
CHAPTER 1

Video compression and decompression drivers provide low-level video compression and
decompression services for Microsoft Video for Windows. The compression and
decompression algorithms used can be hardware or software based. This chapter explains
the Windows interface for these drivers. It covers the following topics: XE "Video
capture functions:low-level video capture services"§

· General information about writing a video compression and decompression
driver

· Information on how a video compression and decompression driver handles
the system messages for the installable driver interface

· Information on how a video compression and decompression driver handles
messages specific to compressing and decompressing video data

· An alphabetical reference to the messages and data structures used to write
video compression and decompression drivers

Before reading this chapter, you should be familiar with the video services available with
Windows. You should also be familiar with the Windows installable driver interface. For
information about these Windows topics, see the Microsoft Windows Programmer’s
Reference.

Architecture of a Video Compression and
Decompression Driver

The following two block diagrams show the architecture of a video compression and
decompression driver. While the diagrams show separate compression and decompression
drivers, an actual driver usually combines both functions. The following illustration
shows the architecture of a decompression driver:

Architecture for a decompression driver.

The following illustration shows a similar architecture for the compression driver:

Architecture for a compression driver.

Video Compression and
Decompression Drivers

2-2 Video for Windows Programmer's Guide

The decompression driver and compression driver blocks represent your compression and
decompression driver. The client-application block represents the system and application
software that uses the services of your compression and decompression driver.
Application software will always use the system software to access compression and
decompression drivers.

The source of information used for decompression is represented by the AVI file block.
Other sources of images can be used in place of this block. AVI files are RIFF files that
contain audio and video data. The client-application maintains the RIFF format when it
reads and writes the file. (Your driver will send and receive video data. The client-
application will add and remove the RIFF tags.)

Compression drivers receive uncompressed data from the video source. Typically the
video source is a disk file but it could also come from other video sources such as a video
capture device. The video data can be either still bitmaps or motion video frames.

While a previous block diagram showed the decompression driver returning the
uncompressed video to the client-application, your driver can have the capability to write
directly to the display or display driver. These devices can replace a Windows video
driver or work in conjunction with it. The following illustration shows a decompression
driver with the ability to write to the video display:

Architecture for a decompression-video driver.

These drivers handle a set of messages, the ICM_DRAW messages, in addition to the
decompression messages defined for the services that return the decompressed video to
the client-application.

The ICSAMPLE Example Driver
The examples in this chapter were extracted from the ICSAMPLE example driver. This
sample illustrates the interface between Windows and video compression and
decompression drivers. The sample compresses data by extracting every tenth pixel from
the source and discarding the other nine. It decompresses by replacing the nine missing
pixels with their retained neighbor. XE "Video capture drivers:Targa+ sample driver"§
XE "Sample applications:Targa+ video capture driver"§ XE "Targa+ video capture
sample driver"§

The Structure of a Video Compression and
Decompression Driver

Video compression and decompression drivers are dynamic-link libraries (DLLs) usually
written in C or assembly language, or a combination of the two languages.

02/10/93

 3-3

As installable drivers, these drivers will provide a DriverProc entry point. For general
information about installable drivers, the DriverProc entry point, and system messages
sent to this entry point, see the Microsoft Windows Programmer’s Reference. This chapter
includes supplemental information for the system messages. This information describes
specifically how compression and decompression drivers should respond to the system
messages that are critical to their proper operation.

Video compression and decompression drivers also use the DriverProc entry point to
process messages specifically for video compression and decompression. Information on
how drivers use the DriverProc entry point to process these messages is contained in this
chapter.

Video Compression and Decompression Header
Files
The messages and data structures used exclusively by video compression and
decompression drivers are defined in COMPDDK.H.

Naming Video Compression and Decompression
Drivers
The filenames for driver DLLs are not required to have a file extension of “.DLL”—you
can name your driver using any file extension you want. It is suggested that you use the
extension “.DRV” for your drivers to follow the convention set by Windows. XE "Video
capture drivers:writing drivers:file extension"§ XE "DLLs:file extension"§

SYSTEM.INI Entries for Video Compression and
Decompression Drivers
The SYSTEM.INI file contains information for loading and configuring drivers. Your
driver must be identified in the [Drivers] or [Installable Compressors] section. This entry
lets Windows load the driver. If an entry for your driver is absent, it won’t be recognized.
While installation applications normally add the necessary entry for completed drivers,
you might have to manually add it while you develop your driver. The final version of
your driver should use an installation application to create and delete the entries in these
two sections.

Identify your driver in the [Drivers] section if you want to use the Drivers option of the
Control Panel to install or configure it. (This is the recommended method of installation.)
The Drivers option obtains the information it needs to install the driver from an
OEMSETUP.INF file you create for your driver. This file should be included on the
distribution disk for your driver. For information about the files needed to install your
driver, see the Microsoft Windows Device Driver Adaptation Guide and Microsoft
Windows Programmer’s Reference. For information on the Drivers option, see the
Microsoft Windows Programmer’s Reference.

02/10/93

2-4 Video for Windows Programmer's Guide

Identify your driver in the [Installable Compressors] section if you want to use a custom
installation application. If you use a custom application, it should update the [Installable
Compressors] section when your driver is installed or removed.

Video compression and decompression drivers are identified by a key name of “VIDC.”
followed by its four-character code identifier. For example, the following [Installable
Compressors] section of SYSTEM.INI identifies one video compression and
decompression driver:

[Installable Compressors]
VIDC.SAMP = ICSAMPLE.DRV

SAMP is the four-character code identifier of the compressor. This driver has a file name
of “ICSAMPLE.DRV”.

The four-character code identifier must be unique. If you want to create a new four-
character code identifier, register it with Microsoft to set up a standard definition and
avoid any conflicts with other codes that might be defined. To register a code for a
compression and decompression driver, request a Multimedia Developer Registration Kit
from the following group:

Microsoft Corporation
 Multimedia Systems Group

Product Marketing
 One Microsoft Way
 Redmond, WA 98052-6399

For more information on four character codes, see the Microsoft Windows Multimedia
Programmer’s Guide, Microsoft Windows Multimedia Programmer’s Reference, and
Chapter 4, “AVI Files.”

For more information on storing configuration information in the SYSTEM.INI file, see
“The Installable Driver Interface,” later in this chapter.

The Module-Definition File
To build a driver DLL, you must have a module-definition (.DEF) file. In this file, you
must export the DriverProc entry-point function. Functions are exported by ordinal, as
shown in the following example ICSAMPLE.DEF file:

02/10/93

 3-5

LIBRARY ICSAMPLE

DESCRIPTION 'VIDC.SAMP:Sample Decompression Driver'

STUB 'WINSTUB.EXE'
EXETYPE WINDOWS

CODE MOVEABLE DISCARDABLE LOADONCALL
DATA MOVEABLE SINGLE PRELOAD

SEGMENTS _TEXT DISCARDABLE PRELOAD

HEAPSIZE 128

EXPORTS
 WEP
 DriverProc

If you are using the Drivers option of the Control Panel, include the key name of VIDC, a
period (.), and the four-character code for your driver in the DESCRIPTION entry. (Use a
colon (:) to separate this entry from the text description.) The Drivers option uses this
description when it lists the driver in the [Drivers] section of the SYSTEM.INI file. For
example, the previous description for ICSAMPLE.DRV uses VIDC.SAMP: in the
DESCRIPTION line. If you are using a custom installation application, you do not need
to include this description information.

For more information on the entry-point function listed in this example, see “An Example
DriverProc Entry-Point Function” later in this chapter.

The Module Name Line
The module name line should specify a unique module name for your driver. Windows
will not load two different modules with the same module name. It’s a good idea to use
the base of your driver filename since, in certain instances, LoadLibrary will assume that
to be your module name. For example, the previous fragment used LIBRARY
ICSAMPLE.

The Installable Driver Interface
The entry-point function, DriverProc, processes messages sent by the system to the
driver as the result of an application call to a video compression and decompression
function. For example, when an application opens a video compression and
decompression driver, the system sends the specified driver a DRV_OPEN message. The
driver’s DriverProc function receives and processes this message. Your DriverProc
should return ICERR_UNSUPPORTED for any messages that it does not handle.

Your driver should respond to all system messages. If supplemental
information is not provided for them in this chapter, use the definitions

provided in the Microsoft Windows Programmer’s Reference.

02/10/93

Note
:

2-6 Video for Windows Programmer's Guide

An Example DriverProc Entry-Point Function
A video compression and decompression driver uses the DriverProc function for its
entry-point. The following example is derived from the ICSAMPLE driver:

LRESULT CALLBACK _loadds DriverProc(DWORD dwDriverID, HDRVR hDriver,
UINT uiMessage, LPARAM lParam1, LPARAM lParam2)
{
 INSTINFO *pi = (INSTINFO *)(UINT)dwDriverID;

 switch (uiMessage)
 {

 case DRV_LOAD:
 return (LRESULT) Load();

 case DRV_FREE:
 Free();
 return (LRESULT)1L;

 case DRV_OPEN:
 // If being opened without an open structure, return a non-zero
 // value without actually opening.
 if (lParam2 == 0L)
 return 0xFFFF0000;

 return (LRESULT)(DWORD)(WORD)Open((ICOPEN FAR *) lParam2);

 case DRV_CLOSE:
 if (pi)
 Close(pi);

 return (LRESULT)1L;

 /***
 system configuration messages
 ***/

 case DRV_QUERYCONFIGURE: // For configuration with Drivers option.
 return (LRESULT)0L;

 case DRV_CONFIGURE:
 return DRV_OK;

 /***
 device specific messages
 ***/

 .
 .
 .

 /***
 standard driver messages
 ***/

02/10/93

 3-7

 case DRV_DISABLE:
 case DRV_ENABLE:
 return (LRESULT)1L;

 case DRV_INSTALL:
 case DRV_REMOVE:
 return (LRESULT)DRV_OK;
 }

 if (uiMessage << DRV_USER)
 return DefDriverProc(dwDriverID, hDriver,
 uiMessage,lParam1,lParam2);
 else
 return ICERR_UNSUPPORTED;
}

Handling the DRV_OPEN and DRV_CLOSE
Messages
Like other installable drivers, client applications must open a video compression and
decompression driver before using it, and they must close it when finished using it so the
driver will be available to other applications. When a driver receives an open request, it
returns a value that the system will use for dwDriverID sent with subsequent messages.
When your driver receives other messages, it can use this value to identify instance data
needed for operation. Your drivers can use this data to maintain information related to the
client that opened the driver.

Compression and decompression drivers should support more than one client
simultaneously. If you do this, though, remember to check the dwDriverID parameter to
determine which client is being accessed. XE "DRV_OPEN message"§XE "Video
capture drivers:writing drivers:multiple clients"§

If the driver is opened for configuration by the Drivers option of the Control Panel,
lParam2 contains zero. When opened this way, your driver should respond to the
DRV_CONFIGURE and DRV_QUERYCONFIGURE messages.

If opened for compression or decompression services, lParam2 contains a far pointer to
an ICOPEN data structure. The ICOPEN data structure has the following fields:

typedef struct {
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwVersion;
 DWORD dwFlags;
 } ICOPEN;

The fccType field specifies a four-character code representing the type of stream being
compressed or decompressed. For video streams, this will be 'vidc'.

Because video capture drivers can rely on video compression and decompression drivers
for efficient operation, a single driver can handle both video capture, and video
compression and decompression services. Video capture drivers use the
VIDEO_OPEN_PARMS data structure when it is opened. This structure has the same

02/10/93

2-8 Video for Windows Programmer's Guide

field definitions as the ICOPEN structure. By examining the fccType field, a combined
driver can determine whether it is being opened as a video capture driver or a video
compression and decompression driver. Video capture devices contain the four-character
code 'vcap' in this field. For more information on video capture drivers, see Chapter 11,
“Video Capture Device Drivers.”

Other drivers that require close coordination with video compression and decompression
drivers can also be combined with video compression and decompression drivers if they
use a similar interface.

The fccHandler field specifies a four-character code identifying a specific compressor.
The client-application obtains the four-character code from the entry in the SYSTEM.INI
file used to open your driver. Your driver should not fail the open if it does not recognize
the four-character code.

The dwVersion field specifies the version of the compressor interface used to open the
driver. Your driver can use this information to determine the capabilities of the system
software when future versions of it are available.

