
Font Utilities—Some Handy-Dandy Font-Handling Functions

Charlie Kindel, Microsoft Premier Support Services
Kyle Marsh, Microsoft Developer Network Technology Group
Created: January 10, 1993

Click to open or copy the files in the FONTUTIL sample application for this technical
article.
tech\gdi\fontutil

Abstract
Handling fonts in Microsoft® Windows™-based applications can involve a lot of grunt
work. For example, essential tasks such as creating fonts, retrieving point sizes, and
calculating text metrics can take up a lot of the developer's time and effort. This article
describes some useful font-handling functions that take care of most of this tedious work,
thus making it easier to create and manipulate fonts in Windows.
The FONTUTIL sample application demonstrates most of the font-handling functions
discussed in this technical article.

Introduction

The font utilities described in this article are primarily for applications that need the
relatively simplistic font model presented in the ChooseFont common dialog box.
ChooseFont deals with fonts using four primary variables: typeface name, typeface
style, point size, and effects. ChooseFont also allows for color selection, but the font-
handling functions do not currently support this feature.

The font-handling functions allow an application to create and interrogate fonts in a
manner that is consistent with the ChooseFont model. For example, you can create a
font by using the ReallyCreateFont function and specifying the typeface name,
typeface style, and point size; you can retrieve the typeface style of a font by using the
GetTextStyle function; and so on.

The font utility functions support Microsoft® Windows™ versions 3.0 and 3.1, and
Windows NT™ version 3.1. You can include the functions either in an application or in
a dynamic-link library (DLL).

Using the Font Utilities

There are two important points to remember when using the font utilities:

in.doc 11/10/2024 1

• You must export the fnEnumReallyEx callback function in the application's or
DLL's module definition file, or use an appropriate compiler option.

• The font utilities are English-specific; to support other languages, you must use the
LoadString function with string resources.

Exporting fnEnumReallyEx

The application or DLL containing the font utilities must export the font enumeration
callback function fnEnumReallyEx in the module definition file. For example, the
FONTUTIL sample application's FONT.DEF file exports fnEnumReallyEx with the
following lines:

EXPORTS
 fnEnumReallyEx @103

Alternatively, Microsoft C/C++ version 7.0 and Visual C++™ version 1.0 users can
compile the utilities with the –GA option (for applications) or the –GD option (for
DLLs). These options eliminate the need to export fnEnumReallyEx in the module
definition file.

Supporting Different Languages

The font utilities use hard-coded English strings for font attributes. To support other
languages, you must use string resources and load them into the utilities with the
LoadString function. For example, to support German, you must translate the term
"bold" into something like "Fettdruck." The variables holding the strings are currently
declared as follows:

char szBold[] = "Bold" ;
char szItalic[] = "Italic" ;
char szBoldItalic[] = "Bold Italic" ;
char szRegular[] = "Regular" ;

To support other languages, the variables would be declared as:

extern LPSTR rglpsz[] ;

#define szBold rglpsz[IDS_BOLD]
#define szItalic rglpsz[IDS_ITALIC]
#define szBoldItalic rglpsz[IDS_BOLDITALIC]
#define szRegular rglpsz[IDS_REGULAR]

Implementing this feature is left as an exercise for the reader.

in.doc 11/10/2024 2

Function Reference

The font utilities consist of seven functions:

• Two of these functions create fonts: ReallyCreateFont creates a font for a specific
device context (DC), and CreateMatchingFont creates a font that can be used by
two device contexts.

• The remaining five functions retrieve information about a selected font:
GetAverageWidth computes the character width, GetTextStyle retrieves the style
name, GetTextFullName retrieves the full typeface name, GetTextPointSize
retrieves the point size, and GetTextExtentABCPoint computes the dimensions of
the font based on ABC widths.

The sections below describe these functions in alphabetical order.

CreateMatchingFont

This function gets the closest matching font between two device contexts. This
information is useful when producing WYSIWYG output.

