
 

Animation in Windows

By: Herman Rodent, Nell, and Olivia the Wonder Dog

Abstract
This article is aimed at people who would like to create a Windows application 
which does some form of animation or who would like to understand how to 
improve the performance of an existing application.  The main focus of the article 
is on using DIBs for the images and the DIB driver (DIB.DRV) for the off-screen 
image buffer. The article is written around a sample application (SPRITES) which 
is included with the article.  Some knowledge of animation techniques is assumed. 
If you're looking for a "How to do animation" article this isn't it. The following 
points are covered:

Ø Using DIBs 

Ø Using the DIB driver

Ø Palettes

Ø Measuring and Improving Performance

Ø Lots of Useful Little Tips and Hints

Introduction 

A common misconception is that Windows is too slow to do any sort of animation 
effectively.  This concept has hindered the porting of many good MS-DOS 
applications (notably games) to Windows.  In addition to the theory that Windows 
is too slow, many MS-DOS programmers fear having to learn how to program in 
the Windows environment and recreate an existing application from scratch using 
strange new function calls and techniques.  To top this off, there are a number of 
existing applications which while adequate at what they do, do not show what the 
system is capable of.

The Video for Windows technology recently released to developers shows what 
really can be achieved - reasonable quality video in a window.  The frame rates 
are not excessive and the window sizes are not huge but the net effect is very 
impressive and not difficult to achieve.

 



 

If you are considering porting an MS-DOS application to Windows or would like 
to add some animation to an existing Windows application, then this note and its 
accompanying sample code should help you along the way.

For myself, I do not even pretend to be an animation wizard.  Before I wrote this 
article I thought I had some pretty good ideas about how all this should be done 
and a few of them were even right! By experimenting with my own ideas and 
those of others I have discovered a lot of useful tips which I thought were worth 
passing on.  Much of the information about palettes is reproduced form Ron 
Gery's articles available elsewhere on the Developer Network CD.  Huge volumes 
of information also came from Todd Laney, without whom frame animation in 
Windows might never have got beyond one frame per second.

Architecture

When I decided to write the SPRITES sample application, I made two major 
choices which determined the architecture of the entire application and hence this 
article. These were to use DIBs for all the images and to use the DIB driver for 
the off-screen image buffer.  Since these things are so fundamental to what 
follows some discussion of these two decisions is in order. This section also 
includes some notes on the use of palettes. 

Using DIBs

Before the advent of Device Independent Bitmaps (DIBs) in Windows 3.0, we 
had to create applications with different DDBs (Device Dependent Bitmaps) for 
every screen resolution/color depth we wanted the application to run on.  DIBs 
provide a way around that problem by packaging together information about the 
image size, a color table and the bits themselves into a single file. DIBs are 
inherently portable between different Windows environments.  The only problem 
being that there are no Windows functions to render them directly which makes 
them seem somewhat difficult to use. I chose to use them in my sample 
application because of the portability they provide.  It turns out that the code 
required to manipulate them is not complicated and the difficulty in writing the 
code is easily outweighed by the advantages of using DIBs.

DIB File Formats

One irritating complexity of the DIB file format is that there are two different 
versions of it.  One was designed for Windows 3.0 and the other for the 
Presentation Manger in OS/2.  The two formats essentially do the same thing but 
in slightly different ways.

 



 

The Windows format uses four bytes for each color table entry which keeps the 
color table elements DWORD aligned and is efficient to access on a 32 bit 
platform.  The Presentation Manager format uses three bytes for each color table 
entry resulting in a smaller color table (big deal compared with the image size!) 
but inefficient access. 

Both formats exist in applications designed for Windows.  The Windows system 
handles both formats internally but may not handle the Presentation Manager 
format in the future.  A good application which reads DIB files should be able to 
handle both, the only complexity being creating a palette from the color table.  
More about recognizing which format a DIB is in and dealing with it later.

The other irritation of the DIB format which is a hangover from the Presentation 
Manager design is that the scan lines in the DIB are 'upside down' with respect to 
their address in the file. In other words the bits for the last scan line are first and 
the bits for the first scan line are last.  This requires some mental juggling when 
you manipulate or blt the bits in your code. Figure 1 shows the problem.

µ §
Figure 1. DIB scan lines are inverted.

The DIB file structure consists of two blocks: a header and the bits.  The header is 
actually three structures packed together so the overall picture looks like figure 2.

µ §
Figure 2. Windows and Presentation Manager DIB File Formats

Note:    In the case of the Windows format the BITMAPINFOHEADER and 
RGBQUAD array are both contained within a BITMAPINFO structure.  In the 
case of the PM format file, the BITMAPCOREHEADER and RGBTRIPLE array 
are contained within a BITMAPCOREINFO structure.  All of these structures are 
documented in the Windows SDK.

DIBs in memory

If you examine the file format structures carefully, you will see that the file 
header contains a pointer to the position of the image bits within the file implying 
that the block containing the bits need not be contiguous with the header.  This is 
a convenience for the file format but a nuisance for a memory image format since 
we don't want to have to manage two memory blocks for the DIB and we don't 
want to allocate memory which doesn't contain any useful information.  So when 
we read a DIB file into memory we calculate the total memory required for the 
header (excluding the BITMAPFILEHEADER which is not required) and the 
bits, allocate a single block for the whole thing and read the header and bits 

 



 

separately into this block so that they end up contiguous within it.

But what about the two different formats?  Instead of dealing with both formats in 
the application, I chose always to convert Presentation Manager DIBs to 
Windows DIB format internally giving only one format to deal with.  This is 
easily done when the DIB image is created in memory.  This does mean that a 
DIB which is subsequently saved to file later may end up being converted from 
Presentation Manager format to Windows format but this is not a problem for any 
Windows application :).

A Windows format DIB which is contained in a single memory block with its 
header immediately preceding the bits is called a packed DIB and is used to 
transfer DIBs through the Clipboard.  Its Clipboard format name is CF_DIB. 

Handles or Pointers?

Since we will allocate a block of memory for the packed DIB information, should 
we retain the handle to the memory or a pointer to it?  In days of old when knights 
were bold and memory wasn't addressed by descriptor tables (real mode) we 
always worked with handles.  Since we now live in a protected mode environment 
and are rapidly approaching the happy days of 32 bit, flat model Windows 
programming I have chosen to keep a pointer to all my global objects rather than 
a handle.  This avoids thousands of unnecessary calls to GlobalLock and 
GlobalUnlock which both simplifies and speeds up the code. To make the code as 
portable as possible I use macros (ALLOCATE() and FREE()) to allocate and free 
memory blocks.

When I was writing the sample application I found that I needed to use things like 
the height and width of the DIB a lot so I initially created a structure which held 
all the information about the DIB I used a lot and a pointer to the packed DIB 
itself.  This wasn't really as efficient as it might have been since we were back to 
having two memory blocks to describe one DIB.  I decided to implement a set of 
macros to do all the pointer dereferencing (DIB_HEIGHT etc.) and these were 
used throughout the application.  There is some issue here regarding the code 
speed.  It could be argued that all the pointer dereferencing used in the macros 
leads to slower code than could be achieved by having the commonly used DIB 
parameters cached in a single place.  The macros helped make the code a bit 
simpler to look at and resulted in a DIB being just a single memory block in 
CF_DIB format which on balance I prefer. Figure 3 shows the format of a packed 
DIB in memory.

µ §

Figure 3.  Packed DIB memory organization

 



 

General DIB Notes

When accessing the bits of a DIB in memory be very careful that you use the 
correct type of pointer.  If the DIB is less than 64k in size, you can use a FAR 
pointer to access all of it.  If the DIB is larger than 64k then it's very important 
that you use a HUGE pointer so that the address arithmetic will be performed 
correctly.  Bitmaps of 100x640, 200x320 or 250x250 are all just under 64k.