The dwFlags field contains a constant indicating the function of the driver. The following
constants are defined:

ICMODE_COMPRESS

The driver is opened to compress data.
ICMODE_DECOMPRESS

The driver is opened to decompress data.
ICMODE_DRAW

The device driver is opened to decompress data directly to hardware.
ICMODE_QUERY

The driver is opened for informational purposes, rather than for actual
compression.

The ICMODE_COMPRESS, ICMODE_DECOMPRESS, and ICMODE_DRAW flags
indicate your driver is opened to compress or decompress data. Depending on the flag,
your driver should prepare to handle ICM_COMPRESS, ICM_DECOMPRESS, or
ICM_DRAW messages. Your driver should also prepare to handle all messages used to
configure and interrogate your driver.

The ICMODE_QUERY flag indicates your driver is opened to obtain information. It
should prepare to handle the ICM_ABOUT, ICM_GETINFO, and
ICM_GETDEFAULTQUALITY messages.

02/10/93

 3-9

Compressor Configuration
Video compression and decompression drivers can receive a series of configuration
messages. System configuration messages are typically sent by the Drivers option of the
Control Panel to configure the hardware. Video compression and decompression specific
configuration messages are typically initiated by the client-application or from dialog
boxes displayed by your driver. Your driver should use these messages to configure the
driver.

Configuration Messages Sent by the System
The following system messages are used by video compression and decompression
drivers for hardware configuration:

DRV_QUERYCONFIGURE

This system message is sent to determine if the driver supports
configuration.

DRV_CONFIGURE

This Control Panel message is sent to let the driver display a custom
configuration dialog box for hardware configuration.

Installable drivers can supply a configuration dialog box for users to access through the
Drivers option in the Control Panel. If your driver supports different options, it should
allow user configuration. Any hardware-related settings should be stored in a section with
the same name as the driver in the user’s SYSTEM.INI file.

Like other installable drivers, your driver will receive DRV_QUERYCONFIGURE and
DRV_CONFIGURE messages from the Drivers option of the Control Panel. If your
driver controls hardware that needs to be configured, it should return a non-zero value for
the DRV_QUERYCONFIGURE system message and display a hardware configuration
dialog box for the DRV_CONFIGURE system message.

Messages for Configuring the Driver State
The video compression and decompression specific configuration messages are typically
initiated by the client-application or from dialog boxes displayed by your driver. Your
driver should use these messages to configure the driver. The following messages apply
specifically to video compression and decompression drivers:

ICM_CONFIGURE

This message displays a custom configuration dialog box for driver
configuration.

02/10/93

2-10 Video for Windows Programmer's Guide

ICM_GETSTATE

This message obtains the current driver configuration.
ICM_SETSTATE

This message sets the state of the compressor.

If your driver is configurable, it should support the ICM_CONFIGURE message for
driver configuration. In addition, it should also use this message to set parameters for
compression or decompression. Any options the user selects in the dialog box displayed
for ICM_CONFIGURE should be saved as part of the state information referenced by the
ICM_GETSTATE and ICM_SETSTATE messages.

The ICM_GETSTATE and ICM_SETSTATE messages query and set the internal state of
your compression or decompression driver. State information is device dependent and
your driver must define its own data structure for it. While the client-application reserves
a memory block for the information, it will obtain the size needed for the memory block
from your driver. If your driver receives ICM_GETSTATE with a NULL pointer for
dwParam1, the client-application is requesting that your driver return the size of its state
information. Conversely, if your driver receives ICM_GETSTATE with dwParam1
pointing to a block of memory, and dwParam2 specifying the size of the memory block,
the client-application is requesting that your driver transfer the state information to the
memory block.

When your driver receives ICM_SETSTATE with dwParam1 pointing to a block of
memory, and dwParam2 specifying the size of the memory block, the client-application is
requesting that your driver restore its configuration from the state information contained
in the memory block. Before setting the state, your driver should verify the state
information applies to your driver. One technique for verifying the data is to reserve the
first DWORD in the state data structure for the four-character code used to identify your
driver. If you set this DWORD for data returned for ICM_GETSTATE, you can use it to
verify the data supplied with ICM_SETSTATE. If ICM_SETSTATE has a NULL pointer
for dwParam1, it indicates that your driver should return to its default state.

State information should not contain any data that is absolutely required for data
decompression—any such data should be part of the format you return for the
ICM_DECOMPRESS_GET_FORMAT message. For information on the
ICM_DECOMPRESS_GET_FORMAT message, see “Decompressing Video Data” later
in this chapter.

Messages Used to Interrogate the Driver
The client-application uses the following messages to obtain or display information about
your driver:

02/10/93

 3-11

ICM_ABOUT

This message displays the about dialog box for the driver.
ICM_GETINFO

This message obtains information about the driver.

The client-application sends the ICM_ABOUT message to display your driver’s about
box. If the client-application sets dwParam1 to -1, it wants to know if your driver
supports display of an about box. Your driver returns ICERR_OK if it does, and it returns
ICERR_UNSUPPORTED if it does not. Your driver should only display an about box if
the client-application specifies a window handle in dwParam1. The window handle
indicates the parent of the dialog box.

The client-application uses the ICM_GETINFO message to obtain a description of your
driver. Your driver should respond to this message by filling in the ICINFO structure it
receives with the message. The flags your driver sets in the structure tells the client-
application what capabilities the driver supports. The ICINFO structure has the following
fields:

typedef struct {
 DWORD dwSize;
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwVersionICM;
 char szName[16];
 char szDescription[128];
 char szDriver[128];
 } ICINFO;

Set the dwSize field to the size of the ICINFO structure.

Set the fccType field to the four-character code to 'vidc' for video streams.

Set fccHandler to the four-character code identifying your driver. Your driver should
use the four-character code used to install your driver and used in the description line of
the .DEF file.

Specify the version number of the driver in the dwVersion field.

Set the dwVersionICM field to 1.0 (0x00010000). This specifies the version of the
compression manager supported by this driver.

Use the szName[16] field to specify the short name of the compressor. The null-
terminated name should be suitable for use in list boxes.

Use the szDescription[128] field to specify a null-terminated string containing a long
name for the compressor.

02/10/93

2-12 Video for Windows Programmer's Guide

Your driver will not normally use the szDriver[128] field. This field is used to specify the
module that contains the driver.

Set the flags corresponding to the capabilities of your driver in the low-ordered word of
the dwFlags field. You can use the high-ordered word for driver-specific flags. The
following flags are defined for video compression and decompression drivers:

VIDCF_QUALITY

The driver supports quality levels.
VIDCF_CRUNCH

The driver supports compressing to an arbitrary frame size.
VIDCF_TEMPORAL

The driver supports inter-frame compression.
VIDCF_DRAW

The driver supports drawing to hardware with the ICM_DRAW messages.
VIDCF_FASTTEMPORAL

The driver can do temporal compression and doesn’t need the previous
frame.

Configuration Messages for Compression Quality
The client-application sends the following messages to obtain and set image quality
values:

ICM_GETDEFAULTQUALITY

This message obtains the default quality settings of the driver.
ICM_GETQUALITY

This message obtains the current driver quality settings.
ICM_SETQUALITY

This message sets the driver quality settings.

For the video compression and decompression interface, quality is indicated by an integer
ranging from 0 to 10,000. A quality level of 7,500 typically indicates an acceptable image
quality. A quality level of 0 typically indicates a very low quality level (possibly even a
totally black image). As the quality level moves from an acceptable level to low quality,
the image might have a loss of color as the colors in the color table are merged, or as the
color resolution of each pixel decreases. If your driver supports temporal compression (it

02/10/93

 3-13

needs information from the previous frame to decompress the current frame), low and
high quality might imply how much this type of compression can degrade image quality.
For example, your driver might limit the compression of a high quality image to preserve
sharp detail and color fidelity. Conversely, your driver might sacrifice these qualities to
obtain very compressed output files.

If your driver supports quality values, it maps the values to its internal definitions used by
the compression algorithms. Thus, the definition of image quality will vary from driver to
driver, and, quite possibly, from compression algorithm to compression algorithm. Even
though the values are not definitive, your driver should support as many individual values
as possible.

The client-application obtains the capabilities for compression quality with the
ICM_GETDEFAULTQUALITY and ICM_GETQUALITY messages. If your driver
supports quality levels, it should respond to the ICM_GETDEFAULTQUALITY message
by returning a value between 0 and 10,000 that corresponds to a good default quality level
for your compressor. Your should return the current quality level for the
ICM_GETQUALITY message.

The client-application sends the ICM_SETQUALITY message to set the quality level of
your driver. Your driver should pass the quality value directly to the compression routine.

If your driver supports quality levels, it should set the VIDCF_QUALITY flag when it
responds to the ICM_GETINFO message.

Configuration Messages for Key Frame Rate and
Buffer Queue
The client-application sends the following messages to obtain the key frame rate and size
of the buffer queue desired by the device driver:

ICM_GETDEFAULTKEYFRAMERATE

This message obtains the default key frame rate of the driver used during
compression.

ICM_GETBUFFERSWANTED

This message obtains the number of buffers the driver wants for pre-
buffering when drawing data.

The client-application uses ICM_GETDEFAULTKEYFRAMERATE to obtain the
drivers recommendation for the key frame spacing for compressing data. (A key frame is
a frame in a video sequence that does not require information from a previous frame for
decompression.) If the client-application does not specify another value, this value
determines how frequently the client-application sends an uncompressed image to your
driver with the ICM_COMPRESS_KEYFRAME flag set. If your driver supports this

02/10/93

2-14 Video for Windows Programmer's Guide

option, it should specify the key frame rate in the DWORD pointed to by dwParam1 and
return ICERR_OK. If it does not support this option, return ICERR_UNSUPPORTED.

The client-application uses ICM_GETBUFFERSWANTED to determine if your driver
wants to maintain a queue of buffers. Your driver might maintain a queue of buffers if it
renders the decompressed data and it wants to keep its hardware pipelines full. If your
driver supports this option, it should specify the number of buffers in the DWORD
pointed to by dwParam1 and return ICERR_OK. If it does not support this option, return
ICERR_UNSUPPORTED.

Video Compression and Decompression
Messages

This section discusses the driver specific messages for video compression and
decompression. The messages are covered by the three basic operations of these drivers:
video compression, video decompression using the client-application, and video
decompression directly to video hardware. Because video compression and
decompression drivers typically use AVI files and bitmaps, this section includes a brief
overview of the AVI RIFF format, the BITMAPINFO data structure, and the
BITMAPINFOHEADER data structure.

About the AVI File Format
Many of the video compression and decompression messages rely on information
embedded in the AVI RIFF file. Drivers do not typically access this information directly.
They rely on the client-application to read and write the AVI file and maintain the RIFF
file structure. While your driver should not have to manipulate an AVI file, understanding
its structure helps identify the purpose of the information your driver will supply and
receive.

AVI files have the following general structure:

02/10/93

 3-15

RIFF('AVI'
 LIST('hdrl'
 avih(<<MainAVIHeader>>)
 LIST ('strl'
 strh(<<Stream header>>)
 strf(<<Stream format>>)
 strd(<<Stream data>>)
)
)

 LIST('movi'
 '00??'(<<driver Data>>)
 .
 .
 .
 '00??'(<<driver Data>>)
)
 ' idx1'(<<AVIIndex>>)
)

The following table summarizes the entries in the AVI RIFF file:

RIFF Chunk Description

RIFF 'AVI ' Identifies the file as AVI RIFF file.

LIST 'hdrl' Identifies a chunk containing subchunks that define the
format of the data.

'avih' Identifies a chunk containing general information
about the file. This includes the number of streams and
the width and height of the AVI sequence.

LIST 'strl' Identifies a chunk containing subchunks that describe
the streams in a file. This chunk exists for each stream.

'strh' Identifies a chunk containing a stream header. This
includes the type of stream.

'strf' Identifies a chunk describing the format of the data in
the stream. For video streams, the information in this

02/10/93

2-16 Video for Windows Programmer's Guide

chunk is a BITMAPINFO structure. It includes palette
information if appropriate.

'strd' Identifies a chunk containing information used by
compressor and decompressors. For video compressors
and decompressors, this includes the state formation.

LIST 'movi ' Identifies a chunk containing subchunks used for the
audio and video data.