Syntax

HFONT WINAPI CreateMatchingFont

 (HDC hdcScr,
 HDC hdcPrn,
 LPSTR lpszFace,
 LPSTR lpszStyle,
 LPSTR nPointSize,
 UINT uiFlags);

Parameters

hdcScr
Specifies the device context to which the specified font will be mapped. If this
parameter is NULL, the screen DC is used.

hdcPrn
Identifies a printer DC. The typeface, style, and point-size parameters specify a
font that is already selected into the printer DC.

lpszFace
Points to a null-terminated string that identifies the typeface name of the font to
be created (for example, "MS Sans Serif").

lpszStyle
Points to a null-terminated string that identifies the font style to be used (for

in.doc 11/10/2024 3

example, "Bold Italic"). If lpszStyle is NULL, the style indicated by uiFlags is
used.

nPointSize
Specifies the point size of the font to be created (1 point = 1/72 inch).

uiFlags
Specifies flags that modify the behavior of the function. You may use any
combination of the following:

Value Meaning

RCF_NORMAL Creates a font with the regular font style.

RCF_ITALIC If lpszStyle is NULL, creates an italic font.

RCF_UNDERLINE Creates an underlined font.

RCF_STRIKEOUT Creates a font with strikeout.

RCF_BOLD If lpszStyle is NULL, creates a bold font.

RCF_NODEFAUL
T

Specifies that a system font should not be returned.
Normally, CreateMatchingFont always attempts to
create a font. If the specified parameters do not match an
installed font, it creates a system font unless this flag is

in.doc 11/10/2024 4

set.

Return value

The CreateMatchingFont function returns the handle to the created font. If a font
could not be created, the function returns NULL.

GetAverageWidth

This function retrieves the text metrics of the font currently selected into the device
context and returns the average character width. It computes the average character
width by using GetTextExtent on the "abc...xyzABC...XYZ" string. This computation
method works much better than the tmAveCharWidth value in the TEXTMETRIC
structure returned by the GetTextMetrics function for alphanumeric, Latin-based
proportional fonts, especially when used for dialog-box unit calculations.

Syntax

int WINAPI GetAverageWidth

 (HDC hdc,
 LPTEXTMETRIC lptm);

Parameters

hdc
Identifies the device context for which the text metrics information should be
returned.

lptm
Points to the TEXTMETRIC structure that receives the metrics.

Return value

The GetAverageWidth function returns the average character width of the currently
selected font, computed as described below (the rgchAlphabet parameter contains the
string "abc...xyzABC...XYZ").

• If the code detects it is running on Windows 3.0, it uses:

nAveWidth = LOWORD(GetTextExtent(hDC,

in.doc 11/10/2024 5

 (LPSTR)rgchAlphabet, 52)) / 52 ;

• If the code detects it is running on Windows 3.1, it uses:

nAveWidth = LOWORD(GetTextExtent(hDC,

 (LPSTR)rgchAlphabet, 52)) / 26 ;

// Round up

nAveWidth = (nAveWidth + 1) / 2 ;

• If the code detects neither Windows 3.0 or 3.1, it assumes a later version of
Windows (for example, Windows NT) and uses:

GetTextExtentPoint(hDC, (LPSTR)rgchAlphabet, 52, &size) ;

nAveWidth = size.cx / 26 ;

nAveWidth = (nAveWidth + 1) / 2 ;

Comments

The calculations above are identical to those that USER uses to calculate character
widths for dialog-box units.

GetTextExtentABCPoint

The GetTextExtentABCPoint function computes the dimensions (advance width) of
the specified text string, taking ABC widths into consideration.
GetTextExtentABCPoint uses the currently selected font to compute the width and
height of the string in logical units, without considering any clipping.

The "A" width of a character is the distance added to the current position before
drawing the character glyph. A negative "A" width indicates an underhang. The "B"
width of a character is the width of the drawn portion of the character glyph. The "C"
width of a character is the distance added to the current position to provide white space
to the right of the character glyph. A negative "C" width indicates an overhang. The
advance width of a character is the sum of the A, B, and C widths.

Syntax

UINT WINAPI GetTextExtentABCPoint

in.doc 11/10/2024 6

 (HDC hdc,
 LPSTR lpszString,
 int cbString,
 LPSIZE lpSize);

Parameters

hdc
Identifies the device context.

lpszString
Points to a text string.

cbString
Specifies the number of bytes in the text string.

lpSize
Points to a SIZE structure that will receive the dimensions of the string.