FAR pointers only have 64k offsets so if you attempt to go beyond 64k the offset 
will wrap and the address will have a low offset value rather than the big one you 
expect. This problem is most noticeable when writing to the DIB memory since 
an address wrap while writing the DIB bits will cause the BITMAPINFO header 
to be overwritten and consequently the integrity of the DIB trashed.  I know about 
this - I've done it.  The code always looks just fine , but something keeps trashing 
the header.  Be warned!

When accessing the bits in a DIB, also be aware that the width of a scan line is 
always divisible by 4 (DWORD aligned) and consequently the pixel position is 
not simply determined by the scan line number and image width.  The SPRITES 
header file GLOBAL.H includes a set of macros for accessing information on a 
DIB given a pointer to it.  The DIB_STORAGEWIDTH macro returns the 
physical length of the scan line.  The DIB_WIDTH macro returns the width of the 
image.

The DIB Driver

The DIB driver was developed in response to very many requests from software 
developers to be able to manipulate the bits of a bitmap directly in memory.  The 
DIB driver was originally developed as a part of the Multimedia Extensions to 
Windows and subsequently shipped as a standard component of Windows 3.1.

Direct Bitmap Memory Access

It is not possible to directly access the bits of a Windows DDB.  This is not 
simply because we (Microsoft) won't tell you how to find it, it's because 
allocation of the bitmap memory is done by the video device driver and the driver 
can choose to use any memory available to it including memory on the video 
adapter card.  In the case of the 8514 driver, there is quite a bit of spare video 
memory in some video modes and it makes good sense for the video driver to 
make use of it if it can.  If the memory for a bitmap is allocated on the adapter 
card then there is no direct access to it possible since that memory is not mapped 
into the processor address space.

In addition to the problem of where the memory is located, there is an additional 

 



 

problem that the format of the memory allocated for the bitmap is also defined by 
the device driver.  This makes a lot of sense since it allows the driver to choose a 
memory organization which makes it easy to transfer (blt) chunks to and from the 
video memory.  Since this format can vary from driver to driver, even if you 
could access the memory, there is no way you could know how it was organized.

The DIB driver solves the problem of memory access and bitmap organization by 
requiring the application to allocate the memory for the bits and provide the 
information on how the bitmap bits are organized.  The application does this by 
creating a packed DIB in memory and passing the address of this structure to the 
DIB driver when it (the application) requests the creation of a DC (Device 
Context). The packed DIB structure contains a BITMAPINFO structure at its start 
which gives the width and height of the bitmap and also describes its color table 
and pixel color organization. Directly following the header are the bitmap bits, 
organized the same way as the bitmap bits in a DIB file.

What the DIB Driver Can do for You

By using the DIB driver to create a DC in a piece of memory you have allocated 
and understand the organization of, you can choose to create images in that DC in 
two ways: use GDI operations in the same way as for any other DC or manipulate 
the bits directly in memory.

For an animation application this means that you can use the DIB Driver to 
manage the off-screen image buffer.  You create a packed DIB the same size and 
organization as the window in which the animation will play and then use the DIB 
Driver to create a DC for it.  Thereafter you can do all your image rendering to the 
off-screen DIB and use the StretchDIBits function to move areas of the off-screen 
DIB to the display window DC.

Drawing to the DIB Driver DC

As mentioned above, you can perform regular GDI operations on a DIB Driver 
DC.  Since the DIB Driver is a non-palletized device there is no point in 
selecting/realizing a palette in the DC.   There is no harm in doing this however as 
the driver simply ignores the request. Generic code which selects and realizes a 
palette when drawing to an arbitrary DC will still work OK if used on a DIB 
Driver DC.

DIB Blt Functions

There is no function to directly blt a packed DIB to a DC but there are a small 
number of functions designed to move DIB bits between a DIB and a DDB or the 
screen DC. Table 1 lists the functions.

 



 

Name Description

SetDIBits Move DIB bits to a DDB

GetDIBits Move DDB bits to a DIB

SetDIBitsToDevice Move DIB bits to a device

StretchDIBits Move DIB bits to a device and 
optionally stretch them.

Table 1.  DIB Functions

The SetDIBits and GetDIBits functions are directly implemented by screen and 
printer device drivers.  The SetDIBitsToDevice function is a hangover from the 
Windows 3.0 DIB development and should not be used in new projects. Use 
StretchDIBits instead of SetDIBitsToDevice.  StretchDIBits is the 'do all' function 
used to transfer DIB images between DCs.  It is optionally implemented by the 
screen device driver.  If not implemented in the device driver, GDI uses 
combinations of SetDIBits, GetDIBits and BitBlt to emulate it.  Having GDI 
emulate StretchDIBits means awful performance.  More about performance issues 
later.

StretchDIBits

Understanding what is going on with the color table entries when StretchDIBits is 
called can be quite a problem. The following set of figures show what happens 
when StretchDIBIts is used to draw DIBs to DC's of both palletized and non-

 



 

paletized devices.  The source DIB color table can be either RGB values (the 
DIB_RGB_COLORS flag is used) or palette index values (the 
DIB_PAL_COLORS flag is used). The four possible combinations are explained 
here.
Figure 4. Using StretchDIBits with DIB_RGB_COLORS to draw on a 
paletized device DC.

When drawing RGB values to a paletized device, GDI translates each RGB value 
to an index in the current physical palette by calling an internal version of 
GetNearestPaletteIndex.  The set of indices is then passed to the device driver.  
The driver tests the index set to see if it is an identity palette. An identity palette is 
one which has an exact 1:1 mapping of logical palette index values to the current 
physical palette.  In other words the palette table contains the values 0, 1, 2, ... 
255.  If the driver detects an identity palette then the DIB bits can be moved 
directly to the screen memory without translation.  If the palette is not an identity 
palette then each pixel value (palette index) in the source DIB has to be translated 
through the lookup table supplied by GDI to the correct physical palette index 
value.

µ §
Figure 5. Using StretchDIBits with DIB_PAL_COLORS to draw on a 
paletized device DC.

When drawing palette index  values to a paletized device, GDI builds a translation 
table to map the logical index values in the DIB to the current physical palette 
index values.  The set of indices and the translation table are then passed to the 
device driver. If the palette is found to be an identity palette no translation is 
performed. (See the previous example).

µ §
Figure 6. Using StretchDIBits with DIB_RGB_COLORS to draw on a non-
paletized device DC.

When drawing RGB values to a non-paletized device, no translation is done by 
GDI. The driver gets the RGB values directly. In the case of the DIB driver and 
an 8 bit DIB, these RGB values are converted to 8 bit pixel values by looking 
them up in the (DIB Driver) DIB color table.

µ §
Figure 7. Using StretchDIBits with DIB_PAL_COLORS to draw on a non-
paletized device DC.

When drawing palette index  values to a non-paletized device, GDI looks up each 
index in the currently selected logical palette and translates it to an RGB value. 
The table of RGB values is passed to the device driver. 

 



 

Palettes

Most of the popular display cards today provide 640 by 480 with 256 colors and 
Windows provides palette management for the available colors.  Any application 
wishing to use these colors will need to create and use one or more palettes.  If 
you are not familiar with how palettes work in Windows, please refer to Ron 
Gery's articles: "The Palette Manager: How and Why" and "Using DIBs with 
Palettes" elsewhere on the Developer Network CD.

In designing an animation application, we must consider how color will be used 
and create one or more palettes accordingly.

Palette Operations Take Time

Each time an application selects a palette for use by itself, Windows creates a 
mapping between the colors in the requested (logical) palette and the system 
(physical) palette.  Exactly how it does this and the rules governing it are covered 
in Ron's articles. The important point is that the process of mapping a logical 
palette to the system palette takes a finite time and is not something we want to be 
doing every time we draw an image.  In fact, GDI attempts to be helpful here and 
recognizes when the palette being realized in the current foreground application is 
the same as the one realized before it, and doesn't repeat the matching operation 
needlessly.  None the less, we need to be careful about our use of palettes or the 
performance of our application will suffer.