'00??' Identifies a chunk containing the audio or video data.
For this example, both the zeros (00) and the question
marks (??) are used as place holders. The zeros are
replaced by stream numbers. The question marks are
replaced by codes indicating the type of data in the
chunk. For example, a stream for a compressed DIB
might use '01dc'.

'idx1' Identifies a chunk containing the file index.

For more information on the AVI file format, see Chapter 4, “AVI Files.”

Identifying Compression Formats
The BITMAPINFO data structure defined by Windows is used with many of the
compression and decompression messages to pass information about the bitmaps being
compressed and decompressed. This structure has the following fields:

typedef struct tagBITMAPINFO {
 BITMAPINFOHEADER bmiHeader;
 RGBQUAD bmiColors[];
 } BITMAPINFO;

The bmiColors field is used for the color table. The BITMAPINFOHEADER data
defined for the bmiHeader field is used to pass information about the format of the
bitmaps being compressed and decompressed. This structure has the following fields:

02/10/93

 3-17

typedef struct tagBITMAPINFOHEADER {
 DWORD biSize;
 LONG biWidth;
 LONG biHeight;
 WORD biPlanes;
 WORD biBitCount;
 DWORD biCompression;
 DWORD biSizeImage;
 LONG biXPelsPerMeter;
 LONG biYPelsPerMeter;
 DWORD biClrUsed;
 DWORD biClrImportant;
 } BITMAPINFOHEADER;

The biCompression field specifies the type of compression used or requested. Windows
defines the following compression formats:

BI_RGB

Specifies the bitmap is not compressed.
BI_RLE8

Specifies a run-length encoded format for bitmaps with 8 bits per pixel.
BI_RLE4

Specifies a run-length encoded format for bitmaps with 4 bits per pixel.

Extensions to the BI_RGB format include 16 and 32 bits per pixel bitmap formats. These
formats do not use a color table. They embed the colors in the WORD or DWORD
representing each pixel.

The 16 bit BI_RGB format is identified by setting biCompression to BI_RGB and setting
biBitCount to 16. For this format, each pixel is represented by a 16-bit RGB color value.
The high-bit of this value is zero. The remaining bits are divided into 3 groups of 5-bits to
represent the red, green, and blue color values.

The 32 bit BI_RGB format is identified by setting biCompression to BI_RGB and setting
biBitCount to 32. For this format, each pixel is represented by a 32 bit (4 byte) RGB
color value. One byte is used for each red, green, and blue color value. The fourth byte is
set to zero.

Your driver should support the BI_RGB format for 8 bit per pixel bitmaps. If practical, it
should also support this format for 16, 24, and 32 bits per pixel bitmaps.

In addition to the new BI_RGB formats, the BI_BITFIELDS format adds new
compression capabilities. This format specifies a bitmap is not compressed and color
masks are defined in the bmiColors field of the BITMAPINFO data structure. The first
DWORD in the bmiColors field is the red mask, the second DWORD is the green mask,
and the third DWORD is the blue mask.

Your driver can also extend the format set by defining custom formats. Custom formats

02/10/93

2-18 Video for Windows Programmer's Guide

use a four character code for the format in the biCompression field in place of the
standard constants. Your driver can use a custom format to support a unique or
nonstandard compression type. When you define a custom format, you can specify values
other than 1, 4, 8, 16, 24, or 32 for the biBitCount field.

For more information about the new formats and registering custom formats, see Chapter
5, “DIB Format Extensions for Microsoft Windows.” For more information about the
existing formats, see the Microsoft Windows Programmer’s Reference.

Decompressing Video Data
The client-application sends a series of messages to your driver to coordinate
decompressing video data. The coordination involves the following activities:

· Setting the driver state
· Specifying the input format and determining the decompression format
· Preparing to decompress video
· Decompressing the video
· Ending decompression

The following messages are used by video compression and decompression drivers for
these decompression activities:

ICM_DECOMPRESS

This message tells the driver to decompress a frame of data into a buffer
provided by the client-application.

ICM_DECOMPRESS_BEGIN

This message tells the driver to prepare for decompressing data.
ICM_DECOMPRESS_END

This message tells the driver to clean up after decompressing.
ICM_DECOMPRESS_GET_FORMAT

This message asks the driver to suggest a good format for the decompressed
data.

ICM_DECOMPRESS_QUERY

This message asks the driver if it can decompress a specific input format.
ICM_DECOMPRESS_GET_PALETTE

This message asks the driver to return the color table of the output data
structure.

02/10/93

 3-19

The video decompressed with these messages is returned to the client-application and it
handles the display of data. If you want your driver to control the video timing or directly
update the display, use the ICM_DRAW messages explained in “Decompressing Directly
to Video Hardware.” If you return the decompressed video to the client-application, your
driver can decompress data using either software or hardware with the
ICM_DECOMPRESS messages.

Setting the Driver State
The client-application restores the driver state by sending ICM_SETSTATE. The client-
application recalls the state information from the 'strd' data chunk of the AVI file. (The
information was originally obtained with the ICM_GETSTATE message.) The client-
application does not validate any data in the state information. It simply transfers the state
information it reads from the 'strd' data chunk to your driver.

The client-application sends the information to your driver in a buffer pointed to by
dwParam1. The size of the buffer is specified in dwParam2. The organization of the data
in the buffer is driver dependent. If dwParam1 is NULL, your driver should return to its
default state.

Note:

All information required for decompressing the image data should be
part of the format data. Only optional compression parameters can be

included with the state information.

Specifying the Input Format and Determining the
Decompression Format
Depending on how the client-application will use the decompressed data, it will send
either ICM_DECOMPRESS_GET_FORMAT or ICM_DECOMPRESS_QUERY to
specify the input format and determine the decompression format. The client-application
sends ICM_DECOMPRESS_GET_FORMAT if it wants your driver to suggest the
decompressed format. The client-application sends ICM_DECOMPRESS_QUERY to
determine if your driver supports a format it is suggesting.

Both messages send a pointer to a BITMAPINFO data structure in dwParam1. This
structure specifies the format of the incoming compressed data. The input format was
obtained by the client-application from the 'strf' chunk in the AVI file. While the output
format is specified by dwParam2, your driver must use the message to determine how the
parameter is defined.

If your driver gets ICM_DECOMPRESS_GET_FORMAT, both dwParam1 and
dwParam2 point to BITMAPINFO data structures. The input format data is contained in
the dwParam1 structure. Your driver should fill in the dwParam2 BITMAPINFO with
information about the format it will use to decompress the data. If your driver can handle
the format, return the number of bytes used for the dwParam2 structure as the return
value. If your driver cannot handle the input format, or the input format from the 'strf'
chunk is incorrect, your driver should return ICERR_BADFORMAT to fail the message.

02/10/93

Note
:

2-20 Video for Windows Programmer's Guide

If you have format information in addition to that specified in the
BITMAPINFOHEADER structure, you can add it immediately after this structure. If you
do this, update the biSize field to specify the number of bytes used by the structure and
your additional information. If a color table is part of the BITMAPINFO information, it
follows immediately after your additional information. Return ICERR_OK when your
driver has finished updating the data format.

If your driver gets ICM_DECOMPRESS_QUERY, dwParam1 points to a
BITMAPINFO data structure containing the input format data. The dwParam2 parameter
will either be NULL or contain a pointer to a BITMAPINFO structure describing the
decompressed format the client-application wants to use.

If dwParam2 is NULL, your decompression driver can use any output format. In this
case, the client-application wants to know if you can decompress the input format and it
doesn’t care about the output format. If dwParam2 points to a BITMAPINFO structure,
the suggested format will be the native or best format for the decompressed data. For
example, if playback is on an 8-bit device, the client-application will suggest an 8-bit
DIB.

If your driver supports the specified input and output format (which might also include
stretching the image), or it supports the specified input with NULL specified for
dwParam2, return ICERR_OK to indicate the driver accepts the formats.

Your driver does not have to accept the formats suggested. If you fail the message by
returning ICERR_BADFORMAT, the client-application will suggest alternate formats
until your driver accepts one. If your driver exhausts the list of formats normally used, the
client-application requests a format with ICM_DECOMPRESS_GET_FORMAT.

If you are decompressing to 8-bit data, your driver will also receive the
ICM_DECOMPRESS_GET_PALETTE message. Your driver should add a color table to
the BITMAPINFO data structure and specify the number of palette entries in the
biClrUsed field. The space reserved for the color table will always be 256 colors.

Preparing to Decompress Video
When the client-application is ready, it sends the ICM_DECOMPRESS_BEGIN message
to the driver. The client-application sets dwParam1 and dwParam2 to the BITMAPINFO
data structures describing the input and output formats. If either of the formats is
incorrect, your driver should return ICERR_BADFORMAT. Your driver should create
any tables and allocate any memory that it needs to decompress data efficiently. When
done, return ICERR_OK.

Decompressing the Video
The client-application sends ICM_DECOMPRESS each time it has an image to
decompress. The client-application uses the flags in the file index to ensure the initial
frame in a decompression sequence is a key frame.

The ICDECOMPRESS data structure specified in dwParam1 contains the decompression

02/10/93

 3-21

parameters. The value specified in dwParam2 specifies the size of the structure. The
ICDECOMPRESS data structure has the following fields:

typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiInput;
 LPVOID lpInput;
 LPBITMAPINFOHEADER lpbiOutput;
 LPVOID lpOutput;
 DWORD ckid
 } ICDECOMPRESS;

The format of the input data is specified in a BITMAPINFOHEADER structure pointed
to by lpbiInput. The input data is in a buffer specified by lpInput. The lpbiOutput and
lpOutput fields contain pointers to the format data and buffer used for the output data.

The client-application sets the ICDECOMPRESS_HURRYUP flag in the dwFlags field
if it wants your driver to try and decompress the data at a faster rate. The client-
application will not display any data decompressed with this flag. This might let your
driver avoid decompressing a frame or data, or let it minimally decompress when it needs
information from this frame to prepare for decompressing a following frame.

Ending Decompression
Your driver receives ICM_DECOMPRESS_END when the client-application no longer
needs data decompressed. For this message, your driver should free the resources it
allocated for the ICM_DECOMPRESS_BEGIN message.

Other Messages Received During Decompression
Decompression drivers also receive the ICM_DRAW_START and ICM_DRAW_STOP
messages. These messages tell the driver when the client-application starts and stops
drawing the images. Most decompression drivers can ignore these messages.

Compressing Video Data
Similar to decompressing video data, your driver will receive a series of messages when it
is used to compress data. The client-application will send messages to your driver to
coordinate the following activities:

· Obtaining the driver state
· Specifying the input format and determining the compression format
· Preparing to compress video
· Compressing the video
· Ending compression

The following messages are used by video compression drivers:

02/10/93

2-22 Video for Windows Programmer's Guide

ICM_COMPRESS

This message tells the driver to compress a frame of data into the buffer
provided by the client-application.

ICM_COMPRESS_BEGIN

This message tells the driver to prepare for compressing data.
ICM_COMPRESS_END

This message tells the driver to clean up after compressing.
ICM_COMPRESS_GET_FORMAT

This message asks the driver to suggest the output format of the compressed
data.

ICM_COMPRESS_GET_SIZE

This message requests the maximum size of one frame of data when it is
compressed in the output format.

ICM_COMPRESS_QUERY

This message asks the driver if it can compress a specific input format.

The video compressed with these messages is returned to the client-application. When
compressing data, your driver can use either software or hardware to do the compression.

When AVI recompresses a file, each frame is decompressed to a full
frame before it is passed to the compressor.

Obtaining the Driver State
The client-application obtains the driver state by sending ICM_GETSTATE. The client-
application determines the size of the buffer needed for the state information by sending
this message with dwParam1 set to NULL. Your driver should respond to the message by
returning the size of the buffer it needs for state information.

After it determines the buffer size, the client-application resends the message with
dwParam1 pointing to a block of memory it allocated. The dwParam2 parameter
specifies the size of the memory block. Your driver should respond by filling the memory
with its state information. If your driver uses state information, include only optional
decompression parameters with the state information. State information typically includes
the setup specified by user with the ICM_CONFIGURE dialog box. Any information
required for decompressing the image data must be included with the format data. When
done, your driver should return the size of the state information.

The client-application does not validate any data in the state information. It simply stores

02/10/93

Note
:

 3-23

the state information in the 'strd' data chunk of the AVI file.

