
Pen Edit Controls

Description

The pen edit custom controls allow for quick development of pen-aware applications under the Pen
Services for Microsoft Windows 95 environment. The application designer may substitute these custom
controls for the standard input controls available in Visual Basic. The pen edit custom controls are
compatible with Visual Basic version 3.0 and Visual C++ version 1.5.

The handwriting edit control (HEdit) is a pen-enhanced version of the text box control. The handwriting
edit control is shown here as it appears in the Toolbox.

The boxed edit control (BEdit) provides the application with comb or box guides that accept pen input.
Each segment or box accepts only a single character of input. The boxed edit control is shown here as
it appears in the Toolbox.

Note    This control requires the Pen Services for Microsoft Windows 95    (Pen API version 2.0). It will
not run under Microsoft Windows for Pen Computing, version 1.0.

These are typical BEdit controls:

File Name

PEN2CTL.VBX

Object Type

BEdit, HEdit

Remarks

The handwriting edit and boxed edit controls are similar to the standard Visual Basic text box, except
that data can be entered into these controls using a pen in addition to the normal keyboard input
method.

The handwriting edit control accepts free-form input from the user. This control supports most of the
Visual Basic text box properties; however, it does not have dynamic data exchange (DDE) capabilities.

The boxed edit control expands upon the properties of the handwriting edit control and allows for
additional manipulation of the writing area. This control accepts a single character of input in each box.
This increases the accuracy of the recognition and in most cases is preferable to the handwriting edit
control.

Distribution Note    When you create and distribute applications that use the pen edit controls, you
should install the file PEN2CTL.VBX in the customer's Microsoft Windows system subdirectory. The
Visual Basic Setup Kit included with the Professional Edition in version 3.0 provides tools to help you

write setup programs that install your applications correctly.

Although many of the properties, events, and methods are similar, this release of the Visual Basic pen
edit controls is not compatible with the previous release of the Pen Edit controls (in the Professional
Edition of Visual Basic version 3.0). Applications written using the previous version will not
automatically work with this version of the pen controls.

All of the properties, events, and methods for these controls are listed in the following table. Properties
and events that apply only to these controls, or require special consideration when used with them, are
marked with an asterisk (*).    (Note that the list order is alphabetic from top to bottom, then left to right.)
See the Visual Basic Language Reference or Help for documentation of the remaining properties,
events, and methods.

Properties

About *CombStyle (2) *InflateBottom SelStart

*AddWordList (2) *DelayRecog *InflateLeft SelText

Alignment (1) Enabled *InflateRight *SetBoxAlphabet (2)

*AltList (2) *EraseInk *InflateTop *ShowAltList (2)

BackColor FontBold *InkColor *SystemDict (2)

BorderStyle FontItalic *InkDataMode TabIndex

*BoxAlphabetAlc (2) FontName *InkDataString TabStop

*BoxCross (2) FontSize *InkWidth Tag

*CellHeight (2) FontStrikethru *IntlPref Text (3)

*CellWidth (2) FontUnderline Left Top

*CharSet ForeColor MultiLine Visible

*CharSetPriority *GestureSet Name Width

*CombBaseLine (2) Height *NumBoxAlphabet (2) *WordListCoercion (2)

*CombEndHeight (2) HelpContextID *OnTap *WordListFile (2)

*CombHeight (2) *hInk Parent *WordListStr (2)

*CombNumCols (2) hWnd *ReadWordList (2) *WriteWordList (2)

*CombNumRows (2) ImeMode *ScrollBars

*CombSpacing (2) Index SelLength

 (1) Applies only to HEdit control
 (2) Applies only to BEdit control
 (3) Text is the default value of the control.

Events

Change GotFocus KeyPress *Update

DragDrop LostFocus KeyUp

DragOver KeyDown *Result

Methods

Move Refresh SetFocus ZOrder

Functions

CPointerToVBType VBTypeToCPointer

AddWordList Property

Applies To

BEdit controls.

Description

Add a word to the control's word list. This property is write-only and is available only at run time.

Visual Basic

[form.]BEdit.AddWordList = {True | False}

Visual C++

pBEdit->SetNumProperty("AddWordList", {TRUE | FALSE})

Remarks

This property is used in conjunction with the WordListStr property. Setting the AddWordList property to
True will add the word in the WordListStr property to the control's word list. Setting this property to
False will have no effect. It is recommended that this property be called after the ReadWordList
property so that all the words can be added to the same list. If ReadWordList is called after
AddWordList, then a new word list is created, overwriting the existing word list.

Data Type

Integer (Boolean)

See Also

WordListStr property and ReadWordList property.

AltList Property

Applies To

BEdit controls.

Description

Sets or returns whether alternate lists are enabled or disabled.

Visual Basic

[form.]BEdit.AltList [= {True | False}]

Visual C++

pBEdit->GetNumProperty("AltList")
pBEdit->SetNumProperty("AltList", {TRUE | FALSE})

Remarks

Setting the AltList property to True enables alternate character and word lists and setting it to False
disable alternate lists. Similarly, a return value of True indicates that the alternate lists are enabled and
a return value of False indicates that the alternate lists are disabled.

Data Type

Integer (Boolean)

BorderStyle Property

Applies To

BEdit and HEdit controls.

Description

Sets or returns the style of the control border. This property is read-only at run time (unlike the standard
Visual Basic BorderStyle property).

Visual Basic

[form.]Penctrl.BorderStyle

Visual C++

pPenctrl->GetNumProperty("BorderStyle")

Remarks

The allowed BorderStyle settings for a BEdit control are the same as for the standard Visual Basic text
and picture box controls. For the HEdit control, a new setting, underline, has been added. The
underline setting may only be used on a single line HEdit control.

Setting Description

0 None.

1 (Default)    Fixed Single.

2 Underline (HEdit only).

Data Type

Integer (Enumerated)

BoxAlphabetAlc Property

Applies To

BEdit controls.

Description

Sets or returns the current alphabet code for the indexed box. This property is available only at
runtime.

Visual Basic

[form.]BEdit. BoxAlphabetAlc(i)[= setting%]

Visual C++

pBEdit->GetNumProperty("BoxAlphabetAlc(i)")
pBEdit->SetNumProperty("BoxAlphabetAlc(i)", setting)

Remarks

This property is a one dimensional Integer array property, that stores the alphabet code (ALC) and is
used to initialize the array. This property is used prior to the SetBoxAlphabet property to set the
alphabet code for the range of boxes specified by the NumBoxAlphabet property. Note that it is an
Integer array. For more information about box edit controls, refer to the Programming Guide to Pen
Services for Microsoft Windows 95.

Data Type

Integer

See Also

SetBoxAlphabet property and NumBoxAlphabet property

BoxCross Property

Applies To

BEdit controls.

Description

Sets or returns whether box crosses in BEdit cells are enabled or disabled.

Visual Basic

[form.]BEdit.BoxCross [    = {True | False}]

Visual C++

pBEdit->GetNumProperty(    "BoxCross")
pBEdit->SetNumProperty(    "BoxCross", {TRUE | FALSE})

Remarks

Setting the BoxCross property to True displays box crosses in the BEdit cells and setting it to False
removes them. Similarly, a return value of True indicates that the box crosses are displayed and a
return value of False indicates that box crosses are not displayed. The default value is False.

Data Type

Integer (Boolean)

CellHeight, CellWidth Properties

Applies To

BEdit controls.

Description

Set or return the height and width of the encapsulating cell for a comb or box style BEdit control.

Visual Basic

[form.]BEdit.CellHeight[= setting&   ]
[form.]BEdit.CellWidth[= setting&   ]

Visual C++

pBEdit->GetNumProperty("CellHeight")
pBEdit->SetNumProperty("CellHeight", setting)

Visual C++

pBEdit->GetNumProperty("CellWidth")
pBEdit->SetNumProperty("CellWidth", setting)

Remarks

CellHeight determines the maximum settings for the CombBaseLine, CombEndHeight, and
CombHeight properties. The CellWidth value limits the CombSpacing values.

These properties use the ScaleMode property setting of the underlying form, frame, or picture box. For
example, if a form's ScaleMode property is set to 3 (pixels), and a BEdit control is placed on that form,
the CellHeight and CellWidth properties for that control are measured in pixels. In Visual C++, all
dimemsions are in pixels.

Data Type

Long

See Also

CombBaseLine property,    CombEndHeight property, CombHeight property and CombSpacing
property.

CharSet Property

Applies To

BEdit and HEdit controls.

