
 Message Spy
Properties                    Events                    Example

Description
The Message Spy custom control is used to "spy" on Windows and Visual Basic messages sent or
posted to Visual Basic controls and forms.

For further information on Windows messages refer to the Windows 3.1 SDK help file supplied with
Visual Basic. For further information on Visual Basic messages refer to the Visual Basic API Reference
help file supplied with Visual Basic.

File Name
MSGSPY.VBX

Object Type
MsgSpy

Remarks
The Message Spy custom control allows a Visual Basic application to intercept, filter or otherwise
process Windows and Visual Basic messages sent or posted to Visual Basic controls and forms. This
operation is known as subclassing and, if used carefully, can allow very powerful effects to be
achieved, including functionality not otherwise provided by Visual Basic. Both pre-processing and post-
processing of messages are supported.

Distribution Note    When you create and distribute applications that use the Message Spy custom
control, you should install the file MSGSPY.VBX in the customer's Microsoft Windows \SYSTEM
subdirectory. The Visual Basic Setup Kit included with the Professional Edition provides tools to help
you write setup programs that install your applications correctly.

About
This custom control was developed by Anton Software Limited as part of the Anton Software
Library/VBX. For additional information, you can contact them at:

Anton Software Limited
40 Midfield Way
Orpington
Kent, BR5 2QJ
UK

Phone/fax: +44 (0) 81-302 4373 (24 hours)

E-mail: 100265,2172 (CompuServe)
tonys@anton.demon.co.uk (Internet)

Contact: Tony Scott

Properties
All the properties for this control are listed in the following table. Properties that apply only to this
control are marked with an asterisk (*) and are documented in the following sections. (Note that the list
order is alphabetic from top to bottom, then left to right.) See the Visual Basic Language Reference or
Help for documentation on the remaining properties. There are no methods for this control.

*Cancel *HiWord *IsForm *ReturnValue

*Control hWnd Left *SpyMode

*ControlName *hWndClear *LoWord Tag

Enabled *hWndSet *MessageName Top

*Form Index *MessageNumb
er

*FormName *IsControl Name

hWndSet is the default value of the control.

Events
The events for this control are listed below. They apply only to this control and are marked with an
asterisk (*) to denote that they are documented in the following sections.

*MsgProcessed *MsgReceived

Cancel Property

Description

Specifies whether the current message should be "cancelled". Valid only in the MsgReceived event.

Usage

[form.]MsgSpy.Cancel[= {True | False}]

Remarks

On entry to the MsgReceived event, this property will be False. If then set to True, the Windows or Visual
Basic message the event was generated for will not be passed on to the subclassed control's or form's
window procedure (thereby cancelling the message). In such cases, the ReturnValue property may also
be set if a non-zero value is required to be returned to Windows or Visual Basic. Note that cancelling a
message will result in the MsgProcessed event not being generated.

For example, the following code fragment ensures that mouse clicks are ignored:

If MsgSpy1.MessageName = "WM_LBUTTONDOWN"
MsgSpy1.Cancel = True

ElseIf MsgSpy1.MessageName = "WM_LBUTTONDBLCLK" Then
MsgSpy1.Cancel = True

End If

Data Type

Integer (Boolean)

Control, Form Properties

Description

Specify the control or form the message is intended for respectively. Valid only in the MsgReceived and
MsgProcessed events.

Usage

[form.]MsgSpy.Control

[form.]MsgSpy.Form

Remarks

The IsControl and IsForm properties specify whether a message is intended for either a control or a form
respectively. Either the Control or the Form property will then specify the actual control or form. All the
properties and methods of the control or form will then be available. For example, the following code
fragment displays the value of a subclassed form's Tag property:

If MsgSpy1.IsForm Then
MsgBox MsgSpy1.Form.Tag

End If

The Visual Basic TypeOf operator may be used for controls to determine the type of the control. For
example, the following code fragment adds the x-coordinate of the mouse cursor to all subclassed list
boxes:

If MsgSpy1.IsControl Then
If TypeOf MsgSpy1.Control Is ListBox Then

If MsgSpy1.MessageName = "WM_MOUSEMOVE" Then
MsgSpy1.Control.AddItem MsgSpy1.LOWORD

End If
End If

End If

Data Type

Control or Form

ControlName, FormName Properties

Description

Specify the name of the control or form the message is intended for respectively. Valid only in the
MsgReceived and MsgProcessed events.