Specifying the Input Format and Determining the
Compression Format
The client-application uses the ICM_COMPRESS_GET_FORMAT or
ICM_COMPRESS_QUERY message to specify the input format and determine the
compression (output) format. The client-application sends
ICM_COMPRESS_GET_FORMAT if it wants your driver to suggest the compressed
format. The client-application sends ICM_COMPRESS_QUERY to determine if your
driver supports a format it is suggesting.

Both messages have a pointer to a BITMAPINFO data structure in dwParam1. This
structure specifies the format of the incoming uncompressed data. The contents of
dwParam2 depends on the message.

If the client-application wants your driver to suggest the format, it determines the size of
the buffer needed for the compressed data format by sending
ICM_COMPRESS_GET_FORMAT. When requesting the buffer size, the client-
application uses dwParam1 to point to a BITMAPINFO structure and sets dwParam2 to
NULL. Based on the input format, your driver should return the number of bytes needed
for the format buffer. Return a buffer size at least large enough to hold a
BITMAPINFOHEADER data structure and a color table.

The client-application gets the output format by sending
ICM_COMPRESS_GET_FORMAT with valid pointers to BITMAPINFO structures in
both dwParam1 and dwParam2. Your driver should return the output format in the buffer
pointed to by dwParam2. If your driver can produce multiple formats, the format selected
by your driver should be the one that preserves the greatest amount of information rather
than one that compresses to the most compact size. This will preserve image quality if the
video data is later edited and recompressed.

The output format data becomes the 'strf' chunk in the AVI RIFF file. The data must start
out like a BITMAPINFOHEADER data structure. You can include any additional
information required to decompress the file after the BITMAPINFOHEADER data
structure. A color table (if used) follows this information.

If you have format data following the BITMAPINFOHEADER structure, update the
biSize field to specify the number of bytes used by the structure and your additional data.
If a color table is part of the BITMAPINFO information, it follows immediately after
your additional information.

If your driver cannot handle the input format, it returns ICMERR_BADFORMAT to fail
the message.

If your driver gets ICM_COMPRESS_QUERY, the dwParam1 parameter points to a
BITMAPINFO data structure containing the input format data. The dwParam2 parameter
will either be NULL or contain a pointer to a BITMAPINFO structure describing the
compressed format the client-application wants to use. If dwParam2 is NULL, your

02/10/93

2-24 Video for Windows Programmer's Guide

compression driver can use any output format. (The client-application just wants to know
if your driver can handle the input.) If dwParam2 points to a BITMAPINFO structure, the
client-application is suggesting the output format.

If your driver supports the specified input and output format, or it supports the specified
input with NULL specified for dwParam2, return ICERR_OK to indicate the driver
accepts the formats. Your driver does not have to accept the suggested format. If you fail
the message by returning ICERR_BADFORMAT, the client-application suggests
alternate formats until your driver accepts one. If your driver exhausts the list of formats
normally used, the client-application requests a format with
ICM_COMPRESS_GET_FORMAT.

Initialization for the Compression Sequence
When the client-application is ready to start compressing data, it sends the
ICM_COMPRESS_BEGIN message. The client-application uses dwParam1 to point to
the format of the data being compressed, and uses dwParam2 to point to the format for
the compressed data. If your driver cannot handle the formats, or if they are incorrect,
your driver should return ICERR_BADFORMAT to fail the message.

Before the client-application starts compressing data, it sends
ICM_COMPRESS_GET_SIZE. For this message the client-application uses dwParam1
to point to the input format and uses dwParam2 to point to the output format. Your driver
should return the worst case size (in bytes) that it expects a compressed frame to occupy.
The client-application uses this size value when it allocates buffers for the compressed
video frame.

Compressing the Video
The client-application sends ICM_COMPRESS for each frame it wants compressed. It
uses dwParam1 to point to an ICCOMPRESS structure containing the parameters used
for compression. Your driver uses the buffers pointed to by the fields of ICCOMPRESS
for returning information about the compressed data.

Your driver returns the actual size of the compressed data in the biSizeImage field in the
BITMAPINFOHEADER data structure pointed to by the lpbiOutput field of
ICCOMPRESS. The ICCOMPRESS data structure has the following fields:

02/10/93

 3-25

typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiOutput;
 LPVOID lpOutput;
 LPBITMAPINFOHEADER lpbiInput;
 LPVOID lpInput;
 LPDWORD lpckid;
 LPDWORD lpdwFlags;
 LONG lFrameNum;
 DWORD dwFrameSize;
 DWORD dwQuality;
 LPBITMAPINFOHEADER lpbiPrev;
 LPVOID lpPrev;
 } ICCOMPRESS;

The format of the input data is specified in a BITMAPINFOHEADER structure pointed
to by lpbiInput. The input data is in a buffer specified by lpInput. The lpbiOutput and
lpOutput fields contain pointers to the format data and buffer used for the output data.
Your driver must indicate the size of the compressed video data in the biSizeImage field
in the BITMAPINFO structure specified for lpbiOutput.

The dwFlags field specifies flags used for compression. The client-application sets
ICM_COMPRESS_KEYFRAME flag if the input data should be treated as a key frame.
(A key frame is one that does not require data from a previous frame for decompression.)
When this flag is set, your driver should treat the image as the initial image in a sequence.

The lpckid field specifies a pointer to a buffer used to return the chunk ID for data in the
AVI file. Your driver should assign a two-character code for the chunk ID only if it uses a
custom chunk ID. For more information on chunk IDs, see Chapter 4, “AVI Files.”

The lpdwFlags field specifies a pointer to a buffer used to return flags for the AVI index.
The client-application will add the returned flags to the file index for this chunk. If the
compressed frame is a key frame (a frame that does not require a previous frame for
decompression), your driver should set the AVIIF_KEYFRAME flag in this field. Your
driver can define its own flags but they must be set in the high word only.

The lFrameNum field specifies the frame number of the frame to compress. If your
driver is performaing fast temporal compression, check this field to see if frames are
being sent out of order or if the client-application is having a frame recompressed.

The dwFrameSize field indicates the maximum size (in bytes) desired for the compressed
frame. If it specifies zero, your driver determines the size of the compressed image. If it is
non-zero, your driver should try to compress the frame to within the specified size. This
might require your driver to sacrifice image quality (or make some other trade-off) to
obtain the size goal. Your driver should support this if it sets the VIDCF_CRUNCH flag
when it responds to the ICM_GETINFO message.

The dwQuality field specifies the compression quality. Your driver should support this if
it sets the VIDCF_QUALITY flag when it responds to the ICM_GETINFO message.

The format of the previous data is specified in a BITMAPINFOHEADER structure
pointed to by lpbiPrev. The input data is in a buffer specified by lpPrev. Your driver will
use this information if it performs temporal compression (that is, it needs the previous

02/10/93

2-26 Video for Windows Programmer's Guide

frame to compress the current frame). If your driver supports temporal compression, it
should set the VIDCF_TEMPORAL flag when it responds to the ICM_GETINFO
message. If your driver supports temporal compression and does not need the information
in the lpbiPrev and lpPrev fields, it should set the VIDCF_FASTTEMPORAL flag when
it responds to the ICM_GETINFO message. The VIDCF_FASTEMPORAL flag can
decrease the processing time because your driver does not need to access data specified in
lpbiPrev and lpPrev.

When your driver has finished decompressing the data, it returns ICERR_OK.

Ending Compression
Your driver receives ICM_COMPRESS_END when the client-application no longer
needs data compressed, or when the client-application is changing the format or palette.
After sending ICM_COMPRESS_END, the client-application must send
ICM_COMPRESS_BEGIN to continue compressing data. Your driver should not expect
the client-application to send a ICM_COMPRESS_END message for each
ICM_COMPRESS_BEGIN message. The client-application can use
ICM_COMPRESS_BEGIN to restart compression without sending
ICM_COMPRESS_END.

When the driver is no longer needed, the system will close it by sending DRV_CLOSE.

Decompressing Directly to Video Hardware
Drivers that can render video directly to hardware should support the ICM_DRAW
messages in addition to the ICM_DECOMPRESS messages. The ICM_DRAW messages
decompress data directly to hardware rather than into a data buffer returned to the client-
application by the decompression driver.

Your driver will receive a series of messages from the client-application to coordinate the
following activities to decompress a video sequence:

· Setting the driver state
· Specifying the input format
· Preparing to decompress video
· Decompressing the video
· Ending decompression

The following ICM_DRAW messages are used by video decompression drivers for these
decompression activities:

ICM_DRAW

This message tells the driver to decompress a frame of data and draw it to
the screen.

02/10/93

 3-27

ICM_DRAW_BEGIN

This message tells the driver to get ready to draw data.
ICM_DRAW_END

This message tells the driver to clean up after decompressing an image to
the screen.

ICM_DRAW_REALIZE

This message realizes a palette.
ICM_DRAW_QUERY

This message determines if the driver can render data in a specific format.

The video decompressed with the ICM_DRAW messages is retained by your driver and it
handles the display of data. These messages control only the decompression process. The
messages used to control the drawing are described separately. Your driver will receive
the ICM_DRAW messages only if it sets the VIDCF_DRAW flag when it responds to the
ICM_GETINFO message.

Setting the Driver State
The client-application restores the driver state by sending ICM_SETSTATE. The process
for handling this message is the same as for the ICM_DECOMPRESS messages.

Specifying the Input Format
Because your driver handles the drawing of video, the client-application does not need to
determine the output format. The client-application needs to know only if your driver can
handle the input format. It sends ICM_DRAW_QUERY to determine if your driver
supports the input format. The input format is specified with a pointer to a BITMAPINFO
data structure in dwParam1. The dwParam2 parameter is not used.

If your driver supports the specified input format, return ICERR_OK to indicate the
driver accepts the formats. If your driver does not support the format, return
ICERR_BADFORMAT.

Preparing to Decompress Video
When the client-application is ready, it sends the ICM_DRAW_BEGIN message to the
driver to prepare the driver for decompressing the video stream. Your driver should create
any tables and allocate any memory that it needs to decompress data efficiently.

The client-application sets dwParam1 to the ICDRAWBEGIN data structure. The size of
this structure is contained in dwParam2. The ICDRAWBEGIN structure has the
following fields:

02/10/93

2-28 Video for Windows Programmer's Guide

typedef struct {
 DWORD dwFlags;
 HPALETTE hpal;
 HWND hwnd;
 HDC hdc;
 int xDst;
 int yDst;
 int dxDst;
 int dyDst;
 LPBITMAPINFOHEADER lpbi;
 int xSrc;
 int ySrc;
 int dxSrc;
 int dySrc;
 DWORD dwRate;
 DWORD dwScale;
 } ICDRAWBEGIN;

The dwFlags field can specify any of the following flags:

ICDRAW_QUERY

Set when the client-application wants to determine if the driver can handle
the decompression. The driver does not actually decompress the data.

ICDRAW_FULLSCREEN

Indicates the full screen is used to draw the decompressed data.
ICDRAW_HDC

Indicates a window and DC are used to draw the decompressed data.

If the ICDRAW_QUERY flag is set, the client-application is interrogating your driver to
determine if can decompress the data with the parameters specified in the
ICDRAWBEGIN data structure. Your driver should return ICM_ERR_OK if it can
accept the parameters. It should return ICM_ERR_NOTSUPPORTED if it does not
accept them.

When the ICDRAW_QUERY flag is set, ICM_DRAW_BEGIN will not be paired with
ICM_DRAW_END. Your driver will receive another ICM_DRAW_BEGIN without this
flag to start the actual decompression sequence.

The ICDRAW_FULLSCREEN and ICDRAW_HDC flags are described with the data
structure fields associated with them.

Your driver can ignore the palette handle specified in the hpal field.

The hwnd and hdc field specifies the handle of the window and DC used for drawing.
These fields are valid only if the ICDRAW_HDC flag is set in the dwFlags field.

The xDst and yDst fields specify the x- and y-position of the upper-right corner of the
destination rectangle. (This is relative to the current window or display context.) The
dxDst and dyDst fields specifies the width and height of the destination rectangle. These

02/10/93

 3-29

fields are valid only if ICDRAW_HDC flag is set. The ICDRAW_FULLSCREEN flag
indicates the entire screen should be used for display and overrides any values specified
for these fields.

