
CHAPTER 1

This chapter describes how to play Video for Windows AVI files using the MCI interface.
It contains the following topics:

· MCI Overview
· Using the MCI Command Interface
· Using the MCI String Interface
· Handling MCI notification
· Playing AVI files using MCI

Sample code for AVI playback is in the MOVPLAY1.C and MOVPLAY2.C files.
MOVPLAY1.C uses the MCI command interface while MOVPLAY2.C uses the string
interface. Both applications look the same to the end user, they just illustrate the different
methods of using MCI to send commands.

MCI Overview
MCI provides a high-level interface to control various media devices through generalized
commands such as play, pause and stop as well as through specific command sets defined
for different device types. MCI uses the MCIAVI.DRV driver to handle AVI playback.

Your application uses MCI commands from the Digital Video Command Set to control
MCIAVI.DRV. Since most of the work is done by the commands and not by MCI
directly, the interface to MCI itself is very simple and just passes commands down to
MCIAVI. In fact, MCI only has five functions that applications use for MCI operation. Of
these five functions, the following two functions are commonly used for sending
commands:

mciSendCommand

Sends a command message to MCI.
mciSendString

Sends a string command to MCI.

Your application must link with MMSYSTEM.LIB to use MCI. It must also include the
MMSYSTEM.H and DIGITALV.H files. The MMSYSTEM.H file included with the
SDK for Microsoft Windows defines the prototypes for these functions and defines the
messages, flags, constants, and data structures needed for their use. The DIGITALV.H
file defines the digital video command set specifically used to control MCIAVI. For a
summary of the command messages and command strings used with MCIAVI, see
Chapter 7, “MCI Command Strings for MCIAVI” and Chapter 8, “MCI Command

Playing AVI Files With MCI

2-2 Video for Windows Programmer's Guide

Messages for MCIAVI.”

For full information on the MCI commands see the Microsoft Multimedia Programmer's
Reference and the Microsoft Multimedia Programmer's Guide of the Windows 3.1
Software Development Kit. For full information on the MCI Digital Video Command Set
see the Digital Video Command Set for the Media Control Interface standards update.

Using the MCI Command Interface
One method of sending MCI commands to MCIAVI uses mciSendCommand to send a
command message. Command messages include a message corresponding to the
command, a set of flags, and a data structure defining the parameters for that command.
This function has the following syntax:

DWORD mciSendCommand(wDeviceID, wMessage, dwParam1,
dwParam2)
The wDeviceID parameter defines the device ID of the MCI device that will receive the
command. (This parameter is returned for the open command, which does not require the
device ID.) The wMessage parameter specifies the message your application wants to
send. The dwParam1 parameter defines the flags for the command, and dwParam2 points
to a data structure for the command. This function returns 0 on success or an MCI error
code on failure.

The programming example for sending a command message has MCIAVI.DRV play an
AVI file. The command message for playing an AVI file is MCI_PLAY. For this
command, MCIAVI.DRV accepts the following flags in dwParam1:

MCI_FROM

Indicates the dwFrom field of the structure identified by dwParam2
specifies a starting position for the file.

MCI_TO

Indicates the dwTo field of the structure identified by dwParam2 specifies
an ending position for the file.

MCI_DGV_PLAY_WINDOW

Indicates playing should occur in the window associated with a device
instance (the default).

MCI_MCIAVI_PLAY_FULLSCREEN

Indicates playing should use a full-screen display, typically with a 320x200
resolution.

The MCI_PLAY command uses the following data structure to pass information

02/10/93

 3-3

(dwParam2 points to this structure):

typedef struct {
 DWORD dwCallback;
 DWORD dwFrom;
 DWORD dwTo;
} MCI_DGV_PLAY_PARMS;

Prior to using mciSendCommand to send the MCI_PLAY message, your application
allocates the memory for the data structure, initializes the fields it wants to use, and sets
the flags corresponding to the fields used in the data structure. (If your application does
not set a flag for a data structure field, MCI drivers ignore the data structure field.) For
example, the following function plays a movie from the starting position specified by
dwFrom to the an ending position specified by dwTo (if either position is 0 then it is
considered not used):

DWORD PlayMovie(WORD wDevID, DWORD dwFrom, DWORD dwTo)
{
 MCI_DGV_PLAY_PARMS mciPlay; // play params
 DWORD dwFlags = 0;

 // check dwFrom, if it is != 0 then set parameters and flags
 if (dwFrom){
 mciPlay.dwFrom = dwFrom; // set parameter
 dwFlags |= MCI_FROM; // set corresponding flag to validate field
 }

