
CHAPTER 1

Video capture device drivers provide low-level video capture services for Windows
multimedia applications. Both applications and MCI device drivers can use these services
to control video capture devices. These devices can provide services such as the
following:

· Single frame video capture
· Real-time (streaming) video capture
· Video overlay
· Produce data in a standard or proprietary compressed format

Video capture devices must have a corresponding video capture device driver to be used
with Windows. This chapter explains the Windows interface for video capture device
drivers. It covers the following topics:

· The different types of video capture channels
· General information about writing a video capture device driver
· How a video capture device driver handles the system messages for the

installable driver interface
· How a video capture device driver handles device specific messages for video

capture
· An alphabetical reference to the messages and data structures used to write

video capture device drivers

Before reading this chapter, you should be familiar with the video services available with
Windows. You should also be familiar with the Windows installable driver interface. For
information about the video services and the installable driver interface, see the Microsoft
Windows Programmer's Reference. For information on other drivers using the installable
driver interface, see the Microsoft Windows Multimedia Device Adaptation Guide.

Architecture of a Video Capture Driver
The MSVIDEO.DLL module provides the interface between client applications and video
capture device drivers—applications do not call the drivers directly. When a client
application calls a video capture function, MSVIDEO.DLL translates the call into a
message and sends the message to the device driver.

Video Capture Device Driver Channels
Video capture device drivers can transfer data through four different channels. The
destination or source of each channel is the frame buffer that is part of the video capture
hardware. The four channels and the frame buffer are shown in the following illustration:

Video Capture Device Drivers

2-2 Video for Windows Programmer's Guide

Data channels in the video capture driver.

The video capture channel (External In) is a source of video information placed in the
frame buffer. The video source might be a video camera, video player, or television tuner.
The format of both the incoming signal and the data placed in the frame buffer is
controlled by the video capture hardware.

The video capture device can display the frame buffer data by using the video display
channel (External Out). In practice, this could be with a second monitor or a video
overlay device.

The device driver and application will use the video in channel (Video In) to transfer the
video data to application supplied buffers.

The device driver and application can play captured data by using the video out channel
(Video Out) to transfer data back into the frame buffer. Playback through this channel
might be to review a sequence just captured or to play data from a file.

To supply minimum services, video capture drivers must support the External In and
Video In channels. These channels provide services for video capture but not for video
playback. Drivers with only External In and Video In channels rely on other system
components (such as video compression and decompression drivers) for video playback.

The Video Out channel is not currently used. The interface for video
compression and decompression drivers is currently used to display this

information.

The Video Capture Application
The application controlling the video capture driver is an integral part of the capture
process. The application has the responsibility of allocating the memory used for video
capture and managing the data buffers used for the transfer of data. If the user wants to
capture audio simultaneously with video, the application also controls the audio driver
used for capturing the input audio. Once the video and audio drivers capture the data, the
application has the responsibility for any post-processing of this data. For example, if the
application wants to save it as an AVI file, it must add the appropriate headers and create
the AVI RIFF structure saved in the disk file.

Sample Device Drivers
The examples in this chapter were extracted from a sample device driver
(BRAVADO.DRV) for the Truevision Bravado video capture hardware. The examples
also apply to the Creative Labs Video Blaster (VBLASTER.DRV) capture hardware. The
sample source code for this driver shares or parallels the sample source code for the

02/10/93

Note
:

 3-3

Bravado device driver. (The files that are unique for the two samples include
the .H, .RC, .DEF, .DLL, .LIB, and MAKEFILEs.)

Like many of the newer frame grabbers, these devices use the PCVIDEO 9001 chipset
from Chips and Technologies. The sample driver is designed to support any video capture
device based on the PCVIDEO chipset. You can develop a device driver for this chipset
in as little as a single day if the following assumptions are true:

· A DLL is available which is modeled after PCVIDEO.DLL from Chips and
Technologies. Functions exported by the DLL may have different names, but
they should have similar functionality. For example, Truevision supplies a
DLL called VW.DLL. The sample driver, BRAVADO.DRV calls on the
services of this DLL to access most low-level hardware functions.

· Internally, images are captured to memory using YUV 4:1:1 encoding.

Video capture devices that are not based on the PCVIDEO chipset, or that use alternate
internal formats, will require additional work to develop routines to convert between
formats and control the device. Devices which capture data with the RGB format can be
readily supported by modifications to the sample code.

The Structure of a Video Capture Device Driver
Video capture device drivers are dynamic-link libraries (DLLs) usually written in C or
assembly language, or a combination of the two languages. You should combine
operations for different video capture channels in a single DLL. For example, the Bravado
video capture driver module, BRAVADO.DRV, has operations for video capture as well
as the display of live video using key color or overlay.

As installable drivers, these drivers will provide a DriverProc entry point used to process
system messages. For general information about installable drivers, the DriverProc entry
point, and system messages sent to this entry point, see the Microsoft Windows
Programmer's Reference. This chapter includes supplemental information for the system
messages. This information describes specifically how video capture drivers should
respond to the system messages that are critical to their proper operation.

Video capture drivers also use the DriverProc entry point to process messages
specifically for video capture. Information on how drivers use the DriverProc entry point
to process these messages is contained in this chapter.

Combining Video Capture and Video
Compression/Decompression Drivers
If the same hardware is required or used for a combination of video capture and video
compression, you might combine both of these functions into a common DLL and use a
single DriverProc entry point to service them. The common entry point will simplify the
coordination of the different functions.

02/10/93

2-4 Video for Windows Programmer's Guide

Because video capture drivers can rely on video compression and
decompression drivers for efficient operation, a single driver can handle

both video capture, and video compression and decompression services. Video
capture drivers use the VIDEO_OPEN_PARMS data structure when they are
opened. This structure has the same field definitions as the ICOPEN structure
used by video compression and decompression drivers. By examining the
fccType field, a combined driver can determine whether it is being opened as a
video capture driver or a video compression and decompression driver. (Video
capture devices contain the four-character code 'vcap' in this field.) For more
information on video compression and decompression drivers, see Chapter 10,
“Video Compression and Decompression Drivers.”

Video Capture Header Files
The messages and data structures used exclusively by video capture device drivers are
defined in MSVIDDRV.H. Functions, error returns, and constants used by both video
capture device drivers and applications are defined in MSVIDEO.H

Naming Video Capture Device Drivers
The filenames for device driver DLLs are not required to have a file extension of
“.DLL”—you can name your driver using any file extension you want. It is suggested that
you use the extension “.DRV” for your device drivers to follow the convention set by
Windows.

SYSTEM.INI Entries for Video Capture Device
Drivers
The SYSTEM.INI file contains information for loading and configuring device drivers.
Your device driver must be identified in the [drivers] section. Your device driver might
also have entries in the [386enh] section if it requires any VxDs for operation. Your
driver might also reserve a device-specific section in the SYSTEM.INI to store
configuration information. For more information on this device-specific section, see “The
Installable Driver Interface,” later in this chapter. The [drivers] and [386enh] sections are
updated by an installation program when your device is installed or removed.

The preferred method for installing device drivers uses the Drivers option in the Control
Panel. The Drivers option uses information in the OEMSETUP.INF file for your driver to
add the entries in the [drivers] section as well as entries in the [386enh] section to install
any VxDs you require. The procedures for creating an OEMSETUP.INF file are
described in the Windows DDK.

The entry that identifies your driver in the [drivers] section lets Windows load the driver.

02/10/93

Note
:

 3-5

If this entry is absent, your driver won't be recognized. While installation programs
normally add the necessary entry for completed device drivers, you might have to
manually add it while you are developing your device driver. You might also have to
manually add any [386enh] entries you need. The final version of your device driver
should use an installation program to create and delete the entries in these two sections.

For video capture devices, a key name of “MSVideo” specifies the name of your driver in
the [drivers] section of SYSTEM.INI. For example, the following extract identifies one
video capture device driver named “BRAVADO.DRV”.

[drivers]
timer=timer.drv
joystick=ibmjoy.drv
MSVideo=bravado.drv

If there is more than one driver for a given device type, append a number from 1 to 9 after
the key name. (When you have multiple drivers, use sequential numbers to identify them.)

While you can have more than one driver of the MSVIDEO type in the [drivers] section,
the Drivers option in the Control Panel cannot install multiple drivers of this type. To
work with more than one video driver, you might use the Drivers option to remove the
existing driver and install an alternate, or you might manually edit SYSTEM.INI file to
include the additional MSVIDEO entries. If you manually edit SYSTEM.INI, you can
select the driver used when you execute the video capture application. The following
example shows a [drivers] section with entries for five video capture drivers:

[drivers]
msvideo=targa16.drv
msvideo1=testdrv.drv
msvideo2=bravado.drv
msvideo3=vblaster.drv
msvideo4=MYDRVR.DRV

If you are using the VIDCAP video capture application, you can select the video capture
driver it uses with the -d command line option. The integer specified after the -d
corresponds to the video capture driver entry. For example, VIDCAP -d0 uses the
TARGA16.DRV driver associated with the msvideo entry. VIDCAP -d3 uses the
VBLASTER.DRV associated with the msvideo3 entry.

Video capture device drivers are loaded only when needed by an
application.

The Module-Definition File
To build a device-driver DLL, you must have a module-definition (.DEF) file. In this file,
you must export the DriverProc entry-point function. Functions are exported by ordinal,
as shown in the following example BRAVADO.DEF file:

02/10/93

Note
:

2-6 Video for Windows Programmer's Guide

LIBRARY AVIBRAV

DESCRIPTION 'MSVIDEO:Truevision Bravado Driver'

EXETYPE WINDOWS

PROTMODE

CODE MOVEABLE DISCARDABLE LOADONCALL
DATA FIXED SINGLE PRELOAD

SEGMENTS _TEXT FIXED PRELOAD
 INIT MOVEABLE DISCARDABLE PRELOAD
 VCAP MOVEABLE DISCARDABLE PRELOAD

HEAPSIZE 1024

EXPORTS WEP @1 RESIDENTNAME
 DriverProc @2 RESIDENTNAME

The actual ordinal values you assign to each exported function are not significant, though
each must be unique within the DLL.

For more information on the entry-point function listed in this example, see “Entry-Point
Function” later in this chapter.

The Module Name Line
The module name line should specify a unique module name for your device driver.
Windows will not load two different modules with the same module name. It's a good
idea to use the base of your driver filename since, in certain instances, LoadLibrary will
assume that to be your module name.

The Module Description Line
The module description line in the module-definition file should specify the type of
device the driver supports. For example, here's the module description line from the
module-definition file for the Bravado video capture driver:

DESCRIPTION 'MSVIDEO: Truevision Bravado Driver'

Use MSVIDEO followed by a colon (:) to indicate the type of device your driver
supports.

The Drivers option in the Control Panel uses these names to identify different types of
drivers and to create the entry in the [Drivers] section of SYSTEM.INI when installing a
driver.

Considerations for Interrupt-Driven Drivers
Most video capture device drivers will be interrupt-driven. For example, a video input
device interrupts when the device receives a new video frame. Driver code accessed
during an interrupt service routine must adhere to the guidelines discussed in the
following sections.

02/10/93

 3-7

Fixing Code and Data Segments
Any code segments or data segments a driver accesses at interrupt-time must be fixed
segments. For best overall system performance, you should minimize the amount of code
and data in fixed segments. To minimize the amount of fixed code, isolate all interrupt-
time code in a few source modules and put this code into a single fixed code segment.
Unless your driver has a large amount of data not accessed at interrupt time, use a single
fixed data segment.