The xSrc, ySrc, dxSrc, and dySrc fields specify a source rectangle used to clip the
frames of the video sequence. The source rectangle is stretched to fill the destination
rectangle. The xSrc and ySrc fields specify x- and y-position of the upper-right corner of
the source rectangle. (This is relative to a full frame image of the video.) The dxSrc and
dySrc fields specify the width and height of the source rectangle.

Your driver should stretch the image from the source rectangle to fit the destination
rectangle. If the client-application changes the size of the source and destination
rectangles, it will send the ICM_DRAW_END message and specify new rectangles with a
new ICM_DRAW_BEGIN message. For more information on handling the source and
destination rectangles, see the StretchDIBits function in the Microsoft Windows
Programmer’s Reference.

The lpbi field specifies a pointer to a BITMAPINFOHEADER data structure containing
the input format.

The dwRate field specifies the decompression rate in an integer format. To obtain the rate
in frames-per-second divide this value by the value in dwScale. Your driver will use these
values when it handles the ICM_DRAW_START message.

If your driver can decompress the data with the parameters specified in the
ICDRAWBEGIN data structure, your driver should return ICERR_OK and allocate any
resources it needs to efficiently decompress the data. If your driver cannot decompress the
data with the parameters specified, your driver should fail the message by returning
ICERR_NOTSUPPORTED. When this message fails, your driver will not get an
ICM_DRAW_END message so it should not prepare its resources for other ICM_DRAW
messages.

Decompressing the Video
The client-application sends ICM_DRAW each time it has an image to decompress.
(Your driver should use this message to decompress images. It should wait for the
ICM_DRAW_START message before it begins to render them.) The client-application
uses the flags in the file index to ensure the first frame in a series of frames decompressed
starts with a key frame boundary. Your driver must allocate the memory it needs for the
decompressed image.

The ICDRAW data structure specified in dwParam1 contains the decompression
parameters. The value specified in dwParam2 specifies the size of the structure. The
ICDRAW data structure has the following fields:

02/10/93

2-30 Video for Windows Programmer's Guide

typedef struct {
 DWORD dwFlags;
 LPVOID lpFormat;
 LPVOID lpData;
 DWORD cbData;
 } ICDRAW;

The format of the input data is specified in a BITMAPINFOHEADER structure pointed
to by lpFormat. The input data is in a buffer specified by lpData. The number of bytes in
the input buffer is specified by cbData.

The client-application sets the ICDRAW_HURRYUP flag in the dwFlags field when it
wants your driver to try to decompress data at a faster rate. For example, the client-
application might use this flag when the video is starting to lag behind the audio. If your
driver cannot speed up its decompression and rendering performance, it might be
necessary to avoid rendering a frame of data. The client-application sets the
ICDRAW_UPDATE flag and sets lpData to NULL if it wants your driver to update the
screen based on data previously received.

When your driver has finished decompressing the data, it returns ICERR_OK. After the
driver returns from this message, the client-application deallocates or reuses the memory
containing the format and image data. If your driver needs the format or image data for
future use, it should copy the data it needs before it returns from the message.

Ending Decompression
Your driver receives ICM_DRAW_END when the client-application no longer needs data
decompressed or rendered. For this message, your driver should free the resources it
allocated for the ICM_DRAW_BEGIN message. Your driver should also leave the
display in the full screen mode.

After sending ICM_DRAW_END, the client-application must send
ICM_DRAW_BEGIN to continue decompressing data. Your driver should not expect the
client-application to send a ICM_DRAW_END message for each ICM_DRAW_BEGIN
message. The client-application can use ICM_DRAW_BEGIN to restart decompression
without sending ICM_DRAW_END.

Rendering the Data
The client-application sends the following messages to control the driver’s internal clock
for rendering the decompressed data:

ICM_DRAW_GETTIME

This message obtains the value of the driver’s internal clock if it is handling
the timing of drawing frames.

02/10/93

 3-31

ICM_DRAW_SETTIME

This message sets the driver’s internal clock if it is handling the timing of
drawing frames.

ICM_DRAW_START

This message tells the driver to start its internal clock if it is handling the
timing of drawing frames.

ICM_DRAW_STOP

This message tells the driver to stop its internal clock if it is handling the
timing for drawing frames.

ICM_DRAW_WINDOW

This message tells the driver that the display window has been moved,
hidden, or displayed.

ICM_DRAW_FLUSH

This message tells the driver to flush any frames that are waiting to be
drawn.

The client-application sends ICM_DRAW_START to have your driver start (or continue)
rendering data at the rate specified by the ICM_DRAW_BEGIN message. The
ICM_DRAW_STOP message pauses the internal clock. Neither of these messages use
dwParam1, dwParam2, or a return value.

The client-application uses ICM_DRAW_GETTIME to obtain the value of the internal
clock. Your driver returns the current time value (this is normally frame numbers for
video) in the DWORD indicated by the pointer specified by dwParam1. The current time
is relative to the start of drawing.

The client-application uses ICM_DRAW_SETTIME to set the value of the internal clock.
Typically, the client-application uses this message to synchronize the driver’s clock to an
external clock. Your driver should set its clock to the value (this is normally frame
numbers for video) specified in the DWORD pointed to by dwParam1.

The client-application sends ICM_DRAW_FLUSH to have your driver discard any
frames that have not been drawn.

Using Installable Compressors for Non-video
Data

Installable compressors are not necessarily limited to video data. By using a different
value than 'vidc' in the fccType field, you can specify that your installable driver expects

02/10/93

2-32 Video for Windows Programmer's Guide

to handle a type of data that is not video. (Four-character codes for non-video data should
also be registered. See the “Architecture of a Video Compression and Decompression
Driver” section for information on registering four-character codes.)

While VidEdit does not support data that is not audio or video, MCIAVI does provide
limited support for other data types using installable renderers. If you create a stream with
a four-character code type that does not represent audio or video, its type and handler
information will be used to search for a driver capable of handling the data. The search
will follow the same procedure used for installable compressor drivers.

Writing a driver to render non-video data is very similar to rendering video, with the
following differences:

· The format used is not a BITMAPINFO structure. The format is defined by the
class of decompressor.

· The ICM_DECOMPRESS messages are not used. All data is rendered using
the ICM_DRAW messages because there is no defined decompressed form for
arbitrary data.

Testing Video Compression and Decompression
Drivers

You can exercise both the compression and decompression capabilities of a driver with
the VidEdit editing tool. You can also exercise the decompression capabilities of a driver
with MCIAVI. (One way to test the decompression capabilities is to preview an unedited
file in VidEdit. For this function, VidEdit uses MCIAVI to decompress the file.)

Video Compression and Decompression Driver
Reference

This section is an alphabetic reference to the messages and data structures provided by
Windows for use by video compression and decompress drivers. There are separate
sections for messages and data structures. The COMPDDK.H file defines the messages
and data structures.

Video Compression and Decompression Driver
Message Reference
Windows communicates with video compression and decompression drivers through
messages sent to the driver. The driver processes these messages with its DriverProc
entry-point function.

The following messages are used by video compression and decompression drivers for
compressing data:

02/10/93

 3-33

ICM_COMPRESS

This message tells the driver to compress a frame of data into the buffer
provided by the calling application.

ICM_COMPRESS_BEGIN

This message prepares the driver for compressing data.
ICM_COMPRESS_END

This message tells the driver to clean up after compressing.
ICM_COMPRESS_GET_FORMAT

This message returns the output format of the compressed data.
ICM_COMPRESS_GET_SIZE

This message obtains the maximum size of one frame of data when it is
compressed in the output format.

ICM_COMPRESS_QUERY

This message asks the driver if it can compress a specific input format.

The following messages are used by video compression and decompression drivers for
decompression:

ICM_DECOMPRESS

This message tells the driver to decompress a frame of data into a buffer
provided by the calling application.

ICM_DECOMPRESS_BEGIN

This message prepares the driver for decompressing data.
ICM_DECOMPRESS_END

This message tells the driver to clean up after decompressing.
ICM_DECOMPRESS_GET_FORMAT

This message asks the driver to suggest the format of the decompressed
data.

ICM_DECOMPRESS_GET_PALETTE

This message asks the driver to return the color table of the output data
structure.

02/10/93

2-34 Video for Windows Programmer's Guide

ICM_DECOMPRESS_QUERY

This message asks the driver if it can decompress a specific input format.

The following messages are used by video compression and decompression drivers for
drawing with the compressed data:

ICM_DRAW

This message tells the driver to decompress a frame of data and draw it to
the screen.

ICM_DRAW_BEGIN

This message tells the driver to get ready to draw data.
ICM_DRAW_END

This message tells the driver to clean up after decompressing an image to
the screen.

ICM_DRAW_GETTIME

This message obtains the value of the driver’s internal clock if it is handling
the timing of drawing frames.

ICM_DRAW_QUERY

This message determines if the driver can render data in a specific format.
ICM_DRAW_REALIZE

This message obtains a palette from the driver.
ICM_DRAW_SETTIME

This message informs a video compression driver of what frame it should
be drawing.

ICM_DRAW_START

This message tells the driver to start its internal clock if it is handling the
timing of drawing frames.

ICM_DRAW_STOP

This message tells the driver to stop its internal clock if it is handling the
timing for drawing frames.

02/10/93

 3-35

ICM_DRAW_WINDOW

This message tells the driver when a window has physically moved, or has
become totally obscured.

ICM_DRAW_FLUSH

This message is sent to a video compression driver to flush any frames it
has that are waiting to be drawn.

The following messages are used to configure video compression and decompression
drivers:

ICM_ABOUT

This message displays an about dialog box for a compressor driver.
ICM_CONFIGURE

This message displays a configuration dialog box for a compressor driver.
ICM_GETBUFFERSWANTED

This message obtains information about how much pre-buffering the driver
wants.

ICM_GETDEFAULTKEYFRAMERATE

This message obtains the preferred key frame spacing of the driver.
ICM_GETDEFAULTQUALITY

This message obtains the default quality setting of the driver.
ICM_GETINFO

This message returns information about the driver.
ICM_GETQUALITY

This message obtains the current quality setting of the driver.
ICM_GETSTATE

This message fills in a compressor-specific block of memory describing the
compressor’s current configuration.

ICM_SETQUALITY

This message sets the quality level of the compressor.
ICM_SETSTATE

This message sets the quality level for compression.

02/10/93

2-36 Video for Windows Programmer's Guide

The following system message is used to open video compression and decompression
drivers:

DRV_OPEN

This system message is sent to a video compression driver each time it is
opened.

Video Compression and Decompression Driver
Messages

This section contains an alphabetical list of the video compression and decompression
messages that can be received and sent by video capture drivers. Each message name
contains a prefix, identifying the type of the message.

A message consists of three parts: a message number and two DWORD parameters.
Message numbers are identified by predefined message names. The two DWORD
parameters contain message-dependent values.

DRV_OPEN
This system message is sent to a video compression driver each time it is opened.

DWORD dwDriverIdentifier

Specifies the handle returned to the application opening the driver.
HANDLE hDriver

Specifies the handle created by the system. This handle is returned to the
application. A unique handle is created each time the driver is opened.

LONG lParam1

Specifies a pointer to a NULL-terminated string. The string contains any
characters that follow the filename in the SYSTEM.INI file. If the device
driver was opened by filename, or if there is no additional information, a
NULL string or a NULL pointer is passed. Device drivers should verify that
lParam1 is not NULL before dereferencing it.

02/10/93

Parameters

 3-37

LONG lParam2

Specifies a far pointer to an ICOPEN structure, or zero if the driver is
opened only for configuration by the Drivers option of the Control Panel. If
an ICOPEN structure is passed, the driver should verify that the fccType
field contains 'vidc'. This indicates the driver is opened as a video
compressor.

The driver should return zero to fail the call. A non-zero return value is passed back to the
driver in the ID field each time DriverProc is sent a message with SendDriverMessage
or CloseDriver.

ICM_ABOUT
This message is sent to a video compression driver to display its about dialog box.

DWORD dwParam1

Specifies an HWND which should be the parent of the displayed dialog
box.

If dwParam1 is -1, the driver should return ICERR_OK if it has an about
dialog box, however, the driver should not display it. The driver should
return ICERR_UNSUPPORTED if it does not display a dialog box.

DWORD dwParam2

Not Used.
Return ICERR_OK if the driver supports this message. Otherwise, return
ICERR_UNSUPPORTED.

ICM_CONFIGURE, ICM_GETINFO

ICM_COMPRESS
This message is sent to a video compression driver to compress a frame of data into the
application-supplied buffer.