 // check dwTo, if it is != 0 then set parameters and flags
 if (dwTo){
 mciPlay.dwTo = dwTo; // set parameter
 dwFlags |= MCI_TO; // set corresponding flag to validate field
 }

 // send the PLAY command and return the result
 return mciSendCommand(wDevID, MCI_PLAY, dwFlags,
 (DWORD)(LPVOID)&mciPlay);
}

Using the MCI String Interface
Another method of sending MCI commands to MCIAVI uses mciSendString to send a
command string. This function uses text strings to represent the command. It has the
following syntax:

DWORD mciSendString(lpstrCommand, lpstrReturnString, wReturnLength,
hCallback)

The lpstrCommand parameter specifies a far pointer to the actual command string. Each
command string includes a command, a device identifier, and command arguments.
Arguments are optional on some commands and required on other commands. A
command string has the following form:

command device_id arguments

The command parameter represents the command name (for example, open, close, or
play). The device_id parameter identifies the MCI driver or a file. The arguments

02/10/93

2-4 Video for Windows Programmer's Guide

parameter indicates any flags and values associated with the command.

When your application opens MCIAVI, it uses a device name, a keyword from the [MCI]
section of the SYSTEM.INI file, or filename as the device_id used to identify the MCI
device. Your application can avoid using the formal device_id argument in subsequent
commands by specifying the alias flag when it opens MCIAVI. (The alias your
application wants to use in subsequent commands is specified after the alias flag.) Most
string examples in this section use an alias.

The lpstrReturnString parameter of mciSendString specifies a far pointer to a buffer for
return information. (Your application can set it NULL if a command does not return
information.) The wReturnLength parameter specifies the size of the return buffer, or 0 if
no buffer is specified. The hCallback parameter specifies a window handle if your
applications wants to receive MCI notify messages.

For example, the string play command used with MCIAVI.DRV has the following
definition and arguments:

play items Starts playing the video sequence. The following optional items
modify the command:

from position Specifies a starting position for the play.

to position Specifies an ending position for the play.

fullscreen Specifies playing should use a full-screen display.

window Specifies playback should be in the window
associated with the device instance (the default).

The following example uses the string interface to send the play command with the from
and to flags:

DWORD PlayMovie(LPSTR lpstrAlias, DWORD dwFrom, DWORD dwTo)
{
 char achCmndBuff[128];

 wsprintf(achCmndBuff, "play %s from %u to %u", lpstrAlias, dwFrom, dwTo);

 return mciSendString(achCommandBuff, NULL, 0, NULL);
}

When using the string interface, all values passed with the command and all return values
are text strings so your application needs conversion routines to translate from variables
to strings or back again. For example, the following fragment gets the size of an AVI
sequence and uses the size to allocate memory for a RECT structure:

02/10/93

 3-5

void GetSourceRect(LPSTR lpstrAlias, LPRECT lpRect)
{
 char achRetBuff[128];
 char achCommandBuff[128];

 // build the command string "where name source"
 sprintf(achCommandBuff, "where %s source", lpstrAlias);

 SetRectEmpty(lpRect); // clear the RECT

 // send the command
 if (mciSendString(achCommandBuff, achRetBuff,
 sizeof(achRetBuff), NULL)== 0){

 // The rectangle is returned in our buffer as "x y dx dy" and we
 // know that x and y are both 0 since this is the source rectangle.
 // The following lines translate the string into the RECT structure.
 char *p;
 p = achRetBuff; // point to the return string
 while (*p != ' ') p++; // go past the x (0)
 while (*p == ' ') p++; // go past spaces
 while (*p != ' ') p++; // go past the y (0)
 while (*p == ' ') p++; // go past spaces

 // now get the width
 for (; *p != ' '; p++)
 lpRect->right = (10 * lpRect->right) +
 (*p - '0');

 while (*p == ' ') p++; // go past spaces

 // now get the height
 for (; *p != ' '; p++)
 lpRect->bottom = (10 * lpRect->bottom) +
 (*p - '0');

 }

}

Choosing the mciSendCommand or
mciSendString Interface
Since there are two interfaces to send commands to MCIAVI, you must select the most
appropriate one for your application’s needs. With the command interface, your
application must fill a data structure and make sure that the flags it sets match the data
structure fields it uses. With the string interface, however, your application must handle
the conversion of string data for anything that might be variable within the application.
Your application might choose to mix the two methods for the most efficient operation.
For straightforward commands your application might use the string interface, and for
commands that return information or commands your application passes information
(such as window or palette handles), it might use the command interface.

