be performed locally. Jet determines
whether the inputs to a join are from the same data source using the same
algorithm (as described earlier in this paper). Some servers support multiple
databases on a single server machine. Because each is a distinct ODBC data
source, Jet will not ask the server to do cross-database joins—only joins within a
given database.

Operations Not Expressible in a Single SQL Statement
Jet queries may be based upon other Jet queries, allow operations such as the
following:

· A GROUP BY over a GROUP BY or DISTINCT
· A join over one or more GROUP BYs or DISTINCTs
· Complex combinations of inner and outer joins

Jet will send to the server as much of these operations as can be expressed in a
single standard SQL statement but must perform the remaining higher-level
operations locally.

26

Operations Not Supported on the Server

Generally, the outputs of a query (the SELECT clause) do not affect how much of
the query Jet sends to the server and how much is processed locally. Jet selects the
needed columns from the server and locally evaluates any output expressions
based upon them. The other query clauses (WHERE, ORDER BY, and so on)
have a more important effect: The expressions in these other clauses determine
whether or not Jet must execute them locally. Among the constructs that Jet must
evaluate locally are the following:

· Undeclared parameters — Unless you declare your parameters (via the
Query Parameters dialog in Microsoft Access or the PARAMETERS
clause in Jet SQL), they are typeless, meaning any type of data is valid.
Most servers do not have such a notion.
· Unsupported Basic operators and functions — Basic intrinsically
supports many numeric, date/time, statistical, financial, and string
functions. Some have server equivalents; some do not. Jet must locally
evaluate any function without a server-side correspondent. Jet determines
what functions/operators are supported on the server by asking the ODBC
driver, via SQLGetInfo. If supported by the server and driver, Jet will send
these operators and intrinsic functions to the server for evaluation:

General
Operato
rs

Numeric
Functions

String
Functions

Aggregate
Functions

Date/Time
Functions

AND OR ABS LCASE MIN SECOND DAY

NOT LIKE ATN LEFT MAX MINUTE MONTH

IN & COS LEN AVG HOUR YEAR

= + EXP INSTR COUNT WEEKDA
Y

< > - INT LTRIM SUM DATEPART('ddd'

27

)

< * LOG MID DATEPART('ww
w')

< = / MOD RIGHT DATEPART('yyy'
)

> IDIV RND RTRIM DATEPART('mm
m')

> = MOD SGN SPACE DATEPART('qqq'
)

BETWE
EN

SIN STRING DATEPART('hhh'
)

IS [NOT]
NULL

SQR TRIM DATEPART('nnn'
)

TAN UCASE DATEPART('sss')

DATEPART('ww'
)

DATEPART('yyy
y')

· A Microsoft Access report with multiple levels of grouping and totals is
not aggregated on the server because SQL doesn't support such a concept.
· User-Defined Functions (UDFs) — You can define your own functions
in Basic; these never have server equivalents, so they must be evaluated
locally.

28

· Miscellaneous unsupported functionality — Jet uses SQLGetInfo and
SQLGetTypeInfo to ask the ODBC driver whether the server supports,
among other things:

1. Outer joins.
2. Expressions in the ORDER BY clause (as opposed to columns).
3. The LIKE operator on Text and Memo columns.

· Miscellaneous unsupported and questionable expressions:
1. Operations involving incompatible types, such as
a LIKE b + c.
2. Nonstandard LIKE wildcards (such as the Microsoft Access–

specific '[' and '#').
3. Intrinsic functions, if arguments have incorrect types.
4. Explicit type conversion functions (such as CInt and CDbl).
5. Nonlogical operators where logical operators should be, such as
(a > b) AND (c + d, in which the right side is arithmetic.
6. Logical operators where nonlogical operators should be, such as
a + (b AND c) * d, using a logical result in an addition.

Restriction Splitting

When deciding whether or not a WHERE or HAVING clause can be sent to the
server, Jet dissects the restriction expression into its component conjuncts
(separated by ANDs) and only evaluates locally those components that cannot be
sent remotely. Therefore, if you use restrictions that cannot be processed by the
server, you should accompany them with restrictions that can be processed by the
server. For example, suppose you have written a Basic function called
SomeCalculation. The following query will cause Jet to bring back the entire table
and evaluate SomeCalculation(column1) = 17 locally.

SELECT *
FROM huge_table
WHERE SomeCalculation(column1) = 17

Note the following query, however.