Usage

[form.]MsgSpy.ControlName

[form.]MsgSpy.FormName

Remarks

The IsControl and IsForm properties specify whether a message is intended for either a control or a form
respectively. Either the ControlName or the FormName property will then specify the name of the control
or form respectively. For example, the following code fragment displays the name of a subclassed control:

If MsgSpy1.IsControl Then
MsgBox MsgSpy1.ControlName

End If

Data Type

String

HIWORD, LOWORD Properties

Description

Specify the high-order word and low-order word portions of the LParam event parameter respectively.
Valid only in the MsgReceived and MsgProcessed events.

Usage

[form.]MsgSpy.HIWORD

[form.]MsgSpy.LOWORD

Remarks

These properties are the equivalents of the HIWORD and LOWORD macros available to C and C++
programmers. They are useful in a number of Windows messages in which separate data is passed in
each 16-bit word of the 32-bit LParam event parameter. For example, with the WM_MOUSEMOVE
message, LOWORD specifies the x-coordinate of the mouse cursor as a screen coordinate, and
HIWORD the y-coordinate. The following code fragment displays the mouse cursor's position in the
debug window:

If MsgSpy1.MessageName = "WM_MOUSEMOVE" Then
Debug.Print MsgSpy1.LOWORD & " " & MsgSpy1.HIWORD

End If

Data Type

Integer

hWndSet, hWndClear Properties

Description

Specify the window handle (hWnd property) of a Visual Basic control or form that is to be subclassed, or
that is no longer to be subclassed, respectively. These properties are not available at design time.

Usage

[form.]MsgSpy.hWndSet[= setting%]

[form.]MsgSpy.hWndClear[= setting%]

Remarks

Each Message Spy control is able to subclass any Visual Basic controls and/or forms within the same
Visual Basic application. Each time a window handle is assigned to the hWndSet property, the
corresponding control or form is subclassed. This means that the MsgReceived and MsgProcessed
events will from then on be fired for each message received by the corresponding subclassed control or
form. Subclassing may be removed from a subclassed control or form by setting the hWndClear property.
It is not possible to subclass a Message Spy control. (Doing so will have no effect.)

The hWndSet property is the default value of the control. Therefore assigning to the control name itself
will have the same effect as assigning to its hWndSet property. For example, the following code fragment
uses this technique to subclass all the controls on a form (named frm), and then to subclass the form
itself:

Dim i As Integer

For i = 0 To frm.Controls.Count - 1
MsgSpy1 = frm.Controls(i).hWnd

Next i

MsgSpy1 = frm.hWnd

Data Type

Integer

IsControl, IsForm Properties

Description

Specify whether the message is for a control or a form respectively. Valid only in the MsgReceived and
MsgProcessed events.

Usage

[form.]MsgSpy.IsControl

[form.]MsgSpy.IsForm

Remarks

The MsgReceived and MsgProcessed events are generated for messages received by all subclassed
controls and forms. The IsControl and IsForm properties specify whether a message is intended for either
a control or a form respectively.

If IsControl is True, IsForm will be False, and vice versa.

For example, the following code fragment sets a label according to whether the mouse is over a control or
the form respectively:

If MsgSpy1.IsControl Then
Label1 = "Control"

Else
Label1 = "Form"

End If

Data Type

Integer (Boolean)

MessageName Property

Description

At run time, specifies the name of the message a MsgReceived or MsgProcessed event was generated
for. Valid only in those events. At both design and run time, may be set to the message name of the
message the control should respond to (valid only if the SpyMode property is set to 1 - Single Message).
The MessageNumber property will also be set accordingly.

All WM and VBM messages are supported.