The Bravado video capture driver is a medium-model DLL, using a single data segment
and multiple code segments. The following example fragment is from the module-
definition file for the Bravado device driver:

CODE MOVEABLE DISCARDABLE LOADONCALL
DATA FIXED SINGLE PRELOAD

SEGMENTS _TEXT FIXED PRELOAD
 INIT MOVEABLE DISCARDABLE PRELOAD
 VCAP MOVEABLE DISCARDABLE PRELOAD

This example fixes the data segment and the code segment named _TEXT. All other code
segments are moveable.

The code segment _TEXT is used as a safety measure. The compiler places code for
which you do not specify a segment in the _TEXT segment. This way any code that is
missed will be placed into a fixed segment preventing possible problems at interrupt time.
However, you should check your segmentation to ensure that only code that is required to
be FIXED goes into the FIXED code segment.

Allocating and Using Memory
You can allocate either local memory or global memory for use at interrupt time.

To allocate local memory for use at interrupt time, follow these steps:

1. Use LocalAlloc with the LMEM_FIXED flag to get a handle to the memory
block. (This assumes fixed data segments.)

2. Pass this handle to LocalLock to get a near pointer to the memory block.

Any global memory a driver uses at interrupt-time must be page-locked. To
allocate and page-lock global memory, follow these steps:
3. Use GlobalAlloc with the GMEM_MOVEABLE and GMEM_SHARE

flags to get a handle to the memory block.

4. Pass this handle to GlobalLock to get a far pointer to the memory block.

5. Pass the handle to GlobalPageLock to page-lock the memory block.

Calling Windows Functions at Interrupt Time
The only Windows functions a driver can call at interrupt time are PostMessage,
PostAppMessage, DriverCallback, timeGetSystemTime, timeGetTime,

02/10/93

2-8 Video for Windows Programmer's Guide

timeSetEvent, timeKillEvent, midiOutShortMsg, midiOutLongMsg, and
OutputDebugStr.

The Installable Driver Interface
The entry-point function, DriverProc, processes messages sent by the system to the
driver as the result of an application call to a low-level video capture function. For
example, when an application opens a video capture device, the system sends the
specified video capture device driver a DRV_OPEN message. The driver's DriverProc
function receives and processes this message.

Your driver should respond to all system messages. If supplemental
information is not provided for them in this chapter, use the definitions

provided in the Microsoft Windows Programmer's Reference.

An Example DriverProc Entry-Point Function
The video capture driver uses the DriverProc function for its entry-point. The following
example is extracted from the Bravado video capture driver.

LRESULT FAR PASCAL _loadds DriverProc(DWORD dwDriverID, HDRVR hDriver,
UINT uiMessage, LPARAM lParam1, LPARAM lParam2)
{
switch (uiMessage)
 {

 case DRV_LOAD:
 return (LRESULT)1L; //Device loaded successfully

 case DRV_FREE:
 return (LRESULT)1L; //Device freed successfully

 case DRV_OPEN:
 // lParam2 is NULL when the user configures
 // the device driver with the Drivers Option of the
 // Control Panel. If opened without an open structure,
 // return a dummy (non-zero) ID so OpenDriver will work.
 if (lParam2 == NULL)
 return BOGUS_DRIVER_ID;

 // Verify this open is for a video capture driver, and
 // not for an installable compressor/decompressor
 if (((LPVIDEO_OPEN_PARMS) lParam2) -> fccType != OPEN_TYPE_VCAP)
 return 0L;

 return (DWORD)(WORD)
 VideoOpen ((LPVIDEO_OPEN_PARMS) lParam2);

02/10/93

Note
:

 3-9

case DRV_CLOSE:
 //Device opened without an open structure
 if (dwDriverID == BOGUS_DRIVER_ID || dwDriverID == 0)
 return 1L; // Device closed

 //Close device if termination routine executed successfully
 return ((VideoClose((PCHANNEL)dwDriverID)
 == DV_ERR_OK) ? 1L : 0);

case DRV_ENABLE:
 // Enable the driver: initialize hardware, hook
 // interrupts, allocate DMA buffer, etc.
 return (LRESULT)1L;

case DRV_DISABLE:
 //Disable the driver: free DMA buffer, unhook
 //interrupts, reset hardware, etc.
 return (LRESULT)1L;

case DRV_QUERYCONFIGURE:
 return (LRESULT)1L; // Driver supports configuration

case DRV_CONFIGURE:
 // The Drivers option of the Control Panel sends this
 // message to display a dialog box that lets the user configure
 // the driver. For example, set the port base and interrupt.
 return (LRESULT)Config((HWND)lParam1, ghModule);

case DRV_INSTALL:
 return (LRESULT)DRV_OK; //Driver installed OK

case DRV_REMOVE:
 // The driver is being removed from the installed drivers list.
 // The driver should remove its .INI section, etc.
 ConfigRemove();
 return (LRESULT)DRV_OK; //Driver removed OK

 .
 .
 .

02/10/93

2-10 Video for Windows Programmer's Guide

 default:
 if (dwDriverID == BOGUS_DRIVER_ID || dwDriverID == 0)
 return DefDriverProc(dwDriverID, hDriver, uiMessage,
 lParam1, lParam2);

 // Process video capture driver specific messages
 return VideoProcessMessage((PCHANNEL)dwDriverID,
 uiMessage, lParam1, lParam2);
 }
}

Handling the DRV_OPEN and DRV_CLOSE
Messages
Like other installable drivers, client applications must open a video capture device before
using it and close it when finished using it, so the device will be available to other
applications. When a driver receives an open request, it returns a value that the system
will use for dwDriverID sent with subsequent messages. When your device driver
receives other messages, it can use this value to identify instance data needed for
operation. Drivers can use the instance data for information related to the client that
opened a device.

It's up to you to decide if your device driver will support more than one client
simultaneously. If you do this, though, remember to check the dwDriverID parameter to
determine which channel is being accessed.

For DRV_OPEN, the lParam2 parameter contains a pointer to a VIDEO_OPEN_PARMS
data structure containing information about the open. This structure has the following
fields:

typedef struct {
 DWORD dwSize;
 FOURCC fccType;
 FOURCC fccComp;
 DWORD dwVersion;
 DWORD dwFlags;
 DWORD dwError;
} VIDEO_OPEN_PARMS;

The fccType field of this structure will contain the four character code 'vcap'. Because of
the four video capture channels, video capture drivers must examine the flags set in the
dwFlags field of the VIDEO_OPEN_PARMS data structure to determine the type of
channel being opened. Your driver should be prepared to open (and conversely, close) the
video channels in any order.

The following flags are defined for the video channels:

VIDEO_EXTERNALIN

An external input channel responsible for loading images into the frame
buffer.

02/10/93

 3-11

VIDEO_EXTERNALOUT

An external output channel responsible for displaying images in the frame
buffer to an external or system monitor, or to an overlay device.

VIDEO_IN

A video input channel responsible for transferring images from the frame
buffer to system memory. This might include a translation step or
reformatting of the image. For example, reformatting a 16-bit RGB image to
an 8 bit palette image.

VIDEO_OUT

A video output channel responsible for transferring images into the frame
buffer from the CPU. (The sample driver does not use this channel type.)

The dwVersion field specifies the version of the video capture command set used by
MSVIDEO.DLL. The version number lets your driver identify the command set to
determine its capabilities. For the initial release of the video capture command set, your
driver does not have to detect and adjust itself for multiple versions of the command set.
Future versions of your driver can use this value to enable new features that depend on
new capabilities of the video capture command set.

The dwSize field specifies the size of the VIDEO_OPEN_PARMS structure.

The fccComp field is unused.

The dwError field specifies an error value the driver might return to the client
application if it fails the open.

The following code fragment illustrates the routines the Bravado device driver uses to
handle the DRV_OPEN and DRV_CLOSE messages. This device driver supports only
one instance of each video channel.

PCHANNEL NEAR PASCAL VideoOpen(LPVIDEO_OPEN_PARMS lpOpenParms)
{
 PCHANNEL pChannel;
 DEVICE_INIT di;
 LPDWORD lpdwError = &lpOpenParms->dwError;
 DWORD dwFlags = lpOpenParms-> dwFlags;

 *lpdwError = DV_ERR_OK;

02/10/93

2-12 Video for Windows Programmer's Guide

 // Initialize hardware on first call
 if (!fDeviceInitialized) {

 // Get Port/IRQ/Base/etc. in INI file
 GetHardwareSettingsFromINI (&di);

 // Perform hardware initialization
 if (! HardwareInit (&di)) {
 *lpdwError = DV_ERR_NOTDETECTED;
 return NULL;
 }

 ConfigGetSettings(); // Get global hue, sat, channel, zoom

 .
 .
 .
 // Deleted code initializes hardware & sets remaining global values
 .
 .
 .
 }

 // Get instance memory. On exit this function assigns this value
 // to dwDeviceID. By using this value for dwDeviceID,
 // the device driver can easily retrieve the instance data
 // when it needs it to process subsequent messages.
 pChannel = (PCHANNEL)LocalAlloc (LPTR, sizeof(CHANNEL));
 if (pChannel == NULL)
 return (PCHANNEL) NULL;

 // make sure the channel is not already in use
 switch (dwFlags &
 (VIDEO_EXTERNALIN | VIDEO_EXTERNALOUT | VIDEO_IN | VIDEO_OUT)) {

 case VIDEO_EXTERNALIN:
 if(gwCaptureUsage >= MAX_CAPTURE_CHANNELS)
 goto error;
 gwCaptureUsage++;
 break;

 case VIDEO_EXTERNALOUT:
 if(gwDisplayUsage >= MAX_DISPLAY_CHANNELS)
 goto error;
 gwDisplayUsage++;
 break;

 case VIDEO_IN:
 if(gwVideoInUsage >= MAX_IN_CHANNELS)
 goto error;
 gwVideoInUsage++;
 break;

02/10/93

 3-13

 case VIDEO_OUT:
 if(gwVideoOutUsage >= MAX_OUT_CHANNELS)
 goto error;
 gwVideoOutUsage++;
 break;

 default:
 goto error;
 }

 // Now that the hardware is allocated initialize instance structure

 pChannel->fccType = OPEN_TYPE_VCAP;
 pChannel->dwOpenType =
 (dwFlags & (VIDEO_EXTERNALIN|VIDEO_EXTERNALOUT|VIDEO_IN|VIDEO_OUT));
 pChannel->dwOpenFlags = dwFlags;
 pChannel->lpVHdr = NULL;
 pChannel->dwError = 0L;

 gwDriverUsage++;
 return pChannel;

error:
 if (pChannel)
 LocalFree((HLOCAL)pChannel);

 *lpdwError = DV_ERR_ALLOCATED;
 return NULL;
}

The following example shows the function used to close the example video capture
device driver:

DWORD NEAR PASCAL VideoClose(PCHANNEL pChannel)
{
 // Decrement the channel open counters

 switch (pChannel-> dwOpenType) {

 case VIDEO_EXTERNALIN:
 gwCaptureUsage--;
 break;

 case VIDEO_EXTERNALOUT:
 gwDisplayUsage--;
 break;

02/10/93

2-14 Video for Windows Programmer's Guide

 case VIDEO_IN:
 // If started, or buffers in the queue,
 // return error and don't close
 if (gfVideoInStarted || lpVHdrFirst)
 return DV_ERR_STILLPLAYING;

 gwVideoInUsage--;
 break;

 case VIDEO_OUT:
 gwVideoOutUsage--;
 break;

 default:
 break;
 }

 gwDriverUsage--; // Overall driver useage count

 if (gwDriverUsage == 0) {
 HardwareFini (); // Shut down the device
 TransFini (); // Free the translation table
 FreeFrameBufferSelector (); // Free the frame buffer selector
 fDeviceInitialized = FALSE;
 }

 // Free the instance data
 LocalFree((HLOCAL)pChannel);

 return DV_ERR_OK;
}

Handling the DRV_ENABLE and DRV_DISABLE
Messages
The example DriverProc function calls the functions Enable and Disable to do the work
of enabling and disabling the driver. These functions are device dependent.

