
PostScript Printer Description Files

&

Driver Limitations

The PostScript Printer Description file format, defined by Adobe and extended by
the Microsoft, provides the basis for external printer descriptions. This ASCII file
contains one or more statements, each consisting of a keyword and associated
values. Each keyword defines a feature of the PostScript printer. The associated
values specify whether the feature is available, or how the feature affects the
operation of the printer. For example, the “*FileSystem” keyword specifies
whether a printer supports fonts loaded on a hard drive. PPD files must be
standard ASCII files with carriage return an
d line feed pairs terminating each line.

To ensure the best performance for a printer, the PPD file should be as complete
as possible. Windows 3.1 has defined new PPD keywords that should be added to
existing PPD files to create new WPD files. If these keywords are not added, the
driver can still use the old WPD files, but it will assign default values to any
keywords not explicitly
defined.

The following provides descriptions of the PPD keywords.

Keyword Description
ColorDevice Indicates whether the printer supports color.

DefaultFont The name of the default font (that is, the font used
if none is selected). This setting must appear
before any “*Font” settings.

DefaultInputSlot The default input slot.

DefaultResolution The default resolution of the printer.

Duplex PostScript commands to set duplex mode.
This feature is new for Windows 3.1.

FileSystem Reserved; do not use.

Font The fonts resident in the printer.

FreeVM Amount of free memory in standard printer configuration.
This feature is new for Windows 3.1.

ImageableArea The actual area that can be marked on for every
paper size.

InputSlot The PostScript code that is necessary to specify
each input slot.

ManualFeed False The PostScript code that is necessary to turn off
manual feed. If present, it is assumed that manual
feed is supported.

ManualFeed True The PostScript code that is necessary to specify the
manual feed operation. If present, it is assumed
that manual feed is supported (and therefore
PageRegion settings must be included).

NickName The name that appears in the printer dialog box. It
should be a unique description of the printer. This
is also the name used for automatic printer
recognition.

PageRegion The PostScript code that is necessary to specify
different page sizes when using manual feed.

PageSize The PostScript code used to specify the different
page sizes that are supported (when not in manual-
feed mode).

PaperDimension The size of all the used paper types. A Paper
Dimension setting must be included for every size
of paper supported. The sizes of the standard page
types should be used. Only standard page types are
recognized. *SetResolution Used to determine the
hardware resolution(s) supported. This feature is
new for Windows 3.1.

Transfer Normalized The normalized transfer function used to generate
linear gray levels. This must be present. If none is
required, include the nul function “{ }.”

The following is a list of PPD extensions:

Extension Description

AcceptsTrueType: True or false. If true, TrueType fonts will be
downloaded natively using readhexsfnt operator.
This is selected through the download option in the
Advanced Options dialog box. If false, TrueType
will not be displayed as a selection. This feature is
new for Windows 3.1.

EndOfFile Indicates whether ^D is required to indicate the
end of the file. This is true by default, and only
needs to be included if this is false (that is,
“*EndOfFile False”).

SetPage True or false. If true, the PostScript driver allows a
custom paper size to be defined. This is
implemented through the use of the setpage
operator. If your printer supports the setpage
operator in the same manner as Linotronic®
printers, you can use this option.

TrueImageDevice: True or false. If true, the PostScript driver takes
advantage of some optimizations available in
TrueImage™. Currently there is very little
difference in the output. This feature is new for
Windows 3.1.

The following are the paper keywords used to show the paper sizes supported:

Keyword Description
10x14 10 x 14 inches physical size, oriented in portrait

mode.

11x17 11 x 17 inches physical size, oriented in portrait
mode. Can be used interchangeably with the
keyword “Tabloid.”

A3 297 x 420 millimeters physical size, oriented in
portrait mode. Refers to the International Standards
Organization (ISO)/(JIS) A3 paper size.

A4 210 x 297 millimeters physical size, oriented in
portrait mode.

A4 Extra 9.27 x 12.69 inches physical size.