Description

Sets or returns the set of characters that will be recognized.

Visual Basic

[form.]Penctrl.CharSet[= setting%]

Visual C++

pPenctrl->GetNumProperty("CharSet")
pPenctrl->SetNumProperty("CharSet", setting)

Remarks

This property allows you to constrain the recognizer to specified sets of characters. For example,
where it is known that a control will only accept numbers, the CharSet can be set to ALC_NUMERIC.

At design time, the CharSet property is set using the custom dialog. At run time, you must calculate the
character set by summing the value of your choices (bitwise-inclusive-OR operation) according to the
alphabet codes found in the PENAPI.TXT file (Visual Basic) or the PENWIN.H file (Visual C++).

The CharSet property settings are:

Setting Description

ALC_DEFAULT (Default) A recognizer-dependent set of
characters. The default system-wide character
set always includes alphanumeric, punctuation,
white-space characters, and gestures.

ALC_LCALPHA Lowercase alphabetic characters.

ALC_UCALPHA Uppercase alphabetic characters.

ALC_NUMERIC Numeric characters: 0 through 9.

ALC_PUNC Punctuation: ! - ; ' " ? () & : .

ALC_MATH % ^ * () - + = { } < >, / | .

ALC_MONETARY Monetary symbols    (for example: $, .)

ALC_OTHER All symbols not included in the preceding sets, for
example ¾ [] _ ~.

ALC_WHITE Spaces between characters.

ALC_GESTURE Gestures.

Data Type

Integer

See Also

CharSetPriority property.

CharSetPriority Property

Applies To

BEdit and HEdit controls.

Description

Sets or returns the current alphabet priority being used by the recognizer.

Visual Basic

[form.]BEdit.CharSetPriority [= setting%]

Visual C++

pBEdit->GetNumProperty("CharSetPriority")
pBEdit->SetNumProperty("CharSetPriority", setting)

Remarks

This property specifies the alphabet codes in the CharSet property that have the highest priority. For
example, if the CharSet property specifies numeric and alpha characters, the CharSetProperty property
could specify numeric characters so that in the event of a recogition confusion between an alpha and
numeric, the numeric would take precedence.

For a listing of the alphabet codes available, use the CharSet property.

Data Type

Integer

See Also

CharSet property.

CombBaseLine Property

Applies To

BEdit controls.

Description

Sets or returns the distance from the top of the encapsulating cell to the base of the box or comb guide
of a BEdit control.

Visual Basic

[form.]BEdit.CombBaseLine[= setting&]

Visual C++

pBEdit->GetNumProperty("CombBaseLine")
pBEdit->SetNumProperty("CombBaseLine", setting)

Remarks

CombBaseLine may range from 0 to the value of the CellHeight property. CombBaseLine also restricts
the CombEndHeight and CombHeight properties. Refer to the diagram in the CellHeight, CellWidth
property description.

In Visual Basic, this property uses the ScaleMode property setting of the underlying form, frame, or
picture box. For example, if a form's ScaleMode property is set to 3 (pixels), and a BEdit control is
placed on that form, the CombBaseLine property for that control is measured in pixels. In Visual C++,
all dimensions are in pixels.

Data Type

Long

See Also

CellHeight property and CombHeight property.

CombEndHeight, CombHeight Properties

Applies To

BEdit controls.

Description

CombEndHeight sets or returns the height of the teeth in the comb in a comb-style BEdit control.

CombHeight sets or returns the height of the box in a box-style BEdit control.

Visual Basic

[form.]BEdit.CombEndHeight[= setting&]
[form.]BEdit.CombHeight[= setting&]

Visual C++

pBEdit->GetNumProperty("CombEndHeight")
pBEdit->SetNumProperty("CombEndHeight", setting)

pBEdit->GetNumProperty("CombHeight")
pBEdit->SetNumProperty("CombHeight", setting)

Remarks

The CombHeight property sets the height of the inner teeth of the comb. This setting is the height of
the boxes when the BEdit control is in box style.

The CombEndHeight property sets the height of the beginning and end teeth of the comb. This
property has no effect when the BEdit control is in box style.

Note    The value of the CombHeight and CombEndHeight properties cannot exceed the
CombBaseLine value.

In Visual Basic, these properties use the ScaleMode property setting of the underlying form, frame, or
picture box. For example, if a form's ScaleMode property is set to 3 (pixels), and a BEdit control is
placed on that form, the CombEndHeight and CombHeight properties for that control are measured in
pixels. In Visual C++, all dimensions are in pixels.

See the diagram in the CellHeight, CellWidth property description.

Data Type

Long

See Also

CombBaseLine property and CellHeight property.

CombNumCols, CombNumRows Properties

Applies To

BEdit controls.

Description

Return the number of columns and rows displayed in a BEdit control. These properties not available at
design time and are read-only at run time.

Visual Basic

[form.]BEdit.CombNumCols
[form.]BEdit.CombNumRows

pBEdit->GetNumProperty("CombNumCols")

pBEdit->GetNumProperty("CombNumRows")

Remarks

The CombNumCols property returns the number of columns in a BEdit control. The CombNumRows
property returns the number of rows. These settings are dependent on the dimensions of the control
and on the CellHeight and    CellWidth properties. CombNumRows will always be 1 if the MultiLine
property is set to False.

Data Type

Integer

CombSpacing Property

Applies To

BEdit controls.

Description

Sets or returns the distance between the side of the encapsulating cell walls and the side of the comb
or box guide.

Visual Basic

[form.]BEdit.CombSpacing[= setting&]

Visual C++

pBEdit->GetNumProperty("CombSpacing")
pBEdit->SetNumProperty("CombSpacing", setting)

Remarks

The distance specified in the CombSpacing property is applied to both sides of the box and the comb
guide area. CombSpacing cannot be greater than half the CellWidth.

This properties use the ScaleMode property setting of the underlying form, frame, or picture box. For
example, if a form's ScaleMode property is set to 3 (pixels), and a BEdit control is placed on that form,
the CombSpacing property for that control is measured in pixels.

See the diagram in the CellHeight, CellWidth property description.

Data Type

Long

CombStyle Property

Applies To

BEdit controls.

Description

Sets or returns the BEdit style type.

Visual Basic

[form.]BEdit.CombStyle[= setting%]

Visual C++

pBEdit->GetNumProperty("CombStyle")
pBEdit->SetNumProperty("CombStyle", setting)

Remarks

The CombStyle property settings are:

Setting Description

0 (Default) Comb style.

1 Box style.

Data Type

Integer (Enumerated)

DelayRecog Property

Applies To

BEdit and HEdit controls.

Description

Determines whether the control recognizes writing immediately or leaves it as ink on the control for
recognition at a later time.

Visual Basic

[form.]Penctrl.DelayRecog [= {True | False}]

Visual C++

pPenctrl->GetNumProperty("DelayRecog")
pPenctrl->SetNumProperty("DelayRecog", {TRUE | FALSE})

Remarks

The DelayRecog property settings are:

Setting Description

False (Default) Recognition is not delayed.

True Recognition is delayed; writing remains as ink.

When DelayRecog is set to True, all writing remains as ink on the control until the property is set to
False. When it is changed from True to False, the OnTap property is examined. If OnTap is True,
recognition of the collected ink takes place when the user taps on the control with the pen; otherwise,
recognition occurs immediately.

Any writing performed on the control while DelayRecog is set to False is recognized according to the
user preferences set in the Control Panel.

Data Type

Integer (Boolean)

EraseInk Property

Applies To

BEdit and HEdit controls. This property is not available at design time.

Description

Setting the EraseInk property to True will erase any ink in a control if DelayRecog is True.

Visual Basic

[form.]Penctrl.EraseInk[= {True | False}]

Visual C++

pPenctrl->GetNumProperty("EraseInk")
pPenctrl->SetNumProperty("EraseInk", {TRUE | FALSE})

Remarks

If a control has DelayRecog set to True, the action of setting EraseInk to True causes any ink in the
control to be erased. The property setting reverts back to False immediately after being set. It is used
somewhat like a method rather than a property. Changing this property has no effect on a control if
DelayRecog is set to False.

Data Type

Integer (Boolean)

See Also

DelayRecog property.

GestureSet Property

Applies To

BEdit and HEdit controls.

Description

Sets or returns the recognition of a specific gesture or a collection of gestures in the control.

