
Internet APIs

    Internet Shortcut Shell Extension

    MIME in Windows 95

Internet Shortcut Shell Extension

    Purpose

    Architecture

    User Interface

    Implementation

    OLE Interfaces

    Example Code

    Reference

    Internet Shortcut APIs

Internet Shortcut Shell Extension

    Purpose

    Architecture

    User Interface

    Creating Internet Shortcuts

    Internet Shortcut Property Sheet

    Implementation

    OLE Interfaces

    Example Code

    Reference

    Internet Shortcut APIs

Internet Shortcut Shell Extension

    Purpose

    Architecture

    User Interface

    Implementation

    Protocol Handler Association

    ShellExecute() a URL

    OLE Interfaces

    Example Code

    Reference

    Internet Shortcut APIs

Internet Shortcut Shell Extension

    Purpose

    Architecture

    User Interface

    Implementation

    OLE Interfaces

    Example Code

    Reference

    IUniformResourceLocator Interface

    Internet Shortcut APIs

Internet Shortcut Shell Extension

    Purpose

    Architecture

    User Interface

    Implementation

    OLE Interfaces

    Example Code

    Reference

    Internet Shortcut APIs

    TranslateURL

    URLAssociationDialog

    IS_E_EXEC_FAILED constant
    URL_E_INVALID_SYNTAX constant

    URL_E_UNREGISTERED_PROTOCOL constant

Purpose
The Internet Shortcut Shell extension provides a Windows 95 Shell encapsulation of Uniform Resource
Locators (URLs). Each URL is stored as an Internet Shortcut, similar to a Shell Shortcut.

Architecture
The Internet Shortcut Shell extension is implemented in a dynamic-link library (DLL), currently called
URL.DLL. This library contains code that is generic across the entire class of URLs. URL protocol-
specific code is contained in applications or DLLs known as protocol handlers. For example, telnet.exe
might contain code to handle URLs of the telnet: protocol.

Internet Shortcuts are typically stored as .URL files in the file system. URL.DLL is the class handler
for .URL files. Users can manipulate Internet Shortcuts as they would manipulate Shell Shortcuts.
Internet Shortcuts may be created, deleted, opened, mailed, and so on.

URL.DLL implements the InternetShortcut OLE object class. InternetShortcuts expose a number of
OLE interfaces to facilitate their manipulation.

User Interface

Creating Internet Shortcuts
The user can create a new Internet Shortcut through the container->New->Shortcut wizard. If a URL is
entered in the initial command-line edit control, an Internet Shortcut is created rather than a Shell
Shortcut. Some common prefixes are recognized as implying a URL protocol. For example,
www.microsoft.com is treated as http://www.microsoft.com. These prefixes are listed in the registry.

Internet Shortcut Property Sheet
Each Internet Shortcut has an Internet Shortcut property sheet associated with it.

The Internet Shortcut property sheet allows the user to modify the Internet Shortcut’s URL, working
directory, icon file and index, and show command. Hot key support for Internet Shortcuts may be added.

Implementation

Protocol Handler Association
Protocol handlers are associated with URL protocols via registry entries. The registry entries are similar
to those for Shell class handlers for a file class, for example, Notepad’s association with text files.
These protocol handler associations may be manipulated by the user through the Windows 95
Explorer->View->Options->File Types property sheet. Internet Shortcuts currently support only the
open verb.

ShellExecute() a URL
URLs may also be opened directly by ShellExecute(). For example, the user may enter Tray->Start-
>Run www.microsoft.com to invoke the http protocol handler on the http://www.microsoft.com URL.

OLE Interfaces
InternetShortcuts implement the OLE interfaces listed below.

IPersistFile
IPersistFile may be used to load an InternetShortcut from a file, or save an InternetShortcut to a file.
Typically, Internet Shortcut files use the .URL extension.

IShellLink
IShellLink may be used to set and query some of the properties of an InternetShortcut. IShellLink
methods may be applied to an InternetShortcut as described below.

SetPath - Sets the InternetShortcut’s URL. Same as calling IUniformResourceLocator::Set() with no
flags set.

GetPath - Copies as much of the InternetShortcut’s URL as will fit in the given buffer. Call
IUniformResourceLocator::GetURL() instead to get the InternetShortcut’s full URL.

SetRelativePath - Not implemented.

SetIDList - Not implemented.

GetIDList - Not implemented.

SetDescription - Sets the InternetShortcut’s file path.

GetDescription - Gets the InternetShortcut’s file path.

SetArguments - Not implemented.

GetArguments - Not implemented.

SetWorkingDirectory - Sets the InternetShortcut’s working directory.

GetWorkingDirectory - Gets the InternetShortcut’s working directory.

SetHotkey - Not implemented. May be implemented before release.

GetHotkey - Not implemented. May be implemented before release.

SetShowCmd - Sets the InternetShortcut’s show command.