Usage

[form.]MsgSpy.MessageName[= setting$]

Remarks

At run-time, this property retrieves the name of the current message. It may be used in the MsgReceived
and MsgProcessed events to differentiate between different messages. There is some overhead in doing
this, as the custom control must look up the message name in an internal table each time this property is
accessed. For production code, and in cases when performance is important, the Msg event parameter
should be used instead.

Note that at design time, the message name may be typed directly into the Property window. Alternatively,
the Property window's list box may be used to select the message name.

For example, the following code fragment uses this property to detect the WM_MOUSEMOVE message:

If MsgSpy1.MessageName = "WM_MOUSEMOVE" Then
...

End If

The following code fragment performs the same function using the Msg event parameter:

Const WM_MOUSEMOVE = &H200

If Msg = WM_MOUSEMOVE Then
...

End If

The following code fragment uses this property to specify that the control should respond only to
WM_KILLFOCUS messages:

MsgSpy1.SpyMode = 1
MsgSpy1.MessageName = "WM_KILLFOCUS"

Data Type

String

MessageNumber Property

Description

At run time, specifies the message number of the message a MsgReceived or MsgProcessed event was
generated for. Valid only in those events. At both design and run time, may be set to the message number
of the message the control should respond to (valid only if the SpyMode property is set to 1 - Single
Message). The MessageName property will also be set accordingly. (If the message number is not for a
standard WM or VBM message, the MessageName property will be set to an empty string.)

Usage

[form.]MsgSpy.MessageNumber[= setting%]

Remarks

This property specifies the number of the current message. It may be used in the MsgReceived and
MsgProcessed events to differentiate between different messages, although the Msg event parameter is
more suited to this purpose. It may also be assigned to at both design and run time to the message
number of the message the control should respond to (valid only if the SpyMode property is set to 1 -
Single Message).

For example, the following code fragment uses this property to specify that the control should respond
only to WM_SETFOCUS messages:

Const WM_SETFOCUS = 7
MsgSpy1.SpyMode = 1
MsgSpy1.MessageNumber = WM_SETFOCUS

Data Type

Integer

ReturnValue Property

Description

Specifies the value to be returned to Windows or Visual Basic. Valid only in the MsgReceived and
MsgProcessed events.

Usage

[form.]MsgSpy.ReturnValue[= setting&]

Remarks

On entry to the MsgReceived event, the Cancel property will be False. If it is then set to True, the
message will not be passed on to the subclassed control's or form's window procedure. In such cases,
the ReturnValue property may then also be set if a non-zero value is required to be returned to Windows
or Visual Basic.

On entry to the MsgProcessed event, the ReturnValue property will be set to the value returned from the
subclassed control's or form's window procedure. It may then be changed if a different value is required to
be returned to Windows or Visual Basic.

For example, the following code fragment from the MsgReceived event traps WM_USER messages and
ensures that a non-zero value is returned:

If MsgSpy1.MessageName = "WM_USER"
MsgSpy1.Cancel = True
MsgSpy1.ReturnValue = 1

End If

Data Type

Long

SpyMode Property

Description

Specifies whether all messages, or just a single message, should result in the MsgReceived and
MsgProcessed events being generated.

Usage

[form.]MsgSpy.SpyMode[= setting%]

Remarks

Setting Value Description

All Messages 0 (Default) All messages should result in the
MsgReceived and MsgProcessed events being
generated

Single Message 1 Only the message specified by the MessageName and
MessageNumber properties should result in the
MsgReceived and MsgProcessed events being
generated.

For example, the following code fragment specifies that all messages should be responded to:

MsgSpy1.SpyMode = 0

Data Type

Integer (Enumerated)

MsgProcessed, MsgReceived Events

Description

Occur for each message received by or processed by a subclassed Visual Basic control or form, allowing
pre-processing and post-processing of messages respectively.

Syntax

Sub MsgSpy_MsgReceived(hWnd As Integer, Msg As Integer, WParam As Integer, LParam As Long)

Sub MsgSpy_MsgProcessed(hWnd As Integer, Msg As Integer, WParam As Integer, LParam As
Long)

Remarks

These events allow an application to intercept, filter or otherwise process Windows and Visual Basic
messages sent (or posted) to Visual Basic controls and forms. The hWnd parameter specifies the window
handle of the control or form the message is or was intended for. The message number of the message
itself is specified by the Msg parameter. Further message specific data may be present in the WParam
and LParam parameters, depending on the message.