Visual Basic

[form.]BEdit.GestureSet[= setting%]

Visual C++

pBEdit->GetNumProperty("GestureSet")
pBEdit->SetNumProperty("GestureSet", setting)

Remarks

At design time, the GestureSet property is set using the custom dialog. At run time, you must calculate
the gesture set by summing the value of your choices (bitwise-inclusive-OR operation) according to the
gesture codes found in the PENAPI.TXT file (Visual Basic) or the PENWIN.H file (Visual C++).

The following table lists the GestureSet property settings for the pen edit controls.

Global Constant Value

GST_SEL 0x00000001L

GST_CLIP 0x00000002L

GST_WHITE 0x00000004L

GST_EDIT 0x00000010L

GST_SYS 0x00000017L

GST_CIRCLELO 0x00000100L

GST_CIRCLEUP 0x00000200L

GST_CIRCLE 0x00000300L

GST_ALL 0x00000317L

Data Type

Integer

hInk Property

Applies To

BEdit and HEdit controls.

Description

Returns a handle to an ink structure (HPENDATA) used by the Pen services. This property is not
available at design time.

Visual Basic

[form.]Penctrl.hInk[= setting%]

Visual C++

pPenctrl->GetNumProperty("hInk")
pPenctrl->SetNumProperty("hInk", setting)

Remarks

The handle is provided by the operating environment and can be used to call Pen API functions that
require a handle to a pen data structure. For more information on handles to pen data, refer to the
Programming Guide to Pen Services for Microsoft Windows 95.

When the DelayRecog property is set to FALSE on a control, the hInk property is always 0.

Data Type

Integer

InflateBottom, InflateLeft, InflateRight, InflateTop Properties

Applies To

BEdit and HEdit controls.

Description

Set or return the area around a control's boundary onto which ink will be allowed.

Visual Basic

[form.]Penctrl.InflateBottom[= setting&]
[form.]Penctrl.InflateLeft[= setting&]
[form.]Penctrl.InflateRight[= setting&]
[form.]Penctrl.InflateTop[= setting&   ]

Visual C++

pPenctrl->GetNumProperty("InflateBottom")
pPenctrl->SetNumProperty("InflateBottom", setting)

pPenctrl->GetNumProperty("InflateLeft")
pPenctrl->SetNumProperty("InflateLeft", setting)

pPenctrl->GetNumProperty("InflateRight")
pPenctrl->SetNumProperty("InflateRight", setting)

pPenctrl->GetNumProperty("InflateTop")
pPenctrl->SetNumProperty("InflateTop", setting)

Remarks

These properties define a boundary around the control onto which ink can be placed after initially
starting to ink within the control. Each of these properties must have a value greater than or equal to
zero.

The settings are only applicable if the control is not in delayed recognition mode (that is, the
DelayRecog property is False). In delayed-recognition mode, ink cannot be drawn outside a control's
boundary.

Data Type

Long

InkColor Property

Applies To

BEdit, HEdit,    and IEdit controls.

Description

Sets or returns the ink color.

Visual Basic

[form.]Penctrl.InkColor[= color&]

Visual C++

pPenctrl->GetNumProperty("InkColor")
pPenctrl->SetNumProperty("InkColor", color)

Remarks

The InkColor property settings are:

Setting Description

&H8000000F& (Default) Pen ink color as set in the Control Panel for
Microsoft Windows for Pen Computing.

(color) In Visual Basic, color specified by using the RGB
scheme or the QBColor function in code. In Visual C++,
use the MAKESYSCOLOR macro defined in the
AFXEXT.H file to create system color constants.
Standard RGB colors cab be used in Visual C++ as well.

The InkColor property, when read, only returns the value set by the InkColor property, not any value
that might have been changed by the user in the Properties dialog or Default Properties dialog.

Data Type

Long

InkDataMode Property

Applies To

BEdit, HEdit, and IEdit controls.

Description

Sets or returns the mode that controls how the InkDataString data is used.

Visual Basic

[form.]Penctrl.InkDataMode[= setting%]

Visual C++

pPenctrl->GetNumProperty("InkDataMode")
pPenctrl->SetNumProperty("InkDataMode", setting)

Remarks

The InkDataMode property settings are:

Setting Description

0 (Default)    Replaces any ink that may be in the control
when data is assigned to the InkDataString property.

1 Merges the currently displayed ink when ink data is
assigned to the InkDataString property.

Data Type

Integer (Enumerated)

See Also

InkDataString property.

InkDataString Property

Applies To

BEdit, HEdit, and VIEdit controls.

Description

Sets or returns a string containing the compressed ink data associated with the control. This property is
only available at run time.

Visual Basic

[form.]Penctrl.InkDataString[= inkdatastring$]

Visual C++

pPenctrl->GetStrProperty("InkDataString")
pPenctrl->SetStrProperty("InkDataString", setting)

Remarks

When a string is assigned to a control with DelayRecog set to True, the InkDataMode is checked to
determine whether the new ink data replaces the existing ink, or if the new ink is merged with the
existing ink.

If the control has DelayRecog set to False and ink data is assigned to the control's InkDataString
property, then the ink is immediately recognized as if it were written on the control. If InkDataMode is
set to '0 - Replace' when this assignment is done, then any existing text in the control is replaced by
the result from recognizing the ink. Otherwise, the new recognition result is appended to the text in the
control.

When DelayRecog is set to False on a control, the InkDataString property is always a null string ("").

Assigning invalid or uncompressed ink data to the InkDataString property generates a run-time error
regardless of the setting DelayRecog.

Data Type

String (HLSTR)

See Also

InkDataMode property and DelayRecog property.

InkWidth Property

Applies To

BEdit and HEdit controls.

Description

Sets or returns the width of the ink that is drawn.

Visual Basic

[form.]Penctrl.InkWidth[= setting%]

Visual C++

pPenctrl->GetNumProperty("InkWidth")
pPenctrl->SetNumProperty("InkWidth", setting)

Remarks

The InkWidth setting defaults to -1, which tells the control to use the system default ink width (as set
using the Control Panel). The valid range for the InkWidth property is 0 to 15 pixels. No ink is displayed
when InkWidth is set to 0.

The InkWidth property, when read, only returns the value set by the InkWidth property, not any value
that might have been changed by the user in the Properties dialog or Default Properties dialog.

Data Type

Integer

IntlPref Property

Applies To

BEdit and HEdit controls.

Description

Determines whether all ANSI characters are recognized or not.

Visual Basic

[form.]Penctrl.IntlPref [= {True | False}]

Visual C++

pPenctrl->GetNumProperty("IntlPref")
pPenctrl->SetNumProperty("IntlPref", {TRUE | FALSE})

Remarks

Setting the IntlPref property to True allows the recognition of all ANSI characters. Setting it to False
disables recognition of international characters.

Data Type

Integer (Boolean)

NumBoxAlphabet Property

Applies To

BEdit controls.

Description

Sets or returns the range of boxes to be used for recognition.

Visual Basic

[form.]BEdit.NumBoxAlphabet[= setting%]

Visual C++

pBEdit->GetNumProperty("NumBoxAlphabet")
pBEdit->SetNumProperty("NumBoxAlphabet", setting)

Remarks

The default value is 0. This property is used in conjunction with the BoxAlphabetAlc and the
SetBoxAlphabet properties to set the alphabet code (ALC_ values) for the range of boxes (starting from
the first box) in a BEdit control. The maximum allowable values is 31.

Data Type

Integer

See Also

BoxAlphabetAlc property and SetBoxAlphabet property.

OnTap Property

Applies To

BEdit and HEdit controls.

Description

Determines whether the control recognizes writing immediately upon changing the DelayRecog
property from True to False or waits until the user taps the control.

Visual Basic

[form.]Penctrl.OnTap[= {True | False}]

Visual C++

pPenctrl->GetNumProperty("OnTap")
pPenctrl->SetNumProperty("OnTap", setting)

Remarks

The OnTap property settings are:

Setting Description

False (Default) Recognition is not delayed after DelayRecog is set
to False.

True Recognition is delayed until the user taps the control (after
DelayRecog is set to False).

When DelayRecog is set to False, this property has no effect on the control. Its state is examined only
when the DelayRecog property is changed from True to False.

Data Type

Integer (Boolean)

See Also

DelayRecog property.

ReadWordList Property

Applies To

BEdit controls.

Description

Reads a word list from a file. This property is write-only and is available only at run time.

Visual Basic

[form.]BEdit.ReadWordList    = {True | False}

Visual C++

pBEdit->SetNumProperty("ReadWordList", {TRUE | FALSE})

Remarks

This property is used in conjunction with the WordListFile property. Setting the ReadWordList property
to True creates a word list, if it does not already exist, and adds the words from the file specified by the
WordListFile property. Setting this property to False has no effect.

