
CHAPTER 1

The Installable Compression Manager (ICM) provides services for applications that want
to compress or decompress video image data stored in AVI files. This chapter explains
the programming techniques used to access these services. It covers the following topics:

· General information about the ICM and the Video for Windows architecture
· Information on how to compress and decompress video image data from your

application
· An alphabetic reference to the ICM functions and data structures

Before reading this chapter, you should be familiar with the video services available with
Windows. For information about these Windows topics, see the Microsoft Windows
Programmer’s Reference.

Video Compression and Decompression Header
Files

The function prototypes, constants, flags, and data structures applications use to access
the ICM services are defined in COMPMAN.H and COMPDDK.H.

ICM Architecture
The ICM is used by the Video for Windows editing tool (VidEdit) and the playback
engine (MCIAVI) to handle compression and decompression of image data. ICM is the
intermediary between the application and the actual video compression and
decompression drivers. It is the video compression/decompression drivers that do the real
work of compressing and decompressing individual frames of data.

This chapter covers the ICM and the functions a video editing or playback application
uses to communicate with it. For information on the video compression and
decompression drivers, see Chapter 10, Video Compression and Decompression Drivers.

As the application makes calls to the ICM to compress or decompress data, the ICM
translates this to a message to be sent to the appropriate compressor or decompressor
which does the work of compressing or decompressing the data. The ICM gets the return
from the driver and then returns back to the application.

The ICMAPP sample application illustrates routines that compress data, decompress data,
and display a dialog box. You might find the helper functions defined in ICM.C useful in
developing your application.

Using the Installable
Compression Manager

2-2 Video for Windows Programmer's Guide

Using ICM Services
In general, an application performs the following tasks to use ICM services:

· Locate, open, or install the appropriate compressor or decompressor
· Configures or obtains configuration information about the compressor or

decompressor
· Uses a series of functions to compress, decompress, and (for decompressors

with drawing capabilities) draw the data
These tasks are covered in the following sections. The sample application, ICMApp,
shows how to use the ICM services to do all of the above functions to compress and
decompress images.

Error Returned from the ICM Functions
For most ICM functions, return values of less than zero indicate an error. Your
application should check these return values to see if the ICM function encounters an
error. To keep the example fragments in this chapter simple, many of them do not check
for errors. For more complete examples, see the ICMAPP and ICM examples included
with the development kit.

Locating and Opening Compressors and
Decompressors
To use ICM, an application must open a compressor or decompressor. If your application
does not know about the compressors or decompressors installed on a system, it must find
a suitable compressor to open. Once your application finishes with a compressor or
decompressor, it closes it to free any resources used for compression or decompression.
Your application can use the following functions for finding compressors and
decompressors, and opening and closing them:

ICInfo

This function obtains information about compressor or decompressor.
ICOpen

This function opens a compressor or decompressor.
ICClose

This function closes a compressor or decompressor.
ICLocate

This function locates a specific type of compressor or decompressor.

02/10/93

 3-3

If your application knows the compressor or decompressor it needs, it can open the
compressor with the ICOpen function. Your application uses the handle returned by this
function to identify the opened compressor or decompressor when it uses other ICM
functions. The ICOpen function has the following syntax:

BOOL ICOpen(fccType, fccHandler, wMode)
The fccType and fccHandler parameters are four character codes used to describe the type
and handler type for the compressor. Compressor and decompressors are identified by
two four-character codes. Applications open a specific compressor or decompressor by
using the four-character codes for the type and handler. The first four-character code
describes the type of the compressor or decompressor. For video compressors and
decompressors, this is always 'vidc'. The second four-character code identifies the specific
compression handler type. For example, this value is 'msvc' for the Video 1 compressor.
Your application can use NULL if it does not know this four-character code.

In an AVI file, the stream header contains information about the stream
type and the specific handler for that stream. For video streams, the

stream type is 'vidc' and the handler type is the appropriate handler four-
character code. As in the previous example, Video 1 compressed streams use
'msvc'.

The wMode parameter specifies flags passed to the compressor or decompressor. For
ICOpen, these flags let the compressor or decompressor know why it is opened and they
can prepare for subsequent operation. The following flags are defined:

ICMODE_COMPRESS

Advises a compressor it is opened for compression.
ICMODE_DECOMPRESS

Advises a decompressor it is opened for decompression.
ICMODE_DRAW

Advises a decompressor it is opened to decompress an image and draw it
directly to hardware.

ICMODE_QUERY

Advises a compressor or decompressor it is opened to obtain information.

If your application does not know which compressors and deompressors are installed on a
system, it can use ICInfo to enumerate them. This function has the following syntax:

BOOL ICInfo(fccType, fccHandler, lpicinfo)
The fccType parameter specifies a four-character code indicating the type of compressor
or decompressor. To enumerate the compressors or decompressors, your application

02/10/93

Note
:

2-4 Video for Windows Programmer's Guide

specifies an integer for fccHandler. Your application receives return information for
integers between 0 and the number of installed compressors or decompressors of the type
specified for fccType. The compressor or decompressor returns information about itself in
a ICINFO data structure pointed to by lpicinfo. The ICInfo function returns TRUE if it
can locate the specified compressor or decompressor.

The following example enumerates the compressors or decompressors in the system to
find one that can handle the format of its images. (The example uses ICCompressQuery
and ICDecompressQuery to determine if a compressor or decompressor supports the
image format. The use of these functions is described in “Compressing Image Data” and
“Decompressing Image Data.”)

for (i=0; ICInfo(p->fccType, i, &p->icinfo); i++)
{
 hic = ICOpen(p->icinfo.fccType, p->icinfo.fccHandler, ICMODE_QUERY);

 if (hic)
 {
 // skip this compressor if it can't handle the specifed format
 if (p->fccType == ICTYPE_VIDEO &&
 p->pvIn != NULL &&
 ICCompressQuery(hic, p->pvIn, NULL) != ICERR_OK &&
 ICDecompressQuery(hic, p->pvIn, NULL) != ICERR_OK)
 {
 ICClose(hic);
 continue;
 }

 // find out the compressor name.
 ICGetInfo(hic, &p->icinfo, sizeof(p->icinfo));

 // stuff it into the combo box
 n = ComboBox_AddString(hwndC,p->icinfo.szDescription);
 ComboBox_SetItemData(hwndC, n, hic);
 }
}

Applications can use ICLocate to find a compressor or decompressor of a specific type,
and to obtain a handle to it for use in other ICM functions. The ICLocate function has the
following syntax:

HIC ICLocate (fccType, fccHandler, lpbiIn, lpbiOut, wFlags)
The fccType and fccHandler parameters are four-character codes used to describe the type
and handler type for the compressor. Your application can specify NULL for fccHandler
if it does not know the handler type or if it can use any handler type.

The lpbiIn parameter contains a pointer to a BITMAPINFOHEADER structure describing
the input format the compressor or decompressor will handle. The lpbiOut parameter
contains a pointer to a BITMAPINFOHEADER structure describing the output format
desired by the application. If your application does not care what output format is
returned by a compressor or decompressor, you can set lpbiOut to NULL. The wFlags
parameter indicates the type of operation you want the driver to do: compress,
decompress or directly decompress and draw.

For example, the following fragment tries to find a compressor that can compress an 8-bit

02/10/93

 3-5

per pixel bitmap:

BITMAPINFOHEADER bih;
HIC hIC

// inialize the Bitmap structure
bih.biSize = sizeof(BITMAPINFOHEADER);
bih.biWidth = bih.biHeight = 0;
bih.biPlanes = 1;
bih.biCompression = BI_RGB; // standard RGB bitmap
bih.biBitcount = 8; // 8bpp format
bih.biSizeImage = 0;
bih.biXPelsPerMeter = bih.biYPelsPerMeter = 0;
bih.biClrUsed = bih.biClrImportant = 256;

hIC = ICLocate (ICTYPE_VIDEO, 0L,
(LPBITMAPINFOHEADER)&bih, NULL, ICMODE_COMPRESS);

The following fragment tries to locate a specific compressor to compress the 8-bit RGB
format to an 8-bit RLE format:

BITMAPINFOHEADER bihIn, bihOut;
HIC hIC

// initialize the Bitmap structure
bihIn.biSize = bihOut.biSize = sizeof(BITMAPINFOHEADER);
bihIn.biWidth = bihIn.biHeight = bihOut.biWidth = bihOut.biHeight = 0;
bihIn.biPlanes = bihOut.biPlanes= 1;
bihIn.biCompression = BI_RGB; //standard RGB bitmap for input
bihOut.biCompression = BI_RLE8; // 8-bit RLE for output format
bihIn.biBitcount = bihOut.biBitCount = 8; // 8bpp format
bihIn.biSizeImage = bihOut.biSizeImage = 0;
bihIn.biXPelsPerMeter = bih.biYPelsPerMeter =
 bihOut.biXPelsPerMeter = bihOut.biYPelsPerMeter = 0;
bihIn.biClrUsed = bih.biClrImportant =
 bihOut.biClrUsed = bihOut.biClrImportant = 256;

hIC = ICLocate (ICTYPE_VIDEO, 0L,
 (LPBITMAPINFOHEADER)&bihIn,
 (LPBITMAPINFOHEADER)&bihOut, ICMODE_COMPRESS);

Installing and Removing Compressors and
Decompressors
There are three methods of installing compressors and decompressors. They might be
installed during the set-up of Video for Windows or other software relating to Video for
Windows. Users can also install compressors and decompressors with the Drivers option
of the Control Panel. Applications can also install custom compressors and
decompressors functions required for their operation. Most applications will not need to
install or remove compressors or decompressors. Your application can use the following
functions for installing and removing compressors and decompressors:

02/10/93

2-6 Video for Windows Programmer's Guide

ICInstall

This function installs compressor or decompressor.
ICRemove

This function removes an installed compressor or decompressor.