Generally, when a driver is enabled, you initialize the hardware, hook interrupts, allocate
any memory that you need, and set a flag to indicate the driver is enabled. The exact
sequence your device driver will follow is determined by the requirements and structure
of your device driver. For example, the Bravado device driver uses interrupts only for
streaming data. When enabled, it will hook its interrupts only if it was disabled while
streaming data.

If your driver has not been enabled by MMSYSTEM, or if it failed the enable process, the
driver should return MMSYSERR_NOTENABLED for any messages it receives from
client applications. When a driver is disabled, you free any memory that you allocated,
unhook interrupts, reset the hardware, and set a flag to indicate the driver is not enabled.

It's possible for a driver to receive a DRV_DISABLE message while it is in the process of
capturing data. For example, this can happen when the user switches to a MS-DOS

02/10/93

 3-15

application when Windows is running in standard mode. Video capture device drivers
should behave as if the driver were stopped with a DVM_STREAM_STOP message and
then restarted with a DVM_STREAM_START message when it receives a
DRV_DISABLE/DRV_ENABLE message pair.

Driver Configuration
Installable drivers can supply a configuration dialog box for users to access through the
Drivers option in the Control Panel. The Drivers option sends the DRV_CONFIGURE
message to your driver to display the dialog box.

The dialog box should display the name and version number of your device driver. If your
device driver supports different interrupt-level and port assignments, it should also
support user configuration through the Drivers option in the Control Panel.

Interrupt-level and port assignments, and any other hardware-related settings, can be
stored in a section with the same name as the driver in the user's SYSTEM.INI file. For
example, the following SYSTEM.INI section created by the Bravado example driver
specifies interrupt level 9 and memory base E:

[Bravado.drv]
Interrupt=9
MemoryBase=E

Alternatively, your driver might use its own INI file for this information.

Video Capture Driver Messages
This section gives the device driver specific messages for video capture device drivers.
See “Video Capture Device Driver Reference,” later in this chapter, for detailed
information on these messages.

Configuring the Channels of a Video Capture
Driver
In addition to the configuration dialog box displayed for the DRV_CONFIGURE
message, video capture drivers can display a dialog box for each channel. These dialog
boxes are the primary means of setting parameters in your device driver. The following
message requests that the device driver display a dialog box:

DVM_DIALOG

Displays a dialog box which controls a video channel.

When your device driver first gets this message, use the handle in lParam1 to determine
which channel is being configured. The Bravado example driver determines the channel

02/10/93

2-16 Video for Windows Programmer's Guide

from the flags used to open it. It saves these flags as part of its instance data created when
it was opened.

The dialog box displayed for each channel sets the characteristics for each channel. If a
channel does not support configuration, return DV_ERR_NOTSUPPORTED. The
following table suggests the contents of each dialog box:

Channel Dialog Box Description

VIDEO_EXTERNALIN Displays a dialog box which controls how video (either
analog or digital) is captured. The dialog box might set
attributes such as contrast and brightness.

VIDEO_EXTERNALO
UT

Displays a dialog box which controls how video is
displayed on a second monitor or video adapter such as
a video overlay card.

VIDEO_IN Displays a dialog box which controls how video is
transferred from the frame buffer.

VIDEO_OUT Displays a dialog box which controls how video is
transferred to the frame buffer.

When processing the DVM_DIALOG message, check lParam2 for the
VIDEO_DLG_QUERY flag prior to displaying the dialog box. If an application uses this
flag, it is only determining if a video channel supports a dialog box. For this flag, return
DV_ERR_OK if the video channel supports a dialog box. If not, return
DV_ERR_NOTSUPPORTED in response to the message.

The Bravado example driver uses the following function to handle the DVM_DIALOG
message (this function is called from the Bravado VideoProcessMessage function):

02/10/93

 3-17

DWORD NEAR PASCAL VideoDialog (DWORD dwOpenType, HWND hWndParent, DWORD dwFlags)
{

 switch (dwOpenType) {

 case VIDEO_EXTERNALIN:
 if (dwFlags & VIDEO_DLG_QUERY)
 return DV_ERR_OK; // Channel has a dialog box
 DialogBox(ghModule, MAKEINTRESOURCE(DLG_VIDEOSOURCE),
 (HWND)hWndParent, VideoSourceDlgProc);
 break;

 case VIDEO_IN:
 if (dwFlags & VIDEO_DLG_QUERY)
 return DV_ERR_OK; // Channel has a dialog box
 DialogBox(ghModule, MAKEINTRESOURCE(DLG_VIDEOFORMAT),
 (HWND)hWndParent, VideoFormatDlgProc);
 break;

 case VIDEO_OUT:
 return DV_ERR_NOTSUPPORTED; //Channel does not have a dialog box

 case VIDEO_EXTERNALOUT:
 if (dwFlags & VIDEO_DLG_QUERY)
 return DV_ERR_OK; // Channel has a dialog box
 DialogBox(ghModule, MAKEINTRESOURCE (DLG_VIDEODISPLAY),
 (HWND)hWndParent, VideoMonitorDlgProc);
 break;

 default:
 return DV_ERR_NOTSUPPORTED;
 }
 return DV_ERR_OK;
}

Video capture drivers might save the settings from these dialog boxes in the section
reserved for your device driver in the SYSTEM.INI file. Your driver should append this
information to the entries created for the DVR_CONFIGURE messages to this section.
For example, the example Bravado driver might have this section in the SYSTEM.INI
file:

[Bravado.drv]
Interrupt=9
MemoryBase=E
Hue=10
Saturation=6
InputChannel=2
Contrast=24

Alternatively, a device driver might implement its own method of storing configuration
information for each channel.

02/10/93

2-18 Video for Windows Programmer's Guide

Setting and Obtaining Video Capture Format
The video capture format globally defines the attributes of the images transferred from the
frame buffer with the video in channel. Attributes include image dimensions, color depth,
and the compression format of images transferred. Applications use the following
message to set or retrieve the format of the digitized image:

DVM_FORMAT

Assigns or obtains format information.

The calling application must modify this message with flags to indicate its purpose. Your
driver must examine the flags sent with the message to determine the proper response.
The flags are specified in lParam1. The following flags help define the meaning of the
messages:

VIDEO_CONFIGURE_QUERY

Determines if the driver supports the message.
VIDEO_CONFIGURE_QUERYSIZE

Requests the size of the format data structure.
VIDEO_CONFIGURE_SET

Indicates values are being sent to the driver.
VIDEO_CONFIGURE_GET

Indicates the application is interrogating the driver.

The VIDEO_CONFIGURE_GET or VIDEO_CONFIGURE_SET flag indicates if the
DVM_FORMAT message is being used to obtain the format or set the format. The
DVM_FORMAT message and these flags are sent to your driver when it is opened, and
when it is configured with DVM_DIALOG.

When an application opens your driver, it retrieves the initial driver format. (Video
capture drivers initially default to a format that efficiently uses the capabilities of the
video capture hardware or, if they have been previously configured, they restore the last
user specified configuration saved in a disk file.) If this format is acceptable, the
application continues its operations. If the format is not acceptable, the application will
either immediately close your driver or suggest a very limited format. If the limited
format is not acceptable to your driver, the application closes it. (Typically, applications
do not accept a format because they cannot allocate enough memory to capture video. A
limited format might free enough memory for operation.)

Applications also get the format when the user changes the format. (Users change the

02/10/93

 3-19

format with the VIDEO_IN channel dialog box displayed with the DVM_DIALOG
message.) In this case, applications get and retain a copy of the current format prior to
sending the DVM_DIALOG message. After the user exits from the DVM_DIALOG
dialog box, applications get the new format from your driver. If the application accepts
the new format, it uses the VIDEO_CONFIGURE_SET flag to return the format back to
your driver. (Your driver should verify that the application has not changed the format
information.) If the application does not accept the new format, it restores the format it
obtained prior to displaying the dialog box.

The DVM_FORMAT messages uses lParam2 to pass the format information. This
parameter contains a pointer to a VIDEOCONFIGPARMS structure. This structure has
the following fields:

typedef struct tag_video_configure_parms {
 LPDWORD lpdwReturn;
 LPVOID lpData1;
 DWORD dwSize1;
 LPVOID lpData2;
 DWORD dwSize2;
} VIDEOCONFIGPARMS;

The lpData1 field points to a BITMAPINFOHEADER data structure. The size of this
structure is specified in dwSize1.

Changing the format can affect overall dimensions of the active frame buffer as well as
bit depth and color space representation. Since changing between NTSC and PAL video
standards can also affect image dimensions, applications should request the current
format following display of the EXTERNAL_IN channel dialog box.

If an application just wants to know if your driver supports DVM_FORMAT, it sends the
VIDEO_CONFIGURE_QUERY flag with the message. (Using the
VIDEO_CONFIGURE_QUERY flag without VIDEO_CONFIGURE_GET or
VIDEO_CONFIGURE_SET is invalid.) Your device driver should return DV_ERR_OK
if it supports the message. Otherwise, it should return DV_ERR_NOTSUPPORTED.

If an application wants to determine the amount of memory it needs to allocate for the
format information, it sends the DVM_FORMAT message with the
VIDEO_CONFIGURE_GET and VIDEO_CONFIGURE_QUERYSIZE flags set. Your
driver should specify the format size in the lpdwReturn field of the
VIDEOCONFIGUREPARMS structure.

Setting and Obtaining the Video Source and
Destination Rectangles
Video capture drivers might support a source rectangle to specify a portion of an image
that is digitized or transferred to the display. External in ports use the source rectangle to
specify the portion of the analog image digitized. External out ports use the source
rectangle to specify the portion of frame buffer shown on the external output.

Similarly, video capture drivers might support a destination rectangle to specify the

02/10/93

2-20 Video for Windows Programmer's Guide

portion of the frame buffer or screen used to receive the image. External in ports can use a
destination rectangle to specify the portion of the frame buffer used for the digitized video
input. External out ports can use the rectangle to specify the client rectangle on the
display.

The following messages are used to set and obtain the video source and destination
rectangles:

DVM_DST_RECT

Sets and retrieves the destination rectangle used by video devices.
DVM_SRC_RECT

Sets and retrieves the source rectangle used by video devices.

The calling application must modify these messages with flags to indicate their exact
meaning. Your driver must examine the flags sent with the messages to determine the
proper response. The flags are specified in lParam2. The following flags define the
meaning of the DVM_DST_RECT and DVM_SRC_RECT messages:

VIDEO_CONFIGURE_SET

Indicates values are being sent to the driver.
VIDEO_CONFIGURE_GET

Indicates the application is interrogating the driver.
VIDEO_CONFIGURE_QUERY

Determines if the driver supports the message.

The VIDEO_CONFIGURE_SET flag indicates the application is setting a source or
destination rectangle. The rectangle coordinates are specified in a RECT structure pointed
to by lParam1.

If an application sets a source or destination rectangle for an external out channel, your
driver will normally receive a series of messages. For these channels, applications
normally send both DVM_SRC_RECT and DVM_DST_RECT to your driver to properly
set the rectangles. The application follows these messages with DVM_UPDATE. Video
overlay devices should paint their key color in response to DVM_UPDATE.

Applications use VIDEO_CONFIGURE_GET to determine the coordinates of the source
and destination rectangles. Applications use additional flags with
VIDEO_CONFIGURE_GET to indicate if they want the coordinates of the rectangle
currently defined, the maximum size of the rectangle, or the minimum size of the
rectangle. The following flags are defined for these operations:

02/10/93

 3-21

VIDEO_CONFIGURE_MIN

Used with VIDEO_CONFIGURE_GET to determine the minimum
rectangle supported.