02/10/93

2-6 Video for Windows Programmer's Guide

You will probably find the string interface the easiest command set to understand and
read. While the structure of the string commands is simple, it still retains the capabilities
of the message commands to control MCI devices. This makes the command set
extremely useful in planning your application and discussing the MCI capabilities of your
application.

The examples in the rest of this chapter use a combination of the string and command
interfaces. You can find other examples of using MCI with the digital video command set
in the MOVPLAY1.C and MOVPLAY2.C files. For examples using command messages,
see MOVPLAY1.C. For examples using command strings, see MOVPLAY2.C.

Handling MCI Notification
Whichever interface your application uses, it can have MCI send notification messages
when an action completes. With the string interface, your application requests notification
by adding the notify flag to the string command it sends. It prepares to receive the
notification messages by setting the hCallback parameter to its window handle. With the
command interface, your application requests notification by adding MCI_NOTIFY to
the flags sent in dwParam1. It prepares to receive the notification messages by setting the
dwCallback field associated with dwParam2 to the callback window handle. In both
cases the callback window procedure must be able to handle the MM_MCINOTIFY
message.

An MCI notification message indicates one of the following results:

· The command completed successfully—MCI_NOTIFY_SUCCESSFUL
· The command was superseded—MCI_NOTIFY_SUPERCEDED
· The command was aborted—MCI_NOTIFY_ABORTED
· The command fails—MCI_NOTIFY_FAILURE

The MOVPLAY sample applications uses notification on the play command to determine
when playing stops at the end of the sequence. Once started this way, the sequence plays
independently of MOVPLAY and MCI notifies MOVPLAY when the sequence
completes. MOVPLAY uses the notification message to rewind the sequence. The main
window procedure of MOVPLAY includes the following fragment to handle the
notification:

case MM_MCINOTIFY:
 // Check the status of an AVI movie that might have been playing.
 // By using MCI_NOTIFY, we will get the MCI_NOTIFY_SUCCESSFUL flag
 // if the play completes on it's own.
 switch(wParam){
 case MCI_NOTIFY_SUCCESSFUL:
 // Playing finished, let's rewind and clear our flag
 fPlaying = FALSE;
 mciSendCommand(wMCIDeviceID, MCI_SEEK,
 MCI_SEEK_TO_START, (DWORD)(LPVOID)NULL);
 return 0;
 }

02/10/93

 3-7

The following fragment shows how the notify flag is used with the play command. To
use the previous fragment to process the notification message, the handle to the window
procedure containing it is specified in hwnd.

MCI_DGV_PLAY_PARMS mciPlay;
DWORD dwFlags;

mciPlay.dwCallback = MAKELONG(hwnd, 0);
dwFlags = MCI_NOTIFY;

mciSendCommand(wMCIDeviceID, MCI_PLAY, dwFlags, (DWORD)(LPSTR)&mciPlay);

For the string interface, the following line uses mciSendString to send the play command
and request notification. The hwnd parameter in it would also specify the handle to the
window procedure containing the handler for notification.

mciSendString("play movie notify", NULL, 0, hwnd);

 Playing AVI files with MCI
To play an AVI file, your application will perform the following actions:

1. Open the AVI file

2. Set up the playback window

3. Play the AVI sequence

4. Optionally change the playback state

5. Optionally get playback information

6. Close the AVI file

Opening an AVI File
To open an AVI file, your application sends the open command to MCIAVI. This
command lets your application specify the file. If desired, your application can also
specify information about the window used for playback.

If your application plans on opening multiple AVI files, it might open the MCIAVI driver
initially by specifying the driver identifier and then open each file separately. This saves
time because MCI will not load the MCIAVI driver for each file open command.

If your application will open multiple files, it should include routines like initAVI and
termAVI found in MOVPLAY2.C. The application would use initAVI during its
initialization and termAVI during its termination.

// Initialize the MCIAVI driver. This returns TRUE if OK, FALSE on error.
BOOL initAVI(void)
{
 return mciSendString("open avivideo", NULL, 0, NULL) == 0;
}

02/10/93

2-8 Video for Windows Programmer's Guide

// Close the MCIAVI driver
void termAVI(void)
{
 mciSendString("close avivideo", NULL, 0, NULL);
}

When your application uses a filename to open a device, MCI uses the file extension to
locate the driver. For example, the following fragment opens MCIAVI using the file
"YOSEMITE.AVI" and the alias movie. Subsequent commands for this file can use the
alias movie to reference it.

if (mciSendString("open yosemite.avi alias movie", NULL, 0, NULL) == 0){

 // open is OK

} else {

 // handle the error

}

The open command has options to set some playback window characteristics. These
options are covered in the next section. For a full example of using the open command,
see the fileOpenMovie function in MOVPLAY1.C and MOVPLAY2.C.