DWORD dwParam1

Specifies a far pointer to an ICCOMPRESS data structure. The following
fields of the ICCOMPRESS specify the compression parameters:

The lpbiInput field of ICCOMPRESS contains the format of the
uncompressed data; the data itself is in a buffer pointed to by lpInput.

02/10/93

Return Value

Parameters

Return Value

See Also

Parameters

2-38 Video for Windows Programmer's Guide

The lpbiOutput field of the ICCOMPRESS data structure contains a
pointer to the output (compressed) format, and lpOutput contains a pointer
to a buffer used for the compressed data.

The lpbiPrev field of the ICCOMPRESS data structure contains a pointer
to the format of the previous frame, and lpPrev contains a pointer to a
buffer used for the previous data. These fields are used by drivers that do
temporal compression.

The driver should use the biSizeImage field of the
BITMAPINFOHEADER structure associated with lpbiOutput to return
the size of the compressed frame.

The lpdwFlags field points to a DWORD. The driver should fill the
DWORD with the flags that should go in the AVI index. In particular, if the
returned frame is a key frame, your driver should set the
AVIIF_KEYFRAME flag.

The dwFrameSize field contains the size the compressor should try to make
the frame fit within. This size is used for compression methods that can
make tradeoffs between compressed image size and image quality.

The dwQuality field contains the specific quality the compressor should
use if it supports it.

DWORD dwParam2

Specifies the size of the ICCOMPRESS structure.
Return ICERR_OK if successful. Otherwise, return an error number.

ICM_COMPRESS_BEGIN, ICM_COMPRESS_END, ICM_DECOMPRESS,
ICM_DRAW

ICM_COMPRESS_BEGIN
This message is sent to a video compression driver to prepare it for compressing data.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure indicating the
input format.

DWORD dwParam2

Specifies a far pointer to a BITMAPINFO data structure indicating the
output format.

Return ICERR_OK if the specified compression is supported. Otherwise, return
ICERR_BADFORMAT if the input or output format is not supported.

02/10/93

Return Value

See Also

Parameters

Return Value

 3-39

The driver should set up any tables or memory that it needs to compress the data formats
efficiently when it receives the ICM_COMPRESS messages.

ICM_COMPRESS_BEGIN and ICM_COMPRESS_END do not nest. If your driver
receives an ICM_COMPRESS_BEGIN message before compression is stopped with
ICM_COMPRESS_END, it should restart compression with new parameters.

ICM_COMPRESS, ICM_COMPRESS_END, ICM_DECOMPRESS_BEGIN,
ICM_DRAW_BEGIN

ICM_COMPRESS_END
This message is sent to a video compression driver to end compression. The driver should
clean-up after compressing, and release any memory allocated during processing of an
ICM_COMPRESS_BEGIN message.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
Return ICERR_OK if successful. Otherwise, return an error number.

ICM_COMPRESS_BEGIN and ICM_COMPRESS_END do not nest. If your driver
receives an ICM_COMPRESS_BEGIN message before compression is stopped with
ICM_COMPRESS_END, it should restart compression with new parameters.

ICM_COMPRESS_BEGIN, ICM_COMPRESS, ICM_DECOMPRESS_END,
ICM_DRAW_END

ICM_COMPRESS_GET_FORMAT
This message is sent to a video compression driver to suggest the output format of the
compressed data.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure indicating the
input format.

DWORD dwParam2

Specifies zero or a far pointer to a BITMAPINFO data structure used by
the driver to return the output format.

Return the size of the output format.

02/10/93

Comments

See Also

Parameters

Return Value

Comments

See Also

Parameters

Return Value

2-40 Video for Windows Programmer's Guide

If dwParam2 is zero, the driver should simply return the size of the output format.

If dwParam2 is non-zero, the driver should fill the BITMAPINFO data structure with the
default output format corresponding to the input format specified for dwParam1. If the
compressor can produce several different formats, the default format should be the one
which will preserve the greatest amount of information.

For example, the Microsoft Video Compressor can compress 16-bit data into either an 8-
bit palettized compressed form or a 16-bit true-color compressed form. The 16-bit format
more accurately represents the original data, and thus is returned by this message.

ICM_COMPRESS_QUERY, ICM_DECOMPRESS_GET_FORMAT,
ICM_DRAW_GET_FORMAT

ICM_COMPRESS_GET_SIZE
This message is sent to a video compression driver to obtain the maximum size of one
frame of data when it is compressed in the output format.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure indicating the
input format.

DWORD dwParam2

Specifies a far pointer to a BITMAPINFO data structure indicating the
output format.

Return the maximum number of bytes a single compressed frame can occupy.

Typically, applications use this message to determine how large a buffer to allocate for
the compressed frame.

The driver should calculate the size of the largest possible frame based on the input and
target formats.

ICM_COMPRESS_QUERY, ICM_COMPRESS_GET_FORMAT

ICM_COMPRESS_QUERY
This message is sent to a video compression driver to determine if it can compress a
specific input format, or if it can compress the input format to a specific output format.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure describing the
input format.

02/10/93

Comments

See Also

Parameters

Return Value

Comments

See Also

Parameters

 3-41

DWORD dwParam2

Specifies a far pointer to a BITMAPINFO data structure describing the
output format, or zero. Zero indicates any output format is acceptable.

Return ICERR_OK if the specified compression is supported. Otherwise, return an error.
The following errors are defined:

ICERR_OK

No error.
ICERR_BADFORMAT

The input or output format is not supported.
On receiving this message, the driver should examine the BITMAPINFO structure
associated with dwParam1 to see if it can compress the input format. The driver should
return ICERR_OK only if it can compress the input format to the output format specified
for dwParam2. (If any output format is acceptable, dwParam2 is zero.)

ICM_COMPRESS_GET_FORMAT

ICM_CONFIGURE
This message is sent to a video compression driver to display its configuration dialog box.

DWORD dwParam1

Specifies an HWND which should be the parent of the displayed dialog.

If dwParam1 is -1, the driver should return ICERR_OK if it has a
configuration dialog box, however, the driver should not display it. The
driver should return ICERR_UNSUPPORTED if it does not display a
dialog box.

DWORD dwParam2

Not Used.
Return ICERR_OK if the driver supports this message. Otherwise, return
ICERR_UNSUPPORTED.

This message is distinct from the DRV_CONFIGURE message which is used for
hardware configuration. This message should let the user configure the internal state
referenced by ICM_GETSTATE and ICM_SETSTATE. For example, this dialog box
can let the user change parameters affecting the quality level and other similar
compression options.

DRV_CONFIGURE, ICM_ABOUT, ICM_GETINFO

02/10/93

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

2-42 Video for Windows Programmer's Guide

ICM_DECOMPRESS
This message is sent to a video compression driver to decompress a frame of data into an
application-supplied buffer.

DWORD dwParam1

Specifies a far pointer to an ICDECOMPRESS structure.
DWORD dwParam2

Specifies the size of the ICDECOMPRESS structure.
Return ICERR_OK if successful. Otherwise, return an error number.

If the driver is supposed to decompress data directly to the screen instead of a buffer, it
will receive the ICM_DRAW message rather than this one.

The driver should return an error if this message is received before the
ICM_DECOMPRESS_BEGIN message.

ICM_COMPRESS_BEGIN, ICM_DECOMPRESS_BEGIN,
ICM_DECOMPRESS_END, ICM_DRAW_BEGIN

ICM_DECOMPRESS_BEGIN
This message is sent to a video compression driver for decompressing data. When the
driver receives this message, it should allocate buffers and do any time-consuming
operations so that it can process ICM_DECOMPRESS messages efficiently.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure describing the
input format.

DWORD dwParam2

Specifies a far pointer to a BITMAPINFO data structure describing the
output format.

Return ICERR_OK if the specified decompression is supported. Otherwise, return an
error number. The following errors are defined:

ICERR_OK

No error.
ICERR_BADFORMAT

The input or output format is not supported.
If the calling application wants the driver to decompress data directly to the screen, it
sends the ICM_DRAW_BEGIN message.

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

 3-43

ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your
driver receives an ICM_DECOMPRESS_BEGIN message before decompression is

stopped with ICM_DECOMPRESS_END, it should restart decompression with new
parameters.

ICM_COMPRESS_BEGIN, ICM_DECOMPRESS, ICM_DECOMPRESS_END,
ICM_DRAW_BEGIN

ICM_DECOMPRESS_END
This message is sent to a video compression driver to have it clean-up after
decompressing.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
Return ICERR_OK if successful. Otherwise, return an error number.

The driver should free any resources allocated in response to the
ICM_DECOMPRESS_BEGIN message.

ICM_DECOMPRESS_BEGIN and ICM_DECOMPRESS_END do not nest. If your
driver receives an ICM_DECOMPRESS_BEGIN message before decompression is
stopped with ICM_DECOMPRESS_END, it should restart decompression with new
parameters.

ICM_COMPRESS_END, ICM_DECOMPRESS_BEGIN, ICM_DECOMPRESS,
ICM_DRAW_END

ICM_DECOMPRESS_GET_FORMAT
This message is sent to a video compression driver to obtain the format of the
decompressed data.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure describing the
input format.

DWORD dwParam2

Specifies zero or a far pointer to a BITMAPINFO data structure used by
the driver to describe the output format.

Return the size of the output format.

02/10/93

See Also

Parameters

Return Value

Comments

See Also

Parameters

Return Value

2-44 Video for Windows Programmer's Guide

If dwParam2 is zero, the driver should simply return the size of the output format.
Applications set dwParam2 to zero to determine the size of the buffer it needs to allocate.

If dwParam2 is non-zero, the driver should fill the BITMAPINFO data structure with the
default output format corresponding to the input format specified for dwParam1. If the
compressor can produce several different formats, the default format should be the one
which will preserve the greatest amount of information.

For example, if a driver can produce either 24-bit full-color images or 8-bit gray-scale
images, the default should be 24-bit images. This ensures the highest possible image
quality if the video data must be edited and re-compressed.

ICM_COMPRESS_GET_FORMAT, ICM_DECOMPRESS_GET_PALETTE,
ICM_DECOMPRESS_QUERY

ICM_DECOMPRESS_GET_PALETTE
This message is sent to a video compression driver to have it fill in the color table of the
output BITMAPINFOHEADER structure.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure indicating the
input format.

DWORD dwParam2

Specifies zero or a far pointer to a BITMAPINFO data structure used to
return the color table. The space reserved for the color table will always be
at least 256 colors.

Return the size of the output format or an error code.

If dwParam2 is zero, the driver should simply return the size of the output format.
Applications set this value to zero when they want to determine the size of the output
format.

If dwParam2 is non-zero, the driver should set the biClrUsed field of the
BITMAPINFOHEADER data structure to the number of colors in the color table. The
driver fills the bmiColors fields of the BITMAPINFO data structure with the actual
colors.

The driver should support this message only if it uses a palette other than the one in the
input format.

ICM_DECOMPRESS_GET_FORMAT

02/10/93

Comments

See Also

Parameters

Return Value

Comments

See Also

 3-45

ICM_DECOMPRESS_QUERY
This message is sent to a video compression driver to determine if the driver can
decompress a specific input format, or if it can decompress the input format to a specific
output format.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure describing the
input format.

DWORD dwParam2

Specifies zero or a far pointer to a BITMAPINFO data structure used by
the driver to describe the output format. Zero indicates that any output
format is acceptable.

Return ICERR_OK if the specified decompression is supported. Otherwise, return an
error number. The following errors are defined:

ICERR_OK

No error.
ICERR_BADFORMAT

The input or output format is not supported.
ICM_COMPRESS_QUERY

ICM_DRAW
This message is sent to a video compression driver to decompress a frame of data and
draw it to the screen.

DWORD dwParam1

Specifies a far pointer to an ICDRAW structure.
DWORD dwParam2

Specifies the size of the ICDRAW structure.
Return ICERR_OK if successful. Otherwise, return an error number.

If the ICDRAW_UPDATE flag is set in dwFlags field of the ICDRAW data structure,
the area of the screen used for drawing is invalid and needs to be updated.

If the ICDRAW_HURRYUP flag is set in the dwFlags field, the calling application
wants the driver to proceed as quickly as possible, possibly not even updating the screen.

