
OLE Messaging Help

 Quick Start
 Overview of OLE Messaging
 Programmer's Guide
 Programmer's Reference
 Supplemental Information

Overview of OLE Messaging

 Introduction
 A Short Tour of Microsoft MAPI 1.0
 A Short Tour of OLE Automation
 OLE Messaging Object Design

Programmer's Guide

 Introduction
 Accessing Folders
 Adding Attachments to a Message
 Changing an Existing Address Entry
 Checking for New Mail
 Copying a Message to Another Folder
 Creating and Sending a Message
 Customizing a Folder or Message
 Deleting a Message
 Handling Errors
 Improving Application Performance
 Making Sure the Message Gets There
 Moving a Message to Another Folder
 Posting Messages to a Public Folder
 Reading a Message from the Inbox
 Searching for a Folder
 Searching for a Message
 Securing Messages
 Selecting Recipients from the Address Book
 Starting a Session with MAPI
 Using Addresses
 Viewing MAPI Properties
 Working With Conversations

Supplemental Information

 References
How Programmable Objects Work

 COM Interfaces
 IDispatch
 The OLE Messaging Library and Extended MAPI

Objects

Methods Properties Reference Summary

 All OLE Messaging Objects
 AddressEntry object
 Attachment object
 Attachments collection object
 Field object
 Fields collection object
 Folder object
 Folders collection object
 Message object
 Messages collection object
 Recipient object
 Recipients collection object
 Session object

Methods

Objects Properties Reference Summary

 Add method (Attachments collection object)
 Add method (Fields collection object)
 Add method (Messages collection object)
 Add method (Recipients collection object)
 AddressBook method (Session object)
 Delete Method (AddressEntry object)
 Delete method (Attachment object)
 Delete method (Attachments collection object)
 Delete method (Field object)
 Delete method (Fields collection object)
 Delete method (Message object)
 Delete method (Messages collection object)
 Delete method (Recipient object)
 Delete method (Recipients collection object)
 Details method (AddressEntry object)
 GetAddressEntry method (Session object)
 GetFirst Method (Folders Collection)
 GetFirst Method (Messages Collection)
 GetFolder method (Session object)
 GetLast Method (Folders Collection)
 GetLast Method (Messages Collection)
 GetMessage method (Session object)
 GetNext Method (Folders Collection)
 GetNext Method (Messages Collection)
 GetPrevious Method (Folders Collection)
 GetPrevious Method (Messages Collection)
 Logoff method (Session object)
 Logon method (Session object)
 Options method (Message object)
 ReadFromFile method (Attachment object)
 ReadFromFile method (Field object)
 Resolve method (Recipient object)
 Resolve method (Recipients collection object)
 Send method (Message object)
 Sort method (Messages collection object)
 Update Method (AddressEntry object)
 Update method (Message object)
 WriteToFile method (Attachment object)
 WriteToFile method (Field object)

Properties

Methods Objects Reference Summary

 Address property (AddressEntry object)
 Address Property (Recipient object)
 AddressEntry property (Recipient object)
 Application Property (All OLE Messaging Objects)
 Attachments property (Message object)
 Class Property (All OLE Messaging Objects)
 ConversationIndex Property (Message Object)
 ConversationTopic Property‹ (Message Object)
 Count property (Attachments collection object)
 Count property (Fields collection object)
 Count property (Recipients collection object)
 CurrentUser property (Session object)
 DeliveryReceipt property (Message object)
 Encrypted property (Message object)
 Fields Property (Folder object)
 Fields property (Message object)
 FolderID property (Folder object)
 FolderID property (Message object)
 Folders property (Folder object)
 ID property (AddressEntry object)
 ID property (Field object)
 ID property (Folder object)
 ID property (Message object)
 Importance property (Message object)
 Inbox property (Session object)
 Index property (Attachment object)
 Index property (Field object)
 Index property (Recipient object)
 Item property (Attachments collection object)
 Item property (Fields collection object)
 Item property (Recipients collection object)
 MAPIOBJECT property (Folder object)
 MAPIOBJECT property (Message object)
 MAPIOBJECT property (Session object)
 Messages property (Folder object)
 Name property (AddressEntry object)
 Name property (Attachment object)
 Name property (Field object)
 Name property (Folder object)
 Name Property (Recipient object)
 Name property (Session object)
 OperatingSystem property (Session object)
 Outbox property (Session object)
 Parent Property (All OLE Messaging Objects)
 Position property (Attachment object)
 ReadReceipt property (Message object)
 Recipients property (Message object)
 Resolved property (Recipients collection object)
 Sender property (Message object)
 Sent property (Message object)

 Session Property (All OLE Messaging Objects)
 Signed property (Message object)
 Size property (Message object)
 Source property (Attachment object)
 StoreID property (Folder object)
 StoreID property (Message object)
 Subject property (Message object)
 Submitted property (Message object)
 Text property (Message object)
 TimeReceived property (Message object)
 TimeSent property (Message object)
 Type property (AddressEntry object)
 Type property (Attachment object)
 Type property (Field object)
 Type property (Message object)
 Type property (Recipient object)
 Unread property (Message object)
 Value property (Field object)
 Version property (Session object)

Programmer's Reference Summary

- A -

Add method (Attachments collection object)
Add method (Fields collection object)
Add method (Messages collection object)
Add method (Recipients collection object)
Address property (AddressEntry object)
Address Property (Recipient object)
AddressBook method (Session object)
AddressEntry object
AddressEntry property (Recipient object)
All OLE Messaging Objects
Application Property (All OLE Messaging Objects)
Attachment object
Attachments collection object
Attachments property (Message object)

- B -

- C -

Class Property (All OLE Messaging Objects)
ConversationIndex Property (Message Object)
ConversationTopic Property‹ (Message Object)
Count property (Attachments collection object)
Count property (Fields collection object)
Count property (Recipients collection object)
CurrentUser property (Session object)

- D -

Delete Method (AddressEntry object)
Delete method (Attachment object)
Delete method (Attachments collection object)
Delete method (Field object)
Delete method (Fields collection object)
Delete method (Message object)
Delete method (Messages collection object)
Delete method (Recipient object)
Delete method (Recipients collection object)
DeliveryReceipt property (Message object)
Details method (AddressEntry object)

- E -

Encrypted property (Message object)

- F -

Field object
Fields collection object
Fields Property (Folder object)
Fields property (Message object)
Folder object
FolderID property (Folder object)
FolderID property (Message object)
Folders collection object
Folders property (Folder object)

- G -

GetAddressEntry method (Session object)
GetFirst Method (Folders Collection)
GetFirst Method (Messages Collection)
GetFolder method (Session object)
GetLast Method (Folders Collection)
GetLast Method (Messages Collection)
GetMessage method (Session object)
GetNext Method (Folders Collection)
GetNext Method (Messages Collection)
GetPrevious Method (Folders Collection)
GetPrevious Method (Messages Collection)

- H -

- I -

ID property (AddressEntry object)
ID property (Field object)
ID property (Folder object)
ID property (Message object)
Importance property (Message object)
Inbox property (Session object)
Index property (Attachment object)
Index property (Field object)
Index property (Recipient object)
Item property (Attachments collection object)
Item property (Fields collection object)
Item property (Recipients collection object)

- J -

- K -

- L -

Logoff method (Session object)
Logon method (Session object)

- M -

MAPIOBJECT property (Folder object)
MAPIOBJECT property (Message object)
MAPIOBJECT property (Session object)
Message object
Messages collection object
Messages property (Folder object)

- N -

Name property (AddressEntry object)
Name property (Attachment object)
Name property (Field object)
Name property (Folder object)
Name Property (Recipient object)
Name property (Session object)

- O -

OperatingSystem property (Session object)
Options method (Message object)
Outbox property (Session object)

- P -

Parent Property (All OLE Messaging Objects)
Position property (Attachment object)

- Q -

- R -

ReadFromFile method (Attachment object)

ReadFromFile method (Field object)
ReadReceipt property (Message object)
Recipient object
Recipients collection object
Recipients property (Message object)
Resolve method (Recipient object)
Resolve method (Recipients collection object)
Resolved property (Recipients collection object)

- S -

Send method (Message object)
Sender property (Message object)
Sent property (Message object)
Session object
Session Property (All OLE Messaging Objects)
Signed property (Message object)
Size property (Message object)
Sort method (Messages collection object)
Source property (Attachment object)
StoreID property (Folder object)
StoreID property (Message object)
Subject property (Message object)
Submitted property (Message object)

- T -

Text property (Message object)
TimeReceived property (Message object)
TimeSent property (Message object)
Type property (AddressEntry object)
Type property (Attachment object)
Type property (Field object)
Type property (Message object)
Type property (Recipient object)

- U -

Unread property (Message object)
Update Method (AddressEntry object)
Update method (Message object)

- V -

Value property (Field object)
Version property (Session object)

- W -

WriteToFile method (Attachment object)
WriteToFile method (Field object)

- X -

- Y -

- Z -

Introduction

The Microsoft OLE Messaging Library exposes messaging objects for use by Microsoft® Visual Basic®
and Microsoft Visual C++™ applications.

The messaging library lets you quickly and easily add to your Visual Basic application the ability to
send and receive mail messages and to interact with folders and address books. You can create
programmable messaging objects, then use their properties and methods to meet the needs of your
application.

When you combine messaging objects with other programmable objects exposed by Microsoft Access,
Microsoft Excel, and Microsoft Word, you can build custom applications that, for example, would allow
your users to extract information from a database, copy it to a spreadsheet for analysis, then create a
report and mail the report to several people.

With these powerful building blocks, you can quickly build custom applications that cover your entire
line-of-business needs.

The Microsoft OLE Messaging Library does not represent a new messaging model. It represents an
additional interface to the Microsoft Messaging API (MAPI) model, designed to handle the most
common tasks for client developers using Visual Basic and Visual C++.

This document assumes that you are familiar with the Microsoft Visual Basic programming model. To
help you use the OLE Messaging Library, this document provides a short overview of the MAPI
architecture. For complete reference information, see the MAPI Programmer's Reference.

The Microsoft OLE Messaging Library requires installation of MAPI 1.0 and a tool that supports OLE
Automation. OLE Automation is supported by the following Microsoft applications:

Microsoft Visual Basic version 3.0 or later
Microsoft Visual Basic for Applications
Microsoft Access version 2.0 or later
Microsoft Excel version 5.0 or later
Microsoft Project version 4.0 or later
Microsoft Visual C++ version 1.5 or later

Note    Microsoft Visual Basic 3.0 does not support multivalued properties.

Note    This document describes Version 1.0 of the OLE Messaging Library. Microsoft is currently
planning the next version of the OLE Messaging Library. According to the current design plans, the
next version retains all of the functionality of Version 1.0 and adds several more messaging objects and
collection objects. For more information, contact Microsoft.

Quick Start

The following sample program demonstrates how easy it is to add messaging to your applications
when you use Visual Basic or Visual Basic for Applications.

In this example, we first create a Session object and log on. We then create a Message object and set
its properties to indicate the message recipient, its subject, and the content of the message. We then
call the Message object's Send method to transmit the message:

Function QuickStart()
Dim objSession As Object ' Session object
Dim objMessage As Object ' Message object
Dim objOneRecip As Object ' Recipient object

 On Error GoTo error_olemsg

 ' create a session then log on, supplying username and password
 Set objSession = CreateObject("MAPI.Session")
 ' change the parameters to valid values for your configuration
 objSession.Logon 'profileName:="Princess Leia"

 ' create a message and fill in its properties
 Set objMessage = objSession.Outbox.Messages.Add
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."

 ' create the recipient
 Set objOneRecip = objMessage.Recipients.Add
 objOneRecip.Name = "Obi-wan Kenobi"
 objOneRecip.Type = mapiTo
 objOneRecip.Resolve

 ' send the message and log off
 objMessage.Update
 objMessage.Send showDialog:=False
 MsgBox "The message has been sent"
 objSession.Logoff
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Exit Function

End Function

The OLE Messaging Library invalidates the Message object after you call its Send method. In this
example, the developer's code logs off to end the session after sending the message, but if you were to
continue the MAPI session, you could avoid potential errors by setting the Message object to
"Nothing" .

About This Document

Now that you've seen the power of the OLE Messaging Library, this document explains how you can
use it in your own applications.

The section, "A Short Tour," defines the MAPI 1.0 terms used in this document and compares the OLE
Messaging Library with the other MAPI programming interfaces. It then describes the design of the
OLE Messaging Library, defining the objects and the collections of objects that are available to you with
the OLE Messaging Library. This section also explains the relationships between these objects.

The section, "Programmer's Guide," offers sample Visual Basic code for many common programming
tasks, such as creating and sending a message, posting a message to a public folder, traversing
through folders, searching through address books, and handling errors.

The section, "Programmer's Reference," contains comprehensive reference information for the
properties and methods of all objects and collection objects.

The appendixes offer additional background information about OLE Automation, the technology used
by the OLE Messaging Library.

The best way to learn about OLE Messaging is to intersperse your reading with hands-on
programming. You can use the sample code that is provided with the OLE Messaging Library. For
information about the sample code, see the Release Notes.

A Short Tour

This chapter offers a whirlwind tour of MAPI 1.0 and describes how the OLE Messaging Library fits into
the mix of MAPI programming interfaces. It provides a short description of OLE Automation, which is
the basis of the design of the OLE Messaging Library. The chapter concludes with a conceptual
overview of the OLE Messaging Library.

A Short Tour of Microsoft MAPI 1.0

Microsoft MAPI 1.0 defines a complete architecture for messaging applications. The architecture
specifies several well-defined components. This allows system administrators to mix and match
components to support a broad range of vendors, computing devices, and communication protocols.

This allows the MAPI architecture to be used for e-mail, scheduling, personal information managers,
bulletin boards, and online services that run on mainframes, personal computers, and hand-held
computing devices. The comprehensive architectural design allows MAPI to serve as the basis for a
common information exchange.

MAPI programming interfaces allow access to all components or selected components of the
architecture. The programming interface that allows access to all of the features of MAPI is known as
Extended MAPI.

The MAPI architecture defines messaging clients that interact with various messaging services through
the MAPI programming interfaces, as shown in the following diagram:

Figure 1. The MAPI architecture.

To use the messaging services, a client must first establish a session. A session is a specific
connection between the client and the MAPI interface based on information provided in a profile. The
profile contains configuration and user preference information. For example, the profile contains the
names of various supporting files, the time interval to check for new messages, and other settings,
such as whether to remember the user's password or to prompt the user for the password during each
logon. A successful logon is required to enable the client's use of the MAPI system.

After establishing a MAPI session, the client can use the MAPI services. MAPI defines three primary
services: Address Books, Message Transports, and Message Stores.

The Address Book service is similar to a telephone directory or Yellow Pages. The Address Book can
be thought of as a permanent database that contains valid addressing information. An entry in the
Address Book is called an address entry and consists of a display name, e-mail type, and e-mail
address. The display name refers to the name, such as a person's full name, that an application
displays to its users. You can provide a display name, and the Address Book service looks up the
display name and provides the corresponding messaging system address.

The Message Transport supports communication between different devices and different underlying
messaging systems.

The Message Store stores messages in a hierarchical structure that consists of one or more folders. A
folder can be a personal folder that contains an individual's messages, or a public folder, similar to a
bulletin board or online forum, which is accessible to many users. Each folder can contain messages or

other folders. A message represents a communication that is sent from the sender to one or more
recipients or that gets posted in a public folder. A message can include an attachment, a document that
is attached to and sent with the message.

Several properties can be associated with the message: its subject, importance, and delivery
properties, such as the time it is sent and received, and whether to notify the sender when the
message is delivered and read. Some message properties identify the message as part of a
conversation. The conversation properties allow you to group related messages and identify the
sequence of comments and replies in the thread of the conversation.

The message can have one or more recipients; a recipient can be an individual or a distribution list.
The distribution list can contain individuals and other distribution lists. For messages that are posted to
public folders, the recipient can also be the public folder itself. Before sending a message, you can
resolve each recipient; this means you should check each recipient against the Address Book to make
sure the messaging address is valid.

MAPI 1.0 Programming Interfaces

Microsoft provides several programming interfaces for MAPI 1.0, so that developers working in a wide
variety of development environments can use this common message exchange.

The following figure shows the OLE Messaging interface as a layer that is built on top of Extended
MAPI 1.0. This is similar to the way that function calls to the Common Messaging Calls (CMC) interface
are mapped to the underlying Extended MAPI interfaces. It also demonstrates that the OLE Messaging
interface is available to both Visual Basic and C/C++ programmers:

It is important to recognize that the OLE Messaging Library does not offer access to all of the features
of Extended MAPI. In particular, it is designed primarily for clients and is not suitable for service
providers.

The following table summarizes the programming interfaces provided by Microsoft for MAPI version
1.0.

Programming
interface

Description

MAPI custom controls User interface elements for Visual Basic 3.0
developers. (Note: These will be superseded by
the OLE Messaging Library version 1.0.)

Simple MAPI API functions for C/C++ client developers that
allow access to the Inbox (no access to MAPI
properties). Most developers should probably use
either CMC or Extended MAPI rather than Simple
MAPI.

OLE Messaging
Library version 1.0

Programmable messaging objects for Visual
Basic/VBA and C/C++ developers

Common Messaging API functions for C/C++ client developers; X.400

Calls (CMC) API Association (XAPIA) standard.

Extended MAPI OLE interfaces for C/C++ developers. Full
access to all MAPI programming interfaces.
Implemented by service providers and called by
clients.

The following sections contrast differences between the OLE Messaging object and other programming
interfaces.

Comparing MAPI Custom Controls and OLE Messaging

Although both the MAPI custom controls and the OLE Messaging Library are designed for Visual Basic
programmers, they represent significantly different capabilities.

A control is a user interface element that enables you to display data for the user. The custom controls
are usually more convenient to use or offer more specialized capabilities than the standard user
interface controls, such as the list box, combo box, command button, and option button.

A programmable object may offer some user interface capabilities, but that is usually not its primary
purpose. It offers the very powerful ability to interact with existing OLE objects. For a familiar example,
consider the data access objects provided with Microsoft Visual Basic version 3.0 Professional Edition
and subsequent versions. The data access library lets you create and use such database objects as
tables, dynasets, and queries. As the data access library lets you use database objects, the OLE
Messaging Library lets you add messaging to your applications.

The existing MAPI controls for use with Simple MAPI and Visual Basic 3.0 will be superseded by the
OLE Messaging Library.

Comparing MAPI API and OLE Messaging

Compared to the function-call interfaces of traditional API libraries, an OLE Automation object library
yields faster development and code that is easier to read, debug and maintain.

The Messaging object library also takes care of many programming details for you, such as memory
management and keeping count of the number of objects in collections.

The following table compares a traditional function-call interface, such as CMC or Simple MAPI, with
the OLE Messaging object interface.

Task or code Function-call interface OLE Messaging

Dim mFiles() As
MapiFile
Dim mRecips() As
MapiRecip

Requires arrays of
these structures to be
declared, even if the
developer does not use
them.

Automatically manages
these structures as child
objects of the parent
Message object.

ReDim mRecips(0)
ReDim mFiles(0)

Structures are resized
by re-dimensioning
arrays.

Objects are added to
collections with the Add
method.

mMessage.RecipCount
= 1

Requires developer to
indicate the number of
recipients and
attachments.

Automatically
determines the number
of objects in these
collections.

Error handling Each function call
returns an error code.

Integrated with Visual
Basic error handling
during both design and
run-time.

Return values Returned implicitly in
the parameters of the

Returned as an explicit
result of a method or in

function call. object properties.

As programming tasks grow more complex, the function-call approach becomes increasingly unwieldly.
In contrast, the OLE Messaging Library expands gracefully to encompass greater complexity. A well-
planned, thorough framework of collections, objects, methods, and properties can neatly encompass
very complex systems.

A Short Tour of OLE Automation

The OLE Messaging Library is based on the capabilities provided by OLE Automation. The OLE
Messaging Library allows you to create instances of programmable messaging objects that you can
reference with tools that support OLE Automation, such as Visual Basic.

For the purposes of this documentation, an object is an OLE Automation object; a software component
that exposes its properties and methods. Such an object follows the Visual Basic programming model
and lets you get properties, set properties, and call methods.

You can think of programmable objects as additions or extensions to the programmable objects that
are offered as part of Visual Basic, such as forms and controls. Forms and controls expose their
properties and methods so that developers can tailor these objects for the needs of their program. In
addition to the forms and controls, Visual Basic allows for the definition of a wide variety of other
programmable objects by providing the CreateObject and LoadObject functions. Note that these
functions do not have specialized names, like "CreateSpreadsheet" or "CreateDatabase." They are
general-purpose functions that enable an open-ended number of programmable objects, including the
OLE Messaging Library.

Throughout this topic, Visual Basic will be used as a concrete example of a tool that supports OLE
Automation, but the statements about Visual Basic apply to all such tools.

Visual Basic scripts drive the OLE Messaging Library. The scripts can also drive other libraries that
support OLE Automation, such as the libraries of programmable objects provided by Microsoft Excel
5.0 and Microsoft Access 2.0. Visual Basic can call many different programmable object libraries and
can act as the glue that holds all of these objects together.

Each library can create its own objects, set properties, and call methods. The Visual Basic program
coordinates the work of all the libraries; for example, it can direct the Microsoft Access object to find
data in a specific table, direct the Microsoft Excel object to run calculations using that data, and then
direct OLE Messaging Library objects to create a message that contains the results of those
calculations and send the message to several recipients.

OLE Messaging Object Design

The OLE Messaging Library is designed for ease of use and convenience. It implements the Extended
MAPI functions most used by client applications. The OLE Messaging Library is not designed for
development of service providers. (For more information about service providers, see "A Short Tour of
Microsoft MAPI 1.0."

This section of the documentation describes the design of the OLE Messaging Library.

Note    This OLE Messaging Library design does not represent a one-to-one mapping to Extended
MAPI objects. The description of the OLE Messaging object design does not always apply to the
Extended MAPI programming interface.

The OLE Messaging Library version 1.0 defines the following objects: AddressEntry, Attachment, the
Attachments collection, Field, the Fields collection, Folder, the Folders collection, Message, the
Messages collection, Recipient, the Recipients collection, and Session.

The objects supported in the OLE Messaging Library version 1.0 can be grouped into three categories:

High-level objects
Child objects that are created automatically when the high-level objects are created
Collections, or groups of objects of the same type

The following topics offer an overview of these categories.

High-Level Objects

The high-level objects include the Session, Folder, and Message objects. Other objects are accessible
only from these high-level objects.

C programmers can access all high-level objects. Visual Basic programmers can use the Visual Basic
CreateObject function with the string "MAPI.Session" to create the Session object.

In your Visual Basic application, you must usually use code of the following form to create the high-
level session object:

Dim objSession As Object
Set objSession = CreateObject("MAPI.Session")

The following table describes the string that C programmers should use for each high-level object used
by the CreateObject or LoadObject function:

High-level OLE Messaging
object

String for CreateObject or
LoadObject

Folder "MAPI.Folder"

Message "MAPI.Message"

Session "MAPI.Session"

High-Level Objects and Child Objects

All OLE Messaging objects can be considered as relative to a Session object. The following diagram
shows the logical hierarchy for the OLE Messaging Library:

Session
Folder

Messages Collection
Message

Recipients Collection
Recipient

AddressEntry
Attachments Collection

Attachment
Fields Collection

Field
Folders Collection

Folder...

In addition to the hierarchy of objects, each object has properties and methods. But the hierarchy is
important because it determines the correct syntax to use in your Visual Basic applications. In your
Visual Basic code, the relationship between a parent object and a child object is denoted by the left-to-
right sequence of the objects in the Visual Basic statement.

OLE Messaging Object Collections

A collection is a group of objects of the same type. In the OLE Messaging Library, the name of the
collection takes the plural form of the individual OLE Messaging object. For example, the "Messages"
collection is the name of the collection that contains "Message" objects. The OLE Messaging Library
supports the following collections: Attachments, Fields, Folders, Messages, and Recipients.

You can think of two kinds of collections: small collections and large collections.

For small collections, the OLE Messaging Library maintains a count of the number of objects in the
collection. The Attachments, Recipients, and Fields collections can be characterized this way. You can
add and delete items from the collection, and access individual items using an index into the collection.

Small collections, with a known number of member objects, have the property Item, the property
Count, and an implied temporary property Index, assigned by the OLE Messaging Library. Index
properties are valid only during the current MAPI session and can change as your application adds and
deletes objects. The first Index value is 1.

For example, in an attachments collection with three attachments, the first attachment is referred to as
Attachments.Item(1), the second as Attachments.Item(2), and the third as Attachments.Item(3). If your
application deletes the second attachment, the third attachment becomes the second and
Attachments.Item(3) has the value Nothing. The Count property is always equal to the highest Index
in the collection.

Other applications may add and delete objects while your application is running. The Count property is
not updated until you recreate or refresh the collection. For example, you call the Message object's
Update method to refresh the count in its Attachments and Recipients collections.

For large collections, the OLE Messaging Library does not maintain a count of the number of objects.
The Messages and Folders collections can be characterized as large collections. Instead of keeping a
count, the collections support methods that let you get the first, next, previous, and last item in the
collection.

For large collections, with an unknown number of member objects, MAPI assigns a permanent, unique
string ID property when the individual member object is created. These IDs do not change from one
MAPI session to another. You can call the Session object's GetFolder or GetMessage methods,
specifying the unique ID, to obtain the individual folder or message objects. You can also use the
GetFirst and GetNext methods to move from one object to the next in these collections.