Compressors and decompressor are usually installed by a setup program or by the user
with the Drivers option of the Control Panel. An application might, however, install a
compressor directly or install a function as a compressor. In these cases, the application
uses ICInstall and ICRemove.

The ICInstall function creates a new entry in the SYSTEM.INI for a compressor or
decompressor. After installation, the compressor or decompressor must still be opened.
The ICInstall function has the following syntax:

BOOL ICInstall (fccType, fccHandler, lParam, szDesc, wFlags)
The fccType and fccHandler parameters specify four-character codes describing the
compressor type and handler type. Flags set in wFlags specify the meaning of lParam.
The following flags are defined:

ICINSTALL_DRIVER

Indicates lParam points a null-terminated string containing the name of a
compressor or decompressor.

ICINSTALL_FUNCTION

Indicates lParam points to a compressor function.

If you are installing a driver, lParam specifies the name of the driver. If you are installing
a function as a compressor or decompressor, use lParam to specify a far pointer to your
function. This function should be structured like the DriverProc entry point function used
by installable drivers. For more information on the DriverProc entry point function, see
Chapter 10, “Video Compression and Decompression Drivers.”

Use the szDesc parameter for a descriptive name for the compressor or decompressor.
This information is not used and your application does not have to supply a name.

For example, the following fragment installs the ICSample driver:

result = ICInstall (ICTYPE_VIDEO, mmioFOURCC('s','a','m','p'),
(LPARAM)(LPSTR)"icsample.drv", "Sample Codec Driver", ICINSTALL_DRIVER)

The following fragment shows how an application would install a function as a
compressor or decompressor.

02/10/93

 3-7

// This function looks like a DriverProc entry point
LRESULT MyCodecFunction(DWORD dwID, HDRVR hDriver, UINT uiMessage,
 LPARAM lParam1, LPARAM lParam2);

// This function installs the MyCodecFunction as a compressor
result = ICInstall (ICTYPE_VIDEO, mmioFOURCC('s','a','m','p'),

(LPARAM)(FARPROC)&MyCodecFunction, NULL, ICINSTALL_FUNCTION);

Usually the Drivers option of the Control Panel is used to remove a compressor or
decompressor. Applications installing a function as a compressor or decompressor must
remove the function before the application terminates so other applications do not try to
use the function. Applications can use ICRemove to remove the function installed. The
ICRemove function has the following syntax:

BOOL ICRemove (fccType, fccHandler, wFlags)
The fccType and fccHandler parameters specify four-character codes describing the
compressor type and handler type. The wFlags parameter is not used.

Configuring Compressors and Decompressors
Applications can configure the compressor or have the compressor display a dialog box to
let the user to do the configuration. The following functions are available for these
operations:

ICQueryConfigure

Determines if the compressor or decompressor supports a configuration
dialog box.

ICConfigure

Displays the configuration dialog box of the compressor or decompressor.
ICGetStateSize

Determines the size of the state data for the compressor or decompressor.
ICGetState

Obtains the state data from the compressor or decompressor.
ICSetState

Sends the state data to the compressor or decompressor.

If practical, your application should let the user configure the compressor with the
compressor’s configuration dialog box. Typically, this makes your application
independent of the compressor and you do not need to consider all the options available to
a compressor.

Your application uses ICQueryConfigure to determine if a compressor can display a
configuration dialog box. If the compressor can display a configuration dialog box, your

02/10/93

2-8 Video for Windows Programmer's Guide

application uses ICConfigure to display it. Both of these functions use the handle your
application obtained when it located the compressor. The ICConfigure function also
requires a handle to the parent window. Your application can use the following fragment
to test for support of the configuration dialog box and display it:

 if (ICQueryConfigure(hIC)){

 // If compressor handles a configuration dialog box, display it
 // using our app window as the parent window.
 ICConfigure(hIC, hwndApp);

}

Your application might also directly get and set the state information for a compressor. If
your application creates or modifies the state data, it must know the actual layout of the
compressor data before restoring a compressor state. Alternatively, if your application
obtains state data from a compressor and uses it to restore the state in a subsequent
session, it must make sure that it only restores state information obtained from the
compressor it is currently using. The following fragments show how to obtain the state
data:

if (size > 0) {

 dwStateSize = ICGetStateSize(hIC); // get size of buffer required
 h = GlobalAlloc(GHND, dwStateSize); // allocate data buffer
 lpData = GlobalLock(h); // lock data buffer
 ICGetState(hIC, (LPVOID)lpData, dwStateSize); // get the state data

 // Store the state data as required
}

The following fragments show how to restore state data:

ICSetState(hIC, (LPVOID)lpData, dwStateSize); // set the new state data
GlobalUnlock(h);

Getting Information about Compressors and
Decompressors
The following functions can be used to get information about a compressor or
decompressor:

ICGetInfo

Obtains general information about the compressor or decompressor.
ICGetDefaultKeyFrameRate

Determines the default key frame rate of a compressor or decompressor.

02/10/93

 3-9

ICGetDisplayFormat

Determines the 'best' format a compressor or decompressor has for
displaying on the screen.

ICGetDefaultQuality

Determines the default quality value of a compressor or decompressor.

To obtain information about a compressor or decompressor, your application can use
ICGetInfo. This function fills an ICINFO structure with information about the
compressor or decompressor. Your application must allocate the memory for the ICINFO
structure and pass a pointer to it in ICGetInfo. The ICINFO structure has the following
definition:

typedef struct {
 DWORD dwSize;
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwVersionICM;
 char szName[16];
 char szDescription[128];
 char szDriver[128];
} ICINFO;

The dwSize field contains the size of the ICINFO structure.

The fccType field contains the four-character code 'vidc' for image compression.

The fccHandler field identifies the compressor or decompressor with its four-character
code.

The dwVersion field contains the version number of the compression driver.

The dwVersionICM field will contain the ICM version number supported by the
compressor or decompressor. This is 1.0 (0x00010000) if the compressor or
decompressor is written for Video for Windows 1.0.

The szName field contains the short name of the compressor or decompressor. The name
is used in list-boxes for choosing compression methods.

The szDescription field contains the long description for the compressor or
decompressor.

The szDriver field contains the actual module name that contains the compressor or
decompressor.

The dwFlags field contains flags indicating capabilities of the compressor or
decompressor. The following flags are defined:

02/10/93

2-10 Video for Windows Programmer's Guide

VIDCF_QUALITY

Indicates the compressor or decompressor supports quality levels.
VIDCF_CRUNCH

Indicates a compressor supports compressing to an arbitrary frame size.
VIDCF_TEMPORAL

Indicates the compressor or decompressor supports inter-frame
compression.

VIDCF_DRAW

Indicates decompressor can draw to hardware. (These decompressors
support the ICDraw functions.)

VIDCF_FASTTEMPORAL

Indicates a compressor can do temporal compression but it doesn't need
previous frame.

Unless your application is looking for a particular compressor or decompressor, the flags
give your application the most useful information. Your application can check the flags to
determine the capabilities of the compressor or decompressor. For example, if quality is
supported, your application might enable a quality selection control in a compression
dialog box.

The following fragment shows how to obtain the ICINFO information from a compressor
or decompressor:

ICINFO ICInfo;

ICGetInfo(hIC, &ICInfo, sizeof(ICInfo));

The ICGetDefaultKeyFrameRate and ICGetDefaultQuality functions let your
application determine the default key frame rate and default quality value. Both of these
functions require only the handle to the compressor or decompressor. The following
fragment uses both functions to obtain the default values:

DWORD dwKeyFrameRate, dwQuality;

dwKeyFrameRate = ICGetDefaultKeyFrameRate(hIC);
dwQuality = ICGetDefaultQuality(hIC);

Your application can use the following functions to display the about dialog box of a
compressor or decompressor:

ICQueryAbout

Determines if a compressor or decompressor supports an about dialog box.

02/10/93

 3-11

ICAbout

Displays the about dialog box of a compressor or decompressor.

The ICQueryAbout function lets your application determine if a compressor or
decompressor can display the about dialog box. The ICAbout function actually displays
the dialog box. The following examples uses these two functions:

if (ICQueryAbout(hIC)){

 // If the compressor has an about dialog box, show it
 ICAbout(hIC, hwndApp);
}

Compressing Image Data
Your application uses a series of functions to coordinate compressing video data. The
coordination involves the following activities:

· Specifying the input format and determining the compression format
· Preparing the compressor for compression
· Compressing the video
· Ending compression

Your application uses the following functions for these activities:

ICCompress

Compress data.
ICCompressBegin

Prepare compressor driver for compressing data.
ICCompressEnd

Tell the compressor driver to end compression.
ICCompressGetFormat

Determine the output format of a compressor.
ICCompressGetFormatSize

Get the size of the output format data.
ICCompressGetSize

Get the size of the compressed data.
ICCompressQuery

Deterimine if a compressor can compress a specific format.