If the ICDRAW_PREROLL flag is set in the dwFlags field, this video frame is merely

02/10/93

Parameters

Return Value

See Also

Parameters

Return Value

Comments

2-46 Video for Windows Programmer's Guide

preliminary information and should not be displayed if possible. For instance, if play is to
start from frame 10, and frame 0 is the nearest previous keyframe, frames 0 through 9 will
have the ICDRAW_PREROLL flag set.

If the driver is to decompress data into a buffer instead of drawing directly to the screen,
the ICM_DECOMPRESS message is sent instead.

ICM_DECOMPRESS, ICM_DRAW_BEGIN, ICM_DRAW_END,
ICM_DRAW_START, ICM_DRAW_STOP

ICM_DRAW_BEGIN
This message is sent to a video compression driver to prepare it for drawing data.

DWORD dwParam1

Specifies a far pointer to a ICDRAWBEGIN data structure describing the
input format.

DWORD dwParam2

Specifies the size of the ICDRAWBEGIN data structure describing the
output format.

Return ICERR_OK if the driver supports drawing the data to the screen in the manner and
format specified. Otherwise, return an error number. The following errors are defined:

ICERR_OK

No error.
ICERR_BADFORMAT

The input or output format is not supported.
ICERR_NOTSUPPORTED

The message is not supported.
If the driver is supposed to decompress data into a buffer instead of drawing directly to
the screen, the ICM_DECOMPRESS_BEGIN message is sent rather than this one.

If the driver does not support drawing directly to the screen, return
ICERR_NOTSUPPORTED.

ICM_DRAW_BEGIN and ICM_DRAW_END do not nest. If your driver receives an
ICM_DRAW_BEGIN message before decompression is stopped with
ICM_DRAW_END, it should restart decompression with new parameters.

ICM_DECOMPRESS_BEGIN, ICM_DRAW, ICM_DRAW_END,
ICM_DRAW_START

02/10/93

See Also

Parameters

Return Value

Comments

See Also

 3-47

ICM_DRAW_END
This message is sent to video compression drivers to clean-up after decompressing an
image to the screen.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
Return ICERR_OK if successful. Otherwise, return an error number.

ICM_DRAW_BEGIN and ICM_DRAW_END do not nest. If your driver receives an
ICM_DRAW_BEGIN message before decompression is stopped with
ICM_DRAW_END, it should restart decompression with new parameters.

ICM_DECOMPRESS_END, ICM_DRAW, ICM_DRAW_BEGIN, ICM_DRAW_STOP

ICM_DRAW_FLUSH
This message is sent to a video compression driver to flush any frames it has that are
waiting to be drawn.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
None.

This message is used only by hardware which does its own asynchronous decompression,
timing, and drawing.

ICM_DRAW, ICM_DRAW_END, ICM_DRAW_STOP,
ICM_GETBUFFERSWANTED

ICM_DRAW_GETTIME
This message is sent to a video compression driver to obtain the current value of its
internal clock if it is handling the timing of drawing frames.

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

2-48 Video for Windows Programmer's Guide

DWORD dwParam1

Specifies a far pointer to a LONG to be used by the driver to return the
current time. The return value should be specified in samples. This
corresponds to frames for video.

DWORD dwParam2

Not used.
Return ICERR_OK if successful.

This message is generally only supported by hardware which does its own asynchronous
decompression, timing, and drawing. The message will also only be sent if the hardware
is being used as the synchronization master.

ICM_DRAW_START, ICM_DRAW_STOP, ICM_DRAW_SETTIME

ICM_DRAW_QUERY
This message is sent to a video compression driver to determine if it can render data in a
specific format.

DWORD dwParam1

Specifies a far pointer to a BITMAPINFO data structure describing the
input format.

DWORD dwParam2

Not used.
Return ICERR_OK if the compressor can render data in the specified format. Otherwise,
return an error number. The following errors are defined:

ICERR_OK

No error.
ICERR_BADFORMAT

The format is not supported.
This message asks if the compressor recognizes the format for draw operations. The
ICM_DRAW_BEGIN is sent to see if the compressor can draw the data.

ICM_DECOMPRESS_QUERY

ICM_DRAW_REALIZE
This message is sent to a video compression driver to realize its palette used while

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

 3-49

drawing.

DWORD dwParam1

Specifies a handle to the display context used to realize palette.
DWORD dwParam2

Specifies TRUE if the palette is to be realized in the background. Specifies
FALSE if the palette is to be realized in the foreground.

Return ICERR_OK if palette realized.

Drivers need to respond to this message only if the drawing palette is different from the
decompressed palette.

If this message is not supported (returns ICERR_UNSUPPORTED), the palette
associated with the decompressed data is realized.

ICM_DRAW_BEGIN

ICM_DRAW_RENDERBUFFER
This message is sent to a video compression driver to tell it to draw the frames that have
been passed to it.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
None.

This message is typically used to perform a "seek" operation when, rather than playing a
sequence of video frames, the driver must be specifically instructed to display a single
video frame passed to it.

This message is used only by hardware which does its own asynchronous decompression,
timing, and drawing.

ICM_DRAW, ICM_DRAW_END, ICM_DRAW_START

ICM_DRAW_SETTIME
This message is sent to a video compression driver to inform it of what frame it should be
drawing if it is handling the timing of drawing frames.

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

2-50 Video for Windows Programmer's Guide

DWORD dwParam1

Specifies a LONG containing the sample which the driver should now be
rendering. The value will be specified in samples. This corresponds to
frames for video.

DWORD dwParam2

Not used.
Return ICERR_OK if successful.

This message is generally only supported by hardware which does its own asynchronous
decompression, timing, and drawing. The message will only be sent if the hardware is not
being used as the synchronization master.

Typically, the driver will compare the specified "correct" value with its own internal
clock, and take actions to synchronize the two if the difference is great enough.

ICM_DRAW_START, ICM_DRAW_STOP, ICM_DRAW_GETTIME

ICM_DRAW_START
This message is sent to a video compression driver to start its internal clock for the timing
of drawing frames.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
None.

This message is typically used by hardware which does its own asynchronous
decompression, timing, and drawing.

When it receives this message, the driver should start rendering data at the rate specified
in the ICM_DRAW_BEGIN message.

ICM_DRAW_START and ICM_DRAW_STOP do not nest. If your driver receives an
ICM_DRAW_START message before rendering is stopped with ICM_DRAW_STOP, it
should restart rendering with new parameters.

ICM_DRAW, ICM_DRAW_BEGIN, ICM_DRAW_END, ICM_DRAW_STOP

ICM_DRAW_STOP
This message is sent to a video compression driver to stop its internal clock for the timing

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

 3-51

of drawing frames.

DWORD dwParam1

Not used.
DWORD dwParam2

Not used.
None.

This message is typically used by hardware which does its own asynchronous
decompression, timing, and drawing.

ICM_DRAW, ICM_DRAW_END, ICM_DRAW_START

ICM_DRAW_WINDOW
This message is sent to a video compression driver when the window specifed in the
ICM_DRAW_BEGIN message has physically moved, or has become totally obscured.
This message is used by overlay drivers, so they can draw when the window is obscured
or moved.

DWORD dwParam1

Points to a RECT structure containing the destination rectangle. The
destination rectangle is specified in screen coordinates. If dwParam1 points
to a empty rectangle drawing should be turned off.

DWORD dwParam2

Not used.
Return ICERR_OK if successful.

This message is only supported by hardware which does its own asynchronous
decompression, timing, and drawing.

The rectangle is set empty if the window is totally hidden by other windows. Drivers
should turn off overlay hardware when the rectangle is empty.

ICM_DRAW_BEGIN

ICM_GETBUFFERSWANTED
This message is sent to a video compression driver to have the driver return information
about how much pre-buffering it wishes to do.

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

2-52 Video for Windows Programmer's Guide

DWORD dwParam1

Specifies a far pointer to a DWORD. The driver uses the DWORD to return
the number of samples it needs to get in advance of when they will be
presented.

DWORD dwParam2

Not used.
Return ICERR_OK if successful. Otherwise, return ICERR_UNSUPPORTED.

Typically, this message is only used by a driver that uses hardware to render data and
wants to ensure hardware pipelines remain full. For example, if a driver controls a video
decompression board that can hold ten frames of video, it could return ten for this
message. This instructs applications to try and stay exactly ten frames ahead of the frame
it currently needs.

ICM_GETDEFAULTKEYFRAMERATE
This message is sent to a video compression driver to request that it return its default (or
preferred) key frame spacing.

DWORD dwParam1

Specifies a far pointer to a DWORD used by the driver to return its
preferred key frame spacing.

DWORD dwParam2

Not used.
Return ICERR_OK if the driver supports this message. Otherwise, return
ICERR_UNSUPPORTED.

ICM_GETDEFAULTQUALITY
This message is sent to a video compression driver to request that the driver return its
default quality setting.

DWORD dwParam1

Specifies a far pointer to a DWORD used by the driver to return its default
quality.

DWORD dwParam2

Not used.
Return ICERR_OK if the driver supports this message. If not, return

02/10/93

Parameters

Return Value

Comments

Parameters

Return Value

Parameters

Return Value

 3-53

ICERR_UNSUPPORTED.

Quality values range between 0 and 10,000.

ICM_SETQUALITY, ICM_GETQUALITY

ICM_GETINFO
This message is set to a video compression driver to have it return information describing
the driver.

DWORD dwParam1

Specifies a far pointer to an ICINFO data structure used by the driver to
return information.

DWORD dwParam2

Specifies the size of the ICINFO data structure.
Return the size of the ICINFO data structure, or zero if an error occurs.

Typically, this message is sent by applications that want to display a list of the installed
compressors.

The driver should fill in all fields of the ICINFO structure except the szDriver field.

ICM_ABOUT

ICM_GETQUALITY
This message is sent to a video compression driver to request that it return its current
quality setting.

DWORD dwParam1

Specifies a far pointer to a DWORD used by the driver to return the current
quality value.

DWORD dwParam2

Not used.
Return ICERR_OK if the driver supports this message. If not, return
ICERR_UNSUPPORTED.

Quality values range between 0 and 10,000.

ICM_SETQUALITY, ICM_GETDEFAULTQUALITY

02/10/93

Comments

See Also

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

2-54 Video for Windows Programmer's Guide

ICM_GETSTATE
This message is sent to a video compression driver to have it fill a block of memory
describing the compressor’s current configuration.

DWORD dwParam1

Specifies a far pointer to a block of memory to be filled with the current
state or NULL. If NULL, return the amount of memory required by the state
information.

DWORD dwParam2

Specifies the size of the block of memory.
Return the amount of memory required by the state information.

Client applications send this message with dwParam1 set to NULL to determine the size
of the memory block required for obtaining the state information.

The data structure used to represent state information is driver specific and is defined by
the driver.

DRV_CONFIGURE, ICM_SETSTATE

ICM_SETQUALITY
This message is sent to a video compression driver to set the quality level for
compression.

DWORD dwParam1

Specifies the new quality value.
DWORD dwParam2

Not used.
Return ICERR_OK if the driver supports this message. If not, return
ICERR_UNSUPPORTED.

Quality values range between 0 and 10,000.

ICM_GETQUALITY, ICM_GETDEFAULTQUALITY

ICM_SETSTATE
This message is sent to a video compression driver to set the state of the compressor.

02/10/93

Parameters

Return Value

Comments

See Also

Parameters

Return Value

Comments

See Also

 3-55

DWORD dwParam1

Specifies a far pointer to a block of memory containing configuration data
or NULL. If NULL, the driver should return to its default state.

DWORD dwParam2

Specifies the size of the block of memory.
Return the number of bytes actually used by the compressor. A return value of zero
generally indicates an error.

Since the information used by ICM_SETSTATE is private and specific to a given
compressor, client applications should use this message only to pass information
previously returned for the ICM_GETSTATE message.

DRV_CONFIGURE, ICM_GETSTATE

Video Compression and Decompression Driver
Data Structure Reference
This section lists data structures used by video compression and decompression drivers
for Windows. The data structures are presented in alphabetical order. The structure
definition is given, followed by a description of each field.

ICCOMPRESS
The ICCOMPRESS structure is used with the ICM_COMPRESS message to specify
the parameters used for compression.

typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiOutput;
 LPVOID lpOutput;
 LPBITMAPINFOHEADER lpbiInput;
 LPVOID lpInput;
 LPDWORD lpckid;
 LPDWORD lpdwFlags;
 LONG lFrameNum;
 DWORD dwFrameSize;
 DWORD dwQuality;
 LPBITMAPINFOHEADER lpbiPrev;
 LPVOID lpInput;
} ICCOMPRESS;

The ICCOMPRESS structure has the following fields:

dwFlags

Specifies flags used for compression. The following flag is defined.