Note    When you want to use a collection, create a variable that refers to that collection to ensure

correct operation of the GetFirst, GetNext, GetPrevious, and GetLast methods.

For example, the following two code fragments are not equivalent:

' sample 1: the collection returns the same message both times!
Set objMessage = objInBox.Messages.GetFirst
...
Set objMessage = objInBox.Messages.GetNext

' sample 2: use an explicit variable to refer to the collection;
' the Get methods return two different messages
Set objMsgColl = objSession.Inbox.Messages
Set objMessage = objMsgColl.GetFirst
...
Set objMessage = objMsgColl.GetNext

Code sample 1 causes the OLE Messaging Library to create a new Messages collection and to
reinitialize the value of the collection's "current message." The GetFirst and GetNext method calls
return the same value for objMessage.

Code sample 2 uses the existing collection objMsgColl, so the GetFirst and GetNext calls behave as
expected for collections with more than one item.

The collections in the OLE Messaging Library are specifically designed for messaging applications.
The definition of collections in this document may differ slightly from the definitions of collections in the
OLE programming documentation. Where there are differences, the description of the operation of the
OLE Messaging Library supersedes the other documentation.

Programming Tasks

This section describes some of the common programming tasks that you can perform with the OLE
Messaging Library.

Category Programming task described in this
chapter

General Programming Tasks Handling Errors
Improving Application Performance
Starting a Session with MAPI
Viewing MAPI Properties

Working with Messages Adding Attachments to a Message
Customizing a Folder or Message
Checking for New Mail
Creating and Sending a Message
Deleting a Message
Making Sure the Message Gets There
Reading a Message from the Inbox
Searching for a Message
Securing Messages

Working with Addresses Changing an Existing Address Entry
Selecting Recipients from the Address
Book
Using Addresses

Working with Folders Accessing Folders
Copying a Message to Another Folder
Customizing a Folder or Message
Moving a Message to Another Folder
Searching for a Folder

Working with Public Folders Posting Messages to a Public Folder
Working with Conversations

Note that you cannot create new distribution lists, new folders, or new address book entries using
version 1.0 of the OLE Messaging Library. However, you can use other applications or tools, such as
the Microsoft Exchange client, to create these objects. After you create the objects, you can then
access them using the OLE Messaging Library.

The following table summarizes the programming procedures that you must use to perform these
tasks. Note that all tasks require a Session object and successful logon.

Programming task Procedure

Accessing Folders 1. Access the Folder object's Folders
property to obtain its collection of
subfolders.

2. Use the Folders collection's GetFirst,
GetNext, GetPrevious, and GetLast
methods    to traverse through the
subfolders.

Adding Attachments to a
Message

1. Create or obtain the Message object
that is to include the attachment.

2. Call the Message object's Attachments
collection's Add method.

Changing an Existing Address
Entry

1. Obtain a valid AddressEntry object.

2. Update the Name, Type, or Address

properties.

3. Call the Update method.

Checking for New Mail Maintain a count of the number of
messages in the Inbox folder that have the
Unread property set to True.

- or -
Sort messages by time and count
messages received after a specified time.

Copying a Message to Another
Folder

1. Obtain the source message that you
want to copy.

2. Call the destination folder's Messages
collection's Add method, supplying the
source message properties as
parameters.

3. Copy the source Message object's
Sender and Recipients properties to the
new Message object.

4. Call the new Message object's Update
method.

Creating and Sending a
Message

1. Call the Messages collection's Add
method to create a Message object.

2. Set the Message object's Text,
Subject, and other message properties.

3. Call the message's Recipients
collection's Add method to add a
recipient.

4. Set the Recipient object's Name,
Address, or AddressEntry property.

5. Call the Recipient object's Resolve
method to validate the address
information.

6. Call the Message object's Send
method.

Customizing a Folder or
Message

1. Create or obtain the Folder or Message
object that will have the custom
properties.

2. Call the object's Fields collection's Add
method.

Deleting a Message 1. Select the message you want to delete.

2. Call the Message object's Delete
method.

Handling Errors Use the Microsoft Visual Basic "On Error
Goto" construct to add exception-handling
code just as you would in any Visual Basic
application.

Improving Application
Performance

Each dot in a Visual Basic statement
directs the OLE Messaging Library to
create a temporary internal object. Use
explicit variables when you reuse
messaging objects.

Making Sure the Message
Gets There

1. Set the Message object's
DeliveryReceipt and/or ReadReceipt
property to True.

2. Call the Message object's Send
method.

Moving a Message to Another
Folder

Use the same procedure as "Copying A
Message To Another Folder," and then
delete the original source message from
its folder.

Posting Messages to a Public
Folder

1. Use a similar procedure as "Creating
and Sending a Message," where you
specify the name of the public folder as
the Recipient name.

Or

1. Call the public folder's Messages
collection's Add method to create a
Message object.

2. Set the Message object's Text,
Subject, ConversationSubject,
ConversationIndex, TimeSent,
TimeReceived, and other message
properties.

3. Set the Message object's Unread,
Submitted, and Sent properties to True.

4. Call the Message object's Send or
Update method to post the message.

Reading a Message from the
Inbox

1. Call the Session's Inbox folder's
GetFirst, GetNext, GetPrevious, and
GetLast methods to obtain a Message
object.

2. Obtain the Message object's Text
property.

Searching for a Folder Use the Session object's GetFolder
method to obtain the folder from its known
ID value.

- or -
Call the Folders collection's Get* methods
to get individual folder objects. You can
then compare properties of each folder
with the desired properties.

Searching for a Message Use the Session object's GetMessage
method to obtain the message from its
known ID value.

- or -
Call the Messages collection's Get*
methods to get individual message
objects. You can then compare properties
of each message with the desired
properties.

Securing Messages 1. Set the Message object's Encrypted

and/or Signed properties to True.

2. Perform processing on the message's
Text property to encrypt or sign the
message .

3. Call the Message object's Send
method.

Selecting Recipients from the
Address Book

1. Call the Session's AddressBook
method to use the MAPI AddressBook
dialog.

2. Set a Recipients collection object to the
Recipients collection returned by the
AddressBook dialog.

3. Use that Recipients collection or copy
individual recipients from it.

Starting a Session with MAPI 1. Create or obtain a Session object.

2. Call the Session object's Logon
method.

Using Addresses 1. Set the message's Recipient object's
Address property to a full address.

2. Call the Recipient object's Resolve
method.

Viewing MAPI Properties Specify the Fields item with a MAPI
property tag.

Working with Conversations 1. Set the message's ConversationTopic
property.

2. Set the message's ConversationIndex
property.

3. Send the message by calling the Send
method.- or -
3. Post the message in the public folder by
setting the Submitted property to True.

The following sections describe these tasks in detail.

The following sections often discuss the hierarchy of the OLE Messaging objects. It is important to
understand the hierarchy, because the hierarchical relationships between objects determine the correct
syntax of Visual Basic statements. The relative positions of these objects in the hierarchy indicate how
the objects appear from left to right in a Visual Basic statement.

In the sample code that appears in this documentation, individual statements are often broken across
several lines. The underscore character "_" appears as a line continuation character, indicating that the
statement is continued on the next line. This construct is used in an attempt to make the material easy
to read.

All sample code that appears in this documentation is also available in the form of an Excel 5.0
spreadsheet that contains VBA modules. For information about the spreadsheet that contains the
sample code, see the Release Notes for the MAPI 1.0 PDK.

See Also

Programmer's Reference

Accessing Folders

Folders can be organized in a hierarchy, allowing you to access folders within folders. A child folder
within a parent folder is also called a subfolder. Subfolders appear within the parent folder object's
Folders collection.

You cannot use the OLE Messaging Library version 1.0 to create new folders. However, after another
application, such as the Microsoft Exchange client, has created a folder, you can use the OLE
Messaging Library to access the folder.

There are two general approaches for accessing folders:

Obtaining the folder directly by calling the Session GetFolder method
Traversing folders using the Folders collection Get* methods

To obtain the folder directly using the GetFolder method, you must have the folder's identifier. In the
following example, the identifier is stored in the variable strFolderID.

Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 'equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function
End Function

To traverse through the hierarchy of folders, start with a known or available folder, such as the Inbox or
Outbox, and examine its Folders collection. You can use the Folders collection's GetFirst and GetNext
methods to get each folder in the collection. When you have a subfolder, you can examine its
properties, such as its name, to see whether it is the desired folder. The following sample code
traverses through all existing subfolders of the Inbox:

Function TestDrv_Util_ListFolders()
 On Error GoTo error_olemsg
 If objFolder Is Nothing Then

 MsgBox "must select a folder object; see Session menu"
 Exit Function
 End If
 If 2 = objFolder.Class Then ' verify Folder object
 x = Util_ListFolders(objFolder) ' use current global folder
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

' Function: Util_ListFolders
' Purpose: Recursively list all folders below the current folder
' See documentation topic: Folders collection
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Object ' the child Folders collection
Dim objOneSubfolder As Object 'a single Folder object
 On Error GoTo error_olemsg
 If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

See Also

Searching for a Folder

Adding Attachments to a Message

You can add one or more attachments to a message. You add each attachment to the Attachments
collection, using the Message object's Attachments property. The relationship between the Message
object and an attachment is shown as follows:

Message object
Attachments collection

Attachment object
Type property
Source property

The OLE Messaging Library supports three different kinds of attachments: files, links to files, and OLE
objects. The attachment type is specified by its Type property. To add an attachment, use the related
Attachment object properties or methods appropriate for that type, as shown in the table below:

Attachment
type

Related attachment object property or method

mapiFileData ReadFromFile method

mapiFileLink Source property

mapiOle ReadFromFile method

The following example demonstrates inserting a file as an attachment with the ReadFromFile method.
This example assumes that the application has already created the Session object variable
objSession and successfully called the Session object's Logon method, as described in the section,
"Starting a Session with MAPI."

' Function: Attachments_Add_Data
' Purpose: Demonstrate the Add method for type = mapiFileData
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add_Data()
Dim objMessage As Object ' local
Dim objRecip As Object ' local

 On Error GoTo error_olemsg
 If objSession Is Nothing Then
 MsgBox ("must first log on; use Session->Logon")
 Exit Function
 End If
 Set objMessage = objSession.Outbox.Messages.Add
 If objMessage Is Nothing Then
 MsgBox "could not create a new message in the Outbox"
 Exit Function
 End If
 With objMessage ' message object
 .Subject = "attachment test"
 .Text = "Have a nice day."
 Set objAttach = .Attachments.Add ' add an attachment
 If objAttach Is Nothing Then
 MsgBox "Unable to create new Attachment object"
 Exit Function
 End If
 With objAttach
 .Type = mapiFileData
 .Position = 0 ' Exchange viewer displays at end of message

 .Source = "c:\smiley.bmp"
 End With
 .Update ' update the message
 End With
 MsgBox "Created message, added 1 mapiFileData attachment, updated"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

Note that setting a position value within the message can cause some viewers, such as the Microsoft
Exchange client, to overwrite the character that appears at that position in the message. You can insert
the attachment at various places in the message text:

' objMessage and objAttach as defined above
 objMessage.Text = " " & objMessage.Text ' add space for attachment
 objAttach.position = 1
 objMessage.Update

The OLE Messaging Library does not actually place the attachment within the message; that is the
responsibility of the messaging client application. However, to avoid these display problems with some
viewers, you can specify a position value that contains a negative value, zero, or a large positive value.

For example, given a a negative position value, the Microsoft Exchange client inserts the attachment
before the message without overwriting any characters of the message. Given a positive value greater
than the number of characters in the message, the Microsoft Exchange client displays the attachment
after the message. A value of zero also causes the client to display the attachment after the message.

To insert an attachment of type mapiOLE, use code similar to the mapiFileData type example. Set the
attachment type to mapiOLE and make sure that the specified file is a valid OLE docfile (a file saved
by an OLE-aware application such as Microsoft Word 6.0 that uses the OLE interfaces IStorage and
IStream).

To add an attachment of type mapiFileLink, set the Type property to mapiFileLink and set the
Source property to the file name. The following sample code demonstrates this type of attachment:

' Function: Attachments_Add
' Purpose: Demonstrate the Add method for type = mapiFileLink
' See documentation topic: Adding Attachments To A Message,
' Add method (Attachments collection)
Function Attachments_Add()
 On Error GoTo error_olemsg

 If objAttachColl Is Nothing Then
 MsgBox "must first select an attachments collection"
 Exit Function
 End If
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at end of message
 .Source = "\\server\bitmaps\honey.bmp" ' modify UNC name
 End With
 ' must update the message to save the new info

 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Position Property (Attachment Object)

Creating and Sending a Message

Changing an Existing Address Entry

OLE Messaging version 1.0 lets you change existing address entries in the Personal Address Book.
Use the following procedure to change existing address entries:

1. Select the AddressEntry object to modify. You can obtain the AddressEntry object in several ways,
including the following:

Call the Session object's AddressBook method to let the user select recipients. The method
returns a Recipients collection. Examine each recipient object's AddressEntry property to obtain its child
AddressEntry object.

Use the Message object's Sender property to obtain an AddressEntry object.
Examine a Message object's Recipients collection to obtain an individual recipient object, then

use its AddressEntry property to obtain its child AddressEntry object.
2. Change individual properties of the AddressEntry object, such as the Name, Address, or Type

properties.

3. Call the AddressEntry object's Update method.

Note that OLE Messaging only supports changes to the Personal Address Book.

The following sample code demonstrates this procedure:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
' (Note: OLE Messaging v1.0 only affects the PAB)
' See documentation topic: Update method AddressEntry object
Function AddressEntry_Update()
Dim objRecipColl As Object ' Recipients collection
Dim objNewRecip As Object ' New recipient

 On Error GoTo error_olemsg
 If objSession Is Nothing Then
 MsgBox "must log on first"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook ' let user select
 If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"
 Exit Function
 End If
 Set objNewRecip = objRecipColl.Item(1)
 With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can update the type, too...
 .Update
 End With
 MsgBox "Updated an address entry name: " & _
 objNewRecip.AddressEntry.Name
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Using Addresses

Selecting Recipients from the Address Book

Checking for New Mail

The Inbox contains new messages. When users refer to new messages, they can indicate messages
that arrive after the last time that they read messages, or they can indicate all unread messages.
Depending on the needs of your application users, your applications can check various message
properties to determine whether there is new mail.

The following sample code tracks new messages by checking for messages in the Inbox with the
Unread property value True.

' Function: Util_CountUnread
' Purpose: Count unread messages in a folder
' See documentation topic: Checking For New Mail;
' Unread property (Message)
Function Util_CountUnread()
Dim cUnread As Integer ' counter

 On Error GoTo error_olemsg
 If objMessages Is Nothing Then
 MsgBox "must select a messages collection"
 Exit Function
 End If
 Set objMessage = objMessages.GetFirst
 cUnread = 0
 While Not objMessage Is Nothing ' loop through all messages
 If True = objMessage.Unread Then
 cUnread = cUnread + 1
 End If
 Set objMessage = objMessages.GetNext
 Wend
 MsgBox "Number of unread messages = " & cUnread
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

You can also check for new messages by counting the messages received after a specified time. For
example, your application can maintain a variable that represents the time of the latest message
received, based on the message object's TimeReceived property. The application can periodically
check for all messages with a TimeReceived value greater than the saved value. When new
messages are found, the application updates its count of new messages and updates the saved value.

See Also

TimeReceived Property (Message Object)

Reading a Message from the Inbox

Copying a Message to Another Folder

The procedure documented in this section demonstrates a way to copy message properties using the
Message object Add method that is supported in OLE Messaging version 1.0.

To copy a message from one folder to another folder using OLE Messaging version 1.0, use the
following procedure:

1. Obtain the source message that you want to copy.

2. Call the destination folder's Messages collection's Add method, supplying the source message
properties as parameters.

The hierarchy of objects is as follows:

Session object
Folder object

Messages collection
Message object

To obtain the source message that you want to copy, first obtain its folder, then obtain the message
within the folder. For more information about finding messages, see the section, "Searching for a
Message."

To obtain the destination folder, you can use the following approaches:

Use the Folders collection's Get* methods to search for a specific folder.
Call the Session object's GetFolder method with a string parameter that specifies the FolderID, a

unique identifier for that folder.
For more information about finding folders, see the section, "Searching for a Folder."

The following example demonstrates how to copy the first message that appears in the Inbox folder.
The message is copied to the Outbox, but could as easily be copied to any folder with a known
identifier and therefore accessible using the Session object's GetFolder method. This example
assumes that the application has already created the Session object variable objSession and
successfully called the Session object's Logon method, as described in the section, "Starting a
Session with MAPI."

'/********************************/
' Function: Util_CopyMessage
' Purpose: Utility functions that demonstrates code to copy a message
' See documentation topic: Copying A Message To Another Folder
Function Util_CopyMessage()
' obtain the source message to copy
' for this sample, just use the first message in the Inbox
' assume session object already created
Dim objDestFolder As Object ' destination folder
Dim objCopyMsg As Object ' new message that is the copy
Dim strRecipName As String ' copy of recipient name from original message
Dim i As Integer ' loop counter

 On Error GoTo error_olemsg
 If objOneMsg Is Nothing Then
 MsgBox "must first select message"
 Exit Function
 End If
 If objFolder Is Nothing Then
 MsgBox "must first select a folder"
 Exit Function
 End If

 strFolderID = objFolder.Id
 ' Copy to the destination folder
 Set objDestFolder = objSession.GetFolder(strFolderID)
 If objDestFolder Is Nothing Then
 MsgBox "Unable to create destination folder for ID " _
 & strFolderID
 Exit Function
 Else
 MsgBox "Copying message to destination folder " _
 & objDestFolder.Name
 End If
 Set objCopyMsg = objDestFolder.Messages.Add _
 (Subject:=objOneMsg.Subject, _
 Text:=objOneMsg.Text, _
 Type:=objOneMsg.Type, _
 importance:=objOneMsg.importance)
 If objCopyMsg Is Nothing Then
 MsgBox "Unable to create new message in destination folder"
 Exit Function
 End If
 ' copy all the recipients
 For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
 Next i
 ' copy other properties; a few listed here as an example
 objCopyMsg.Sent = objOneMsg.Sent
 objCopyMsg.Text = objOneMsg.Text
 objCopyMsg.Unread = objOneMsg.Unread
 objCopyMsg.Update
 ' if *moving* a message to another folder, delete the original msg:
 ' objOneMsg.Delete
 ' move operation implies that the original message is removed
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Exit Function ' so many steps to succeed; just exit on error

End Function

Note that this procedure does not preserve all message properties.

See Also

Moving a Message to Another Folder

Creating and Sending a Message

Creating and sending a message is easy when you use the OLE Messaging Library. Use the following
procedure:

1. Establish a session with the MAPI system.

2. Call the Messages collection's Add method to create a Message object.

3. Supply values for the Message object's Subject and Text properties.

4. Call the Recipients collection's Add method for each recipient.

5. Call the Message object's Send method.

The following sample demonstrates each of these steps for a message sent to a single recipient:

' This sample also appears as the "Quick Start" sample in Chapter 1
Function QuickStart()
Dim objSession As Object ' Session object
Dim objMessage As Object ' Message object
Dim objOneRecip As Object ' Recipient object

 On Error GoTo error_olemsg

 ' create a session then log on, supplying username and password
 Set objSession = CreateObject("MAPI.Session")
 ' change the parameters to valid values for your configuration
 objSession.Logon 'profileName:="Princess Leia", _
 'profilePassword:="go_rebels"

 ' create a message and fill in its properties
 Set objMessage = objSession.Outbox.Messages.Add
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."

 ' create the recipient
 Set objOneRecip = objMessage.Recipients.Add
 objOneRecip.Name = "Obi-wan Kenobi"
 objOneRecip.Type = mapiTo
 objOneRecip.Resolve

 ' send the message and log off
 objMessage.Update
 objMessage.Send showDialog:=False
 MsgBox "The message has been sent"
 objSession.Logoff
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

Note    When you edit objects other than the Message object, save your changes using the Update
method before you clear or reuse the object variable. If you do not use the Update method, your
changes can be lost without warning.

After calling the message object's Send method, you should not try to access the Message object

again. The Send method invalidates the Message object.

See Also

Adding Attachments to a Message

Customizing a Folder or Message

Customizing a Folder or Message

The OLE Messaging Library allows customization and extensibility by offering the Field object and
Fields collection. A field object includes a name, a data type, and a value property. An object that
supports fields, in effect, lets you add your own custom properties to the object.

The OLE Messaging Library version 1.0 supports the use of fields with the Message and Folder
objects.

For example, consider that you want to add a "Keyword" property to messages so that you can
associate a string with the message. You may wish to use a self-imposed convention that values of the
"Keyword" are restricted to a small set of strings. You can then organize your messages by the
"Keyword" property.

The following example shows how to add the field to the Message object.

' Function: Fields_Add
' Purpose: Add a new field object to the Fields collection
' See documentation topic: Add method (Fields collection)
Function Fields_Add()
Dim cFields As Integer ' count of Fields in the collection
Dim objNewField As Object ' new Field object

 On Error GoTo error_olemsg
 If objFieldsColl Is Nothing Then
 MsgBox "must first select Fields collection"
 Exit Function
 End If
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
 If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
 End If
 cFields = objFieldsColl.Count
 MsgBox "new Fields collection count = " & cFields
 ' you can now write code that searches for
 ' messages with this "custom property"
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

Note that the new field information specified by the Add method is not actually saved until you call the
Message object's Update method.

For a complete list of the valid Field object data types, see the reference documentation for the Fields
collection Add method.

See Also

Field Object

Fields Collection Object

Creating and Sending a Message

Deleting a Message

The Message object's Delete method deletes the message. Use the following procedure:

1. Select the message you want to delete.

2. Call the message object's Delete method.

3. Set the message object to Nothing.

You should not try to access the Message object after deleting it.

See Also

Searching for a Message

Handling Errors

The OLE Messaging Library version 1.0 raises exceptions for all errors. When you write Visual Basic
applications that use the OLE Messaging Library, use the same error handling techniques that you use
in all your Visual Basic applications: the Visual Basic "On Error Goto" construct.

Note that the error-handling techniques vary slightly using Visual Basic 3.0 and Visual Basic for
Applications, as supported in Microsoft Excel 5.0. For more information, see your product's Visual
Basic documentation.

The OLE Messaging Library collects error information from different levels of software. The lowest level
of software is that which interacts directly with hardware, such as a mouse driver or video driver. Higher
levels of software move toward greater device independence and greater generality.

The following diagram suggests the different levels of software in Visual Basic applications that use the
OLE Messaging Library. Visual Basic applications reside at the highest level and interact with the MAPI
OLE Messaging Library at the next lower level. The MAPI OLE Messaging Library interacts with the
MAPI system software, and the MAPI system software interacts with a lower layer of software, the
operating system.

Figure 1. Software components interact with others at lower and higher levels. The Visual Basic
application at the top of this diagram interacts with the VB run-time library, which interacts with
the OLE Messaging Library; the OLE Messaging Library interacts with Extended MAPI; and
Extended MAPI in turn interacts with the operating system, here shown as Windows95.

Errors can occur at any level or at the interface between any two levels. For example, a user of your
application without security permissions can be denied access to an address book entry. The lowest
level in this diagram, the operating system, returns the error to the next higher level, and so on, until
the error is returned to the highest level, the Visual Basic application.

The OLE Messaging Library reports the error to Visual Basic so that Visual Basic raises an runtime
exception. You can then handle the exception in the same way that you handle other error exceptions.

' demonstrates error handling for Logon
' Function: TestDrv_Util_CreateSessionAndLogon
' Purpose: Call the utility function Util_CreateSessionAndLogon
' See documentation topic: Handling Errors;
' Creating And Sending A Message
Function TestDrv_Util_CreateSessionAndLogon()
Dim bFlag As Boolean
 On Error GoTo error_olemsg
 bFlag = Util_CreateSessionAndLogon()
 MsgBox "bFlag = " & bFlag

 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

' Function: Util_CreateSessionAndLogon
' Purpose: Demonstrate common error handling for Logon
' See documentation topic: Handling Errors
Function Util_CreateSessionAndLogon() As Boolean
 On Error GoTo err_CreateSessionAndLogon

 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Util_CreateSessionAndLogon = True
 Exit Function

err_CreateSessionAndLogon:
 If (Err = 1275) Then ' VB4.0 uses "Err.Number"
 MsgBox "User pressed Cancel"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Util_CreateSessionAndLogon = False
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

Note that this sample uses the Err object and is tailored for Visual Basic for Applications. When you
use Visual Basic 3.0, use the Err function to obtain the status code and the Error$ function to obtain a
descriptive error message, as in the following example:

' Visual Basic 3.0 error handling
MsgBox "Error number " & Err & " description: " & Error$(Err)

Depending on your version of Microsoft Visual Basic, the error code will be returned as a long integer
or as a short integer, and you should appropriately define the value of the error codes checked by your
program, such as the value 1275 in the sample above.

The example checks for an error corresponding to the Extended MAPI error code
MAPI_E_USER_CANCEL. The short integer error code represents the value 1000 + the low-order 16
bits of the MAPI error code, which in this case is 275. So a Visual Basic application that uses short
integer codes should check for the value 1275.

The long integer error code is displayed as the negative value -2147221229 or as the hexadecimal
value &h80040113. The value in the low-order 16 bits represents the MAPI error code. In this example
&h0113, or the decimal value 275, indicates MAPI_E_USER_CANCEL.