02/10/93

2-12 Video for Windows Programmer's Guide

Specifying the Input Format and Determining the
Compression Format
When your application wants to compress data and the output format is not important, it
must first locate a compressor that can handle the input format. When the output format is
not important to your application, it can use ICCompressGetFormat to have the
compressor suggest a format. If the compressor can produce multiple formats, it returns
the format that preserves the greatest amount of information rather than one that
compresses to the most compact size. This will preserve image quality if the video data is
later edited and recompressed. The ICCompressGetFormat function has the following
syntax:

LRESULT ICCompressGetFormat(hic, lpbiInput, lpbiOutput)
The hic parameter specifies the compressor handle. The lpbiInput parameter specifies a
far pointer to a BITMAPINFO structure indicating the format of the input data. The
lpbiOutput parameter specifies a far pointer to a buffer used to return the output format
suggested by the compressor. Your application can determine the size of the buffer
needed for the buffer with ICCompressGetFormatSize.

Your application can use the output format data as the 'strf' chunk in the AVI RIFF file.
This data starts out like a BITMAPINFOHEADER data structure. The compressor can
include any additional information required to decompress the file after this information.
A color table (if used) follows this information. If the compressor has format data
following the BITMAPINFOHEADER structure, it updates the biSize field to specify the
number of bytes used by the structure and additional data.

The following example fragment shows how an application can determine the output
format that a compressor wants to use.

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// *lpbiIn must be initialized to the input format

dwFormatSize = ICCompressGetFormatSize(hIC, lpbiIn); // get output buffer size
h = GlobalAlloc(GHND, dwFormatSize); // allocate format buffer
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h); // lock format buffer
ICCompressGetFormat(hIC, lpbiIn, lpbiOut); // fill the format information

If your application requires a specific output format, it should use ICCompressQuery to
interrogate a compressor to determine if it supports the output format your application
suggests. This function has the following syntax:

LRESULT ICCompressQuery(hic, lpbiInput, lpbiOutput)

The hic parameter specifies the compressor handle. Your application typically obtains this
with ICLocate or ICOpen. The lpbiInput and lpbiOutput parameters specify far pointers
to the data structures defining the input and output formats your application prefers. If the
compressor can handle both formats it returns ICERR_OK. If it cannot handle the
formats, it returns ICERR_BADFORMAT. If the compressor returns
ICERR_BADFORMAT and the output format is critical to your application, your

02/10/93

 3-13

application will have to find an alternate compressor. If an alternate output format is
satisfactory, your application might choose to use ICCompressQuery with the alternate
formats to determine if the compressor can handle them. Or your application can use
ICCompressGetFormat to have the compressor suggest the output format.

If your application specifies NULL for the lpbiOutput parameter of ICCompressQuery,
the compressor will select the output format. Typically, your application specifies NULL
when it only wants to know if the compressor can handle the input format. The output
format information is not returned to your application.

The following fragment uses ICCompressQuery to determine if a compressor can handle
both the input and output format:

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// Both *lpbiIn & *lpbiOut must be initialized to the respective formats
if (ICCompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK){

// format is supported - use the compressor

}

Your application will also need the size of the data returned from the compressor after
compression is complete. Use ICCompressGetSize to obtain the worst case (largest)
buffer required by the compressor. The number of bytes returned should be used to
allocate a buffer used for subsequent compression of images. The following example
determines the buffer size and allocates a buffer of that size:

// find the worst-case buffer size
dwCompressBufferSize = ICCompressGetSize(hIC, lpbiIn, lpbiOut);

// allocate a buffer and get lpOutput to point to it
h = GlobalAlloc(GHND, dwCompressBufferSize);
lpOutput = (LPVOID)GlobalLock(h);

Initialization for the Compression Sequence
Once your application selects a compressor that handles the input and output formats it
needs, it can prepare the compressor to start compressing data. The ICCompressBegin
function initializes the compressor. This function requires the compressor handle and the
input and output format. It returns ICERR_OK if it initializes properly for the specified
formats. If the compressor cannot handle the formats, or if they are incorrect, it returns
the error ICERR_BADFORMAT.

Compressing the Video
The ICCompress function does the actual compression. Your application must use this
function repeatedly until all the frames are compressed. This function has the following
syntax:

02/10/93

2-14 Video for Windows Programmer's Guide

LRESULT ICCompress(hic, dwFlags, lpbiOutput, lpData, lpbiInput, lpBits,
 lpckid, lpdwFlags, lFrameNum, dwFrameSize,
 dwQuality, lpbiPrev, lpPrev)
The hic parameter specifies the handle to the compressor.

The dwFlags parameter specifies any applicable flags for the compression. Your
application can use ICM_COMPRESS_KEYFRAME to have the compressor make the
frame a key frame. (A key frame is one that does not require data from a previous frame
for decompression.) When this flag is set, compressors use this image as the initial one in
a sequence.

The lpbiInput and lpBits parameters specify far pointers to the data structure defining the
input format and the location of the input buffer. Similarly, the lpbiOutput and lpData
parameters specify far pointers to the data structure defining the output format and the
location of the buffer for the output data. Your application must allocate the memory for
these buffers. When control returns to your application, it typically stores the compressed
data in lpbiOutput and lpData in a subsequent operation. If your application needs to
move the compressed data, it can find the size used for the data in the biSizeImage field
in the BITMAPINFO structure specified for lpbiOutput.

The lpckid and lpdwFlags are used for AVI file data returned by the compressor. The
lpckid specifies a far pointer to a DWORD used to hold a chunk ID for data in the AVI
file. The lpdwFlags specifies a far pointer to a DWORD holding the return flags used in
the AVI index. The compressor will set this flag to AVIIF_KEYFRAME to correspond to
the ICM_COMPRESS_KEYFRAME flag. The AVIIF_KEYFRAME flag marks the key-
frames in the AVI file. If your application creates AVI files, it should save the
information returned for these parameters in the file.

The lFrameNum parameter specifies the frame number. Your application provides and, if
necessary, increments this information. Compressors use this value to check if frames are
being sent out of order when they are doing fast temporal compression. If your
application has a frame recompressed, it should use the same frame number used when
the frame was first compressed. If your application compresses a still frame image, it can
specify zero for lFrameNum.

The dwFrameSize parameter specifies the requested frame size in bytes. If set to zero, the
compressor chooses the frame size. If set to a non-zero value, the compressor tries to
compress the frame to within the specified size. To obtain the size goal, the compressor
might have sacrificed image quality (or made some other trade-off). Compressors
recognize the frame size value only if they return the VIDCF_CRUNCH flag for
ICGetInfo.

The dwQuality parameter specifies the requested quality value for the frame. Compressors
support this only if they set the VIDCF_QUALITY flag for ICGetInfo.

The lpbiPrev and lpPrev parameters specify far pointers to the data structure defining the
format and the location of the previous uncompressed image. Compressors use this data if
they perform temporal compression (that is, they need the previous frame to compress the

02/10/93

 3-15

current frame). Compressors need this information only if they return the
VIDCF_TEMPORAL flag. Compressors returning the VIDCF_FASTTEMPORAL flag
can perform temporal compression without the previous frame.

The ICCompress function returns ICERR_OK if successful. Otherwise, it returns an
error code.

After your application has compressed its data, it uses ICCompressEnd to notify the
compressor that it has finished. To restart compression after using this function, your
application must re-initialize the compressor with ICCompressBegin.

The following fragment compresses image data for use in an AVI file. It assumes the
compressor does not support VIDCF_CRUNCH or VIDCF_TEMPORAL flags but it
does support VIDCF_QUALITY.

DWORD dwCkID;
DWORD dwCompFlags;
DWORD dwQuality;
LONG lNumFrames, lFrameNum;

// assume dwNumFrames is initialized to the total number of frames
// assume dwQuality holds the proper quality value (0-10000)
// assume lpbiOut, lpOut, lpbiIn and lpIn are all initialized properly.

if (ICCompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK){

 // If o.k. to start, compress each frame
 for (lFrameNum = 0; lFrameNum < lNumFrames; lFrameNum++){

 if (ICCompress(hIC, 0, lpbiOut, lpOut, lpbiIn, lpIn,
 &dwCkID, &dwCompFlags, lFrameNum,
 0, dwQuality, NULL, NULL) == ICERR_OK){

 // Write compressed data the AVI file.
 .
 .
 .
 // set lpIn to be the next frame in the sequence

 } else {

 // handle compressor error

 }

 }

 ICCompressEnd(hIC); // terminate compression

} else {

02/10/93

2-16 Video for Windows Programmer's Guide

 // handle error

}

Decompressing Image Data
Similar to compressing data, your application uses a series of functions to control the
decompressor used to decompress the video data. Decompressing data involves the
following activities:

· Specifying the input format and determining the decompression format
· Preparing to decompress video
· Decompressing the video
· Ending decompression

Your application uses the following functions for these activities:

ICDecompress

Decompress data.
ICDecompressBegin

Prepare decompressor for decompressing data.
ICDecompressEnd

Tell decompressor to end decompression.
ICDecompressGetFormat

Determine the output format of a decompressor.
ICDecompressGetFormatSize

Get the size of the output data format.
ICDecompressGetPalette

Get the palette for the output format of a decompressor.
ICDecompressQuery

Determine if a decompressor can decompress a specific format.

Decompression is handled very much like compression except that the input format is a
compressed format and the output is a displayable format. The input format for
decompression is usually obtained from the video stream header in the AVI file. After
determining the input format, your application can use ICLocate or ICOpen to find a
decompressor that can handle it.