Returns

The GetTextExtentABCPoint function returns the "A" width of the first character in
the string. If the "A" width is negative, GetTextExtentABCPoint returns its absolute
value. In the case of an error, the function returns zero.

Comments

Unlike GetTextExtentPoint, this function uses the GetCharABCWidths function to
calculate the extent of the specified string. This function is very useful if you want to
calculate the full extent of a string.

For example, if you use the standard Windows GetTextExtentPoint function to
calculate the string extent, the string will appear clipped on both the left and the right
(Figure 1).

Figure 1. Using GetTextExtentPoint

If you calculate the string extent with the GetTextExtentABCPoint function, but do
not use the return value to offset the first character, the string will appear clipped on the
left (Figure 2).

Figure 2. Using GetTextExtentABCPoint (return value ignored)

Figure 3 illustrates the string when you use the GetTextExtentABCPoint function, and
offset the first character by the return value. The string appears in its entirety, with no
clipping.

in.doc 11/10/2024 7

Figure 3. Using GetTextExtentABCPoint (return value considered)

Under Windows 3.0 or when a non-TrueType® font is selected, the
GetTextExtentABCPoint function is simply a wrapper around GetTextExtent or
GetTextExtentPoint.

GetTextExtentABCPoint also works around a bug in Windows 3.1: The
GetCharABCWidths function calculates the ABC spacing incorrectly for fonts that
simulate boldface. For example, Windows 3.1 does not include the TrueType
Wingdings™ Bold font. If the user selects a font that was created with the Wingdings
typeface name and a weight greater than FW_NORMAL into a DC, the graphical
device interface (GDI) simulates bold by overstriking the characters. When an
application uses GetCharABCWidths to determine the advance width of this font, the
ABC widths returned are off by one for each character. To work around this bug, the
GetTextExtentABCPoint function adds one logical unit to the "B" width of each
character.

GetTextFullName

This function retrieves the full name of the selected font, and copies it into the buffer as
a null-terminated string.

The full typeface name is found only in TrueType fonts. It usually contains a version
number and other identifying information. For example, the full name of the Windows
Times New Roman Bold Italic typeface is Monotype:Times New Roman Bold
Italic:Version 1 (Microsoft).

Syntax

UINT WINAPI GetTextFullName

 (HDC hdc,
 UINT cbBuffer,
 LPSTR lpszStyle);

Parameters

hdc
Identifies the device context.

cbBuffer
Specifies the buffer size in bytes. If the full name of the typeface is longer than
the number of bytes specified by this parameter, the name is truncated.

lpszFace
Points to the buffer that contains the full typeface name.

in.doc 11/10/2024 8

Return value

If the GetTextFullName function is successful, its return value specifies the number of
bytes copied to the buffer, not including the terminating null character. Otherwise, the
return value is zero.

Comments

This function uses the GetOutlineTextMetrics function in Windows 3.1 and later, and
returns a null string in Windows 3.0.

GetTextPointSize

This function calculates the point size of the selected font using the following code:

nPtSize = MulDiv(tm.tmHeight - tm.tmInternalLeading,
 72,
 GetDeviceCaps(hDC, LOGPIXELSY));

Syntax

UINT WINAPI GetTextPointSize

 (HDC hdc);

Parameter

hdc
Handle to the device context.

Return value

The GetTextPointSize function returns the point size of the currently selected font.

GetTextStyle

This function retrieves the style name of the selected font, and copies it into the buffer
as a null-terminated string.

Syntax

UINT WINAPI GetTextStyle

 (HDC hdc,

in.doc 11/10/2024 9

 UINT cbBuffer,
 LPSTR lpszStyle);

Parameters

hdc
Identifies the device context.

cbBuffer
Specifies the buffer size in bytes. If the style name is longer than the number of
bytes specified by this parameter, the name is truncated.

lpszStyle
Points to the buffer that contains the typeface style name.

Returns

If the GetTextStyle function is successful, its return value specifies the number of
bytes copied to the buffer, not including the terminating null character. Otherwise, the
return value is zero.