It is recommended that this property be called before the AddWordList property so that all the word list
can be read from a file and subsequently, words can be added to this word list. For more information
on word lists refer to the Pen API documentation.

Data Type

Integer (Boolean)

See Also

WordListFile property and AddWordList property.

ScrollBars Property

Applies To

BEdit, HEdit, and IEdit controls.

Description

Determines if the control has horizontal or vertical scroll bars. This property is only available at design
time.

Visual Basic

[form.]Penctrl.ScrollBars[= setting%]

Visual C++

pPenctrl->GetNumProperty("ScrollBars")
pPenctrl->SetNumProperty("ScrollBars", setting)

Remarks

The ScrollBars property settings are:

Setting Description

0 (Default) None

1 Horizontal (HEdit only)

2 Vertical

3 Both    (HEdit only)

The settings for the ScrollBars property in a BEdit or HEdit control operate in the same manner as the
settings for a standard Visual Basic text box control.

Horizontal scroll bars are not allowed on BEdit controls.

For IEdit controls, the scroll bars enabled appear only when the ink drawn goes outside the boundaries
of the control.

Data Type

Integer (Enumerated)

SetBoxAlphabet Property

Applies To

BEdit controls.

Description

Sets the alphabet code specified by the BoxAlphabetAlc property for the range of boxes specified by
the NumBoxAlphabet property. This property is write-only and is available only at runtime.

Visual Basic

[form.]BEdit.SetBoxAlphabet = { True | False }

Visual C++

pBEdit->SetNumProperty("SetBoxAlphabet", {TRUE | FALSE})

Remarks

Setting the SetBoxAlphabet property to True will set the alphabet code for a range of boxes.

This property is used somewhat like a method rather than a property and is used in conjunction with
the BoxAlphabetAlc and    NumBoxAlphabet properties. To set the alphabet code (ALC) for a range of
boxes in a BEdit control, set the BoxAlphabetAlc property to the alphabet code or codes desired, set
the NumBoxAlphabet property to the range of boxes to which the alphabet code restriction will apply,
and then set the SetBoxAlphabet property to True to set the alphabet code to those boxes.

Data Type

Integer (Boolean)

See Also

BoxAlphabetAlc property and NumBoxAlphabet property.

ShowAltList Property

Applies To

BEdit controls.

Description

Shows or hides the alternate character or word list. This property is not available at design time and is
write-only at runtime.

Visual Basic

[form.]BEdit.ShowAltList    = {True | False}

Visual C++

pBEdit->SetNumProperty("ShowAltList", {TRUE | FALSE})

Remarks

Setting the ShowAltList property to True displays the alternate character or word list and setting it to
False will hide it.

Data Type

Integer (Boolean)

SystemDict Property

Applies To

BEdit controls.

Description

Sets or returns whether the default system dictionary is enabled or disabled.

Visual Basic

[form.]BEdit.SystemDict [= {True | False}]

Visual C++

pBEdit->GetNumProperty("SystemDict")
pBEdit->SetNumProperty("SystemDict", {TRUE | FALSE})

Remarks

Setting the SystemDict property to True will enable the system dictionary that the system default
recognizer will use and setting it to False will disable it. It returns True if the system dictionary is
enabled and False otherwise.

This property is useful for disabling the system dictionary for a control when a word list is being used so
that the recognizer uses only words from the word list.

Data Type

Integer (Boolean)

See Also

ReadWordList property, WordListFile property, and WriteWordList property.

WordListCoercion Property

Applies To

BEdit controls.

Description

Sets and returns the word list coercion to be used for word lists.

Visual Basic

[form.]BEdit.WordListCoercion [= setting%]

Visual C++

pBEdit->GetNumProperty("WordListCoercion")
pBEdit->SetNumProperty("WordListCoercion", setting)

Remarks

The WordListCoercion property is used to determine to what degree the recognizer will use the word
list when performing recognition.

The following table lists the WordListCoercion property settings:

Setting Description

0 - None None. The word list is not used.

1 - Advise (Default) The word list is used in conjunction with the
system dictionary. The weighting of the word list and
system dictionary is recognizer-dependent.

2 - Force The word list is used exclusively. The recognizer is forced
to return a word from the word list.

Data Type

Integer (Enumerated)

WordListFile Property

Applies To

BEdit controls.

Description

Sets or returns the word list file name.

Visual Basic

[form.]BEdit.WordListFile[= setting$]

Visual C++

pBEdit->GetStrProperty("WordListFile")
pBEdit->SetStrProperty("WordListFile", setting)

Remarks

This property specifies the filename of the file to which a word list is written. It is used in conjunction
with the ReadWordList and WriteWordList properties to read and write the word list respectively. A word
list is an application-defined list of words that the recognizer uses in attempting to match handwriting
input.

Data Type

String

See Also

ReadWordList property and WriteWordList property.

WordListStr Property

Applies To

BEdit controls.

Description

Contains the word to be added to the word list. Available at run time only.

Visual Basic

[form.]BEdit.WordListStr [= setting$]

Visual C++

pBEdit->GetStrProperty("WordListStr")
pBEdit->SetStrProperty("WordListStr", setting)

Remarks

The WordListStr property contains a word that is to be added to the word list currently in use by the
control. If it does not exist, a new word list for the control is created and the word is added to it. It is
used in conjunction with the AddWordList property.

Data Type

String

See Also

AddWordList property.

WriteWordList Property

Applies To

BEdit controls.

Description

Writes a word list to a file. This property is write-only and is available at run time only.

Visual Basic

[form.]BEdit.WriteWordList    = {True | False}

Visual C++

pBEdit->SetNumProperty("WriteWordList", {TRUE | FALSE})

Remarks

Setting the WriteWordList property to True will write the word list to the file specified by the
WordListFile property. It will overwrite any existing file with the same name. Setting this property to
False will have no effect. For more information on word lists refer to Programming Guide to Pen
Services for Microsoft Windows 95.

Data Type

Integer (Boolean)

See Also

WordListFile property.

Result Event

Applies To

BEdit and HEdit controls.

Description

Occurs whenever the control receives recognition results from the recognizer.

Syntax

Sub Penctrl_Result (cSymbols As Integer, lpSymbols As Long)

Remarks

The Result event occurs whenever the recognizer returns any recognition results to the control. The
cySymbols parameter contains the number of recognized characters. The lpSymbols parameter
contains a C pointer to a Visual Basic string    that contains the recognized characters. The conversion
from C pointer to Visual Basic string must be done by the application.

Update Event

Applies To

BEdit and HEdit controls.

Description

Occurs whenever the data in a control is changed.

Syntax

Sub Penctrl_Update()

Visual C++

Function Signature:
void CMyDialog::OnEditUpdate (UINT, int, Cwnd*, LPVOID)

Remarks

The Update event occurs before the control redraws the data. This differs from the Change event that
redraws the data before the event. Update can be used to format the new data so that flashes do not
appear. An Update event does not occur when a Visual Basic program changes the text in the control
using the Text property of the control.

VBTypeToCPointer Function

Description

Copies bytes from a Visual Basic variable memory location to a system memory location.

Visual Basic Syntax

VBTypeToCPointer(vbSrc As Any, ByVal lpDest, ByVal cNum By Integer)

Remarks

Copies cNum number of bytes from a memory location pointed to by lpSrc and places them in the
vbDest memory location.

See Also

CPointerToVBType function.

CPointerToVBType Function

Description

Copies bytes from a system memory location to a Visual Basic variable memory location.

Visual Basic Syntax

CPointerToVBType(ByVal lpSrc As Long, vbDest As Any, ByVal cNum By Integer)

Remarks

Copies cNum number of bytes from a memory location pointed to by lpSrc and places them in the
vbDest memory location.

See Also

VBTypeToCPointer function.

Pen Edit Controls Error Messages

The following table lists the trappable errors for the pen edit controls.

Error
number Message explanation

32001 PENERR_INKWIDTH
InkWidth must be in
range 0-15 or -1 for
default.

This error is caused by
setting the InkWidth
property to an invalid
value.

32002 PENERR_INVALIDINK
DATA
Invalid InkDataString
format.

This error can occur
when trying to assign
invalid or
uncompressed ink data
to the InkDataString
property.

32003 PENERR_INFLATE
Inflate value has to be
greater than or equal
to 0.

This error occurs if
either InflateTop,
InflateLeft,
InflateRight, or
InflateBottom property
is set to a value less
than 0.

