
GETTING WINDOWS APPLICATIONS TO
WORK TOGETHER
CONVENTIONAL WISDOM ABOUT WINDOWS HOLDS THAT ITS KEY CONTRIBUTION to
computing is graphics. As is usual with conventional wisdom, that's only partly correct. Windows
graphics are important but only because they make possible a much more important benefit:
application integration. In DOS, each application is an island, isolated, totally dominating its
surroundings, unassailable by other programs and hardly able to share with them at all. In
Windows, each program and document is treated as an independent object (represented by a
graphic icon). Objects are malleable, can flow into one another, can borrow elements from each
other. So the graphic character of Windows naturally leads toward greater integration of
applications.

It is this ability to integrate that makes Windows so special. Before Windows, every PC
ran the same operating system, the same applications, in the same way, all the time, everywhere.
What kind of competitive advantage is possible with those kinds of cornerstones? But, with
Windows' talent for integration, one person can use a PC more effectively than another by mixing
applications, documents, and knowledge. You can make a better recipe from the basic
ingredients than the other guy. Now, with Windows, your PC can really cook!

Basic Windows Integration
Windows is an integrating environment right down to its roots. From the moment it loads,
Windows lets programs share the screen, run side by side, and pass resources back and forth. In
that sense, virtually every tip in this book is about some aspect of integration. Here, though, we'll
look at some tricks completely focused on getting applications to run side by side most
productively.

Load Applications as Icons
If you are working in one Windows application and would like to load another one so that you can
easily switch to it, you can automatically load the second application minimized. For example, if
you are working in Write in one window and want easy access to the Calculator, but aren't ready
to use it yet, switch to Program Manager and hold down the Shift key while double-clicking on the
icon. Calculator will be running, but it will appear minimized at the bottom of your screen, as in
Figure 9.1, ready for you switch to it with Windows' shortcut keys-Alt+Tab or Alt+Esc.

Make the Windows Clipboard Work for You
The most fundamental integration tool built into windows is the Clipboard. Here, information
culled from any Windows program (and most DOS programs) can be stored and pasted into any
other program. The notion of cut-and-paste as a way to move information is basic to Windows,
and the Clipboard makes it happen. With a little imagination, you can use Clipboard cutting and
pasting for all kinds of interesting results, as shown in the tips that follow.

Screen Captures with Clipboard If you need to paste a screen image into a
Windows application, just press the Print Screen key on your keyboard. Your cursor will vanish for
a moment as the screen image is copied to the Clipboard. If you open the Clipboard Viewer
(double-click on the Clipboard icon in the Main program group) you'll see a copy of it there, as
shown in Figure 9.2. You can then insert the image into any application by using the Paste
command from the Edit menu or pressing Shift+Ins. To copy the active window only, press
Alt+PrScr.

Copy Text from DOS Apps You can use the Clipboard's copy-and-paste capabilities
with a DOS application running under Windows, provided that the DOS application is running in a
window. Use the mouse to highlight the desired text, open the Control menu in the upper-left

corner of the window, and choose Copy from the Edit menu. To copy the entire DOS screen of
information, press the Print Screen key and the information will be copied to the Clipboard.

Use the Windows Clipboard to Convert Formats The Windows Clipboard
is a versatile utility because it can copy and paste data that's in many different formats. This
feature is useful for transferring data that's in one format into an application that isn't compatible
with that specific format. For example, you can paste a formatted text document from a word
processor into a communications program that handles only ASCII files. Instead of having the
formatting characters appear as gibberish in the communications program, the Clipboard will
remove all the formatting, and paste in the document as plain ASCII text.

Keyboard Shortcuts: Clipboard Mice are nice, but the keyboard is often quicker
for Clipboard actions. Most Windows programs that support the Clipboard offer a common set of
keyboard shortcuts, including Shift+Del for Cut, Ctrl+Ins for Copy, and Shift+Ins for Paste. Newer
applications have switched to Ctrl+X for Cut, Ctrl+C for Copy, and Ctrl+V for Paste, but they still
support the older shortcuts as well.