02/10/93

 3-17

Specifying the Input Format and Determining the
Decompression Format
Because your application allocates the memory required for decompression, it needs to
determine the maximum memory the decompressor can require for the output format. The
ICDecompressGetFormatSize function obtains the number of bytes the decompressor
uses. This function has the following syntax:

DWORD ICDecompressGetFormatSize(hic, lpbi)
The hic parameter specifies a handle to a decompressor. The lpbi specifies a far pointer to
a BITMAPINFO structure indicating the format of the input data.

If your application wants the decompressor to suggest a format, it can use
ICDecompressGetFormat to obtain the format. This function has the following syntax:

DWORD ICDecompressGetFormat(hic, lpbiInput, lpbiOutput)

Like ICDecompressGetFormatSize, the hic and lpbiInput parameters specify a handle to
the decompressor and a far pointer to the structure indicating the format of the input data.
The decompressor returns its suggested format in the BITMAPINFO structure pointed to
by lpbiInput. Your application should check that the decompressor returns ICERR_OK
for the return value before accessing the lpbiOutput information. If the decompressor
cannot handle the input format, it returns ICERR_BADFORMAT. The following
fragment shows how an application can use ICDecompressGetFormat:

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// assume *lpbiIn points to the input (compressed) format

dwFormatSize = ICDecompressGetFormatSize(hIC, lpbiIn); // get output
 // buffer size
h = GlobalAlloc(GHND, dwFormatSize); // allocate format buffer
lpbiOut = (LPBITMAPINFOHEADER)GlobalLock(h); // lock format buffer
ICDecompressGetFormat(hIC, lpbiIn, lpbiOut); // fill the format information

If your application needs a specific output format, in can use ICDecompressQuery to
determine if the decompressor can handle both the input and output format. This function
uses the same parameters as ICDecompressGetFormat except that your application sets
lpbiOutput to point at the structure defining the desired output format. If your application
is just determining if the decompressor can handle the input format, it can specify NULL
for lpbiOutput. The following fragment shows how an application can use this function:

LPBITMAPINFOHEADER lpbiIn, lpbiOut;

// assume both *lpbiIn & *lpbiOut are initialized to the respective formats
if (ICDecompressQuery(hIC, lpbiIn, lpbiOut) == ICERR_OK){

 // format is supported - use the decompressor

}

If your application creates its own format, it must also obtain a palette for the bitmap.

02/10/93

2-18 Video for Windows Programmer's Guide

(Most applications use standard formats and do not need to obtain a palette.) Your
application can obtain the palette with ICDecompressGetPalette. This function has the
following syntax:

DWORD ICDecompressGetPalette(hic, lpbiInput, lpbiOutput)

Like the other functions, hic and lpbiInput specify a handle to a decompressor and point
to a BITMAPINFO structure indicating the format of the input data. The lpbiOutput
parameter points to a BITMAPINFO structure used to return the color table. The space
reserved for the color table must have an entire 256 color palette table reserved at the end
of the structure. The following fragment shows how to get the palette information:

ICDecompressGetPalette(hIC, lpbiIn, lpbiOut);

// move up to the palette
lpPalette = (LPBYTE)lpbiOut + lpbi->biSize;

Initialization for the Decompression Sequence
Once your application selects a decompressor that handles the input and output formats it
needs, it can prepare the decompressor to start decompressing data. The
ICDecompressBegin function initializes the compressor. This function requires the
compressor handle and the input and output format. It returns ICERR_OK if it initializes
properly for the specified formats. If the compressor cannot handle the formats, or if they
are incorrect, it returns the error ICERR_BADFORMAT.

Decompressing the Video
The ICDecompress function does the actual decompression. Your application must use
this function repeatedly until all the frames are decompressed. This function has the
following syntax:

DWORD ICDecompress(hic, dwFlags, lpbiFormat, lpData, lpbi, lpBits)
The hic parameter specifies the handle to the decompressor.

The dwFlags parameter specifies any applicable flags for decompression. If your video
presentation is starting to lag other components (such as audio), your application can use
ICM_DECOMPRESS_HURRYUP to have the decompressor decompress at a faster rate.
To speed up decompression, a decompressor might extract only the information it needs
to decompress the next frame and not fully decompress the current frame. Thus, when
your application uses this flag, it should not try to draw the decompressed data.

The lpbiFormat and lpData parameters specify far pointers to the data structure defining
the input format and the location of the input buffer. Similarly, the lpbi and lpBits
parameters specify far pointers to the data structure defining the output format and the
location of the buffer for the output data. Your application must allocate the memory for
these buffers. When control returns to your application, it will use the information in lpbi
and lpBits for subsequent processing of the decompressed data.

The ICDecompress function returns ICERR_OK if successful. Otherwise, it returns an

02/10/93

 3-19

error code.

After your application has decompressed its data, it uses ICDecompressEnd to notify the
decompressor that it has finished. To restart decompression after using this function, your
application must re-initialize the decompressor with ICDecompressBegin. The following
fragment shows how an application can initialize a decompressor, decompress a frame
sequence, and terminate decompression:

LPBITMAPINFOHEADER lbpiIn, lpbiOut;
LPVOID lpIn, lpOut;
LONG lNumFrames, lFrameNum;

// assume lpbiIn and lpbiOut are initialized to the input and output format
// and lpIn and lpOut are pointing to the data buffers.

if (ICDecompressBegin(hIC, lpbiIn, lpbiOut) == ICERR_OK){

 for (lFrameNum = 0; lFrameNum < lNumFrames, lFrameNum++){

 if (ICDecompress(hIC, 0, lpbiIn, lpIn, lpbiOut, lpOut) == ICERR_OK){

 // frame decompressed OK so we can process it as required

 } else {

 // handle decompression error

 }
 }

 ICDecompressEnd(hIC);

} else {

 // handle error for decompression initialization

}

Using Hardware Drawing Capabilities
Some decompressors have the ability to draw directly to video hardware as they
decompress video frames. These decompressors return the VIDCF_DRAW flag in
response to ICGetInfo. When using this type of decompressor, your application does not
have to handle the decompressed data. It lets the decompressor retain the decompressed
data for drawing. The following functions are used to for decompressing and drawing
with decompressors that have drawing capabilities:

ICDrawBegin

This function prepares a decompressor for drawing.
ICDrawEnd

This function stops a decompressor’s drawing operations.

02/10/93

2-20 Video for Windows Programmer's Guide

ICDrawFlush

This function flushes the buffers in the decompressor.
ICDrawQuery

This function determines if the decompressor can render data in a specific
format.

ICDrawStart

This function starts the internal clock a decompressor uses for drawing.
ICDrawStop

This function stops the internal clock a decompressor uses for drawing.
ICGetBuffersWanted

This function determines the pre-buffering requirements of a compressor.

If your application uses a decompressor with drawing capabilities, it must handle the
following activities:

· find a decompressor that can decompress and draw a bitmap with the input
format specified

· prepare for decompression
· decompress data
· terminate the decompression process

Specifying the Input Format
Since your application no longer needs to draw the final data, it does not need to be
concerned with the output format. However, it must make sure the decompressor can
draw the input format. Your application can use ICDrawQuery to determine if a
decompressor can handle the input format. While this function can determine if a
deompressor can handle the format, it does not determine if the a decompressor has all the
capablities needed to draw a bitmap. If your application is uncertain if the decompressor
can render the bitmap as required, use this function with ICDrawBegin The following
section describes ICDrawBegin. The following fragment shows how to check the input
format with ICDrawQuery:

02/10/93

 3-21

// lpbiIn points to BITMAPINFOHEADER structure indicating the input format

if (ICDrawQuery(hIC, lpbiIn) == ICERR_OK){

 // decompressor recognizes the input format

} else {

 // we need a different decompressor

}

Preparing to Decompress Video
The ICDrawBegin function initializes a decompressor and it informs the decompressor
about the destination of drawing. The ICDrawBegin function has the following syntax:

DWORD ICDrawBegin(hIC, dwFlags, hPal, hwnd, hdc, xDst, yDst, dxDst,
dyDst,

lpbi, xSrc, yScr, dxSrc, dySrc, dwRate, dwScale)
The hIC parameter contains the handle to the decompressor. The dwFlags parameter
specifies any applicable flags. The following flags are defined for this function:

ICDRAW_QUERY

Use to determine if the decompressor can handle the decompression. The
decompressor does not draw when this flag is used.

ICDRAW_FULLSCREEN

Indicates that the decompressor will draw to the full screen rather than to a
window.

ICDRAW_HDC

Indicates that the decompressor will use a window and display context for
drawing.

The hPal parameter specifies a handle to the palette used for drawing. Decompressor
ignore this information and your application can set it to null.

The hwnd and hdc parameters define the window and display context used for drawing.
Your application must set these values if it uses the ICDRAW_HDC flag.

The xDst, yDst, dxDst and dyDst parameters define the destination rectangle used for
drawing. Specify the destination rectangle values relative to the current window or
display context. Your application should set these parameters to the desired destination
rectangle if it uses ICDRAW_HDC. It can set them to zero if it uses the
ICDRAW_FULLSCREEN flag.

The xSrc, ySrc, dxSrc, and dySrc parameters specify the source rectangle used for clipping

02/10/93

2-22 Video for Windows Programmer's Guide

the frames of the image. The decompressor will stretch the rectangle specified as the
source into the rectangle specified by the destination when drawing.

The lpbi parameter should contain a pointer to the BITMAPINFO structure for the input
format. Your application uses the dwRate and dwScale parameters to specify the
decompression rate. The integer value specified for dwRate divided by the integer value
specified for dwScale defines the play rate in frames per second. This is used by the
decompressor when it is responsible for timing of frames on playback.