32004 PENERR_NEGCELLW
IDTH
CellWidth has to be
greater than 0.

This error occurs if the
CellWidth property is
set to a value less than
zero.

32005 PENERR_CELLWIDT
H
CellWidth has to be
greater than or equal
to (CombSpacing * 2).

This error occurs if the
CellWidth property is

set to a value that is less
than two times the
value of the
CombSpacing property.
Try setting
CombSpacing to 0
before setting the
CellWidth property.

32006 PENERR_NEGCELLH
EIGHT
CellHeight has to be
greater than 0.

This error occurs if the
CellHeight property is
set to a value less than
zero.

32007 PENERR_CELLHEIG
HT
CellHeight has to be
greater than or equal
to CombBaseLine.

This error occurs if the
CellHeight property is
set to a value less than
the CombBaseLine
property. Change the
CombBaseLine
property before
changing the
CellHeight property.

32008 PENERR_COMBSPA
CING
CombSpacing out of
range (0    CellWidth /
2).

This error occurs if the
CombSpacing property
is set to a value that is
either less than zero or
more than half the cell
width.

32009 PENERR_COMBBAS
ELINE
CombBaseLine out of
range (0 - CellHeight).

This error occurs if the
CombBaseLine
property is set to a
value that is either less

than 0 or greater than
the CellHeight
property.

32010 PENERR_COMBEND
CUSP
CombBaseLine must
be greater than or
equal to CombHeight
and CombEndHeight.

32011 PENERR_COMBHEIG
HT
CombHeight out of
range (0 -
CombBaseLine).

This error occurs if the
CombHeight property
is set to a value that is
either less than 0 or
greater than the value
of the CombBaseLine
property.

32012 PENERR_COMBEND
HEIGHT
CombEndHeight out
of range (0 -
CombBaseLine).

This error occurs if the
CombEndHeight
property is set to a
value less than 0 or
greater than the value
of the CombBaseLine
property.

32013 PENERR_ADDWORD
LIST
Unable to add word
to word list.

This error occurs if
there is an error in
adding a word,
specified by the
WordListStr property,
to the current word list.

32014 PENERR_READWOR
DLIST
Unable to read word
list from the specified
file.

This error occurs if

there is an error in
reading the word list
from the file, specified
by the WordListFile
property.

32015 PENERR_WRITEWOR
DLIST
Unable to write word
list to the specified
file.

This error occurs if
there is an error in
writing the current
word list to the file,
specified by the
WordListFile property.

32016 PENERR_SETBOXAL
PHABET
Unable to set the
alphabet codes for
the range of boxes.

This error occurs if the
BoxAlphabetAlc
cannot be set, possibly
due to a problem in the
NumBoxAlphabet or
BoxAlphabetAlc
property values.

Pen Ink Edit Control

Description

The pen ink edit control is an enhanced picture box control that allows the user to draw, erase, moved,
resize, and manipulate pen strokes called ink on the control. It also allows you set background pictures
and grid lines.

Note    This control requires Microsoft Pen Services for Windows 95 (Pen API 2.0).

The pen ink edit control is shown here as it appears as an icon in the Toolbox.

File Name

PEN2CTL.VBX

Object Type

IEdit

All of the properties, events, and methods for this control are listed in the following table. Properties
and events that apply only to this control, or require special consideration when used with it, are
marked with an asterisk(*).    (Note that the list order is alphabetic from top to bottom, then left to right.)
See the Visual Basic Language Reference or Help for documentation of the remaining properties,
events, and methods.

Properties

About *FormatColor hWnd Name

*AppData *FormatItem *Image Parent

*AutoSize *FormatWidth ImeMode *Picture (1)

BackColor *GridHeight Index *Recog

BorderStyle *GridOrgLeft *InkColor *SaveUpStrokes

*CountSelStro
kes

*GridOrgTop *InkDataMode *ScrollBars

*CountStrokes *GridColor *InkDataString *Security

DragHandle *GridStyle *InkingMode *SelectAll

DragIcon *GridLineWidth *InkInput *StrokeIndex

*Draw *GridWidth *InkPicture *StrokeSel

Enabled Height *InkRectHeight TabIndex

*EraseInk HelpContextID *InkRectLeft TabStop

*EraserColor *hInk *InkRectTop Tag

*EraserWidth *hInkGet *InkRectWidth Top

*Format *hInkSet *InkWidth Visible

*FormatAttrb *hMenu Left Width
 (1) Picture is the default value of the control.

Events

Change *Gesture *ModeChanged

DragDrop GotFocus Update

DragOver LostFocus

Methods

Drag Move Refresh Zorder

Functions

CPointerToVBType VBTypeToCPointer

AppData Property

Applies To

IEdit controls.

Description

Sets or returns the user defined data of the control.

Visual Basic

[form.]IEdit.AppData[= setting&]

Visual C++

pIEdit->GetNumProperty("AppData")
pIEdit->SetNumProperty("AppData", setting)

Remarks

The pen ink edit control does not use this data in any way. It is provided for the application developer's
convenience.

Data Type

Long

AutoSize Property

Applies To

IEdit controls.

Description

Determines the appearance of the background image in the pen ink edit control.

Visual Basic

[form.]IEdit.AutoSize[= setting%]

Visual C++

pIEdit->GetNumProperty("AutoSize")
pIEdit->SetNumProperty("AutoSize", setting)

Remarks

The AutoSize property settings are as follows:

Setting Description

0 (Default) No autosizing takes place and the image is
displayed in the upper-left corner of the control.

1 Automatically stretches the image to the size of the control.

2 Automatically adjusts the size of the control to exactly fit the
bitmap.

3 Tiles the background image on the control.

Data Type

Integer (Enumerated)

CountSelStrokes Property

Applies To

IEdit controls.

Description

Returns the number of selected strokes.

Visual Basic

[form.]IEdit.CountSelStrokes

Visual C++

pIEdit->GetNumProperty("CountSelStrokes")

Remarks

This property is not available at design time and read-only at run time.

Data Type

Integer

CountStrokes Property

Applies To

IEdit controls.

Description

Returns the number of strokes in the control.

Visual Basic

[form.]IEdit.CountStrokes

Visual C++

pIEdit->GetNumProperty("CountStrokes")

Remarks

This property is not available at design time and read-only at run time.

Data Type

Integer

Draw Property

Applies To

IEdit controls.

Description

Sets or returns the drawing options.

Visual Basic

[form.]IEdit.Draw[= setting%]

Visual C++

pIEdit->GetNumProperty("Draw")
pIEdit->SetNumProperty("Draw", setting)

Remarks

The following table lists the Draw property settings for the pen ink edit control:

Setting Description

0 None

1 (Default) Fast.

The Visual Basic interface does not provide access to animated drawing, as does the C interface.

Data Type

Integer (Enumerated)

EraseInk Property

Description

Setting the EraseInk property to True erases any ink in the control. This property is not available at
design time.

Visual Basic

[form.]IEdit.EraseInk[= {True | False}]

Visual C++

pIEdit->GetNumProperty("EraseInk")
pIEdit->SetNumProperty("EraseInk", {TRUE | FALSE})

Remarks

The property setting reverts back to False immediately after being set to True. It is used somewhat like
a method rather than a property. The default color of the erase ink that is displayed while erasing is the
nearest solid color to the BackColor property of the control.

Data Type

Integer (Boolean)

EraserColor Property

Applies To

IEdit controls.

Description

Sets and returns the eraser color.

Visual Basic

[form.]IEdit.EraserColor[= color&]

Visual C++

pIEdit->GetNumProperty("EraserColor")
pIEdit->SetNumProperty("EraserColor", color)

Remarks

By default, the window background color is used as the eraser color and it is not recommended that it
be set to a different color.

The EraserColor property, when read, only returns the value set by the EraserColor property, not any
value that might have been changed by the user in the Properties dialog or Default Properties dialog.

Data Type

Long

EraserWidth Property

Applies To

IEdit controls.

Description

Sets or returns the current eraser width.

Visual Basic

[form.]IEdit.EraserWidth[= setting%]

Visual C++

pIEdit->GetNumProperty("EraserWidth")
pIEdit->SetNumProperty("EraserWidth", setting)

Remarks

Acceptable values for the EraserWidth property are from 0 to 15 pixels, or -1 for default. By default it is
set to 5 pixels.

