
Working in GDB
A guide to the internals of the GNU debugger

John Gilmore
Cygnus Support

Cygnus Support
Revision: 1.41

TEXinfo 2023-09-19.19

Copyright c© 1990, 1991, 1992 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Chapter 2: Defining a New Host or Target Architecture 1

1 The README File

Check the README file, it often has useful information that does not appear anywhere else
in the directory.

2 Defining a New Host or Target Architecture

When building support for a new host and/or target, much of the work you need to do
is handled by specifying configuration files; see Chapter 3 [Adding a New Configuration],
page 2. Further work can be divided into “host-dependent” (see Chapter 4 [Adding a New
Host], page 3) and “target-dependent” (see Chapter 6 [Adding a New Target], page 6). The
following discussion is meant to explain the difference between hosts and targets.

What is considered “host-dependent” versus “target-
dependent”?

Host refers to attributes of the system where GDB runs. Target refers to the system where
the program being debugged executes. In most cases they are the same machine, in which
case a third type of Native attributes come into play.

Defines and include files needed to build on the host are host support. Examples are tty
support, system defined types, host byte order, host float format.

Defines and information needed to handle the target format are target dependent. Ex-
amples are the stack frame format, instruction set, breakpoint instruction, registers, and
how to set up and tear down the stack to call a function.

Information that is only needed when the host and target are the same, is native depen-
dent. One example is Unix child process support; if the host and target are not the same,
doing a fork to start the target process is a bad idea. The various macros needed for finding
the registers in the upage, running ptrace, and such are all in the native-dependent files.

Another example of native-dependent code is support for features that are really part
of the target environment, but which require #include files that are only available on the
host system. Core file handling and setjmp handling are two common cases.

When you want to make GDB work “native” on a particular machine, you have to
include all three kinds of information.

The dependent information in GDB is organized into files by naming conventions.

Host-Dependent Files

config/*.mh

Sets Makefile parameters

xm-*.h Global #include’s and #define’s and definitions

*-xdep.c Global variables and functions

Native-Dependent Files

config/*.mh

Sets Makefile parameters (for both host and native)

Chapter 3: Adding a New Configuration 2

nm-*.h #include’s and #define’s and definitions. This file is only included by the small
number of modules that need it, so beware of doing feature-test #define’s from
its macros.

*-nat.c global variables and functions

Target-Dependent Files

config/*.mt

Sets Makefile parameters

tm-*.h Global #include’s and #define’s and definitions

*-tdep.c Global variables and functions

At this writing, most supported hosts have had their host and native dependencies
sorted out properly. There are a few stragglers, which can be recognized by the absence of
NATDEPFILES lines in their config/*.mh.

3 Adding a New Configuration

Most of the work in making GDB compile on a new machine is in specifying the configu-
ration of the machine. This is done in a dizzying variety of header files and configuration
scripts, which we hope to make more sensible soon. Let’s say your new host is called
an xxx (e.g. ‘sun4’), and its full three-part configuration name is xarch-xvend-xos (e.g.
‘sparc-sun-sunos4’). In particular:

In the top level directory, edit config.sub and add xarch, xvend, and xos to the lists of
supported architectures, vendors, and operating systems near the bottom of the file. Also,
add xxx as an alias that maps to xarch-xvend-xos. You can test your changes by running

./config.sub xxx

and

./config.sub xarch-xvend-xos

which should both respond with xarch-xvend-xos and no error messages.

Now, go to the bfd directory and create a new file bfd/hosts/h-xxx.h. Examine the
other h-*.h files as templates, and create one that brings in the right include files for your
system, and defines any host-specific macros needed by BFD, the Binutils, GNU LD, or
the Opcodes directories. (They all share the bfd hosts directory and the configure.host
file.)

Then edit bfd/configure.host. Add a line to recognize your xarch-xvend-xos config-
uration, and set my_host to xxx when you recognize it. This will cause your file h-xxx.h to
be linked to sysdep.h at configuration time. When creating the line that recognizes your
configuration, only match the fields that you really need to match; e.g. don’t match match
the architecture or manufacturer if the OS is sufficient to distinguish the configuration that
your h-xxx.h file supports. Don’t match the manufacturer name unless you really need to.
This should make future ports easier.

Also, if this host requires any changes to the Makefile, create a file bfd/config/xxx.mh,
which includes the required lines.

Chapter 4: Adding a New Host 3

It’s possible that the libiberty and readline directories won’t need any changes for
your configuration, but if they do, you can change the configure.in file there to recognize
your system and map to an mh-xxx file. Then add mh-xxx to the config/ subdirectory,
to set any makefile variables you need. The only current options in there are things like
‘-DSYSV’. (This mh-xxx naming convention differs from elsewhere in GDB, by historical
accident. It should be cleaned up so that all such files are called xxx.mh.)

Aha! Now to configure GDB itself! Edit gdb/configure.in to recognize your sys-
tem and set gdb_host to xxx, and (unless your desired target is already available) also
set gdb_target to something appropriate (for instance, xxx). To handle new hosts, mod-
ify the segment after the comment ‘# per-host’; to handle new targets, modify after ‘#
per-target’.

Finally, you’ll need to specify and define GDB’s host-, native-, and target-dependent .h
and .c files used for your configuration; the next two chapters discuss those.

4 Adding a New Host

Once you have specified a new configuration for your host (see Chapter 3 [Adding a New
Configuration], page 2), there are three remaining pieces to making GDB work on a new
machine. First, you have to make it host on the new machine (compile there, handle that
machine’s terminals properly, etc). If you will be cross-debugging to some other kind of
system that’s already supported, you are done.

If you want to use GDB to debug programs that run on the new machine, you have to
get it to understand the machine’s object files, symbol files, and interfaces to processes;
see Chapter 6 [Adding a New Target], page 6, and see Chapter 5 [Adding a New Native
Configuration], page 4,

Several files control GDB’s configuration for host systems:

gdb/config/mh-xxx

Specifies Makefile fragments needed when hosting on machine xxx. In
particular, this lists the required machine-dependent object files, by defining
‘XDEPFILES=...’. Also specifies the header file which describes host xxx, by
defining ‘XM_FILE= xm-xxx.h’. You can also define ‘CC’, ‘REGEX’ and ‘REGEX1’,
‘SYSV_DEFINE’, ‘XM_CFLAGS’, ‘XM_ADD_FILES’, ‘XM_CLIBS’, ‘XM_CDEPS’, etc.;
see Makefile.in.

gdb/xm-xxx.h

(xm.h is a link to this file, created by configure). Contains C macro definitions
describing the host system environment, such as byte order, host C compiler
and library, ptrace support, and core file structure. Crib from existing xm-*.h

files to create a new one.

gdb/xxx-xdep.c

Contains any miscellaneous C code required for this machine as a host. On
many machines it doesn’t exist at all. If it does exist, put xxx-xdep.o into the
XDEPFILES line in gdb/config/mh-xxx.

Chapter 5: Adding a New Native Configuration 4

Generic Host Support Files

There are some “generic” versions of routines that can be used by various systems. These
can be customized in various ways by macros defined in your xm-xxx.h file. If these routines
work for the xxx host, you can just include the generic file’s name (with ‘.o’, not ‘.c’) in
XDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into xxx-xdep.c, and put
xxx-xdep.o into XDEPFILES.

ser-bsd.c

This contains serial line support for Berkeley-derived Unix systems.

ser-go32.c

This contains serial line support for 32-bit programs running under DOS using
the GO32 execution environment.

ser-termios.c

This contains serial line support for System V-derived Unix systems.

Now, you are now ready to try configuring GDB to compile using your system as its
host. From the top level (above bfd, gdb, etc), do:

./configure xxx +target=vxworks960

This will configure your system to cross-compile for VxWorks on the Intel 960, which
is probably not what you really want, but it’s a test case that works at this stage. (You
haven’t set up to be able to debug programs that run on xxx yet.)

If this succeeds, you can try building it all with:

make

Repeat until the program configures, compiles, links, and runs. When run, it won’t be
able to do much (unless you have a VxWorks/960 board on your network) but you will
know that the host support is pretty well done.

Good luck! Comments and suggestions about this section are particularly welcome; send
them to ‘bug-gdb@prep.ai.mit.edu’.