VIDEO_CONFIGURE_MAX

Used with VIDEO_CONFIGURE_GET to determine the maximum
rectangle supported.

VIDEO_CONFIGURE_CURRENT

Used with VIDEO_CONFIGURE_GET to determine the current rectangle.

Your driver should return the coordinates for the appropriate rectangle in the RECT
structure pointed to by lParam1.

An application uses VIDEO_CONFIGURE_QUERY to determine if your driver supports
VIDEO_CONFIGURE_QUERY or VIDEO_CONFIGURE_SET. (The
VIDEO_CONFIGURE_QUERY flag without VIDEO_CONFIGURE_GET or
VIDEO_CONFIGURE_SET is invalid.) Your device driver should return DV_ERR_OK
if it supports the flag. Otherwise, it should return DV_ERR_NOTSUPPORTED.

Determining Channel Capabilities
Channel capabilities include overlaying video, scaling of images with the source and
destination rectangles, and clipping of images with the source and destination rectangles.
The following message retrieves the channel capabilities of a driver:

DVM_GET_CHANNEL_CAPS

Return the capabilities of a channel to the application.

Applications use DVM_GET_CHANNEL_CAPS to obtain information about the
capabilities of a channel. The lParam1 parameter specifies a far pointer to a

CHANNEL_CAPS data structure and the lParam2 parameter specifies its size. The
CHANNEL_CAPS structure has the following fields:

02/10/93

2-22 Video for Windows Programmer's Guide

typedef struct channel_caps_tag {
 DWORD dwFlags;
 DWORD dwSrcRectXMod;
 DWORD dwSrcRectYMod;
 DWORD dwSrcRectWidthMod;
 DWORD dwSrcRectHeightMod;
 DWORD dwDstRectXMod;
 DWORD dwDstRectYMod;
 DWORD dwDstRectWidthMod;
 DWORD dwDstRectHeightMod;
} CHANNEL_CAPS;

Your driver should use the dwFlags field to return flags indicating its capabilities for
overlaying video, and clipping and scaling images with the source and destination
rectangles. The following flags are defined:

VCAPS_OVERLAY

Indicates the channel is capable of overlay. This flag is used only for
EXTERNAL_OUT channels.

VCAPS_SRC_CAN_CLIP

Indicates that the source rectangle can be set smaller than the maximum
dimensions.

VCAPS_DST_CAN_CLIP

Indicates that the destination rectangle can be set smaller than the maximum
dimensions.

VCAPS_CAN_SCALE

Indicates that the source rectangle can be a different size than the
destination rectangle.

If your driver supports changing the size and position of the source rectangle, it should
indicate the finest granularity used for changes to the rectangle in the dwSrcRectXMod,
dwSrcRectYMod, dwSrcRectWidthMod, and dwSrcRectHeightMod fields.

If your driver supports changing the size and position of the destination rectangle, it
should indicate the finest granularity used for changes to the rectangle in the
dwDstRectXMod, dwDstRectYMod, dwDstRectWidthMod, and
dwDstRectHeightMod fields. If a channel supports arbitrarily positioned rectangles, with
arbitrary sizes, the values above should all be set to 1.

Your driver returns DV_ERR_OK if the message was processed successfully. It returns
DV_ERR_NOTSUPPORTED if the message is not supported.

02/10/93

 3-23

Setting and Obtaining a Video Capture Palette
Applications can set and retrieve the palette used with captured video. This gives
applications the ability to control and modify the palette used for video sequences. The
palette messages apply only to the video in and video out channels. The following
messages apply to the video capture palette:

DVM_PALETTE

Assigns or obtains palette information.
DVM_PALETTERGB555

Associates an RGB555 palette with a video device channel.

The calling application must modify these messages with flags to indicate their purpose.
Your driver must examine the flags sent with the messages to determine the proper
response. The flags are specified in lParam1. The following flags define the meaning of
the messages:

VIDEO_CONFIGURE_SET

Indicates values are being sent to the driver.
VIDEO_CONFIGURE_GET

Indicates the application is interrogating the driver.
VIDEO_CONFIGURE_QUERY

Determines if the driver supports the message.
VIDEO_CONFIGURE_QUERYSIZE

Requests the size of the palette data structure.

The VIDEO_CONFIGURE_GET or VIDEO_CONFIGURE_SET flag modifies the
DVM_PALETTE message to indicate that the driver should return the current palette or
that the driver should set a new palette. The lParam2 parameter used with
DVM_PALETTE contains a pointer to a VIDEOCONFIGPARMS data structure. This
structure has the following fields:

typedef struct tag_video_configure_parms {
 LPDWORD lpdwReturn;
 LPVOID lpData1;
 DWORD dwSize1;
 LPVOID lpData2;
 DWORD dwSize2;
} VIDEOCONFIGPARMS;

If the VIDEO_CONFIGURE_SET flag is used with DVM_PALETTE, the lpData1 field

02/10/93

2-24 Video for Windows Programmer's Guide

points to a LOGPALETTE structure containing the new palette. The size of the memory
allocated for the LOGPALETTE structure is specified in the dwSize1 field.

If the VIDEO_CONFIGURE_GET flag is used with DVM_PALETTE, the lpData1 field
points to a LOGPALETTE structure used to retrieve the palette. The size of the memory
allocated for the LOGPALETTE structure is specified in the dwSize1 field. Your driver
should transfer the palette to the structure indicated by lpData1.

If an application just wants to determine the size of the palette, it sends the
DVM_PALETTE message with both the VIDEO_CONFIGURE_GET and
VIDEO_CONFIGURE_QUERYSIZE flags. Your driver should return the palette size in
the lpdwReturn field.

If an application just wants to know if your driver supports DVM_PALETTE and its
flags, it also sets the VIDEO_CONFIGURE_QUERY flag with
VIDEO_CONFIGURE_GET or VIDEO_CONFIGURE_SET. (The
VIDEO_CONFIGURE_QUERY flag without VIDEO_CONFIGURE_GET or
VIDEO_CONFIGURE_SET is invalid.) Your device driver should return DV_ERR_OK
if it supports the DVM_PALETTE message and the operation indicated with the set or get
flag. Otherwise, it should return DV_ERR_NOTSUPPORTED.

DVM_PALETTE does not use the lpData2 and dwSize2 fields.

Applications use the DVM_PALETTERGB555 message to associate an RGB555 palette
with a video device channel. Only the VIDEO_CONFIGURE_SET and
VIDEO_CONFIGURE_QUERY flags apply to this message. The
VIDEO_CONFIGURE_SET flag modifies the DVM_PALETTERGB555 message to
indicate that the driver should set a new palette. The lParam2 parameter used with
DVM_PALETTERGB555 contains a pointer to a VIDEOCONFIGPARMS data
structure.

When setting the palette, the lpData1 field points to a LOGPALETTE structure
containing the new palette. The lpData2 field points to a 32 kilobyte RGB555 translation
table. The device driver uses this table to translate the RGB555 triples into palette colors
when capturing data in an 8 bit palette mode. The dwSize1 and dwSize2 fields specify the
size of the structures indicated by lpData1 and lpData2.

If an application just wants to know if your driver supports DVM_PALETTERGB555, it
sends the VIDEO_CONFIGURE_QUERY flag with VIDEO_CONFIGURE_SET. (The
VIDEO_CONFIGURE_QUERY flag without VIDEO_CONFIGURE_SET is invalid.)
Your device driver should return DV_ERR_OK if it supports the
DVM_PALETTERGB555 message. Otherwise, it should return
DV_ERR_NOTSUPPORTED.

The following example shows how the Bravado device driver handles the
DVM_PALETTE message. The structure for DVM_PALETTERGB555 is similar.

02/10/93

 3-25

DWORD NEAR PASCAL VideoConfigureMessage(PCHANNEL pChannel, UINT msg, LONG lParam1, LONG
lParam2)
{
 LPVIDEOCONFIGPARMS lpcp;
 LPDWORD lpdwReturn; // Return parameter from configure
 LPVOID lpData1; // Pointer to data1
 DWORD dwSize1; // size of data buffer1
 LPVOID lpData2; // Pointer to data2
 DWORD dwSize2; // size of data buffer2
 DWORD dwFlags;

 if (pChannel-> dwOpenType != VIDEO_IN)
 return DV_ERR_NOTSUPPORTED;

 dwFlags = lParam1;

 lpcp = (LPVIDEOCONFIGPARMS) lParam2;
 lpdwReturn = lpcp-> lpdwReturn;
 lpData1 = lpcp-> lpData1;
 dwSize1 = lpcp-> dwSize1;
 lpData2 = lpcp-> lpData2;
 dwSize2 = lpcp-> dwSize2;

switch (msg) {

 case DVM_PALETTE:

 switch (dwFlags) {

 case (VIDEO_CONFIGURE_QUERY | VIDEO_CONFIGURE_SET):
 case (VIDEO_CONFIGURE_QUERY | VIDEO_CONFIGURE_GET):
 return DV_ERR_OK;

 case VIDEO_CONFIGURE_QUERYSIZE:
 case (VIDEO_CONFIGURE_QUERYSIZE | VIDEO_CONFIGURE_GET):
 *lpdwReturn = sizeof(LOGPALETTE) +
 (palCurrent.palNumEntries-1) *
 sizeof(PALETTEENTRY);
 break;

 case VIDEO_CONFIGURE_SET:
 case (VIDEO_CONFIGURE_SET | VIDEO_CONFIGURE_CURRENT):
 if (!lpData1) // points to a LOGPALETTE structure.
 return DV_ERR_PARAM1;
 return (SetDestPalette ((LPLOGPALETTE) lpData1,
 (LPBYTE) NULL));
 break;

 case VIDEO_CONFIGURE_GET:
 case (VIDEO_CONFIGURE_GET | VIDEO_CONFIGURE_CURRENT):
 return (GetDestPalette ((LPLOGPALETTE) lpData1,
 (WORD) dwSize1));
 break;

02/10/93

2-26 Video for Windows Programmer's Guide

 default:
 return DV_ERR_NOTSUPPORTED;

 } // end of DVM_PALETTE switch

 return DV_ERR_OK;
 .
 .
 .

 default: // Not a message that we understand
 return DV_ERR_NOTSUPPORTED;

 } // end of message switch

 return DV_ERR_NOTSUPPORTED;
}

Obtaining the Device Driver Version
The following message lets an application interrogate your device driver to determine the
version of the video capture command set.

DVM_GETVIDEOAPIVER

Obtains the version of the video capture command set.

Your driver should return VIDEOAPIVERSION in the DWORD buffer that lParam1
points to. This message does not have any flags associated with it.

Transferring Data From the Frame Buffer
The following message lets an application obtain a single frame from the frame buffer:

DVM_FRAME

Obtains a single frame from the frame buffer.

This message is the basis for the simplest form of video capture. Applications might use
this to record animated sequences created frame-by-frame or to capture a single still
image such as a photograph. The following sequence of operations occurs when a client
application requests the transfer of a single video frame:

1. The client allocates the memory for the data buffer.

2. The client sets a pointer to the empty data buffer in the VIDEOHDR data
structure.

02/10/93

 3-27

3. The client sends the device driver a pointer to the VIDEOHDR data
structure with the videoFrame function. (The destination channel must be a
VIDEO_IN channel.)

4. When the device driver receives the DVM_FRAME messages that
Windows sends in response to videoFrame, it fills the data buffer with
information from the frame buffer and updates the VIDEOHDR data
structure. Note that the buffer might not have been prepared.

5. When the device driver has filled a data buffer, it returns from the
DVM_FRAME message. This returns control back to the client.