The EraserWidth property, when read, only returns the value set by the EraserWidth property, not any
value that might have been changed by the user in the Properties dialog or Default Properties dialog.

Data Type

Integer

Format Property

Applies To

IEdit controls.

Description

Actively sets the format of the strokes in the control. This property is write-only and is available only at
run time.

Visual Basic

[form.]IEdit.Format[= {True | False}]

Visual C++

pIEdit->SetNumProperty("Format", {TRUE | FALSE})

Remarks

Setting the Format property to True immediately sets the format of the strokes in the control to the
values specified by the current value of the    FormatAttrb property based on the current value of the   
FormatItem property, which is used to specify which stroke or set of strokes are formatted. Setting this
property to False has no effect.

Data Type

Integer (Boolean)

See Also

FormatItem property, FormatAttrb property, StrokeIndex property,    StrokeSel property, FormatColor
property and FormatWidth property.

FormatAttrb Property

Applies To

IEdit controls.

Description

Specifies or returns the attributes to be formatted by the Format property. This property is not available
at design time and is read-write at run time.

Visual Basic

[form.]IEdit.FormatAttrb[= setting%]

Visual C++

pIEdit->GetNumProperty("FormatAttrb")
pIEdit->SetNumProperty("FormatAttrb", setting)

Remarks

This property setting is used by the Format property in conjunction with the FormatItem property to set
the format of strokes.

The FormatAttrb property specifies whether to set the stroke color, width, or both. The FormatItem
property specifies whether to set the FormatAttrib value for all strokes, selected strokes, or the stroke
specified by the StrokeIndex property. A group of strokes can be selected prior to setting the Format
property by setting the StrokeIndex property to each stroke and setting the StrokeSel property.

The following table lists the FormatAttrb property settings for the pen ink edit control:

Setting Description

0 Set stroke color

1 Set stoke width

2 (Default) Set both stroke color and width.

To set or query the color or width to which the stroke(s) will be set, use the FormatColor and
FormatWidth properties, respectively.

Data Type

Integer (Enumerated)

See Also

Format property, FormatItem property, FormatColor property, FormatWidth property, StrokeIndex
property, and StrokeSel property.

FormatColor Property

Applies To

IEdit controls.

Description

Specifies the color to be used by the Format Property.

Visual Basic

[form.]IEdit.FormatColor[= setting&]

Visual C++

pIEdit->SetNumProperty("FormatColor", setting)

Remarks

This property determines the color that will applied to stroke or set of strokes when the FormatAttrb
property specifies a color attribute and the Format property is set to True. The set of strokes to which
this applies is determined by the FormatItem property.

The FormalColor property can be set to any color by using the RGB scheme or the QBColor function
in code, or an offset into the system palette (like the standard color properties).

The FormatColor property, when read, only returns the value set by the FormatColor property, not any
value that might have been changed by the user in the Properties dialog or Default Properties dialog.

Data Type

Long

See Also

Format property, FormatItem property, FormatAttrb property, FormatWidth property, StrokeIndex
property, StrokeSel property.

FormatItem Property

Applies To

IEdit controls.

Description

Specifies or returns the stroke or set of strokes to be formatted by the Format property.

Visual Basic

[form.]IEdit.FormatItem[= setting%]

Visual C++

pIEdit->GetNumProperty("FormatItem")
pIEdit->SetNumProperty("FormatItem", setting)

Remarks

This property is used to determine the stroke or set of strokes that will be formatted when the Format
property is set to True. This property is read-write at run time and is not available at design-time.

The following table lists the FormatItem property settings for the pen ink edit control:

Setting Description

0 Set attributes for all the strokes.

1 (Default) Set attributes for all the selected strokes.

2 Set attributes of the stroke indexed by the StrokeIndex property
setting.

Data Type

Integer (Enumerated)

See Also

Format property, FormatAttrb property, StrokeIndex property, FormatColor property, FormatWidth
property, and StrokeSel property.

FormatWidth Property

Applies To

IEdit controls.

Description

Specifies the width in pixels to be used by the Format property.

Visual Basic

[form.]IEdit.FormatWidth[= setting%]

Visual C++

pIEdit->GetNumProperty("FormatWidth")
pIEdit->SetNumProperty("FormatWidth", setting)

Remarks

This property determines the width that will be applied to stroke or set of strokes when the FormatAttrb
property specifies a width attribute and the Format property is set to True. The set of strokes to which
this applies is determined by the FormatItem property.

Acceptable values for the FormatWidth property are from 0 to 15 pixels, or -1 for default.

Data Type

Integer

See Also

Format Property, FormatItem property, FormatAttrb property, FormatColor property, StrokeIndex
property, and StrokeSel property.

GridHeight Property

Applies To

IEdit controls.

Description

Sets or returns the height (y-axis spacing) of the grid lines in pixels.

Visual Basic

[form.]IEdit.GridHeight [= setting%]

Visual C++

pIEdit->GetNumProperty("GridHeight")
pIEdit->SetNumProperty("GridHeight", setting)

Remarks

A setting of zero specifies no horizontal grid lines.

Data Type

Integer

See Also

GridOrgLeft property, GridOrgTop property, and GridWidth property.

GridOrgLeft Property

Applies To

IEdit controls.

Description

Sets or returns the x-axis origin of the grid in pixels.

Visual Basic

[form.]IEdit.GridOrgLeft [= setting%]

Visual C++

pIEdit->GetNumProperty("GridOrgLeft")
pIEdit->SetNumProperty("GridOrgLeft", setting)

Remarks

The default property setting is zero.

Data Type

Integer

See Also

GridOrgTop property, GridHeight property, and GridWidth property.

GridOrgTop Property

Applies To

IEdit controls.

Description

Sets or returns the y-axis origin of the grid in pixels.

Visual Basic

[form.]IEdit.GridOrgTop [= setting%]

Visual C++

pIEdit->GetNumProperty("GridOrgTop")
pIEdit->SetNumProperty("GridOrgTop", setting)

Remarks

The default property setting is zero.

Data Type

Integer

See Also

GridOrgLeft property, GridHeight property, and GridWidth property.

GridColor Property

Applies To

IEdit controls.

Description

Sets or returns the color of all lines used in the grid.

Visual Basic

[form.]IEdit.GridColor [= color&]

Visual C++

pIEdit->GetNumProperty("GridColor")
pIEdit->SetNumProperty("GridColor", color)

Remarks

The GridColor property can be set to any color by using the RGB scheme or the QBColor function in
code, or an offset into the system palette (like the standard color properties).

Data Type

Long

See Also

GridStyle property and GridLineWidth property.

GridStyle Property

Applies To

IEdit controls.

Description

Sets or returns the style of the lines used in the grid.

Visual Basic

[form.]IEdit.GridStyle [= value]

Visual C++

pIEdit->GetNumProperty("GridStyle")
pIEdit->SetNumProperty("GridStyle", setting)

Remarks

The GridStyle property supports the following values.

Value Style

0 Solid.

1 Dash.

2 Dot.

3 Dash dot.

4 Dash dot dot.

All lines with width greater than 1 appear as solid.

Data Type

Integer

See Also

GridStyle property and GridLineWidth property.

GridLineWidth Property

Applies To

IEdit controls.

Description

Sets or returns the width of the lines used in the grid.

Visual Basic

[form.]IEdit.GridLineWidth [= value]

Visual C++

pIEdit->GetNumProperty("GridLineWidth")
pIEdit->SetNumProperty("GridLineWidth", setting)

Remarks

The GridLineWidth property accepts any positive integer value as the number of pixels used for the
width of each grid line.

This property is available at design time and read-write at run time.

Data Type

Integer

See Also

GridStyle property and GridColor property.

GridWidth Property

Applies To

IEdit controls.

Description

Sets or returns the width (x-axis spacing) of the grid lines in pixels.

Visual Basic

[form.]IEdit.GridWidth [= setting%]

Visual C++

pIEdit->GetNumProperty("GridWidth")
pIEdit->SetNumProperty("GridWidth", setting)

Remarks

A setting of zero specifies no vertical grid lines.

Data Type

Integer

See Also

GridOrgLeft property, GridOrgTop property, and GridHeight property.

hInk Property

Applies To

IEdit controls.

Description

Returns a handle to a pen data object (HPENDATA) used by the pen services. This property is not
available at design time.

Visual Basic

[form.]IEdit.hInk[= setting%]

Visual C++

pIEdit->GetNumProperty("hInk")
pIEdit->SetNumProperty("hInk", setting)

Remarks

Use this handle when you need to make calls to Pen API functions that require a handle to an
HPENDATA object. For details on handles to pen data objects, refer to the Programming Guide to Pen
Services for Microsoft Windows 95 .

