
CHAPTER 1

The DIB format extensions for Microsoft Windows add the capabilities to handle new
compression formats, custom compression formats, and inverted DIBs. The extensions
also include an escape message to let applications interrogate display drivers to determine
their capabilities. This chapter includes the following topics related to these extensions:

· 16 and 32 bit extensions to the BI_RGB compression format
· 16 and 32 bit BI_BITFIELDS compression format extensions
· Extensions for custom compression formats
· Determining display driver capabilities
· Inverted DIBs

Windows Compression Formats
Compression flags for a bitmap are specified in the BITMAPINFOHEADER data
structure defined by Windows. This structure has the following fields:

typedef struct tagBITMAPINFOHEADER {
 DWORD biSize;
 LONG biWidth;
 LONG biHeight;
 WORD biPlanes;
 WORD biBitCount;
 DWORD biCompression;
 DWORD biSizeImage;
 LONG biXPelsPerMeter;
 LONG biYPelsPerMeter;
 DWORD biClrUsed;
 DWORD biClrImportant;
} BITMAPINFOHEADER;

Information about the compression format is specified in the biCompression and
biBitCount fields. The biCompression field specifies the type of compression used or
requested. Both existing and new compression formats use this field.

The biBitCount field specifies the number of bits per pixel. Some compression formats
need this information to properly decode the colors in the pixel.

DIB Format Extensions for
Microsoft Windows

2-2 Video for Windows Programmer's Guide

When the value in the biBitCount field is set to less than or equal to eight, video drivers
can assume the bitmap uses a palette or color table defined in the BITMAPINFO data
structure. This data structure has the following fields:

typedef struct tagBITMAPINFO {
 BITMAPINFOHEADER bmiHeader;
 RGBQUAD bmiColors[1]
} BITMAPINFO;

When the value in the biBitCount field is set to greater than eight, video drivers can
assume bitmaps are true color and they do not use a color table. For more information on
these data structures, see the Microsoft Windows Programmer’s Reference.

Existing Formats
Windows defines the following compression formats:

BI_RGB

Specifies the bitmap is not compressed. (Valid for biBitCount set to 1, 4, 8,
16, 24, or 32.)

BI_RLE8

Specifies a run-length encoded format for bitmaps with 8 bits per pixel.
(Valid for biBitCount set to 8.)

BI_RLE4

Specifies a run-length encoded format for bitmaps with 4 bits per pixel.
(Valid for biBitCount set to 4.)

For more information on these formats, see the Microsoft Windows Programmer’s
Reference.

Extensions to the BI_RGB Format
Extensions to the BI_RGB format include 16 and 32 bits per pixel bitmap formats. These
formats do not use a color table. They embed the colors in the WORD or DWORD
representing each pixel.

The 16 bit BI_RGB format is identified by setting biCompression to BI_RGB and
biBitCount to 16. For this format, each pixel in the bitmap is represented by a 16 bit
RGB color value. The high-bit of this value is zero. The remaining bits are divided into
three groups of 5-bits to represent the red, green, and blue color values. The group
containing the five most significant bits represents red. The group containing the five
least significant bits represents blue. (This format is also referred to as the RGB555
format.

02/10/93

 3-3

This format supports 32K colors.) The following illustration shows the bit organization of
the RGB555 format:

16 bit BI_RGB format.

The 32 bit BI_RGB format is identified by setting biCompression to BI_RGB and
biBitCount to 32. For this format, each pixel is represented by a 32 bit (4 byte) RGB
color value. The first byte is zero. The second byte represents red, the third byte
represents green, and the last byte represents blue. The following illustration shows the bit
organization of this format:

32 bit BI_RGB format.

Display drivers must support the BI_RGB format for 1, 4, 8, and 24 bits per pixel
bitmaps. If practical, they should also support this format for 16 and 32 bits per pixel
bitmaps.

Formats Using BI_BITFIELDS and Color Masks
In addition to the 16 and 32 bits per pixel BI_RGB format, the BI_BITFIELDS flag has
been defined for 16 and 32 bit bitmaps. This flag is recognized only by enhanced display
drivers and does not need to be supported by most display drivers. The BI_BITFIELDS
flag has the following definition:

BI_BITFIELDS

Specifies the bitmap is not compressed and a color mask is defined in the
bmiColors field of the BITMAPINFO data structure. (Valid for
biBitCount set to 16 or 32.)

Setting the biCompression field to BI_BITFIELDS indicates the bmiColors field
contains three DWORDS used to mask each pixel in the bitmap. The masks are used to
obtain the RGB color values of the pixel. The first DWORD contains the red mask, the
second DWORD contains the green mask, and the third DWORD contains the blue mask.
The image bits follow the three DWORDs. The color masks have the following
characteristics:

· The bits in a mask must not overlap any bits in another mask.
· The set of bits defined for each mask must be contiguous.

These characteristics do not restrict any one mask to a particular location in a DWORD.
For example, the red mask can occupy the least significant, most significant, or central

02/10/93

2-4 Video for Windows Programmer's Guide

position of the ORed combination of all three masks. The position of each mask
corresponds to the color position defined for the appropriate RGB component of each
pixel. This implies for a 16 bit image, the color masks will reside in the low-ordered word
of the DWORD. (For 16 bit images, set the biBitCount field of the
BITMAPINFOHEADER data structure to 16; for 32 bit images set it to 32.)

