
TMemberCallback: A C++ Class to
Implement Member Callback Functions

Version 1.0

Introduction
Have you spent for ever trying to learn C++ really well? Have you spent forever

trying to program in Microsoft Windows really well? Have you always wondered then
why it is impossible to register a member function of a class as a Windows callback
function? The reason is that Windows, as object oriented as it may seem, was not
designed for C++. However, with this class that I provide, it is now possible to use C++
member functions as callback functions under Windows 3.1.

Suppose that you did want to call MakeProcInstance() with a C++ member
function. Well, first of all, you would have to cast the member function to a FARPROC.
Most compilers are wise enough not to let you do such a thing. Even if you could, and
even if you could continue as if it would work, the system would come to screeching halt
sooner or later. The reason is that each member function call requires a hidden
parameter: the hidden this pointer. Windows does not know about this hidden pointer.
What would be nice would be a way to tell MakeProcInstance() what the this pointer
is. That is exactly the service that this class provides.

What's Included
You are provided with the necessary items to get you started using the

TMemberCallback class. First is the MEMDLL.DLL file. This contains the class which
you will inherit from. The second is the MEMCALL.H file. This is the header file which
you will be needing for compile time. Third is the MEMDLL.LIB file which you will
need to link with. That's all you need, along with this documentation of course.

How it Works
The way this class works is through the beauty of inheritance. All that the user

needs to do is to inherit from the TMemberCallback class. With C++, all this requires is
the concatenation of the TMemberCallback class to the inheritance list of the class
declaration. The class then inherits a class specific version of the MakeProcInstance()
function which knows the hidden this pointer!

The class specific MakeProcInstance() function does exactly what the global
MakeProcInstance() does, and some. The global version of MakeProcInstance() merely
loads the ax register with the value of instance handle and then jumps to the FARPROC
it was provided. The class specific version does this but also makes sure that the this
pointer is put onto the stack for the member function that it then jumps to. That's it!
However, it is easier said than done.

How to Use the TMemberCallback Class
As mentioned previously, the user simply derives his or her class from the

TMemberCallback class. For instance if you had a class called TWindow as follows:
class TMyWindow : public TWindow

{

}

You would simply have to add the TMemberCallback class to the inheritance list
as follows:

class TMyWindow : public TWindow, public TMemberCallback
{

}

Then, at the appropriate time, the user would call the class specific version of the
MakeProcInstance() function. The function takes two parameters, a CALLBACKPROC
union and an HINSTANCE. The function prototype is a follows:

FARPROC MakeProcInstance(CALLBACKPROC CallbackProc,
 HINSTANCE hInstance);

The purpose of the CALLBACKPROC union is so that the function can take one
parameter which may represent a pointer function to any one of the callback types. Let
us suppose that the user wants to register a function TMyWindow::TimerProc as a
member callback function. The user wishes to create a one second timer. Then the user
would take the following action.

CALLBACKPROC CallbackProc;
CallbackProc.lpfnTimerProc = (LPFNTIMERPROC)

&TMyWindow::TimerProc;
lpfnTimerProc = MakeProcInstance(CallbackProc, hInstance);
SetTimer(NULL, NULL, 1000, lpfnTimerProc);

Note: The pointer to the member function that the programmer wishes to use as a callback must be
typecast into the corresponding pointer type. This is necessary in order to convert the pointer into
a TMemberCallback member function pointer.
The previous example conveys the main idea. The programmer may also want to

monitor the return value from MakeProcInstance() and make sure that it is not NULL. A
NULL return value indicates a memory allocation failure. To be complete, I have added a
class specific version of FreeProcInstance() also. The call to FreeProcInstance() is not
necessary since the class keeps track of the instance procedures and deletes them when
the class is destructed. However, it may be necessary for when a class derived from
TMemberCallback needs to manipulate callback functions often.

As one can see, it is very easy to use this class! Simply add the include file,
inherit from the class, and link with the required .LIB file, and voila!

Technical Aspects of the TMemberCallback Class
The idea is simple. For Windows to call a function as a callback function, it must

already know what the function "looks like." In other words, the parameters passed and
values returned must follow a strict template. This is the hard reality about using
callback functions. It is possible to trick the compiler at compile time and tell Windows
to call a function that does not match the template for the particular callback function.
However, it would most certainly cause an instant General Protection Fault which we all
know and love.