A4 Small 210 x 297 millimeters physical size, but with
a reduced-size imageable area of 7.47 x 10.85
inches that is centered on an A4 page. Supports the
Adobe PostScript paper definitions.

A5 148 x 210 millimeters physical size, oriented in
portrait mode.

B4 250 x 354 millimeters physical size, oriented in
portrait mode. Refers to the Japanese Industrial
Standard (JIS) B4 paper size.

B5 182 x 257 millimeters physical size, oriented in
portrait mode.

Folio 8.5 x 13 inches physical size, but with a reduced-
size imageable region, oriented in portrait mode
and centered on the folio sheet. Supports the
Adobe PostScript paper definitions.

Ledger 17 x 11 inches physical size, oriented in landscape
mode (that is, the y-axis is on the shorter edge of
the paper).

Legal 8.5 x 14 inches physical size, oriented in portrait
mode.

LegalExtra 9.5 x 15 inches physical size.

Letter 8.5 x 11 inches physical size. Refers to the
standard paper type.

LetterExtra 9.5 x 12 inches physical size.

LetterSmall 8.5 x 11 inches physical size, but with a reduced-
size imageable region that is centered on the page.
Supports the Adobe PostScript paper definitions.

Note 8.5 x 11 inches physical size, but with a reduced-
size imageable region. This is used to reduce the
size of the page buffer to give print jobs more
memory.

Quarto 215 x 275 millimeters physical size, but with a
reduced-size imageable region, oriented in portrait
mode and centered on the quarto sheet.

Statement 5.5 x 8.5 inches physical size, oriented in portrait
mode.

Tabloid 11 x 17 inches physical size, oriented in portrait or
tabloid mode (that is, the y-axis is on the longer
edge of the paper).

TabloidExtra 11.69 x 18 inches physical size.

For paper extensions, five standard envelope sizes are recognized. The two groups
of

numbers following the word Envelope indicate the size of the envelope in points
(where

each point equals 1/72 of an inch).

Extension Description
Envelope.279.639 #9 Envelope (3.875 x 8.875 inches)
Envelope.297.684 #10 Envelope (4.125 x 9.5 inches)
Envelope.324.747 #11 Envelope (4.5 x 10.375 inches)
Envelope.342.792 #12 Envelope (4.75 x 11 inches)
Envelope.360.828 #14 Envelope (5 x 11.5 inches)

The following are the paper tray and bin keywords used to show and specify the
input

slots supported.

Keyword Description
LargeCapacity This one can hold more than a standard amount of

paper.

Lower If there is more than one tray, this one is on the
bottom. Middle This one is in the middle.

OnlyOne There is only one tray.

Upper If there is more than one tray, this one is on top.
The following list describes the paper tray
extensions.

Extension Description

AutoSelect Printer can select automatically which feeder to
use. This is followed by the code (or a nul

command if no code is required) that is used to
specify the autofeed mechanism.

Envelope There is an envelope feeder.

EnvelopeManual There is a manual envelope feeder.

None There are no input feeders. This is treated as being
the same as OnlyOne. The following keywords are
required to support duplex printing.

Keyword Definition
Duplex DuplexNoTumble: “statusdict begin false settumble true

setduplexmode end”

Duplex DuplexTumble: “statusdict begin true settumble true
setduplexmode end”

Duplex None: “statusdict begin false setduplexmode end”

DefaultDuplex None

If the PPD with correct *Duplex settings is built with the Windows 3.1 MKPRN
utility, the driver expands the Options dialog box to give user control of duplex
settings.

PostScript Fonts Have Two Font Names

A PostScript font has two font names:

1. The Windows name for the font, such as "AvantGarde," which appears in the
font list in the Fonts dialog box in Control Panel.

2. The PostScript name for the font, such as "itc avant garde gothic," which can
vary by printer manufacturer and which the printer driver sends to the printer
to select the font.