SELECT *
FROM huge_table
WHERE SomeCalculation(column1) = 17 AND

last_name BETWEEN 'g' AND 'h'

The preceding query will cause Jet to send the following to the server,
bringing back only those rows that match the restriction.

29

SELECT *
FROM huge_table
WHERE last_name BETWEEN 'g' AND 'h'

Jet will then locally evaluate the restriction SomeCalculation(column1) =
17 on only those rows.

Evaluation of Outputs

As previously mentioned, SELECT clause elements are usually evaluated locally
by Jet. Two exceptions to this rule exist:

· Queries with DISTINCT: Provided that all SELECT clause expressions
can be evaluated by the server, Jet will send the DISTINCT keyword as
well. If a SELECT expression must be evaluated by Jet locally, then so
must the DISTINCT operation.
· Queries with aggregation: Jet attempts to do aggregation on the server,
since this reduces the number of rows returned to the client, often
drastically. For example, the query

SELECT Sum(column1) FROM huge_table
is sent entirely to the server; a single row is returned over the
network. On the other hand,

SELECT StdDev(column1) FROM huge_table
causes Jet to send SELECT column1 FROM huge_table to the
server, retrieve every row in the table, and perform the aggregate
locally. This is because StdDev is not a standard SQL aggregate.

Remove Execution of Crosstab Queries

Jet sends some crosstab queries to the server for evaluation; this can result in far
fewer rows transferred over the network. Jet sends a simpler GROUP BY form of
the crosstab and transforms the result set into a true crosstab. But this
transformation does not apply to complex crosstabs. The criteria you must meet to
send the optimal amount of a crosstab query to the server are:

1. Row/Column Headers may not contain aggregates.
2. The Value must contain only one aggregate.
3. There can be no user-defined ORDER BY clause.

All other reasons for forcing local processing also apply.

30

Outer Joins

In determining where to performs joins, Jet separates outer joins from inner joins,
due to ambiguities inherent in mixing both join types. Thus, any query Jet sends
through ODBC will have a FROM clause containing either of the following:

· Any number of tables, all inner joined
· Exactly two tables, outer joined

This means that some complex queries involving inner and outer joins will not be
sent completely to the server; Jet may perform some of the higher level joins
locally.

Three other conditions cause Jet to perform an outer join locally:
1. The server does not support outer joins, or the driver does not support
the ODBC canonical syntax for specifying them.
2. The join restriction is anything other than

left_table.column = right_table.column
(that is, anything but an outer join on one column).
3. The form property "Allow Updating" is set to "Any Tables".

Generating SQL to Send to a Server

The SQL that Jet sends an ODBC driver is generated according to the SQL
Grammar defined by ODBC. For the most part, this is standard SQL but may
contain ODBC–defined canonical escape sequences. Each ODBC driver is
responsible for replacing these escape sequences with back-end specific syntax
before passing the SQL along to the server; Jet never uses back-end specific
syntax.
For example, most servers support outer joins but differ widely in their outer join
syntax. Jet uses only the ODBC–defined outer join syntax:

SELECT Table1.Col1, Table2.Col1
FROM {oj Table1 LEFT OUTER JOIN Table2 ON

Table1.Col1 = Table2.Col1}

and relies on the ODBC driver to translate this to the server-specific outer
join syntax. In the case of SQL Server, this would be:

SELECT Table1.Col1, Table2.Col1
FROM Table1, Table2
WHERE Table1.Col1 *= Table2.Col1

31

Wildcards for the LIKE Operator

When using the LIKE operator, you should use the Jet wildcards ('?' for single
character matching, '*' for multiple character matching), not the server-specific
wildcards. Jet translates these wildcards into '_' and '%' before sending the
expression to the server. The only exception is in query parameter values:
Because Jet forwards your parameter values to the server, they must use '_' and
'%'.

Owner and Table Prefixing

Jet prefixes column names with their table name when generating queries
involving more than a single table. In a self-join, Jet generates a correlation name
to use as a tablename prefix. Jet also prefixes with ownername if an owner is
associated with the attached table; this ownername, if any, was returned by the
ODBC driver's SQLTables function at attach time.

Identifier Quoting

Jet calls SQLGetInfo(SQL_IDENTIFIER_QUOTE_CHAR) to determine the
identifier quoting character supported by the server/driver. If one exists, Jet wraps
all owner, table, and column names in this character, even if this is not strictly
always necessary (without knowing the keywords and special characters for a
particular server, Jet cannot know whether quoting is necessary for any given
identifier).