The MsgReceived event allows pre-processing of Windows and Visual Basic messages to be performed.
That is, the event is generated before the subclassed control's or form's window procedure has received
the message. Messages may then be cancelled by setting the Cancel property to True and by setting the
ReturnValue property, and modified by changing the Msg, WParam and LParam parameters. Changing
the hWnd parameter has no effect.

The MsgProcessed event allows post-processing of Windows and Visual Basic messages to be
performed. That is, the event is generated after the subclassed control's or form's window procedure has
received and processed the message. Messages may then be modified by changing the ReturnValue
property, which on entry will be set to the value returned from the subclassed control's or form's window
procedure.

These events will not (re)occur for any further messages that are generated directly or indirectly during
the processing of these events, thereby preventing uncontrolled recursion.

Programmers familiar with programming for Windows using the C programming language should notice
that the syntax of these events is modelled exactly on that of a normal Window procedure.

For example, the following is a complete program that allows text files to be dragged from File Manager
and dropped onto its main form (or icon if minimised), and opens Notepad to edit or view the files:

Option Explicit

Declare Sub DragAcceptFiles Lib "shell" (ByVal hWnd As Integer, ByVal fAccept As Integer)
Declare Function DragQueryFile Lib "shell" (ByVal hDrop As Integer, ByVal iFile As Integer, ByVal
lpszFile As String, ByVal cb As Integer) As Integer
Declare Sub DragFinish Lib "shell" (ByVal hDrop As Integer)

Sub Form_Load ()

MsgSpy1.SpyMode = 1
MsgSpy1.MessageName = "WM_DROPFILES"
MsgSpy1 = frmDragDrop.hWnd
DragAcceptFiles frmDragDrop.hWnd, 1

End Sub

Sub MsgSpy1_MsgReceived (hWnd As Integer, Msg As Integer, WParam As Integer, LParam As Long)
Dim Filename As String * 126
Dim Result As Integer
Result = DragQueryFile(WParam, 0, Filename, 126)
DragFinish WParam
Result = Shell("notepad.exe " & Filename, 1)

End Sub

Message Spy Example
This example illustrates how the WM_MOUSEMOVE message can be intercepted to allow a status line (in this
case a 3D panel) to display information about the control the mouse cursor is currently over. In a real application
this could be a short line of help text explaining the meaning of the control, a "bubble-text" window, or, if
combined with speech output, a brief spoken description of the control. In this example, the control's (or form's)
name and the X and Y positions of the mouse cursor relative to the control are displayed in separate 3D panels. A
message is also displayed when each control receives the input focus.

Sub Form_Load ()
Dim i As Integer
For i = 0 To controls.Count - 1

MsgSpy1 = controls(i).hWnd
Next i
MsgSpy1 = frm.hWnd

End Sub

Sub MsgSpy1_MsgReceived (hWnd As Integer, Msg As Integer, WParam As Integer, LParam As Long)
Dim WindowName As String

Dim MessageName As String
MessageName = MsgSpy1.MessageName

If MsgSpy1.IsControl Then
WindowName = MsgSpy1.ControlName

Select Case MessageName
Case "WM_SETFOCUS"

pnl3dMessage = WindowName + " got focus"

Case "WM_MOUSEMOVE"
pnl3dMessage = "Mouse is over " & WindowName
pnl3dXPos = Str$(MsgSpy1.LOWORD)
pnl3dYPos = Str$(MsgSpy1.HIWORD)

End Select
Else

WindowName = MsgSpy1.FormName

If (MessageName = "WM_MOUSEMOVE") Then
pnl3dMessage = "Mouse is over " & WindowName
pnl3dXPos = Str$(MsgSpy1.LOWORD)
pnl3dYPos = Str$(MsgSpy1.HIWORD)

End If
End If

End Sub