Use Macros to Integrate Windows Applications
Virtually all Windows applications offer sophisticated macro recording capabilities that allow you
to create scripts for application tasks. Often, these macros can extend to other applications from
the same vendor, or even to other Windows programs. The macro recording capabilities of
several dozen popular Windows applications are presented in detail in Part 2 of this book.

Windows' Own Macro Recorder Integrates Applications Too
Windows provides its own macro recorder, which can record and play back keystrokes or mouse
actions from Windows itself and from just about any application that can run under Windows. The
advantage of Windows' macro recorder is that it can integrate both application and Windows
tasks into a single operation. Windows' macro recorder is covered fully in Chapter 6.

Make Sure You Remove Windows Applications Safely
One of the dangers of running applications together is that one can bring down many. One
unexpected place this can happen is when an application is deleted. Few, if any, Windows
applications include a routine for removing the application from your system. Before you start
hastily deleting files, make sure that removing the app doesn't interfere with any of your other
Windows applications, or Windows itself. Here's a systematic approach to removing a Windows
application:

1.Use SysEdit or a text editor to open your WIN.INI file and locate any sections or lines that refer
to the application, then delete them. If you are in doubt about a line's or section's function, do not
delete it.

2.Save the edited WIN.INI file.

3.Open your CONFIG.SYS and AUTOEXEC.BAT files and also look for lines or references to the
specific application. Remove or change these as well.

4.If you have any data files saved within the application's directory, make sure to move them or
copy them to a floppy if you will need them later.

5.Then use the File Manager to delete the application's directory and all of its subdirectories and
files.

6.Finally, in Program Manager, remove the application's icon by selecting it and choosing Delete
from the File menu or pressing the Delete key. Windows will ask you to confirm that you want to
delete this item, as shown in Figure 9.3.

Coping with Conflicts
Applications running together in Windows 3.0 provoked endless arrays of unrecoverable
application errors (UAEs)-the problem from which no program returns. Officially, UAEs are gone
in Windows 3.1. In truth, while they are far less devastating, come with much better information
on their source, and have a dandy new name (general protection faults), these application
collisions remain a headache. We've included information here on both techniques for working
with Windows 3.0 UAEs and Windows 3.1 problems. Even if you have already upgraded to 3.1,
some of the 3.0 tips covered here may still be of value.

The Lingering Spectre of Windows 3.0 UAEs
If you receive a UAE that results in the termination of your current application, the error was
probably caused by the application writing to a region of memory it doesn't have access to. When
this happens, whatever is already stored in that area of memory can become corrupted. As a
result, Windows becomes unstable. Once an application causes this UAE, other applications that
you run may generate the same error, even though they are not the cause of the problem.

To avoid this situation, exit Windows and reboot your computer as soon as the application
is terminated. Then check the following to find out the cause of the UAE:

Are you running Windows applications that were designed for Windows 2.x? These older
applications should only be run in Real mode, as you are told by Windows when you attempt to
start them in Standard or Enhanced mode.

Was an incorrect machine or network selected during Windows setup? Check the installed
settings by running the Windows Setup program from the DOS prompt and entering the correct
settings.

Are incompatible TSRs running on your system? Remove all TSRs and see if the application now
runs without errors. If it does, try adding the TSRs back one at a time to isolate the one causing
the problem.

Do you have a page-mapping conflict when running in Enhanced mode? To test for this conflict,
run Windows in Standard mode (WIN/S). If there is no problem in Standard mode, you'll have to
determine which memory address is causing the problem. Open your SYSTEM.INI file in SysEdit
or a text editor, and add the following line to the [386Enh] section to exclude Windows from using
the adapter segment area of memory:

EMMExclude=A000-EFFF

Now exit Windows, restart it again in Enhanced mode, and run the problematic application. If the
problem is solved, try pinpointing the exact location of the hardware that is causing memory
conflicts so that you don't have to exclude the entire area.

Are you using a correct version of DOS? Systems often come with versions of DOS customized
for their brand of PC, and these should be used rather than a generic version of DOS. Likewise,
these DOS versions should only be used on the brand of machine with which they're supplied.