One Palette Fits All

For the SPRITES application I chose to use only one palette.  Rather than build 
the palette into the application I chose to always create the palette from the color 
table contained in the DIB used for the background scene.  This was purely a 
convenience for me.  You could just as easily read a palette in from any DIB file 
and use that one.

If all the images are to look reasonable when rendered with one common palette 
then the choice of the colors in that palette is obviously very important.  How you 
should go about choosing those colors is beyond the scope of this article.  I chose 
mine the cowards way, by letting the scanning software chose it for me.  It so 
happens that the scanner I used created a common palette to save all of the images 
I scanned.  It's not a great palette but it's OK for the purpose of demonstrating the 
principle.  The scanner used was a Hewlett Packard ScanJet IIc and the software 
was Hewlett Packard's DeskScan II version 1.5.

If you have several images and want to play with their palettes, try running the 

 



 

BitEdit and PalEdit tools available in the Video for Windows SDK. If you just 
want to experiment, try looking at the images in the SPRITES application.

Comment: Add a button to run BitEdit here.

Creating a Palette

Creating a palette from the color table of a DIB is reasonably straight forward 
once you know how many colors you want to use.  A LOGPALETTE structure is 
created large enough for the number of colors, the color information is copied 
from the DIB header and a call made to CreatePalette. The LOGPALETTE 
structure is then freed.  Since this is a common requirement when dealing with 
DIBs, I wrote a function to create a palette directly from the 
BITMAPINFOHEADER of a DIB.  This function is called CreateDIBPalette and 
is in the palette.c module of the SPRITES sample code.  Here it is with the 
comments and some of the error handling code removed:

HPALETTE CreateDIBPalette(LPBITMAPINFO lpBmpInfo)
{
    LPBITMAPINFOHEADER lpBmpInfoHdr;
    HANDLE hPalMem;
    LOGPALETTE *pPal;
    HPALETTE hPal;
    LPRGBQUAD lpRGB;
    int iColors, i;

    lpBmpInfoHdr = (LPBITMAPINFOHEADER) lpBmpInfo;
    if (!IsWinDIB(lpBmpInfoHdr)) return NULL;

    lpRGB = (LPRGBQUAD)((LPSTR)lpBmpInfoHdr + (WORD)lpBmpInfoHdr-
>biSize);
    iColors = NumDIBColorEntries(lpBmpInfo);
    if (!iColors) return NULL;

    hPalMem = LocalAlloc(LMEM_MOVEABLE,
                         sizeof(LOGPALETTE) + iColors * sizeof(PALETTEENTRY));
    if (!hPalMem) return NULL;
    pPal = (LOGPALETTE *) LocalLock(hPalMem);
    pPal->palVersion = 0x300; // Windows 3.0
    pPal->palNumEntries = iColors; // table size
    for (i=0; i<iColors; i++) {
        pPal->palPalEntry[i].peRed = lpRGB[i].rgbRed;
        pPal->palPalEntry[i].peGreen = lpRGB[i].rgbGreen;

 



 

        pPal->palPalEntry[i].peBlue = lpRGB[i].rgbBlue;
        pPal->palPalEntry[i].peFlags = 0;
    }

    hPal = CreatePalette(pPal);
    LocalUnlock(hPalMem);
    LocalFree(hPalMem);

    return hPal;
}

The CreateDIBPalette function uses NumDIBColorEntries to get the number of 
colors in the DIB color table.  NumDIBColorEntries copes with the somewhat 
obscure rules governing exactly how many color entries there are in a DIB color 
table.  The structure contains a biClrUsed field which should have the number of 
colors in it but often is set to zero meaning that the color table is the maximum 
size appropriate for the color depth. 

All of the DIB management code in the examples assumes that the DIB is in 
Windows format (having been converted from PM format if required when it was 
loaded).  The helper function IsWinDIB is used to make the test.  More about the 
DIB support functions later.

The SPRITES Sample Application

I decided to make my sample some form of sprite (cast based) animation for 
several reasons.  Firstly it's much more challenging than frame animation and I'm 
a sucker for punishment. Secondly, all the techniques required for frame 
animation are used in sprite animation so an example of sprite animation code 
also effectively provides a frame example. Of course, the real reason is that I 
could scan some images to make the sprites which meant less artwork!

An Overview

The SPRITES application uses a DIB for a background scene and allows the 
loading of multiple sprites on top of the background scene.  Each sprite has x,y 
and z coordinates and optional x and y velocity.  It also has a flag to say if it can 
be dragged by the mouse or not.

A background and set of sprites can be combined into a scene described in a 
simple INI file. The entire scene can be loaded using the 'Load Scene' item from 
the 'File' menu.

 



 

The application updates the positions of all sprites which have a non-zero velocity 
as fast as it can using a PeekMessage loop.

Sprites which have the selectable attribute set can be dragged with the mouse.  
Double clicking on a sprite brings up a dialog which allows all the sprite attributes 
to be set. 

The Z order value of zero is the front most position and values greater than zero 
go towards the back.  I used a maximum value of 100 but the limit is actually 
65535.

A separate debug information window works in conjunction with 'dprintf' 
statements in the code and the 'Debug' menu to show what's going on.

Figure 8 shows how the background DIB, the DIB Driver DC, common palette 
and screen DC relate to each other.

µ §µ §
Figure 8. The architecture of the SPRITES application.

Code Notes

The SPRITES sample code has some features which I will mention here to avoid 
confusion when you read the code.

There are several 'dprintf' statements throughout the code.  These are used to print 
debugging information in the debug window.  The amount of information is 
controlled by the current debug level which can be set from the 'Debug' menu.  I 
try to use level 1 for error messages (most important), level 2 for general 
procedural steps (like entering a major function), level 3 for increased procedural 
detail (what's happening in the function) and level 4 for data dumps and things 
that go on too fast to want to have data about them all the time.  The dprintf 
statements are implemented as macros in GLOBAL.H.

Since the world of Windows programming is moving rapidly towards 32 bits, I try 
not to include the near or far attribute in pointer names.  So instead of npDIB, 
lpDIB or fpDIB I simply use pDIB.  This might seem confusing since it is so 
common to see lpSomething in Windows code but I believe that it will help in the 
long run.  Almost all pointers in the code are actually FAR pointers.  There are 
also a few HUGE pointers for dealing with big objects and one or two near 
pointers to data in the local heap where this made a significant difference to the 
performance.

In many cases when code fragments are included in the text of the article, I have 
removed comments, debug code and sometimes error reporting statements to help 

 



 

clarify what I'm talking about.  Please look at the actual code in the sample before 
writing your own.

Be aware that last minute changes to the code before publication might mean 
some slight differences from what's in the article and what's in the sample code.  
If in doubt, go with the code in the sample.

The Background

The background scene of the animation is a single DIB.  The color table found in 
the background DIB is used to create the palette used to render all the images to 
the window DC. A background is loaded by using the 'Load Background' item 
from the 'File' menu or by loading a scene by using the 'Load Scene' item.  The 
LoadBackground function in BKGND.C is responsible for doing the work.  We'll 
look at the code for each step of the function with a brief description of what is 
happening at each stage. 

    DeleteSpriteList();

The current set of sprites is deleted.  This isn't really necessary, but it greatly 
simplified the set of dependencies.  The background provides the common palette 
and each sprite has its color table adjusted to fit the background color set so it was 
just easier to start again each time a background was loaded.