Additionally, you need to set the bits in a mask only for the bit positions in a pixel that
represent color. Because unused bits in a pixel will always be masked, you can set the
unused bits in a pixel to either zero or one.

For example, color masks can be used to decode the colors of a 16 bit pixel divided into
three unequal groups of bits to represent the red, green, and blue color values. The group
containing the five most significant bits represents red. The group containing the five
least significant bits represents blue. The group containing the middle six bits represents
green. (This format is also referred to as the RGB565 format.) The following illustration
shows the definitions of the color masks and the bit organization of a pixel with the
RGB565 format:

RGB565 format using BI_BITFIELDS.

Drivers obtain the RGB values for a pixel by masking the pixel with the DWORD
corresponding to each color mask and then they map the colors to the appropriate
registers for display. (If an application needs to retrieve the individual color values for a
pixel, it can use the color masks to separate the color components and then right shift each
color component by the number of least significant zeros in the mask.)

Custom Formats
Your driver can define custom compression and bitmap formats by assigning a four-
character code to the biCompression field in place of the standard constants. When you
define a custom format, you must specify the number of bytes in the image in the
biSizeImage field.

The compression type four-character code must be unique. If you want to create a new
four-character code for a compression type, register it with Microsoft to set up a standard
definition of it and avoid any conflicts with other compression codes that might be
defined. To register a code for a compression type, request a Multimedia Developer
Registration Kit from the following group:

Microsoft Corporation
Multimedia Systems Group

 Product Marketing
 One Microsoft Way
 Redmond, WA 98052-6399

The following is a list of the currently reserved compression types:

02/10/93

 3-5

Four-character
Code

biBitCount Compression Method Registered by

 CRAM Cram 8, 16 Video compression Microsoft

JPEG 24 JPEG format for images Microsoft

YUV9 24, 16 411 YUV format for images Microsoft

TYUV 8, 16 YUV Microsoft

RYUV 8 Delta YUV Microsoft

For more information on four character codes, see the Microsoft Windows Multimedia
Programmer’s Guide, Microsoft Windows Multimedia Programmer’s Reference, and
Chapter 10, “Video Compression and Decompression Drivers.”.

Determining Display Driver Capabilities
You can determine if a display driver can handle a DIB with the QUERYDIBSUPPORT
escape. The following syntax statement illustrates the use of this escape:

short Escape(hdc, QUERYDIBSUPPORT, nSize, lpbi, lpFlags)

The following parameter descriptions apply to the QUERYDIBSUPPORT escape:

02/10/93

2-6 Video for Windows Programmer's Guide

Parameter Data Type Description

hdc HDC Identifies the device context.

nSize int Specifies the size of the BITMAPINFO data
structure passed.

lpbi LPBITMAPINFO Points to a BITMAPINFO data structure
containing the characteristics of the bitmap.

(Continued)

Parameter Data Type Description

lpFlags LPINT Points to an integer containing the return flags.
Drivers set these flags to indicate which
capabilities they support. The following flags are
defined:

Flag Description

QDI_SETDIBITS Device can convert

02/10/93

 3-7

DIB to bitmap

QDI_GETDIBITS Device can convert
bitmap to DIB

QDI_DIBTOSCREEN Device can draw DIB

QDI_STRETCHDIB Device can stretch DIB

When a display driver gets this escape it should examine the BITMAPINFO structure
indicated by lpbi and determine if it supports the DIB. The driver checks biBitCount for
the proper bit depth, biCompression for the proper compression type, and biHeight for a
positive or negative value (negative values indicate an inverted DIB). If biCompression
is set to BI_BITFIELDS, the driver also checks the bit masks in the color table.

A display driver will set flags for lpFlags if it provides either partial or complete
functionality corresponding to the flag. For example, a driver sets the
QDI_STRETCHDIB flag if can stretch a DIB by integer amounts (partial functionality)
or if it can stretch a DIB by both integer and non-integer values (complete functionality).

Inverted DIBs
Video drivers incorporating the DIB format extensions will let you specify negative
values for biHeight. If biHeight is negative then the origin of the bitmap is the upper-left
corner and the height is the absolute value of biHeight.

Applications determine if a driver supports inverted DIBs by sending the
QUERYDIBSUPPORT flag with biHeight set to a negative value. Drivers return the
QDI_DIBTOSCREEN flag in response to this if they support inverted DIBs.

Definition of the Flags and Escape
The flags, constants, and escape values described in this chapter are defined in
MMREG.H. Use this header file until these flags, escapes, and constants are added to the
header files distributed with Microsoft Windows.

02/10/93

2-8 Video for Windows Programmer's Guide

02/10/93

	Windows Compression Formats
	Existing Formats
	Extensions to the BI_RGB Format
	Formats Using BI_BITFIELDS and Color Masks
	Custom Formats

	Determining Display Driver Capabilities
	Inverted DIBs
	Definition of the Flags and Escape