5 Adding a New Native Configuration

If you are making GDB run native on the xxx machine, you have plenty more work to do.
Several files control GDB’s configuration for native support:

gdb/config/xxx.mh

Specifies Makefile fragments needed when hosting or native on machine
xxx. In particular, this lists the required native-dependent object files, by
defining ‘NATDEPFILES=...’. Also specifies the header file which describes
native support on xxx, by defining ‘NM_FILE= nm-xxx.h’. You can also
define ‘NAT_CFLAGS’, ‘NAT_ADD_FILES’, ‘NAT_CLIBS’, ‘NAT_CDEPS’, etc.; see
Makefile.in.

Chapter 5: Adding a New Native Configuration 5

gdb/nm-xxx.h

(nm.h is a link to this file, created by configure). Contains C macro definitions
describing the native system environment, such as child process control and
core file support. Crib from existing nm-*.h files to create a new one. Code
that needs these definitions will have to #include "nm.h" explicitly, since it is
not included by defs.h.

gdb/xxx-nat.c

Contains any miscellaneous C code required for this native support of this
machine. On some machines it doesn’t exist at all.

Generic Native Support Files

There are some “generic” versions of routines that can be used by various systems. These
can be customized in various ways by macros defined in your nm-xxx.h file. If these routines
work for the xxx host, you can just include the generic file’s name (with ‘.o’, not ‘.c’) in
NATDEPFILES.

Otherwise, if your machine needs custom support routines, you will need to write routines
that perform the same functions as the generic file. Put them into xxx-nat.c, and put xxx-
nat.o into NATDEPFILES.

inftarg.c

This contains the target ops vector that supports Unix child processes on sys-
tems which use ptrace and wait to control the child.

procfs.c This contains the target ops vector that supports Unix child processes on sys-
tems which use /proc to control the child.

fork-child.c

This does the low-level grunge that uses Unix system calls to do a "fork and
exec" to start up a child process.

infptrace.c

This is the low level interface to inferior processes for systems using the Unix
ptrace call in a vanilla way.

coredep.c::fetch_core_registers()

Support for reading registers out of a core file. This routine calls register_

addr(), see below. Now that BFD is used to read core files, virtually all ma-
chines should use coredep.c, and should just provide fetch_core_registers
in xxx-nat.c (or REGISTER_U_ADDR in nm-xxx.h).

coredep.c::register_addr()

If your nm-xxx.h file defines the macro REGISTER_U_ADDR(addr, blockend,

regno), it should be defined to set addr to the offset within the ‘user’ struct
of GDB register number regno. blockend is the offset within the “upage” of
u.u_ar0. If REGISTER_U_ADDR is defined, coredep.c will define the register_
addr() function and use the macro in it. If you do not define REGISTER_U_

ADDR, but you are using the standard fetch_core_registers(), you will need
to define your own version of register_addr(), put it into your xxx-nat.c file,
and be sure xxx-nat.o is in the NATDEPFILES list. If you have your own fetch_

core_registers(), you may not need a separate register_addr(). Many

Chapter 6: Adding a New Target 6

custom fetch_core_registers() implementations simply locate the registers
themselves.

When making GDB run native on a new operating system, to make it possible to debug
core files, you will need to either write specific code for parsing your OS’s core files, or
customize bfd/trad-core.c. First, use whatever #include files your machine uses to
define the struct of registers that is accessible (possibly in the u-area) in a core file (rather
than machine/reg.h), and an include file that defines whatever header exists on a core
file (e.g. the u-area or a ‘struct core’). Then modify trad_unix_core_file_p() to use
these values to set up the section information for the data segment, stack segment, any
other segments in the core file (perhaps shared library contents or control information),
“registers” segment, and if there are two discontiguous sets of registers (e.g. integer and
float), the “reg2” segment. This section information basically delimits areas in the core file
in a standard way, which the section-reading routines in BFD know how to seek around in.

Then back in GDB, you need a matching routine called fetch_core_registers(). If
you can use the generic one, it’s in coredep.c; if not, it’s in your xxx-nat.c file. It will
be passed a char pointer to the entire “registers” segment, its length, and a zero; or a char
pointer to the entire “regs2” segment, its length, and a 2. The routine should suck out
the supplied register values and install them into GDB’s “registers” array. (See Chapter 2
[Defining a New Host or Target Architecture], page 1, for more info about this.)

If your system uses /proc to control processes, and uses ELF format core files, then you
may be able to use the same routines for reading the registers out of processes and out of
core files.

6 Adding a New Target

For a new target called ttt, first specify the configuration as described in Chapter 3 [Adding
a New Configuration], page 2. If your new target is the same as your new host, you’ve
probably already done that.

A variety of files specify attributes of the GDB target environment:

gdb/config/ttt.mt

Contains a Makefile fragment specific to this target. Specifies what object
files are needed for target ttt, by defining ‘TDEPFILES=...’. Also specifies the
header file which describes ttt, by defining ‘TM_FILE= tm-ttt.h’. You can also
define ‘TM_CFLAGS’, ‘TM_CLIBS’, ‘TM_CDEPS’, and other Makefile variables here;
see Makefile.in.

gdb/tm-ttt.h

(tm.h is a link to this file, created by configure). Contains macro definitions
about the target machine’s registers, stack frame format and instructions. Crib
from existing tm-*.h files when building a new one.

gdb/ttt-tdep.c

Contains any miscellaneous code required for this target machine. On some
machines it doesn’t exist at all. Sometimes the macros in tm-ttt.h become
very complicated, so they are implemented as functions here instead, and the
macro is simply defined to call the function.

Chapter 7: Adding a Source Language to GDB 7

gdb/exec.c

Defines functions for accessing files that are executable on the target system.
These functions open and examine an exec file, extract data from one, write
data to one, print information about one, etc. Now that executable files are
handled with BFD, every target should be able to use the generic exec.c rather
than its own custom code.

gdb/arch-pinsn.c

Prints (disassembles) the target machine’s instructions. This file is usually
shared with other target machines which use the same processor, which is why
it is arch-pinsn.c rather than ttt-pinsn.c.

gdb/arch-opcode.h

Contains some large initialized data structures describing the target machine’s
instructions. This is a bit strange for a .h file, but it’s OK since it is only
included in one place. arch-opcode.h is shared between the debugger and the
assembler, if the GNU assembler has been ported to the target machine.

gdb/tm-arch.h

This often exists to describe the basic layout of the target machine’s processor
chip (registers, stack, etc). If used, it is included by tm-xxx.h. It can be shared
among many targets that use the same processor.

gdb/arch-tdep.c

Similarly, there are often common subroutines that are shared by all target
machines that use this particular architecture.

When adding support for a new target machine, there are various areas of support that
might need change, or might be OK.

If you are using an existing object file format (a.out or COFF), there is probably little to
be done. See bfd/doc/bfd.texinfo for more information on writing new a.out or COFF
versions.

If you need to add a new object file format, you are beyond the scope of this document
right now. Look at the structure of the a.out and COFF support, build a transfer vector
(xvec) for your new format, and start populating it with routines. Add it to the list in
bfd/targets.c.

If you are adding a new operating system for an existing CPU chip, add a tm-xos.h file
that describes the operating system facilities that are unusual (extra symbol table info; the
breakpoint instruction needed; etc). Then write a tm-xarch-xos.h that just #includes
tm-xarch.h and tm-xos.h. (Now that we have three-part configuration names, this will
probably get revised to separate the xos configuration from the xarch configuration.)

7 Adding a Source Language to GDB

To add other languages to GDB’s expression parser, follow the following steps:

Create the expression parser.
This should reside in a file lang-exp.y. Routines for building parsed expres-
sions into a ‘union exp_element’ list are in parse.c.