You can obtain errors from many different layers of the software. For example, the hexadecimal return
value 80070057 indicates MAPI_E_INVALID_PARAMETER, an error code that is defined as part of the
Win32® SDK. This error is returned by Microsoft Windows NT™ or Microsoft Windows95. For a

comprehensive list of error codes, see the Microsoft MAPI SDK documentation and your operating
system SDK documentation.

The values of many Extended MAPI error codes appear in the header file MAPICODE.H, which is
provided with the Microsoft MAPI 1.0 SDK.

See Also

OperatingSystem Property (Session Object)

Starting a Session with MAPI

Improving Application Performance

This section describes how your Visual Basic code can operate most efficiently when you use
messaging objects. Note that this section is written primarily for Visual Basic programmers rather than
for C programmers.

To access OLE Messaging objects, you create Visual Basic statements that concatenate the object
names in sequence from left to right, separating objects with a "dot," the period character. For example,
consider the following Visual Basic statement:

Set objMessage = objSession.Inbox.Messages.GetFirst

The OLE Messaging Library creates an internal object for each dot that appears in the statement. For
example, the portion of the statement that says "objSession.Inbox" directs OLE Messaging to create an
internal Folder object that represents the user's Inbox. The next portion, ".Messages," directs OLE
Messaging to create an internal Messages collection object. The final part, ".GetFirst," directs OLE
Messaging to create an internal Message object that represents the first message in the user's Inbox.
The statement contains three dots; the OLE Messaging Library creates three internal objects.

The best rule of thumb is to remember that dots are expensive. For example, the following two lines of
code are very inefficient:

' warning: do not code this way, this is inefficient
MsgBox "Text: " & objSession.Inbox.Messages.MoveFirst.Text
MsgBox "Subj: " & objSession.Inbox.Messages.MoveFirst.Subject

While this code generates correct results, it is not very efficient. For the first statement, the OLE
Messaging Library creates internal objects that represent the Inbox, its Messages collection, and its
first message. After the application displays the text, these internal objects are discarded. In the next
line, the same internal objects are generated again. A more efficient approach would be to generate the
internal objects only once:

With objSession.Inbox.Messages.MoveFirst
 MsgBox "Text: " & .Text
 MsgBox "Subj: " & .Subject
End With

When your application needs to use an object more than once, define a variable for the object and set
its value. The following sample code is very efficient when your application reuses the Folder,
Messages collection, or Message objects:

' very efficient when the objects will be reused
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMessage = objInMessages.MoveFirst
With objOneMessage
 MsgBox "The Message Text: " & .Text
 MsgBox "The Message Subject: " & .Subject
End With

Now that you understand that a dot in a statement directs the OLE Messaging Library to create a new
internal object, it is easy to see that the following sample is not correct:

' error: collection returns the same message both times
MsgBox("first msg: " & inBoxObj.Messages.GetFirst)
MsgBox("next msg: " & inBoxObj.Messages.GetNext)

The OLE Messaging Library creates a temporary internal object that represents the Messages
collection, then discards it after displaying the first message. The second statement directs OLE
Messaging to create another new temporary object that represents the Messages collection. This
Messages collection is new and has no state information; that is, this new collection has not called
GetFirst. The GetNext statement causes it to display its first message again.

Use the Visual Basic With statement or explicit variables to generate the expected results. The
following example uses explicit variables:

' Use the Visual Basic With statement
With objSession.Inbox.Messages
 Set objMessage = .GetFirst
 '...
 Set objMessage = .GetNext
End With
' Use explicit variables to refer to the collection;
Set objMsgColl = objSession.Inbox.Messages
Set objMessage = myMsgColl.GetFirst
...
Set objMessage = myMsgColl.GetNext

For more information about improving the performance of your applications, see your Microsoft Visual
Basic programming documentation.

See Also

Handling Errors

Making Sure the Message Gets There

The Message object contains two properties that can direct the underlying MAPI system to report
successful receipt of the message: DeliveryReceipt and ReadReceipt.

When you set these properties to True and send the message, the underlying MAPI system
automatically tracks the message for you. When you set the DeliveryReceipt property, the MAPI
system automatically generates a message to the sender reporting when the recipient receives the
message. When you set the ReadReceipt property, the MAPI system automatically generates a
message to the sender reporting when the recipient reads the message.

See Also

Securing Messages

Moving a Message to Another Folder

The procedure documented in this section demonstrates a way to move message properties using the
Message object Add and Delete methods supported in OLE Messaging version 1.0. To move a
message from one folder to another folder using OLE Messaging version 1.0, use the following
procedure:

1. Obtain the source message that you want to copy.

2. Call the destination folder's Messages collection's Add method, supplying source message
properties as parameters.

3. Call the source message's Delete method to delete the original source message from its folder.

For the complete sample, see the section,    "Copying a Message to Another Folder." The final lines of
code for the procedure should delete the original message:

' "Move" implies explicit delete of the initial message
objOneMsg.Delete

See Also

Copying a Message to Another Folder

Posting Messages to a Public Folder

You can post messages to a public folder using two different methods:

Use the Send method to send the message to the public folder, as you would send the message
to an individual.

Use the public folder's Messages collection's Add method to create the message within the public
folder. When you are ready to make the message available, call the Send or Update method.

Regardless of the approach you use, you must set a few more message properties than you would
when sending a message to a recipient. When you post a message to a public folder, the components
of the MAPI architecture that usually handle a message and set its properties do not manage the
message. Your application must set the Unread, Submitted, and Sent properties to True; and must
set the TimeSent and TimeReceived properties to the current time.

Note    When posting messages in a public folder, you cannot use OLE Messaging Library version 1.0
to set the Sender property. These Sender and related underlying properties are not present for a
message created by the OLE Messaging Library.

When you use the Message object's Send method to post the message, you use the same procedure
that you use to create and send a message to an individual, with one minor exception: you specify the
name of the public folder as the message recipient. Public folders are available in the address book, so
you can use the Session object's AddressBook method and the Recipient object's Resolve method
with public folder names. For more information about the complete procedure for sending messages,
see "Creating And Sending A Message."

The remainder of this section describes the procedure for creating a message within the public folder
itself.

1. Call the Messages collection's Add method to create a Message object.

2. Set the Message object's Text, Subject, ConversationSubject, ConversationIndex, TimeSent,
TimeReceived, and other message properties as desired.

3. Set the Message object's Unread, Submitted, and Sent properties to True.

4. Call the Message object's Send or Update method.

Note that when you post a message, you must explicitly set the TimeSent and TimeReceived
properties. When you send a message using the Send method, the MAPI system assigns the values of
these properties for you. However, when you post the message by setting the Submitted property,
your application must set the time properties. Set both time properties to the same value, just before
you set the Submitted property to True.

' Function: Util_New_Conversation
' Purpose: Set properties to start a new conversation in a public folder
' See documentation topic: Working With Conversations;
' Posting Messages To A Public Folder
Function Util_NewConversation()
Dim objRecipColl As Object
Dim i As Integer
Dim objNewMsg As Object ' new message object
Dim strNewIndex As String
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No session object - Use Session->Logon"
 Exit Function
 End If
 Set objNewMsg = objSession.Outbox.Messages.Add
 If objNewMsg Is Nothing Then

 MsgBox "unable to create a new message for the public folder"
 Exit Function
 End If
 strConversationFirstMsgID = objNewMsg.Id 'save for reply
 With objNewMsg
 .Subject = "used space vehicle wanted"
 .ConversationTopic = .Subject
 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 ' or you could pick the public folder from the address book
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve
 ' when you create the msg in a public folder, set properties:
 '.TimeSent = Time
 '.TimeReceived = .TimeSent
 '.Submitted = True
 '.Unread = True
 '.Sent = True
 .Update
 .Send showDialog:=False
 End With
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

For complete information about the ConversationIndex property, see "Working With Conversations."

See Also

Searching For a Folder

Creating and Sending a Message

Working with Conversations

Reading a Message from the Inbox

After establishing a Session object and successfully logging on to the system, the user can access her
Inbox. The Inbox is the default folder for mail received by the user.

As described in the section titled "OLE Messaging Object Design," the OLE Messaging objects are
organized in a hierarchy. The Session object at the topmost level allows access to a Folder. Each
Folder contains a Messages collection, and the Messages collection contains individual Message
objects. The text of the message appears in the Message object's Text property:

Session object
Folder object

Messages collection
Message object

Text property

To obtain an individual message, the application must move down through this object hierarchy to the
Text property. The following example uses the Session object's Inbox property to obtain a Folder
object, then uses the Folder object's Messages property to obtain a Messages collection object, and
calls the Messages collection's methods to get a specific message.

This example assumes that the application has already created the Session object variable
objSession and successfully called the Session object's Logon method, as described in the section,
"Starting a Session with MAPI."

Dim objSession As Object ' Session object
Dim objInboxFolder As Object ' Folder object
Dim objInMessages As Object ' Messages collection
Dim objOneMsg As Object ' Message object
...
' move down through the hierarchy
Set objInboxFolder = objSession.Inbox
Set objInMessages = objInboxFolder.Messages
Set objOneMsg = objInMessages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

Note    Use the Visual Basic keyword Set whenever you initialize a variable that represents an object.
When you set an object variable without using the Set keyword, Visual Basic generates an error
message.

The example above declares several object variables. However, it is also possible to access the
message with fewer variables. The following sample is equivalent to the sample code above:

Set objOneMsg = objSession.Inbox.Messages.GetFirst
MsgBox "The message text: " & objOneMsg.Text

You should declare an individual variable when the application needs to access an object more than
once. When an object is accessed repeatedly, variables can help make your code efficient. For more
information, see the section, "Improving Application Performance."

See Also

Creating and Sending a Message

Improving Application Performance

Searching for a Message

Searching for a Folder

Two frequently used folders, the Inbox and the Outbox, are available through Session object
properties. To access these folders, simply set a Folder object to the corresponding property.

To access other folders, search for the folder using one of the following techniques:

Call the Session object's GetFolder method with a string parameter that specifies the FolderID, a
unique identifier for the folder.

Use the Get* methods to traverse through the Folders collection. Search for a specific folder by
comparing the current folder's properties with the desired properties.

Each approach is described in detail in the following sections.

Using the Session Object GetFolder Method

When you know the unique identifier for the folder you are looking for, you can call the Session object's
GetFolder method.

The unique identifier for the folder, established at the time the folder is created, is stored in its ID
property. The ID is a string representation of the MAPI entry ID and its value is determined by the
service provider.

The following code fragment contains code that saves the ID for the folder, then uses it in a subsequent
GetFolder call:

' Function: Session_GetFolder
' Purpose: Demonstrate how to set a folder object
' See documentation topic: Session object GetFolder method
Function Session_GetFolder()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 'equivalent to:
 ' Set objFolder = objSession.GetFolder(folderID:=strFolderID)
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objFolder = Nothing
 Set objMessages = Nothing
 MsgBox "Folder is no longer available; no active folder"
 Exit Function

End Function

Using the Get Methods

When you are looking for a folder within a Folders collection, you can traverse down through the
collection, examining properties of each folder object to determine whether it is the folder you want.

OLE Messaging Library version 1.0 supports the GetFirst, GetLast, GetNext, and GetPrevious
methods for the Folders collection object.

The following sample demonstrates how to use the Get* methods to search for the specified folder.

' Function: TestDrv_Util_GetFolderByName
' Purpose: Call the utility function Util_GetFolderByName
' See documentation topic: Item property (Folder object)
Function TestDrv_Util_GetFolderByName()
Dim fFound As Boolean
 fFound = Util_GetFolderByName("Junk mail")
 If fFound Then
 MsgBox "Folder named 'Junk mail' found"
 Else
 MsgBox "Folder named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetFolderByName
' Purpose: Use Get* methods to search for a folder
' See documentation topic: Searching For a Folder
Function Util_GetFolderByName(strSearchName As String) As Boolean
Dim objOneFolder As Object ' local; temp version of folder object

 On Error GoTo error_olemsg
 Util_GetFolderByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "must first select a folder; such as Session->Inbox"
 Exit Function
 End If
 Set objFoldersColl = objFolder.Folders ' Folders collection
 If objFoldersColl Is Nothing Then
 MsgBox "no subfolders; not found"
 Exit Function
 End If
 ' get the first folder in the collection
 Set objOneFolder = objFoldersColl.GetFirst
 ' loop through all the folders in the collection
 Do While Not objOneFolder Is Nothing
 If objOneFolder.Name = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching
 Set objOneFolder = objFoldersColl.GetNext
 End If

 Loop
 ' exit from the do while loop comes here
 ' if objOneFolder is valid, the folder is found
 If Not objOneFolder Is Nothing Then
 Util_GetFolderByName = True ' success; set to False above
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

You can also navigate upward by using the Parent property.

See Also

Searching for a Message

Searching for a Message

To access a message, search for the message using one of the following techniques:

Call the Session object's GetMessage method with a string parameter that specifies the
MessageID, a unique identifier for the message.

Use the Get* methods to traverse through the folder's Messages collection. Search for a specific
message by comparing the current message object's properties with the desired properties.

Each approach is described in detail in the following sections.

Using the Session Object GetMessage Method

When you know the unique identifier for the message you are looking for, you can call the Session
object's GetMessage method.

The message ID specifies a unique identifier that is created for the message object at the time it is
created. The ID is accessible through the object's ID property.

The following code fragment contains code that saves the ID for the folder, then uses it in a subsequent
GetMessage call:

' Function: Session_GetMessage
' Purpose: Demonstrate how to set a message object using GetMessage
' See documentation topic: GetMessage method (Session object)
Function Session_GetMessage()
 On Error GoTo error_olemsg

 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If strMessageID = "" Then
 MsgBox ("Must first set message ID variable; see Message->ID")
 Exit Function
 End If
 Set objOneMsg = objSession.GetMessage(strMessageID)
 If objOneMsg Is Nothing Then
 MsgBox "Unable to retrieve message with specified ID"
 Exit Function
 End If
 MsgBox "GetMessage returned msg with subject: " & objOneMsg.Subject
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Set objOneMsg = Nothing
 MsgBox "Message is no longer available; no active message"
 Exit Function
End Function

Using the Get Methods

When you are looking for a message within a Messages collection, you can traverse through the
collection, examining properties of each message object to determine if it is the message you want.

OLE Messaging Library version 1.0 supports the GetFirst, GetLast, GetNext, and GetPrevious
methods for the Messages collection object.

The following sample demonstrates how to use the Get* methods to search for the specified message.

' Function: TestDrv_Util_GetMessageByName
' Purpose: Call the utility function Util_GetMessageByName
' See documentation topic: Item property (Message object)
Function TestDrv_Util_GetMessageByName()
Dim fFound As Boolean
 On Error GoTo error_olemsg

 fFound = Util_GetMessageByName("Junk mail")
 If fFound Then
 MsgBox "Message named 'Junk mail' found"
 Else
 MsgBox "Message named 'Junk mail' not found"
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

' Function: Util_GetMessageByName
' Purpose: Use Get* methods to search for a message
' See documentation topic: Searching for a message
' search through the messages for one with a specific subject
Function Util_GetMessageByName(strSearchName As String) As Boolean
Dim objOneMessage As Object ' local; temp version of message object

 On Error GoTo error_olemsg
 Util_GetMessageByName = False ' default; assume failure
 If objFolder Is Nothing Then
 MsgBox "must first select a folder; such as Session->Inbox"
 Exit Function
 End If
 Set objMessages = objFolder.Messages
 Set objOneMessage = objMessages.GetFirst
 If objOneMessage Is Nothing Then
 MsgBox "no messages in the folder"
 Exit Function
 End If
 ' loop through all the messages in the collection
 Do While Not objOneMessage Is Nothing
 If objOneMessage.Subject = strSearchName Then
 Exit Do ' found it, leave the loop
 Else ' keep searching
 Set objOneMessage = objMessages.GetNext
 End If
 Loop
 ' exit from the do while loop comes here
 ' if objOneMessage is valid, the message was found
 If Not objOneMessage Is Nothing Then
 Util_GetMessageByName = True ' success
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Searching for a Message

Securing Messages

The Message object contains two properties that specify security for the message: the Encrypted and
Signed properties. When you want to request that your message be secured, set these flags to True.

Note that these flags simply represent a request to the underlying messaging service. Whether the
message is encrypted or signed depends on whether these security measures are implemented by
your messaging service.

Neither MAPI nor OLE Messaging Library version 1.0 performs encryption or digital signing. The OLE
Messaging Library simply sets the appropriate Extended MAPI properties so that the proper request for
security is delivered to the messaging service. For more information about the capabilities of your
messaging service, contact your Microsoft Exchange system administrator.

Dim objMessage As Object ' assume valid Message object
'...
objMessage.Encrypted = True
objMessage.Send

See Also

Making Sure the Message Gets There

Selecting Recipients From the Address Book

After establishing a Session object and successfully logging onto the system, the user can access the
address book to select recipients. You can select recipients from any address book, such as the Global
Address List or the Personal Address Book.

As described in "OLE Messaging Object Design," the OLE Messaging objects are organized in a
hierarchy. The Session object at the topmost level contains an AddressBook method that lets your
application users select recipients from an address book. The method returns a Recipients collection,
which contains individual Recipient objects. The Recipient object in turn specifies an AddressEntry
object. This hierarchy is shown in the following diagram:

Recipients collection
Recipient object

Address property (full address)
AddressEntry object

Address property (e-mail address)
Type property

To obtain an individual Address property that can be used to address and send messages, the
application must move down through this object hierarchy. The following code example uses the
Recipients collection returned by the Session object's AddressBook method.

This example assumes that the application has already created the Session object variable
objSession and successfully called the Session object's Logon method, as described in the section,
"Starting a Session with MAPI."

' Function: Session_AddressBook
' Purpose: Set the global variable that contains the current recipients
' collection to that returned by the Session AddressBook method
' See documentation topic: AddressBook method (Session object)
Function Session_AddressBook()
 On Error GoTo err_Session_AddressBook

 If objSession Is Nothing Then
 MsgBox "must first create MAPI session and logon"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=1, _
 toLabel:="&OLE Messaging") ' appears on button
 ' Note: initial value not used in version 1.0
 ' parameter not used in call: Recipients:=objInitRecipColl
 MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
 Exit Function

err_Session_AddressBook:
 If (Err = 91) Then ' MAPI dlg-related function that sets an object
 MsgBox "No recipients selected"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Exit Function
End Function

See Also

Changing an Existing Address Entry

Using Addresses

Starting a Session with MAPI

As described in the section "OLE Messaging Object Design," all messaging objects are relative to the
Session object. One of the first tasks of every application is to create a valid Session object and call its
Logon method.

The Session object is created using the Visual Basic function CreateObject. The following code
demonstrates how to perform this common startup task:

Function Util_CreateSessionAndLogon() As Boolean
 On Error GoTo err_CreateSessionAndLogon

 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Util_CreateSessionAndLogon = True
 Exit Function

err_CreateSessionAndLogon:
 If (Err = 1275) Then ' VB4.0 uses "Err.Number"
 MsgBox "User pressed Cancel"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Util_CreateSessionAndLogon = False
 Exit Function

End Function

When no parameters are supplied to the Logon method, as in the example above, the OLE Messaging
Library displays an application-modal logon dialog box that prompts the application user to select a
user profile. Based on the characteristics of the selected profile, the underlying MAPI system logs on
the user or prompts for password information.

You can also choose to use your own application's dialog box to obtain the parameters needed to log
on, rather than using the MAPI logon dialog box. The following example obtains the profile name and
password information and directs the Logon method not to display a logon dialog box:

' Function: Session_Logon_NoDialog
' Purpose: Call the Logon method, set parameter to show no dialog
' See documentation topic: Logon Method (Session object)
Function Session_Logon_NoDialog()
 On Error GoTo error_olemsg
 ' can set strProfileName, strPassword from a custom form
 ' adjust these parameters for your configuration
 If objSession Is Nothing Then
 Set objSession = CreateObject("MAPI.Session")
 End If
 If Not objSession Is Nothing Then
 ' configure these parameters for your needs either here
 ' or in the function Util_Initialize
 objSession.Logon profileName:=strProfileName, _
 showDialog:=False
 End If
 Exit Function

error_olemsg:
 If 1273 = Err Then

 MsgBox "cannot logon: incorrect profile name or password"
 Exit Function
 End If
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

Note    Your Visual Basic application should be able to handle cases that occur when a user provides
incorrect profile or password information, or that occur when a user cancels from the Logon dialog box.
For more information, see the section, "Handling Errors"

After establishing a Session object and successfully logging on to the system, the user has access to
several default objects provided by the Session object, including the Inbox and Outbox folders. For
more information, see the section, "Reading a Message from the Inbox."

See Also

Reading a Message from the Inbox

Creating and Sending a Message

Using Addresses

In general, Microsoft MAPI supports two kinds of addressing:

Addresses that the MAPI system looks up for you in your address book, based on a display name
that you supply

Addresses that represent custom addresses, that are used as supplied without lookup
The OLE Messaging Library version 1.0 supports both kinds of addresses with its Recipient object. To
look up an address name, you supply the Name property only. To use custom addresses, you supply
the full address in the Address property.

This section describes the concepts involved in addressing, the design of the OLE Messaging
Recipient and AddressEntry objects, and the procedures your applications can use when managing
addresses.

The address book can be thought of as a database in persistent storage, managed by the MAPI
system, that contains valid addressing information that is associated with a display name. The display
name represents the way that a person's name might be displayed for your application users, using
that person's full name, rather than the e-mail address that the messaging system uses to transmit the
message. For example, the display name "John Doe" is mapped to the e-mail address "johnd".

In contrast with the address book, the objects that you create with the OLE Messaging Library are
temporary objects that reside in memory. When you fill in the Recipient object's Name property with a
display name, you must then resolve the address. To resolve the address means that you ask the
MAPI system to look up the display name in the database and supply you with the corresponding
address. When the display name is ambiguous, or can match more than one entry in the address book,
the MAPI system prompts you to select from a list of possible matching names.

The Recipient Name property represents the display name. Call the Recipient object's Resolve
method to resolve the display name.

After the Recipient object is resolved, it has a child AddressEntry object that contains a copy of the
valid addressing information from the database. The child AddressEntry object is accessible from the
Recipient's AddressEntry property. The Recipient object and AddressEntry object properties are
related as follows:

OLE Messaging property MAPI property Description

Recipient.Address Combination of
PR_ADDR_TYPE
and
PR_EMAIL_ADDRES
S

Full address;
AddressEntry's
Type and Address
properties

Recipient.Name PR_DISPLAY_NAME Display name

Recipient.AddressEntry.Add
ress

PR_EMAIL_ADDRES
S

E-mail address

Recipient.AddressEntry.Typ
e

PR_ADDR_TYPE E-mail type

Recipient.AddressEntry.Na
me

PR_DISPLAY_NAME Display name

Recipient.AddressEntry.ID PR_ENTRYID Unique identifier for
the address entry

The Recipient Address property represents a full address, that is, the combination of address type and
e-mail address that MAPI uses to send a message. The full address represents the same information
that appears in the AddressEntry Address property and the AddressEntry Type property.

You can also supply a complete recipient address yourself. By manipulating the address yourself, you
direct the MAPI system to send the message to the full address that you supply without using the

database. In this case, you must also supply the display name. When you supply a custom address,
the Recipient Address property must use the following syntax:

TypeValue:AddressValue

There is also a third method of working with addresses: You can directly obtain and use the Recipient
object's child AddressEntry object from messages that have already been successfully sent through the
messaging system.

For example, to reply to a message, you can use a Message object's Sender property to get a valid
AddressEntry object. When you work with valid AddressEntry objects, you do not have to call the
Resolve method.

Note    When you use existing AddressEntry objects, do not try to modify them. In general, do not write
directly to the Recipient object's child AddressEntry object properties.

In summary, you can provide addressing information in three different ways:

Obtain the correct addressing information for a known display name. Set the Recipient object's
Name property and call the Recipient object's Resolve method. Note that the Resolve method can
display a dialog.

Use an existing valid address entry, such as the Message object's Sender property, when you are
replying to a message. Set the Recipient object's AddressEntry property to an existing AddressEntry
object that is known to be valid. (You do not need to call the Resolve method.)

Create a custom address. Set the Recipient object's Address property, using the correct syntax
as described above (use the colon character ':' to separate the address type from the address), and call
the Resolve method.