Setting up the Playback Window
Your application can specify several options to define the playback window for playing
the AVI sequence. The following options are available to your application:

· Use the default pop-up window of MCIAVI for playing
· Specify a parent window and window style that MCIAVI can use create the

playback window
· Specify a playback window for MCIAVI to use for playback
· Play the AVI sequence on a full screen display

If your application does not specify any window options, MCIAVI creates a default
window for playing the sequence. MCIAVI creates this playback window for the open
command but it does not display the window until your application either sends a
command to display the window or sends a command to play the file. This default
playback window is a sizable pop-up window with a caption, a thick frame, a system
menu, and a minimize box.

The application can also specify a parent window handle and a window style when it
opens MCIAVI. When opened this way, MCIAVI creates a window based on these
specifications instead of the default pop-up window. Your application can specify any
window style available for the CreateWindow function. Those styles that require a
parent window, like WS_CHILD, should include a parent window handle. The following
fragment shows how to use the open command to set a parent window and create a child
of that window:

02/10/93

 3-9

MCI_DGV_OPEN_PARMS mciOpen;

mciOpen.lpstrElementName = lpstrFile; // set the file name
mciOpen.dwStyle = WS_CHILD; // set the style
mciOpen.hWndParent = hWnd; // give a window handle

if (mciSendCommand(0, MCI_OPEN,
 (DWORD)(MCI_OPEN_ELEMENT|MCI_DGV_OPEN_PARENT|MCI_DGV_OPEN),
 (DWORD)(LPSTR)&mciOpen) == 0){

 // open is OK, continue operation

}

Your application can also create its own window and supply the handle to MCIAVI with
the window command. MCIAVI uses this window instead of the one it might have
created for playback. The following fragment finds the dimensions needed to play an AVI
file, creates a window corresponding to that size, and has MCIAVI to play the file in the
window:

HWND hwnd;
MCI_DGV_RECT_PARMS mciRect;

// Get the movie dimensions with MCI_WHERE
mciSendCommand(wDeviceID, MCI_WHERE, MCI_DGV_WHERE_SOURCE,
 (DWORD)(LPSTR)&mciRect);

// Create the playback window. Make it bigger for the border. hwndMovie =
CreateWindow("mywindow", "Playback",
 WS_CHILD|WS_BORDER, 0,0,
 mciRect.rc.right+(2*GetSystemMetric(SM_CXBORDER)),
 mciRect.rc.bottom+(2*GetSystemMetric(SM_CYBORDER)),
 hwndParent, hInstApp, NULL);

if (hwndMovie){
 // Window created OK, make it the playback window.

 MCI_DGV_WINDOW_PARMS mciWindow;

 mciWindow.hWnd = hwndMovie;
 mciSendCommand(wDeviceID, MCI_WINDOW, MCI_DGV_WINDOW_HWND,
 (DWORD)(LPSTR)&mciWindow);

}

When MCIAVI creates the playback window or obtains window handle from your
application, it does not display the window until your application either plays the
sequence or sends a command to display the window. Your application can use the
window command to display the window without playing the sequence. The "window
movie state show" command displays the window using the command string interface.
The following fragment shows how to display the window using the command message
interface:

02/10/93

2-10 Video for Windows Programmer's Guide

MCI_DGV_WINDOW_PARMS mciWindow;

mciWindow.nCmdShow = SW_SHOW; // set command - see ShowWindow()
mciSendCommand(wDeviceID, MCI_WINDOW, MCI_DGV_WINDOW_STATE,
 (DWORD)(LPSTR)&mciWindow;

Your application can also play an AVI sequence full screen instead of in a window. To
play full screen, modify the play command with the fullscreen flag. (Use the
MCI_MCIAVI_PLAY_FULLSCREEN flag for the message interface.) When your
application uses this flag, MCIAVI uses a 320x240 full screen format for playing the
sequence. For example, "play movie fullscreen" plays a movie full screen.

With the fullscreen flag, movies with 160x120 dimensions play back centered in the
320x240 screen. If your application wants to play these moves in a full 320x240 screen, it
can use "play movie fullscreen by 2" command to stretch the 160x120 movie to full
screen.

Playing the AVI Sequence
Playing an AVI sequence is straightforward using the MCI play command. This
command can play the entire sequence or portions of it. The previous examples show how
use the play command with mciSendString and mciSendCommand.