GetShowCmd - Gets the InternetShortcut’s show command.

SetIconLocation - Sets the InternetShortcut’s icon file and index.

GetIconLocation - Gets the InternetShortcut’s icon file and index.

Resolve - Does nothing.

For details on IShellLink, see the Programmer’s Guide to Microsoft Windows 95 in the Win32 SDK.

Example Code
To create an InternetShortcut from a URL, use something like this sequence of API calls and methods.

#define INC_OLE2 /* for windows.h */
#include <windows.h>
#include <intshcut.h> /* for Internet Shortcut declarations */

CoCreateInstance(CLSID_InternetShortcut, ...,
IID_IUniformResourceLocator, ...)

IUniformResourceLocator::SetURL("http://www.foobar.com", 0)
IUniformResourceLocator::QueryInterface(IID_IPersistFile, ...)
IPersistFile::Save(L"foo.url", ...)
IPersistFile::SaveCompleted(L"foo.url")
IPersistFile::Release()
IUniformResourceLocator::Release()

Reference

IUniformResourceLocator Interface
Methods for manipulating uniform resource locators (URLs).

See Also

URLAssociationDialog, TranslateURL

    IUniformResourceLocator::GetURL Method

    IUniformResourceLocator::InvokeCommand Method

    IUniformResourceLocator::SetURL Method

IUniformResourceLocator::GetURL Method
HRESULT GetURL(PSTR * ppszURL)

Retrieves an object's URL.

Parameters

ppszURL
A pointer to a PSTR to be filled in with a pointer to the object's URL. When finished, this string
should be freed by calling SHFree().

Return Value

Returns one of the following return codes on success:

S_OK
The object's URL was retrieved successfully. *ppszURL points to the URL string.

S_FALSE
The object does not have a URL associated with it. *ppszURL is NULL. Otherwise, returns one of
the following return codes on error:
E_OUTOFMEMORY
There is not enough memory to complete the operation.

IUniformResourceLocator::InvokeCommand Method
HRESULT InvokeCommand(PURLINVOKECOMMANDINFO purlici)

Invokes a command on an object's URL.

Parameters

purlici
A pointer to a URLINVOKECOMMANDINFO structure describing the command to be invoked.

Return Value

Returns one of the following return codes on success:

S_OK
The object's URL was opened successfully.

S_FALSE
The object does not have a URL associated with it. Otherwise, returns one of the following return
codes on error:
E_OUTOFMEMORY
There is not enough memory to complete the operation.

IS_E_EXEC_FAILED
The URL's protocol handler failed to run.

URL_E_INVALID_SYNTAX
The URL's syntax is invalid.

URL_E_UNREGISTERED_PROTOCOL
The URL's protocol does not have a registered protocol handler.

IUniformResourceLocator::SetURL Method
HRESULT SetURL(PCSTR pcszURL, DWORD dwInFlags)

Sets an object's URL.

Parameters

pcszURL
The URL to be used by the object.

dwInFlags
A bit mask of from the IURL_SETURL_FLAGS enumeration.

Return Value

Returns one of the following return codes on success:

S_OK
The object's URL was set successfully. Otherwise, returns one of the following return codes on
error:
E_OUTOFMEMORY
There is not enough memory to complete the operation.

URL_E_INVALID_SYNTAX
The URL's syntax is invalid.

aStartOfTopic2$Internet Shortcut APIs

    TranslateURL

    URLAssociationDialog

    IS_E_EXEC_FAILED constant

    URL_E_INVALID_SYNTAX constant

    URL_E_UNREGISTERED_PROTOCOL constant

TranslateURL
HRESULT TranslateURL(PCSTR pcszURL, DWORD dwInFlags, PSTR * ppszTranslatedURL)

Applies common translations to a URL string, creating a new URL string.

Return Value

Returns one of the following return codes on success:

S_OK
The URL string was translated successfully, and *ppszTranslatedURL points to the translated
URL string.

S_FALSE
The URL string did not require translation. *ppszTranslatedURL is NULL. Otherwise, returns one
of the following return codes on error:
E_FLAGS
The flag combination passed in dwInFlags is invalid.

E_OUTOFMEMORY
There is not enough memory to complete the operation.

E_POINTER
One of the input pointers was invalid.

Parameters

pcszURL
A pointer to the URL string to be translated.

dwInFlags
A bit mask of flags from the TRANSLATEURL_IN_FLAGS enumeration.

ppszTranslatedURL
A pointer to the newly created translated URL string, if any. *ppszTranslatedURL is valid only if
S_OK is returned. If valid, *ppszTranslatedURL should be freed by calling LocalFree().
*ppszTranslatedURL is NULL on error.

Comments

TranslateURL() does not perform any validation on the syntax of the input URL string. A successful
return value does not indicate that the input or output URL strings are valid URLs.