Hidden SELECT Clause Expressions

Some servers don't allow you to place a column or expression in the ORDER BY
clause or GROUP BY clause of a query unless the same column or expression
appears in the SELECT clause. Because Jet SQL has no such restriction, Jet
covers for the server by invisibly adding such columns and expressions to the
SELECT clause before sending the query to the server. These extra outputs are
discarded when received.

32

JET-to-ODBC SQL Tracing

By setting TraceSQLMode=1 in the [ODBC] section of the .ini file, you can
observe the SQL statements Jet is passing to the ODBC driver. The tracing output
is written to a file named "sqlout.txt" in the current directory. Jet always appends
to this file, never overwriting, so you should not leave tracing turned on
indefinitely.
Details of SQL tracing output:

SQLExecDirect: <SQL-string> Execute non-parameterized user query

SQLPrepare: <SQL-string> Prepare parameterized query

SQLExecute:
(PARAMETERIZED QUERY)

Execute prepared, parameterized user query

SQLExecute: (GOTO
BOOKMARK)

Fetch single row based on bookmark

SQLExecute: (MULTI-ROW
FETCH)

Fetch 10 rows based on 10 bookmarks

SQLExecute: (MEMO FETCH) Fetch Memos for single row based on
bookmark

SQLExecute: (GRAPHIC
FETCH)

Fetch OLE Objects for single row based on
bookmark

SQLExecute: (ROW-FIXUP
SEEK)

Fetch single row based on some index key
(not necessarily bookmark index)

33

SQLExecute: (UPDATE) Update single row based on bookmark

SQLExecute: (DELETE) Delete single row based on bookmark

SQLExecute: (INSERT) Insert single row (dynaset mode)

SQLExecute: (SELECT INTO
insert)

Insert single row (export mode)

You can generally ignore queries such as:
· SELECT nValue FROM MSysConf WHERE Config = 101
See the section on configuration, earlier in this paper, for details about this
query.
· SELECT 1 WHERE 0 = 1
This query is a workaround for a bug in versions of SQL Server prior to
version 4.2.
· SELECT c1, c2, c3... FROM table1 WHERE c1 = ?
This is the GOTO BOOKMARK query, or the ROW-FIXUP SEEK query.
· SELECT c1, c2, c3... FROM table1 WHERE c1 = ? OR c1 = ? OR ...
OR c1 = ?
This is the MULTI-ROW FETCH query.

You can most easily read the tracing output if you remove the "sqlout.txt" file just
before running a query. The first SQLPrepare or SQLExecDirect should
correspond to your query (ignoring the queries listed above).

34

ODBC Specification Compliance Errors

Any error returned by Jet that falls in the range -7700 to -7799 is an ODBC
Specification Compliance Error. The error indicates that an ODBC driver has
failed to comply with the ODBC specification and represents a bug in the driver.
Please report all such errors to the vendor who supplied the driver. The table
below contains an error number that will be returned by Jet along with the
following two pieces of information:

1. A description of the ODBC API call that was made, including any relevant
parameter values.

2. A description of the condition that caused the error.

Error ODBC Call Condition That Caused the Error

-7701 SQLGetInfo(ODBC_API_CONFORMANCE) *pcbInfoValue != 2

-7702 SQLGetInfo(ODBC_API_CONFORMANCE) wValue < 1

-7703 SQLGetData(fCType=SQL_C_CHAR) Call return "driver could not convert"

-7704 SQLGetTypeInfo(SQL_ALL_TYPES) Neither SQL_CHAR nor
SQL_VARCHAR was returned; type
support is insufficient

-7705 SQLGetTypeInfo ==> SQLNumResultCols *pccol < 6

-7706 SQLGetTypeInfo ==>
SQLGetData(TYPE_NAME)

*pcbValue <= 0

-7707 SQLGetTypeInfo ==>
SQLGetData(DATA_TYPE)

*pcbValue != 2

35

-7708 SQLGetTypeInfo ==>
SQLGetData(PRECISION)

*pcbValue != 0 or *pcbValue != 4

-7709 odbc.dll missing API function (possibly
bad odbc.dll)

-7710 SQLSetParam(fSQLType=SQL_VARCHAR) Driver could not convert

-7711 UNUSED

-7712 Primary key must be > 255 bytes

-7713 SQL_INVALID_HANDLE returned by
ODBC API; i.e., driver claims
henv/hdbc/hstmt is invalid