The following fragment shows the initialization sequence to have the decompressor draw
full screen:

// assume lpbiIn has the input format, dwRate has the data rate
if (ICDrawBegin(hIC, ICDRAW_QUERY|ICDRAW_FULLSCREEN, NULL, NULL,
 NULL, 0, 0, 0, 0, lpbiIn, 0, 0, 0, 0, dwRate, dwScale) == ICERR_OK){

 // decompressor supports this drawing so set up to draw.
 ICDrawBegin(hIC, ICDRAW_FULLSCREEN, hPal, NULL, NULL, 0, 0, 0, 0, lpbiIn,
 0, 0, lbpi->biWidth, lpbi->biHeight, dwRate, dwScale);

 // we're ready to start decompressing and drawing frames now

 // drawing done so terminate
 ICDrawEnd(hIC);
} else {

 // do drawing myself

}

Some decompressors buffer the compressed data for more efficient operation. Your
application can use ICGetBuffersWanted to determine how many data frames it should
send to the decompressor before it has the decompressor draw them.

Decompressing the Video
The ICDraw function has the decompressor do the actual decompression. This function
has the following syntax:

LRESULT ICDraw(hIC, dwFlags, lpFormat, lpData, cbData, lTime)

The hIC is the handle to the decompressor. The dwFlags are flags set by the application
and used by the decompressor. These flags can be:

ICDRAW_HURRYUP

Tell the decompressor to decompress at a faster rate.
ICDRAW_UPDATE

Tell the decompressor to update the screen based on the last data received.
In this case the lpData parameter should be NULL.

02/10/93

 3-23

The lpFormat parameter specifies a pointer to the format of the input data. The lpData
parameter contains the actual data to be decompressed and later drawn.

The cbData parameter specifies the number of bytes in lpData.

The lTime parameter specifies the time to draw this frame. The decompressor divides this
integer by the time scale specified with ICDrawBegin obtain the actual time. Time for
the ICDraw functions is relative to ICDrawStart. (That is, ICDrawStart sets the clock
to zero.) For example, if your applications specifies 1000 for the time scale and 75 for
lTime, the decompressor draws the frame 75 milliseconds into the sequence.

The decompressor starts decompressing data in response to ICDraw, however, it does not
start drawing data until your application calls ICDrawStart. (Your application should not
use ICDrawStart until it has sent the number of frames the decompressor returned for
ICGetBuffersWanted.) When your application uses ICDrawStart, the decompressor
begins to draw the frames at the rate specified by dwRate specified with the
ICDrawBegin. Drawing continues until your application stops the decompressor drawing
clock with ICDrawStop. The following fragment uses the ICDraw functions:

DWORD dwNumBuffers;

// find out how many buffers need filling before drawing starts
ICGetBuffersWanted(hIC, &dwNumBuffers);

for (dw = 0; dw < dwNumBuffers; dw++){

ICDraw(hIC, 0, lpFormat, lpData, cbData, dw); // fill the pipeline

 // Point lpFormat and lpData to next format and data buffer

}

ICDrawStart(hIC); // start the clock

while (fPlaying){

ICDraw(hIC, 0, lpFormat, lpData, chData, dw); // fill more buffers

 // Point lpFormat and lpData to next format and data buffer, update dw

}

ICDrawStop(hIC); // when done stop drawing and decompressing
ICDrawFlush(hIC); // flush any existing buffers
ICDrawEnd(hIC); // end decompression

Controlling Drawing Parameters
The following functions provide more control over decompressors that can draw the
decompressed data:

ICDrawGetTime

This function obtains the current time from the decompressor.

02/10/93

2-24 Video for Windows Programmer's Guide

ICDrawRealize

This function has the decompressor realize the palette used for drawing.
ICDrawSetTime

This function sets the value of the internal clock for the decompressor.
ICDrawWindow

This function has the decompressor redraw the window.

If your application wants to monitor or change the clock of the decompressor, it can use
ICDrawGetTime and ICDrawSetTime. If your application wants to change the
playback position while the decompressor is drawing, it can use ICDrawWindow for
repositioning the decompressor. If the playback window gets a palette realize message,
your application must call ICDrawRealize to have the decompressor realize the palette
again for playback.

Video Compression and
Decompression Application
Reference
This section is an alphabetic reference to the functions and data structures provided by
ICM for applications using video compression and decompression services. There are
separate sections for functions and data structures. The COMPMAN.H and
COMPDDK.H files define the functions and data structures.

Video Compression and Decompression Function
Reference
Applications use the following functions for compressing video data:

ICCompress

This function compresses a single video image.
ICCompressBegin

This functions prepares a compressor for compressing data.
ICCompressEnd

This function tells a compressor to end compression.

02/10/93

 3-25

ICCompressGetFormat

This function determines the output format of a compressor.
ICCompressGetFormatSize

This function obtains the size of the output format data.
ICCompressGetSize

This function obtains the size of the compressed data.
ICCompressQuery

This function determines if a compressor can compress a specific format.

Applications use the following functions for decompressing video data:

ICDecompress

The function decompresses a single video frame.
ICDecompressBegin

This functions prepares a decompressor for decompressing data.
ICDecompressEnd

This function tells a decompressor to end decompression.
ICDecompressGetFormat

This function determines the output format of a decompressor.
ICDecompressGetFormatSize

This function obtains the size (in bytes) of the output format data.
ICDecompressGetPalette

This function obtains the palette for the output format of a decompression.
ICDecompressQuery

This function determines if a decompressor can decompress data with a
specific format.

ICDecompressQuery

This function determines if a decompressor can render a specific format.

Applications use the following functions to control video decompressors that draw
directly to the display:

02/10/93

2-26 Video for Windows Programmer's Guide

ICDraw

This function decompresses an image for drawing.
ICDrawBegin

This function is used to start decompressing data directly to the screen.
ICDrawEnd

This function tells a decompressor to end drawing.
ICDrawFlush

This function flushes the image buffers used for drawing.
ICDrawGetTime

This function obtains the current value of the internal clock if the
decompressor is handling the timing of drawing frames.

ICDrawRealize

This function tells decompressor to realize its palette used while drawing.
ICDrawSetTime

This function sets the value of the internal clock if the decompressor is
handling the timing of drawing frames.

ICDrawStart

This function tells a decompressor to start its internal clock for the timing of
drawing frames.

ICDrawStop

This function tells a decompressor to stop its internal clock used for the
timing of drawing frames.

ICDrawWindow

This function tells a decompressor to redraw the window when it has
moved.

ICGetBuffersWanted

This function obtains information about the pre-buffering needed by a
compressor.

Applications use the following functions to obtain information about a compressor or
decompressor and display its dialog boxes:

02/10/93

 3-27

ICQueryAbout

This function determines if a compressor supports an about dialog box.
ICAbout

This function instructs a compressor to display its about dialog box.
ICQueryConfigure

This functions determines if a compressor supports a configuration dialog
box.

ICConfigure

This function displays the configuration dialog box of the specified
compressor.

ICGetInfo

This function asks a compressor for information about itself.
ICInfo

This function returns information about specific installed compressors, or it
enumerates the compressors installed.

ICGetDefaultKeyFrameRate

This function obtains the default key frame rate value.
ICGetDisplayFormat

Given an input format and optionally an open compressor handle, finds the
"best" format it can for displaying on the screen.

Applications use the following functions to set and retrieve the state information of a
compressor or decompressor:

ICGetState

This function gets the state of a compressor.
ICGetStateSize

This function gets the size of the state data used by a compressor.
ICSetState

This function sets the state of a compressor.

Applications use the following functions to locate, open, and close a compressor or

02/10/93

2-28 Video for Windows Programmer's Guide

decompressor:

ICOpen

This function opens a compressor or decompressor.
ICClose

This function closes a compressor or decompressor.
ICLocate

This function finds a compressor with specific attributes.

Applications use the following functions to install and remove a compressor or
decompressor and send messages directly to it:

ICInstall

This function installs a new compressor.
ICRemove

This function removes a compressor function installed ICInstalled.

ICSendMessage

This function sends a message to a compressor.

Video Compression and Decompression
Functions

This section contains an alphabetical list of the functions applications can use for
compressing and decompressing video data. The functions are identified with the prefix
IC.

ICAbout

LRESULT ICAbout(hic, hwnd)

This function instructs a compressor or decompressor to display its about dialog box.

HIC hic

Specifies the handle to the installable compressor.

02/10/93

Syntax

Parameters

 3-29

HWND hwnd

Specifies a handle to the parent window.
Returns ICERR_OK after the compressor or decompressor displays the about dialog box.
It returns ICERR_UNSUPPORTED if it does not support an about dialog box.

ICQueryAbout

ICClose

LRESULT ICClose(hic)

This function closes a compressor or decompressor.

HIC hic

Specifies a handle to a compressor or decompressor.
Returns ICERR_OK if successful, otherwise it returns an error number.

ICLocate ICOpen

ICCompress

LRESULT ICCompress(hic, dwFlags, lpbiOutput, lpData, lpbiInput, lpBits, lpckid,
lpdwFlags, lFrameNum, dwFrameSize, dwQuality, lpbiPrev, lpPrev)

This function compresses a single video image.

HIC hic

Specifies the handle of the compressor to use.
DWORD dwFlags

Specifies applicable flags for the compression. The following flag is
defined:

ICM_COMPRESS_KEYFRAME
Indicates that the compressor should make this frame a key frame.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure holding the output
format.