Are free system resources low? To find out, use the About command in the Program Manager's
Help menu to see if they are below 20 percent. If they are, you'll need to keep fewer windows or
applications open in future Windows sessions to avoid UAEs. Get in the habit of regularly
checking free system resources so that when they start getting low you can close windows and
applications to prevent a UAE.

Do you have enough file handles available for applications? UAEs are often caused when the
system doesn't have any file handles available for an application. You should increase the

FILES= command in your CONFIG.SYS file to meet the high demands of Windows, which
generally has multiple applications open at once. The default number of file handles that DOS
has available is only 8, but Windows users will need to up the ante to around 50.

Is your environment large enough? Applications that are denied environment space are another
cause of UAEs. Increasing the environment to 1 or 2K should alleviate the problem. To make this
change, edit your CONFIG.SYS file so that the line

SHELL=C:\DOS\COMMAND.COM

includes the E switch for specifying the environment variable. To set the environment to
2K, change the line to read

SHELL=C:\DOS\COMMAND.COM/E:2048

Keep the Dr. Watson Utility on Call
In Windows 3.1, UAEs are a thing of the past; they've been renamed general protection faults.
While a name change doesn't make them any less daunting, at least now you've got some help in
tracking down the cause of these system errors. Windows 3.1 comes with a handy diagnostic
utility called Dr. Watson, which provides you with feedback when an application error occurs.
Unfortunately, Dr. Watson won't do you any good unless you manually install it on your system. To
add Dr. Watson so that it runs in the background every time you start Windows, make the StartUp
group the active window in Program Manager, choose New from the File menu, click on OK to
select Program Item in the New Program Object dialog box, fill in Dr. Watson as the description,
and specify DRWATSON.EXE in the Command Line text box.

Once you've installed Dr. Watson, you'll be ready if an application error occurs, because
the program creates a log with detailed system information of what happened. Armed with
DRWATSON.LOG, you can troubleshoot problems yourself or provide valuable detail when you to
talk to technical support people.

Dr. Watson will also work with Windows 3.0; you just need to download it, along with a file
called TOOLBOX.DLL, and place it in your Windows directory. You can download Dr. Watson
from the Microsoft Product Support Download Service. The number is (206) 637-9009, and the
filename is WW0440.EXE.

To automatically start Dr. Watson in version 3.0, you have to edit your WIN.INI file using a
text editor such as Notepad or SysEdit. In the [windows] section of the file, which should be the
first section, add DRWATSON.EXE to the Load= line. If there's already a program after Load=,
just leave a space between it and DRWATSON.EXE. Once you've done so, the first few lines of
WIN.INI might look like this:

 [windows]
 Load=DRWATSON.EXE
 Run=
 Beep=Yes
 Spooler=Yes

Advanced Windows Integration
The real meat of Windows integration doesn't lie on the desktop or in the Clipboard. It can be
found in the rich tools Windows makes available to programmers, and through them to users, for
tying together applications-their information, commands, and capabilities-to create customized
programs. Two approaches dominate this area: dynamic data exchange (DDE) and its newer
partner, object linking and embedding (OLE). We'll take a quick look at both here.

Get the Most from DDE
Do you wish you could get someone else to exchange information between Windows apps
instead of relying on yourself and the trusty Windows Clipboard? Call up dynamic data exchange

instead. When it works, it's slicker than a rain-soaked L.A. freeway. But when it doesn't, it's
enough to make you scream at your computer. DDE links are fragile, so you'll find it useful to
understand how they are built, how they operate, and how to fix them when they go awry.

A DDE link (called a conversation) is formed by two Windows programs, called the server
and client applications. (The server application is the source of the data.) Both parties must
support DDE, and these days, most general-purpose Windows programs do. Excel, Word for
Windows, Ami Pro, WordPerfect for Windows, and 1-2-3 for Windows, for example, are all on the
roster. The server application supplies data to the client and updates it either automatically or on
demand. One common DDE scenario is a spreadsheet server application providing figures for a
table in a client word processor.

Setting up the link is straightforward. Select the data in your server program and either
press Ctrl+Ins or use the Copy command on the program's Edit menu. Then open the client
document, put your cursor where you want the data to appear, and use the client program's Paste
Link command, like the one shown in Figure 9.4 (sometimes it's a subset of the Edit menu's
Paste Special option). That's all there is to it.