    DeleteDIB(pdibBkGnd);

The existing background DIB is deleted.  The DeleteDIB function does nothing if 
the DIB does not currently exist.

    pdibBkGnd = LoadDIB(pszPath);

The new background DIB is loaded.  If no path was provided for the background 
DIB, a dialog is presented to choose it.

    if (hpalCurrent) DeleteObject(hpalCurrent);
    hpalCurrent = CreateDIBPalette(pdibBkGnd);

Any current palette (from a previous background DIB) is deleted and a new one 
created from the new background DIB.  The CreateDIBPalette function is in the 
DIB.C module.

It is at this point that the palette could be modified to ensure that the first 10 and 
last 10 entries exactly match the system color entries.  This is important to do so 

 



 

that the palette indicies will not need translation when they are blted to the screen. 
(This is discussed more elsewhere).

The window rectangle is then adjusted to fit the new background.  I'll skip the 
code for that since it's commonplace.

    if (hdcOffScreen) {
        DeleteDC(hdcOffScreen);
        hdcOffScreen = NULL;
    }
    DeleteDIB(pdibOffScreen);

Any existing off-screen DC and its associated DIB are deleted.  The DeleteDIB 
function is in DIB.C.

    pdibOffScreen = CreateCompatibleDIB(pdibBkGnd);

A new off-screen DIB is created the same size as the background DIB.  The 
CreateCompatibleDIB function is in DIB.C.

    hdcOffScreen = CreateDC("DIB", NULL, NULL, (LPSTR)pdibOffScreen);

A new off-screen DC is created using the DIB Driver and the new off-screen DIB. 
Note that the DIB Driver requires that the last argument be a pointer to a packed 
DIB structure. 

    if (!pPalClrTable) {
        pPalClrTable = (LPBITMAPINFO) 
ALLOCATE(sizeof(BITMAPINFOHEADER)
                                               + 256 * sizeof(WORD));
    }

    _fmemcpy(pPalClrTable,
             pdibOffScreen,
             sizeof(BITMAPINFOHEADER));

    pIndex = (LPWORD)((LPSTR)pPalClrTable + 
sizeof(BITMAPINFOHEADER));
    for (i=0; i<256; i++) {
        *pIndex++ = (WORD) i;
    }

 



 

A 1:1 color lookup table is required when StretchDIBits is used later to copy 
image data from the off-screen DC to the Window DC.  If the table doesn't 
already exist, the memory is allocated for it.  The table header is copied from the 
background DIB.  This sets the size information to be the same as the background 
and off-screen DIBs. Lastly, the color table is filled with the values 0 through 255 
which gives the 1:1 color index mapping we will need later.

    Redraw(NULL, bUpdateScreen);

A call is made to render the background image to the off-screen DC and to update 
the window DC with the new image.

The Sprites

Each sprite consists of a DIB which provides the image and a set of variables 
which describe its size, position and optionally its velocity.  The information 
about each sprite is contained in a SPRITE structure:

typedef struct _SPRITE {
    struct _SPRITE FAR *pNext;  // pointer to the next item
    struct _SPRITE FAR *pPrev;  // pointer to the prev item
    PDIB pDIB;                  // The DIB image of the sprite
    int x;                      // X Coordinate of top-left corner
    int y;                      // Y Coordinate of top-left corner
    int z;                      // Z order for sprite
    int vx;                     // X velocity
    int vy;                     // Y velocity
    int width;                  // width of bounding rectangle
    int height;                 // height of bounding rectangle
    BYTE bTopLeft;              // top left pixel value
    COLORREF rgbTopLeft;        // top left pixel color
    BOOL bSelectable;           // TRUE if sprite can be mouse selected
} SPRITE, FAR *PSPRITE;

The transparent regions of the sprite are determined by the color of the top-left 
pixel of its DIB.  When the DIB is authored one color is reserved (it doesn't 
matter what color it is) for the transparent regions and they are all filled with that 
color.  The top-left pixel is also set to that color.  This is easy to achieve in 
practice since it is natural that the corners of the sprite rectangle are transparent 
for most real object shapes.

To see how these parameters are set, let's look at the LoadSprite function in 

 



 

SPRITE.C

    pSprite = (PSPRITE) ALLOCATE(sizeof(SPRITE));

Memory is allocated for the SPRITE structure.

    pSprite->pDIB = LoadDIB(pszPath);

The DIB image of the sprite is loaded.  If no path was supplied to LoadSprite a 
dialog is presented to select the DIB.

    pSprite->width = (int) DIB_WIDTH(pSprite->pDIB);
    pSprite->height = (int) DIB_HEIGHT(pSprite->pDIB);
    pSprite->x = 0;
    pSprite->y = 0;
    pSprite->z = 0;
    pSprite->vx = 0;
    pSprite->vy = 0;
    pSprite->bSelectable = TRUE;
    pSprite->pNext = NULL;
    pSprite->pPrev = NULL;

The defaults are set for the sprite parameters. 

    MapDIBColorTable(pSprite->pDIB, pdibBkGnd);

The color table in the DIB is mapped to the color table of the background DIB.  
This isn't required if all the sprite DIBs are authored with the same color table as 
the background DIB. If the color tables differ, this at least renders the sprite image 
in the best way possible rather than as a collection of seemingly random colors.  
The MapDIBColorTable function is in DIB.C.

    pSprite->bTopLeft = GetDIBPixelValue(pSprite->pDIB, 0, 0);
    pSprite->rgbTopLeft = GetDIBPixelColor(pSprite->pDIB, 0, 0);

The index value and color of the top-left pixel are saved for later use in 
determining the transparent areas of the image.

    if (pSpriteList) {
        pSpriteList->pPrev = pSprite;
        pSprite->pNext = pSpriteList;
    }
    pSpriteList = pSprite;

 



 

The sprite is added to the top of the sprite list.  For now the position in the list 
doesn't matter.  It will be adjusted when the Z order is set.

    SetSpriteZOrder(pSprite, 50, NO_UPDATE);

The Z order of the sprite is set to a default value.  Z order zero is the front most 
sprite.  Sprites with the same Z order are drawn with the one at the top of the 
sprite list front most.  Painting is done from the bottom of the list to the top.  The 
list is always maintained in Z order so don't set the Z order value directly, use the 
SetSpriteZOrder function which correctly manages the list.

    if (bRedraw != NO_UPDATE) {
        GetSpriteRect(pSprite, &rc);
        Redraw(&rc, UPDATE_SCREEN);
    }

If redrawing the sprite was requested, the sprite rectangle is added to the redraw 
list.  For a single sprite loaded manually from the menu it needs to be redrawn to 
be visible, but if the sprite is being loaded along with other sprites to form a scene 
then the redraw operation only needs to be done when all the sprites are loaded.

The DIB Functions and Macros

Since Windows provides no functions to deal with DIBs the way it does with 
bitmaps (DDBs) we need to create our own. The DIB.C module contains all the 
DIB handling functions used in the application except those used for rendering 
which are in the DRAW.C module.  A brief description of each function is given 
here.  See the code for more details.  A set of macros are defined in GLOBAL.H 
for accessing various parameters of a DIB. They are also described briefly here.

The DIB Macros

Macro name Function

DIB_WIDTH(pDIB) Image width

DIB_HEIGHT(pDIB) Image height

 



 

DIB_PLANES(pDIB) Number of color planes

DIB_BITCOUNT(pDIB) Number of bits per pixel

DIB_CLRUSED(pDIB) Number of colors used

DIB_COLORS(pDIB) Number of colors

DIB_PCLRTAB(pDIB) Pointer to the color table

DIB_BISIZE(pDIB) Size of the BITMAPINFO struct

DIB_PBITS(pDIB) Pointer to the bits

DIB_PBI(pDIB) Pointer to the BITMAPINFO 
struct

DIB_STORAGEWIDTH(pDIB) Scan line storage width

Table 2.  DIB Macros

The DIB Functions

PDIB LoadDIB(LPSTR pszPath)

 



 

Load a DIB.  pszPath is the file path or NULL to invoke the file open dialog.

void DeleteDIB(PDIB pDIB)
Delete a DIB. If pDIB is NULL, the request is ignored.