LPVOID lpData

Specifies a far pointer to output data buffer.

02/10/93

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

2-30 Video for Windows Programmer's Guide

LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure containing the input
format.

LPVOID lpBits

Specifies a far pointer to the input data buffer.
LPDWORD lpckid

Specifies a far pointer to a DWORD used to hold a chunk ID for data in the
AVI file.

LPDWORD lpdwFlags

Specifies a far pointer to a DWORD holding the return flags used in the
AVI index. The following flag is defined:

AVIIF_KEYFRAME
Indicates this frame is a key-frame.

LONG lFrameNum

Specifies the frame number.
DWORD dwFrameSize

Specifies the requested frame size in bytes. If set to zero, the compressor
chooses the frame size.

DWORD dwQuality

Specifies the requested quality value for the frame.
LPBITMAPINFOHEADER lpbiPrev

Specifies a far pointer to a BITMAPINFO structure holding the previous
frame's format.

LPVOID lpPrev

Specifies a far pointer to the previous frame's data buffer.
This function returns ICERR_OK if successful. Otherwise, it returns an error code.

The lpData buffer should be large enough to hold a compressed frame. You can obtain
the size of this buffer by calling ICCompressGetSize.

Set the dwFrameSize parameter to a requested frame size only if the compressor returns
the VIDCF_CRUNCH flag in response to ICGetInfo. Without this flag, set this
parameter to zero.

Set the dwQuality parameter to a quality value only if the compressor returns the
VIDCF_QUALITY flag in response to ICGetInfo. Without this flag, set this parameter to

02/10/93

Return Value

Comments

 3-31

zero.

ICCompressBegin, ICCompressEnd, ICCompressGetSize, ICGetInfo

ICCompressBegin

LRESULT ICCompressBegin(hic, lpbiInput, lpbiOutput)

This function prepares a compressor for compressing data.

HIC hic

Specifies a handle to a compressor.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure holding the input
format.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure holding the output
format.

Returns ICERR_OK if the specified compression is supported, otherwise it returns
ICERR_BADFORMAT if either the input or output format is not supported.

ICCompress, ICCompressEnd, ICDecompressBegin, ICDrawBegin

ICCompressEnd

LRESULT ICCompressEnd(hic)

This function ends compression by a compressor.

HIC hic

Specifies a handle to the compressor.
Returns ICERR_OK if successful, otherwise it returns an error number.

ICCompressBegin, ICCompress, ICDecompressEnd, ICDrawEnd

ICCompressGetFormat

LRESULT ICCompressGetFormat(hic, lpbiInput, lpbiOutput)

This function determines the output format of a compressor.

02/10/93

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

2-32 Video for Windows Programmer's Guide

HIC hic

The compressor handle.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure used to return the
output format.

Returns the size of the output format.

ICCompressGetFormatSize

ICCompressGetFormatSize

LRESULT ICCompressGetFormatSize(hic, lpbi)

This function obtains the size of the output format data.

HIC hic

Specifies a handle to a compressor.
LPBITMAPINFOHEADER lpbi

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

Returns the size of the output data format structure.

Use this function to determine the size of the output format buffer you need to allocate
when using ICCompressGetFormat.

ICCompressGetFormat

ICCompressGetSize

LRESULT ICCompressGetSize(hic, lpbiInput, lpbiOutput)

This function obtains the size of the compressed data.

HIC hic

Specifies a handle to a compressor.

02/10/93

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

 3-33

LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the output format.

Returns the maximum number of bytes a single compressed frame can occupy.

ICCompressQuery, ICCompressGetFormat

ICCompressQuery

LRESULT ICCompressQuery(hic, lpbiInput, lpbiOutput)

This function determines if a compressor can compress a specific format.

HIC hic

Specifies the compressor handle.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the input
data.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the data output. If NULL, then any output format is acceptable.

Returns ICERR_OK if the compression is supported, otherwise it returns
ICERR_BADFORMAT.

ICCompressGetFormat

ICConfigure

LRESULT ICConfigure(hic, hwnd)

This function displays the configuration dialog box of a compressor.

HIC hic

Specifies a handle to the compressor.
HWND hwnd

Specifies a handle to the parent window.

02/10/93

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

2-34 Video for Windows Programmer's Guide

Returns ICERR_OK after the configuration dialog box is displayed. It returns
ICERR_UNSUPPORTED if the compressor does not support a a configuration dialog
box.

ICQueryConfigure

ICDecompress

LRESULT ICDecompress(hic, dwFlags, lpbiFormat, lpData, lpbi, lpBits)

The function decompresses a single video frame.

HIC hic

Specifies a handle to the decompressor to use.
DWORD dwFlags

Specifies any applicable flags for decompression. The following flag is
defined:

ICDECOMPRESS_HURRYUP
Indicates the decompressor should try to decompress at a faster rate.
When an application uses this flag, it should not draw the decompressed
data.

LPBITMAPINFOHEADER lpbiFormat

Specifies a far pointer to a BITMAPINFO structure containing the format
of the compressed data.

LPVOID lpData

Specifies a far pointer to the input data.
LPBITMAPINFOHEADER lpbi

Specifies a far pointer to a BITMAPINFO structure containing the output
format.

LPVOID lpBits

Specifies a far pointer to a data buffer for the decompressed data.
Returns ICERR_OK on success, otherwise it returns an error code.

The lpBits parameter should point to a buffer large enough to hold the decompressed data.
Applications can obtain the size of this buffer with ICDecompressGetSize.

ICDecompressBegin, ICDecompressEnd, ICDecompressGetSize

ICDecompressBegin

02/10/93

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

 3-35

LRESULT ICDecompressBegin(hic, lpbiInput, lpbiOutput)

This function prepares a decompressor for decompressing data.

HIC hic

Specifies a handle to a decompressor.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the output data.

Returns ICERR_OK if the specified decompression is supported, otherwise it returns
ICERR_BADFORMAT if either the input or output format is not supported.

ICDecompress, ICDecompressEnd, ICCompressBegin, ICDrawBegin

ICDecompressEnd

LRESULT ICDecompressEnd(hic)

This function tells a decompressor to end decompression.

HIC hic

Specifies a handle to a decompressor.
Returns ICERR_OK if successful, otherwise it returns an error number.

ICDecompressBegin, ICDecompress, ICCompressEnd, ICDrawEnd

ICDecompressGetFormat

LRESULT ICDecompressGetFormat(hic, lpbiInput, lpbiOutput)

This function determines the output format of a decompressor.

HIC hic

Specifies a handle to a decompressor.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

02/10/93

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

2-36 Video for Windows Programmer's Guide

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure used to return the
format of the output data.

Returns the size (in bytes) of the output format.

ICDecompressGetFormatSize

ICDecompressGetFormatSize

LRESULT ICDecompressGetFormatSize(hic, lpbi)

This function obtains the size (in bytes) of the output format data.

HIC hic

Specifies a handle to a decompressor.
LPBITMAPINFOHEADER lpbi

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

Returns the size of the output data format structure.

Use this function before ICDecompressGetFormat to find the size needed to allocate the
output format buffer.

ICDecompressGetFormat

ICDecompressGetPalette

LRESULT ICDecompressGetPalette(hic, lpbiInput, lpbiOutput)

This function obtains the palette for the output format of a decompression.

HIC hic

Specifies a handle to a decompressor.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure used to return the color
table. The space reserved for the color table must be at least 256 bytes.

Returns the size of the output format or an error code.

02/10/93

Return Value

See Also

Syntax

Parameters

Return Value

Comments

See Also

Syntax

Parameters

Return Value

 3-37

ICDecompressGetFormat

ICDecompressQuery

LRESULT ICDecompressQuery(hic, lpbiInput, lpbiOutput)

This function determines if a decompressor can decompress data with a specific format.

HIC hic

Specifies a handle to to a decompressor.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

LPBITMAPINFOHEADER lpbiOutput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the output data. If NULL, any output format is acceptable.

Returns ICERR_OK if the decompression is supported, otherwise it returns
ICERR_BADFORMAT.

ICDecompressGetFormat

ICDecompressQuery

LRESULT ICDecompressQuery(hic, lpbiInput)

This function determines if a decompressor can render a specific format.

HIC hic

Specifies a handle to a decompressor.
LPBITMAPINFOHEADER lpbiInput

Specifies a far pointer to a BITMAPINFO structure indicating the format
of the input data.

Returns ICERR_OK if the decompression is supported, otherwise it returns
ICERR_BADFORMAT.

ICDecompressQuery

ICDraw

LRESULT ICDraw(hic, dwFlags, lpFormat, lpData, cbData, lTime)

02/10/93

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

2-38 Video for Windows Programmer's Guide

This function decompress an image for drawing.

HIC hic

Specifies a handle to a decompressor.
DWORD dwFlags

Specifies any flags for the decompression. The following flags are defined:

ICDRAW_HURRYUP
Indicates the decompressor should try to increase its decompression rate.

ICDRAW_UPDATE
Tells the decompressor to update the screen based on data previously
received. Set lpData to NULL when this flag is used.

LPVOID lpFormat

Specifies a far pointer to a BITMAPINFOHEADER structure containing
the input format of the data.

LPVOID lpData

Specifies a far pointer to the actual input data.
DWORD cbData

Specifies the size of the input data (in bytes).
LONG lTime

Specifies the time to draw this frame based on the time scale sent with
ICDrawBegin.

Returns ICERR_OK on success, otherwise an appropriate error number.