Data Type

Integer

hInkGet Property

Applies To

IEdit controls.

Description

Sets or returns the option that controls what data is returned in the pen data object returned by the hInk
property.

Visual Basic

[form.]IEdit.hInkGet [= setting%]

Visual C++

pIEdit->GetNumProperty("hInkGet")
pIEdit->SetNumProperty("hInkGet", setting)

Remarks

Following are the available property settings for the hInkGet property:

Setting Description

0 (Default) Retrieve all the ink in the control.

1 Retrieve the selected ink in the control.

Data Type

Integer (Enumerated)

hInkSet Property

Applies To

IEdit controls.

Description

Sets or returns the option that controls how ink is added to the control by the hInk property.

Visual Basic

[form.]IEdit.hInkSet [= setting%]

Visual C++

pIEdit->GetNumProperty("hInkSet")
pIEdit->SetNumProperty("hInkSet", setting)

Remarks

The following table lists the hInkSet property settings for the pen ink edit control:

Setting Description

0 (Default) Replace the ink in the control.

1 Append the ink to the existing ink in the control.

Data Type

Integer (Enumerated)

hMenu Property

Applies To

IEdit controls.

Description

Returns a handle to the menu used by the pen ink edit control. This property is not available at design
time and is read-only at run time.

Visual Basic

[form.]IEdit.hMenu

Visual C++

pIEdit->GetNumProperty("hMenu")

Remarks

An application can perform all standard operations to this menu using standard Windows 95 API.
However, it still belongs to the pen ink edit control and must not be deleted.

Data Type

Integer

Image Property

Applies To

IEdit controls.

Description

Returns a handle to a bitmap containing the combined Picture and InkPicture bitmaps.

Visual Basic

[form.]IEdit.Image

Visual C++

pIEdit->GetNumProperty("Image")

Remarks

This property is not available at design time and is read-only at run time.

Data Type

Integer

See Also

Picture property and InkPicture property.

InkDataMode Property

Applies To

IEdit, HEdit, and BEdit controls.

Description

Sets or returns the mode that controls how the InkDataString data is used.

Visual Basic

[form.]IEdit.InkDataMode[= setting%]

Visual C++

pIEdit->GetNumProperty("InkDataMode")
pIEdit->SetNumProperty("InkDataMode", setting)

Remarks

The InkDataMode property settings are as follows:

Setting Description

0 (Default)    Replaces any ink that may be in the control when
data is assigned to the InkDataString property.

1 Merges the currently displayed ink when ink data is assigned
to the InkDataString property.

Data Type

Integer (Enumerated)

See Also

InkDataString property.

InkDataString Property

Applies To

IEdit, HEdit, and BEdit controls.

Description

Sets or returns a string containing the compressed ink data associated with the control.

Visual Basic

[form.]IEdit.InkDataString[= inkdatastring$]

Visual C++

pIEdit->GetStrProperty("InkDataString")
pIEdit->SetStrProperty("InkDataString", setting)

Remarks

When a string is assigned to a control, the InkDataMode is checked to determine whether the new ink
data replaces the existing ink or is    merged with the existing ink. Assigning invalid or uncompressed
ink data to the InkDataString property generates a run-time error.

This property is only available at run time.

Data Type

String

See Also

InkDataMode property.

InkingMode Property

Applies To

IEdit controls.

Description

Sets or returns the currently selected inking mode of the pen ink edit control. This property is available
only at run time.

Visual Basic

[form.]IEdit.InkingMode[= setting%]

Visual C++

pIEdit->GetNumProperty("InkingMode")
pIEdit->SetNumProperty("InkingMode", setting)

Remarks

The InkingMode property settings are:

Setting Description

0 - Ready Pen tip is set to draw ink, erase, or resize.

1 - Erase Pen tip is set to erase ink.

2 - Lasso
Selection

Pen tip is set to select an area by drawing around the
area.

The erase color and erase width are set by the EraserColor and EraserWidth properties, respectively.
When set in lasso selection mode, the control uses a solid black pen with an pen width of 1. Following
a successful mode change, the ModeChanged event is triggered.

Data Type

Integer (Enumerated)

InkInput Property

Applies To

IEdit controls.

Description

Sets or returns the ink input options that control the inking in the pen ink edit control.

Visual Basic

[form.]IEdit.InkInput [= setting%]

Visual C++

pIEdit->GetNumProperty("InkInput")
pIEdit->SetNumProperty("InkInput", setting)

Remarks

At design time, the InkInput property is set using the Ink Input dialog, which allows you to select check
boxes for Move, Resize, Crop or Discard. At run time, the property must be calculated by using the
bitwise-OR operator to combine the desired values according to the values in the PENAPI.TXT (for
Visual Basic) or PENWIN .H (for Visual C++) file.

The following table lists the InkInput property settings for the pen ink edit control:

Setting Value Description

IEI_MOVE &H1 Move ink into control.

IEI_RESIZE &H2 Resize ink to fit within control.

IEI_CROP &H4 Discard ink outside of control.

IEI_DISCARD &H8 Discard all ink if any outside control.

The default value of this property is (IEI_MOVE | IEI_RESIZE).

Data Type

Integer

InkPicture Property

Applies To

IEdit controls.

Description

Returns a handle to a bitmap containing an image of the ink in the color.

Visual Basic

[form.]IEdit.InkPicture

Visual C++

pIEdit->GetNumProperty("InkPicture")

Remarks

This property is not available at design time, and is read-only at run time.

Data Type

Integer

InkRectHeight Property

Applies To

IEdit controls.

Description

Returns the height in pixels of the bounding rectangle of the ink in the pen ink edit control.

Visual Basic

[form.]IEdit.InkRectHeight

Visual C++

pIEdit->GetNumProperty("InkRectHeight")

Remarks

This property is not available at design time and is read-only at run time.

Data Type

Integer

InkRectLeft Property

Applies To

IEdit controls.

Description

Returns the left x-axis position in pixels of the bounding rectangle of the ink in the pen ink edit control.

Visual Basic

[form.]IEdit.InkRectLeft

Visual C++

pIEdit->GetNumProperty("InkRectLeft")

Remarks

This property is not available at design time and is read-only at run time. When scrolled, the left x-axis
value is offset by the amount scrolled.

Data Type

Integer

InkRectTop Property

Applies To

IEdit controls.

Description

Returns the top y-axis position in pixels of the bounding rectangle of the ink in the pen ink edit control.

Visual Basic

[form.]IEdit.InkRectTop

Visual C++

pIEdit->GetNumProperty("InkRectTop")

Remarks

This property is not available at design time and is read-only at run time. When the control is scrolled,
the top y-axis position value is offset by the amount scrolled.

Data Type

Integer

InkRectWidth Property

Applies To

IEdit controls.

Description

Returns the width in pixels of the bounding rectangle of the ink in the pen ink edit control.

Visual Basic

[form.]IEdit.InkRectWidth

Visual C++

pIEdit->GetNumProperty("InkRectWidth")

Remarks

This property is not available at design time and is read-only at run time.

Data Type

Integer

InkWidth Property

Applies To

IEdit controls.

Description

Sets or returns the width of the ink.

Visual Basic

[form.]IEdit.InkWidth[= setting%]

Visual C++

pIEdit->GetNumProperty("InkWidth")
pIEdit->SetNumProperty("InkWidth", setting)

Remarks

The InkWidth property settings are:

Setting Description

 -1 (Default)    Sets the ink width to the default system ink width
(as defined in the Control Panel).

0 No ink is displayed.

1 to 15 The range of valid, visible ink widths in pixels.

The InkWidth property, when read, only returns the value set by the InkWidth property, not any value
that might have been changed by the user in the Properties dialog or Default Properties dialog.

Data Type

Integer

Picture Property

Applies To

IEdit controls.

Description

Specifies the graphic to be displayed as the background image in the pen ink edit control. This property
is write-only at design time.

Visual Basic

[form.]IEdit.Picture[= picture%]

Visual C++

pIEdit->SetPictureProperty("Picture", picture)
pIEdit->SetPictureProperty("Picture", picture)

Remarks

The Picture property settings are as follows:

Setting Description

(none) (Default)    No image is used in the background.

(Bitmap) Designates that a bitmap is displayed in the
background.