BYTE GetDIBPixelValue(PDIB pDIB, int x, int y)
Get the value (color table index) of a pixel at coordinates x,y of the DIB pointed 
to by pDIB.

COLORREF GetDIBPixelColor(PDIB pDIB, int x, int y)
Get the color (RGB) of a pixel at coordinates x,y of the DIB pointed to by pDIB.

BOOL IsWinDIB(LPBITMAPINFOHEADER pBI)
Test if a DIB is Windows format (rather than Presentation Manager format).

void ShowInfo(LPBITMAPINFO lpBmpInfo)
A debugging function to display attributes of a DIB in the debug window.

WORD NumDIBColorEntries(LPBITMAPINFO lpBmpInfo)
Get the number of colors in the color table of a DIB.  Used in the DIB_COLORS 
macro.

PDIB CreateCompatibleDIB(PDIB pOld)
Create a new DIB the same size and color format as an existing DIB.

HPSTR GetDIBPixelAddress(PDIB pDIB, int x, int y)
Get a pointer to the pixel at address x,y in the DIB pointed to by pDIB.

void MapDIBColorTable(PDIB pdibObj, PDIB pdibRef)
Map the colors in the color table of the DIB pointed to by pdibObj to the colors in 
the color table of the DIB pointed to by pdibRef. This is done by creating a 
temporary DIB Driver DC the same size as the object DIB, with the color table of 
the reference DIB.  The object DIB is then rendered to the DIB Driver DC using 
StretchDIBBits with the DIB_RGB_COLORS option.  The resulting bits (now 
mapper tot he reference color table) are copied back to the object DIB bits.

The Drawing Functions

The module DRAW.C contains all of the functions to render images to the off-
screen DIB Driver DC and to the window DC.  The most important functions are 
RenderDIBBitsOffScreen, Redraw and Paint.

RenderDIBBitsOffScreen

This function is used to render the background DIB and the sprites to the off-
screen DC. It uses two functions: CopyDIBBits and TransCopyDIBBits in the 
FAST32.ASM module to perform the actual bit transfers.  Here's a description of 
the function:

 



 

    rcDraw.top = rcDraw.left = 0;
    rcDraw.right = DIB_WIDTH(pdibOffScreen) - 1;
    rcDraw.bottom = DIB_HEIGHT(pdibOffScreen) - 1;

    if (prcClip) {
        if (!IntersectRect(&rcDraw, &rcDraw, prcClip)) return;
    }

    rcDIB.left = x;
    rcDIB.right = x + DIB_WIDTH(pDIB) - 1;
    rcDIB.top = y;
    rcDIB.bottom = y + DIB_HEIGHT(pDIB) - 1;

    if (!IntersectRect(&rcDraw, &rcDraw, &rcDIB)) return;

The function is supplied with a clipping rectangle describing the area to be drawn 
into.  The first step is to intersect that rectangle with the off-screen DIB boundary 
so we don't try to draw off the DIB. If there is no intersection then there is nothing 
to do.  The resultant rectangle is intersected again, this time with the bounding 
rectangle of the DIB itself to ensure we aren't going to be doing more work than is 
really necessary.  Again, if there is no intersection, the DIB isn't visible and the 
function returns.

    pStartS = GetDIBPixelAddress(pDIB,
                                 rcDraw.left - x,
                                 rcDraw.bottom - y);

    pStartD = GetDIBPixelAddress(pdibOffScreen,
                                 rcDraw.left,
                                 rcDraw.bottom);

    lScanS = DIB_STORAGEWIDTH(pDIB);
    lScanD = DIB_STORAGEWIDTH(pdibOffScreen);

The address of the bottom-left corner of the draw rectangle is found in both the 
source DIB and the destination DIB.  The length of the physical scan line for each 
DIB is obtained.  The addresses represent the lowest address of the DIB bits we 
need to copy.

    if (!bTrans) {
        CopyDIBBits(pStartD, 
                    pStartS, 

 



 

                    rcDraw.right - rcDraw.left + 1,
                    rcDraw.bottom - rcDraw.top + 1,
                    lScanD,
                    lScanS);
    } else {
        TransCopyDIBBits(pStartD, 
                         pStartS, 
                         rcDraw.right - rcDraw.left + 1,
                         rcDraw.bottom - rcDraw.top + 1,
                         lScanD,
                         lScanS,
                         bTranClr);
    }

If the DIB is to be treated as non-transparent (as for the background DIB) then the 
CopyDIBBits function is called.  If the DIB has a transparency color associated 
with it (as for a sprite DIB) then the TransCopyDIBBits function is used.  These 
two copy functions are implemented in 32 bit assembler in FAST32.ASM.

Redraw 

This function is used in two ways depending on whether the screen needs to be 
updated or not.  When rendering multiple images, it is important to do the least 
amount of work so the function is used to add items to the redraw list and 
optionally to do the actual redraw.  Here's what goes on:

    if (prcClip) {
        AddDrawRectItem(&DrawList, prcClip);
    } else {
        if (pdibBkGnd) {
            rcAll.left = rcAll.top = 0;
            rcAll.right = DIB_WIDTH(pdibBkGnd);
            rcAll.bottom = DIB_HEIGHT(pdibBkGnd);
            AddDrawRectItem(&DrawList, &rcAll);
        }

    }
    if (bUpdate == NO_UPDATE) return;

The first stage is to add the supplied clipping rectangle to the redraw list.  If 
NULL was specified, this is interpreted as meaning that the entire window needs 
to be redrawn and this causes a rectangle the size of the background DIB to be 
added to the list instead. If no request was made to update the screen, the function 
exits here.

 



 

    MergeDrawRectList(&DrawList);
    pLastSprite = pSpriteList;
    if (pLastSprite) {
        while (pLastSprite->pNext) pLastSprite = pLastSprite->pNext;
    }
    if (bUpdate == UPDATE_SCREEN) {
        hDC = GetDC(hwndMain);
    }
    pDrawRect = DrawList.pHead;
    while (pDrawRect) {
        RenderDIBBitsOffScreen(pdibBkGnd, 
                               0, 0, 
                               &(pDrawRect->rc),
                               0,
                               FALSE);
        pSprite = pLastSprite;
        while (pSprite) {
            RenderSpriteOffScreen(pSprite, &(pDrawRect->rc));
            pSprite = pSprite->pPrev;
        }
        if (bUpdate == UPDATE_SCREEN) {
            Paint(hDC, &(pDrawRect->rc));
        }
        pDrawRect = pDrawRect->pNext;
    }
    if (bUpdate == UPDATE_SCREEN) {
        ReleaseDC(hwndMain, hDC);
    }
    EmptyDrawRectList(&DrawList);

The first step in the rendering process is to merge all the overlapping rectangles in 
the redraw list.  This results in a list of non-overlapping rectangles and gives us 
the least area which will need to be modified. Pointers are obtained to the last 
sprite in the sprite list and the first rectangle in the redraw list.  The sprite list is 
walked form bottom to top so that high Z order sprites (which are at the bottom of 
the list) appear at the back of the scene.

Then for each rectangle, the background is replaced in the off-screen DC by 
calling RenderDIBBitsOffScreen.  The sprite list is then walked, rendering each 
sprite.  The clipping of each sprite is handled in part by the 
RenderSpriteOffScreen function and in part by the RenderDIBBitsOffScreen 
function.

 



 

If Redraw was called with the UPDATE_SCREEN flag, the screen DC is 
repainted by calling the Paint function for the current draw rectangle.

When all of the rectangles in the list have been redrawn, the list is reset to empty 
by a call to EmptyDrawRectList.

All of the drawing rectangle functions can be found in DRAW.C.