URLAssociationDialog
HRESULT URLAssociationDialog(HWND hwndParent, DWORD dwInFlags, PSTR pszAppBuf, UINT
ucAppBufLen)

Invokes the unregistered URL protocol dialog box.

Return Value

Returns one of the following return codes on success:

S_OK
Application registered with URL protocol.

S_FALSE
Nothing registered. One-time execution via selected application requested. Otherwise, returns
one of the following return codes on error:
E_ABORT
The user canceled the operation.

E_FLAGS
The flag combination passed in dwInFlags is invalid.

E_OUTOFMEMORY
There is not enough memory to complete the operation.

E_POINTER
One of the input pointers is invalid.

URL_E_INVALID_SYNTAX
The URL's syntax is invalid.

Parameters

hwndParent
A handle to the window to be used as the parent window of any posted child windows.

dwInFlags
A bit mask of flags from the URLASSOCIATIONDIALOG_IN_FLAGS enumeration.

pszAppBuf
A buffer to be filled in on success with the path of the application selected by the user. pszAppBuf's
buffer is filled in with the empty string on failure.

ucAppBufLen
The length of pszAppBuf's buffer.

IS_E_EXEC_FAILED constant
const HRESULT IS_E_EXEC_FAILED;

The URL's protocol handler failed to run.

URL_E_INVALID_SYNTAX constant
const HRESULT URL_E_INVALID_SYNTAX;

The URL's syntax is invalid.

URL_E_UNREGISTERED_PROTOCOL constant
const HRESULT URL_E_UNREGISTERED_PROTOCOL;

The URL's protocol does not have a registered protocol handler.

MIME in Windows 95

    Description

    Registry Format

    MIMEAssociationDialog

    MIMEASSOCIATIONDIALOG_IN_FLAGS

Description
With the increasing importance of Internet capability in personal computers, it has become more
important for Internet-aware applications to share configuration information. MIME content type binding
information is stored in the Windows 95 registry where any interested application may manipulate it.
Each registered extension may have an associated MIME content type, and each registered MIME
content type may have a default associated extension.

Registry Format
HKEY_CLASSES_ROOT
 .txt
 <Default> REG_SZ txtfile
 Content Type REG_SZ text/plain
 txtfile
 shell
 open
 command REG_SZ c:\windows\notepad.exe %1
 MIME
 Database
 ContentType
 text/plain
 Extension REG_SZ .txt
 Encoding REG_DWORD 7 (0, 7, or 8 - default 0)

A MIME-aware application may request a browser to use for an unregistered MIME content type using
the MIMEAssociationDialog() API exported by url.dll.

MIMEAssociationDialog
HRESULT MIMEAssociationDialog(HWND hwndParent, DWORD dwInFlags, PCSTR pcszFile,
PCSTR pcszMIMEContentType, PSTR pszAppBuf, UINT ucAppBufLen)

Invokes the unregistered MIME content type dialog box.

Return Value

Returns one of the following return codes on success:

S_OK
MIME content type associated with extension. Extension associated as default extension for
content type. Application associated with extension.

S_FALSE
Nothing registered. One-time execution via selected application requested. Otherwise, returns
one of the following return codes on error:
E_ABORT
The user canceled the operation.

E_FLAGS
The flag combination passed in dwInFlags is invalid.

E_OUTOFMEMORY
There is not enough memory to complete the operation.

E_POINTER
One of the input pointers is invalid.

Parameters

hwndParent
A handle to the window to be used as the parent window of any posted child windows.

dwInFlags
A bit mask of flags from the MIMEASSOCIATIONDIALOG_IN_FLAGS enumeration.

pcszFile
A pointer to a string indicating the name of the file containing data of pcszMIMEContentType's
content type. Ignored if MIMEASSOCDLG_FL_USE_DEFAULT_NAME is set.

pcszMIMEContentType
A pointer to a string indicating the content type for which an application is sought.

pszAppBuf
A buffer to be filled in on success with the path of the application selected by the user. pszAppBuf's
buffer is filled in with the empty string on failure.

ucAppBufLen
The length of pszAppBuf's buffer.

Comments

MIMEAssociationDialog() does not perform any validation on the syntax of the input content type
string. A successful return value does not indicate that the input MIME content type string is a valid
content type.

MIMEASSOCIATIONDIALOG_IN_FLAGS
enum MIMEASSOCIATIONDIALOG_IN_FLAGS {
TRANSLATEURL_FL_GUESS_PROTOCOL

};

MIMEAssociationDialog() input flags.

Members

TRANSLATEURL_FL_GUESS_PROTOCOL
If this member is set, the application selected is to be registered as the handler for files of the given
MIME type. If this member is clear, no association is to be registered. An application is registered only if
this flag is set and the user indicates that a persistent association is to be made. Registration is
possible only if the MIMEAssociationDialog parameter pcszFile contains an extension.