If the Paste Link command is unavailable (gray), you won't be able to establish a link.
There are two possible causes for this. Either you've copied data from a program that isn't DDE-
capable or the copied data came from a file that wasn't saved to disk. Many DDE server
programs refuse to link data until it has been saved at least once.

Once you've set up the link, you need to know about three potential problems:
performance drag, inability to find the server's data, and inability to launch the server app. To help
you cope with these hazards, your client program should provide you with a command called Edit
Links, Link Options, Change Links, just plain Links, or something similar.

Most DDE clients create automatic links that are almost instantly updated whenever the
data from the server changes. An automatic link is also commonly called a hotlink. If you don't
need continuous updating, you can improve the performance of your client application by
changing the automatic link to an inactive or manual one. When you want to update your client
document thereafter, just select the link and click the Update button.

In the example of linking a spreadsheet range to a table in a word processing document,
it's important to know how the link is defined. You could create a link to the cell range that you
desire-for example A1:F5. But if you change the layout of your worksheet, the desired information
will reside in some other range and your document will be connected to a meaningless patch of
cells. The solution is to name the spreadsheet range and then tell the document to look for the
named range rather than the cell addresses.

If you ever move or rename your server document, you have to edit the link that's been
created. To fix the link, point to the new location of the server document.

A more difficult problem sometimes arises when you try to refresh a DDE link to a server
document that is not open. Your client program in that case should offer to launch the server
application and document for you. Under some circumstances, you might accept the offer, look at
an hourglass pointer awhile, and then receive a maddeningly uninformative failure message from
the client application. If this happens, check the following:

Do you have enough memory and system resources to launch the server program? Switch to
Program Manager and use the About Program Manager option on the Help menu to check. If
you're low on either memory or system resources, close a few programs and then try again.

Is the server program stored in a directory in your DOS path? If it isn't, quit Windows, modify your
AUTOEXEC.BAT file to change the path, then reboot or simply type autoexec at the DOS
prompt, and then try again.

If memory is plentiful and the server is in the path, something else may be spoiling your
fun. Excel 3.0, for example, may refuse to launch via DDE if any add-in macros (.XLA files) are
stored in your XLSTART directory. But you won't find that information in the Excel manuals.

The bottom line is that you should test any DDE link thoroughly before you depend on it.
And bear in mind that although DDE will hang around forever on the macro level because of the

volume of code that's already been written to use it, you can expect object linking and embedding
to supersede many DDE functions.

OLE Secrets
Object linking and embedding (OLE) is new to Windows 3.1. It represents a huge potential benefit
for users and is a sign of the extraordinary customizability that lies ahead for PC applications.
While DDE creates a user-configurable channel between applications, OLE goes much further.
OLE allows you to link programs in complex ways and to actually place one program within
another program's document. Through OLE, for instance, not only a copy of a spreadsheet, or the
data drawn across a link to a spreadsheet, but the full capabilities of the spreadsheet program
could be plunked in the middle of a word processor's report document. It works as follows.

Windows' OLE capability allows you to create an object-such as a drawing or sound file-
in one Windows application and then insert it into another file. This object can either be linked, in
which case it actually exists in a separate file, or embedded, in which case it exists within the
primary file. For example, suppose you are working on a Write document and you use OLE to tie
a Paintbrush drawing to it. If the drawing is linked, when you double-click on it, you get the parent
application (Paintbrush) with the original document window as it was saved to disk. If the drawing
is embedded, when you double-click on it, you get a window from the parent application that
points to the embedded data. (Furthermore, the File menu changes to read Update rather than
Save, and Exit and Return rather than just Exit.)

As we discuss OLE, you'll need to be familiar with the following terms:

Object: Data encapsulated in a document so that it can be displayed and manipulated by the
user. This creates a so-called compound document. Any kind of data can be made into an object
if it was created in a Windows application that supports OLE.

Package: The icon that represents the object that is embedded in a document.

Client application: A Windows application that can accept, display, and store objects. The client
application stores information about embedded objects: the page position, how the object is
activated, and which server application is associated with the object.