This function is used to decompress the image data for drawing by the decompressor.
Actual drawing of frames does not occur until ICDrawStart is called. The application
should be sure to pre-buffer the required number of frames before drawing is started (you
can obtain this value with ICGetBuffersRequired).

ICDrawBegin, ICDrawEnd, ICDrawStart, ICDrawStop, ICGetBuffersRequired

ICDrawBegin

LRESULT ICDrawBegin(hic, dwFlags, hpal, hwnd, hdc,
xDst, yDst, dxDst, dyDst, lpbi, xSrc, ySrc, dxSrc, dySrc,
dwRate, dwScale)

This function starts decompressing data directly to the screen.

HIC hic

Specifies a handle to the decompressor to use.

02/10/93

Parameters

Return Value

Comments

See Also

Syntax

Parameters

 3-39

DWORD dwFlags

Specifies flags for the decompression. The following flags are defined:

ICDRAW_QUERY
Determines if the decompressor can handle the decompression. The
decompressor does not actually decompress the data.

ICDRAW_FULLSCREEN
Tells the decompressor to draw the decompressed data on the full screen.

ICDRAW_HDC
Indicates the decompressor should use the window handle specified by
hwnd and the display context handle specified by hdc for drawing the
decompressed data.

HPALETTE hpal

Specifies a handle to the palette used for drawing.
HWND hwnd

Specifies a handle for the window used for drawing.
HDC hdc

Specifies the display context used for drawing.
int xDst

Specifies the x-position of the upper-right corner of the destination
rectangle.

int yDst

Specifies the y-position of the upper-right corner of the destination
rectangle.

int dxDst

Specifies the width of the destination rectangle.
int dyDst

Specifies the height of the destination rectangle.
LPBITMAPINFOHEADER lpbi

Specifies a far pointer to a BITMAPINFO structure containing the format
of the input data to be decompressed.

int xSrc

Specifies the x-position of the upper-right corner of the source rectangle.

02/10/93

2-40 Video for Windows Programmer's Guide

int ySrc

Specifies the y-position of the upper-right corner of the source rectangle.
int dxSrc

Specifies the width of the source rectangle.
int dySrc

Specifies the height of the source rectangle.
DWORD dwRate

Specifies the data rate. The data rate in frames per second equals dwRate
divided by dwScale.

DWORD dwScale

Specifies the data rate.
Returns ICERR_OK if it can handle the decompression, otherwise it returns
ICERR_UNSUPPORTED.

Decompressors use the hwnd and hdc parameters only if an application sets
ICDRAW_HDC flag in dwFlags. It will ignore these parameters if an application sets the
ICDRAW_FULLSCREEN flag. When an application uses the ICDRAW_FULLSCREEN
flag, it should set hwnd and hdc to NULL.

The destination rectangle is specified only if ICDRAW_HDC is used. If an application
sets the ICDRAW_FULLSCREEN flag, the destination rectangle is ignored and its
parameters can be set to zero.

The source rectangle is relative to the full video frame. The portion of the video frame
specified by the source rectangle will be stretched to fit in the destination rectangle.

ICDraw, ICDrawEnd

ICDrawEnd

LRESULT ICDrawEnd(hic)

This function tells a decompressor to end drawing.

HIC hic

Specifies a handle to a compressor.
Returns ICERR_OK if successful, otherwise it returns an error number.

ICDrawBegin, ICDraw, ICCompressEnd, ICDecompressEnd

02/10/93

Return Value

Comments

See Also

Syntax

Parameters

Return Value

See Also

 3-41

ICDrawFlush

LRESULT ICDrawFlush(hic)

Flush the image buffers used for drawing.

HIC hic

The compressor handle.
Returns ICERR_OK on success.

ICDraw, ICDrawBegin, ICDrawEnd, ICDrawStart, ICDrawStop

ICDrawGetTime

LRESULT ICDrawGetTime(hic, lplTime)

This function obtains the current value of the internal clock if the decompressor is
handling the timing of drawing frames.

HIC hic

Specifies a handle to a decompressor.
LPLONG lplTime

Specifies a far pointer to a LONG buffer used to return the current time
value. The value will be in samples (frames for video).

Returns ICERR_OK if successful.

ICDrawStart, ICDrawStop, ICDrawSetTime

ICDrawRealize

LRESULT ICDrawRealize(hic, hdc, fBackground)

This function tells a decompressor to realize its palette used while drawing.

HIC hic

Specifies a handle to a decompressor.
HDC hdc

Specifies the display context used to realize the palette.
BOOL fBackground

Specifies TRUE if the palette is to be realized in the background. It
specifies FALSE if it is to be realized in in the foreground.

02/10/93

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

2-42 Video for Windows Programmer's Guide

Returns ICERR_OK if palette is realized. The compressor returns
ICERR_UNSUPPORTED if it doesn't support this function.

ICDrawBegin

ICDrawSetTime

LRESULT ICDrawSetTime(hic, lpTime)

This function sets the value of the internal clock if the installable decompressor is
handling the timing of drawing frames.

HIC hic

Specifies a handle to a decompressor.
LPLONG lpTime

Specifies the current time that the compressor should be rendering. This
value should be in samples. For video, this corresponds to frames.

Returns ICERR_OK if successful.

ICDrawStart, ICDrawStop, ICDrawGetTime

ICDrawStart

void ICDrawStart(hic)

This function tells a decompressor to start its internal clock for the timing of drawing
frames.

HIC hic

Specifies a handle to a compressor.
This function should only be used with hardware decompressors that do their own
asynchronous decompression, timing and drawing.

ICDraw, ICDrawStop, ICDrawBegin, ICDrawEnd

ICDrawStop

void ICDrawStop(hic)

This function tells a decompressor to stop its internal clock used for the timing of drawing
frames.

HIC hic

Specifies a handle to a decompressor.

02/10/93

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Comments

See Also

Syntax

Parameters

 3-43

This function should only be used with hardware decompressors that do their own
asynchronous decompression, timing and drawing.

ICDraw, ICDrawStart, ICDrawBegin, ICDrawEnd

ICDrawWindow

LRESULT ICDrawWindow(hic, prc)

This function has a decompressor redraw the window when is has moved.

HIC hic

Specifies a handle to a decompressor.
LPRECT prc

Specifies a pointer to the destination rectangle. The destination rectangle is
specified in screen coordinates.

Returns ICERR_OK if successful.

This function is only supported by hardware which does its own asynchronous
decompression, timing and drawing. The rectangle is set to empty if the window is totally
hidden by other windows.

ICGetBuffersWanted

LRESULT ICGetBuffersWanted(hic, lpdwBuffers)

This function obtains information about the pre-buffering needed by a decompressor.

HIC hic

Specifies a handle to a decompressor.
LPDWORD lpdwBuffers

Specifies a far pointer to a DWORD used to return the number of samples
the decompressor needs to get in advance of when they will be rendered.

Returns ICERR_OK if successful, otherwise it returns ICERR_UNSUPPORTED.

This function is used only with a decompressor that uses hardware to render data and
wants to ensure that hardware pipelines remain full.

ICGetDefaultKeyFrameRate

LRESULT ICGetDefaultKeyFrameRate(hic)

This function obtains the default key frame rate value.

02/10/93

Comments

See Also

Syntax

Parameters

Return Value

Comments

Syntax

Parameters

Return Value

Comments

Syntax

2-44 Video for Windows Programmer's Guide

HIC hic

Specifies a handle to a compressor.
Returns the default key frame rate.

ICGetDisplayFormat

HIC ICGetDisplayFormat(hic, lpbiIn, lpbiOut, BitDepth, dx, dy)

This function returns the "best" format available for display a compressed image. The
function will also open a compressor if a handle to an open compressor is not specified.

HIC hic

Specifies the decompressor that should be used. If this is NULL, an
appropriate compressor will be opened and returned.

LPBITMAPINFOHEADER lpbiIn

Specifies a pointer to BITMAPINFOHEADER structure containing the
compressed format.

LPBITMAPINFOHEADER lpbiOut

Specifies a pointer to a buffer used to return the decompressed format. The
buffer should be large enough for a BITMAPINFOHEADER and 256
color entries.

int BitDepth

If non-zero, specifies the preferred bit depth.
int dx

If non-zero, specifies the width to which the image is to be stretched.
int dy

If non-zero, specifies the height to which the image is to be stretched.
Returns a handle to a decompressor if successful, otherwise, it returns zero.

ICGetInfo

LRESULT ICGetInfo(hic, lpicinfo, cb)

This function obtains information about a compressor or decompressor.

HIC hic

Specifies a handle to a compressor or decompressor.

02/10/93

Parameters

Return Value

Syntax

Parameters

Return Value

Syntax

Parameters

 3-45

ICINFO FAR * lpicinfo

Specifies a far pointer to ICINFO structure used to return information about
the compressor or decompressor.

DWORD cb

Specifies the size of the structure pointed to by lpicinfo.
Returns zero if successful.

ICGetState

void ICGetState(hic, pv, cb)

This function gets the state of a compressor or decompressor.

HIC hic

Specifies a handle to the compressor or decompressor.
LPVOID pv

Specifies a pointer to a buffer used to return the state data.
DWORD cb

Specifies the byte count for state buffer.
Use ICGetStateSize before calling ICGetState to determine the size of buffer to allocate
for the call.

ICGetStateSize, ICSetState

ICGetStateSize

LRESULT ICGetStateSize(hic)

This function gets the size of the state data used by a compressor or decompressor.

HIC hic

Specifies a handle to the compressor or decompressor.
Returns the number of byte used by the state data.