6. After the client has finished with the data, it frees the memory used for the
data.

Streaming Video Capture
Video capture device drivers use the DVM_STREAM messages sent to a VIDEO_IN
channel to stream full motion video to the client application. Your device driver will use
the following messages while it is streaming video:

DVM_STREAM_INIT

Initializes a video input stream.
DVM_STREAM_PREPAREHEADER

Requests that the driver prepare a data buffer for input.
DVM_STREAM_ADDBUFFER

Adds a buffer to the video input stream queue.
DVM_STREAM_START

Begins streaming video input.
DVM_STREAM_STOP

Ends video input streaming.
DVM_STREAM_UNPREPAREHEADER

Requests that a driver clean up the preparation previously done on a data
buffer.

DVM_STREAM_FINI

Closes and deallocates a video stream.

02/10/93

2-28 Video for Windows Programmer's Guide

The Data Transfer Model For Streaming Video
Input
The data transfer model for streaming video input is similar to the model defined for the
waveform device drivers. If you have worked with the waveform device drivers, many of
the concepts used there will be usable with video capture device drivers.

The following sequence of operations occurs when streaming video data between a video
capture device driver and a client application:

1. The client allocates the memory buffers for the video data.

2. The client initializes the data stream (DVM_STREAM_INIT).

3. The client requests that the driver prepare the data buffers
(DVM_STREAM_PREPAREHEADER).

4. The client sends the empty data buffers to the driver
(DVM_STREAM_ADDBUFFER).

5. The driver puts the data buffers in its input queue.

6. When the streaming operation begins with DVM_STREAM_START, the
driver fills a data buffer and sets the done bit for the data buffer. The driver
will then release the buffer from its queue and proceed to fill the next
buffer.

7. When the client is ready for data, it uses the done bit or callback to see if the
data in the buffer is ready.

8. After the client empties the buffer, it resets the done bit and sends the empty
buffer back to the driver for it to add to its queue
(DVM_STREAM_ADDBUFFER).

Once the stream starts, the client application and the video capture driver do not
communicate directly. The video capture driver fills the data buffers at the rate specified
by the client application using the frame rate information provided with the
DVM_STREAM_INIT message. It fills the buffers without waiting for any
synchronization signal from the application as long as buffers are available and it is not
paused or stopped by the application. The buffers are filled in the order that the driver
receives them from the application. (If the device driver runs out of buffers, it should set
an error flag. A client application can use the DVM_STREAM_GETERROR message to
test for this condition.)

The client application expects the buffers back in the order that it sends them to the
device driver. When it is ready for more data, it will check the done bit of the next buffer
it expects to receive from the device driver. If the done bit is set, the application continues
operation with that buffer. If the done bit is not set, the application will periodically check
the done bit while it waits for the buffer.

02/10/93

 3-29

Streaming continues until it is stopped by the application. The following sequence of
operations occurs when the application has finished capturing data:

· When the client stops the streaming operation with DVM_STREAM_STOP,
the driver stops filling buffers.

· If the client wants to restart streaming, it sends DVM_STREAM_START. If
the client is finished streaming, it requests that the driver unprepare the data
buffers (DVM_STREAM_UNPREPAREHEADER).

· The client releases the data stream (DVM_STREAM_FINI) and frees the
memory allocated for the video data.

Initializing the Data Stream
The DVM_STREAM_INIT message initializes a video device for data streaming. This
message must precede all other streaming messages for a channel.

The lParam1 parameter of DVM_STREAM_INIT specifies a far pointer to a
VIDEO_STREAM_INIT_PARMS structure and the lParam2 specifies its size in bytes.
The VIDEO_STREAM_INIT_PARMS structure has the following fields:

typedef struct tag_video_stream_init_parms {
 DWORD dwMicroSecPerFrame;
 DWORD dwCallback;
 DWORD dwCallbackInst;
 DWORD dwFlags;
 DWORD hVideo;
} VIDEO_STREAM_INIT_PARMS;

The different channels handle the message and data structure in different ways.

For external in channels, DVM_STREAM_INIT enables capture of images into the frame
buffer. External in channels should expect this message at any time. They can ignore the
dwMicroSecPerFrame, dwCallback, and dwCallbackInst fields. The dwFlags field
must contain the VIDEO_ALLOWSYNC flag for synchronous devices.

For video in channels, DVM_STREAM_INIT sets the capture rate and callback
information. The dwMicroSecPerFrame field specifies the number of microseconds
between successive capture frames. The dwCallback field contains the address of a
callback function or the handle to a window called during video streaming. (This
parameter is set to NULL if a callback function or window is not used.) The callback
procedure processes any messages related to the progress of recording. If a callback
function address is specified, dwFlags is set to CALLBACK_FUNCTION. If the
application has any data to pass to the callback function, it specifies the data in
dwCallbackInst. If a callback window handle is specified, dwFlags is set to
CALLBACK_WINDOW. Drivers can also use DriverCallback to send a message to a
window or callback function. For more information on DriverCallback, see the Windows
Multimedia Device Adaptation Guide. For more information on using the video capture
callback, see the “Video Capture Device Driver Reference.”

For external out channels, DVM_STREAM_INIT enables overlay display. External out
channels should expect this message at any time. They can ignore the

02/10/93

2-30 Video for Windows Programmer's Guide

dwMicroSecPerFrame, dwCallback, and dwCallbackInst fields. The dwFlags field
contains any flags that might affect the external out channel.

All channels return DV_ERR_OK if the message was processed successfully. All
channels should return DV_ERR_ALLOCATED if the channel is already allocated or
DV_ERR_NOMEM if they are unable to allocate or lock memory.

Preparing Data Buffers
Because video data buffers must be accessed at interrupt time, the memory allocated for
them is subject to the requirements mentioned previously in “Considerations for Interrupt-
Driven Drivers.” Rather than have the client application prepare the memory before
sending data blocks to the driver, the client requests that the driver do the preparation.

Most drivers can respond to the DVM_STREAM_PREPAREHEADER and
DVM_STREAM_UNPREPAREHEADER messages) by returning a
DV_ERR_UNSUPPORTED error. When your driver returns
DV_ERR_UNSUPPORTED, the system will perform the necessary preparation on the
data block. This consists of page locking the header and data sections so the driver can
access them at interrupt time.

If your device driver does not need the data to be page locked (for example, if you
immediately copy the data to an on-card buffer) or if you have additional preparation to
do to the buffer, you might respond to these messages yourself instead of having the
system handle them. You should respond to both DVM_STREAM_PREPAREHEADER
and DVM_STREAM_UNPREPAREHEADER, or to neither.

Starting and Stopping Streaming
DVM_STREAM_START starts a video stream. For video in channels, this message
begins transferring the contents of the frame buffer to the system supplied buffers. In
response to DVM_STREAM_START, your driver should enable the interrupts it needs
and begin capturing the images and copying them to the application supplied buffers.

DVM_STREAM_STOP stops a video stream. When a video in channel receives this
message, it stops filling buffers and retains any empty buffers remaining in the queue.
Your driver can disable any interrupts it needs to capture data, however, it should be
prepared to receive the DVM_STREAM_START message to resume capturing data. If
data capture has not started, this message has no effect and the device driver returns
DV_ERR_OK.

Neither DVM_STREAM_START nor DVM_STEAM_STOP use lParam1 or lParam2.
Your driver should return DV_ERR_OK if it processed the message successfully. It
should return DV_ERR_NOTSUPPORTED if it does not support the message.

Ending Capture
The DVM_STREAM_FINI message terminates data streaming. This should always be
the last streaming message received by a channel.

02/10/93

 3-31

For external in channels, DVM_STREAM_FINI disables capture of images into the
frame buffer. External in channels should expect this message at any time.
DVM_STREAM_FINI might not have a corresponding DVM_STREAM_INIT message.

For video in channels, DVM_STREAM_INIT finishes data streaming process. Your
driver can free any resources that it used to capture data.

For external out channels, DVM_STREAM_INIT disables overlay display. External out
channels should expect this message at any time. DVM_STREAM_FINI might not have a
corresponding DVM_STREAM_INIT message.

All channels return DV_ERR_OK if the message was processed successfully. The video
in channels should return DV_ERR_STILLPLAYING if there are still buffers in its
queue.

Additional Stream Messages
The following messages are used in support of data streaming:

DVM_STREAM_RESET

Stops video input streaming and returns all data buffers to the client
application.

DVM_STREAM_GETERROR

Returns the error encountered while streaming data.
DVM_STREAM_GETPOSITION

Requests the current position in the video stream.

The client application uses DVM_STREAM_RESET to stop data streaming and release
all buffers. When your driver gets this message it should return to the state set with
DVM_STREAM_INIT.

The client application uses DVM_STREAM_GETERROR to obtain the error status of a
channel. The lParam1 and lParam2 parameters point to two DWORDS your driver
should use to return error information. Fill the DWORD specified by lParam1 with the
value of the most recent error. Typically, the error encountered is
DV_ERR_NO_BUFFERS. If your driver has not encountered an error or if it receives
this message when a stream is not initialized, set the DWORD to DV_ERR_OK. Fill the
DWORD specified by lParam2 with the number of frames dropped because of the error.

After processing this message your driver should reset its error value and count of frames
dropped. Drivers that do not have access to interrupts might use this message to trigger
buffer processing.

Return DV_ERR_OK if your driver processes the message without an error. If your
driver does not support this message, return DV_ERR_NOTSUPPORTED.

02/10/93

2-32 Video for Windows Programmer's Guide

Applications use the DVM_STREAM_GETPOSITION message to retrieve the current
position of the video in stream. The lParam1 parameter specifies a far pointer to a
MMTIME data structure and the lParam2 parameter specifies its size. The MMTIME
structure has the following fields:

typedef struct mmtime_tag {
 UINT wType;
 union {
 DWORD ms;
 DWORD sample;
 DWORD cb;
 struct {
 BYTE hour;
 BYTE min;
 BYTE sec;
 BYTE frame;
 BYTE fps;
 BYTE dummy;
 } smpte;
 struct {
 DWORD songptrpos;
 } midi;
 } u;
} MMTIME;

When your device gets DVM_STREAM_POSITION, it should check the wtype field. If
your driver does not support the format specified, it specifies its current time format in the
field. The application checks the format specified in this field when the message returns.

Video capture drivers typically return time in the millisecond format. Normally, your
driver sets the position to zero when streaming starts with DVM_STREAM_START.

Your driver should returns DV_ERR_OK if it processed the message successfully. It can
return DV_ERR_PARM1 if the data structure supplied for the format has invalid data or
DV_ERR_SIZEFIELD if the data structure is too small.

Video Capture Device Driver Reference
This section is an alphabetic reference to the messages and data structures provided by
Windows for use by video capture device drivers. There are separate sections for
messages and data structures. The messages and data structures are defined in
MSVIDDRV.H and MSVIDEO.H.

Video Capture Device Driver Message Reference
Windows communicates with video capture device drivers through messages sent to the
driver. The driver processes these messages with its DriverProc entry-point function.

This section contains an alphabetical list of the video capture messages that can be
received and sent by video capture device drivers. Each message name contains a prefix,
identifying the type of the message.

A message consists of three parts: a message number and two DWORD parameters.

02/10/93

 3-33

Message numbers are identified by predefined message names. The two DWORD
parameters contain message-dependent values.

Message Summary
The following messages are used for error handling:

DVM_GETERRORTEXT

This message retrieves a string which contains the description of an error.
DVM_STREAM_GETERROR

This message returns the last error encountered by a channel.

The following messages are used for configuring the device driver and obtaining
information from it:

DVM_DIALOG

This message displays a dialog box which controls video parameters for a
channel.

DVM_DST_RECT

This message sets and retrieves the destination rectangle used by a video
device channel.