Chapter 7: Adding a Source Language to GDB 8

Since we can’t depend upon everyone having Bison, and YACC produces parsers
that define a bunch of global names, the following lines must be included at the
top of the YACC parser, to prevent the various parsers from defining the same
global names:

#define yyparse lang_parse

#define yylex lang_lex

#define yyerror lang_error

#define yylval lang_lval

#define yychar lang_char

#define yydebug lang_debug

#define yypact lang_pact

#define yyr1 lang_r1

#define yyr2 lang_r2

#define yydef lang_def

#define yychk lang_chk

#define yypgo lang_pgo

#define yyact lang_act

#define yyexca lang_exca

#define yyerrflag lang_errflag

#define yynerrs lang_nerrs

At the bottom of your parser, define a struct language_defn and initialize it
with the right values for your language. Define an initialize_lang routine
and have it call ‘add_language(lang_language_defn)’ to tell the rest of GDB
that your language exists. You’ll need some other supporting variables and
functions, which will be used via pointers from your lang_language_defn.
See the declaration of struct language_defn in language.h, and the other
*-exp.y files, for more information.

Add any evaluation routines, if necessary
If you need new opcodes (that represent the operations of the language), add
them to the enumerated type in expression.h. Add support code for these
operations in eval.c:evaluate_subexp(). Add cases for new opcodes in
two functions from parse.c: prefixify_subexp() and length_of_subexp().
These compute the number of exp_elements that a given operation takes up.

Update some existing code
Add an enumerated identifier for your language to the enumerated type enum

language in defs.h.

Update the routines in language.c so your language is included. These routines
include type predicates and such, which (in some cases) are language dependent.
If your language does not appear in the switch statement, an error is reported.

Also included in language.c is the code that updates the variable current_

language, and the routines that translate the language_lang enumerated iden-
tifier into a printable string.

Update the function _initialize_language to include your language. This
function picks the default language upon startup, so is dependent upon which
languages that GDB is built for.

Chapter 8: Configuring GDB for Release 9

Update allocate_symtab in symfile.c and/or symbol-reading code so that
the language of each symtab (source file) is set properly. This is used to deter-
mine the language to use at each stack frame level. Currently, the language is
set based upon the extension of the source file. If the language can be better
inferred from the symbol information, please set the language of the symtab in
the symbol-reading code.

Add helper code to expprint.c:print_subexp() to handle any new expression
opcodes you have added to expression.h. Also, add the printed representa-
tions of your operators to op_print_tab.

Add a place of call
Add a call to lang_parse() and lang_error in parse.c:parse_exp_1().

Use macros to trim code
The user has the option of building GDB for some or all of the languages. If
the user decides to build GDB for the language lang, then every file dependent
on language.h will have the macro _LANG_lang defined in it. Use #ifdefs to
leave out large routines that the user won’t need if he or she is not using your
language.

Note that you do not need to do this in your YACC parser, since if GDB is not
build for lang, then lang-exp.tab.o (the compiled form of your parser) is not
linked into GDB at all.

See the file configure.in for how GDB is configured for different languages.

Edit Makefile.in
Add dependencies in Makefile.in. Make sure you update the macro variables
such as HFILES and OBJS, otherwise your code may not get linked in, or, worse
yet, it may not get tarred into the distribution!

8 Configuring GDB for Release

From the top level directory (containing gdb, bfd, libiberty, and so on):

make -f Makefile.in gdb.tar.Z

This will properly configure, clean, rebuild any files that are distributed pre-built (e.g.
c-exp.tab.c or refcard.ps), and will then make a tarfile. (If the top level directory has
already beenn configured, you can just do make gdb.tar.Z instead.)

This procedure requires:

• symbolic links

• makeinfo (texinfo2 level)

• TEX

• dvips

• yacc or bison

. . . and the usual slew of utilities (sed, tar, etc.).

Chapter 9: Partial Symbol Tables 10

TEMPORARY RELEASE PROCEDURE FOR
DOCUMENTATION

gdb.texinfo is currently marked up using the texinfo-2 macros, which are not yet a default
for anything (but we have to start using them sometime).

For making paper, the only thing this implies is the right generation of texinfo.tex
needs to be included in the distribution.

For making info files, however, rather than duplicating the texinfo2 distribution, generate
gdb-all.texinfo locally, and include the files gdb.info* in the distribution. Note the
plural; makeinfo will split the document into one overall file and five or so included files.

9 Partial Symbol Tables

GDB has three types of symbol tables.

• full symbol tables (symtabs). These contain the main information about symbols and
addresses.

• partial symbol tables (psymtabs). These contain enough information to know when to
read the corresponding part of the full symbol table.

• minimal symbol tables (msymtabs). These contain information gleaned from non-
debugging symbols.

This section describes partial symbol tables.

A psymtab is constructed by doing a very quick pass over an executable file’s debugging
information. Small amounts of information are extracted – enough to identify which parts
of the symbol table will need to be re-read and fully digested later, when the user needs
the information. The speed of this pass causes GDB to start up very quickly. Later, as
the detailed rereading occurs, it occurs in small pieces, at various times, and the delay
therefrom is mostly invisible to the user. (See Chapter 11 [Symbol Reading], page 11.)

The symbols that show up in a file’s psymtab should be, roughly, those visible to the
debugger’s user when the program is not running code from that file. These include external
symbols and types, static symbols and types, and enum values declared at file scope.

The psymtab also contains the range of instruction addresses that the full symbol table
would represent.

The idea is that there are only two ways for the user (or much of the code in the debugger)
to reference a symbol:

• by its address (e.g. execution stops at some address which is inside a function in this
file). The address will be noticed to be in the range of this psymtab, and the full
symtab will be read in. find_pc_function, find_pc_line, and other find_pc_...

functions handle this.

• by its name (e.g. the user asks to print a variable, or set a breakpoint on a function).
Global names and file-scope names will be found in the psymtab, which will cause the
symtab to be pulled in. Local names will have to be qualified by a global name, or a
file-scope name, in which case we will have already read in the symtab as we evaluated
the qualifier. Or, a local symbol can be referenced when we are "in" a local scope, in
which case the first case applies. lookup_symbol does most of the work here.

Chapter 11: Symbol Reading 11

The only reason that psymtabs exist is to cause a symtab to be read in at the right
moment. Any symbol that can be elided from a psymtab, while still causing that to happen,
should not appear in it. Since psymtabs don’t have the idea of scope, you can’t put local
symbols in them anyway. Psymtabs don’t have the idea of the type of a symbol, either, so
types need not appear, unless they will be referenced by name.

It is a bug for GDB to behave one way when only a psymtab has been read, and another
way if the corresponding symtab has been read in. Such bugs are typically caused by a
psymtab that does not contain all the visible symbols, or which has the wrong instruction
address ranges.

The psymtab for a particular section of a symbol-file (objfile) could be thrown away after
the symtab has been read in. The symtab should always be searched before the psymtab,
so the psymtab will never be used (in a bug-free environment). Currently, psymtabs are
allocated on an obstack, and all the psymbols themselves are allocated in a pair of large
arrays on an obstack, so there is little to be gained by trying to free them unless you want
to do a lot more work.

10 Binary File Descriptor Library Support for
GDB

BFD provides support for GDB in several ways:

identifying executable and core files
BFD will identify a variety of file types, including a.out, coff, and several vari-
ants thereof, as well as several kinds of core files.

access to sections of files
BFD parses the file headers to determine the names, virtual addresses, sizes,
and file locations of all the various named sections in files (such as the text
section or the data section). GDB simply calls BFD to read or write section X
at byte offset Y for length Z.

specialized core file support
BFD provides routines to determine the failing command name stored in a core
file, the signal with which the program failed, and whether a core file matches
(i.e. could be a core dump of) a particular executable file.

locating the symbol information
GDB uses an internal interface of BFD to determine where to find the symbol
information in an executable file or symbol-file. GDB itself handles the reading
of symbols, since BFD does not “understand” debug symbols, but GDB uses
BFD’s cached information to find the symbols, string table, etc.

11 Symbol Reading

GDB reads symbols from "symbol files". The usual symbol file is the file containing the
program which gdb is debugging. GDB can be directed to use a different file for symbols
(with the “symbol-file” command), and it can also read more symbols via the “add-file”
and “load” commands, or while reading symbols from shared libraries.

Chapter 11: Symbol Reading 12

Symbol files are initially opened by symfile.c using the BFD library. BFD identifies
the type of the file by examining its header. symfile_init then uses this identification to
locate a set of symbol-reading functions.

Symbol reading modules identify themselves to GDB by calling add_symtab_fns during
their module initialization. The argument to add_symtab_fns is a struct sym_fns which
contains the name (or name prefix) of the symbol format, the length of the prefix, and
pointers to four functions. These functions are called at various times to process symbol-
files whose identification matches the specified prefix.