Comments

This function uses the GetOutlineTextMetrics function in Windows 3.1 and later, and
the GetTextMetrics in Windows 3.0.

ReallyCreateFont

This function creates a font based on typeface name, typeface style, and point size.

Syntax

HFONT WINAPI ReallyCreateFont

 (HDC hdc,
 LPSTR lpszFace,
 LPSTR lpszStyle,
 int nPointSize,
 UINT uiFlags);

Parameters

hdc
Identifies the device context to use (NULL for the screen DC).

lpszFace
Points to a null-terminated string that identifies the typeface name of the font to
be created (for example, "MS Sans Serif").

in.doc 11/10/2024 10

lpszStyle
Points to a null-terminated string that identifies the typeface style of the font to
be created (for example, "Bold Italic"). If lpszStyle is NULL, the style indicated
by uiFlags is used.

nPointSize
Specifies the point size of the font to be created (1 point = 1/72 inch).

uiFlags
Specifies flags that modify the behavior of the function. You may use any
combination of the following:

Value Meaning

RCF_NORMAL Creates a font with the regular font style.

RCF_ITALIC If lpszStyle is NULL, creates an italic font.

RCF_UNDERLINE Creates an underlined font.

RCF_STRIKEOUT Creates a font with strikeout.

RCF_BOLD If lpszStyle is NULL, creates a bold font.

RCF_NODEFAUL
T

Specifies that a system font should not be returned.
Normally, ReallyCreateFont always attempts to create a

in.doc 11/10/2024 11

font. If the specified parameters do not match an installed
font, it creates a system font unless this flag is set.

Return value

The ReallyCreateFont function returns the handle to the created font. If a font could
not be created, the function returns NULL.

Supporting Different Versions of Windows

You can include the font utilities in an application or a DLL. In an application, the font
utilities call MakeProcInstance in the font enumeration procedure; in a DLL, they do
not call this function.

You can compile the font utilities to run under Windows 3.0, Windows 3.1, or
Windows NT version 3.1. The font utilities are based on the Windows 3.1 application
programming interface (API); some extra steps were taken to support the Windows 3.0
and Win32™ APIs.

The font utilities use two techniques to get information about the available fonts:

• To search for a font, the font utilities call EnumFonts when running under
Windows 3.0, and EnumFontFamilies when running under Windows 3.1.

• To get information about the current TrueType font, the font utilities call
GetOutlineTextMetrics. The functions do not call GetOutlineTextMetrics for
non-TrueType fonts or when running under Windows 3.0.

Supporting Windows 3.0

The font utilities use three functions that do not exist in Windows 3.0:
GetOutlineTextMetrics, GetCharABCWidths, and GetTextExtentPoint. These
functions operate on TrueType fonts, which were introduced in Windows 3.1. The font
utility functions operate correctly if called under Windows 3.0, or for non-TrueType
fonts. However, if an application links calls to GetOutlineTextMetrics,
GetCharABCWidths, and GetTextExtentPoint, the Windows 3.0 kernel will not load
the application. To avoid this problem, you can compile the font utilities so that they
use the internal wrapper functions MyGetOutlineTextMetrics,
MyGetCharABCWidths, and MyGetTextExtentPoint instead of calling the
Windows 3.1 functions directly. These wrapper functions call GetProcAddress to
dynamically link in the functions at run time so the Windows 3.0 kernel can load the

in.doc 11/10/2024 12

application.

In addition, the font utilities call the MyGetOutlineTextMetrics and
MyGetCharABCWidths wrapper functions only when running under Windows 3.1.
The font utilities do call MyGetTextExtentPoint when running under Windows 3.0, so
this wrapper function includes logic to call the Windows 3.0 GetTextExtent function
instead of the Windows 3.1 GetTextExtentPoint function. You can also compile the
font utilities so that they do not run under Windows 3.0. In this case, the Windows 3.1
functions are called directly.