Paint

The Paint function handles updating the screen DC from the off-screen DIB 
Driver DC.  Here's the code:

    if (prcClip) {
        w = prcClip->right - prcClip->left;
        h = prcClip->bottom - prcClip->top;
        xs = xd = prcClip->left;
        yd = prcClip->top;
        ys = DIB_HEIGHT(pdibOffScreen) - prcClip->bottom;
    } else {

        w = DIB_WIDTH(pdibOffScreen);
        h = DIB_HEIGHT(pdibOffScreen);
        xs = xd = ys = yd = 0;
    }

The width and height of the rectangle to be copied and the start point in the off-
screen DC and the window DC are computed based on either the supplied 
clipping rectangle or the size of the off-screen image.

    if (hpalCurrent) {
        hOldPal = SelectPalette(hDC, hpalCurrent, 0);
        RealizePalette(hDC);
    }

The current palette (obtained originally from the background DIB color table) is 
selected into the screen DC and realized.  This operation only takes any 
significant amount of time the first time it is called after the application has 
become the foreground application.

    StretchDIBits(hDC,              // dest dc
                xd,                 // dest x
                yd,                 // dest y

 



 

                w,                  // dest width
                h,                  // dest height
                xs,                 // src x
                ys,                 // src y
                w,                  // src width
                h,                  // src height
                DIB_PBITS(pdibOffScreen), // bits
                pPalClrTable,       // BITMAPINFO
                DIB_PAL_COLORS,     // options
                SRCCOPY);           // rop

StretchDIBits is called to copy the bits of the off-screen image to the screen 
memory.  Note the use of DIB_PAL_COLORS and the 1:1 color lookup table 
(pPalClrTable).  See the section on performance below for more details.

    if (hOldPal) SelectPalette(hDC, hOldPal, 0);

The palette in the screen DC is restored.

Updating Positions

The UpdatePositions function really has very little to do with creating sprites.  I 
included this to show off the performance by whizzing a few images across the 
screen.  The code walks down the sprite list looking for any sprites which have a 
non-zero velocity vector.  When it finds one it adds the current position to the 
redraw list so that it will be erased from there.  The sprite position is updated and 
the new position of the sprite added to the redraw list.  In both cases the Redraw 
function is called with the NO_UPDATE option to prevent any actual draw 
operations until we are done walking the list.

Once all the sprites have been updated a test is made to see if any changes 
occurred and if so the Redraw function is called one more time, but this time with 
the UPDATE_SCREEN option which causes the redraw rectangle list to be 
walked and redrawn with all the updates being reflected to the screen DC.

If you want to do special case sprite movements (funny trajectories, flipping sprite 
images as they move and so on) this is the place to add the code.

The Scene File Format

To make life easier while debugging the SPRITES application, I created an INI 
file to describe what background DIB to use and what sprites to load.  The format 

 



 

isn't very tidy but it's documented here so that you can create your own files.  A 
nice improvement to the application would be an option to save the current scene 
in a file.

Here's part of the GARDEN.INI file showing the description of the background 
and two of the sprites:

[Background]
dib=bkgnd.dib

This describes the background DIB to use.  There is only one entry to specify the 
name of the DIB file. The default is to load the file from the current directory.  If 
this isn't what you want, put in the full path.

[Sprites]
sun=1
cloud2=1

This section gives a list of sprites to be loaded.  The '=1' bit is bogus.  Only the 
list of names are used by the loader code.

[Sun]
x=400
y=0
z=99
dib=sun.dib
selectable=0
vy=1

This describes the 'sun' sprite listed in the [sprites] section.

[Cloud1]
x=150
y=20
z=80
vx=2
dib=cloud16.dib

This describes one of the 'cloud sprites listed in the [sprites] section.

Table 3 shows the list of attributes for a sprite, a description of each one and the 
default if the entry is omitted.

 



 

Key Description Default value

dib The path of the DIB file. (none) This is a 
required entry.

x The X position of the top-
left corner of the sprite.

0

y The Y position of the top-
left corner of the sprite.

0

z The Z order value. O is 
front most. More than one 
sprite can have the same Z 
order value.

50

vx The X velocity in pixels 
per redraw cycle.

0

vy The Y velocity in pixels 
per redraw cycle.

0

selecta
ble

If the sprite can be selected 
for dragging by the mouse.

1 (DIB can be 
selected)

 



 

Table 3. The sprite attributes.

Note that you cannot enter negative values directly because the code uses 
GetPrivateProfileInt to retrieve them.  Negative values must be entered as 16 bit 
two's compliment values. Enter -1 for example) as 0xFFFF or 65535. 

Note:  This is an example of a stupidly named Windows function.  It says 'Int' in 
the name but always works with unsigned ints.  This rather frustrating and brain-
dead feature will unfortunately be with us for life. Such is the mission of 
backward compatibility in Windows.

Measuring Performance

One of the problems with this sort of work is that analysis of the results can be 
rather subjective which is something I detest.  Often I hear: "Hmm, I'm sure it was 
faster before you did that".  It's very nice to be able to respond with a list of 
timings and prove the point objectively. To this end I have used two different 
ways to measure how long various operations in the code took to execute.

Using Software Timing

The first timing technique involves reading the system clock at the start and end 
of a section of code and reporting the elapsed time.  This technique is OK with 
two provisos: that the time measurements are accurate enough and that displaying 
the timing information does not contribute significantly to the times being 
measured.

Timing measurements were done with the MMSYSTEM function timeGetTime 
rather than the regular Windows function GetTickCount because timeGetTime 
returns a millisecond count accurate to the nearest millisecond and GetTickCount 
returns a millisecond count only accurate to the nearest 55 ms (one DOS clock 
tick - hence the name). 

Displaying the results using the debug print statements (dprintf) is however rather 
invasive and if you use this technique you must be aware that painting the debug 
information window is a slow process and while this might not contribute to the 
execution time of the piece of code you are measuring, it certainly does contribute 
to the overall execution time of the application and hence slows down the 
animation significantly.  Using a small (two or three lines) debug window helps to 
minimize this.

 



 

Despite the invasive nature of showing the results, the timings of small sections of 
code are quite accurate and very helpful in determining whether optimizing a 
particular piece of code is worthwhile and when the work has been done, what the 
improvement was.

Using Hardware Techniques

The second technique I used is covered in another article: "Use Your Printer Port 
to Measure System Timings" by the same author.  This technique sets and clears 
bits of a printer port at various places in the code.  By using an oscilloscope to 
monitor when the transitions of the bits take place, accurate timing measurements 
can be made.  Please see the article mentioned above for details of how this 
technique works.

Using the oscilloscope to monitor various operations in the code I discovered 
several performance problems, the most notable being that allocating small blocks 
of memory with GlobalAlloc is very slow and inefficient. 

Improving Performance

While creating the SPRITES sample I measured the execution times of various 
bits of my code in order to determine where the bottlenecks were.  This section 
describes what I found out.

Memory Allocation

The first discovery I made when I started looking at performance was that using 
GlobalAlloc to allocate all of the dynamic memory blocks in the application isn't 
the best choice.  I had defined a macro to allocate and free memory blocks so that 
the technique could be easily changed if required.  I had decided to allocate all 
memory the same way - which essentially ruled out using local memory for 
anything.  This was a big mistake.  I was using my ALLOCATE macro (which 
calls GlobalAlloc) to allocate the elements of the redraw rectangle list.  Using the 
oscilloscope, I measured the time taken to be almost 3 ms on my 386/33 Compaq 
(in Enhanced Mode).  I was quite disgusted by this and rewrote the rectangle 
functions to use local memory blocks allocated with LocalAlloc and near pointers 
to access the structures.  The result was that the execution time of 
AddDrawRectItem fell from about 3 ms to about 50 us.  This cut almost 6 ms of  
the 72 ms cycle time of one of my test scenes which has a single sprite (a dog) 
moving one pixel at a time from left to right across a plain blue background.