The following sample code demonstrates these three kinds of addresses:

' Function: Util_UsingAddresses
' Purpose: Set addresses three ways
' See documentation topic: Using Addresses
Function Util_UsingAddresses()
Dim objNewMessage As Object ' new message object for example
Dim strAddrEntryID As String ' ID value from AddressEntry object
Dim strName As String ' Name from AddressEntry object
 On Error GoTo error_olemsg
 If objOneMsg Is Nothing Then
 MsgBox "Must select a message"
 Exit Function
 End If
 With objOneMsg.Recipients.Item(1).AddressEntry
 strAddrEntryID = .Id
 strName = .Name
 End With
 Set objNewMessage = objSession.Outbox.Messages.Add
 If objNewMessage Is Nothing Then
 MsgBox "Unable to add a new message"
 Exit Function
 End If
 ' add three recipients
 ' 1. look up entry in address book specified by profile
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Name:=strName, _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using Display Name"

 Exit Function
 End If
 objOneRecip.Resolve
 ' 2. add a custom recipient
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Address:="SMTP:davidhef@microsoft.com", _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom addressing"
 Exit Function
 End If
 objOneRecip.Resolve

 ' 3. add a valid address entry object, such as Message.Sender
 Set objOneRecip = objNewMessage.Recipients.Add(_
 entryID:=strAddrEntryID, _
 Name:=strName, _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using existing AddressEntry ID"
 Exit Function
 End If

 objNewMessage.Text = "expect 3 different recipients"
 MsgBox ("count = " & objNewMessage.Recipients.Count)
 ' you can also call resolve for the whole collection
 ' objNewMessage.Recipients.Resolve (True) ' resolve all; show dialog

 objNewMessage.Subject = "test"
 objNewMessage.Update ' update the message
 x = objNewMessage.Send(showDialog:=False)
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Exit Function

End Function

See Also

Sender property (Message Object)

Resolve method (Recipient Object)

Changing an Existing Address Entry

Viewing MAPI Properties

You can use a feature of the OLE Messaging Library's Fields collection object to view the values of
MAPI properties.

The Fields collection Item property allows you to specify the actual property tag value as an identifier. A
property tag is a 32-bit unsigned integer that contains the property identifier in its high-order 16 bits and
the property type (its underlying data type) in the low-order 16 bits. Several macros are available to
C/C++ programmers in the MAPI 1.0 SDK to help manipulate the property tag data structure. The
macros PROP_TYPE and PROP_ID extract the property type and property identifer from the property
tag. The macro PROP_TAG builds the property tag from the provided type and identifier components.

For complete reference information on MAPI properties and property tags, see the MAPI Programmer's
Reference.

' Function: Fields_Selector
' Purpose: View a MAPI property by supplying a property tag value as
' the Item value
' See documentation topics: Viewing MAPI Properties;
' Item property (Fields collection)
Function Fields_Selector()
Dim lValue As Long
Dim strMsg As String

 On Error GoTo error_olemsg

 If objFieldsColl Is Nothing Then
 MsgBox "must first select a Fields collection"
 Exit Function
 End If
 ' you can provide a dialog here so users enter MAPI proptags...
 ' or select property names from a list; for now, hard-coded value
 lValue = &h1a001e
 ' &H1a = PR_MESSAGE_CLASS; &H001e = 30 = PT_STRING8
 ' high-order 16 bits is property id; low-order is property type
 Set objOneField = objFieldsColl.Item(lValue)
 If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
 Else
 strMsg = "Used the value " & lValue & " to access the property"
 strMsg = strMsg & "PR_MESSAGE_CLASS: type = " & objOneField.Type
 strMsg = strMsg & "; value = " & objOneField.Value
 MsgBox strMsg
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next

End Function

See Also

Field Object

Customizing a Folder or Message

Working With Conversations

Two Message object properties let you show complex relationships among messages by defining them
as part of a conversation. A conversation is a series of messages, consisting of an initial message and
all messages sent in reply to the initial message. When the initial message or a reply elicits additional
messages, the resulting messages are called a conversation thread. A thread represents a subset of
messages in the conversation.

The conversation properties ConversationTopic and ConversationIndex give you another way to
organize and display messages. Rather than simply organizing messages by subject, time received, or
sender, you can show rich and complex relationships among messages. The ConversationTopic
property is a string that describes the overall subject of the conversation. The ConversationIndex
property is an index that you can use to represent the relationships between messages and replies.

When you start an initial message, set the ConversationTopic property to an appropriate value that
will apply to all messages within the conversation. For many applications, the message Subject
property is appropriate.

You can use your own convention to decide how to use the ConversationIndex property. However, it
is recommended that you adopt the same convention used by the Microsoft Exchange client message
viewer, so that you can use that viewer's user interface to show the relationships between messages in
a conversation.

By convention, Microsoft Exchange uses ConversationIndex values that represent concatenated time
stamp values. The first time stamp in the string represents the original message. When a new message
represents a reply to a conversation message, it copies the ConversationIndex string of the message
it is replying to, and appends a time stamp value to the end of the string. The new string value is used
as the ConversationIndex value of the new message.

When you use this convention, you can easily see relationships among messages when you sort the
messages by ConversationIndex values.

The following code sample provides a utility function, Util_GetEightByteTimeStamp, which can be
used to build Exchange-compatible ConversationIndex values. The utility function calls the OLE
function CoCreateGuid to obtain the time stamp value from a GUID (globally unique identifier) data
structure. The GUID value is composed of a time stamp and a machine identifier; the utility function
saves the part that contains the time stamp.

' declarations for the Util_GetEightByteTimeStamp function
Type GUID
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
' Note: Use "OLE32.DLL" for Windows NT, Win95 platforms
Global Const S_OK = 0
' end declarations section

' Function: Util_GetEightByteTimeStamp
' Purpose: Generate a time stamp for use in conversations
' See documentation topic: Working With Conversations
Function Util_GetEightByteTimeStamp() As String
Dim lResult As Long
Dim lGuid As GUID
 ' Exchange conversation is a unique 8-byte value
 ' Exchange client viewer sorts by concatenated properties

 On Error GoTo error_olemsg

 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 Util_GetEightByteTimeStamp = _
 Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 Else
 Util_GetEightByteTimeStamp = "00000000" ' zeroes
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Util_GetEightByteTimeStamp = "00000000"
 Exit Function

End Function

When you start a new conversation, set the ConversationIndex property to the value returned by this
function, as follows:

' new conversation
objMessage.ConversationIndex = Util_GetEightByteTimeStamp()

When you are replying to a message in an existing conversation, append the time stamp value to that
message's ConversationIndex value:

' reply within an existing conversation
Dim objOriginalMsg As Object ' assume valid
Dim strNewIndex As String
'...
' copy the original topic and
' append the current time stamp to the original time stamp
objMessage.ConversationTopic = objOriginalMsg.ConversationTopic
strNewIndex = objOriginalMsg.ConversationIndex _
 & Util_GetEightByteTimeStamp()
objMessage.ConversationIndex = strNewIndex

For additional sample code, see "Posting Message To a Public Folder."

See Also

Posting Messages to a Public Folder

Programmer's Reference

This section contains property and method reference information for the OLE Messaging objects.

The following table summarizes each object's properties and methods:

Object Properties Methods

AddressEn
try

Address, Application, Class, ID,
Name, Parent, Session, Type

Delete, Details, Update

Attachmen
t

Application, Class, Index, Name,
Parent, Position, Session,
Source, Type

Delete, ReadFromFile,
WriteToFile

Attachmen
ts
(collection)

Application, Class, Count, Item,
Parent, Session

Add, Delete

Field Application, Class, ID, Index,
Name, Parent, Session, Type,
Value

Delete, ReadFromFile,
WriteToFile

Fields
(collection)

Application, Class, Count, Item,
Parent, Session

Add, Delete

Folder Application, Class, Fields,
FolderID, Folders, ID,
MAPIOBJECT*, Messages,
Name, Parent, Session, StoreID

(none)

Folders
(collection)

Application, Class, Parent,
Session

GetFirst, GetLast,
GetNext, GetPrevious

Message Application, Attachments, Class,
ConversationIndex,
ConversationTopic,
DeliveryReceipt, Encrypted,
Fields, FolderID, ID, Importance,
MAPIOBJECT*, Parent,
ReadReceipt, Recipients,
Sender, Sent, Session, Signed,
Size, StoreID, Subject,
Submitted, Text, TimeReceived,
TimeSent, Type, Unread

Delete, Options, Send,
Update

Messages
(collection)

Application, Class, Parent,
Session

Add, Delete, GetFirst,
GetLast, GetNext,
GetPrevious, Sort

Recipient Address, AddressEntry,
Application, Class, Index, Name,
Parent, Session, Type

Delete, Resolve

Recipients
(collection)

Application, Class, Count, Item,
Parent, Resolved, Session

Add, Delete, Resolve

Session Application, Class, CurrentUser,
Inbox, MAPIOBJECT*, Name,
OperatingSystem, Outbox,
Parent, Session, Version

AddressBook,
GetAddressEntry,
GetFolder, GetMessage,
Logoff, Logon

* The MAPIOBJECT property is not available to Visual Basic applications. For more information,

please see the reference for the MAPIOBJECT property.

This section is organized by object, consisting of a brief summary of each object that lists its properties
and methods, followed by reference documentation for the individual properties and methods. The
properties and methods are organized alphabetically.

To avoid duplication, the initial section "All OLE Messaging Objects" describes the properties that have
the same meaning for all OLE Messaging Library objects. This section includes the properties
Application, Class, Parent, and Session.

See Also

A Short Tour

Programmer's Guide

All OLE Messaging Objects

All OLE Messaging Library objects contain the properties Application, Class, Parent, and Session.
The Application and Session properties have the same values for all objects within a given session.
The Parent property indicates the logical parent of the object. The Class property is an integer value
that identifies the OLE Messaging object.

Note that for the Session object, the Parent and Session properties are assigned the value Nothing.
The Session object represents the highest level in the OLE Messaging object hierarchy and has no
parent.

To reduce duplication, the detailed reference for these common ("superclass") properties appears only
once, in this section.

Many objects also have a Type property, but the Type property is not defined for all objects and its
meaning varies depending on the object. The following table summarizes the Type property:

Object Description of the Type property

AddressEntry The messaging system; SMTP, Fax, etc.

Attachment Attachment type; mapiFileData, mapiFileLink, or
mapiOle

Field The field data type; vbInteger, vbLong, etc.

Message The message class; IPM.Note, etc.

Recipient Recipient type; To:, Cc:, or Bcc: line

For detailed information about the Type property, see the reference documentation for each object.

The following table lists the properties that are common to all OLE Messaging objects and that have
the same meaning for all objects:

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Parent Object Read-only

Session Session object Read-only

See Also

Programmer's Reference

Application Property (All OLE Messaging Objects)

Indicates the name of the active application, which is the OLE Messaging Library, "OLE Messaging."
Read-only.

Syntax

object.Application

Data Type

String

Comments

The Application property always contains the string "OLE Messaging".

Note that this behavior for the Microsoft OLE Messaging Library differs from other implementations of
OLE Automation servers. Many OLE Automation servers are based on executables (files that take the
extension .EXE) and return an object value. The OLE Messaging Library is based on the MAPI
subsystem, which is implemented by dynamic link libraries (files that take the extension .DLL).

Example

' Function: Session_Application
' Purpose: Display the Application property of the Session object
' See documentation topic: Application property
Function Session_Application()
Dim objSession As Object
 ' error handling
 Set objSession = CreateObject("MAPI.Session")
 If Not objSession Is Nothing Then
 MsgBox "Session's Application property = " _
 & objSession.Application
 End If
 ' error handling
End Function

See Also

Version Property (Session Object)

Class Property (All OLE Messaging Objects)

Indicates the OLE Messaging Library object. Read-only.

Syntax

object.Class

Data Type

Long

Comments

The Class property contains a numeric constant that identifies the OLE Messaging Library object. The
following values are defined:

OLE Messaging
Library object

Class ID
value

Value

AddressEntry 8 mapiAddressEntry

Attachment 5 mapiAttachment

Attachments
(collection)

21 mapiAttachments

Field 6 mapiField

Fields (collection) 22 mapiFields

Folder 2 mapiFolder

Folders (collection) 18 mapiFolders

Message 3 mapiMsg

Messages
(collection)

19 mapiMessages

Recipient 4 mapiRecipient

Recipients
(collection)

20 mapiRecipients

Session 0 mapiSession

Example

' Function: Util_DecodeObjectClass
' Purpose: Decode the long integer class value,
' show the related object name
' See documentation topic: Class property (All OLE Messaging objects)
Function Util_DecodeObjectClass(lClass As Long)
 ' error handling here...
 Select Case (lClass)
 Case mapiSession:
 MsgBox ("Session object; class = " & lClass)
 Case mapiMsg:
 MsgBox ("Message object; class = " & lClass)
 End Select
 ' error handling
End Function

' Function: TestDrv_Util_DecodeObjectClass

' Purpose: Call the utility function DecodeObjectClass for Class values
' See documentation topic: Class property (All OLE Messaging objects)
Function TestDrv_Util_DecodeObjectClass()
 ' error handling here...
 If objSession Is Nothing Then
 MsgBox "Need to set the Session object: Session->Logon"
 Exit Function
 End If
 ' expect type mapiSession = 0 for Session object
 Util_DecodeObjectClass (objSession.Class)
 Set objMessages = objSession.Inbox.Messages
 Set objOneMsg = objSession.Inbox.Messages.GetFirst
 If objOneMsg Is Nothing Then ' empty inbox
 Exit Function
 End If
 ' expect type mapiMessage = 3 for Message object
 Util_DecodeObjectClass (objOneMsg.Class)
 ' error handling here...
End Function

See Also

All OLE Messaging Objects

Parent Property (All OLE Messaging Objects)

Returns the parent of the object. Read-only.

Syntax

object.Parent

Data Type

Object

Comments

The Parent property in OLE Messaging Library version 1.0 currently returns the immediate parent of
an object. For example, the immediate parent for each object is shown in the following table:

OLE Messaging object Immediate Parent in object
hierarchy

AddressEntry Recipient object

Attachment Attachments collection

Attachments (collection) Message object

Field Fields collection

Fields (collection) Message or Folder object

Folder (Inbox, Outbox) Session object

Folder (all others) Folders collection

Folders (collection) Folder object

Message Messages collection

Messages (collection) Folder object

Recipient Recipients collection

Recipients (collection) Message object

Session (not defined)

Note that current plans call for the Parent property to be changed in subsequent releases. In future
versions, the Parent property may return the logical parent of the object, not the immediate parent of
the object. For example, a folder contains a messages collection, which contains message objects. In
future releases, the Parent property for a message object would be set to its logical parent, the folder,
rather than the immediate parent, the messages collection.

The Session object represents the highest level in the hierarchy of OLE Messaging objects and its
Parent property is set to Nothing.

Example

This example displays the name of the parent messages collection of a message:

' Function: Message_Parent
Function Message_Parent()
 ' error handling here
 If objOneMsg Is Nothing Then
 MsgBox "Need to select a message; see Messages->Get*"
 Exit Function
 End If
 ' Immediate parent of message is the messages collection

 MsgBox "Message immediate parent class = " & objOneMsg.Parent.Class
 ' error handling code
End Function

To get to the folder, you have to take the parent of the Messages collection object::

' Function: Messages_Parent
' Purpose: Display the Messages collection Parent class value
' See documentation topic: Parent property (All OLE Messaging objects)
Function Messages_Parent()
 ' error handling here...
 If objMessages Is Nothing Then
 MsgBox "No active messages collection"
 Exit Function
 End If
 MsgBox "Messages collection parent has class value: " & _
 objMessages.Parent.Class
 Exit Function
 ' error handling here...
End Function

See Also

Class Property (All OLE Messaging Objects)

Folder Object

Message Object

Session Object

Session Property (All OLE Messaging Objects)

Returns the top-level Session object associated with the specified OLE Messaging Library object.
Read-only.

Syntax

Set objSession = object.Session

Data Type

Object

Comments

The Session object represents the highest level in the OLE Messaging object hierarchy. Its Session
property is set to Nothing.

Example

' Function: Folder_Session
' Purpose: Access the Folder's Session property and display its name
' See documentation topic: Session property (All OLE Messaging objects)
Function Folder_Session()
Dim objSession2 As Object ' session object to get the property
 ' error handling here...
 If objFolder Is Nothing Then
 MsgBox "No active folder; please select Session->Inbox"
 Exit Function
 End If
 Set objSession2 = objFolder.Session
 If objSession2 Is Nothing Then
 MsgBox "Unable to access Session property"
 Exit Function
 End If
 MsgBox "Folder's Session property name = " & objSession2.Name
 Set objSession2 = Nothing
 ' error handling here...
End Function

See Also

Session Object

AddressEntry Object

The AddressEntry object defines valid addressing information for a given messaging system. An
address usually represents a person or process to which the messaging system can deliver messages.

The AddressEntry object is often used as a child object of the Recipient object. In this context, the
AddressEntry represents a copy of valid addressing information that is obtained from the Address Book
during a call to the Recipient object's Resolve method. When you obtain the AddressEntry object in
this context, you should not modify its properties.

Properties

Property name Type Access

Address String Read-write

Application String Read-only

Class Long Read-only

ID String Read-only

Name String Read-write

Parent Object Read-only

Session Session object Read-only

Type String Read-write

Methods

Method name Parameters

Delete (none)

Details (optional) parentWindow as Long

Update (none)

See Also

Recipient Object

Address Property (AddressEntry Object)

Specifies the messaging address of an address list entry or message recipient. Read-write.

Syntax

objAddrEntry.Address

Data Type

String

Comments

The AddressEntry object's Address property provides a unique string to identify a message recipient
and routing information for messaging systems. The format of the address string is specific to each
messaging system.

The AddressEntry object's Address and Type properties combine to form the full address, the
complete messaging address that appears in the Recipient object's Address property. The Recipient
object's Address property uses the following syntax:

TypeValue:AddressValue

The AddressEntry Address property corresponds to the MAPI property PR_EMAIL_ADDRESS.

Example

' Set up a series of object variables
' Set the Folder and Messages variables; from Session_Inbox
 Set objFolder = objSession.Inbox
 Set objMessages = objFolder.Messages
' Set the Message object variable; from Messages_GetFirst()
 Set objOneMsg = objMessages.GetFirst
' Set the Recipients collection variable; from Message_Recipients()
 Set objRecipColl = objOneMsg.Recipients
' Set the Recipient object variable; from Recipients_FirstItem()
 If 0 = objRecipColl.Count Then
 MsgBox "No recipients in the list"
 Exit Function
 End If
 iRecipCollIndex = 1
 Set objOneRecip = objRecipColl.Item(iRecipCollIndex)
' set the AddressEntry object variable; from Recipient_AddressEntry()
 Set objAddrEntry = objOneRecip.AddressEntry
' from Util_CompareFullAddressParts()
' display the values
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg

See Also

Address Property (Recipient Object)

Delete Method (AddressEntry Object)

Deletes the specified address from the address book.

Note    OLE Messaging Library version 1.0 supports the Delete method only for the Personal Address
Book.

Syntax

objAddressEntry.Delete()

Parameters

objAddressEntry
Required. The AddressEntry object.

Comments

The Delete method fails if both the Address and ID properties are empty.

Example

Function AddressEntry_Delete()
 ' error handling here...
 If objAddrEntry Is Nothing Then
 MsgBox "must select an AddressEntry object"
 Exit Function
 End If
 objAddrEntry.Delete
 Set objAddrEntry = Nothing
 Exit Function
 ' error handling
End Function

See Also

Add Method (Recipients Collection)

Details Method (AddressEntry Object)

Displays a dialog box that provides detailed information about an AddressEntry object.

Syntax

objAddressEntry.Details([parentWindow])

Parameters

objAddressEntry
Required. The AddressEntry object.

parentWindow
Optional. Long. The parent window handle for the details dialog box. A value of 0 (the default, when
no value is supplied) specifies a modal dialog box.

Comments

The dialog box always contains at least the display name and address of the address entry. For
AddressEntry objects, the method fails if both the Address and ID properties are empty.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
Object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), AddressBook and Logon methods (Session object).

See Also

Update Method (AddressEntry Object)

ID Property (AddressEntry Object)

Returns the unique ID of the object as a string. Read-only.

Syntax

objAddressEntry.ID

Data Type

String

Comments

You can use the AddressEntry object's ID property as a parameter to the Recipient object's Add
method.

MAPI systems assign a permanent, unique ID string when an object is created. These IDs do not
change from one MAPI session to another.

The ID property corresponds to the MAPI property PR_ENTRYID.

Example

This example copies information from an AddressEntry object to a Recipient object:

' Function: Recipients_Add_EntryID
' Purpose: Add a new recipient to the collection using AddressEntry ID
Function Recipients_Add_EntryID()
Dim strID As String ' ID from Message.Sender
Dim strName As String ' name from Message.Sender
Dim objNewMsg As Object ' new msg; set its recipient using ID
Dim objNewRecip As Object ' Recipient of new message, set from ID, name
 ' error handling
 strID = objOneMsg.Sender.Id 'Address Entry object ID
 strName = objOneMsg.Sender.Name
 Set objNewMsg = objSession.Outbox.Messages.Add
 If objNewMsg Is Nothing Then
 MsgBox "Could not create a new message"
 Exit Function
 End If
 objNewMsg.Subject = "Sample message from OLE Messaging 1.0"
 objNewMsg.Text = "Called Recipients.Add method w/ entryID parameter"
 Set objNewRecip = objNewMsg.Recipients.Add(_
 entryID:=strID, _
 Name:=strName)
 If objNewRecip Is Nothing Then
 MsgBox "Could not create a new recipient"
 Exit Function
 End If
 objNewMsg.Update
 objNewMsg.Send showDialog:=False
 MsgBox "Created a new message in the Outbox and sent it"
 Exit Function
 ' error handling
End Function

See Also

Add Method (Recipients Collection)

Name Property (AddressEntry Object)

Returns or sets the display name or alias of the AddressEntry object as a string. Read-write.

Syntax

objAddressEntry.Name

Data Type

String

Comments

The AddressEntry object is typically used as a copy of valid addressing information obtained from the
Address Book after you have called the Recipient object's Resolve method.

When you obtain the AddressEntry object in this context, you should not modify its properties. To
request resolution of a display name, use the Recipient object's Name property instead. Set the
Recipient Name property and call the Recipient object's Resolve method.

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example

' for values of variables, see AddressEntry Address property
' Recipient and AddressEntry display names are the same
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg

See Also

Recipient Object

Resolve Method (Recipient Object)

Using Addresses

Type Property (AddressEntry Object)

Specifies the address type, such as "SMTP," "Fax," or "X.400." Read-write.

Syntax

objAddressEntry.Type

Data Type

String

Comments

The AddressEntry object's Type property specifies the address type. This is usually a tag referring to
the messaging system that routes messages to this address, such as "SMTP" or "Fax."

The AddressEntry object's Address and Type properties combine to form the full address, the
complete messaging address that appears in the Recipient object's Address property. The Recipient
Address uses the following syntax:

TypeValue:AddressValue

The Type property corresponds to the MAPI property PR_ADDRTYPE.

Example

See the example for the AddressEntry object Address property.

See Also

Address Property (AddressEntry Object)

Address Property (Recipient Object)

Update Method (AddressEntry Object)

Save AddressEntry object changes in the MAPI system.

Syntax

objAddressEntry.Update

Parameters

objAddressEntry
Required. The AddressEntry object.

Comments

Changes to objects are not permanently saved in the MAPI system until you use the Update method.

Example

The following example changes the display name for the valid AddressEntry address:

' Function: AddressEntry_Update
' Purpose: Demonstrate the Update method
' (Note: OLE Messaging v1.0 only affects the PAB)
Function AddressEntry_Update()
Dim objRecipColl As Object ' Recipients collection
Dim objNewRecip As Object ' New recipient

 ' error handling omitted...
 Set objRecipColl = objSession.AddressBook
 If objRecipColl Is Nothing Then
 MsgBox "must select someone from the address book"
 Exit Function
 End If
 Set objNewRecip = objRecipColl.Item(1)
 With objNewRecip.AddressEntry
 .Name = .Name & " the Magnificent"
 .Type = "X.500" ' you can also change the Type
 .Update
 End With
 MsgBox "Updated an address entry name: " & _
 objNewRecip.AddressEntry.Name
 Exit Function
 ' error handling omitted
End Function

See Also

Recipient Object

Attachment Object

The Attachment object represents a document that is an attachment of a message.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Index Long Read-only

Name String Read-write

Parent Object Read-only

Position Long Read-write

Session Session object Read-only

Source String Read-write

Type Long Read-write

Methods

Method name Parameters

Delete (none)

ReadFromFile fileName as String

WriteToFile fileName as String

See Also

Attachments Collection

Delete Method (Attachment Object)

Deletes the attachment.

Syntax

objAttachment.Delete()

Parameters

objAttachment
Required. The Attachment object.

Comments

The Attachment object is set to Nothing and is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent Message object.

See Also

Delete Method (Attachments Collection)

Index Property (Attachment Object)

Returns the index number for the Attachment object within the Attachments collection. Read-only.

Syntax

objAttachment.Index

Data Type

Long

Comments

The Index indicates the attachment's position within the parent Attachments collection.

Example

Function Attachments_GetByIndex()
Dim lIndex As Long
Dim objOneAttach As Object ' assume valid attachment
 ' set error handler here
 If objAttachColl Is Nothing Then
 MsgBox "must select an Attachments collection"
 Exit Function
 End If
 If 0 = objAttachColl.Count Then
 MsgBox "must select collection with 1 or more attachments"
 Exit Function
 End If
 ' prompt user for index; for now, use 1
 Set objOneAttach = objAttachColl.Item(1)
 MsgBox "Selected attachment 1: " & objOneAttach.Name
 lIndex = objOneAttach.Index ' save index to retrieve this later
 ' ...get same attachment object later
 Set objOneAttach = objAttachColl.Item(lIndex)
 If objOneAttach Is Nothing Then
 MsgBox "Error, could not reselect the attachment"
 Else
 MsgBox "Reselected attachment " & lIndex & _
 " using index: " & objOneAttach.Name
 End If
 Exit Function

See Also

Attachments Collection

Item Property (Attachments Collection)

Name Property (Attachment Object)

Returns or sets the display name of the Attachment object as a string. Read-write.