In Visual Basic, you can load a graphic at design time from the Properties window. At run time, you can
set this property by using the LoadPicture function on a bitmap or icon or you can use Clipboard
methods such as GetData, SetData, and GetFormat with nontext Clipboard formats CF_BITMAP and
CF_DIB, as described in the Visual Basic version 3.0 CONSTANT.TXT file.

This control can display bitmaps (.BMP) but not Windows metafiles (.WMF). At run time, you can set
the Picture property to any other object's Picture, or Image property, or you can assign it the graphic
returned by the LoadPicture function. You can only assign the Picture property directly.

Data Type

Integer

Recog Property

Applies To

IEdit controls.

Description

Sets or returns the recognition options that control recognition in the pen ink edit control.

Visual Basic

[form.]IEdit.Recog [= setting%]

Visual C++

pIEdit->GetNumProperty("Recog")
pIEdit->SetNumProperty("Recog", setting)

Remarks

The following table lists the Recog property settings for the pen ink edit control:

Setting Description

0 No recognition

1 Gesture recognition

2 (Default) All recognition.    This is the same as    Gesture
recognition for this version.

Data Type

Integer (Enumerated)

SaveUpStrokes Property

Applies To

IEdit controls.

Description

Starts or stops accumulation of upstrokes of pen data.

Determines whether upstrokes of pen data (which are not displayed) are saved by the control.

Visual Basic

[form.]IEdit.SaveUpStrokes [= {True | False}]

Visual C++

pIEdit->GetNumProperty("SaveUpStrokes")
pIEdit->SetNumProperty("SaveUpStrokes", {TRUE | FALSE})

Remarks

Setting the SaveUpStrokes property to True begins the accumulation or upstokes (which are not
displayed) in the control. Setting SaveUpStrokes to False, ends the accumlation. This affects all ink
drawn after setting the control. Existing ink is unaffected.

Data Type

Integer (Boolean)

Security Property

Applies To

IEdit controls.

Description

Sets or returns the security options set for the pen ink edit control.

Visual Basic

[form.]IEdit.Security [= setting%]

Visual C++

pIEdit->GetNumProperty("Security")
pIEdit->SetNumProperty("Security", setting)

Remarks

At design time, the Security property is set using the custom dialog. At run time, the property must be
calculated by using the bitwise-OR operator to combine the desired values according to the codes in
the PENAPI.TXT (Visual Basic) or PENWIN.H (Visual C++) file. By default, the control is completely
unsecured.

The Security property settings for the pen ink edit control are as follows:

Setting Value Description

IESEC_NOCOPY &H1 Disable copying of ink.

IESEC_NOCUT &H2 Disable cutting of ink.

IESEC_NOPASTE &H4 Disable pasting of ink.

IESEC_NOUNDO &H8 Disable undo action.

IESEC_NOINK &H10 Disable inking.

IESEC_NOERASE &H20 Disable erasing.

IESEC_NOGET &H40 Disable reading hInk property.

IESEC_NOSET &H80 Disable writing hInk property.

Data Type

Integer

SelectAll Property

Applies To

IEdit controls.

Description

Setting the SelectAll property to True will select all ink in the control and setting it to False will deselect
all ink in the control. This property is not available at design time and is write only at run time.

Visual Basic

[form.]IEdit.SelectAll ={True | False}

Visual C++

pIEdit->SetNumProperty("SelectAll", {TRUE | FALSE})

Data Type

Integer (Boolean)

StrokeIndex Property

Applies To

IEdit controls.

Description

Sets or returns the zero-based stroke index to be formatted or selected. This property is not available
at design time.

Visual Basic

[form.]IEdit.StrokeIndex [= setting%]

Visual C++

pIEdit->GetNumProperty("StrokeIndex")
pIEdit->SetNumProperty("StrokeIndex", setting)

Remarks

This property is used by the Format property only if the FormatItem property is set to 2. It is also used
by the StrokeSel property to set or reset the selection status of a stroke.

Data Type

Integer

See Also

StrokeSel property, Format property, and FormatItem property.

StrokeSel Property

Applies To

IEdit controls.

Description

Sets or returns the selection status of the stroke specified by the StrokeIndex property. This property is
not available at design time.

Visual Basic

[form.]IEdit.StrokeSel [= {True | False}]

Visual C++

pIEdit->GetNumProperty("StrokeSel")

pIEdit->SetNumProperty("StrokeSel", {TRUE | FALSE})

Remarks

Setting the StrokeSel property to True will select the stroke specified by the StrokeIndex property and
setting it to False will deselect it. Similarly, a return value of True indicates that the specified stroke is
selected; False indicates the specified stroke is deselected.

Data Type

Integer (Boolean)

See Also

StrokeIndex property

Ink Edit Events

Change Event

Description

Occurs whenever the data in the control is changed.

Visual Basic

Sub IEdit_Change()

Visual C++

Function Signature:
void CMyDialog::OnIEditChange (UINT, int, Cwnd*, LPVOID)

Remarks

The Change event occurs after the control redraws the data in the control.

Gesture Event

Description

Occurs when new ink entered into the control is recognized as a gesture.

Visual Basic

Sub IEdit_Gesture(HrcResult As Long)

Visual C++

FunctionSignature:
void CMyDialog::OnIEditGesture (UINT, int, Cwnd*, LPVOID lpParams)

Parameter Usage:
AFX_NUM_EVENTPARAM (LONG, lpParams)

Remarks

The Gesture event does not get fired if recognition is turned off, which can be done by setting the
Recog property to 0. This event does not return the    gesture directly. The HrcResult parameter is a
handle to a handwriting recognition context result object (HRCRESULT) from which the gesture can be
retrieved. This handle is valid only during the processing of this event. The handle that is passed in
belongs to the IEdit control and must not be modified in any way.

For more information on using HRCRESULT objects, see the Programming Guide to Pen Services for
Microsoft Windows 95.

ModeChanged Event

Description

Occurs whenever the pen mode is changed.

Visual Basic

Sub IEdit_ModeChanged()

Visual C++

Function Signature:
void CMyDialog::OnIEditModeChanged (UINT, int, Cwnd*, LPVOID)

Remarks

The ModeChanged event occurs after the pen mode is changed. Ink modes can be changed
programmatically using the InkingMode property, or by user's actions.

Update Event

Description

Occurs whenever the data in the control is changed.

Visual Basic

Sub PenCtrl_Update()

Visual C++

Function Signature:
void CMyDialog::OnPenCtrlUpdate (UINT, int, Cwnd*, LPVOID)

Remarks

The Update event occurs before the control redraws the data. This differs from the Change event,
which redraws the data before the event. You can use the Update event to format the new data so that
flashes do not appear.

IEdit Error Messages

The following table lists the trappable run-time errors for the pen ink edit controls.

Error
number Message explanation

32001 PENERR_INKWIDTH
InkWidth must be in
range 0 ¾ 15 or    - 1
for default.

This error is caused by
setting the InkWidth
property to an invalid
value.

32002 PENERR_INVALIDINK
DATA
Invalid InkDataString
format.

This error can occur
when trying to assign
invaoid or
uncompressed ink data
to the InkDataString
property.

32017 PENERR_INVALIDPIC
TURE
Picture format not
supported.

This error is caused by
setting the Picture
property to an invalid
value. The control can
display only bitmap
(.BMP) format files.

32018 PENERR_DISPLAYFA
ILED
Unable to display
bitmap.

The control is unable to
display the bitmap. This
error can be caused by
low memory.

32019 PENERR_SECURITY
Cannot get/set
property with current
Security setting.

This error is caused by
either querying or
setting the hInk
property with the

IESEC_NOTGET or
IESEC_NOSET bits set
in the Security property.

32020 PENERR_SETINK
Unable to set ink.

This error is generated
if the ink cannot be set
into the control, which
is normally due to a
low memory condition.

32021 PENERR_STROKEIN
DEX
StrokeIndex must be
less than the number
of strokes or 0.

This error is caused by
specifiying an invalid
stroke index, mainly by
specifying an index
greater than the number
of strokes in the pen
data.

32022 PENERR_SETMODE
Cannot set this mode
with no pendata in
the control.

This error is generated
when it is not possible
to set the pen in the
specified mode, for
example, when trying
to set Erase mode or
Lasso mode with no ink
in the control.

32023 PEN_ERR_GRIDPEN
Unable to set grid
pen.

This error is generated
when attempting to set
invalid grid properties.

32024 PENERR_INK
Invalid or null pen
data object. Unable to
get or set property.

This error is generated
when attempting to
access properities of a
pen data object that is
invalid.