The functions supplied by each module are:

xxx_symfile_init(struct sym_fns *sf)

Called from symbol_file_add when we are about to read a new symbol file.
This function should clean up any internal state (possibly resulting from half-
read previous files, for example) and prepare to read a new symbol file. Note
that the symbol file which we are reading might be a new "main" symbol file, or
might be a secondary symbol file whose symbols are being added to the existing
symbol table.

The argument to xxx_symfile_init is a newly allocated struct sym_fns

whose bfd field contains the BFD for the new symbol file being read. Its
private field has been zeroed, and can be modified as desired. Typically, a
struct of private information will be malloc’d, and a pointer to it will be
placed in the private field.

There is no result from xxx_symfile_init, but it can call error if it detects
an unavoidable problem.

xxx_new_init()

Called from symbol_file_add when discarding existing symbols. This function
need only handle the symbol-reading module’s internal state; the symbol table
data structures visible to the rest of GDB will be discarded by symbol_file_

add. It has no arguments and no result. It may be called after xxx_symfile_
init, if a new symbol table is being read, or may be called alone if all symbols
are simply being discarded.

xxx_symfile_read(struct sym_fns *sf, CORE_ADDR addr, int mainline)

Called from symbol_file_add to actually read the symbols from a symbol-file
into a set of psymtabs or symtabs.

sf points to the struct sym fns originally passed to xxx_sym_init for possible
initialization. addr is the offset between the file’s specified start address and its
true address in memory. mainline is 1 if this is the main symbol table being
read, and 0 if a secondary symbol file (e.g. shared library or dynamically loaded
file) is being read.

In addition, if a symbol-reading module creates psymtabs when xxx symfile read is
called, these psymtabs will contain a pointer to a function xxx_psymtab_to_symtab, which
can be called from any point in the GDB symbol-handling code.

xxx_psymtab_to_symtab (struct partial_symtab *pst)

Called from psymtab_to_symtab (or the PSYMTAB TO SYMTAB macro) if
the psymtab has not already been read in and had its pst->symtab pointer set.

Chapter 13: Wrapping Output Lines 13

The argument is the psymtab to be fleshed-out into a symtab. Upon return,
pst->readin should have been set to 1, and pst->symtab should contain a pointer
to the new corresponding symtab, or zero if there were no symbols in that part
of the symbol file.

12 Cleanups

Cleanups are a structured way to deal with things that need to be done later. When your
code does something (like malloc some memory, or open a file) that needs to be undone
later (e.g. free the memory or close the file), it can make a cleanup. The cleanup will be
done at some future point: when the command is finished, when an error occurs, or when
your code decides it’s time to do cleanups.

You can also discard cleanups, that is, throw them away without doing what they say.
This is only done if you ask that it be done.

Syntax:

old_chain = make_cleanup (function, arg);

Make a cleanup which will cause function to be called with arg (a char *)
later. The result, old chain, is a handle that can be passed to do_cleanups

or discard_cleanups later. Unless you are going to call do_cleanups or
discard_cleanups yourself, you can ignore the result from make_cleanup.

do_cleanups (old_chain);

Perform all cleanups done since make_cleanup returned old chain. E.g.:

make_cleanup (a, 0);

old = make_cleanup (b, 0);

do_cleanups (old);

will call b() but will not call a(). The cleanup that calls a() will remain in
the cleanup chain, and will be done later unless otherwise discarded.

discard_cleanups (old_chain);

Same as do_cleanups except that it just removes the cleanups from the chain
and does not call the specified functions.

Some functions, e.g. fputs_filtered() or error(), specify that they “should not be
called when cleanups are not in place”. This means that any actions you need to reverse
in the case of an error or interruption must be on the cleanup chain before you call these
functions, since they might never return to your code (they ‘longjmp’ instead).

13 Wrapping Output Lines

Output that goes through printf_filtered or fputs_filtered or fputs_demangled

needs only to have calls to wrap_here added in places that would be good breaking points.
The utility routines will take care of actually wrapping if the line width is exceeded.

The argument to wrap_here is an indentation string which is printed only if the line
breaks there. This argument is saved away and used later. It must remain valid until

Chapter 15: Coding Style 14

the next call to wrap_here or until a newline has been printed through the *_filtered

functions. Don’t pass in a local variable and then return!

It is usually best to call wrap_here() after printing a comma or space. If you call it
before printing a space, make sure that your indentation properly accounts for the leading
space that will print if the line wraps there.

Any function or set of functions that produce filtered output must finish by printing a
newline, to flush the wrap buffer, before switching to unfiltered (“printf”) output. Symbol
reading routines that print warnings are a good example.

14 Frames

A frame is a construct that GDB uses to keep track of calling and called functions.

FRAME_FP in the machine description has no meaning to the machine-independent part
of GDB, except that it is used when setting up a new frame from scratch, as
follows:

create_new_frame (read_register (FP_REGNUM), read_pc ()));

Other than that, all the meaning imparted to FP_REGNUM is imparted by the
machine-dependent code. So, FP_REGNUM can have any value that is convenient
for the code that creates new frames. (create_new_frame calls INIT_EXTRA_
FRAME_INFO if it is defined; that is where you should use the FP_REGNUM value,
if your frames are nonstandard.)

FRAME_CHAIN

Given a GDB frame, determine the address of the calling function’s frame. This
will be used to create a new GDB frame struct, and then INIT_EXTRA_FRAME_

INFO and INIT_FRAME_PC will be called for the new frame.

15 Coding Style

GDB is generally written using the GNU coding standards, as described in standards.texi,
which you can get from the Free Software Foundation. There are some additional con-
siderations for GDB maintainers that reflect the unique environment and style of GDB
maintenance. If you follow these guidelines, GDB will be more consistent and easier to
maintain.

GDB’s policy on the use of prototypes is that prototypes are used to declare functions
but never to define them. Simple macros are used in the declarations, so that a non-ANSI
compiler can compile GDB without trouble. The simple macro calls are used like this:

extern int

memory_remove_breakpoint PARAMS ((CORE_ADDR, char *));

Note the double parentheses around the parameter types. This allows an arbitrary
number of parameters to be described, without freaking out the C preprocessor. When the
function has no parameters, it should be described like:

void

noprocess PARAMS ((void));

Chapter 16: Host Conditionals 15

The PARAMS macro expands to its argument in ANSI C, or to a simple () in traditional
C.

All external functions should have a PARAMS declaration in a header file that callers
include. All static functions should have such a declaration near the top of their source file.

We don’t have a gcc option that will properly check that these rules have been followed,
but it’s GDB policy, and we periodically check it using the tools available (plus manual
labor), and clean up any remnants.

16 Host Conditionals

When GDB is configured and compiled, various macros are defined or left undefined, to
control compilation based on the attributes of the host system. These macros and their
meanings are:

NOTE: For now, both host and target conditionals are here. Eliminate target conditionals
from this list as they are identified.

ALIGN_SIZE

alloca.c

BLOCK_ADDRESS_FUNCTION_RELATIVE

dbxread.c

GDBINIT_FILENAME

main.c

KERNELDEBUG

tm-hppa.h

MEM_FNS_DECLARED

defs.h

NO_SYS_FILE

dbxread.c

PYRAMID_CONTROL_FRAME_DEBUGGING

pyr-xdep.c

SIGWINCH_HANDLER_BODY

utils.c

1 buildsym.c

1 dbxread.c

1 dbxread.c

1 buildsym.c

1 dwarfread.c

1 valops.c

1 valops.c

1 pyr-xdep.c

Chapter 16: Host Conditionals 16

ADDITIONAL_OPTIONS

main.c

ADDITIONAL_OPTION_CASES

main.c

ADDITIONAL_OPTION_HANDLER

main.c

ADDITIONAL_OPTION_HELP

main.c

ADDR_BITS_REMOVE

defs.h

AIX_BUGGY_PTRACE_CONTINUE

infptrace.c

ALIGN_STACK_ON_STARTUP

main.c

ALTOS altos-xdep.c

ALTOS_AS xm-altos.h

ASCII_COFF

remote-adapt.c

BADMAG coffread.c

BCS tm-delta88.h

BEFORE_MAIN_LOOP_HOOK

main.c

BELIEVE_PCC_PROMOTION

coffread.c

BELIEVE_PCC_PROMOTION_TYPE

stabsread.c

BIG_ENDIAN

defs.h

BITS_BIG_ENDIAN

defs.h

BKPT_AT_MAIN

solib.c

BLOCK_ADDRESS_ABSOLUTE

dbxread.c

BPT_VECTOR

tm-68k.h

BREAKPOINT

tm-68k.h

Chapter 16: Host Conditionals 17

BREAKPOINT_DEBUG

breakpoint.c

BROKEN_LARGE_ALLOCA

Avoid large alloca’s. For example, on sun’s, Large alloca’s fail because the
attempt to increase the stack limit in main() fails because shared libraries are
allocated just below the initial stack limit. The SunOS kernel will not allow
the stack to grow into the area occupied by the shared libraries.