DVM_FORMAT

This message is for configuring the format of the video device channel.
DVM_GET_CHANNEL_CAPS

This message is used to return the capabilities of a channel to the
application.

DVM_GETVIDEOAPIVER

This message returns the version of the video API used by the driver.
DVM_PALETTE

This message sets and retrieves a logical palette used by a video device
channel.

DVM_PALETTERGB555

This message associates an RGB555 palette with a video device channel.

02/10/93

2-34 Video for Windows Programmer's Guide

DVM_SRC_RECT

This message sets and retrieves the source rectangle used by a video device
channel.

The following messages are used for capturing data:

DVM_FRAME

This message processes a single frame from the video device.
DVM_STREAM_ADDBUFFER

This message sends an input buffer to a video device.
DVM_STREAM_FINI

This message terminates streaming on a video channel.
DVM_STREAM_GETPOSITION

This message retrieves the current position of the stream.
DVM_STREAM_INIT

This message initializes a video device for streaming.
DVM_STREAM_PREPAREHEADER

This message prepares an input buffer for video streaming.
DVM_STREAM_RESET

This message stops input of a video stream and resets the current position to
0.

DVM_STREAM_START

This message starts a video stream.
DVM_STREAM_STOP

This message stops a video stream.
DVM_STREAM_UNPREPAREHEADER

This message cleans up the preparation performed by
DVM_STREAM_PREPAREHEADER.

DVM_UPDATE

This message is used with a EXTERNAL_OUT channel to indicate that the
display needs to be updated.

02/10/93

 3-35

The following messages are used with video callback functions:

MM_DRVM_CLOSE

This message is sent to a video callback function or window when a video
channel is closed.

MM_DRVM_DATA

This message is sent to a video callback function or window when the
specified buffer is being returned to the application.

MM_DRVM_ERROR

This message is sent to a video callback function or window when an error
has occurred.

MM_DRVM_OPEN

This message is sent to a video callback function or window when a video
channel is opened.

Video Capture Device Driver Messages
This section contains an alphabetical list of the video capture messages that can be
received and sent by video capture device drivers. Each message name contains a prefix,
identifying the type of the message.

A message consists of three parts: a message number and two DWORD parameters.
Message numbers are identified by predefined message names. The two DWORD
parameters contain message-dependent values.

DVM_DIALOG
This message displays a dialog box for setting the video parameters of a channel.

DWORD dwParam1

Specifies the handle to the parent window.
DWORD dwFlags

Specifies flags for the dialog box. The following flag is defined:

VIDEO_DLG_QUERY
If this flag is set, the driver immediately returns DV_ERR_OK if it
supplies a dialog box for the channel, or DV_ERR_NOTSUPPORTED if
it does not.

02/10/93

Parameters

2-36 Video for Windows Programmer's Guide

Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV_ERR_INVALHANDLE

Specified device handle is invalid.
DV_ERR_NOTSUPPORTED

Message is not supported.
Typically, this dialog box lets the user configure a video channel. For example, a
VIDEO_IN channel might supply a dialog box to let the user select image dimensions and
bit depth. Each channel type (VIDEO_IN, VIDEO_OUT, VIDEO_EXTERNALIN, and
VIDEO_EXTERNALOUT) can have a unique configuration dialog box.

DVM_DST_RECT
This message sets and retrieves the destination rectangle used by a video device channel.

LPRECT lpDstRect

A far pointer to a RECT structure.
DWORD dwFlags

Specifies flags that indicate the type of transfer requested. Either the
VIDEO_CONFIGURE_SET or the VIDEO_CONFIGURE_GET flag must
be set, specifying the direction of the transfer. The following flags are
defined:

VIDEO_CONFIGURE_SET
Send a rectangle to the device driver.

VIDEO_CONFIGURE_GET
Get the current rectangle from the device driver.

VIDEO_CONFIGURE_MIN
Get the minimum destination rectangle from the device driver.

VIDEO_CONFIGURE_MAX
Get the maximum destination rectangle from the device driver.

VIDEO_CONFIGURE_CURRENT
Get or set the current destination rectangle.

VIDEO_CONFIGURE_QUERY
This flag is used to query the device driver to determine if it supports the
message.

Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

02/10/93

Return Value

Comments

Parameters

Return Value

 3-37

DV_ERR_NOTSUPPORTED

Message is not supported.
The use of the destination rectangle for a channel depends on the channel type. For the
VIDEO_EXTERNALIN channel, the destination rectangle specifies the location in the
frame buffer used to digitize the image. This rectangle is specified in pixel coordinates.

For the VIDEO_EXTERNALOUT channel, the destination rectangle specifies the
location used to display the overlay image. This rectangle is given in Windows screen
coordinates.

For the VIDEO_IN and VIDEO_OUT channels, the destination rectangle is currently
undefined.

DVM_FORMAT
This message is used for configuring the format of the VIDEO_IN channel.

DWORD dwFlags

Specifies flags to indicate the type of format transfer requested. Either the
VIDEO_CONFIGURE_SET or the VIDEO_CONFIGURE_GET flag must
be set, specifying the direction of the transfer. The following flags are
defined:

VIDEO_CONFIGURE_SET
Set the current format.

VIDEO_CONFIGURE_GET
Get the current format.

VIDEO_CONFIGURE_QUERY
Queries the driver whether it supports the message.

VIDEO_CONFIGURE_QUERYSIZE
Returns the size in bytes of the format in lpdwReturn. This flag must be
used with VIDEO_CONFIGURE_GET.

LPVIDEOCONFIGPARMS lpVConfigParms

Specifies a far pointer to a VIDEOCONFIGPARMS structure. This
structure has the following fields:

lpdwReturn
Specifies a far pointer to a DWORD. If the
VIDEO_CONFIGURE_QUERYSIZE flag is used, the driver fills this
field with the size (in bytes) of the BITMAPINFOHEADER data
structure.

lpData1

02/10/93

Comments

Parameters

2-38 Video for Windows Programmer's Guide

Specifies a far pointer to a BITMAPINFOHEADER data structure.
dwSize1

Specifies the size in bytes of the BITMAPINFOHEADER data
structure.

lpData2
Not used.

dwSize2
Not used.

Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.
The DVM_FORMAT message globally defines the attributes of the frame buffer. This
includes dimensions, color depth, and compression of images transferred with
DVM_FRAME and buffers transferred during streaming capture. Changing the format
may affect overall dimensions of the active frame buffer as well as bit depth and color
space representation. Since changing between NTSC and PAL video standards can also
affect image dimensions, applications should request the current format following display
of the VIDEO_EXTERNALIN channel dialog box.

DVM_FRAME
This message transfers a single frame from the video device.

DWORD dwParam1

Specifies a far pointer to a VIDEOHDR structure identifying the buffer.
DWORD dwParam2

Contains the size of the VIDEOHDR structure.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_SIZEFIELD

Specified field size is too small.
This message returns immediately after transferring the frame. For a VIDEO_IN channel,
this message transfers an image from the hardware frame buffer to the buffer specified in
the VIDEOHDR. For a VIDEO_OUT channel, this message transfers an image from the
buffer specified in the VIDEOHDR to the hardware frame buffer.

02/10/93

Return Value

Comments

Parameters

Return Value

Comments

 3-39

DVM_GET_CHANNEL_CAPS
This message is used to return the capabilities of a channel to the application.

LPCHANNEL_CAPS lpChannelCaps

Specifies a far pointer to a CHANNEL_CAPS data structure.
DWORD dwSize

Specifies the size of the CHANNEL_CAPS data structure.

Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.

DVM_GETERRORTEXT
This message retrieves a string describing an error.

DWORD dwParam1

Specifies a far pointer to a VIDEO_GETERRORTEXT_PARMS
structure. The structure identifies the error number and return buffer.

DWORD dwParam2

Not used.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_BADERRNUM

Indicates the specified error number is out of range.
If the error description is longer than the specified buffer, the description is truncated. The
returned error string is always null-terminated. If the size of the return buffer is zero, a
string description is not returned and DV_ERR_OK is used as the return value.

DVM_GETVIDEOAPIVER
This message returns the version of the video capture command set used by the driver.

DWORD dwParam1

Specifies a far pointer to a DWORD which will be filled with the version.

02/10/93

Parameters

Return Value

Parameters

Return Value

Comments

Parameters

2-40 Video for Windows Programmer's Guide

DWORD dwParam2

Not used.
Returns DV_ERR_OK if the message is successful.

DVM_PALETTE
This message sets and retrieves a logical palette used by a video device channel. This
message applies only to VIDEO_IN and VIDEO_OUT channels.

DWORD dwFlags

Specifies any flags that indicate the type of palette transfer requested. Either
the VIDEO_CONFIGURE_SET or the VIDEO_CONFIGURE_GET flag
must be set, specifying the direction of the transfer. The following flags are
defined:

VIDEO_CONFIGURE_SET
Send a palette to the driver.

VIDEO_CONFIGURE_GET
Get the current palette from the driver.

VIDEO_CONFIGURE_QUERY
This flag is used to query the driver to determine if it supports the
message.

VIDEO_CONFIGURE_QUERYSIZE
Returns the size in bytes of the palette in lpdwReturn. This flag is only
valid if the VIDEO_CONFIGURE_GET flag is also set.

LPVIDEOCONFIGPARMS lpVConfigParms

A far pointer to a VIDEOCONFIGPARMS structure. The
VIDEOCONFIGPARMS structure has the following fields:

lpdwReturn is a far pointer to a DWORD. If the
VIDEO_CONFIGURE_QUERYSIZE flag is used, the driver fills this field
with the size of the logical palette (in bytes).

lpData1 is a far pointer to a LOGPALETTE structure.

dwSize1 is the size in bytes of the LOGPALETTE.

lpData2 is not used.

dwSize2 is not used.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

02/10/93

Return Value

Parameters

Return Value

 3-41

DV_ERR_NOTSUPPORTED

Message is not supported.
A palette is used when converting between frame buffer internal data formats and 8-bit
palettized DIBs.

DVM_PALETTERGB

DVM_PALETTERGB555
This message associates an RGB555 palette with a video device channel. Applications
can provide an RGB555 translation table to a driver for fast conversions between RGB
formats and 8 bit palettized formats. This message applies only to VIDEO_IN and
VIDEO_OUT channels.

DWORD dwFlags

Specifies the flags indicating the type of palette transfer requested. The
following flags are defined:

VIDEO_CONFIGURE_SET
Indicates values are being sent to the driver.

VIDEO_CONFIGURE_QUERY
This flag, when combined with VIDEO_CONFIGURE_SET is used to
query the driver to determine if it supports the message.

LPVIDEOCONFIGPARMS lpVConfigParms

Specifies a far pointer to a VIDEOCONFIGPARMS data structure. This
data structure has the following fields:

lpdwReturn
Not used.

lpData1
Specifies a far pointer to a LOGPALETTE data structure.

dwSize1
Specifies the size (in bytes) of the LOGPALETTE data structure.

lpData2
 Specifies a far pointer to a 32 kilobyte RGB555 translation table. This
table is used by the device driver to translate from RGB555 triplets into
palette colors when capturing in 8 bit palette mode.

dwSize2
Specifies the size of the translate table in bytes. This value must be
32,768.

Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

02/10/93

Comments

See Also

Parameters

Return Value

2-42 Video for Windows Programmer's Guide

DV_ERR_NOTSUPPORTED

Message is not supported.
DV_ERR_CREATEPALETTE

The device driver was not able to associate the palette with the video device
channel.

DV_ERR_PARM1

The information supplied for dwParam1 is invalid.
DV_ERR_PARM2

The information supplied for dwParam2 is invalid.
DV_ERR_SIZEFIELD

The data structure supplied for the format is too small.
A translation table provides a fast method of converting between RGB and palettized
color spaces. The palette index corresponding to an RGB color is found by indexing the
translation table at xRRRRRGGGGGBBBBB (the five most significant bits of each color
component is used to create the index).