Changing the Playback State
Your application can control many of the play back capabilities of MCIAVI. The pause,
resume, stop, and seek commands let your application control the video sequence. Using
these, the application can pause a play in progress, seek to a location within the video
sequence, and resume play from that point. The following string command examples
show how to use these commands:

// assume the file was opened with the alias 'movie'

// pause playing
mciSendString("pause movie", NULL, 0, NULL);

// resume play
mciSendString("resume movie", NULL, 0, NULL);

// stop play
mciSendString("stop movie", NULL, 0, NULL);

// seek to the beginning
mciSendString("seek movie to start", NULL, 0, NULL);

Your application can use the seek command to move the play position to the beginning,
the end, or an arbitrary position in the AVI file. There are two seek modes for the
MCIAVI driver—exact or non-exact—which affect the seek position. When seek exactly
is enabled (seek exactly on), MCIAVI seeks exactly to the frame your application
specifies. This might cause a delay if the file is temporally encoded and your application
does not specify a key frame. With seek exactly disabled (seek exactly off), MCIAVI
seeks to the nearest key frame in a temporally encoded file. Your application can change

02/10/93

 3-11

the seek mode with the set command. The following example shows how to use the string
interface to change the seek mode:

// Set seek mode with the string interface
// assume the file was opened with the alias 'movie'
void SetSeekMode(BOOL fExact)
{
 if (fExact)

 mciSendString("set movie seek exactly on", NULL, 0, NULL);

 else

 mciSendString("set movie seek exactly off", NULL, 0,
 NULL);
}

Other MCI commands let your application alter the play other than altering the control
flow of the play. For example, an AVI sequence by default plays at its normal rate of
speed. Your application can change the play rate to speed up or slow down the playback.
The speed flag for the set command lets your application control the play rate. For AVI
sequences, a speed value of 1000 is considered normal. Thus, to play a movie at half-
speed, your application can use the command string "set movie speed 500."
Alternatively, it can use "set movie speed 2000" to play the sequence at twice the normal
rate.

The setaudio command lets your application control the audio portion of an AVI
sequence. You application can mute audio during playback, or in the case of multiple
audio stream files, select the audio stream played. For example, the "setaudio movie off"
command string turns audio off during playback. The "setaudio movie stream to n"
command string specifies the audio stream number (specified by n) played for the
sequence.

MCIAVI has a dialog box to control some of its playback options. Some of the important
option available to the user include selection of windowed or full screen playback,
selection of the seek mode, and zooming the image. Your application can have MCIAVI
display this dialog box with the configure command. For more information on this dialog
box, see “MCI String Messages for MCIAVI.”

Obtaining Playback Information

Your application can get the status on the playback of an AVI sequence with the status
command. This command obtains information on the state of the audio, state of the video,
mode of the play, position of the play, seek mode, as well as other parameters. Your
application might monitor playback so that it can update the state and position of the play
in a routine that gets called through a timer call-back. The information returned by the
status command can depend on the time format used. The device can specify the return
values for position, length, and start in milliseconds or frames. Your application can use
the set command to set alternate time formats and modes. The following fragment shows
an example of such a function:

02/10/93

2-12 Video for Windows Programmer's Guide

MCI_DGV_SET_PARMS mciSet;

MCI_DGV_STATUS_PARMS mciStatus;

// put in frame mode
mciSet.dwTimeFormat=MCI_FORMAT_FRAMES;
mciSendCommand(wDeviceID, MCI_SET,
 MCI_SET_TIME_FORMAT,
 (DWORD)(LPSTR)&mciSet);

mciStatus.dwItem = MCI_STATUS_MODE;
mciSendCommand(wDeviceID, MCI_STATUS,
 MCI_STATUS_ITEM,
 (DWORD)(LPSTR)&mciStatus);

// Update mode based on mciStatus.dwReturn

// If it is playing then get the position
if (mciStatus.dwReturn == MCI_MODE_PLAY){

mciStatus.dwItem = MCI_STATUS_POSITION;
mciSendCommand(wDeviceID, MCI_STATUS, MCI_STATUS_ITEM,

 (DWORD)(LPSTR)&mciStatus);

// update the position from mciStatus.dwReturn
}

Closing the AVI File

When finished with a file, your application closes it with the close command. With the
string interface a "close movie" command is sent, with the command interface a
MCI_CLOSE command is used and all parameters may be NULL.

02/10/93

	MCI Overview
	Using the MCI Command Interface
	Using the MCI String Interface
	Choosing the mciSendCommand or mciSendString Interface

	Handling MCI Notification
	Playing AVI files with MCI
	Opening an AVI File
	Setting up the Playback Window
	Playing the AVI Sequence
	Changing the Playback State
	Obtaining Playback Information
	Closing the AVI File