More Information:
If the font is a downloadable soft font defined in the printer font metrics (PFM)
file format, the Windows name and the PostScript name for a font can be
determined. The PFM file header has a field (dfFace) that points to the Windows
font name and a field (dfDriverInfo) that points to the driver-specific PostScript
font name.

If the font is an internal printer font defined for a specific printer, it is necessary to
enumerate fonts in a given printer driver to find the Windows font name. There is

no device-independent way to retrieve the PostScript font name for an internally
defined printer font.

For more information concerning the PostScript PFM file format, refer
to Chapter 4 of the "Microsoft Windows Device Development Kit Printers.

Supporting PostScript Features in Windows

The information in this article applies to:

Microsoft Windows Software Development Kit for Windows versions 3.1
and3.0

Summary:

There are some issues involved when designing an application to provide support
for PostScript printers. The application must determine if the PostScript driver is
available by using an accurate detection system. If an application generates
PostScript directly, the PASSTHROUGH escape can be used to send the file. This
must be done with care because the application is communicating directly with
the printer.

More Information:
The first issue is how to determine if a PostScript driver is an installed printer
driver under Windows. An application cannot assume the PostScript driver is
named PSCRIPT.DRV because this forces PostScript driver vendors to use the
same filename. The correct method is to run code similar to the pseudocode
below:

bFound = FALSE;
for (each device in [Devices] section of win.ini) {

/* extract the necessary fields from the ini line */ szDriverName = driver name
extracted from ini line

szModelName = left side of ini line (the key)
szPort = port name extracted from ini line.

hIC = CreateIC(szDriverName, szModelName, szPort, NULL);
if (hIC) {

/* see if driver supports GETTECHNOLOGY escape */
wEscape = GETTECHNOLOGY;

if (Escape(hIC, QUERYESCSUPPORT, sizeof(WORD), &wEscape, NULL))
{ Escape(hIC, GETTECHNOLOGY, 0, NULL, &szTechnology);

/* Check that the string starts with PostScript
* by doing a case-insensitive search.

Allow

* for the possibility that the string could
be
* longer, like "PostScript level 2" or some other * extension.

*/
if (beginning of string is "PostScript")

bFound = TRUE;
}
DeleteDC(hIC);

}
/* if the driver has been found break out */
if (bFound)

break;
}
if (bFound) {

PostScript driver is szDriverName, model is szModelName, port is szPort.
}

The second issue is how to print application-generated PostScript code. The
mechanism from a Windows application is through the PASSTHROUGH escape.
The PASSTHROUGH escape is documented in the "Microsoft Windows
Software Development Kit Reference Volume 2," Chapter 12. In addition to the
documentation, one requirement on the buffer passed is easy to miss; the first
word must contain the length of the buffer. The contents of the data sent by
PASSTHROUGH can alter the state of the printer.
To be safe, obey the following rules:

1. Surround PASSTHROUGH data by save/restore PostScript operators. 2. Do
not embed GDI calls between PASSTHROUGH escapes. For example:
PASSTHROUGH(save)

Rectangle
OtherGDIRoutines
PASSTHROUGH(restore)

Some driver code and software fonts are downloaded to the printer under
certain conditions. The above operations could cause the driver and printer to
loose synchronization, and potentially cause the job to fail. In general, no
assumptions should be made concerning the code generated by a given GDI
call.

Driver Limitations

The following are limitations placed on the driver by PostScript:
PostScript does not support most raster operations (Rops). However, it does
support BLACKNESS, WHITENESS, and SRCCOPY.

PostScript has a 750-point polygon limit. This number is reduced by two when
filling with a hatch or pattern. This is because a clipping path must be built as
well as the path to fill and stroke. In cases where this limit is reached, the driver
will request that GDI simulate the polygon. This is very slow. Applications should
avoid generating large polygons.

End.

	PostScript Printer Description Files
	&
	Driver Limitations
	PostScript Fonts Have Two Font Names

	Supporting PostScript Features in Windows
	Summary:

	Driver Limitations
	End.