DVM_SRC_RECT
This message sets and retrieves the source rectangle used by a video device channel.

LPRECT lpSrcRect

A far pointer to a RECT structure.
DWORD dwFlags

Specifies flags that indicate the type of transfer requested. Either the
VIDEO_CONFIGURE_SET or the VIDEO_CONFIGURE_GET flag must
be set, specifying the direction of the transfer. The following flags are
defined:

VIDEO_CONFIGURE_SET
Send a source rectangle to the device driver.

VIDEO_CONFIGURE_GET
Get the current source rectangle from the device driver.

VIDEO_CONFIGURE_MIN
Get the minimum source rectangle from the device driver.

VIDEO_CONFIGURE_MAX
Get the maximum source rectangle from the device driver.

VIDEO_CONFIGURE_CURRENT

02/10/93

Comments

Parameters

 3-43

Get or set the current source rectangle.
VIDEO_CONFIGURE_QUERY

This flag is used to query the driver to determine if it supports the
message.

Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.
The use of the source rectangle for a channel depends on the channel type. For the
VIDEO_EXTERNALOUT channel, the source rectangle specifies the portion of the
frame buffer displayed in the overlay window, in pixel coordinates. For the VIDEO_IN,
VIDEO_EXTERNALIN, and VIDEO_OUT channels, the source rectangle is currently
undefined.

DVM_STREAM_ADDBUFFER
This message sends an input buffer to a video device. When the buffer is filled, the device
sends it back to the application.

DWORD dwParam1

Specifies a far pointer to a VIDEOHDR structure identifying the buffer.
DWORD dwParam2

Specifies the size of the VIDEOHDR structure.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV_ERR_NONSPECIFIC

A buffer is not specified.
DV_ERR_UNPREPARED

The buffer was not prepared.
The data buffer must be prepared with DVM_STREAM_PREPAREHEADER before it
is passed with DVM_STREAM_ADDBUFFER. The VIDEOHDR data structure and
the data buffer pointed to by its lpData field must be allocated with GlobalAlloc using
the GMEM_MOVEABLE and GMEM_SHARE flags, and locked with GlobalLock.

DVM_STREAM_FINI
This message terminates streaming on a video channel. This should always be the last

02/10/93

Return Value

Comments

Parameters

Return Value

Comments

2-44 Video for Windows Programmer's Guide

streaming message received by a channel.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV_ERR_STILLPLAYING

There are still buffers in the queue.
If all the input buffers sent with DVM_STREAM_ADDBUFFER haven’t been returned
to the application, your driver should fail the message. Client applications should send
DVM_STREAM_RESET to mark all pending buffers as done prior to sending
DVM_STREAM_FINI.

For VIDEO_EXTERNALIN channels, this message halts capturing of data to the frame
buffer.

For VIDEO_EXTERNALOUT channels that support overlay, this message disables the
overlay video.

videoStreamInit

DVM_STREAM_GETERROR
This message returns the error status of a channel.

DWORD dwParam1

Specifies a far pointer to a DWORD that the device will fill with the value
of the most recent error.

DWORD dwParam2

Specifies a far pointer to a DWORD that the device will fill with the
number of frames dropped.

Returns DV_ERR_OK if there is no error. Otherwise, it returns an error number. The
following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.
A device driver should reset its internal error values and count of frames dropped to zero
after it processes this message.

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

 3-45

Client applications should send this message frequently during capture since some device
drivers that do not have access to interrupts use this message to trigger buffer processing.

DVM_STREAM_GETPOSITION
This message retrieves the current position of the VIDEO_IN stream.

DWORD dwParam1

Specifies a far pointer to a MMTIME structure.
DWORD dwParam2

Specifies the size in bytes of the MMTIME structure.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV_ERR_PARM1

The data structure supplied for the format has invalid data.
DV_ERR_SIZEFIELD

The data structure supplied for the format is too small.
If a device does not support the format specified in the wtype field of the MMTIME data
structure it specifies the current time format in the field. The application checks the
format specified in this field when the message returns. Video capture drivers typically
return time in the milliseconds format.

The device sets the position to zero when it receives the DVM_STREAM_START
message.

DVM_STREAM_INIT
This message initializes a video device for streaming. This message must precede all
other streaming messages for a channel.

DWORD dwParam1

Specifies a far pointer to a VIDEO_STREAM_INIT_PARMS structure.
This structure has the following fields:

dwMicroSecPerFrame
Contains the number of microseconds between successive capture
frames.

dwCallback
Specifies the address of a callback function or the handle to a window

02/10/93

Parameters

Return Value

Comments

Parameters

2-46 Video for Windows Programmer's Guide

called during video streaming to process messages related to the progress
of recording. This parameter can be NULL.

dwCallbackInst
Specifies the instance data passed to the callback function. This
parameter is not used with window callbacks.

dwFlags
Specifies flags for opening the device. The following flags are defined:
CALLBACK_WINDOW

If this flag is specified, dwCallback is a window handle.
CALLBACK_FUNCTION

If this flag is specified, dwCallback is a callback function address.
DWORD dwParam2

Specifies the size, in bytes, of the data structure.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV_ERR_ALLOCATED

Specified resource is already allocated.
DV_ERR_NOMEM

Unable to allocate or lock memory.
If a window or callback function will receive callback messages, the device driver uses
the following messages to indicate the progress of video input: MM_DRVM_OPEN,
MM_DRVM_CLOSE, MM_DRVM_DATA, and MM_DRVM_ERROR.

If a callback function is used, it must reside in a DLL. You do not have to use
MakeProcInstance to get a procedure-instance address for the callback function.

For VIDEO_EXTERNALIN channels, DVM_STREAM_INIT triggers capturing of data
to the frame buffer.

For VIDEO_EXTERNALOUT channels with overlay capabilities,
DVM_STREAM_INIT enables the overlay.

DVM_STREAM_PREPAREHEADER
This message prepares an input buffer for video streaming.

DWORD dwParam1

Specifies a far pointer to a VIDEOHDR structure identifying the buffer.

02/10/93

Return Value

Comments

Parameters

 3-47

DWORD dwParam2

Specifies the size of the VIDEOHDR structure.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV_ERR_NOMEM

Unable to allocate or lock memory.
DV_ERR_NOTSUPPORTED

Unable to prepare data block. (This return lets MSVIDEO prepare the data
block.)

The VIDEOHDR data structure and the data block pointed to by its lpData field must be
allocated with GlobalAlloc using the GMEM_MOVEABLE and GMEM_SHARE flags,
and locked with GlobalLock. Preparing a header previously prepared will have no effect,
and the message will return zero. Typically, this operation is used to ensure that the buffer
will be available for use at interrupt time.

DVM_STREAM_RESET
This message stops input of a video stream and resets the current position to 0. All
pending buffers are marked as done and returned to the application.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.
When a device driver receives this message, it should return to the state established for
DVM_STREAM_INIT.

DVM_STREAM_START
This message starts a video stream.

DWORD dwParam1

Not used.

02/10/93

Return Value

Comments

Parameters

Return Value

Comments

Parameters

2-48 Video for Windows Programmer's Guide

DWORD dwParam2

Not used.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.
For VIDEO_IN channels, this message begins transferring the contents of the frame
buffer to the system supplied buffers.

DVM_STREAM_STOP
This message stops a video stream.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.
When a device receives this message, it marks the current buffer as done and retains any
empty buffers remaining in the queue. For the buffer marked as done, the device places
the actual length of the data in the dwBytesUsed field of the VIDEOHDR structure.

If the input is not started, this message has no effect and the device driver returns
DV_ERR_OK.

DVM_STREAM_UNPREPAREHEADER
This message cleans up the preparation performed by
DVM_STREAM_PREPAREHEADER.

DWORD dwParam1

Specifies a far pointer to a VIDEOHDR structure identifying the buffer.
DWORD dwParam2

Specifies the size of the VIDEOHDR structure.

02/10/93

Return Value

Comments

Parameters

Return Value

Comments

Parameters

 3-49

Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following errors are defined:

DV_ERR_STILLPLAYING

The data buffer is still in the device driver’s available queue.
DV_ERR_NOTSUPPORTED

Unable to handle data block preparation. (This return lets MSVIDEO
unprepare the data block.)

This message is the complementary message to DVM_STREAM_PREPAREHEADER.
This message unlocks the data buffer. Unpreparing a buffer not previously prepared has
no effect, and the device driver returns DRV_ERR_OK.

DVM_UPDATE
This message is used with a VIDEO_EXTERNALOUT channel to indicate the display
needs updating. This is typically sent to an overlay device whenever its client window is
moved, sized, or requires painting.

HWND hWndClient

Specifies a window handle to the client window in which the
VIDEO_EXTERNALOUT channel is displayed.

HDC hDC

Specifies the device context to be repainted.
Returns DV_ERR_OK if the message was successful. Otherwise, it returns an error
number. The following error is defined:

DV_ERR_NOTSUPPORTED

Message is not supported.
This message is sent to a driver when video overlay is enabled and the overlay key color
might need updating. Painting the key color is the responsibility of the driver. An
application initiates this message whenever it receives a WM_PAINT, WM_MOVE,
WM_POSITIONCHANGED, or WM_SIZE message.

This message always follows DVM_SRC_RECT and DVM_DST_RECT messages for
the VIDEO_EXTERNALOUT channel.

The DVM_STREAM_INIT and DVM_STREAM_FINI messages are used to enable
and disable the overlay.

02/10/93

Return Value

Comments

Parameters

Return Value

Comments

2-50 Video for Windows Programmer's Guide

MM_DRVM_CLOSE
This message is sent by a driver to a video callback function or window when a
DVM_STREAM_FINI message is received.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
This message is used by video capture drivers, installable compressors, and other types of
installable drivers whenever a device is closed.

MM_DRVM_DATA
This message is sent by a driver to a video callback function or window when the
specified buffer is returned to the application.

DWORD dwParam1

Specifies a far pointer to a VIDEOHDR structure identifying the buffer.
DWORD dwParam2

Not used.
For VIDEO_IN channels, buffers are returned when they have been filled. For
VIDEO_OUT channels, buffers are returned after they are displayed. All buffers are
returned for the DVM_STREAM_RESET message.

This message is used by video capture drivers, installable compressors, and other types of
installable drivers to signal an application that new data is available.

MM_DRVM_ERROR
This message is sent by a device driver to a video callback function or window when an
error has occurred.

DWORD dwParam1

Specifies the error ID.
DWORD dwParam2

Not used.
Although a device driver can send this message for any reason, it most often indicates that
no more buffers are available for video streaming.

02/10/93

Parameters

Comments

Parameters

Comments

Parameters

Comments

 3-51

The MM_DRVM_ERROR message is used by video capture drivers, installable
compressors, and other types of installable drivers to signal an application that an error
occurred.

MM_DRVM_OPEN
This message is sent by a driver to a video callback function or window when a
DVM_STREAM_INIT message is received.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
This message is used by video capture drivers, installable video compressors, and other
types of installable drivers whenever a device is opened.

Video Capture Device Driver Data Structure
Reference
This section lists data structures used by video capture device drivers for Windows. The
data structures are presented in alphabetical order. The structure definition is given,
followed by a description of each field.