Syntax

objAttachment.Name

Data Type

String

Comments

The Name property corresponds to the MAPI property PR_ATTACH_FILENAME.

Example

See the example for the Attachment Object Index property.

See Also

Attachment Object

Position Property (Attachment Object)

Returns or sets the position of the attachment within the body text of the message. Read-write.

Syntax

objAttachment.Position

Data Type

Long

Comments

The Position property is a long integer describing where the attachment should be placed in the
message body. Applications cannot place two attachments in the same location within a message, and
attachments cannot be placed beyond the end of the message body. If Position is positive, the
attachment replaces the character found at that position in the Text property of the Message object. If
Position is zero, the attachment is added to the message, but is not visible in the message body.
Position cannot be a negative value.

The Position property corresponds to the MAPI property PR_RENDERING_POSITION.

Example

' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at end of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also

Add Method (Attachments Collection)

Text Property (Message Object)

ReadFromFile Method (Attachment Object)

Loads the contents of an attachment from a file.

Syntax

objAttachment.ReadFromFile(fileName)

Parameters

objAttachment
Required. The Attachment object.

fileName
Required. The full path and file name to read. For example, C:\DOCUMENT\BUDGET.XLS.

Comments

The ReadFromFile method replaces the existing contents of the Attachment object, if any.

The ReadFromFile method operates slightly differently, depending on the value of the Attachment
Type property. The following table describes its operation:

Attachme
nt Type
property

ReadFromFile operation

mapiFileDa
ta

Copies the contents of the specified file to the attachment.

mapiFileLi
nk

(Not supported)

mapiOLE The specified file must be a valid OLE docfile, such as a file
previously written by the WriteToFile method with a mapiOLE
type setting.

The term "OLE docfile format" indicates that the file is written by an application such as Microsoft Word
6.0 that writes files using the OLE IStorage and IStream interfaces.

Note that ReadFromFile does not support mapiFileLink attachments.

See Also

Add Method (Attachments Collection)

Type Property (Attachment Object)

WriteToFile Method (Attachment Object)

Source Property (Attachment Object)

For mapiFileLink attachments, returns or sets the full path name of the attachment data file. For
mapiOLE attachments, returns or sets the OLE class name for the attachment. Read-write.

Syntax

objAttachment.Source

Data Type

String

Comments

The value of the Source property depends on the value of the Type property, as described in the table
below:

Type
property

Source property

mapiFileData Not used; contains an empty string.

mapiFileLink Specifies a full path name in a universal naming convention
(UNC) format, such as \
\SALES\INFO\PRODUCTS\NEWS.DOC.

mapiOLE Specifies the registered OLE class name of the attachment,
such as "Word.Document" or "PowerPoint.Show."

The UNC format is suitable for sending attachments to recipients who have access to a common file
server.

The Source property corresponds to the MAPI property PR_ATTACH_PATHNAME.

Example

' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at end of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also

Add Method (Attachments Collection)

Type Property (Attachment Object)

Type Property (Attachment Object)

Describes the attachment type. Read-write.

Syntax

objAttachment.Type

Data Type

Long

Comments

Three attachment types are supported:

Type property Value Description

mapiFileData 1 Attachment is the contents of a file. (Default
value.)

mapiFileLink 2 Attachment is a link to a file.

mapiOLE 3 Attachment is an OLE object.

The value of the Type property determines the valid values for the Source property.

The Attachment object Type property corresponds to the MAPI property PR_ATTACH_METHOD.

Example

' from the function Attachments_Add()
 Set objAttach = objAttachColl.Add ' add an attachment
 With objAttach
 .Type = mapiFileLink
 .Position = 0 ' place at end of message
 .Source = "\\server\bitmaps\honey.bmp" ' UNC name
 End With
 ' must update the message to save the new info
 objOneMsg.Update ' update the message
 MsgBox "Added an attachment of type mapiFileLink"

See Also

Add Method (Attachments Collection)

ReadFromFile Method (Attachment Object)

Source Property (Attachment Object)

WriteToFile Method (Attachment Object)

WriteToFile Method (Attachment Object)

Saves the attachment to a file in the file system.

Syntax

objAttachment.WriteToFile(fileName)

Parameters

objAttachment
Required. The Attachment object.

fileName
Required. String. The full path and file name for the saved attachment. For example, "C:
\DOCUMENT\BUDGET.XLS."

Comments

The WriteToFile method operates slightly differently, depending on the value of the Attachment Type
property. The following table describes its operation:

Attachme
nt Type
property

WriteToFile operation

mapiFileDa
ta

Copies the contents of the specified file to the attachment.

mapiFileLi
nk

(Not supported)

mapiOLE Writes the file as an OLE docfile format.

Note that WriteToFile does not support mapiFileLink attachments.

See Also

ReadFromFile Method (Attachment Object)

Attachments Collection Object

The Attachments collection contains one or more Attachment objects.

The Attachments collection is considered a small collection, which means that it supports count and
index values that let you access individual attachment objects through the Item property.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Count Long Read-only

Item Object Read-only

Parent Object Read-only

Session Session object Read-only

Methods

Method name Parameters

Add (optional) name as String, (optional) position as Long,

(optional) type as Long, (optional) source as String

Delete (none)

See Also

Attachment Object

OLE Messaging Object Collections

Add Method (Attachments Collection)

Creates a new Attachment object in the Attachments collection.

Syntax

Set objAttachment = objAttachColl.Add([name, position, type, source])

Parameters

objAttachment
On successful return, contains the new Attachment object.

objAttachColl
Required. The Attachments collection object.

name
Optional. String. The display name of the attachment.

position
Optional. Long. The position of the attachment within the body text of the message.

type
Optional. Long. The type of attachment; either mapiFileData, mapiFileLink, or mapiOLE.

source
Optional. String. The filename that contains the data for the attachment. The specified filename must
be in the appropriate format for the attachment type, specified by the type parameter. See the
comments below for a complete description.

Comments

The Add method parameters correspond to the Name, Position, Type, and Source properties of the
Attachment object. The source parameter is also closely related to the ReadFromFile method's
filename parameter.

You can supply the data for the attachment at the same time that you add the attachment to the
collection. The Add method operates differently, depending on the value of the type parameter. The
following table describes its operation:

Value of
type
parameter

Value of source parameter

mapiFileD
ata

Specifies a full path and file name that contains the data for the
attachment. For example, C:\DOCUMENT\BUDGET.XLS.

mapiFileLi
nk

Specifies a full path name in a universal naming convention
(UNC) format, such as \
\SALES\INFO\PRODUCTS\NEWS.DOC.

mapiOLE Specifies a full path and file name to a valid OLE docfile. For
example, C:\DOCUMENT\BUDGET2.XLS.

When the type parameter has the value mapiFileLink, the source parameter is a full path name in a
universal naming convention (UNC) format. This is suitable for sending attachments to recipients who
have access to a common file server.

If you do not specify the type and source parameters when you call the Add method, you must later
call the ReadFromFile method on the new Attachment object to load the attachment's content.

The Index of the new Attachment object equals the new Count of the Attachments collection. The
attachment is saved in the MAPI system when you Update or Send the parent Message object.

See Also

Count Property (Attachments Collection)

ReadFromFile Method (Attachment Object)

Type Property (Attachment Object)

Count Property (Attachments Collection)

Returns the number of Attachment objects in the collection. Read-only.

Syntax

objAttachColl.Count

Data Type

Long

Example

This example stores in an array the names of all Attachment objects in the collection:

' from the sample function, TstDrv_Util_SmallCollectionCount
' objAttachColl is an Attachments collection
x = Util_SmallCollectionCount(objAttachColl)

Function Util_SmallCollectionCount(objColl As Object)
Dim strItemName(100) As String ' Names of objects in collection
Dim i As Integer ' loop counter
 On Error GoTo error_olemsg
 If objColl Is Nothing Then
 MsgBox "Must supply a valid collection object as a parameter"
 Exit Function
 End If
 If 0 = objColl.Count Then
 MsgBox "No items in the collection"
 Exit Function
 End If
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i
 ' error handling here...
End Function

See Also

Item Property (Attachments Collection)

Delete Method (Attachments Collection)

Deletes the entire Attachments collection.

Syntax

object.Delete()

Parameters

object
Required. The Attachments collection object.

Comments

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent Message object that
contained the deleted Attachments collection.

Be cautious using Delete with collections, since the method deletes all member objects within a
collection.

See Also

Delete Method (Attachment Object)

Message Object

Item Property (Attachments Collection)

Works like the accessor property to return a single item from a collection. Read-only.

Syntax

objAttachColl.Item(index)

index
An integer that ranges from 1 to object.Count, or a string that specifies the name of the object.

Data Type

Object

Comments

The Item property works like the accessor property for a collection. For example, the following two
lines of code are equivalent:

objOneMsg.Attachments.Item(1)
' shorter form:
objOneMsg.Attachments(1)

You can usually use the shorter form shown above. However, you must explicitly use the Item property
when you obtain the collection object from a parameter to a function or subprocedure, as in the
following example.

Sub UseObject(objAttachColl As Object)
 objAttachColl.Item(1).Name = "Budget.XLS"
End Sub

Example

' from Util_SmallCollectionCount(objColl As Object)
' This sample obtains the collection as a variable
' so it *must* use the Item property
Dim strItemName(100) as String
 ' error handling omitted from this fragment...
 For i = 1 To objColl.Count Step 1
 strItemName(i) = objColl.Item(i).Name
 If 100 = i Then ' max size of string array
 Exit Function
 End If
 Next i

See Also

Count Property (Attachments Collection)

Field Object

A Field represents a custom attribute of a Message object. In effect, the Field object gives you the
ability to add properties to a Message.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

ID Long Read-only

Index Long Read-only

Name String Read-only

Parent Object Read-only

Session Session object Read-only

Type Integer Read-write

Value Variant Read-write

Methods

Method name Parameters

Delete (none)

ReadFromFile filename as String

WriteToFile filename as String

Comments

You can add additional properties tailored for your specific application with the Field object and the
Fields collection object. Before adding a field for a message or folder, review the properties that are
already provided by the OLE Messaging Library. Many of the common attributes are already offered.
For example, Subject and Priority are already defined as Message object properties.

Note that MAPI properties are unnamed when they are accessed in Field objects. For these MAPI
properties, the Name property is an empty string.

See Also

Fields Collection

Delete Method (Field Object)

Deletes the Field object.

Syntax

object.Delete()

Parameters

object
Required. The Field object.

Comments

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent object (either the parent
Folder or Message object) that contained the deleted Field object.

See Also

Add Method (Fields Collection)

ID Property (Field Object)

Returns the unique ID of the object as a long integer. Read-only.

Syntax

object.ID

Data Type

Long

Comments

The Field object ID property is unique among ID properties supported in the OLE Messaging Library.
The Field object ID is a long integer that corresponds to a MAPI property tag value. All other ID
properties are strings.

Example

' The ID property is a long value, not a string
' fragment from the function Field_ID()
' verify that objOneField is valid, then access
 MsgBox "ID is high-order word: 0x" & Hex(objOneField.Id)

See Also

Type Property (Field Object)

Value Property (Field Object)

Index Property (Field Object)

Returns the index number of this Field object within the Fields collection. Read-only.

Syntax

object.Index

Data Type

Long

Example

' set up a variable as an index to access a small collection
' fragment from the functions Fields_FirstItem, Fields_NextItem
 If objFieldsColl Is Nothing Then
 MsgBox "must first select a Fields collection"
 Exit Function
 End If
 If 0 = objFieldsColl.Count Then
 MsgBox "No fields in the collection"
 Exit Function
 End If
' Fragment from Fields_FirstItem
 iFieldsCollIndex = 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid...
' Fragment from Fields_NextItem
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 ' verify that the Field object is valid...

See Also

Count Property (Fields Collection)

Fields Collection

Name Property (Field Object)

Returns the name of the field as a string. Read-only.

Syntax

object.Name

Data Type

String

Comments

The Name property is read-only. You set the name of the Field object at the time you create it, when
you call the Fields collection Add method.

Note that Field objects used to access MAPI properties do not have names. Names can appear only on
the custom properties that you create. For more information, see the Item property documentation for
the Fields collection.

Example

' fragment from Fields_Add
Dim objNewField As Object ' new Field object
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
 If objNewField Is Nothing Then
 MsgBox "could not create new Field object"
 Exit Function
 End If
 cFields = objFieldsColl.Count
 MsgBox "new Fields collection count = " & cFields
' fragment from Field_Name; modified to use objNewField for active Field
 If "" = objNewField.Name Then
 MsgBox "Field has no name; ID = " & objNewField.Id
 Else
 MsgBox "Field name = " & objNewField.Name
 End If

See Also

Add Method (Fields Collection)

ReadFromFile Method (Field Object)

Loads the value of a string or binary field from the specified file.

Syntax

object.ReadFromFile(fileName)

Parameters

object
Required. The Field object.

fileName
Required. The full path and file name to read. For example, C:\DOCUMENT\BUDGET.XLS.

Comments

The ReadFromFile method reads the string or binary value from the specified filename and stores it as
the value of the Field object. It replaces any previously existing value for the field.

Note that ReadFromFile is not supported for simple types, such as Integer, Long, and Boolean. Visual
Basic provides common functions to read and write these base types to and from files. The
ReadFromFile method fails if the Type property of the Field is not a string or binary type.

Note that some binary types are converted to a hex string format when they are stored as Field values.
Comparison operations on the Value property and the actual contents of the file can return "not equal",
even though the values are equivalent.

See Also

WriteToFile Method (Field Object)

Type Property (Field Object)

Returns the data type of the Field object. Read-only.

Syntax

object.Type

Data Type

Integer

Comments

The Type property specifies the data type of the Field object and determines the range of valid values
that may be supplied for the Value property. You can set the value of the Type property by calling the
Fields collection Add method.

Valid data types are described in the following table:

Type Descriptio
n

Numeri
c value

OLE variant
type

MAPI Property
type

vbNull Null 1 VT_NULL PT_NULL

vbInteger Integer 2 VT_I2 PT_I2

vbLong Long
integer

3 VT_I4 PT_LONG

vbSingle 4-byte real
(floating
point)

4 VT_R4 PT_R4

vbDouble Double (8-
byte real)

5 VT_R8 PT_DOUBLE

vbCurren
cy

Currency 6 VT_CY PT_CURRENC
Y PT_I8

vbDate Date 7 VT_DATE PT_APPTIME,
PT_SYSTIME

vbString String 8 VT_BSTR PT_STRING8,
PT_UNICODE,
PT_CLSID,
PT_BINARY

vbBoolea
n

Boolean 11 VT_BOOL PT_BOOLEAN

vbDataO
bject

Data object 13 VT_UNKNOW
N

PT_OBJECT

vbBlob Blob 65 VT_BLOB PT_BLOB

Example

' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object
' Fragment from Field_Type; display the integer type value

 MsgBox "Field type = " & objOneField.Type

See Also

Value Property (Field Object)

Value Property (Field Object)

Returns or sets the value of the Field object. Read-write.

Syntax

objField.Value

Data Type

Variant

Comments

The value of the Field object represents a value of the type specified by the Type property. For
example, when the Field object has the Type property vbBoolean, the Value property can take the
value True or False. When the Field object has the Type property vbInteger, the Value property can
contain a short integer.

Example

' fragment from function Field_Type()
' after validating the Field object objOneField
 MsgBox "Field type = " & objOneField.Type
' fragment from function Field_Value()...
 MsgBox "Field value = " & objOneField.Value

See Also

ID Property (Field Object)

Type Property (Field Object)

WriteToFile Method (Field Object)

Saves the field value to a file in the file system.

Syntax

objField.WriteToFile(fileName)

Parameters

objField
Required. The Field object.

fileName
Required. The full path and file name for the saved field; for example, "C:
\DOCUMENT\BUDGET.XLS."

Comments

The WriteToFile method writes the string or binary value of the Field object to the specified filename. It
overwrites any existing information in that file.

Note that WriteToFile is not supported for simple types, such as Integer, Long, and Boolean. Visual
Basic provides common functions to read and write these base types to and from files. The
WriteToFile method fails if the Type property of the Field is not a string or binary type.

Note that some binary types are represented in hex string format by the OLE Messaging Library and
written in binary format. Comparison operations on the Value property and the actual contents of the
file can return "not equal," even though the values are equivalent.

See Also

ReadFromFile Method (Field Object)

Fields Collection Object

The Fields collection represents one or more Field objects. Field objects give you the ability to add
custom fields to a message or folder.

The Fields collection is considered a small collection, which means that it supports count and index
values that let you access individual Field objects through the Item property.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Count Long Read-only

Item Object Read-only

Parent Object Read-only

Session Session object Read-only

Methods

Method name Parameters

Add name as String, Class as Long,
value as Variant

Delete (none)

Example

To uniquely identify Field objects in the Fields collection, use the Field object's Name property or an
index:

Set objOneField = objFolder.Fields.Item("BalanceDue")
Set objAnotherField = objMessage.Fields.Item("Keyword")
Set objThirdField = objMessage.Fields.Item(3)

See Also

OLE Messaging Object Collections

Add Method (Fields Collection)

Creates a new Field object in the Fields collection.

Syntax

Set objField = objFieldsColl.Add (name, Class, value)

Note    The Class parameter may be renamed type in future versions of the OLE Messaging library to
avoid confusion with the Class property.

Parameters

objField
On successful return, contains the new Field object.

objFieldsColl
Required. The Fields collection object.

name
Required. A string that represents the display name of the field.

Class
Required. A constant long integer that represents the data type for the field, such as string or integer.
The Class parameter represents the same values as the Field object Type property. The following
types are allowed:

Type
property

Description Numeric
value

OLE variant type

vbNull Null 1 VT_NULL

vbInteger Integer 2 VT_I2

vbLong Long integer 3 VT_I4

vbSingle 4-byte real
(floating point)

4 VT_R4

vbDouble Double (8-byte
real)

5 VT_R8

vbCurrency Currency 6 VT_CY

vbDate Date 7 VT_DATE

vbString String 8 VT_BSTR

vbBoolean Boolean 11 VT_BOOL

vbDataObject Data object 13 VT_UNKNOWN

vbBlob Blob 65 VT_BLOB

value
Required. Variant. The value of the field, of the data type specified in the type parameter.

Comments

The method parameters correspond to the Name, Type, and Value properties of the Field object.

The Index of the new Field object equals the new Count of the Fields collection. The field is saved in
the MAPI system when you Update or Send the parent object.

Note that when you use the type VbString to represent a PT_BINARY type, you actually supply the
value in the form of a string that contains the hex representation of the bytes in the binary object (such
as a hex dump of the object).

Example

' Fragment from Fields_Add; uses the type "vbString"
 Set objNewField = objFieldsColl.Add(_
 Name:="Keyword", _
 Class:=vbString, _
 Value:="Peru")
' verify that objNewField is a valid Field object
' Fragment from Field_Type; display the integer type value
 MsgBox "Field type = " & objOneField.Type

See Also

Count Property (Fields Collection)

Field Object

Count Property (Fields Collection)

Returns the number of Field objects in the collection. Read-only.

Syntax

objFieldsColl.Count

Data Type

Long

Example

This example maintains a global variable as an index into the small collection, and uses the Count
property to check its validity.

' from Fields_NextItem
' iFieldsCollIndex is an integer used as an index
' check for empty collection...
' check index upper bound
 If iFieldsCollIndex >= objFieldsColl.Count Then
 iFieldsCollIndex = objFieldsColl.Count
 MsgBox "Already at end of Fields collection"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iFieldsCollIndex = iFieldsCollIndex + 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 If objOneField Is Nothing Then
 MsgBox "Error, cannot get this Field object"
 Exit Function
 Else
 MsgBox "Selected field " & iFieldsCollIndex
 End If

See Also

Field Object

Delete Method (Fields Collection)

Deletes the Fields collection object.

Syntax

objFieldsColl.Delete

Parameters

objFieldsColl
Required. The Fields collection object.

Comments

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent Message object that
contained the deleted Fields collection.

Be cautious using Delete with collections, since the method deletes all member objects within a
collection.

See Also

Field Object

Item Property (Fields Collection)

Works like the accessor property to return a single item from a collection. Read-only.

Syntax

objFieldsColl.Item(index)

objFieldsColl
Required. Specifies the Fields collection object.

index
Either a long integer or a string. Long integer values less than or equal to 65,535 (&Hffff) are
interpreted as indexes into the Fields collection. Long integer values greater than 65,535 are
interpreted as MAPI property tag values. The string index is interpreted as the name of the property.

Data Type

Object

Comments

The Item property in the Fields collection object allows access to the underlying MAPI properties.

The long value greater than 65,535 represents a property tag. A property tag is a 32-bit unsigned
integer that contains the property identifier in its high-order 16 bits and the property type (its underlying
data type) in the low-order 16 bits. Several macros for C/C++ programmers are available in the MAPI
1.0 SDK to help manipulate the property tag data structure. The macros PROP_TYPE and PROP_ID
extract the property type and property identifer from the property tag. The macro PROP_TAG builds the
property tag from the provided type and identifier components.

For example, you can use the following function to access the Field object by name.

' from the function Fields_ItemByName()
 ' error handling here...
 If objFieldsColl Is Nothing Then
 MsgBox "must first select Fields collection"
 Exit Function
 End If
 Set objOneField = objFieldsColl.Item("Keyword")
 If objOneField Is Nothing Then
 MsgBox "could not select Field object"
 Exit Function
 End If
 If "" = objOneField.Name Then
 MsgBox "Field has no name; ID = " & objOneField.Id
 Else
 MsgBox "Field name = " & objOneField.Name
 End If

You can also use the Item property to access MAPI properties. Note that all MAPI properties appear to
have no name. For example, you can use the following code to obtain the MAPI property
PR_MESSAGE_CLASS:

' from the function Fields_Selector()
 ' ... error handling here
 ' you can provide a dialog to allow entry for MAPI proptags
 ' or select property names from a list; for now, hard-coded

 lValue = &h1a001e ' &H1a = PR_MESSAGE_CLASS;
 ' &H001e = 30 = PT_STRING8
 ' high-order 16 bits is property id; low-order is property type
 Set objOneField = objFieldsColl.Item(lValue)
 If objOneField Is Nothing Then
 MsgBox "Could not get the Field using the value " & lValue
 Exit Function
 Else
 strMsg = "Used " & lValue & " to access the MAPI property "
 strMsg = strMsg & "PR_MESSAGE_CLASS: type = " & objOneField.Type
 strMsg = strMsg & "; value = " & objOneField.Value
 MsgBox strMsg
 End If

The built-in MAPI properties are not named properties, so they can only be accessed using the
numeric value. They can not be accessed using a string that represents the name. For a complete
discussion of MAPI properties and list of MAPI property tag values, see the Microsoft MAPI
Programmer's Reference.

OLE Messaging version 1.0 does not support multi-valued MAPI properties.

See Also

Customizing A Folder Or Message

Viewing MAPI Properties

Field Object

Folder Object

The Folder object represents a folder or container within the MAPI system. Folders can contain
subfolders and messages.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Fields Fields collection object Read-only

FolderID String Read-only

Folders Folders collection
object

Read-only

ID String Read-only

MAPIOBJECT Object Read-write (Note: Not
available to Visual
Basic applications)

Messages Messages collection
object

Read-only

Name String Read-write

Parent Object Read-only

Session Session object Read-only

StoreID String Read-only

Methods

(None.)

Comments

Changes to the folder are immediately saved to the MAPI system. The Folder object does not have an
Update method.

The ID property is unique and read-only. MAPI assigns a unique ID when the Folder object is created.
Its value does not change.

Note that the OLE Messaging Library version 1.0 does not support methods to allow you to create new
folders. You can access existing folders created by other applications, such as Microsoft Exchange.

See Also

Folders Collection

Fields Property (Folder Object)

Returns a single field (a Field object) or a collection of fields (a Fields collection object) of the Folder
object. Read-only.

Syntax

objFolder.Fields

objFolder.Fields(index)

index
Specifies the name of the field or the number of the field.

Data Type

Object

Comments

Fields provide a generic access mechanism that allows Visual Basic programmers to retrieve the value
of any property associated with the Folder object using either a name or a property tag. To access
using the property tag, use Folder.Fields.Item(proptag), where proptag is the 32-bit MAPI property tag
associated with the property in question, such as PR_MESSAGE_CLASS. To access a Field object
using a name, use Folder.Fields.Item(name), where name is a string that represents the custom
property name.

Example

This example stores in an array the names of all fields of a folder:

' many properties are MAPI properties and have no names
' for those properties, display the ID
' fragment from Field_Name
' assume objOneField is a valid Field object
 If "" = objOneField.Name Then
 MsgBox "Field has no name; ID = " & objOneField.Id
 Else
 MsgBox "Field name = " & objOneField.Name
 End If

See Also

Field Object

FolderID Property (Folder Object)

Returns the unique ID of this subfolder's parent folder as a string. Read-only.

Syntax

objFolder.FolderID

Data Type

String

Comments

MAPI systems assign a permanent, unique ID string when an object is created. These IDs do not
change from one MAPI session to another.

With OLE Messaging Library version 1.0, when you follow the parent FolderID properties upward, you
eventually encounter a folder with its Name property set to "Top of Information Store." This represents
the top of the tree for the message class, "IPM.Note".

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID.

Example

' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
 strFolderID = objFolder.FolderID
 MsgBox "Parent Folder ID = " & strFolderID
' can later restore using objSession.GetFolder(strFolderID)
' fragment from Session_GetFolder
 If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' error checking here...