-7714 SQLGetTypeInfo ==> SQLNumResultCols *pccol < 9

-7715 SQLTables ==>
SQLGetData(TABLE_OWNER/TABLE_NAM
E)

length(ownername.tablename) > 255
bytes

-7716 SQLTables ==> SQLGetData(TABLE_NAME) *pcbValue <= 0

-7717 SQLTables ==> SQLGetData(TABLE_TYPE) *pcbValue <= 0

-7718 SQLTables ==> SQLGetData(TABLE_TYPE) *pcbValue > 128

-7719 SQLStatistics ==> total length of columns for index > 255

36

SQLGetData(COLUMN_NAME) bytes

-7720 SQLGetInfo(SQL_CURSOR_COMMIT_BEH
AVIOR)

*pcbInfoValue != 2

-7721 SQLGetInfo(SQL_CURSOR_ROLLBACK_BE
HAVIOR)

*pcbInfoValue != 2

-7722 SQLTables ==> SQLNumResultCols *pccol < 4

-7723 SQLSpecialColumns ==> SQLNumResultCols *pccol < 2

-7724 SQLSpecialColumns ==>
SQLGetData(COLUMN_NAME)

*pcbValue <= 0

-7725 SQLGetTypeInfo ==>
SQLGetData(SEARCHABLE)

*pcbValue != 2

-7726 SQLGetTypeInfo ==>
SQLGetData(SEARCHABLE)

Value out of range

-7727 SQLColumns ==> SQLNumResultCols *pccol < 11

-7728 SQLColumns ==>
SQLGetData(TABLE_OWNER)

*pcbValue < 0

-7729 SQLColumns ==>
SQLGetData(TABLE_NAME)

*pcbValue <= 0

-7730 SQLColumns ==>
SQLGetData(COLUMN_NAME)

*pcbValue <= 0

37

-7731 SQLColumns ==> SQLGetData(DATA_TYPE) *pcbValue != 2

-7732 SQLColumns ==> SQLGetData(PRECISION) *pcbValue != 0 or 4

-7733 SQLColumns ==> SQLGetData(SCALE) *pcbValue != 0 or 2

-7734 SQLColumns ==> SQLGetData(NULLABLE) *pcbValue != 0 or 2

-7735 SQLColumns ==> SQLGetData(NULLABLE) Value out of range

-7736 SQLStatistics ==> SQLNumResultCols *pccol < 12

-7737 SQLStatistics ==>
SQLGetData(TABLE_OWNER)

*pcbValue < 0

-7738 SQLStatistics ==>
SQLGetData(TABLE_NAME)

*pcbValue <= 0

-7739 SQLStatistics ==>
SQLGetData(NON_UNIQUE)

*pcbValue != 2

-7740 SQLStatistics ==>
SQLGetData(INDEX_QUALIFIER)

*pcbValue < 0

-7741 SQLStatistics ==>
SQLGetData(INDEX_QUALIFIER/INDEX_N
AME)

length(qualifier.indexname) > 255 bytes

38

-7742 SQLStatistics ==>
SQLGetData(INDEX_NAME)

*pcbValue < 0

-7743 SQLStatistics ==> SQLGetData(TYPE) *pcbValue != 2

-7744 SQLStatistics ==> SQLGetData(TYPE) Value out of range

-7745 SQLStatistics ==>
SQLGetData(TYPE/NON_UNIQUE/INDEX_N
AME)

TYPE == SQL_TABLE_STAT, but either
NON_UNIQUE or INDEX_NAME is
non-NULL

-7746 SQLStatistics ==>
SQLGetData(TYPE/NON_UNIQUE/INDEX_N
AME)

TYPE != SQL_TABLE_STAT, but either
NON_UNIQUE or INDEX_NAME is
NULL

-7747 SQLStatistics ==>
SQLGetData(COLUMN_NAME)

*pcbValue <= 0

-7748 SQLStatistics ==> SQLGetData(COLLATION) *pcbValue != 0 or 1

-7749 SQLStatistics ==> SQLGetData(COLLATION) Value not 'A' or 'D'

-7750 SQLGetInfo(SQL_TXN_CAPABLE) *pcbInfoValue != 2

-7751 SQLGetInfo(SQL_TXN_CAPABLE) Value < 0 or > 2

-7752 SQLGetInfo(SQL_DATA_SOURCE_READ_O
NLY)

*pcbInfoValue != 1

-7753 SQLGetInfo(SQL_DATA_SOURCE_READ_O Value not 'Y' or 'N'

39

NLY)