BSTRING regex.c

CALL_DUMMY

valops.c

CALL_DUMMY_LOCATION

inferior.h

CALL_DUMMY_STACK_ADJUST

valops.c

CANNOT_FETCH_REGISTER

hppabsd-xdep.c

CANNOT_STORE_REGISTER

findvar.c

CFRONT_PRODUCER

dwarfread.c

CHILD_PREPARE_TO_STORE

inftarg.c

CLEAR_DEFERRED_STORES

inflow.c

CLEAR_SOLIB

objfiles.c

COFF_ENCAPSULATE

hppabsd-tdep.c

COFF_FORMAT

symm-tdep.c

COFF_NO_LONG_FILE_NAMES

coffread.c

CORE_NEEDS_RELOCATION

stack.c

CPLUS_MARKER

cplus-dem.c

CREATE_INFERIOR_HOOK

infrun.c

C_ALLOCA regex.c

Chapter 16: Host Conditionals 18

C_GLBLREG

coffread.c

DAMON xcoffexec.c

DBXREAD_ONLY

partial-stab.h

DBX_PARM_SYMBOL_CLASS

stabsread.c

DEBUG remote-adapt.c

DEBUG_INFO

partial-stab.h

DEBUG_PTRACE

hppabsd-xdep.c

DECR_PC_AFTER_BREAK

breakpoint.c

DEFAULT_PROMPT

main.c

DELTA88 m88k-xdep.c

DEV_TTY symmisc.c

DGUX m88k-xdep.c

DISABLE_UNSETTABLE_BREAK

breakpoint.c

DONT_USE_REMOTE

remote.c

DO_DEFERRED_STORES

infrun.c

DO_REGISTERS_INFO

infcmd.c

END_OF_TEXT_DEFAULT

dbxread.c

EXTERN buildsym.h

EXTRACT_RETURN_VALUE

tm-68k.h

EXTRACT_STRUCT_VALUE_ADDRESS

values.c

EXTRA_FRAME_INFO

frame.h

EXTRA_SYMTAB_INFO

symtab.h

Chapter 16: Host Conditionals 19

FILES_INFO_HOOK

target.c

FIXME coffread.c

FLOAT_INFO

infcmd.c

FOPEN_RB defs.h

FP0_REGNUM

a68v-xdep.c

FPC_REGNUM

mach386-xdep.c

FP_REGNUM

parse.c

FRAMELESS_FUNCTION_INVOCATION

blockframe.c

FRAME_ARGS_ADDRESS_CORRECT

stack.c

FRAME_CHAIN_COMBINE

blockframe.c

FRAME_CHAIN_VALID

frame.h

FRAME_CHAIN_VALID_ALTERNATE

frame.h

FRAME_FIND_SAVED_REGS

stack.c

FRAME_GET_BASEREG_VALUE

frame.h

FRAME_NUM_ARGS

tm-68k.h

FRAME_SPECIFICATION_DYADIC

stack.c

FUNCTION_EPILOGUE_SIZE

coffread.c

F_OK xm-ultra3.h

GCC2_COMPILED_FLAG_SYMBOL

dbxread.c

GCC_COMPILED_FLAG_SYMBOL

dbxread.c

GCC_MANGLE_BUG

symtab.c

Chapter 16: Host Conditionals 20

GCC_PRODUCER

dwarfread.c

GET_SAVED_REGISTER

findvar.c

GPLUS_PRODUCER

dwarfread.c

GR64_REGNUM

remote-adapt.c

GR64_REGNUM

remote-mm.c

HANDLE_RBRAC

partial-stab.h

HAVE_68881

m68k-tdep.c

HAVE_MMAP

In some cases, use the system call mmap for reading symbol tables. For some
machines this allows for sharing and quick updates.

HAVE_REGISTER_WINDOWS

findvar.c

HAVE_SIGSETMASK

main.c

HAVE_TERMIO

inflow.c

HEADER_SEEK_FD

arm-tdep.c

HOSTING_ONLY

xm-rtbsd.h

HOST_BYTE_ORDER

ieee-float.c

HPUX_ASM xm-hp300hpux.h

HPUX_VERSION_5

hp300ux-xdep.c

HP_OS_BUG

infrun.c

I80960 remote-vx.c

IBM6000_HOST

breakpoint.c

IBM6000_TARGET

buildsym.c

Chapter 16: Host Conditionals 21

IEEE_DEBUG

ieee-float.c

IEEE_FLOAT

valprint.c

IGNORE_SYMBOL

dbxread.c

INIT_EXTRA_FRAME_INFO

blockframe.c

INIT_EXTRA_SYMTAB_INFO

symfile.c

INIT_FRAME_PC

blockframe.c

INNER_THAN

valops.c

INT_MAX defs.h

INT_MIN defs.h

IN_GDB i960-pinsn.c

IN_SIGTRAMP

infrun.c

IN_SOLIB_TRAMPOLINE

infrun.c

ISATTY main.c

IS_TRAPPED_INTERNALVAR

values.c

KERNELDEBUG

dbxread.c

KERNEL_DEBUGGING

tm-ultra3.h

KERNEL_U_ADDR

Define this to the address of the u structure (the “user struct”, also known as
the “u-page”) in kernel virtual memory. GDB needs to know this so that it can
subtract this address from absolute addresses in the upage, that are obtained
via ptrace or from core files. On systems that don’t need this value, set it to
zero.

KERNEL_U_ADDR_BSD

Define this to cause GDB to determine the address of u at runtime, by using
Berkeley-style nlist on the kernel’s image in the root directory.

KERNEL_U_ADDR_HPUX

Define this to cause GDB to determine the address of u at runtime, by using
HP-style nlist on the kernel’s image in the root directory.

Chapter 16: Host Conditionals 22

LCC_PRODUCER

dwarfread.c

LITTLE_ENDIAN

defs.h

LOG_FILE remote-adapt.c

LONGERNAMES

cplus-dem.c

LONGEST defs.h

LONG_LONG

defs.h

LONG_MAX defs.h

LSEEK_NOT_LINEAR

source.c

L_LNNO32 coffread.c

L_SET This macro is used as the argument to lseek (or, most commonly, bfd seek).
FIXME, it should be replaced by SEEK SET instead, which is the POSIX
equivalent.

MACHKERNELDEBUG

hppabsd-tdep.c

MAIN cplus-dem.c

MAINTENANCE

dwarfread.c

MAINTENANCE_CMDS

breakpoint.c

MAINTENANCE_CMDS

maint.c

MALLOC_INCOMPATIBLE

Define this if the system’s prototype for malloc differs from the ANSI defini-
tion.

MIPSEL mips-tdep.c

MMAP_BASE_ADDRESS

When using HAVE MMAP, the first mapping should go at this address.

MMAP_INCREMENT

when using HAVE MMAP, this is the increment between mappings.