The memory for the SPRITE structure could also be allocated locally and the 

 



 

FAR pointers used within the structure for pPrev and pNext replaced with near 
pointers.  This might give a small improvement in the rendering time since the 
sprite list is walked quite often.

Rendering DIBs to the Off-Screen DIB

The first try at rendering the sprite DIBs to the off-screen DC was a complete 
disaster.  I tried to use raster ops to create monochrome masks for the 
transparency regions of each sprite and to insert the non-transparent areas into the 
off-screen DIB.  After many hours of fruitless work and a phone call or two I was 
reminded that the DIB driver supports a background mode called 
NEW_TRANSPARENT and if this is set, StretchDIBits will treat the current 
background color as the transparency color of a bitmap.  The resulting code is 
implemented in the RenderDIBOffScreen function in DRAW.C.

Close examination of the code shows that the call to StretchDIBits is made using 
the DIB_RGB_COLORS option which causes the RGB values in the color table 
of the source DIB to be mapped to the RGB values of the color table in the 
destination DIB (the off-screen DIB in this case).  This is vary handy if your two 
DIBs have different color tables but is rather a waste of time if they are the same. 
Even assuming that you wanted to use DIBs with different color tables, it seems 
ridiculous to do the mapping every time the DIB is rendered.  Why not do the 
mapping once and save the results.

To do this I created the MapDIBColorTable function in DIB.C.  This function 
creates a temporary DC using the DIB driver, renders the DIB to the DC using 
StretchDIBits with the DIB_RGB_COLORS option and then copies the resulting 
bits in the DIB driver DC DIB back to the original source DIB.  Net result is that 
the pixels in the source DIB are now mapped to the color table supplied by the 
reference DIB (the background DIB in our case). 

So far, so good.  I then got way too clever and modified the StretchDIBits call in 
the RenderDIBOffScreen function to use DIB_PAL_COLORS with a 1:1 color 
table (as is used in the Paint routine).  This didn't work - I got weird colors.  After 
some research I discovered that you can't use DIB_PAL_COLORS when working 
with a non-palletized device and the DIB Driver is a non-palletized device.  What 
happens is that GDI tries to be helpful.  It detects that the device driver isn't 
palletized, maps the palette indices to RGB values and sends those to the driver.  
Net result - a waste of processor time, and the wrong colors.  There is a way 
around this problem however.  In MMSYSTEM.H there is a macro called 
DIBINDEX which can be used to define the colors in the DIB color table as 
palette index values:

clr[n] = DIBINDEX[n]

 



 

This sets a special flag in the COLORREF structure which the DIB driver 
recognizes and instead of matching the RGB values normally found in the color 
table it treats the low byte as a palette index.  But by this time I'd lost interest in 
using StretchDIBits and decided to do my own thing.

I decided to implement a simple function to simply copy the bits of the sprite DIB 
to the off-screen DIB (ignoring the transparency problem for the moment).  This 
worked great.  The performance was way better and the colors were right.  I 
added some code to implement the transparency feature (all of this in C) and 
although I now had transparent sprites again, the performance went way back 
down.  The cause of the loss of performance being the code generated by the C 
compiler which dealt with all the huge pointers I was using. Still the idea seemed 
good.

I recoded the function to copy a scan line of the DIB in assembler and found that 
the speed improved quite a lot.  I improved the assembler function to copy a 
whole block rather than calling it multiple times to copy scan lines and the result 
(which is in FAST16.ASM) was another small speed improvement.

The final touch was to use a technique developed by Todd Laney to create a 32 bit 
code segment for the assembler routine to run in.  This code can be found in 
FAST32.ASM and the macros which support it in CMACRO32.INC.  The code 
was taken from FAST16.ASM and optimized by Todd. There are several rules 
regarding using 32 bit code segments and how to generate them.  These are 
detailed in the section: "Using 32 Bit Code Segments" below. 

Table 4 shows some timings measured at various points through the development 
cycle of this piece of code.  The cycle time shown is the time the application takes 
to complete one move, render, redraw cycle.  The background time is the time 
taken to render the background DIB (which is not transparent) into the area the 
sprite is being moved from, and the sprite time is the time taken to render the 
sprite image in the new position. All times are in ms. The sprite was smolivia.dib 
which is a 256 color image. For all cases the paint time was constant at about 7 
ms. 
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StretchDIBits with 3 1 2

 



 

DIB_RGB_COLORS 0
0

2 8
0

StretchDIBits with 
DIB_PAL_COLORS

7
5

3
5

3
5

Primitive C code rectangle copy 1
2

- -

C code with transparency using huge 
ptrs

4
0

1
.
8

3
1

Using 16 bit assembler to copy lines 1
7

2 6

Using 16 bit assembler to copy blocks 1
6

1
.
6

5
.
5

Using 32 bit assembler to copy blocks 1
6

1
.
6

4
.
6

Optimized 32 bit assembler 1 0 2
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Table 2.  Code timings

There is one further improvement which is as yet untried.  I expect that using run 
length encoded DIBs (RLE) to define a sprite might be more efficient.  The RLE 
code scheme allows for blocks of the DIB to be skipped over using a form of 
relative addressing.  This scheme could be used to encode only the visible areas of 
a sprite.  For images which have a lot of transparency, this could give great 
improvements in the rendering time.

Updating the Window DC from the Off-Screen DIB

The first and most important thing to know here is that you can't use BitBlt to 
move bits from the DIB Driver DC to the screen DC.  BitBlt is a device driver 
implemented function and each driver only understands its own DC's.  The DIB 
driver owns the DIB Driver (off-screen) DC and the screen device driver owns the 
window DC.  This rule also prevents you from using BitBlt to copy data from a 
screen DC to a printer DC. Where I most often get caught out by this is in creating 
compatible DCs.  It's very easy to forget that a particular DC was created (and 
therefore is owned by) a particular device driver.  So if you create a DC 
compatible with an existing printer DC or DIB Driver DC, you still can't use 
BitBlt to move data between that DC and any DC owned by the screen device 
driver. This is where the DIB specific functions come in.

Updating the window from the off-screen DIB is reasonably straightforward:

1) The palette (created from the background DIB when it was loaded) is selected 
into the window DC and realized.

2) StretchDIBits is called with the DIB_PAL_COLORS option and a 1:1 color 
table.

3) The original palette is reselected into the DC.

That's all it takes.  Using the DIB_PAL_COLORS option prevents any color 
matching. Actually, the first time the palette is realized, GDI establishes a new 
system palette and modifies the index values in the logical palette so that they 
map directly to the system palette.  Once this has been done there is no need to 
map a logical palette index to a physical palette index and consequently the 
process runs very quickly.  This mapping stays valid so long as the system palette 

 



 

doesn't change.

Redraw Rectangle List

Since rendering images to the off-screen DC and copying the changed areas to the 
main window DC are really what take all the time, an attempt is made to reduce 
the amount of blitting done to a minimum.  To achieve this a list of rectangles is 
maintained which need to be redrawn on the off-screen DIB and repainted to the 
window DC.  As the first step in performing a redraw, the redraw list is merged so 
that any overlapping rectangles are combined into a single rectangle.  Then, each 
rectangle in the list is redrawn.  In this way the minimum area is modified each 
time.  Use the "ShowUpdateRects" menu item in the "Debug" menu to look at the 
redraw areas (in cyan) and the repaint to the screen areas (bordered in magenta).

Using Assembler Code

Writing critical sections of the code in assembler can provide two advantages.  
First, the code is often smaller and faster than that generated by the compiler and 
second, because of the way Windows allocates descriptor table entries for large (> 
64k) memory blocks, you can access an entire block of memory (a packed DIB 
for example) with the selector to the base of the block and a 32 bit offset.  Simply 
using a 32 bit register (ESI for example) for the offset forces the assembler to 
include an addressing modifier into the code which results in a 32 bit offset being 
used. This is how the FAST16.ASM module works.