-7754 SQLGetInfo(SQL_IDENTIFIER_QUOTE_CH
AR)

*pcbInfoValue != 1

-7755 SQLGetInfo(SQL_IDENTIFIER_QUOTE_CH
AR)

Value '.' or alphanum

-7756 SQLGetInfo(SQL_STRING_FUNCTIONS) *pcbInfoValue != 4

-7757 SQLGetInfo(SQL_NUMERIC_FUNCTIONS) *pcbInfoValue != 4

-7758 SQLGetInfo(SQL_TIMEDATE_FUNCTIONS) *pcbInfoValue != 4

-7759 SQLGetInfo(SQL_SYSTEM_FUNCTIONS) *pcbInfoValue != 4

-7760 SQLGetInfo(SQL_OUTER_JOINS) *pcbInfoValue != 1

-7761 SQLGetInfo(SQL_OUTER_JOINS) Value not 'Y' or 'N'

-7762 SQLGetInfo(SQL_EXPRESSIONS_IN_ORDE
RBY)

*pcbInfoValue != 1

-7763 SQLGetInfo(SQL_EXPRESSIONS_IN_ORDE
RBY)

Value not 'Y' or 'N'

-7764 SQLGetInfo(SQL_CONCAT_NULL_BEHAVI
OR)

*pcbInfoValue != 2

40

-7765 SQLGetInfo(SQL_CONCAT_NULL_BEHAVI
OR)

Value not 0 or 1

-7766 SQLGetData(SQL_C_BIT) pcbValue != 1

-7767 SQLGetData(SQL_C_SHORT) pcbValue != 2

-7768 SQLGetData(SQL_C_TIMESTAMP) pcbValue !=
sizeof(TIMESTAMP_STRUCT)

* To order the ODBC Programmer's Reference, call Microsoft Sales and Service
at 1-800-227-4679 and request part number 273050v100. International callers,
request part number 273050av100.

41

© 1993 Microsoft Corporation. All rights reserved. Printed in the United States of
America.

The information contained in this document represents the current view of
Microsoft Corporation on the issues discussed as of the date of publication.
Because Microsoft must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Microsoft, and Microsoft cannot
guarantee the accuracy of any information presented after the date of publication.

This document is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.

Microsoft, Microsoft Access, and the Microsoft logo are registered trademarks
and Visual Basic and Windows are trademarks of Microsoft Corporation.

Paradox is a registered trademark of Ansa Software, a Borland Company. dBASE
is a registered trademark of Borland International, Inc. ORACLE is a registered
trademark of Oracle Corporation.

42

Microsoft Corporation
One Microsoft Way
Redmond, WA 98052-6399

[MS logo]

0893 Part. No. 098-53349

43

	White Paper
	Jet Database Engine
	ODBC Connectivity
	Neil Black Jet Program Management Stephen Hecht Jet Development

	Jet Database Engine
	ODBC Connectivity
	Contents
	Overview
	ODBC API Usage
	Configuration Options for ODBC Connectivity
	Configuration Table
	Configuration Initialization File

	Connection Management
	Active Statements
	Cursor Commit/Rollback Behavior
	Connecting to SQL Server: An Example

	Connection Sharing
	Connections Caching/Aging
	Authentication

	Attaching Tables
	Unique Indexes ("Bookmarks")
	Floating-Point Data in the Bookmark

	Datatype Mapping
	How ODBC Datatypes Are Mapped to Jet Types
	How Jet Datatypes Are Mapped to ODBC Types
	Data Retrieval
	Export (Make Table Queries)

	Dynasets Vs. Snapshots
	Result Set Population
	Data Fetching
	Performance Implications
	Asynchronous Query Execution
	Optimization of Find

	Modifying Server Data
	Volatile Primary Keys
	Columns Updated/Inserted
	Security
	Locking and Concurrency
	Transactions
	Performing Bulk Operations

	Sending Queries to a Server
	Identifying Remote Processing
	Processing That Must Be Done Locally
	Heterogeneous Joins
	Operations Not Expressible in a Single SQL Statement
	Operations Not Supported on the Server

	Restriction Splitting
	Evaluation of Outputs
	Remove Execution of Crosstab Queries
	Outer Joins
	Generating SQL to Send to a Server
	Wildcards for the LIKE Operator
	Owner and Table Prefixing
	Identifier Quoting
	Hidden SELECT Clause Expressions
	JET-to-ODBC SQL Tracing

	ODBC Specification Compliance Errors