MONO ser-go32.c

MOTOROLA xm-altos.h

NAMES_HAVE_UNDERSCORE

coffread.c

Chapter 16: Host Conditionals 23

NBPG altos-xdep.c

NEED_POSIX_SETPGID

infrun.c

NEED_TEXT_START_END

exec.c

NFAILURES

regex.c

NNPC_REGNUM

infrun.c

NORETURN defs.h

NOTDEF regex.c

NOTDEF remote-adapt.c

NOTDEF remote-mm.c

NOTICE_SIGNAL_HANDLING_CHANGE

infrun.c

NO_DEFINE_SYMBOL

xcoffread.c

NO_HIF_SUPPORT

remote-mm.c

NO_JOB_CONTROL

signals.h

NO_MALLOC_CHECK

utils.c

NO_MMALLOC

utils.c

NO_MMALLOC

objfiles.c

NO_MMALLOC

utils.c

NO_SIGINTERRUPT

remote-adapt.c

NO_SINGLE_STEP

infptrace.c

NO_TYPEDEFS

xcoffread.c

NO_TYPEDEFS

xcoffread.c

Chapter 16: Host Conditionals 24

NPC_REGNUM

infcmd.c

NS32K_SVC_IMMED_OPERANDS

ns32k-opcode.h

NUMERIC_REG_NAMES

mips-tdep.c

N_SETV dbxread.c

N_SET_MAGIC

hppabsd-tdep.c

NaN tm-umax.h

ONE_PROCESS_WRITETEXT

breakpoint.c

O_BINARY exec.c

O_RDONLY xm-ultra3.h

PC convx-opcode.h

PCC_SOL_BROKEN

dbxread.c

PC_IN_CALL_DUMMY

inferior.h

PC_LOAD_SEGMENT

stack.c

PC_REGNUM

parse.c

PRINT_RANDOM_SIGNAL

infcmd.c

PRINT_REGISTER_HOOK

infcmd.c

PRINT_TYPELESS_INTEGER

valprint.c

PROCESS_LINENUMBER_HOOK

buildsym.c

PROLOGUE_FIRSTLINE_OVERLAP

infrun.c

PSIGNAL_IN_SIGNAL_H

defs.h

PS_REGNUM

parse.c

Chapter 16: Host Conditionals 25

PTRACE_ARG3_TYPE

inferior.h

PTRACE_FP_BUG

mach386-xdep.c

PT_ATTACH

hppabsd-xdep.c

PT_DETACH

hppabsd-xdep.c

PT_KILL infptrace.c

PUSH_ARGUMENTS

valops.c

PYRAMID_CONTROL_FRAME_DEBUGGING

pyr-xdep.c

PYRAMID_CORE

pyr-xdep.c

PYRAMID_PTRACE

pyr-xdep.c

REGISTER_BYTES

remote.c

REGISTER_NAMES

tm-29k.h

REG_STACK_SEGMENT

exec.c

REG_STRUCT_HAS_ADDR

findvar.c

RE_NREGS regex.h

R_FP dwarfread.c

R_OK xm-altos.h

SDB_REG_TO_REGNUM

coffread.c

SEEK_END state.c

SEEK_SET state.c

SEM coffread.c

SET_STACK_LIMIT_HUGE

When defined, stack limits will be raised to their maximum. Use this if your
host supports setrlimit and you have trouble with stringtab in dbxread.c.

Also used in fork-child.c to return stack limits before child processes are
forked.

Chapter 16: Host Conditionals 26

SHELL_COMMAND_CONCAT

infrun.c

SHELL_FILE

infrun.c

SHIFT_INST_REGS

breakpoint.c

SIGN_EXTEND_CHAR

regex.c

SIGTRAP_STOP_AFTER_LOAD

infrun.c

SKIP_PROLOGUE

tm-68k.h

SKIP_PROLOGUE_FRAMELESS_P

blockframe.c

SKIP_TRAMPOLINE_CODE

infrun.c

SOLIB_ADD

core.c

SOLIB_CREATE_INFERIOR_HOOK

infrun.c

SOME_NAMES_HAVE_DOT

minsyms.c

SP_REGNUM

parse.c

STAB_REG_TO_REGNUM

stabsread.h

STACK_ALIGN

valops.c

STACK_DIRECTION

alloca.c

START_INFERIOR_TRAPS_EXPECTED

infrun.c

STOP_SIGNAL

main.c

STORE_RETURN_VALUE

tm-68k.h

SUN4_COMPILER_FEATURE

infrun.c

Chapter 16: Host Conditionals 27

SUN_FIXED_LBRAC_BUG

dbxread.c

SVR4_SHARED_LIBS

solib.c

SWITCH_ENUM_BUG

regex.c

SYM1 tm-ultra3.h

SYMBOL_RELOADING_DEFAULT

symfile.c

SYNTAX_TABLE

regex.c

Sword regex.c

TDESC infrun.c

TIOCGETC inflow.c

TIOCGLTC inflow.c

TIOCGPGRP

inflow.c

TIOCLGET inflow.c

TIOCLSET inflow.c

TIOCNOTTY

inflow.c

TM_FILE_OVERRIDE

defs.h

T_ARG coffread.c

T_VOID coffread.c

UINT_MAX defs.h

UPAGES altos-xdep.c

USER m88k-tdep.c

USE_GAS xm-news.h

USE_O_NOCTTY

inflow.c

USE_STRUCT_CONVENTION

values.c

USG Means that System V (prior to SVR4) include files are in use. (FIXME: This
symbol is abused in infrun.c, regex.c, remote-nindy.c, and utils.c for
other things, at the moment.)

Chapter 16: Host Conditionals 28

USIZE xm-m88k.h

U_FPSTATE

i386-xdep.c

VARIABLES_INSIDE_BLOCK

dbxread.c

WRS_ORIG remote-vx.c

_LANG_c language.c

_LANG_m2 language.c

__GNUC__ news-xdep.c

__GO32__ inflow.c

__HAVE_68881__

m68k-stub.c

__HPUX_ASM__

xm-hp300hpux.h

__INT_VARARGS_H

printcmd.c

__not_on_pyr_yet

pyr-xdep.c

alloca defs.h

const defs.h

GOULD_PN gould-pinsn.c

emacs alloca.c

hp800 xm-hppabsd.h

hpux hppabsd-core.c

lint valarith.c

longest_to_int

defs.h

mc68020 m68k-stub.c

notdef gould-pinsn.c

ns32k_opcodeT

ns32k-opcode.h

sgi mips-tdep.c

sparc regex.c

static alloca.c

sun m68k-tdep.c

Chapter 17: Target Conditionals 29

sun386 tm-sun386.h

test regex.c

ultrix xm-mips.h

volatile defs.h

x_name coffread.c

x_zeroes coffread.c

17 Target Conditionals

When GDB is configured and compiled, various macros are defined or left undefined, to
control compilation based on the attributes of the target system. These macros and their
meanings are:

NOTE: For now, both host and target conditionals are here. Eliminate host conditionals
from this list as they are identified.

PUSH_DUMMY_FRAME

Used in ‘call_function_by_hand’ to create an artificial stack frame.

POP_FRAME

Used in ‘call_function_by_hand’ to remove an artificial stack frame.