Server application: A Windows application in which you can edit an object that is embedded in the
client application.

Source document: The file where the data or object was originally created.

Destination document: The document where the data is embedded or linked.

Although Windows' applets, such as the Clipboard, and programming services, such as
dynamic link libraries (DLLs), facilitate OLE, it's Windows applications that make OLE work. The
server application provides data that is either linked to or embedded in a client application's
document. Linked data is updated whenever you modify the original document. On the other
hand, embedded data isn't modified until you click on it, which launches the server app from
within the client document.

Setting Up an OLE Link When setting up an OLE link (from a spreadsheet program,
for instance), you first copy data from the server application. This sends the selection to the
Clipboard in several formats-a bitmapped image of the data (.BMP or metafile), the data in its
native file format (such as .XLS for Excel), and others, such as Rich Text Format (.RTF). It also
sends an OLE marker file called Link.

In the client application's compound document, you choose the OLE paste command
(Paste Special, Paste Link, or another variant, depending on the application). This command
sends a call to OLE'S DLLs, which in turn search the Clipboard for the Link marker file. If the call

finds Link, the client application then calls the OLE DLLs to ask the server application to make a
link.

Making the link takes two steps: First, the data is pasted from the Clipboard to the client
application's file. Then the client app's paste operation attaches reminders that the link exists to
the original data file and to the document in the client application.

The server file's reminder tells it to contact the OLE libraries anytime someone modifies
the data that has been pasted into the client document. The client file's reminder tells it to alert
the OLE libraries whenever the file is opened. If the server file's data has changed, the client file
also changes.

Embedding an Object Setting up object embedding is similar to the linking process in
that you copy data in several formats to the Clipboard, but is different in that it also stores code
that acts as a pointer to the server application, rather than to a data file.

From the client application, you choose the OLE Paste command, and the client app
sends the data, screen representation, and pointer to the server application. The embedding
process is then complete.

When you double-click on the embedded object, the client application uses the pointer to
search the OLE DLLs for the OLE Registry, which records every OLE-capable application you've
installed. This finds the server app's code.

Once the client app locates the server program, the Registry calls a library function,
which in turn launches the server program (or brings it to the foreground if it's already running in
the background). The client application then sends the embedded graphics object to the server
application that just came up. Once you've made and saved modifications, the link updates the
embedded object and closes the server app (or returns it to the background).

When to Link and When to Embed The only challenge to using OLE is deciding
whether to link or embed. Linking stores only a pointer to the server data, while embedding stores
a copy of the data in the client program. If you're tying together data from various corners of your
hard disk or network, you can avoid unnecessary file fattening by linking instead of embedding.
Linking is also preferable when the same data must be available to different client documents.

On the other hand, use embedding when the client document is likely to go off-line from
the server. Getting that linked-in sound annotation to speak may be a little tough if you're on the
road and the server's back home. You should also choose embedding if there's a possibility you
may move or rename the server document. Linked objects have memory, but they can't find
documents that have been moved.

Register Applications That Support OLE In order to take advantage of OLE,
a Windows application must be registered in the Registration Database. Many newer Windows
applications come with a registration file (.REG) that contains information about how the
application uses OLE. To install an existing .REG file into the database, run the Registration
Editor from Program Manager by selecting Run from the File menu and typing regedit in the
Command Line text box. Then, from the Registration Editor's File menu, choose Merge
Registration File. Locate the .REG file for the application that you want to add to the database,
and then select OK. The file will be added to the database, and the application will be able to take
advantage of OLE functionality.

Another way to merge a registration file into the database is through File Manager.
Locate the .REG file in File Manager and double-click on it to install it automatically.

Quickly Restoring the Registration Database If you've tinkered with
settings in the registration files for your Windows applications, you may end up with a Registration
Database that is corrupted. But never fear, you can restore the database to its original condition.
To do so, exit Windows and delete the file REG.DAT, which is located in the WINDOWS directory.
Restart Windows and run the File Manager. In the WINDOWS\SYSTEM subdirectory, locate the
file SETUP.REG and double-click on it.