Here is how the wrapper functions are set up:

#ifdef WORK_IN_WIN30
/* Wrapper functions we use so we can run in 3.0 and 3.1 since
 * GetOutlineTextMetrics, GetCharABCWidths, and GetTextExtentPoint
 * do not exist in 3.0, and the application will not load if
 * kernel 3.0 sees that we're importing externals that don't
 * exist in GDI.
 */

UINT NEAR PASCAL MyGetOutlineTextMetrics(HDC hdc, UINT ui,
 OUTLINETEXTMETRIC FAR* lpOTM);
BOOL NEAR PASCAL MyGetCharABCWidths(HDC hdc, UINT ui1, UINT ui2,
 ABC FAR* lpABC) ;
BOOL NEAR PASCAL MyGetTextExtentPoint(HDC, LPCSTR, int, SIZE FAR*);

/*
 * You probably want to make this a global in your app. There is,
 * after all, no reason to call GetVersion all the time.
 */

#define fWin30 ((BOOL)(LOWORD(GetVersion()) == 0x0003))

#else

#define fWin30 FALSE
/*
 * If we are a 3.1-only app, just call the 3.1 functions directly!
 */
#define MyGetOutlineTextMetrics GetOutlineTextMetrics
#define MyGetCharABCWidths GetCharABCWidths
#define MyGetTextExtentPoint GetTextExtentPoint

#endif

in.doc 11/10/2024 13

Another step the font utilities take for Windows 3.0 compatibility is to call EnumFonts
when running under Windows 3.0 and EnumFontFamilies when running under
Windows 3.1. The font utilities do this through run-time dynamic linking—by calling
GetProcAddress and using the Windows function that corresponds to the correct
version of Windows. Here is how the font utilities call either EnumFonts or
EnumFontFamilies:

 int (WINAPI *lpfnEnumFont)(HDC,LPSTR,FONTENUMPROC,LPARAM) ;
 /*
 * On 3.0 call EnumFonts, on 3.1 call EnumFontFamilies.
 *
 * EnumFonts is exported from GDI at ordinal #70.
 * EnumFontFamilies is exported from GDI at ordinal #330
 * (3.1 and later).
 */

 (FARPROC)lpfnEnumFont = GetProcAddress(GetModuleHandle("GDI"),
 (LPCSTR)(fWin30 ? MAKEINTRESOURCE(70)
 : MAKEINTRESOURCE(330))) ;

 (*lpfnEnumFont)(hdcCur, lpszFace, lpfn, (LPARAM)(LPVOID)&elf) ;

Supporting the Win32 API

Supporting the Win32 API is much simpler than supporting Windows 3.0. The font
utilities do not need Windows 3.0 support for Win32, so they can call the
GetOutlineTextMetrics, GetCharABCWidths, GetTextExtentPoint, and
EnumFontFamilies functions in Windows 3.1 directly without using the wrapper
functions. For example:

#ifdef WIN32
EnumFontFamilies(hdcCur, lpszFace, lpfn,(LPARAM)(LPVOID)&elf) ;
#else
(*lpfnEnumFont)(hdcCur, lpszFace, lpfn, (LPARAM)(LPVOID)&elf) ;
#endif

in.doc 11/10/2024 14

	Charlie Kindel, Microsoft Premier Support Services Kyle Marsh, Microsoft Developer Network Technology Group
	Handling fonts in Microsoft® Windows™-based applications can involve a lot of grunt work. For example, essential tasks such as creating fonts, retrieving point sizes, and calculating text metrics can take up a lot of the developer's time and effort. This article describes some useful font-handling functions that take care of most of this tedious work, thus making it easier to create and manipulate fonts in Windows.
	The FONTUTIL sample application demonstrates most of the font-handling functions discussed in this technical article.
	Introduction
	Using the Font Utilities
	Exporting fnEnumReallyEx
	Supporting Different Languages

	Function Reference
	CreateMatchingFont
	Syntax
	Parameters
	Return value

	GetAverageWidth
	Syntax
	Parameters
	Return value
	Comments

	GetTextExtentABCPoint
	Syntax
	Parameters
	Returns
	Comments

	GetTextFullName
	Syntax
	Parameters
	Return value
	Comments

	GetTextPointSize
	Syntax
	Parameter
	Return value

	GetTextStyle
	Syntax
	Parameters
	Returns
	Comments

	ReallyCreateFont
	Syntax
	Parameters
	Return value

	Supporting Different Versions of Windows
	Supporting Windows 3.0
	Supporting the Win32 API