ALIGN_SIZE

alloca.c

BLOCK_ADDRESS_FUNCTION_RELATIVE

dbxread.c

GDBINIT_FILENAME

main.c

KERNELDEBUG

tm-hppa.h

MEM_FNS_DECLARED

defs.h

NO_SYS_FILE

dbxread.c

PYRAMID_CONTROL_FRAME_DEBUGGING

pyr-xdep.c

SIGWINCH_HANDLER_BODY

utils.c

ADDITIONAL_OPTIONS

main.c

ADDITIONAL_OPTION_CASES

main.c

Chapter 17: Target Conditionals 30

ADDITIONAL_OPTION_HANDLER

main.c

ADDITIONAL_OPTION_HELP

main.c

ADDR_BITS_REMOVE

defs.h

ALIGN_STACK_ON_STARTUP

main.c

ALTOS altos-xdep.c

ALTOS_AS xm-altos.h

ASCII_COFF

remote-adapt.c

BADMAG coffread.c

BCS tm-delta88.h

BEFORE_MAIN_LOOP_HOOK

main.c

BELIEVE_PCC_PROMOTION

coffread.c

BELIEVE_PCC_PROMOTION_TYPE

stabsread.c

BIG_ENDIAN

defs.h

BITS_BIG_ENDIAN

defs.h

BKPT_AT_MAIN

solib.c

BLOCK_ADDRESS_ABSOLUTE

dbxread.c

BPT_VECTOR

tm-68k.h

BREAKPOINT

tm-68k.h

BREAKPOINT_DEBUG

breakpoint.c

BSTRING regex.c

CALL_DUMMY

valops.c

Chapter 17: Target Conditionals 31

CALL_DUMMY_LOCATION

inferior.h

CALL_DUMMY_STACK_ADJUST

valops.c

CANNOT_FETCH_REGISTER

hppabsd-xdep.c

CANNOT_STORE_REGISTER

findvar.c

CFRONT_PRODUCER

dwarfread.c

CHILD_PREPARE_TO_STORE

inftarg.c

CLEAR_DEFERRED_STORES

inflow.c

CLEAR_SOLIB

objfiles.c

COFF_ENCAPSULATE

hppabsd-tdep.c

COFF_FORMAT

symm-tdep.c

COFF_NO_LONG_FILE_NAMES

coffread.c

CORE_NEEDS_RELOCATION

stack.c

CPLUS_MARKER

cplus-dem.c

CREATE_INFERIOR_HOOK

infrun.c

C_ALLOCA regex.c

C_GLBLREG

coffread.c

DAMON xcoffexec.c

DBXREAD_ONLY

partial-stab.h

DBX_PARM_SYMBOL_CLASS

stabsread.c

DEBUG remote-adapt.c

DEBUG_INFO

partial-stab.h

Chapter 17: Target Conditionals 32

DEBUG_PTRACE

hppabsd-xdep.c

DECR_PC_AFTER_BREAK

breakpoint.c

DEFAULT_PROMPT

main.c

DELTA88 m88k-xdep.c

DEV_TTY symmisc.c

DGUX m88k-xdep.c

DISABLE_UNSETTABLE_BREAK

breakpoint.c

DONT_USE_REMOTE

remote.c

DO_DEFERRED_STORES

infrun.c

DO_REGISTERS_INFO

infcmd.c

END_OF_TEXT_DEFAULT

dbxread.c

EXTERN buildsym.h

EXTRACT_RETURN_VALUE

tm-68k.h

EXTRACT_STRUCT_VALUE_ADDRESS

values.c

EXTRA_FRAME_INFO

frame.h

EXTRA_SYMTAB_INFO

symtab.h

FILES_INFO_HOOK

target.c

FIXME coffread.c

FLOAT_INFO

infcmd.c

FOPEN_RB defs.h

FP0_REGNUM

a68v-xdep.c

FPC_REGNUM

mach386-xdep.c

Chapter 17: Target Conditionals 33

FP_REGNUM

parse.c

FPU Unused? 6-oct-92 rich@cygnus.com. FIXME.

FRAMELESS_FUNCTION_INVOCATION

blockframe.c

FRAME_ARGS_ADDRESS_CORRECT

stack.c

FRAME_CHAIN_COMBINE

blockframe.c

FRAME_CHAIN_VALID

frame.h

FRAME_CHAIN_VALID_ALTERNATE

frame.h

FRAME_FIND_SAVED_REGS

stack.c

FRAME_GET_BASEREG_VALUE

frame.h

FRAME_NUM_ARGS

tm-68k.h

FRAME_SPECIFICATION_DYADIC

stack.c

FUNCTION_EPILOGUE_SIZE

coffread.c

F_OK xm-ultra3.h

GCC2_COMPILED_FLAG_SYMBOL

dbxread.c

GCC_COMPILED_FLAG_SYMBOL

dbxread.c

GCC_MANGLE_BUG

symtab.c

GCC_PRODUCER

dwarfread.c

GDB_TARGET_IS_HPPA

This determines whether horrible kludge code in dbxread.c and partial-stab.h
is used to mangle multiple-symbol-table files from HPPA’s. This should all be
ripped out, and a scheme like elfread.c used.

GDB_TARGET_IS_MACH386

mach386-xdep.c

Chapter 17: Target Conditionals 34

GDB_TARGET_IS_SUN3

a68v-xdep.c

GDB_TARGET_IS_SUN386

sun386-xdep.c

GET_LONGJMP_TARGET

For most machines, this is a target-dependent parameter. On the DECstation
and the Iris, this is a native-dependent parameter, since <setjmp.h> is needed
to define it.

This macro determines the target PC address that longjmp() will jump to,
assuming that we have just stopped at a longjmp breakpoint. It takes a
CORE ADDR * as argument, and stores the target PC value through this
pointer. It examines the current state of the machine as needed.