See Also

ID Property (Folder Object)

Folders Property (Folder Object)

Specifies a collection of subfolders within the parent folder. Returns a single folder (a Folder object) or
a collection of subfolders (a Folders collection). Read-only.

Syntax

objFolder.Folders

objFolder.Folders(index)

index
Specifies the FolderID or number of the folder.

Data Type

Object

Example

This example lists all the names of all subfolders of the specified folder:

' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' from TstDrv_Util_ListFolders
 If 2 = objFolder.Class Then ' verify Folder object
 x = Util_ListFolders(objFolder) ' use current global folder
 End If

' complete function for Util_ListFolders
Function Util_ListFolders(objParentFolder As Object)
Dim objFoldersColl As Object ' the child Folders collection
Dim objOneSubfolder As Object 'a single Folder object
 ' set up error handler here
 If Not objParentFolder Is Nothing Then
 MsgBox ("Folder name = " & objParentFolder.Name)
 Set objFoldersColl = objParentFolder.Folders
 If Not objFoldersColl Is Nothing Then ' loop through all
 Set objOneSubfolder = objFoldersColl.GetFirst
 While Not objOneSubfolder Is Nothing
 x = Util_ListFolders(objOneSubfolder)
 Set objOneSubfolder = objFoldersColl.GetNext
 Wend
 End If
 End If
 Exit Function
 ' error handler here
End Function

See Also

Folders Collection

ID Property (Folder Object)

Returns the unique ID of this Folder object as a string. Read-only.

Syntax

objFolder.ID

Data Type

String

Comments

MAPI systems assign a permanent, unique ID string when an object is created. These IDs do not
change from one MAPI session to another.

The ID property corresponds to the MAPI property PR_ENTRYID.

Example

' similar example to FolderID;
' save the current ID and restore using Session.GetFolder
' fragment from Session_Inbox
 Set objFolder = objSession.Inbox
' fragment from Folder_FolderID
 strFolderID = objFolder.ID
 MsgBox "Parent Folder ID = " & strFolderID
' can later restore using objSession.GetFolder(strFolderID)
' fragment from Session_GetFolder
 If "" = strFolderID Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 Set objFolder = objSession.GetFolder(strFolderID)
 ' error checking here...

See Also

Folders Property (Folder Object)

GetFolder Method (Session Object)

MAPIOBJECT Property (Folder Object)

Returns an IUnknown pointer to this Folder object. Not available to Visual Basic applications.

Syntax

objFolder.MAPIOBJECT

Data Type

Variant (VT_UNKNOWN)

Comments

The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see the Microsoft OLE 2 Programmer's Reference.

See Also

A ShortTour of OLE Automation

How Programmable Objects Work

Messages Property (Folder Object)

Returns a single Message object or a Messages collection object within the folder. Read-only.

Syntax

objFolder.Messages

objFolder.Messages(ID)

ID
Specifies the ID of the message.

Data Type

Object

Example

' from the QuickStart sample
' use the Messages property of the Outbox folder
 Set objSession = CreateObject("MAPI.Session")
 objSession.Logon
 Set objMessage = objSession.Outbox.Messages.Add

See Also

ID Property (Message Object)

Message Object

Messages Collection

Name Property (Folder Object)

Returns or sets the name of the Folder object as a string. Read-write.

Syntax

objFolder.Name

Data Type

String

Comments

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example

Dim objFolder As Object ' assume valid folder
MsgBox "Folder name = " & objFolder.Name

See Also

GetFolder Method (Session Object)

StoreID Property (Folder Object)

Returns the name of the Store object as a string. Read-only.

Syntax

objFolder.StoreID

Data Type

String

Comments

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID.

Example

' from the sample function Folder_ID
 strFolderID = objFolder.ID
' from the sample function Folder_StoreID
 strFolderStoreID = objFolder.storeID
' can use these IDs with Session.GetFolder()
' from the sample function Session_GetFolder
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)

See Also

GetFolder Method (Session Object)

Folders Collection Object

The Folders collection contains one or more Folder objects.

The Folders collection is considered a large collection, which means that you must use a Folder ID
value or the Get* methods to access individual Folder objects within the collection.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Parent Object Read-only

Session Session object Read-only

Methods

Method name Parameters

GetFirst (none)

GetLast (none)

GetNext (none)

GetPrevious (none)

Comments

Large collections, such as the Folders collection, do not maintain a count of the number of objects in
the collection. Instead you must use the GetFirst, GetNext, GetLast, and GetPrevious methods to
access individual items in the collection. You can also access a specific folder by using the Session
object's GetFolder method.

Example

To refer to a unique Folder object within the Folders collection, use the collection's Get* methods or
use the FolderID value as the index:

' assume objSession valid, user logged on
' fragment from the function Session_GetFolder
 Set objFolderColl = objSession.GetFolder(strFolderID)
' fragment from Folders_Class
 MsgBox "Folders class =" & objFolderColl.Class
' Get a specific folder using an ID
 Set objOneFolder = objFolderColl(strFolderID)
' fragment from Folders_GetFirst
 Set objOneFolder = objFolderColl.GetFirst
' fragment form Folders_GetNext
 Set objOneFolder = objFolderColl.GetNext

The following code sample demonstrates the Get* methods. The sample assumes that you have three
subfolders within your Inbox and three subfolders within your Outbox. After this code runs, the three
folders in the Inbox are named Blue, Red, and Orange (in that order), and the three folders in the
Outbox are named Gold, Purple, and Yellow (in that order).

Dim objSession As Object
Dim objMessage As Object
Dim objFolder As Object

Set objSession = CreateObject("MAPI.Session")
objSession.Logon "User", "", True
With objSession.Inbox.Folders
 Set objFolder = .GetFirst
 objFolder.Name = "Blue"
 Set objFolder = .GetNext
 objFolder.Name = "Red"
 Set objFolder = .GetLast
 objFolder.Name = "Orange"
End With
With objSession.Outbox.Folders
 Set objFolder = .GetFirst
 objFolder.Name = "Gold"
 Set objFolder = .GetNext
 objFolder.Name = "Purple"
 Set objFolder = .GetLast
 objFolder.Name = "Yellow"
End With
objSession.Logoff

See Also

OLE Messaging Object Collections

GetFirst Method (Folders Collection)

Returns the first object in the Folders collection. Returns Nothing if no first object exists.

Syntax

Set objFolder = objFoldersColl.GetFirst()

Parameters

objFolder
On successful return, represents the first folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Type property (Message object)

Folder Object

GetLast Method (Folders Collection)

Returns the last folder object in the Folders collection. Returns Nothing if no last object exists.

Syntax

Set objFolder = objFoldersColl.GetLast()

Parameters

objFolder
On successful return, represents the last folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Folder Object

GetNext Method (Folders Collection)

Returns the next object in the Folders collection. Returns Nothing if no next object exists, or when
already positioned at the end of the folders collection.

Syntax

Set objFolder = objFoldersColl.GetNext()

Parameters

objFolder
On successful return, represents the next folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Folder Object

GetPrevious Method (Folders Collection)

Returns the previous object in the Folders collection. Returns Nothing if no previous object exists, or
when already positioned at the first folder in the collection.

Syntax

Set objFolder = objFoldersColl.GetPrevious()

Parameters

objFolder
On successful return, represents the previous folder object in the collection.

objFoldersColl
Required. The Folders collection object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Folder Object

Message Object

The Message object represents a single message, item, document, or form in a folder.

Properties

Property name Type Access

Application String Read-only

Attachments Attachments collection
object

Read-only

Class Long Read-only

ConversationIndex String Read-write

ConversationTopic String Read-write

DeliveryReceipt Boolean Read-write

Encrypted Boolean Read-write

Fields Fields collection object Read-only

FolderID String Read-only

ID String Read-only

Importance Integer Read-write

MAPIOBJECT (Not for use with VB) Read-write (Note: Not
available to Visual
Basic applications)

Parent Object Read-only

ReadReceipt Boolean Read-write

Recipients Recipients object Read-only

Sender AddressEntry object Read-only

Sent Boolean Read-write

Session Session object Read-only

Signed Boolean Read-write

Size Long Read-only

StoreID String Read-only

Subject String Read-write

Submitted Boolean Read-write

Text String Read-write

TimeReceived Variant (Date/Time) Read-write

TimeSent Variant (Date/Time) Read-write

Type Integer Read-write

Unread Boolean Read-write

Methods

Method name Parameters

Delete (none)

Options (optional) parentWindow as Long

Send (optional) saveCopy as Boolean, (optional)
showDialog as Boolean, (optional) parentWindow

as Long

Update (none)

Comments

The ID property is unique and read-only. MAPI assigns a unique ID to each Message object and its
value does not change.

You can save the ID property and use it to retrieve the message later using the Session object's
GetMessage method.

Example

' save the message ID, use it to later restore the message
' from the sample function Message_ID
 strMessageID = objMessage.ID
' from the sample function Session_GetMessage
 Set objMessage = objSession.GetMessage(strMessageID)

See Also

GetMessage Method (Session Object)

Messages Collection

Messages Property (Folder Object)

Attachments Property (Message Object)

Returns a single Attachment object or an Attachments collection. Read-only.

Syntax

object.Attachments

object.Attachments(index)

index
Specifies the number of the attachment within the Attachments collection.

Example

This example stores in an array the names of all attachments of a message:

' from the sample function Message_Attachments
 Set objAttachColl = objOneMsg.Attachments
 If objAttachColl Is Nothing Then
 MsgBox "unable to set Attachments collection"
 Exit Function
 Else
 MsgBox "Attachments count for this msg: " & objAttachColl.Count
 iAttachCollIndex = 0 ' reset global index variable
 End If
' from the sample function Attachments_FirstItem
 iAttachCollIndex = 1
 Set objAttach = objAttachColl.Item(iAttachCollIndex)

See Also

Attachment Object

Attachments Collection

ConversationIndex Property (Message Object)

Specifies the index to the conversation thread of the message. Read-write.

Syntax

object.ConversationIndex

Data Type

String

Comments

The ConversationIndex property is a string that represents a hexadecimal number. Valid characters
within the string include the numbers 0 through 9 and the letters A through F (uppercase or lowercase).

A conversation is a group of related messages that have the same ConversationTopic property value.
In a discussion application, for example, users can save original messages and response messages.
Messages can be tagged with the ConversationIndex property so that users can group messages by
conversation.

You can use your own convention to decide how this index should be used. However, it is
recommended that you adopt the same convention that is used by the Microsoft Exchange message
viewer, so that you can use that viewer's user interface to show the relationships between messages in
a conversation.

By convention, Microsoft Exchange uses ConversationIndex values that represent concatenated time
stamp values. The first time stamp in the string represents the original message. When a new message
represents a reply to a conversation message, it copies the ConversationIndex string of the message
it is replying to, and then appends a time stamp value to the end of the string. The new string value is
used as the ConversationIndex value of the new message.

When you use this convention, you can see relationships among messages when you sort the
messages by ConversationIndex values.

The ConversationIndex property corresponds to the MAPI property PR_CONVERSATION_INDEX.

Example

The following example takes advantage of an OLE API function that is available on computers that run
the OLE Messaging Library. The CoCreateGUID function returns a value that consists of a time stamp
and a machine identifier; this sample code saves the part that contains the time stamp.

' declarations section
Type GUID ' global unique identifier; contains a time stamp
 Guid1 As Long
 Guid2 As Long
 Guid3 As Long
 Guid4 As Long
End Type
' function appears in OLE32.DLL on Windows/NT and Windows 95
Declare Function CoCreateGuid Lib "COMPOBJ.DLL" (pGuid As GUID) As Long
Global Const S_OK = 0 ' return value from CoCreateGuid

Function Util_GetEightByteTimeStamp() As String
Dim lResult As Long
Dim lGuid As GUID

 ' Exchange conversation is a unique 8-byte value
 ' Exchange client viewer sorts by concatenated properties
 On Error GoTo error_olemsg

 lResult = CoCreateGuid(lGuid)
 If lResult = S_OK Then
 Util_GetEightByteTimeStamp = _
 Hex$(lGuid.Guid1) & Hex$(lGuid.Guid2)
 Else
 Util_GetEightByteTimeStamp = "00000000" ' zeroes
 End If
 Exit Function

error_olemsg:
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Util_GetEightByteTimeStamp = "00000000"
 Exit Function
End Function

Function Util_NewConversation()
Dim i As Integer
Dim objNewMsg As Object ' new message object
Dim strNewIndex As String ' value for ConversationIndex
' ... error handling...
 Set objNewMsg = objSession.Outbox.Messages.Add
' ... error handling...
 With objNewMsg
 .Subject = "used space vehicle wanted"
 .ConversationTopic = .Subject
 .ConversationIndex = Util_GetEightByteTimeStamp() ' utility
 .Text = "Wanted: Apollo or Mercury spacecraft with low mileage."
 ' or you could pick the public folder from the address book
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve
 .Update
 .Send showDialog:=False
 End With
End Function

A subsequent reply to a message should copy the ConversationTopic property and append its own
time stamp to the original message's time stamp, as shown in the following example:

Function Util_ReplyToConversation()
Dim objPublicFolder As Object
Dim i As Integer
Dim objOriginalMsg As Object ' original message in public folder
Dim objNewMsg As Object ' new message object for reply
Dim strPublicFolderID As String ' ID for public folder

 Set objNewMsg = objSession.Outbox.Messages.Add
' error checking...obtain objOriginalMsg and check that it is valid

 With objNewMsg
 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 .ConversationIndex = objOriginalMsg.ConversationIndex & _
 Util_GetEightByteTimeStamp() ' append new
 ' message was sent to a public folder so can copy recipient
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=mapiTo)
 ' ...more error handling
 .Recipients.Resolve
 .Update
 .Send showDialog:=False
 End With
' ... error handling
End Function

See Also

ConversationTopic Property (Message Object)

Working With Conversations

ConversationTopic Property (Message Object)

Specifies the name of the conversation thread. Read-write.

Syntax

object.ConversationTopic

Data Type

String

Comments

A conversation is a group of related messages. The ConversationTopic property is the string that
describes the overall topic of the conversation. To be defined as messages within the same
conversation, the messages must have the same value in their ConversationTopic property. The
ConversationIndex property represents an index that indicates a sequence of messages within that
conversation.

When you start an initial message, set the ConversationTopic property to an appropriate value that
will apply to all messages within the conversation. For many applications, the message Subject
property is appropriate.

Note that the OLE Messaging Library does not automatically copy the ConversationTopic property to
other messages. When your application manages messages that represent replies to an original
message, you should set the ConversationTopic property to the same value as the original message.

To change the ConversationTopic for all messages in a conversation thread, you must change the
property within each message in that thread.

The ConversationTopic property corresponds to the MAPI property PR_CONVERSATION_TOPIC.

Example

See the example for the ConversationIndex property.

See Also

ConversationIndex Property (Message Object)

Working With Conversations

Delete Method (Message Object)

Deletes the Message object.

Syntax

object.Delete

Parameters

object
Required. The Message object.

Comments

Moves the deleted message to the Deleted Messages folder, if the user has enabled this option. If the
message is deleted from the Deleted Messages folder, the Delete method permanently deletes it from
the system and it cannot be recovered.

See Also

Delete Method (Messages Collection)

DeliveryReceipt Property (Message Object)

True if a delivery-receipt notification message is requested. Read-write.

Syntax

object.DeliveryReceipt

Data Type

Boolean

Comments

Set the DeliveryReceipt property to True to obtain a message when the recipients receive the
message. The default setting for OLE Messaging is False. The DeliveryReceipt property is completely
independent of the settings from Microsoft Exchange.

The DeliveryReceipt property corresponds to the MAPI property
PR_ORIGINATOR_DELIVERY_REPORT_REQUESTED.

See Also

Making Sure The Message Gets There

ReadReceipt Property (Message Object)

Encrypted Property (Message Object)

True if the message has been encrypted. Read-write.

Syntax

object.Encrypted

Data Type

Boolean

Comments

The OLE Messaging Library does not encrypt or digitally sign the message. The Encrypted property is
dependent upon the messaging or information store provider.

The Encrypted property corresponds to the MAPI property PR_SECURITY.

See Also

Securing Messages

Signed Property (Message Object)

Fields Property (Message Object)

Returns a single field (a Field object) or a collection of fields (a Fields collection object) of the Message
object. Read-only.

Syntax

objMessage.Fields

objMessage.Fields(index)

index
Specifies the name of the field or the number of the field.

Data Type

Field object or Fields collection

Example

' from Message_Fields
 Set objFieldsColl = objOneMsg.Fields
' from Fields_FirstItem
 iFieldsCollIndex = 1
 Set objOneField = objFieldsColl.Item(iFieldsCollIndex)
 If objOneField Is Nothing Then
 MsgBox "error, cannot get this Field object"
 Else
 MsgBox "Selected field " & iFieldsCollIndex
 End If

See Also

Fields Collection

FolderID Property (Message Object)

Returns the unique ID of the Folder in which the Message resides. Read-only.

Syntax

objMessage.FolderID

Data Type

String

Comments

Save the folder ID to retrieve the folder at a later time using the Session object's GetFolder method.

MAPI systems assign a permanent, unique ID string when an object is created. These IDs do not
change from one MAPI session to another.

The FolderID property corresponds to the MAPI property PR_PARENT_ENTRYID.

See Also

GetFolder Method (Session Object)

ID Property (Message Object)

Returns the unique ID of the object as a string. Read-only.

Syntax

objMessage.ID

Data Type

String

Comments

MAPI systems assign a permanent, unique ID string when an object is created. These IDs do not
change from one MAPI session to another.

The ID property corresponds to the MAPI property PR_ENTRYID.

Example

' Save id of last message accessed; use at startup
' from the sample function Message_ID
 strMessageID = objOneMsg.Id

' ... on shutdown, save the ID to storage
' ... on startup, get the ID from storage and restore
' from the sample function Session_GetMessage
 Set objOneMsg = objSession.GetMessage(strMessageID)

See Also

GetMessage Method (Session Object)

Importance Property (Message Object)

Returns or sets the importance of the message as one of mapiNormal (the default), mapiLow, or
mapiHigh. Read-write.

Syntax

object.Importance

Data Type

Long (Enumeration)

Comments

The following values are defined:

Constant Value Description

mapiLow 0 Low priority

mapiNormal 1 Normal priority (default)

mapiHigh 2 High priority

The Importance property corresponds to the MAPI property PR_IMPORTANCE.

Example

This example sets the importance of a message as "high:"

' from the sample function QuickStart:
 Set objMessage = objSession.Outbox.Messages.Add
 ' error checking here to verify the message was created...
 objMessage.Subject = "Gift of droids"
 objMessage.Text = "Help us, Obi-wan. You are our only hope."
 objMessage.Importance = mapiHigh
 objMessage.Send

See Also

Send Method (Message Object)

MAPIOBJECT Property (Message Object)

Returns an IUnknown pointer to this Message object. Not available to Visual Basic applications.

Syntax

object.MAPIOBJECT

Data Type

Variant (VT_UNKNOWN)

Comments

The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see the Microsoft OLE 2 Programmer's Reference.

See Also

A Short Tour of OLE Automation

How Programmable Objects Work

Options Method (Message Object)

Displays a message options dialog box where the user can change the submission options for a
message.

Syntax

object.Options([parentWindow])

Parameters

object
Required. The Message object.

parentWindow
Optional. Long. The parent window handle for the options dialog box. A value of 0 (the default)
specifies an application-modal dialog box.

Comments

The options are provider-specific and are registered by the provider. Providers are not required to
register option sheets. When providers do not register options, the Message object Options method
does nothing and appears to succeed (it does not raise an exception).

Per-message options are properties of a message that control its behavior after submission. The per-
message options are part of the message envelope, not its content.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Send method (Message object), Resolve method (Recipient object and Recipients collection),
AddressBook and Logon methods (Session object).

See Also

Send Method (Message Object)

ReadReceipt Property (Message Object)

True if a read-receipt notification message is requested. Read-write.

Syntax

object.ReadReceipt

Data Type

Boolean

Comments

The ReadReceipt property corresponds to the MAPI property PR_READ_RECEIPT_REQUESTED.

See Also

DeliveryReceipt Property (Message Object)

Making Sure The Message Gets There

Recipients Property (Message Object)

Returns a single Recipient object or a Recipients collection object. Read-only.

Syntax

Set objRecipColl = objMessage.Recipients

Set objOneRecip = objMessage.Recipients(index)

objRecipColl
Object. A Recipients collection object.

objMessage
Object. The Message object.

objOneRecip
Object. A single Recipient object.

index
Long. Specifies the number of the recipient within the Recipients collection. Ranges from 1 to the
value specified by the Recipients collection Count property.

Data Type

Object

Example

This example copies each of the recipients from the original message objOneMsg to the copy of the
message, objCopyMsg:

' from the sample function Util_CopyMessage
 For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
 Next i

See Also

Recipient Object

Send Method (Message Object)

Sends the message to the recipients via the MAPI system.

Syntax

object.Send([saveCopy, showDialog, parentWindow])

Parameters

object
Required. The Message object.

saveCopy
Optional. Boolean. If True or omitted, saves a copy of the Message in a user folder, such as the
"Sent Messages" folder.

showDialog
Optional. Boolean. If True, displays a Send Message dialog box where the user can change the
message contents or recipients.

parentWindow
Optional. Long. The parent window handle for the Send Message dialog box. A value of 0 (the
default) specifies that any dialog box displayed is application modal. parentWindow is ignored
unless showDialog is True.

Comments

The Send method is similar to the Update method, except Send ignores the parent folder object of the
message and saves the message in the current user's default Outbox folder. Messaging systems
retrieve messages from the Outbox and transport them to the recipients.

Note that the Send method invalidates the message object. Attempts to access the original message
object result in an error. The original message object does not have to be set to Nothing, but it should
not be used for subsequent operations. Use a new message object to obtain the message from the
Outbox or from the Sent Messages folder.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options method (Message object), Resolve method (Recipient object and Recipients
collection), AddressBook and Logon methods (Session object).

See Also

Creating and Sending a Message

Posting Messages to a Public Folder

Sent Property (Message Object)

Submitted Property (Message Object)

Sender Property (Message Object)

Returns the originator or original author of a message as an AddressEntry object. Read-only.

Syntax

Set objAddrEntry = objMessage.Sender

objAddrEntry
Object. The returned AddressEntry object that represents the message author.

objMessage
Object. The Message object.

Data Type

Object

Comments

The Sender property corresponds to the MAPI property PR_SENDER_ENTRYID.

Example

This example displays the name of the sender of a message:

' from the sample function Message_Sender
 Set objAddrEntry = objOneMsg.Sender
 If objAddrEntry Is Nothing Then
 MsgBox "Could not set the address entry object from the Sender"
 Exit Function
 End If
 MsgBox "Message was sent by " & objAddrEntry.Name

See Also

TimeReceived Property (Message Object)

Sent Property (Message Object)

True if the message has been sent through the MAPI system. Read-write.

Syntax

objMessage.Sent

Data Type

Boolean

Comments

In general, there are three different kinds of messages: messages that get sent, messages that get
posted, and messages that get saved. Messages that get sent are characterized by traditional e-mail
messages sent to a recipient or public folder. Messages that get posted are characterized by
messages created in a public folder. Messages that get saved are characterized by messages that are
created and saved without either sending or posting.

For all three kinds of messages, you use the Submitted, Sent, and Unread properties and the Send
or Update methods.

The following table summarizes the use of the message properties and methods for these three kinds
of messages:

Kind of message Method Submitted
property

Sent property Unread property

Gets sent Send Send method sets
True

Spooler sets True Spooler sets True

Gets posted Update Application sets
False

Application sets
True

Application sets
True

Gets saved Update Application sets
False

Application sets
False

Application sets
True

For messages that get sent, the Sent property can be written up until the time that you call the Send or
Update method. Note that changing the Sent property to True does not cause the message to be sent.
Only the Send method actually causes the message to be transmitted. After you call the Send method,
the messaging system controls the Sent property and changes it to a read-only property.

A common use for writing a value to the Sent property is to set the property to False so that an
electronic mail system can save pending, unsent messages in an Outbox folder, or to save work-in-
progress messages in a Pending folder before committing the messages to a public information store.
Note that you can cause an error if you set the property incorrectly.

The Sent property is changed using the following sequence. When you call the Send method to send a
message to a recipient, the message is moved to the Outbox and the message object's Submitted
property is set to True. When the messaging system spooler actually starts transporting the message,
the Sent property is set to True.

When the message is not sent using the Send method, the MAPI system does not change the Sent
property.    For posted and saved messages that call the Update method, you should set the value of
the Sent property to True just before you post the message.

The Sent property corresponds to the MAPI property PR_MESSAGE_FLAGS and the flag
MSGFLAG_UNSEND. See Also

Creating and Sending a Message

Posting Messages to a Public Folder

Submitted Property (Message Object)

Signed Property (Message Object)

True if the message has been tagged with a digital signature. Read-write.

Syntax

objMessage.Signed

Data Type

Boolean

Comments

The Signed property is dependent upon the messaging or information store provider. OLE Messaging
does not actually encrypt or digitally sign the message.

The Signed property corresponds to the MAPI property PR_SECURITY.

See Also

Encrypted Property (Message Object)

Securing Messages

Size Property (Message Object)

The approximate size in bytes of the message. Read-only.

Syntax

objMessage.Size

Data Type

Long

Comments

The Size property is not valid until after the first Update or Send operation.