Using 32 Bit Code Segments

You can include also 32 bit code segments in your application.  This is almost 
exactly the same as the 16 bit assembler case except that the code is now running 
with 32 bit offsets by default so no addressing modifier needs to be included 
before an instruction which uses a 32 bit offset.  On a 386 there is almost no 
improvement in performance from this because the execution time of the modifier 
is so low, but on a 486 the presemce of a modifier alters the instruction pipelining 
resulting in a very noticable reduction in performance.  So using 32 bit code 
segments gives a minor improvement on a 386 (a few percent) and usually a one 
and a half to two times improvemetn on a 486. Using 32 bit code segments has 
nothing to do with a flat model address space, you are still working with 
segment and offset.  Currently, the only way to implement this is in assembly 
language using a special version of the C macros. There are a some regulations 
governing how these segments must be created and used:

1) The segment must be separate from any 16 bit code segments.  To 
ensure this, name it with a unique name (such as TEXT32) and link it with the 

 



 

/NOPACKCODE option in the linker to prevent the segment being merged 
with other segments.  Failure to keep the segment isolated will result in a GP 
fault when one of your 32 bit functions attempts to return to the 16 bit calling 
code.

2) The 32 bit code segment should not call any 16 bit code.  This limits 
the 32 bit code to doing data manipulation tasks. This is partly to do with the 
fact that the 32 bit code is running with a 16 bit stack.

3) The assembly code must include the special CMACRO32.INC file.  
This is a modified version of CMACROS.INC which handles 32 bit code 
segments.

4) The code must be assembled with MASM 5.1 not MASM 6.0 which is 
not backward compatible with the macros. A version of the macros 
compatible with MASM 6.1 will be included with this technote and its sample 
if they become available.

The way that the 32 bit segments are integrated is quite ingenious.  Each 
procedure has a short piece of code at its start which determines if the segment is 
running in 32 bit mode.  If it is found to be in 16 bit mode, a jump is made to a 
piece of fix-up code at the start of the segment which modifies the descriptor table 
entry for the segment to change the mode to 32 bit and then returns to the called 
function which now executes in 32 bit mode.  This fixup only needs to occur once 
for the segment.  Once it has been set to 32 bit mode it stays that way.

There is one minor problem with using 32 bit code segments.  The linker sets a bit 
in the EXE file header in the segment table to mark the 32 bit code segment as 
being a 32 bit segment - much as you might expect.  Windows ignores many of 
the flags in the segment information including this one.  However the ROM 
Windows version of Windows makes use of this bit to mark a segment as being in 
ROM which causes disastrous results if you try to run an application with 32 bit 
code segments in RAM.  This problem can be cured by modifying the flag bits in 
the segment information table of the EXE file.  There is currently no tool 
available to do this. 

Sprite Design

Since the performance is limited largely by the amount of data being moved 
about, make sure that sprites don't have borders around them.  Even though the 
border is transparent, these areas cause trouble because the entire sprite rectangle 
needs to be redrawn whenever the sprite is moved. 
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Figure 9.  Good and Bad Sprite Designs 

Run Time Decisions

Not all device drivers have the StretchDIBits function implemented.  Even in 
some of the drivers which do have it implemented, the implementation may not be 
all that good.  If StretchDIBits is not implemented in the driver then GDI will 
simulate it by using combinations of SetDIBits and BitBlt.  This requires the use 
of an intermediate DDB which GDI uses to band the image in 64k chunks.  This 
is horrendously slow.  The Video for Windows code tests the perfomrance of 
StretchDIBits when it starts up by timing a few calls to StretchDIBits against calls 
to SetDIBits and BitBlt for the same image.  If StretchDIBits is slower, then the 
driver is either missing the StretchDIBits function or has a very bad 
implementation.  In any case, the Video for Windows code reports the problem to 
the user and carries on using the SetDIbits and BitBlt option.  Note that although 
the application still runs without a device driver implementation of StretchDIBits 
it is much slower than it would be if the function were present.

Notes About BitBlt

During the early stages of developing the SPRITES application I tried creating 
DDBs from the sprite DIBs and then creating monochrome bitmap masks for their 
transparent areas.  The bitmaps were combined together with the background 
bitmap using various raster operations. Even though BitBlt isn't used anywhere in 
the final SPRITES code, I though my notes might still be of some interest:

 1) When a DC is first created (for example by calling 
CreateCompatibleDC) it has a default 1 x 1 monochrome bitmap selected into 
it.  So if you subsequently call CreateCompatibleBitmap you will get a 
monochrome bitmap.  This isn't what you'd expect if you started with a color 
DC, created a compatible DC from that and then asked for a compatible 
bitmap.  To ensure that your bitmap is the same color format as the original 
DC get the color information by calling GetDeviceCaps for BITSPIXEL and 
PLANES and then use that information in a call to CreateBitmap:

BitsPixel = GetDeviceCaps(hDC, BITSPIXEL);
Planes = GetDeviceCaps(hDC, PLANES);
hbm = CreateBitmap(width, height, Planes, BitsPixel, NULL);

2) When using BitBlt to convert a color bitmap to a monochrome bitmap, 
if the pixel color of the source bitmap is the same as the current background 

 



 

color then the monochrome output is white (1) otherwise it is black (0).

3) If you want to be able to use blt operations like XOR and AND to do 
transparency masking onto a DIB dc, the sprite image and mask must also be 
in DIB DCs.  This is because BitBlt cannot work with device contexts from 
two different drivers.

 Unimplemented Features

The application only supports 8 bit DIBs.  It won't let you load a 2 or 4 bit DIB.  
It also doesn't support RLE DIBs. 

It turned out that once the code was complete, the DIB Driver had taken rather a 
back seat in the design and in fact could be removed all together.  The only 
function it provides is to map RGB color values to index values and this could 
just as easily be done with a small piece of code.

The background DIB is treated as a special case throughout the code.  It might 
have been better to treat it as just another sprite with a Z order value of 65535.  
When loaded (as the background DIB) it would still be used to create the common 
palette but once that was done it would simply be added to the tail end of the 
sprite list.

Some sprites are simply rectangles and in these cases it would be nice to be able 
to set a flag to say that transparency does not apply to this sprite.  This could 
easily be done by changing the BYTE value used in the bTransColor field of 
SPRITE to be a UINT (or WORD) with a special reserved vlaue of 0xFFFF 
meaning that there is no transparent color.

Another possible improvement to the architecture might be to use two off-screen 
DIBs in a double buffering arangement.  Each time an image was rendered to a 
buffer, the difference between the new image and the old one in the other buffer 
would be recorded (in a third DIB) and then converted to RLE before being sent 
to the screen DC.  This might look like a lot of work but has the advantage that it 
minimizes the amount of data going to the screen DC which is a limiting factor.  
Doing the render, compare and update to the off-screen DIBs could be done very 
efficiently with a small piece of assembly code.

Windows NT and Chicago Issues

The DIB Driver is not provided in either Windows NT or Chicago.  Instead there 
will be a new API called CreateDIBSection which will allow you to do the same 

 



 

things but in a slightly different way.  If you want to be able to port your 
application trivially to either Chicago or Windows NT then you should remove 
the DIB Driver and use your own code to do the RGB to index color conversions 
and also remove the 32 bit assembler code since this is very platform specific.

The ALLOCATE and FREE macros used for memory management in the sample 
don't map very well to Windws NT functions.  A better approach would be to 
include the windowsx.h header file and use the GlobalAllocPtr and GlobalFreePtr 
macros which have direct mapping to NT functions.

Another issue with porting to NT is the use of LPSTR casts when doing address 
arithmetic such as is used to calculate the offset of DIB bits in a packed DIB.  It is 
better to use LPBYTE since this points to an 8 bit object in both 16 and 32 bit 
Windows environments.  LPSTR points to a 16 bit object in Windows NT.

End.
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