GET_SAVED_REGISTER

findvar.c

GPLUS_PRODUCER

dwarfread.c

GR64_REGNUM

remote-adapt.c

GR64_REGNUM

remote-mm.c

HANDLE_RBRAC

partial-stab.h

HAVE_68881

m68k-tdep.c

HAVE_REGISTER_WINDOWS

findvar.c

HAVE_SIGSETMASK

main.c

HAVE_TERMIO

inflow.c

HEADER_SEEK_FD

arm-tdep.c

HOSTING_ONLY

xm-rtbsd.h

HOST_BYTE_ORDER

ieee-float.c

HPUX_ASM xm-hp300hpux.h

HPUX_VERSION_5

hp300ux-xdep.c

Chapter 17: Target Conditionals 35

HP_OS_BUG

infrun.c

I80960 remote-vx.c

IBM6000_HOST

breakpoint.c

IBM6000_TARGET

buildsym.c

IEEE_DEBUG

ieee-float.c

IEEE_FLOAT

valprint.c

IGNORE_SYMBOL

dbxread.c

INIT_EXTRA_FRAME_INFO

blockframe.c

INIT_EXTRA_SYMTAB_INFO

symfile.c

INIT_FRAME_PC

blockframe.c

INNER_THAN

valops.c

INT_MAX defs.h

INT_MIN defs.h

IN_GDB i960-pinsn.c

IN_SIGTRAMP

infrun.c

IN_SOLIB_TRAMPOLINE

infrun.c

ISATTY main.c

IS_TRAPPED_INTERNALVAR

values.c

KERNELDEBUG

dbxread.c

KERNEL_DEBUGGING

tm-ultra3.h

LCC_PRODUCER

dwarfread.c

Chapter 17: Target Conditionals 36

LITTLE_ENDIAN

defs.h

LOG_FILE remote-adapt.c

LONGERNAMES

cplus-dem.c

LONGEST defs.h

LONG_LONG

defs.h

LONG_MAX defs.h

L_LNNO32 coffread.c

MACHKERNELDEBUG

hppabsd-tdep.c

MAIN cplus-dem.c

MAINTENANCE

dwarfread.c

MAINTENANCE_CMDS

breakpoint.c

MAINTENANCE_CMDS

maint.c

MIPSEL mips-tdep.c

MOTOROLA xm-altos.h

NAMES_HAVE_UNDERSCORE

coffread.c

NBPG altos-xdep.c

NEED_POSIX_SETPGID

infrun.c

NEED_TEXT_START_END

exec.c

NFAILURES

regex.c

NNPC_REGNUM

infrun.c

NORETURN defs.h

NOTDEF regex.c

NOTDEF remote-adapt.c

NOTDEF remote-mm.c

Chapter 17: Target Conditionals 37

NOTICE_SIGNAL_HANDLING_CHANGE

infrun.c

NO_DEFINE_SYMBOL

xcoffread.c

NO_HIF_SUPPORT

remote-mm.c

NO_JOB_CONTROL

signals.h

NO_MALLOC_CHECK

utils.c

NO_MMALLOC

utils.c

NO_MMALLOC

objfiles.c

NO_MMALLOC

utils.c

NO_SIGINTERRUPT

remote-adapt.c

NO_SINGLE_STEP

infptrace.c

NO_TYPEDEFS

xcoffread.c

NO_TYPEDEFS

xcoffread.c

NPC_REGNUM

infcmd.c

NS32K_SVC_IMMED_OPERANDS

ns32k-opcode.h

NUMERIC_REG_NAMES

mips-tdep.c

N_SETV dbxread.c

N_SET_MAGIC

hppabsd-tdep.c

NaN tm-umax.h

ONE_PROCESS_WRITETEXT

breakpoint.c

PC convx-opcode.h

PCC_SOL_BROKEN

dbxread.c

Chapter 17: Target Conditionals 38

PC_IN_CALL_DUMMY

inferior.h

PC_LOAD_SEGMENT

stack.c

PC_REGNUM

parse.c

PRINT_RANDOM_SIGNAL

infcmd.c

PRINT_REGISTER_HOOK

infcmd.c

PRINT_TYPELESS_INTEGER

valprint.c

PROCESS_LINENUMBER_HOOK

buildsym.c

PROLOGUE_FIRSTLINE_OVERLAP

infrun.c

PSIGNAL_IN_SIGNAL_H

defs.h

PS_REGNUM

parse.c

PTRACE_ARG3_TYPE

inferior.h

PTRACE_FP_BUG

mach386-xdep.c

PUSH_ARGUMENTS

valops.c

REGISTER_BYTES

remote.c

REGISTER_NAMES

tm-29k.h

REG_STACK_SEGMENT

exec.c

REG_STRUCT_HAS_ADDR

findvar.c

RE_NREGS regex.h

R_FP dwarfread.c

R_OK xm-altos.h

SDB_REG_TO_REGNUM

coffread.c

Chapter 17: Target Conditionals 39

SEEK_END state.c

SEEK_SET state.c

SEM coffread.c

SET_STACK_LIMIT_HUGE

infrun.c

SHELL_COMMAND_CONCAT

infrun.c

SHELL_FILE

infrun.c

SHIFT_INST_REGS

breakpoint.c

SIGN_EXTEND_CHAR

regex.c

SIGTRAP_STOP_AFTER_LOAD

infrun.c

SKIP_PROLOGUE

tm-68k.h

SKIP_PROLOGUE_FRAMELESS_P

blockframe.c

SKIP_TRAMPOLINE_CODE

infrun.c

SOLIB_ADD

core.c

SOLIB_CREATE_INFERIOR_HOOK

infrun.c

SOME_NAMES_HAVE_DOT

minsyms.c

SP_REGNUM

parse.c

STAB_REG_TO_REGNUM

stabsread.h

STACK_ALIGN

valops.c

STACK_DIRECTION

alloca.c

START_INFERIOR_TRAPS_EXPECTED

infrun.c

STOP_SIGNAL

main.c

Chapter 17: Target Conditionals 40

STORE_RETURN_VALUE

tm-68k.h

SUN4_COMPILER_FEATURE

infrun.c

SUN_FIXED_LBRAC_BUG

dbxread.c

SVR4_SHARED_LIBS

solib.c

SWITCH_ENUM_BUG

regex.c

SYM1 tm-ultra3.h

SYMBOL_RELOADING_DEFAULT

symfile.c

SYNTAX_TABLE

regex.c

Sword regex.c

TARGET_BYTE_ORDER

defs.h

TARGET_CHAR_BIT

defs.h

TARGET_COMPLEX_BIT

defs.h

TARGET_DOUBLE_BIT

defs.h

TARGET_DOUBLE_COMPLEX_BIT

defs.h

TARGET_FLOAT_BIT

defs.h

TARGET_INT_BIT

defs.h

TARGET_LONG_BIT

defs.h

TARGET_LONG_DOUBLE_BIT

defs.h

TARGET_LONG_LONG_BIT

defs.h

TARGET_PTR_BIT

defs.h

Chapter 17: Target Conditionals 41

TARGET_SHORT_BIT

defs.h

TDESC infrun.c

TM_FILE_OVERRIDE

defs.h

T_ARG coffread.c

T_VOID coffread.c

UINT_MAX defs.h

USER m88k-tdep.c

USE_GAS xm-news.h

USE_STRUCT_CONVENTION

values.c

USIZE xm-m88k.h

U_FPSTATE

i386-xdep.c

VARIABLES_INSIDE_BLOCK

dbxread.c

WRS_ORIG remote-vx.c

_LANG_c language.c

_LANG_m2 language.c

__GO32__ inflow.c

__HAVE_68881__

m68k-stub.c

__HPUX_ASM__

xm-hp300hpux.h

__INT_VARARGS_H

printcmd.c

__not_on_pyr_yet

pyr-xdep.c

GOULD_PN gould-pinsn.c

emacs alloca.c

hp800 xm-hppabsd.h

hpux hppabsd-core.c

longest_to_int

defs.h

mc68020 m68k-stub.c

Chapter 18: Native Conditionals 42

ns32k_opcodeT

ns32k-opcode.h

sgi mips-tdep.c

sparc regex.c

static alloca.c

sun m68k-tdep.c

sun386 tm-sun386.h

test regex.c

x_name coffread.c

x_zeroes coffread.c

18 Native Conditionals

When GDB is configured and compiled, various macros are defined or left undefined, to
control compilation when the host and target systems are the same. These macros should
be defined (or left undefined) in nm-system.h.

ATTACH_DETACH

If defined, then gdb will include support for the attach and detach commands.

FETCH_INFERIOR_REGISTERS

Define this if the native-dependent code will provide its own routines fetch_
inferior_registers and store_inferior_registers in HOST-nat.c. If this
symbol is not defined, and infptrace.c is included in this configuration, the
default routines in infptrace.c are used for these functions.

GET_LONGJMP_TARGET

For most machines, this is a target-dependent parameter. On the DECstation
and the Iris, this is a native-dependent parameter, since <setjmp.h> is needed
to define it.

This macro determines the target PC address that longjmp() will jump to,
assuming that we have just stopped at a longjmp breakpoint. It takes a
CORE ADDR * as argument, and stores the target PC value through this
pointer. It examines the current state of the machine as needed.

PROC_NAME_FMT

Defines the format for the name of a /proc device. Should be defined in nm.h

only in order to override the default definition in procfs.c.

REGISTER_U_ADDR

Defines the offset of the registers in the “u area”; see Chapter 4 [Host], page 3.

USE_PROC_FS

This determines whether small routines in *-tdep.c, which translate register
values between GDB’s internal representation and the /proc representation, are
compiled.

Chapter 19: Obsolete Conditionals 43

U_REGS_OFFSET

This is the offset of the registers in the upage. It need only be defined if the
generic ptrace register access routines in infptrace.c are being used (that is,
infptrace.c is configured in, and FETCH_INFERIOR_REGISTERS is not defined).
If the default value from infptrace.c is good enough, leave it undefined.

The default value means that u.u ar0 points to the location of the registers. I’m
guessing that #define U_REGS_OFFSET 0 means that u.u ar0 is the location of
the registers.

19 Obsolete Conditionals

Fragments of old code in GDB sometimes reference or set the following configuration macros.
They should not be used by new code, and old uses should be removed as those parts of
the debugger are otherwise touched.

STACK_END_ADDR

This macro used to define where the end of the stack appeared, for use in
interpreting core file formats that don’t record this address in the core file itself.
This information is now configured in BFD, and GDB gets the info portably
from there. The values in GDB’s configuration files should be moved into BFD
configuration files (if needed there), and deleted from all of GDB’s config files.

Any foo-xdep.c file that references STACK END ADDR is so old that it has
never been converted to use BFD. Now that’s old!

i

Table of Contents

1 The README File . 1

2 Defining a New Host or Target Architecture . . 1

3 Adding a New Configuration 2

4 Adding a New Host . 3

5 Adding a New Native Configuration 4

6 Adding a New Target . 6

7 Adding a Source Language to GDB 7

8 Configuring GDB for Release 9

9 Partial Symbol Tables . 10

10 Binary File Descriptor Library Support for
GDB . 11

11 Symbol Reading . 11

12 Cleanups . 13

13 Wrapping Output Lines . 13

14 Frames . 14

15 Coding Style . 14

16 Host Conditionals . 15

17 Target Conditionals . 29

18 Native Conditionals . 42

19 Obsolete Conditionals . 43

	1 The README File
	2 Defining a New Host or Target Architecture
	3 Adding a New Configuration
	4 Adding a New Host
	5 Adding a New Native Configuration
	6 Adding a New Target
	7 Adding a Source Language to GDB
	8 Configuring GDB for Release
	9 Partial Symbol Tables
	10 Binary File Descriptor Library Support for GDB
	11 Symbol Reading
	12 Cleanups
	13 Wrapping Output Lines
	14 Frames
	15 Coding Style
	16 Host Conditionals
	17 Target Conditionals
	18 Native Conditionals
	19 Obsolete Conditionals