The Size property corresponds to the MAPI property PR_MESSAGE_SIZE.

See Also

Attachments Property (Message Object)

Text Property (Message Object)

StoreID Property (Message Object)

Represents the unique identifier for the information store that contains this message. Read-only.

Syntax

objMessage.StoreID

Data Type

String

Comments

The StoreID property corresponds to the MAPI property PR_STORE_ENTRYID.

See Also

GetMessage Method (Session Object)

Sent Property (Message Object)

Subject Property (Message Object)

Returns or sets the subject of the message as a string. Read-write.

Syntax

objMessage.Subject

Data Type

String

Comments

The Subject property corresponds to the MAPI property PR_SUBJECT.

Example

This example sets the subject of a message:

Dim objMessage As Object ' assume valid message
objMessage.Subject = "Microsoft Bob: Check It Out"

See Also

Text Property (Message Object)

Submitted Property (Message Object)

True when the message has been submitted. Read-write.

Syntax

objMessage.Submitted

Data Type

Boolean

Comments

In general, there are three different kinds of messages: messages that get sent, messages that get
posted, and messages that get saved. Messages that get sent are characterized by traditional e-mail
messages sent to a recipient or public folder. Messages that get posted are characterized by
messages created in a public folder. Messages that get saved are characterized by messages that are
created and saved without either sending or posting.

For all three kinds of messages, you use the Submitted, Sent, and Unread properties and the Send
or Update methods.

The following table summarizes the use of the message properties and methods for these three kinds
of messages:

Kind of message Method Submitted
property

Sent property Unread property

Gets sent Send Send method sets
True

Spooler sets True Spooler sets True

Gets posted Update Application sets
False

Application sets
True

Application sets
True

Gets saved Update Application sets
False

Application sets
False

Application sets
True

For messages that get sent, you create the message and then call the Send method. When the Send
method is successful, the Submitted property is set to True. The value does not change after that
point. For messages sent to a public folder, the Send method sets the Submitted property (rather than
the Sent property) to True.

For messages that get posted, you create the message directly within a public folder and call Update.
When you create the message within the public folder, some viewers do not allow the message to
become visible to others until you set the Submitted property to True.

The Submitted property corresponds to the MAPI property PR_MESSAGE_FLAGS.

See Also

Send Method (Message Object)

Sent Property (Message Object)

Text Property (Message Object)

Returns or sets the body text of the message as a string. Read-write.

Syntax

object.Text

Data Type

String

Comments

The maximum size of the body text may be limited by the tool that you use to manipulate string
variables (such as Microsoft Visual Basic).

Note that the Text property is a plain text representation of the message body and does not support
rich text format (RTF).

The Text property corresponds to the MAPI property PR_BODY.

Example

This example sets the body text of a message:

Dim objMessage As Object ' assume valid message
objMessage.Text = "Thank you for buying Microsoft Home(TM) products."

See Also

Subject Property (Message Object)

TimeReceived Property (Message Object)

Sets or returns the date and time the message was received as a vbDate variant data type. Read-
write.

Syntax

object.TimeReceived

Data Type

Variant (vbDate format)

Comments

The TimeReceived and TimeSent properties set and return dates and times as the local time for the
user's system.

When you send messages using the Message object Send method, the MAPI system sets the
TimeReceived and TimeSent properties for you. However, when you post messages in a public folder,
you must first explicitly set these properties. For a message posted to a public folder, set both
properties to the same time value.

Note that the TimeReceived and TimeSent properties represent local time. However, when you
access MAPI time properties through the Fields collection Item property, the time values represent
Greenwich Mean Time (GMT).

The TimeReceived property corresponds to the MAPI Property PR_MESSAGE_DELIVERY_TIME.

Example

This example displays the date and time a message was sent and received:

' from the sample function Message_TimeSentAndReceived
 ' verify that objOneMsg is valid, then...
 With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
 End With

See Also

Item Property (Fields Collection)

TimeSent Property (Message Object)

TimeSent Property (Message Object)

Sets or returns the date and time the message was sent as a vbDate variant data type. Read-write.

Syntax

object.TimeSent

Data Type

Variant (vbDate format)

Comments

The TimeReceived and TimeSent properties return dates and times as the local time for the user's
system.

When you send messages using the Message object Send method, the MAPI system sets the
TimeReceived and TimeSent properties for you. However, when you post messages in a public folder,
you must first explicitly set these properties. For a message posted to a public folder, set both
properties to the same time value.

Note that the TimeReceived and TimeSent properties represent local time. However, when you
access MAPI time properties through the Fields collection Item property, the time values represent
Greenwich Mean Time (GMT).

The TimeSent property corresponds to the MAPI Property PR_CLIENT_SUBMIT_TIME.

Example

This example displays the date a message was sent and received:

' from the sample function Message_TimeSentAndReceived
 ' verify that objOneMsg is valid, then...
 With objOneMsg
 strMsg = "Message sent " & Format(.TimeSent, "Short Date")
 strMsg = strMsg & ", " & Format(.TimeSent, "Long Time")
 strMsg = strMsg & "; received "
 strMsg = strMsg & Format(.TimeReceived, "Short Date") & ", "
 strMsg = strMsg & Format(.TimeReceived, "Long Time")
 MsgBox strMsg
 End With

See Also

Item Property (Fields Collection)

TimeReceived Property (Message Object)

Type Property (Message Object)

Returns or sets the MAPI message class for the message. Read-write.

Syntax

object.Type

Data Type

String

Comments

The Type property returns or sets the MAPI message class for the message. By default, the OLE
Messaging Library sets the Type value of new messages to the MAPI message class "IPM.Note."

The OLE Messaging Library does not impose any restrictions on this value except that it be a valid
string value. You can set the value to any string that is meaningful for your application. MAPI uses
message class strings in the form "IPM.application.subClass" or "IPC.application.subClass".

For more information about MAPI message classes, see the Microsoft MAPI Programmer's Reference.

The Type property corresponds to the MAPI property PR_MESSAGE_CLASS.

See Also

GetFirst Method (Messages Collection)

Unread Property (Message Object)

True if the message has not been read by the current user. Read-write.

Syntax

object.Unread

Data Type

Boolean

Comments

When you post a message to a public folder, you should set the Unread, Submitted, and Sent
properties to True before calling the Send or Update method.

The Unread property corresponds to the MAPI property PR_MESSAGE_FLAGS.See Also

Posting a Message to a Public Folder

Sent Property (Message Object)

Update Method (Message Object)

Saves the message in the MAPI system.

Syntax

objMessage.Update()

Parameters

objMessage
Required. The Message object.

Comments

Changes to Message objects are not permanently saved in the MAPI system until you use the Update
method. This example changes the subject of the first message in a folder:

Set objMessage = objSession.Inbox.GetFirst
' ... verify message
objMessage.Subject = "This is the new subject"
objMessage.Update

To add a new Message object, use the Add method followed by the Update method. Both of these
examples save a new message:

Dim objMessage As Object ' message object
' ...
Set objMessage = objSession.Outbox.Messages.Add
objMessage.Subject = "Microsoft Bob(TM)"
objMessage.Text = "This is incredible, you've got to see it!"
objMessage.Update

See Also

Send Method (Message Object)

Messages Collection Object

The Messages collection object contains one or more Message objects.

The Messages collection is considered a large collection, which means that you must use a Message
ID value or the Get* methods to access individual Message objects within the collection.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Parent Object Read-only

Session Session object Read-only

Methods

Method name Parameters

Add (optional) subject as String, (optional) text as String,
(optional) type as String, (optional) importance as
Long

Delete (none)

GetFirst (optional) filter as Variant
(Note: Version 1.0 supports strings only)

GetLast (optional) filter as Variant
(Note: Version 1.0 supports strings only)

GetNext (optional) filter as Variant
(Note: Version 1.0 supports strings only)

GetPrevious (optional) filter as Variant
(Note: Version 1.0 supports strings only)

Sort sortOrder as Long

Comments

The collection does not maintain a count of the number of Message objects in the collection. Use the
GetFirst, GetLast, GetNext, and GetPrevious methods to access the Message objects in the
collection.

The order in which items are returned by GetFirst, GetNext, GetPrevious, and GetLast depends on
whether the messages are sorted or not. The Message objects within a collection can be sorted by
delivery time, either ascending or descending.

When the items are unsorted, these methods do not return the items in any specified order. The best
programming approach to use with unsorted collections is to assume that you can access all items
within the collection, but that the order of the objects is undefined.

See Also

OLE Messaging Object Collections

Add Method (Messages Collection)

Creates and returns a new Message object in the Messages collection.

Syntax

Set objMessage = objMsgCollection.Add([subject, text, type, importance])

Parameters

objMessage
On successful return, represents the new Message object added to the collection.

objMsgCollection
Required. The Messages collection object.

subject
Optional. String. The subject of the message.

text
Optional. String. The body text of the message.

type
Optional. String. The message class of the message, such as the default, "IPM.Note."

importance
Optional. Long. The priority of the message. The following values are defined:

Constant Value Description

mapiLow 0 Low priority

mapiNormal 1 Normal priority
(default)

mapiHigh 2 High priority

Comments

The method parameters correspond to the Subject, Text, Type, and Importance properties of the
Message object.

You should create new messages in the Outbox folder.

Example

This example adds a new message to a folder:

' from the sample function Util_ReplyToConversation
 Set objNewMsg = objSession.Outbox.Messages.Add
 ' verify objNewMsg created successfully...then supply properties
 With objNewMsg
 .Text = "How about a slightly used Gemini?" ' new text
 .Subject = objOriginalMsg.Subject ' copy original properties
 .ConversationTopic = objOriginalMsg.ConversationTopic
 ' append time stamp; compatible with Microsoft Exchange client
 Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=mapiTo)
 .Recipients.Resolve
 .Update
 .Send showDialog:=False
 End With

See Also

Delete Method (Message Object)

Delete Method (Messages Collection)

Deletes all messages in the collection.

Syntax

object.Delete()

Parameters

object
Required. The Messages collection object.

Comments

Deletes all member objects within the collection.

Moves the deleted folders and messages to the Deleted Messages folder, if the user has enabled this
option. If the folders and messages are already in the Deleted Messages folder, the Delete method
permanently deletes them, and they cannot be recovered.

Be cautious using Delete with collections, since the method deletes all member objects within a
collection. For example, this code deletes all of the messages in a folder:

objFolder.Messages.Delete

See Also

Add Method (Messages Collection)

GetFirst Method (Messages Collection)

Returns the first object in the collection. Returns Nothing if no first object exists.

Syntax

Set objMessage = objMsgColl.GetFirst([filter])

Parameters

objMessage
On successful return, represents the first Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. Version 1.0 supports a string that specifies the message class of the object, such as
"IPM.Note." Corresponds to the Type property of the Message object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Message Object

GetLast Method (Messages Collection)

Returns the last object in the collection. Returns Nothing if no last object exists.

Syntax

Set objMessage = objMsgColl.GetLast([filter])

Parameters

objMessage
On successful return, represents the last Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. Version 1.0 supports a string that specifies the message class of the object, such as
"IPM.Note." Corresponds to the Type property of the Message object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Update Method (Message Object)

GetNext Method (Messages Collection)

Returns the next object in the Messages collection. Returns Nothing if no next object exists.

Syntax

Set objMessage = objMsgColl.GetNext([filter])

Parameters

objMessage
On successful return, represents the next Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. Version 1.0 supports a string that specifies the message class of the object, such as
"IPM.Note." Corresponds to the Type property of the Message object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Update Method (Message Object)

GetPrevious Method (Messages Collection)

Returns the previous object in the collection. Returns Nothing if no previous object exists.

Syntax

Set objMessage = objMsgColl.GetPrevious([filter])

Parameters

objMessage
On successful return, represents the previous Message object in the collection.

objMsgColl
Required. The Messages collection object.

filter
Optional. Version 1.0 supports a string that specifies the message class of the object, such as
"IPM.Note." Corresponds to the Type property of the Message object.

Comments

The Get* methods are similar to the Find* and Move* methods that are used with Microsoft Access
databases. The Get* methods take a different name from these methods because they use a different
syntax.

See Also

Update Method (Message Object)

Sort Method (Messages Collection)

Sorts the messages in the collection according to the specified sort order.

Syntax

objMsgColl.Sort(sortOrder)

Parameters

objMsgColl
Required. The Messages collection object.

sortOrder
Required. Long. The specified sort order, one of the following values:

Value Numeric Value Description

mapiNone 0 No sort

mapiAscending 1 Ascending sort

mapiDescending 2 Descending sort

See Also

Update Method (Message Object)

Recipient Object

Represents a recipient of a message.

Properties

Property name Type Access

Address String Read-write

AddressEntry AddressEntry object Read-write

Application String Read-only

Class Long Read-only

Index Long Read-only

Name String Read-write

Parent Object Read-only

Session Session object Read-only

Type Long Read-write

Methods

Method name Parameters

Delete (none)

Resolve (optional) showDialog as Boolean

See Also

AddressEntry Object

Recipients Collection

Address Property (Recipient Object)

Specifies the full address for this recipient. Read-write.

Syntax

object.Address

Data Type

String

Comments

Set the value of the Recipient object's Address property to specify a custom address. The Recipient
Address uses the following syntax:

TypeValue:AddressValue

where TypeValue and AddressValue correspond to the values of the AddressEntry object's Type and
Address properties.

The Recipient object's Address property represents the full address, the complete messaging address
used by the MAPI system.

OLE Messaging version 1.0 sets the value of the Recipient object's Address property for you when
you supply the Name property and call its Resolve method.

The Address property corresponds to the MAPI properties PR_EMAIL_ADDRESS and
PR_EMAIL_TYPE.

Example

' from the sample function Util_CompareAddressParts
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg ' compare address components

See Also

AddressEntry Object

Name Property (Recipient Object)

Resolve Method (Recipient Object)

AddressEntry Property (Recipient Object)

Specifies the AddressEntry object for this recipient. Read-write.

Syntax

objRecipient.AddressEntry

Data Type

Object (AddressEntry object)

Comments

The AddressEntry property indicates the AddressEntry object for this recipient. For example, you can
use a Recipient object's child AddressEntry object or the Message object's Sender property.

Example

' from the sample function Session_AddressEntry
 If objOneRecip Is Nothing Then
 MsgBox "must select a recipient"
 Exit Function
 End If
 Set objAddrEntry = objOneRecip.AddressEntry
 If objAddrEntry Is Nothing Then
 MsgBox "no valid AddressEntry for this recipient"
 Exit Function
 End If
' from the sample function Util_CompareAddressParts
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg ' compare address components
 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg ' compare display names (should be same)

See Also

AddressEntry Object

Delete Method (Recipient Object)

Deletes the Recipient object.

Syntax

object.Delete()

Parameters

object
Required. The Recipient object.

Comments

The object is set to Nothing and it is removed from memory. The change is not permanent until you
use the Update, Send, or Delete method on the parent Message object.

See Also

Send Method (Message Object)

Update Method (Message Object)

Index Property (Recipient Object)

Returns the index number of this Recipient object within the Recipients collection. Read-only.

Syntax

objRecipient.Index

Data Type

Long

Comments

The index number indicates an index within the array of Recipients collection object.

Example

' from the sample function Recipients_NextItem
' after some similar validation...
 If iRecipCollIndex >= objRecipColl.Count Then
 iRecipCollIndex = objRecipColl.Count
 MsgBox "Already at end of recipient list"
 Exit Function
 End If
 ' index is < count; can be incremented by 1
 iRecipCollIndex = iRecipCollIndex + 1
 Set objOneRecip = objRecipColl.Item(iRecipCollIndex)
' from the sample function Recipient_Index
 If objOneRecip Is Nothing Then
 MsgBox "must first select a recipient"
 Exit Function
 End If
 MsgBox "Recipient index = " & objOneRecip.Index

See Also

Count Property (Recipients Collection)

Item Property (Recipients Collection)

Name Property (Recipient Object)

Returns the name of this Recipient object. Read-write.

Syntax

object.Name

Data Type

String

Comments

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Example

' from the sample function Util_CompareFullAddressParts()
Dim strMsg As String
 ' validate objects... then display
 strMsg = "Recipient full address = " & objOneRecip.Address
 strMsg = strMsg & "; AddressEntry type = " & objAddrEntry.Type
 strMsg = strMsg & "; AddressEntry address = " & objAddrEntry.Address
 MsgBox strMsg ' compare address parts

 strMsg = "Recipient name = " & objOneRecip.Name
 strMsg = strMsg & "; AddressEntry name = " & objAddrEntry.Name
 MsgBox strMsg ' compare display names (should be same)

See Also

Recipient Object

Resolve Method (Recipient Object)

Resolves address information. When the Recipient Name property is supplied, looks up the
corresponding address from the Address Book. When the Recipient Address property is supplied,
resolves as a custom address.

Syntax

object.Resolve([showDialog])

Parameters

object
Required. The Recipient object.

showDialog
Optional. Boolean. If True, displays a dialog box to prompt the user to resolve ambiguous names.

Comments

The Resolve method operates when the AddressEntry property is set to Nothing. Its operation
depends on whether you supply the Recipient Name or Address property.

When you supply the Name property, Resolve looks up the Recipient object's Name property in the
Address Book. When a recipient is resolved, the recipient object's Address property contains the full
address and its AddressEntry property contains a reference to an AddressEntry object that represents
a copy of information in the address book.

When you specify a custom address by supplying the Recipient's Address property, the Resolve
method does not attempt to compare the address against the Address Book.

To avoid delivery errors, clients should always resolve recipients before submitting a message to the
MAPI system. Resolving the recipient name means either finding a matching address in an address list
or having the user select an address from a dialog.

The Resolve method uses the address list specified in the profile, such as the Global Address Book or
the Personal Address Book.

The following methods can also invoke MAPI dialogs: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), AddressBook and Logon methods (Session object).

See Also

Resolve Method (Recipients Collection)

Resolved Property (Recipients Collection)

Type Property (Recipient Object)

Specifies the type of the Recipient object; an integer value that indicates either "To:", "Cc:", or "Bcc:".
Read-write.

Syntax

objRecipient.Type

Data Type

Integer

Comments

The Type property applies to all Recipient objects in the Recipients collection. The property has the
following defined values:

Recipient type Value Description

mapiTo 1 The recipient is on the To: line.

mapiCc 2 The recipient is on the Cc: line.

mapiBcc 3 The recipient is on the Bcc: line.

The Type property corresponds to the MAPI property PR_RECIPIENT_TYPE.

See Also

Address Property (Recipient Object)

Resolve Method (Recipient Object)

Recipients Collection Object

The Recipients collection object specifies the recipients of a message.

The Recipients collection is considered a small collection, which means that it supports count and
index values that let you access individual Recipient objects through the Item property.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

Count Long Read-only

Item Recipient object Read-only

Parent Object Read-only

Resolved Boolean Read-only

Session Session object Read-only

Methods

Method name Parameters

Add (optional) name as String, (optional) address as String,
(optional) type as Long, (optional) entryID as String

Delete (none)

Resolve (optional) showDialog as Boolean

See Also

OLE Messaging Object Collections

Add Method (Recipients Collection)

Creates a new Recipient object in the Recipients collection.

Syntax

Set objRecipient = objRecipColl.Add([name, address, type, entryID])

Parameters

objRecipient
On successful return, represents the new Recipient object added to the collection.

objRecipColl
Required. The Recipients collection object.

name
Optional. String. The display name of the recipient.

address
Optional. String. The address of the recipient.

type
Optional. Long. The type of recipient.

entryID
Optional. String. The ID of a valid AddressEntry object for this recipient.

Comments

The name, address, and type parameters correspond to the Recipient object Name, Address, and
Type properties, respectively. The entryID parameter corresponds to the child AddressEntry object's ID
property. You can access the child AddressEntry object through the Recipient object's AddressEntry
property.

Call the Resolve method after you add a recipient.

The Index of the new Recipient object equals the new Count of the Recipients collection. The recipient
is actually saved in the MAPI system when you Update or Send the parent message object.

Example

This example adds three recipients to a message. The address for the first recipient is resolved using
the display name. The second recipient is a custom address, so the resolve operation does not modify
it. The third recipient is taken from an existing valid AddressEntry object. The Resolve operation does
not affect this recipient.

' from the sample function "Using Addresses"

 ' add 3 recipient objects to a valid message object
 ' 1. look up entry in address book
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Name:=strName, _
 Type:=mapiTo)
 ' error handling...verify objOneRecip
 objOneRecip.Resolve

 ' 2. add a custom recipient
 Set objOneRecip = objNewMessage.Recipients.Add(_
 Address:="SMTP:davidhef@microsoft.com", _

 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using custom addressing"
 Exit Function
 End If
 objOneRecip.Resolve

 ' 3. add a valid address entry object, such as Message.Sender
 ' assume valid address entry ID, name from an existing message
 Set objOneRecip = objNewMessage.Recipients.Add(_
 entryID:=strAddrEntryID, _
 Name:=strName, _
 Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to add recipient using existing AddressEntry ID"
 Exit Function
 End If

 objNewMessage.Text = "expect 3 different recipients"
 MsgBox ("count = " & objNewMessage.Recipients.Count)

See Also

Resolve Method (Recipients Collection)

Count Property (Recipients Collection)

Returns the number of Recipient objects in the collection. Read-only.

Syntax

object.Count

Data Type

Long

Example

This example lists the names of all recipients in the collection:

' from the sample function Util_CopyMessage
' Copy all Recipient objects from one collection to another
' ... verify valid message object objOneMsg
 For i = 1 To objOneMsg.Recipients.Count Step 1
 strRecipName = objOneMsg.Recipients.Item(i).Name
 If strRecipName <> "" Then
 Set objOneRecip = objCopyMsg.Recipients.Add
 If objOneRecip Is Nothing Then
 MsgBox "unable to create recipient in message copy"
 Exit Function
 End If
 objOneRecip.Name = strRecipName
 End If
 Next i

See Also

Item Property (Recipients Collection)

Delete Method (Recipients Collection)

Deletes all Recipients in the collection.

Syntax

object.Delete()

Parameters

object
Required. The Recipients collection object.

Comments

The object or collection is set to Nothing and it is removed from memory, but the change is not
permanent until you use the Update, Send, or Delete method on the parent object that contained the
deleted object or collection.

Be cautious using Delete with collections, since the method deletes all member objects within a
collection.

See Also

Delete Method (Recipient Object)

Send Method (Message Object)

Update Method (Message Object)

Item Property (Recipients Collection)

Returns a single Recipient from the collection. Read-only.

Syntax

objRecipCollection.Item(index)

objRecipCollection
Required. Specifies the Recipients collection object.

index
An integer that ranges from 1 to objRecipCollection.Count, or a string that specifies the name of the
object.

Data Type

Object

Comments

The Item property works like the accessor property for a collection.

Example

' fragment from Util_ReplyToConversation
' use an index to access each entry in the Recipients collection
' 1 represents the first item, Recipients.Count represents the last
Set objOneRecip = .Recipients.Add(_
 Name:=objOriginalMsg.Recipients.Item(1).Name, _
 Type:=mapiTo)

See Also

Count Property (Recipients Collection)

Resolve Method (Recipients Collection)

Searches the Recipients collection to resolve names.

Syntax

objRecipColl.Resolve([showDialog])

Parameters

objRecipColl
Required. The Recipients collection object.

showDialog
Optional. Boolean. If True, displays a dialog box to prompt the user to resolve ambiguous names.

Comments

Calling the Recipients collection Resolve method is equivalent to calling the Resolve method for each
recipient object in the collection. For more information about the individual Resolve operation, see the
reference documentation for the Recipient object Resolve method.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object),
AddressBook and Logon methods (Session object).

Example

' from the sample function Util_NewConversation
' create a valid new message object in the Outbox
 With objNewMsg
 .Subject = "used space vehicle wanted"
 ' ... set other properties here...
 Set objOneRecip = .Recipients.Add(Name:="Car Ads", Type:=mapiTo)
 If objOneRecip Is Nothing Then
 MsgBox "Unable to create the public folder recipient"
 Exit Function
 End If
 .Recipients.Resolve
 End With

See Also

Resolve Method (Recipient Object)

Resolved Property (Recipients Collection)

Resolved Property (Recipients Collection)

True if all of the recipients in the collection are resolved. Read-only.

Syntax

object.Resolved

Data Type

Boolean

Comments

All recipient objects in the collection are considered resolved when all Recipient objects have a valid
address entry object in the AddressEntry property.

You should resolve all addresses.    Whenever you supply a display name to obtain an address from
the address book or supply a custom address, you should call the Resolve method to ensure that the
AddressEntry property is valid.

When the Recipients collection Resolved property is not True, use either the collection's Resolve
method or the Resolve method for each recipient object in the collection.

When you use existing valid AddressEntry objects, you do not need to explicitly call the Recipient
object's Resolve method.

See Also

Resolve Method (Recipient Object)

Session Object

The Session object contains session-wide settings and options. It also contains properties that return
top-level objects, such as CurrentUser.