A message appears to confirm that the information has been registered. The database
now contains the original registration information that was installed with Windows. If any of your
other applications have .REG files, you can add them to the restored database by choosing
Merge Registration File from the File menu, as described in the previous section.

Drag and Drop OLE You can use Windows' drag and drop capabilities to easily embed
objects in documents, provided that the server application has been written for Windows 3.1. If
you are using an older Windows application, you have to use the Object Packager (described in
the next section) to embed the object. Of course, if you use drag and drop from File Manager you
will be embedding entire files, such as a spreadsheet, instead of just part of one, for instance a
range of cells.

For example, to embed an Excel spreadsheet in a Write document, follow these steps:

1.Have Write running in one window and File Manager running in another so that they are both
visible on the screen at the same time.

2.In File Manager, select the name of the file that you want to embed, and drag it to the spot in
the Write document where you want the package to appear.

3.When you release the file an Excel package will appear, as shown in Figure 9.5.

The only drawback to embedding large objects, such as a sound file, is that the object is
a duplicate of the original file. This means that you are using precious hard disk space to store
the same file twice.

Take Advantage of Object Packager Object linking and embedding is a great
way to funnel data between two applications, but for this integration to work, both programs must
support OLE. Fortunately, Windows 3.1 ships with an accessory called Object Packager (its icon
is shown in Figure 9.6), which offers a way around the OLE-support requirement. Object
Packager lets you embed an iconic representation of a data object into another application (which
must still support OLE as a client application). But the embedded data need not originate in an
OLE server. For example, you could create a Cardfile database of all of your .INI files, like that
shown in Figure 9.7. Each card describes a program's initialization file and includes a Notepad
icon that represents the file in question. Double-click on the icon to call up Notepad, with the
appropriate .INI file loaded and ready to edit.

Without Object Packager, this link would be impossible to make, because although
Cardfile in Windows 3.1 is an OLE client application, Notepad doesn't know a thing about OLE.
The linkage is possible only because the program that did the embedding-namely Object
Packager-is an OLE server. And Object Packager can encapsulate any data file, regardless of its
origin, into an object package.

For the click-and-edit procedure to work, the .INI extension must be associated with the
application NOTEPAD.EXE. If this association doesn't already exist on your system, you can
create it by using the Associate command in File Manager's File menu.

There are several ways to create a packaged object, but we'll follow one of the more
straightforward methods here. In a File Manager window, select the file you want to package and
choose the Copy command from the File menu (or cut to the chase by pressing F8, the keyboard
shortcut). In the dialog box that appears (shown in Figure 9.8), choose the Copy to Clipboard
option and click on OK. Now start Object Packager, which appears in the Accessories program
group by default.

Object Packager has two windows, named Appearance and Content. Select the Content
window and pull down the Edit menu. Now you can use either the Paste or Paste Link command
to create your package. The choice between these two commands is important. When you
transfer your finished package to your client application, you will be embedding that package, not
linking it. It's a given that the packages themselves cannot be linked, but what's inside the

package can be either embedded or linked data. If you create the package with Object
Packager's Paste command, you'll be embedding. If you use Paste Link, you'll be linking.

The pros and cons here are exactly the same as they are for any other linking-versus-
embedding decision. The short form of the decision is this: Choose embedding if you want to
encapsulate the entire source file and ensure that it will always be available, in its current form, to
the client document. Choose linking if you want to encapsulate only a pointer to the source file.
You should also choose linking if you plan to include the package in many different client
documents and you want to ensure that each client is hooked up to exactly the same data.

In the case of the .INI file database, where all you need are pointers to the .INI files,
linking makes sense and embedding does not. Embedding would not only create an overweight
Cardfile document but also store frozen copies of the .INI files. As soon as an .INI's parent
application made changes to the .INI file, the Cardfile document would be out of date.

Once you choose Paste or Paste Link, you can customize the package in several ways-
not the least of which is changing the icon and the descriptive text, as shown in Figure 9.9.

When the package is ready, use the Edit menu's Copy Package command to put it on the
loading dock-the Windows Clipboard. The rest of the procedure is standard OLE. Just activate
your client program and use the appropriate Paste command.