CHANNEL_CAPS
The CHANNEL_CAPS structure is used with the DVM_GET_CHANNEL_CAPS
message to return the capabilities of a channel to an application.

typedef struct channel_caps_tag {
 DWORD dwFlags;
 DWORD dwSrcRectXMod;
 DWORD dwSrcRectYMod;
 DWORD dwSrcRectWidthMod;
 DWORD dwSrcRectHeightMod;
 DWORD dwDstRectXMod;
 DWORD dwDstRectYMod;
 DWORD dwDstRectWidthMod;
 DWORD dwDstRectHeightMod;
} CHANNEL_CAPS;

The CHANNEL_CAPS structure has the following fields:

dwFlags

Returns flags giving information about the channel. The following flags are
defined:

02/10/93

Parameters

Comments

Fields

2-52 Video for Windows Programmer's Guide

VCAPS_OVERLAY
Indicates the channel is capable of overlay. This flag is used only for
VIDEO_EXTERNALOUT channels.

VCAPS_SRC_CAN_CLIP
Indicates that the source rectangle can be set smaller than the maximum
dimensions.

VCAPS_DST_CAN_CLIP
Indicates that the destination rectangle can be set smaller than the
maximum dimensions.

VCAPS_CAN_SCALE
Indicates that the source rectangle can be a different size than the
destination rectangle.

dwSrcRectXMod

Returns the granularity allowed when positioning the source rectangle in the
horizontal direction.

dwSrcRectYMod

Returns the granularity allowed when positioning the source rectangle in the
vertical direction.

dwSrcRectWidthMod

Returns the granularity allowed when setting the width of the source
rectangle.

dwSrcRectHeightMod

Returns the granularity allowed when setting the height of the source
rectangle.

dwDstRectXMod

Returns the granularity allowed when positioning the destination rectangle
in the horizontal direction.

dwDstRectYMod

Returns the granularity allowed when positioning the destination rectangle
in the vertical direction.

dwDstRectWidthMod

Returns the granularity allowed when setting the width of the destination
rectangle.

02/10/93

 3-53

dwDstRectHeightMod

Returns the granularity allowed when setting the height of the source
rectangle.

Some channels can only use source and destination rectangles which fall on 2, 4, or 8
pixel boundaries. Similarly, some channels only accept capture rectangles widths and
heights that are multiples of a fixed value. Rectangle dimensions indicated by modulus
operators are considered advisory. When requesting a particular rectangle, the application
must always check the return value to insure the request was accepted by the driver. For
example, if dwDstRectWidthMod is set to 64, the application might try to set destination
rectangles with widths of 64, 128, 192, 256, ..., and 640 pixels. The driver might actually
support a subset of these sizes and indicates the supported sizes with the return value of
the DVM_DST_RECT message. If a channel supports arbitrarily positioned rectangles,
with arbitrary sizes, the values above should all be set to 1.

VIDEO_GETERRORTEXT_PARMS
The VIDEO_GETERRORTEXT_PARMS structure specifies a return buffer for the
error text.

typedef struct tag_video_geterrortext_parms {
 DWORD dwError;
 LPSTR lpText;
 DWORD dwLength;
} VIDEO_GETERRORTEXT_PARMS;

The VIDEO_GETERRORTEXT_PARMS structure has the following fields:

dwError

Specifies the error number.
lpText

Specifies a far pointer to the error return buffer.
dwLength

Specifies the length of the error return buffer.

VIDEO_OPEN_PARMS
The VIDEO_OPEN_PARMS structure defines the type of channel to open on a video
capture device.

02/10/93

Comments

Fields

2-54 Video for Windows Programmer's Guide

typedef struct {
 DWORD dwSize;
 FOURCC fccType;
 FOURCC fccComp;
 DWORD dwVersion;
 DWORD dwFlags;
 DWORD dwError;
} VIDEO_OPEN_PARMS;

The VIDEO_OPEN_PARMS structure has the following fields:

dwSize

Specifies the size of the VIDEO_OPEN_PARMS structure.
fccType

Specifies a four-character code identifying the type of channel being
opened. For capture devices, this is set to "vcap".

fccComp

Unused.
dwVersion

Specifies the current version number of the video capture command set in
MSVIDEO.DLL.

dwFlags

Specifies flags used to indicate the type of channel. The following flags are
defined:

VIDEO_EXTERNALIN
Specifies a channel that loads data from an external source into a frame
buffer. This can also be called the capture channel.

VIDEO_IN
Specifies a channel that transfers data from the frame buffer to system
memory.

VIDEO_OUT
Specifies a channel that transfers data from system memory to the frame
buffer.

VIDEO_EXTERNALOUT
Specifies a channel that controls display of frame buffer images. Display
might be either on a second monitor, or via overlay.

dwError

Specifies an error value the driver should return to the client application if it
fails the open.

This structure is identical to the IC_OPEN structure used by installable compressors.

02/10/93

Fields

Comments

 3-55

This lets a driver handle both video capture and decompressor messages with a single
DriverProc entry point.

VIDEO_STREAM_INIT_PARMS
The VIDEO_STREAM_INIT_PARMS structure contains the fields used to initialize a
video stream for video capture.

typedef struct tag_video_stream_init_parms {
 DWORD dwMicroSecPerFrame;
 DWORD dwCallback;
 DWORD dwCallbackInst;
 DWORD dwFlags;
 DWORD hVideo;
} VIDEO_STREAM_INIT_PARMS;

The VIDEO_STREAM_INIT_PARMS structure has the following fields:

dwMicroSecPerFrame

Specifies the number of microseconds between the start of one frame
capture and the start of the next.

dwCallback

An optional parameter which specifies an address to a callback function or a
handle to a window called during video recording. The callback function or
window processes messages related to the progress of recording.

dwCallbackInst

Specifies user instance data passed to the callback function. This parameter
is not used with window callbacks.

dwFlags

Specifies flags for the data capture. The following flags are defined:

VIDEO_ALLOWSYNC
If this flag is not specified, the device will fail to open if it is a
synchronous device.

CALLBACK_WINDOW
If this flag is specified, dwCallback contains a window handle.

CALLBACK_FUNCTION
If this flag is specified, dwCallback contains a callback function address.

hVideo

Specifies a handle to the video channel.

02/10/93

Fields

2-56 Video for Windows Programmer's Guide

VIDEOCONFIGPARMS
The VIDEOCONFIGPARMS structure is used to send or return message specific
configuration parameters.

typedef struct {
 LPDWORD lpdwReturn;
 LPVOID lpData1;
 DWORD dwSize1;
 LPVOID lpData2;
 DWORD dwSize2;
} VIDEOCONFIGPARMS;

The VIDEOCONFIGPARMS structure has the following fields:

lpdwReturn

Specifies a far pointer to a DWORD to be filled with a message specific
return value.

lpData1

Specifies a far pointer to message-specific data.
dwSize1

Specifies the size in bytes of data passed in lpData1.
lpData2

Specifies a far pointer to message specific data.
dwSize2

Specifies the size in bytes of data passed in lpData2.
DVM_FORMAT, DVM_PALETTE, DVM_PALETTERGB555

VIDEOHDR
The VIDEOHDR structure defines the header used to identify a video data buffer.

typedef struct videohdr_tag {
 LPSTR lpData;
 DWORD dwBufferLength;
 DWORD dwBytesUsed;
 DWORD dwTimeCaptured;
 DWORD dwUser;
 DWORD dwFlags;
 DWORD dwReserved[4];
} VIDEOHDR;

The VIDEOHDR structure has the following fields:

02/10/93

Fields

See Also

Fields

 3-57

lpData

Specifies a far pointer to the video data buffer.
dwBufferLength

Specifies the length of the data buffer.
dwBytesUsed

Specifies the number of bytes used in the data buffer.
dwTimeCaptured

Specifies the time (in milliseconds) when the frame was captured relative to
the first frame in the stream.

dwUser

Specifies 32 bits of user data.
dwFlags

Specifies flags giving information about the data buffer. The following flags
are defined for this field:

VHDR_DONE
Set by the device driver to indicate it is finished with the data buffer and
it is returning the buffer to the application.

VHDR_PREPARED
Set by Windows to indicate the data buffer has been prepared with
videoStreamPrepareHeader.

VHDR_INQUEUE
Set by Windows to indicate the data buffer is queued for playback.

VHDR_KEYFRAME
Set by the device driver to indicate a key frame.

dwReserved[4]

Reserved for use by the device driver. Typically, these maintain a linked list of buffers in
the queue.

02/10/93

	Note:
	Note:
	Note:
	Note:
	Architecture of a Video Capture Driver
	Video Capture Device Driver Channels
	The Video Out channel is not currently used. The interface for video compression and decompression drivers is currently used to display this information.
	

	The Video Capture Application
	Sample Device Drivers

	The Structure of a Video Capture Device Driver
	Combining Video Capture and Video Compression/Decompression Drivers
	Because video capture drivers can rely on video compression and decompression drivers for efficient operation, a single driver can handle both video capture, and video compression and decompression services. Video capture drivers use the VIDEO_OPEN_PARMS data structure when they are opened. This structure has the same field definitions as the ICOPEN structure used by video compression and decompression drivers. By examining the fccType field, a combined driver can determine whether it is being opened as a video capture driver or a video compression and decompression driver. (Video capture devices contain the four-character code 'vcap' in this field.) For more information on video compression and decompression drivers, see Chapter 10, “Video Compression and Decompression Drivers.”

	Video Capture Header Files
	Naming Video Capture Device Drivers
	SYSTEM.INI Entries for Video Capture Device Drivers
	Video capture device drivers are loaded only when needed by an application.

	The Module-Definition File
	The Module Name Line
	The Module Description Line

	Considerations for Interrupt-Driven Drivers
	Fixing Code and Data Segments
	Allocating and Using Memory
	Calling Windows Functions at Interrupt Time

	The Installable Driver Interface
	Your driver should respond to all system messages. If supplemental information is not provided for them in this chapter, use the definitions provided in the Microsoft Windows Programmer's Reference.
	An Example DriverProc Entry-Point Function
	Handling the DRV_OPEN and DRV_CLOSE Messages
	Handling the DRV_ENABLE and DRV_DISABLE Messages
	Driver Configuration

	Video Capture Driver Messages
	Configuring the Channels of a Video Capture Driver
	Setting and Obtaining Video Capture Format
	Setting and Obtaining the Video Source and Destination Rectangles
	Determining Channel Capabilities
	Setting and Obtaining a Video Capture Palette
	Obtaining the Device Driver Version
	Transferring Data From the Frame Buffer
	Streaming Video Capture
	The Data Transfer Model For Streaming Video Input
	Initializing the Data Stream
	Preparing Data Buffers
	Starting and Stopping Streaming
	Ending Capture
	Additional Stream Messages

	Video Capture Device Driver Reference
	Video Capture Device Driver Message Reference
	Message Summary

	Video Capture Device Driver Messages
	DVM_DIALOG
	DVM_DST_RECT
	DVM_FORMAT
	DVM_FRAME
	DVM_GET_CHANNEL_CAPS
	DVM_GETERRORTEXT
	DVM_GETVIDEOAPIVER
	DVM_PALETTE
	DVM_PALETTERGB555
	DVM_SRC_RECT
	DVM_STREAM_ADDBUFFER
	DVM_STREAM_FINI
	DVM_STREAM_GETERROR
	DVM_STREAM_GETPOSITION
	DVM_STREAM_INIT
	DVM_STREAM_PREPAREHEADER
	DVM_STREAM_RESET
	DVM_STREAM_START
	DVM_STREAM_STOP
	DVM_STREAM_UNPREPAREHEADER
	DVM_UPDATE
	MM_DRVM_CLOSE
	MM_DRVM_DATA
	MM_DRVM_ERROR
	MM_DRVM_OPEN
	Video Capture Device Driver Data Structure Reference
	CHANNEL_CAPS
	VIDEO_GETERRORTEXT_PARMS
	VIDEO_OPEN_PARMS
	VIDEO_STREAM_INIT_PARMS
	VIDEOCONFIGPARMS
	VIDEOHDR