Properties

Property name Type Access

Application String Read-only

Class Long Read-only

CurrentUser AddressEntry object Read-only

Inbox Folder object Read-only

MAPIOBJECT Object Read-write (Note: Not
available to Visual
Basic applications)

Name String Read-only

OperatingSystem String Read-only

Outbox Folder object Read-only

Parent Object; set to Nothing (Not applicable)

Session Object; set to Nothing (Not applicable)

Version String Read-only

Methods

Method name Parameters

AddressBook (optional) recipients as Object, (optional) title as String,
(optional) oneAddress as Boolean, (optional)
forceResolution as Boolean, (optional) recipLists as
long, (optional) toLabel as String, (optional) ccLabel as
String, (optional) bccLabel as String, (optional)
parentWindow as Long

GetAddressEntry entryID as String

GetFolder folderID as String, storeID as String

GetMessage messageID as String, storeID as String

Logoff (none)

Logon (optional) profileName as String, (optional)
profilePassword as String, (optional) showDialog as
Boolean, (optional) newSession as Boolean, (optional)
parentWindow as Long

Comments

After you create a new Session object, use the Logon method to initiate a MAPI session.

See Also

Logon Method (Session Object)

AddressBook Method (Session Object)

Displays the MAPI dialog box that allows the user to select entries from the Address Book. The
selections are returned in a Recipients collection object.

Syntax

Set objRecipients = objSession.AddressBook([recipients, title, oneAddress, forceResolution,
recipLists, toLabel, ccLabel, bccLabel, parentWindow])

Parameters

objRecipients
On successful return, the Recipients collection object. When the user does not select any names
from the dialog box, AddressBook returns Nothing.

objSession
Required. The Session object.

recipients
Optional. Object. A Recipients collection object that provides the initial value for the recipient list
boxes in the Address Book. (Note: This initial Recipient collection is ignored in OLE Messaging
Library version 1.0.)

title
Optional. String. The title or caption of the Address Book dialog box.

oneAddress
Optional. Boolean. Allows the user to enter or select only one address.

forceResolution
Optional. Boolean. If True, attempts to resolve all names before closing the AddressBook. Prompts
the user to resolve any ambiguous names.

recipLists
Optional. Long. The number of recipient list boxes to display in the Address Book dialog:

recipLists Action

0 Displays no list boxes. The user can select one or
more names, but the user cannot enter custom
names.

1 Displays 1 list box (default).

2 Displays 2 list boxes.

3 Displays 3 list boxes.

toLabel
Optional. String. The caption for the first list box. Ignored if recipLists is less than 1. If omitted, the
default value "To:" is displayed.

ccLabel
Optional. String. The caption for the second list box. Ignored if recipLists is less than 2. If omitted,
the default value "CC:" is displayed.

bccLabel
Optional. String. The caption for the third list box. Ignored if recipLists is less than 3. If omitted, the
default value "BCC:" is displayed.

parentWindow
Optional. Long. The parent window handle for the Address Book dialog box. A value of 0 (the
default) specifies that any dialog box displayed is application modal. parentWindow is ignored
unless showDialog is True.

Comments

The AddressBook method returns Nothing if the user cancels the dialog box.

To provide an access key for the list boxes, include an ampersand ("&") character in the string for the
label argument. For example, if toLabel is "&Attendees:", users can press ALT+A to move the focus to
the first recipient list box.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), Logon method (Session object).

Note    The initial Recipient collection, as specified in the recipients parameter, is not used in OLE
Messaging Library version 1.0.

Example

The following example displays an address book with one recipient list labelled "Attendees":

Function Session_AddressBook()
 On Error GoTo err_Session_AddressBook

 If objSession Is Nothing Then
 MsgBox "must first create MAPI session and logon"
 Exit Function
 End If
 Set objRecipColl = objSession.AddressBook(_
 Title:="Select Attendees", _
 forceResolution:=True, _
 recipLists:=1, _
 toLabel:="&OLE Messaging") ' appears on button
 ' Note: initial value not used in version 1.0
 ' parameter not used in call: Recipients:=objInitRecipColl
 MsgBox "Name of first recipient = " & objRecipColl.Item(1).Name
 Exit Function

err_Session_AddressBook:
 If (Err = 91) Then ' object not set
 MsgBox "No recipients selected"
 Else
 MsgBox "Unrecoverable Error:" & Err
 End If
 Exit Function
End Function

See Also

AddressEntry Object

Recipients Collection

CurrentUser Property (Session Object)

Returns the active user as an AddressEntry object. Read-only.

Syntax

objSession.CurrentUser

Data Type

Object (AddressEntry object)

Comments

The CurrentUser property returns Nothing when no user is logged on.

Example

The example logs on if necessary, then creates strings containing information about the current user:

 If objSession Is Nothing Then
 MsgBox ("Must log on first")
 Exit Function
 End If
 Set objAddrEntry = objSession.CurrentUser
 If objAddrEntry Is Nothing Then
 MsgBox "Could not set the address entry object"
 Exit Function
 Else
 MsgBox "full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address
 End If

See Also

AddressEntry Object

GetAddressEntry Method (Session Object)

Returns an AddressEntry object.

Syntax

Set objAddressEntry = objSession.GetAddressEntry(entryID)

Parameters

objAddressEntry
On successful return, represents the AddressEntry object specified by entryID.

objSession
Required. The Session object.

entryID
Required. String that specifies the unique ID of the address entry.

Example

The following example displays the name of a user from a MAPI address list:

' from the function Session_GetAddressEntry
 If objSession Is Nothing Then
 MsgBox "No active session, must log on"
 Exit Function
 End If
 If "" = strAddressEntryID Then
 MsgBox ("Must first set string variable; see AddressEntry->ID")
 Exit Function
 End If
 Set objAddrEntry = objSession.GetAddressEntry(strAddressEntryID)
 MsgBox "full address = " & objAddrEntry.Type & ":" _
 & objAddrEntry.Address

See Also

Using Addresses

AddressEntry Object

GetFolder Method (Session Object)

GetMessage Method (Session Object)

GetFolder Method (Session Object)

Returns a folder object from a MAPI information store.

Syntax

Set objFolder = objSession.GetFolder(folderID [, storeID])

Parameters

objFolder
On successful return, contains the Folder object with the specified ID. When the Folder does not
exist, GetFolder returns Nothing.

objSession
Required. The Session object.

folderID
Required. String that specifies the unique ID of the folder.

storeID
Optional. String that specifies the unique ID of the store.

Comments

The GetFolder method allows you to obtain any folder for which you know the ID.

Example

The following example uses the GetFolder method to obtain a specific folder from a MAPI information
store:

' from the function Session_GetFolder
' requires a global variable that contains the folder ID
' uses a global variable that contains the store ID if present
 If strFolderID = "" Then
 MsgBox ("Must first set folder ID variable; see Folder->ID")
 Exit Function
 End If
 If strFolderStoreID = "" Then ' if it's not there, don't use it
 Set objFolder = objSession.GetFolder(strFolderID)
 Else
 Set objFolder = objSession.GetFolder(folderID:=strFolderID, _
 storeID:=strFolderStoreID)
 End If
 If objFolder Is Nothing Then
 Set objMessages = Nothing
 MsgBox "Unable to retrieve folder with specified ID"
 Exit Function
 End If
 MsgBox "Folder set to " & objFolder.Name
 Set objMessages = objFolder.Messages

See Also

Folder Object

ID Property (Folder Object)

GetMessage Method (Session Object)

Returns a Message object from a MAPI information store.

Syntax

Set objMessage = objSession.GetMessage(messageID [, storeID])

Parameters

objMessage
On successful return, GetMessage returns a Message object. When the specified messageID does
not exist, GetMessage returns Nothing.

objSession
Required. The Session object.

messageID
Required. String that specifies the unique ID of the message.

storeID
Optional. String that specifies the unique ID of the store.

Example

The following example displays the subject of a message from a MAPI information store:

' fragment from Session_GetMessage
' requires the parameter strMessageID;
' also uses strMessageStoreID if it is defined
 If strMessageID = "" Then
 MsgBox ("Must first set message ID variable; see Message->ID")
 Exit Function
 End If
 If strMessageStoreID = "" Then ' not present
 Set objOneMsg = objSession.GetMessage(strMessageID)
 Else
 Set objOneMsg = objSession.GetMessage(messageID:=strMessageID, _
 storeID:=strMessageStoreID)
 End If

See Also

ID Property (Message Object)

Message Object

Inbox Property (Session Object)

Returns a Folder object representing the current user's default Inbox folder.

Syntax

objSession.Inbox

Data Type

Object (Folder object)

Comments

These properties return Nothing when the current user does not have or has not enabled these
folders.

In addition to the formal collection and object hierarchy, OLE Messaging supports a simpler relationship
between the Session object and certain common folders. This simplified structure more readily
supports basic messaging-enabled applications. If the current user's default Inbox folder is named
"Inbox," then these two folders are equivalent:

' from the function Session_Inbox
 ' make sure the Session object is valid...
 Set objFolder = objSession.Inbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Inbox"
 Exit Function
 End If
 MsgBox "Folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages
 If objMessages Is Nothing Then
 MsgBox "Failed to open folder's Messages collection"
 Exit Function
 End If

See Also

Folder Object

Outbox Property (Session Object)

Logoff Method (Session Object)

Logs off from the MAPI system.

Syntax

object.Logoff()

Parameters

object
Required. The Session object.

Example

The following example logs off from the MAPI system:

' from the function Session_Logoff
 If Not objSession Is Nothing Then
 objSession.Logoff
 MsgBox "Logged off; reset global variables"
 Else
 MsgBox "No active session"
 End If

See Also

Logon Method (Session Object)

Logon Method (Session Object)

Logs on to the MAPI system.

Syntax

object.Logon([profileName, profilePassword, showDialog, newSession, parentWindow])

Parameters

object
Required. The Session object.

profileName
Optional. A string specifying the user's logon name. To prompt the user to enter a logon name, omit
profileName and set showDialog to True.

profilePassword
Optional. A string specifying the user's logon password. To prompt the user to enter a logon
password, omit profilePassword and set showDialog to True.

showDialog
Optional. Boolean. If True, displays a logon dialog box.

newSession
Optional. Boolean. Determines whether the application opens a new MAPI session or uses the
current shared MAPI session. If a shared MAPI session does not exist, newSession is ignored and a
new session is opened. If the shared MAPI session does exist, this argument takes the following
action:

Value Action

True Opens an new MAPI session.

False or
omitted

Uses the current, shared MAPI session.

parentWindow
Optional. Long (HWND). Specifies the parent window handle for the logon dialog box. A value of 0
(the default) specifies that any dialog box displayed is application modal. parentWindow is ignored
unless showDialog is True.

Comments

The user must log on before your application can use most MAPI objects.

The following methods can also invoke MAPI dialog boxes: Delete and Details methods (AddressEntry
object), Options and Send methods (Message object), Resolve method (Recipient object and
Recipients collection), AddressBook method (Session object).

Example

The first example displays a logon dialog box that prompts the user to enter a logon password. The
second example supplies the profilename parameter and does not display the dialog:

' from the function Session_Logon
 Set objSession = CreateObject("MAPI.Session")
 If Not objSession Is Nothing Then
 objSession.Logon showDialog:=True
 End If

' from the function Session_Logon_NoDialog

Function Session_Logon_NoDialog()
 On Error GoTo error_olemsg
 ' can set strProfileName, strPassword from a custom form
 ' adjust these parameters for your configuration
 ' create a Session object if necessary here...
 '
 If Not objSession Is Nothing Then
 ' configure these parameters for your needs...
 objSession.Logon profileName:=strProfileName, showDialog:=False
 End If
 Exit Function

error_olemsg:
 If 1273 = Err Then
 MsgBox "cannot logon: incorrect profile name or password; change
global variable strProfileName in Util_Initialize"
 Exit Function
 End If
 MsgBox "Error " & Str(Err) & ": " & Error$(Err)
 Resume Next
End Function

See Also

Starting A Session With MAPI

Logoff Method (Session Object)

MAPIOBJECT Property (Session Object)

Returns an IUnknown pointer to this Folder object. Not available to Visual Basic applications.

Syntax

object.MAPIOBJECT

Data Type

Variant (VT_UNKNOWN)

Comments

The MAPIOBJECT property is not available to Visual Basic programs. It is available only to C/C++
programs that use the OLE Messaging Library. The MAPIOBJECT property is an IUnknown object,
which is not supported by Visual Basic. Visual Basic supports IDispatch objects. For more information,
see the Microsoft OLE 2 Programmer's Reference.

See Also

A Short Tour of OLE Automation

Name Property (Session Object)

Returns the name of the profile logged on to this session. Read-only.

Syntax

objSession.Name

Data Type

String

Comments

The Name property corresponds to the MAPI property PR_DISPLAY_NAME.

Examples

' from the function Session_Name
 If objSession Is Nothing Then
 MsgBox "Must log on first: see Session menu"
 Exit Function
 End If
 MsgBox "Session name = " & objSession.Name

See Also

Session Object

OperatingSystem Property (Session Object)

Returns the name and version number of the current operating system. Read-only.

Syntax

objSession.OperatingSystem

Data Type

String

Comments

OLE Messaging returns strings in the following formats:

Operating system String value

Microsoft Windows NT Microsoft® Windows NT™ x.xx

Microsoft Windows for Workgroups Microsoft® Windows™ x.xx

The x.xx values are replaced with the actual version numbers. Note that Microsoft Windows for
Workgroups version 3.11 returns the string "Microsoft® Windows™ 3.10." This is a feature of that
operating system rather than a feature of the OLE Messaging Library.

Example

This example displays the name of the operating system:

' from the function Session_OperatingSystem
 If objSession Is Nothing Then
 MsgBox "Must log on first: see Session menu"
 Exit Function
 End If
 MsgBox "Operating system = " & objSession.OperatingSystem

See Also

Version Property (Session Object)

Outbox Property (Session Object)

Returns a Folder object representing the current user's default Outbox folder.

Syntax

objSession.Outbox

Data Type

Object

Comments

The property returns Nothing if the current user does not have or has not enabled the Outbox folder.

In addition to the formal collection and object hierarchy shown, OLE Messaging supports a simpler
relationship between the Session object and certain common folders. This simplified structure more
readily supports basic messaging-enabled applications.

Example

' from the function Session_Outbox
Dim objFolder As Object
' ...
 Set objFolder = objSession.Outbox
 If objFolder Is Nothing Then
 MsgBox "Failed to open Outbox"
 Exit Function
 End If
 MsgBox "Folder name = " & objFolder.Name
 Set objMessages = objFolder.Messages

See Also

Folder Object

Inbox Property (Session Object)

Version Property (Session Object)

Returns the version number of the OLE Messaging Library as a string, for example, "1.00". Read-only.

Syntax

objSession.Version

Data Type

String

Comments

The version number for the OLE Messaging Library is represented by a string in the form "n.xx," where
n represents a major version number and xx represents a minor version number.

Example

' see the function Session_Version
 Dim objSession As Object
 Set objSession = CreateObject("MAPI.Session")
 ' error handling here...
 MsgBox "Version number is " & objSession.Version
MsgBox "Welcome to OLE Messaging version " & objSession.Version

See Also

OperatingSystem Property (Session Object)

References

The following published references provide additional information about Visual Basic, Visual Basic for
Applications, and OLE.

Microsoft Visual Basic Programmer's Guide, Chapter 23, "Programming Other Applications'
Objects"

Excel Visual Basic for Applications Step by Step, Microsoft Press
Microsoft Excel Visual Basic User's Guide, Chapter 5, "Working with Objects in Visual Basic" and

Chapter 10, "Controlling and Communicating with Other Applications"
Microsoft OLE 2 Programmer's Reference, Microsoft Press
Inside OLE 2, Microsoft Press

Note that this document contains the latest known information about the Microsoft OLE Messaging
Library version 1.0 at the time of publication. Where terms in this document differ from other Visual
Basic, OLE, or COM terms, this document should be viewed as the definition of the specific
implementation represented by OLE Messaging Library version 1.0.

How Programmable Objects Work

How do programmable objects work? How does the OLE Messaging Library offer its powerful ability to
create and manage messaging objects?

This section provides a very short introduction to the Microsoft Component Object Model, OLE
Automation, and the OLE programmability interface IDispatch. For complete details, see the OLE 2
Programmer's Reference.

You do not need to understand this section in order to use the OLE Messaging Library.

COM Interfaces

With the combination of Microsoft RPC (Remote Procedure Call) and Microsoft OLE technology,
Microsoft began to shift the C/C++ programming model from individual API functions, such as those
offered in the Windows 3.1 SDK and Win32 SDK, to a distributed object model that is based on
interfaces. An interface is simply a group of logically-related functions. Note that the interface consists
only of functions. There are no facilities for directly accessing data within an interface, except through
the functions.

The benefit of such a distributed object model is that it allows developers to create small, independent,
self-managing software objects. This modular approach allows software functionality to be developed
in small "building blocks" that are then fitted together. Your application no longer has to handle every
possible data format or possible application feature, as long as it can be integrated with other objects
that can handle the desired formats and features.

The notion of objects is very familiar to Visual Basic developers. Many software industry analysts have
noted that the most visible success of object-oriented programming to date is the widespread use of
Microsoft Visual Basic custom controls.

One of the benefits of the modular, interface-based approach to software development is that individual
interfaces usually contain significantly fewer functions than libraries, with the promise of more efficient
use of memory. Whenever you want to use one function in a library, the entire library must be loaded
into memory. Splitting function libraries into smaller interfaces makes it more likely that you load only
the functions that you actually need. (Or at least that you load fewer that you don't need.)

By convention, interface names start with the letter 'I'. The functions are given a specific ordering within
the interface. Knowing the order of the functions is important for developers who must define their own
vtables, or function dispatch tables. The C++ compiler creates vtables for you, but if you are writing in
C, you must create your own.

The functions of an interface still physically reside in an .EXE or .DLL file, but Microsoft has defined
new rules for how these files are registered on the system and how they are loaded and unloaded from
memory. Microsoft refers to the new rules as the Component Object Model, or COM.

According to the rules, the first three functions in all interfaces are always QueryInterface (which
developers call "QI"), AddRef, and Release. These functions provide a pointer to the interface when
someone asks for it, keep track of the number of programs that are being served by the interface, and
control how the physical .DLL or .EXE gets loaded and unloaded. Any other functions in the interface
are defined by the person who creates the interface. The interface that consists of these three common
functions, QueryInterface, AddRef, and Release, is called IUnknown. Developers can always obtain
a pointer to an IUnknown object.

The component object model, like RPC before it, makes a strong distinction between the definition of
the interface and its implementation. The interface functions and the data items that make up the
parameters are defined in a very precise way, using a special language designed specifically for
defining interfaces. These languages (such as MIDL, the Microsoft Interface Definition Language, and
ODL, the Object Definition Language) do not allow you to use indefinite type names, such as void *, or
types that change from computer to computer, such as int. The goal is to force you to specify the exact
size of all data. This makes it possible for, say, one person to define an interface, a second person to
implement the interface, and a third person to write a program that calls that interface.

Developers who write C and C++ code that use these types of interfaces read the object's interface
definition language (IDL) files. They know exactly what functions are present in the interface and what
data is required. They can call the interfaces directly.

For developers who are not writing in C and C++, or do not have access to the object's interface
definition language files, Microsoft's component object model defines another way to use software
components. This is based on an interface named IDispatch.

IDispatch

IDispatch is a COM interface that is designed in such a way that it can call virtually any other COM
interface. Developers working in Visual Basic often cannot call COM interfaces directly, as they would
from C or C++. However, when their tool supports IDispatch, as Visual Basic does, and when the
object they want to call supports IDispatch, they can call its COM interfaces indirectly.

The main method offered by IDispatch is called Invoke. This method can be thought to add a level of
indirection to the control flow of the Component Object Model. In the standard model, an object obtains
a pointer to an interface and then calls a member function of the interface. IDispatch adds a level of
indirection: Instead of directly calling the member function of the interface, the program calls
IDispatch::Invoke, and IDispatch::Invoke calls the member function for you.

Invoke is a general method-calling machine. Its parameters include a value that identifies the method
that is to be called and the parameters that are to be sent to it. In order to be able to handle the wide
variety of parameters that other COM methods use as parameters, Invoke uses a self-describing data
structure called a VARIANTARG.

The VARIANTARG structure contains two parts: a type field, which represents the data type, and the
data field, which represents the actual value of the data. The values such as VT_I2, VT_I4, and so on,
are the constants that define valid values for the data types.

Associated with IDispatch is the notion of a type library. The type library publishes information about
an interface so that it is available to Visual Basic programs. The type library, or typelib, contains the
same kind of information that C/C++ programmers would obtain from a header file: the name of the
method and the sequence and types of its parameters.

An executable or DLL that exposes IDispatch and its type library is known as an OLE Automation
server. The OLE Messaging Library is such a server.

OLE Messaging: An OLE Automation Server

So, let's put it all together, from the bottom up, to see how OLE Messaging works.

Service providers implement COM interfaces¾specifically, the Extended MAPI interfaces¾as
described in the Microsoft MAPI Programmer's Reference.

The OLE Messaging Library implements several objects (Session, Message, etc.) that act as
clients to these Extended MAPI interfaces. That is, the OLE Messaging objects obtain pointers to the
Extended MAPI interfaces and call methods.

The OLE Messaging Library implements IDispatch and acts as an OLE Automation server so
that it can be called by tools that can use IDispatch, such as Visual Basic. That is, the OLE Messaging
Library allows other programs to call its IDispatch interface. It provides its own registration (.REG) file so
that it can be registered on a computer as an OLE Automation server.

The OLE Messaging Library publishes a type library that contains information about the objects
that it makes available through IDispatch.

Your Visual Basic application acts as a client to the OLE Messaging Library. It reads the OLE
Messaging Library's type library to obtain information about the objects, methods, and properties. When
your VB application declares a variable as an object (with code such as "Dim objSession as Object") and
uses that object's properties and methods (with code such as "MsgBox objSession.Class"), Visual Basic
makes calls to IDispatch on your behalf.

The relationships between these programs are shown in the following diagram:

Figure 1. Visual Basic is a client to the OLE Automation server, the OLE Messaging Library. The
OLE Messaging Library, in turn, acts as a client to the Extended MAPI services.

The OLE Messaging Library and Extended MAPI

The OLE Messaging Library calls Microsoft Extended MAPI interfaces for you. The following table
describes the Extended MAPI interfaces that OLE Messaging calls when you manipulate an OLE
Messaging object:

OLE Messaging
object

Extended MAPI or OLE interface
called by OLE Messaging

AddressEntry IABContainer, IMAPIProp

Attachment IAttach

Field IStream, IMAPIProp

Folder IMAPIFolder

Message IMessage

Recipient IMAPIProp

Session IMAPISession

For collection objects, the OLE Messaging Library calls the Extended MAPI interface IMAPITable.

The OLE Messaging Library also calls the Extended MAPI interface IMAPIProp. Many of the
properties exposed by the OLE Messaging Library are based on Extended MAPI properties. The
following table describes the mapping between some OLE Messaging Library properties and the
underlying MAPI properties:

OLE
Messagin
g Library
object

Property Extended MAPI
property

Extended
MAPI
property type

AddressE
ntry

Address PR_EMAIL_ADDRESS PT_TSTRING

AddressE
ntry

ID PR_ENTRYID PT_BINARY

AddressE
ntry

Name PR_DISPLAY_NAME PT_TSTRING

AddressE
ntry

Type PR_ADDRTYPE PT_TSTRING

Attachmen
t

Index PR_ATTACH_NUM PT_LONG

Attachmen
t

Name PR_ATTACH_
FILENAME

PT_TSTRING

Attachmen
t

Position PR_RENDERING_
POSITION

PT_LONG

Attachmen
t

Source PR_ATTACH_
PATHNAME

PT_TSTRING

Attachmen
t

Type PR_ATTACH_
METHOD

PT_LONG

Folder FolderID PR_PARENT_
ENTRYID

PT_BINARY

Folder ID PR_ENTRYID PT_BINARY

Folder Name PR_DISPLAY_NAME PT_TSTRING

Folder StoreID PR_STORE_ENTRYID PT_BINARY

Message Conversation PR_CONVERSATION_ PT_BINARY

KEY

Message ConversationIndex PR_CONVERSATION_
INDEX

PT_BINARY

Message ConversationTopic PR_CONVERSATION_
TOPIC

PT_STRING

Message DeliveryReceipt PR_ORIGINATOR_
DELIVERY_REPORT_
REQUESTED

PT_BOOLEA
N

Message Encrypted PR_SECURITY PT_LONG

Message FolderID PR_PARENT_ENTRYID PT_BINARY

Message ID PR_ENTRYID PT_BINARY

Message Importance PR_IMPORTANCE PT_LONG

Message ReadReceipt PR_READ_RECEIPT_
REQUESTED

PT_BOOLEA
N

Message Sender PR_SENDER_
ENTRYID

PT_BINARY

Message Sent PR_MESSAGE_FLAGS PT_LONG

Message Signed PR_SECURITY PT_LONG

Message Size PR_MESSAGE_SIZE PT_LONG

Message StoreID PR_STORE_ENTRYID PT_BINARY

Message Subject PR_SUBJECT PT_TSTRING

Message Submitted PR_MESSAGE_FLAGS PT_LONG

Message Text PR_BODY PT_TSTRING

Message TimeReceived PR_MESSAGE_
DELIVERY_TIME

PT_SYSTIME

Message TimeSent PR_CLIENT_SUBMIT_
TIME

PT_SYSTIME

Message Type PR_MESSAGE_CLASS PT_TSTRING

Message Unread PR_MESSAGE_FLAGS PT_LONG

Recipient Name PR_DISPLAY_NAME PT_TSTRING

Recipient Type PR_RECIPIENT_TYPE PT_LONG

Session Name PR_DISPLAY_NAME PT_TSTRING

For more information about Extended MAPI properties, see the Microsoft MAPI Programmer's
Reference.