This example shows how Object Packager can connect an OLE client document to a
non-OLE document. But Object Packager's talents don't end there. Using it, you can also embed
an iconic representation of data from an OLE server application. This technique annotates
compound documents with tidy icons instead of cluttering client documents with visible data.
Interested readers can check annotations by clicking the icons; browsers can choose to skip right
over them. You can even create an elaborate hypertext document by embedding additional
packages within packaged files.

Object Packager has another important virtue: You can use this program to embed a
Windows command line attached to an icon. For example, you can package startup commands
for your DOS applications, your Excel macros, and your favorite games. If the program you use
most often is an OLE server, you can use it to create a launch document full of program-starter
packages. With a little imagination, you'll find that once you get started with the Object Packager,
the possibilities are virtually endless.

Embed a Windows Accessory Because the Object Packager allows you to embed
most any kind of data, you can use it to embed a Windows accessory, not a specific data file, into
an application. For example, if you were editing a large document such as an annual report in
your word processing program, you might want the ability to easily access the Notepad, where
you could jot down notes about the report, things to do, whatever comes to mind. Embed a
package for Notepad and place it at the beginning of the report. If your word processor can split
the screen so that the top part is always in view, you will have instant access to the Notepad, as
shown in Figure 9.10.

To create the Notepad package, start the Object Packager and activate the Content
window by clicking on it or using the Tab key. From the Edit menu, select Command Line, and
enter notepad.exe in the Command text box. Activate the Appearance window, and select the
Insert Icon button. From the Insert Icon dialog box, choose an icon or select Browse to have
access to more icon choices, as shown in Figure 9.11. Next choose Label from the Edit menu and
type in a label for the icon. Finally, select Copy Package from the Edit menu. In your word
processor, position the cursor where you want the icon to appear, select Paste Special, and
choose the object.

Reinstall Windows 3.1 without Losing OLE Functionality If
you are planning to reinstall Windows 3.1 to a new location, you don't want to have go through
the trouble of reregistering all your Windows applications that support OLE. Reregistering
applications usually means spending time reinstalling the applications, because for many apps
that's the only way to properly register them in the database. You can avoid going through this
time-consuming process by copying your existing REG.DAT file into the new location where you'll
be installing Windows.

If you've already installed Windows to the new location and just realized that this means
recreating your Registration Database, you can still avoid reinstalling Windows applications if you
haven't yet deleted your previous copy of Windows. Exit to DOS and copy the REG.DAT file from
the old Windows directory into the new one. Start Windows and then start the Registration Editor.
Select the file SETUP.REG and double-click on it to execute it. Setup will read the information in
the REG.DAT file and make sure that your new Windows installation uses these OLE settings.

Quicker Objects Some Windows applications that support OLE have a command that will
save you time when creating objects to embed within that application. When you want to embed
an object, select the Insert Object command and select the type of object that you want to embed.
For example, in Microsoft Word for Windows you can choose the Insert Object command from the
Insert menu and then select the appropriate object, as shown in Figure 9.12. This shortcut saves
you from having to switch to the server application and copy the desired information to the
Clipboard; the object is automatically placed into the document once it is created or retrieved.

Troubleshooting OLE If an object that is embedded in an application does not launch
the server application when it is double-clicked, check your WINDOWS\SYSTEM subdirectory for
the files OLECLI.DLL and OLESRV.DLL. OLE will not work if either of these files is missing. If
they are there, one or both of the files may be corrupted. To restore these important files you'll
have to expand them from your original Windows disks and place them in the SYSTEM
subdirectory.

Application Development Tools for Windows
Integration
All of the integration methods described in this chapter can be manipulated in various ways by the
many application development tools available for the Windows environment. These range from
sophisticated scripting tools, such as Asymetrix Toolbook, through programs designed to integrate
data from other applications, like Borland's ObjectVision, to complete programming languages,
such as Microsoft's Visual Basic. The three products mentioned here are covered in Part 2 of this
book. An excellent source for understanding how to use all Windows development tools to create
custom applications is Paul Bonner's PC/Computing Customizing Windows 3.1 (Ziff-Davis Press,
1992).