ICCOMPRESS_KEYFRAME

02/10/93

Parameters

Return Value

Comments

See Also

Fields

2-56 Video for Windows Programmer's Guide

Treat input data as a keyframe.
lpbiOutput

Specifies a pointer to a BITMAPINFOHEADER structure containing the
output (compressed) format. The biSizeImage field must be filled in with
the size of the compressed data.

lpOutput

Specifies a pointer to the buffer where the driver should write the
compressed data.

lpbiInput

Specifies a pointer to a BITMAPINFOHEADER structure containing the
input format.

lpInput

Specifies a pointer to the buffer containing input data.
lpckid

Specifies a pointer to a buffer used to return the chunk ID for data in the
AVI file. Device drivers can ignore this field.

lpdwFlags

Specifies a pointer to a buffer used to return flags for the AVI index.
lFrameNum

Specifies the frame number of the frame to compress.
dwFrameSize

Specifies zero, or the desired maximum size (in bytes) to compress this
frame to.

dwQuality

Specifies the compression quality.
lpbiPrev

Specifies a pointer to a BITMAPINFOHEADER structure containing the
format of the previous frame. Normally, this will be the same as the input
format.

lpInput

Specifies a pointer to the buffer containing the previous frame.

02/10/93

 3-57

ICDECOMPRESS
The ICDECOMPRESS structure is used with the ICM_DECOMPRESS message to
specify the parameters for decompressing the data.

typedef struct {
 DWORD dwFlags;
 LPBITMAPINFOHEADER lpbiInput;
 LPVOID lpInput;
 LPBITMAPINFOHEADER lpbiOutput;
 LPVOID lpOutput;
 DWORD ckid;
} ICDECOMPRESS;

The ICDECOMPRESS structure has the following fields:

dwFlags

Specifies flags.

The following flags in dwFlags specify the operation for this data:

ICDECOMPRESS_HURRYUP
Indicates the data is just buffered and not drawn to the screen. Use this
flag for the fastest decompression.

lpbiInput

Specifies a pointer to a BITMAPINFOHEADER structure containing the
input format.

lpInput

Specifies a pointer to a data buffer containing the input data.
lpbiOutput

Specifies a pointer to a BITMAPINFOHEADER structure containing the
output format.

lpOutput

Specifies a pointer to a data buffer where the driver should write the
decompressed image.

ckid

Specifies the chunk ID from the AVI file.

ICDRAW
The ICDRAW structure is used with the ICM_DRAW message to specify the
parameters for drawing video data to the screen.

02/10/93

Fields

2-58 Video for Windows Programmer's Guide

typedef struct {
 DWORD dwFlags;
 LPVOID lpFormat;
 LPVOID lpData;
 DWORD cbData;
 LONG lTime;
} ICDRAW;

The ICDRAW structure has the following fields:

dwFlags

Specifies the flags from the AVI file index.

ICDRAW_HURRYUP
Indicates the data is just buffered and not drawn to the screen. Use this
flag for the fastest decompression.

ICDRAW_UPDATE
Indicates the driver should update the screen based on data previously
received.

ICDRAW_PREROLL
Indicates that this frame of video occurs before actual playback should
start. For instance, if playback is to begin on frame 10, and frame 0 is the
nearest previous keyframe, frames 0 through 9 are sent to the driver with
the ICDRAW_PREROLL flag set. The driver needs this data so that it
can display frame 10 properly, but frames 0 through 9 need not be
individually displayed.

lpFormat

Specifies a pointer to a structure containing the data format. For video, this
will be a BITMAPINFOHEADER structure.

lpData

Specifies the data to be rendered.
cbData

Specifies the number of bytes of data to be rendered.
lTime

Specifies the time in samples that this data should be drawn. For video data
this is normally a frame number. See dwRate and dwScale of the
ICDRAW structure.

ICM_DRAW_BEGIN, ICDRAWBEGIN

ICDRAWBEGIN
The ICDRAWBEGIN structure is used with the ICM_DRAW_BEGIN message to

02/10/93

Fields

See Also

 3-59

specify the parameters used to decompress the data.

typedef struct {
 DWORD dwFlags;
 HPALETTE hpal;
 HWND hwnd;
 HDC hdc;
 int xDst;
 int yDst;
 int dxDst;
 int dyDst;
 LPBITMAPINFOHEADER lpbi;
 int xSrc;
 int ySrc;
 int dxSrc;
 int dySrc;
 DWORD dwRate;
 DWORD dwScale;
} ICDRAWBEGIN;

The ICDRAWBEGIN structure has the following fields:

dwFlags

Specifies any of the following flags:

ICDRAW_QUERY
Set when an application wants to determine if the device driver can
handle the operation. The device driver does not actually perform the
operation.

ICDRAW_FULLSCREEN
Indicates the full screen is used to draw the decompressed data.

ICDRAW_HDC
Indicates a window or DC is used to draw the decompressed data.

hpal

Specifies a handle of the palette used for drawing.
hwnd

Specifies the handle of the window used for drawing.
hdc

Specifies the handle of the display context used for drawing.
xDst

Specifies the x-position of destination rectangle.
yDst

Specifies the y-position of destination rectangle.

02/10/93

Fields

2-60 Video for Windows Programmer's Guide

dxDst

Specifies the width of destination rectangle.
dyDst

Specifies the height of destination rectangle.
lpbi

Specifies a pointer to a BITMAPINFOHEADER data structure containing
the input format.

xSrc

Specifies the x-position of source rectangle.
ySrc

Specifies the y-position of source rectangle.
dxSrc

Specifies the width of source rectangle.
dySrc

Specifies the height of source rectangle.
dwRate

Specifies the decompression rate in an integer format. To obtain the rate in
frames-per-second divide this value by the value in dwScale.

dwScale

Specifies the value used to scale dwRate to frames-per-second.

ICINFO
The ICINFO structure is filled by a video compression driver when it receives the
ICM_GETINFO message.

typedef struct {
 DWORD dwSize;
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwVersionICM;
 char szName[16];
 char szDescription[128];
 char szDriver[128];
} ICINFO;

The ICINFO structure has the following fields:

02/10/93

Fields

 3-61

dwSize

Should be set to the size of an ICINFO structure.
fccType

Specifies a four-character code representing the type of stream being
compressed or decompressed. Set this to 'vidc' for video streams.

fccHandler

Specifies a four-character code identifying a specific compressor.
dwFlags

Specifies any flags. The following flags are defined for video compressors
(ICINFO.fccHandler == 'vidc'):

VIDCF_QUALITY
The driver supports quality.

VIDCF_CRUNCH
The driver supports crunching to a frame size.

VIDCF_TEMPORAL
The driver supports inter-frame compression.

VIDCF_DRAW
The driver supports drawing.

VIDCF_FASTTEMPORAL
The driver can do temporal compression and doesn’t need the previous
frame.

dwVersion

Specifies the version number of the driver.
dwVersionICM

Specifies the version of the ICM supported by this driver; it should be set to
1.0 (0x00010000)

szName[16]

Specifies the short name for the compressor. The null-terminated name
should be suitable for use in list boxes.

szDescription[128]

Specifies a null-terminated string containing the long name for the
compressor.

02/10/93

2-62 Video for Windows Programmer's Guide

szDriver[128]

Specifies a null-terminated string for the module that contains the driver.
Normally, a driver will not need to fill this out.

ICOPEN
The ICOPEN structure is sent to a video compression driver with the DRV_OPEN
message.

typedef struct {
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwVersion;
 DWORD dwFlags;
} ICOPEN;

The ICOPEN structure has the following fields:

fccType

Specifies a four-character code representing the type of stream being
compressed or decompressed. For video streams, this should be 'vidc'.

fccHandler

Specifies a four-character code identifying a specific compressor.
dwVersion

Specifies the version of the installable driver interface used to open the
driver.

dwFlags

Contains flags indicating why the driver is opened. The following flags are
defined:

ICMODE_COMPRESS
The driver is opened to compress data.

ICMODE_DECOMPRESS
The driver is opened to decompress data.

ICMODE_QUERY
The driver is opened for informational purposes, rather than for actual
compression.

ICMODE_DRAW
The device driver is opened to decompress data directly to hardware.

This structure is the same as that passed to video capture drivers when they are opened.
This lets a single installable driver to function as either an installable compressor or a
video capture device. By examining the fccType field of the ICOPEN structure, the

02/10/93

Fields

Comments

 3-63

driver can determine its function. For example, a fccType value of 'vidc' indicates that it
is opened as an installable video compressor.

02/10/93

	Note:
	Note:
	Note:
	Architecture of a Video Compression and Decompression Driver
	The ICSAMPLE Example Driver
	The Structure of a Video Compression and Decompression Driver
	Video Compression and Decompression Header Files
	Naming Video Compression and Decompression Drivers
	SYSTEM.INI Entries for Video Compression and Decompression Drivers
	The Module-Definition File
	The Module Name Line

	The Installable Driver Interface
	Your driver should respond to all system messages. If supplemental information is not provided for them in this chapter, use the definitions provided in the Microsoft Windows Programmer’s Reference.
	An Example DriverProc Entry-Point Function
	Handling the DRV_OPEN and DRV_CLOSE Messages
	Compressor Configuration
	Configuration Messages Sent by the System
	Messages for Configuring the Driver State
	Messages Used to Interrogate the Driver

	Configuration Messages for Compression Quality
	Configuration Messages for Key Frame Rate and Buffer Queue

	Video Compression and Decompression Messages
	About the AVI File Format
	Identifying Compression Formats
	Decompressing Video Data
	Setting the Driver State
	Note:
	All information required for decompressing the image data should be part of the format data. Only optional compression parameters can be included with the state information.

	Specifying the Input Format and Determining the Decompression Format
	Preparing to Decompress Video
	Decompressing the Video
	Ending Decompression
	Other Messages Received During Decompression

	Compressing Video Data
	When AVI recompresses a file, each frame is decompressed to a full frame before it is passed to the compressor.
	Obtaining the Driver State
	Specifying the Input Format and Determining the Compression Format
	Initialization for the Compression Sequence
	Compressing the Video
	Ending Compression

	Decompressing Directly to Video Hardware
	Setting the Driver State
	Specifying the Input Format
	Preparing to Decompress Video
	Decompressing the Video
	Ending Decompression
	Rendering the Data

	Using Installable Compressors for Non-video Data
	Testing Video Compression and Decompression Drivers
	Video Compression and Decompression Driver Reference
	Video Compression and Decompression Driver Message Reference

	Video Compression and Decompression Driver Messages
	DRV_OPEN
	ICM_ABOUT
	ICM_COMPRESS
	ICM_COMPRESS_BEGIN
	ICM_COMPRESS_END
	ICM_COMPRESS_GET_FORMAT
	ICM_COMPRESS_GET_SIZE
	ICM_COMPRESS_QUERY
	ICM_CONFIGURE
	ICM_DECOMPRESS
	ICM_DECOMPRESS_BEGIN
	ICM_DECOMPRESS_END
	ICM_DECOMPRESS_GET_FORMAT
	ICM_DECOMPRESS_GET_PALETTE
	ICM_DECOMPRESS_QUERY
	ICM_DRAW
	ICM_DRAW_BEGIN
	ICM_DRAW_END
	ICM_DRAW_FLUSH
	ICM_DRAW_GETTIME
	ICM_DRAW_QUERY
	ICM_DRAW_REALIZE
	ICM_DRAW_RENDERBUFFER
	ICM_DRAW_SETTIME
	ICM_DRAW_START
	ICM_DRAW_STOP
	ICM_DRAW_WINDOW
	ICM_GETBUFFERSWANTED
	ICM_GETDEFAULTKEYFRAMERATE
	ICM_GETDEFAULTQUALITY
	ICM_GETINFO
	ICM_GETQUALITY
	ICM_GETSTATE
	ICM_SETQUALITY
	ICM_SETSTATE
	Video Compression and Decompression Driver Data Structure Reference
	ICCOMPRESS
	ICDECOMPRESS
	ICDRAW
	ICDRAWBEGIN
	ICINFO
	ICOPEN