Use this function to get the size of the state data for the ICGetState and ICSetState
buffers.

ICGetState, ICSetState

ICInfo

02/10/93

Return Value

Syntax

Parameters

Comments

See Also

Syntax

Parameters

Return Value

Comments

See Also

2-46 Video for Windows Programmer's Guide

BOOL ICInfo(fccType, fccHandler, lpicinfo)

This function returns information about specific installed compressors and
decompressors, or it enumerates the compressors installed.

DWORD fccType

Specifies a four-character code indicating the type of compressor or
decompressor.

DWORD fccHandler

Specifies a four-character code identifying a specific compressor or
decompressor, or a number between 0 and the number of installed
compressors of the type specified by fccType.

ICINFO FAR * lpicinfo

Specifies a far pointer to a ICINFO structure used to return information
about the compressor.

Returns a compressor or decompressor handle if successful, otherwise, it returns zero.

ICInstall

BOOL ICInstall(fccType, fccHandler, lParam, szDesc, wFlags)

This function installs a new compressor.

DWORD fccType

Specifies a four-character code indicating the type of data used by the
compressor. Use 'vidc' for video compressors.

DWORD fccHandler

Specifies a four-character code identifying a specific compressor.
LPARAM lParam

Identifies what to install. The meaning of this parameter is defined by the
flags set for wFlags.

LPSTR szDesc

Specifies a pointer to a null-terminated string describing the installed
compressor.

UINT wFlags

Specifies flags defining the contents of lParam. The following flags are
defined:

02/10/93

Syntax

Parameters

Return Value

Syntax

Parameters

 3-47

ICINSTALL_DRIVER
Indicates lParam is a pointer to a null-terminated string containing the
name of the compressor to install.

ICINSTALL_FUNCTION
Indicates lParam is a far pointer to an installable compressor function.
This function should be structured like the DriverProc entry point
function used by compressors and decompressors.

Returns a handle to a compressor or decompressor.

ICRemove

ICLocate

HIC ICLocate(fccType, fccHandler, lpbiIn, lpbiOut, wFlags)

This function finds a compressor or decompressor that can handle images with the
formats specified, or it finds a decompressor that can decompress an image with a
specified format directly to hardware.

DWORD fccType

Specifies the type of compressor or decompressor the application wants to
open. For video, this is ICTYPE_VIDEO.

DWORD fccHandler

Specifies a single preferred handler of the given type that should be tried
first. Typically, this comes from the stream header in an AVI file.

LPBITMAPINFOHEADER lpbiIn

Specifies a pointer to BITMAPINFOHEADER structure defining the input
format. A compressor handle will not be returned unless it can handle this
format.

LPBITMAPINFOHEADER lpbiOut

Specifies zero or a pointer to BITMAPINFOHEADER structure defining
an optional decompressed format. If lpbiOut is nonzero, a compressor
handle will not be returned unless it can create this output format.

WORD wFlags

Specifies any flags defining the use of the compressor or decompressor.
This parameter must contain one of the following values:

ICMODE_COMPRESS
Indicates the compressor should be able to compress an image with a
format defined by lpbiIn to the format defined by lpbiOut.

02/10/93

Return Value

See Also

Syntax

Parameters

2-48 Video for Windows Programmer's Guide

ICMODE_DECOMPRESS
Indicates the decompressor should be able to decompress an image with
a format defined by lpbiIn to the format defined by lpbiOut.

ICMODE_DRAW
Indicates the decompressor should be able to decompress an image with
a format defined by lpbiIn and draw it directly to hardware.

Returns a handle to a compressor or decompressor if successful, otherwise it returns zero.

ICOpen

HIC ICOpen(fccType, fccHandler, wMode)

This function opens a compressor or decompressor.

DWORD fccType

Specifies the type of compressor or decompressor the application wants to
open. For video, this is ICTYPE_VIDEO.

DWORD fccHandler

Specifies a single preferred handler of the given type that should be tried
first. Typically, this comes from the stream header in an AVI file.

UINT wMode

Specifies any flags defining the use of the compressor or decompressor.
This parameter can contain the following values:

ICMODE_COMPRESS
Advises a compressor it is opened for compression.

ICMODE_DECOMPRESS
Advises a decompressor it is opened for decompression.

ICMODE_DRAW
Advises a decompressor it is opened to decompress an image and draw it
directly to hardware.

ICMODE_QUERY
Advises a compressor or decompressor it is opened to obtain
information.

Returns a handle to a compressor or decompressor if successful, otherwise it returns zero.

ICClose ICLocate

ICQueryAbout

BOOL ICQueryAbout(hic)

02/10/93

Return Value

Syntax

Parameters

Return Value

See Also

Syntax

 3-49

This function determines if a compressor or decompressor supports an about dialog box.

HIC hic

Specifies the handle to the installable compressor.
Returns TRUE if the installable compressor supports an about dialog box, otherwise it
returns FALSE.

ICAbout

ICQueryConfigure

BOOL ICQueryConfigure(hic)

This function determines if a compressor or decompressor supports a configuration dialog
box.

HIC hic

Specifies a handle to the compressor or decompressor.
Returns TRUE if compressor supports a configuration dialog box, otherwise it returns
FALSE.

ICConfigure

ICRemove

BOOL ICRemove(fccType, fccHandler, wFlags)

This function removes a compressor function installed with ICInstall.

DWORD fccType

Specifies a four-character code indicating the type of data used by the
compressor. Use 'vidc' for video compressors.

DWORD fccHandler

Specifies a four-character code identifying a specific compressor.
UINT wFlags

Not used.
Returns TRUE if successful.

ICInstall

ICSendMessage

02/10/93

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

Syntax

Parameters

Return Value

See Also

2-50 Video for Windows Programmer's Guide

LRESULT ICSendMessage(hic, wMsg, dw1, dw2)

This function sends a message to a compressor or decompressor.

HIC hic

Specifies the handle of the compressor or decompressor to receive the
message.

UINT wMsg

Specifies the message to send.
DWORD dw1

Specifies additional message-specific information.
DWORD dw2

Specifies additional message-specific information.
Returns a message-specific result.

ICSetState

void ICSetState(hic, pv, cb)

This function sets the state of a compressor or decompressor.

HIC hic

Specifies a handle to the compressor or decompressor.
LPVOID pv

Specifies a pointer to the state data to set.
DWORD cb

Specifies the size (in bytes) of the buffer containing the state data.
ICGetState, ICGetStateSize

Video Compressor and Decompressor Data
Structure Reference

This section lists data structures used by video compressors and decompressors. The data
structures are presented in alphabetical order. The structure definition is given, followed
by a description of each field.

ICINFO

02/10/93

Syntax

Parameters

Return Value

Syntax

Parameters

See Also

 3-51

The ICINFO structure is filled by a video compressor when it receives the
ICM_GETINFO message.

typedef struct {
 DWORD dwSize;
 DWORD fccType;
 DWORD fccHandler;
 DWORD dwFlags;
 DWORD dwVersion;
 DWORD dwVersionICM;
 char szName[16];
 char szDescription[128];
 char szDriver[128];
} ICINFO;

The ICINFO structure has the following fields:

dwSize

Should be set to the size of an ICINFO structure.
fccType

Specifies a four-character code representing the type of stream being
compressed or decompressed. Set this to 'vidc' for video streams.

fccHandler

Specifies a four-character code identifying a specific compressor.
dwFlags

Specifies any flags. The following flags are defined for video compressors
(ICINFO.fccHandler == 'vidc'):

VIDCF_QUALITY
The compressor supports quality.

VIDCF_CRUNCH
The compressor supports crunching to a frame size.

VIDCF_TEMPORAL
The compressor supports inter-frame compression.

VIDCF_DRAW
The compressor supports drawing.

VIDCF_FASTTEMPORAL
The compressor can do temporal compression and doesn’t need the
previous frame.

dwVersion

Specifies the version number of the compressor.

02/10/93

Fields

2-52 Video for Windows Programmer's Guide

dwVersionICM

Specifies the version of the ICM supported by this compressor; it should be
set to 1.0 (0x00010000)

szName[16]

Specifies the short name for the compressor. The null-terminated name
should be suitable for use in list boxes.

szDescription[128]

Specifies a null-terminated string containing the long name for the
compressor.

szDriver[128]

Specifies a null-terminated string for the module that contains the
compressor.

02/10/93

	Note:
	Video Compression and Decompression Header Files
	ICM Architecture
	Using ICM Services
	Error Returned from the ICM Functions
	Locating and Opening Compressors and Decompressors
	In an AVI file, the stream header contains information about the stream type and the specific handler for that stream. For video streams, the stream type is 'vidc' and the handler type is the appropriate handler four-character code. As in the previous example, Video 1 compressed streams use 'msvc'.

	Installing and Removing Compressors and Decompressors
	Configuring Compressors and Decompressors
	Getting Information about Compressors and Decompressors
	Compressing Image Data
	Specifying the Input Format and Determining the Compression Format
	Initialization for the Compression Sequence
	Compressing the Video

	Decompressing Image Data
	Specifying the Input Format and Determining the Decompression Format
	Initialization for the Decompression Sequence
	Decompressing the Video

	Using Hardware Drawing Capabilities
	Specifying the Input Format
	Preparing to Decompress Video
	Decompressing the Video
	Controlling Drawing Parameters

	Video Compression and Decompression Function Reference

	Video Compression and Decompression Functions
	Video Compressor and Decompressor Data Structure Reference