This very aspect is what causes C++ member functions to be invalid as Windows
callback functions. Because even if you declare them the way they must be declared,
there is still one oversight: The hidden this pointer. Windows does not know about it.
Therefore, even if you could trick the compiler into letting you use one as a callback, the

2

program would fail. Many people get around this road block by using static member
functions. I personally feel that this is a kludge. It also causes two problems. The first is
that the static member function is not passed a this pointer. The function does not
know the object which it works on, unless, of course, you pass it the pointer some way.
Another problem is that there can only be one callback routine for the whole set of
objects of that particular class due to the function being static.

A better way to do it is this. Why not trick Windows into thinking that it knows
about the hidden this pointer? This is relatively easy. When you call
MakeProcInstance(), you are usually using it before registering a callback function so
that the ds register will be properly set when the callback function is called. What it
does is create a code stub in memory which loads the ax register with the proper value
and then jumps to your callback. You then tell Windows to call the proc instance that you
just created instead of the actual function. Why not just take care of the hidden this
pointer at the same time? All the code stub would have to do is adjust the stack so that
the pointer would be on the stack when the stub jumped to the original proc instance
(which in our case would be a member function).

The TMemberCallback class provides you with a class specific version of
MakeProcInstance() and FreeProcInstance(). When you call this version of
MakeProcInstance(), it creates a code stub which adjusts the stack, loads the ax register,
and then jumps to the callback routine. You just register this code stub as the proc
instance with Windows! It's that simple.
Note: This function assumes that the hidden this pointer is a LONG pointer. This is usually nothing to

worry about. However, if there is a compiler switch which forces the compiler to use LONG
this pointers, I would suggest setting it accordingly.

The parameters that MakeProcInstance() takes are a CALLBACKPROC data type
and an HINSTANCE data type. The programmer must first declare a CALLBACKPROC
data type before registering the callback function. This is a union which contains a
function pointer. It is necessary to facilitate the casting of a member function pointer to a
regular function pointer. Normally compilers will not allow this, but it must be done in
order to create the code stub. The CALLBACKPROC data type allows you to load it
with any type of member callback function it knows about. The header file should be
examined in order to see if the appropriate callback function is supported. If I have left
one out, please contact me at the address at the end of this manual. MakeProcInstance()
returns a FARPROC which is what needs to be registered with Windows.
Note: Remember to typecast the member function pointer using one of the given typecasts in the header

file. This is required in order to convert the pointer to a TMemberCallback member function
pointer.
For completeness sake, I have included a class specific FreeProcInstance()

function. In some cases, it might be necessary to use it. However, for a program which
registers only one or two callbacks during its lifetime, it may not need to be used. The
TMemberCallback class keeps track of all of the code stubs that have been created.
When the object is destroyed, it automatically gets rid of these code stubs and sends them
the way of the dodo. However, don't forget to unregister your callback functions
before program termination!!!!

Compiler Dependencies
3

This code was originally compiled under Borland C++ 3.1 for use with OWL.
However, I have tried to make it compatible with different compilers in mind. There
might be a couple of keywords that other compilers might choke on. One of them is the
CLASSDEF macro. It is an OWL thing which automatically creates typedefs for you to
reference your objects. For instance, if I create a class called OBJECT, it will
automatically create typedefs for me to address it using pointers and references by
creating a POBJECT and ROBJECT type respectively. This is easy to work around.
Simply declare the typedefs yourself (don't forget to make them far pointers and
references).

The only other thing that I can think of off of the top of my head is the _EXPORT
keyword in the class declaration of the TMemberCallback class. In OWL, it expands to
the type of memory model which is currently in use (far, huge, etc.). However, you must
always try to use far or huge since the this pointer must always be a LONG pointer as
noted previously.

Any Questions... Comments?
If you have any questions or comments, please feel free to contact me. I can be

reached via email at the following:
tnash@azariah.tamu.edu

If you like this utility and plan to use it a lot, please send $10 or what you consider a
reasonable donation for the many hours spent in front of a debugging monitor figuring
out the intricacies of this process. Please send donations to:

Trey Nash
5016 Forest Bend
Dallas, Texas 75244
Thank you for your support.

4

