

Windows Font Mapping
by Ron Gery

Abstract
This article discusses the Windows font mapper and how it controls the realization of
fonts. In the process, the article also looks at what it takes to effectively create a logical
font so that the font mapping is predictable and useful. Some of the information is
specific to Windows version 3.1, but most of it applies to both versions 3.0 and 3.1.

Introduction

An application requests a font by creating and selecting a font object. In creating
the font, the application uses the CreateFont or CreateFontIndirect function to
specify a list of attributes that define the font. A detailed explanation of the
specific attributes is found in the SDK The resulting font object is called a logical
font; it defines an idealized font that may or may not be available on a specific
output device.

When the application selects this logical font into a DC using the SelectObject
function, the font is matched to a physical font, one that can be output by the
device. This process is called realization and is where font mapping takes place.
The goal of the realization is to find a font available for the output device that
most closely resembles the logical font. Determining this closeness is what font
mapping is all about.

Note to the squeamish: in the case that the idealized font does not exist, the
Windows font mapper is not perfect, the main controversy being the definition of
the closest match. As a result, many disgruntled developers have referred to it
with such crafty misnames as "font mangler" and the like. As with most software,
the trick to using the font mapper is to understand how it operates and to work
with it instead of against it.

An application can get data about the the physical font that is actually realized by
using the GetTextMetrics, GetTextFace, and GetOutlineTextMetrics functions
(the last one only with TrueType fonts). First select the logical font, then use
these functions to get the details on the realized font.

For the duration of the article, the font's attributes are referenced using their field
names as defined in the LOGFONT structure. While this structure is not a
parameter to the CreateFont function, that function's parameters map directly to
the structure. Inside GDI, all fonts are defined by a LOGFONT structure.

The "Right" Way to Create Fonts

The ideal way for an application to create a logical font is to define one whose
attributes exactly match those of an existing physical font. This allows the
application to control the mapping because it has essentially already picked which
physical font it wants to use. Normally an application takes this approach by
enumerating all of the fonts in the system using EnumFonts or
EnumFontFamilies (the latter is only available in Windows version 3.1). These
functions enumerate the fonts by specifying for each physical font a logical font
that exactly describes how the system identifies the physical font.

Font enumeration, like font realization, is based on a specific physical device
identified by a DC. Different devices enumerate a different set of physical fonts,
so an enumerated logical font from one device may not exactly match a physical
font on another device. For example, a given printer may enumerate a hardware-
based font named "Courier 10cpi," but that font has no exact match on the display
device so the font mapper is forced to choose the closest match among the fonts
available to the display. The application can "help out" in this process by
choosing an ideal match from the fonts enumerated by the display device and
using that font for selection into the display device.

Usually the desired font is chosen by the user, a process that can be greatly
simplified by an application's use of the ChooseFont common dialog. This
dialog presents the user with the list of enumerated fonts and returns to the
application a logical font to use. The application can control exactly which types
of fonts are presented to the user, thereby limiting the enumeration as desired.

If enumeration and exact picking is not an option, an application still needs to
describe the font as unambiguously as possible in order to get a reasonable level
of consistency in the mapping process. It is a good idea to always specify an
lfFaceName, lfPitchAndFamily, lfHeight, and lfCharSet. The use and abuse of
default values is discussed in greater detail below.

Point Sizes and Cell Heights

The Windows font interface deals with pixel heights of font cells instead of the
more typographically traditional point sizes (1/72nd of an inch). Converting
between the two measurements is not too hard, though:

CellHeight = (PointSize * VerticalResolution) / 72 + InternalLeading;

and conversely,

PointSize = ((CellHeight - InternalLeading) * 72) / VerticalResolution;

Where:

Ø CellHeight is cell height of font. This is requested with the lfHeight attribute
and returned in the tmHeight field of the TEXTMETRIC structure after the
font is selected.

Ø PointSize is the point size of the font.

Ø VerticalResolution refers to the resolution of the device being used. Windows
provides two possible numbers for this value, neither of which is entirely
accurate on display devices. Most applications use the convention of
LOGPIXELSY (available via GetDeviceCaps), which is an idealized number
of pixels per "logical inch" and is used in nonscalable fonts' resolution
specification. The alternative is to compute the number of pixels per
"physical inch" using VERTSIZE and VERTRES (also available via
GetDeviceCaps). Thess values do not provide a hardware-specific value
either (Windows has no knowledge of the physical size of the screen), but
they may be a better approximation. With printer devices, the values for both
logical resolution and physical resolution are usually the same.

Ø InternalLeading is a Windows concept that specifies the difference between a
font's actual point size (also known as the EmHeight) and its physical cell
height. This value is returned in the tmInternalLeading field of the
TEXTMETRIC structure after the font is selected.

Gee, so how does an application account for the internal leading value that is
not available until after the font is selected? The simplest way to overcome
the internal leading concept is to specify the lfHeight as a negative value. The
font mapper treats the absolute value of that number as the desired point size
(i.e. the value defined by CellHeight-InternalLeading) rather than as the cell
height. To define a height for a font with a given point size, use:

MyFont.lfHeight = -((PointSize * GetDeviceCaps(hDC, LOGPIXELSY)) / 72);

Also, the TEXTMETRIC stucture is returned during font enumeration, so it is
possible to anticipate a font's internal leading if a specific physical font is being
tartgeted. Anticipation is not possible with scalable fonts because the fonts do not
enumerate specific sizes and may not scale linearly,

The Mapping Process

Now that the logical font is built, the font is selected into a DC, and GDI calls the
font mapper to perform the realization. Well actually because GDI caches
physical fonts, if a logical font is being re-selected and the DC has not changed
(same device, same mapping mode), there is no need for a full mapping, and the
cached realization information is used instead. Unfortunately, this can't always be

done.

There is a fundamental difference in the font mapping process between Windows
version 3.0 and version 3.1. Both versions share a core mapper that uses
weighted penalties to choose the closest matching physical font, but version 3.1
also has a shortcut layer that attempts to bypass the core mapper by looking for
exact matches and only resorting to the core mapper when a certain level of
exactness cannot be achieved. The basic idea is that if an application requests a
logical font in the "right" way (see above), finding a matching physical font can
be quick and to the point without excess processing; the shortcut layer is only for
speed purposes, the functional behavior is unchanged.

Possible Physical Fonts

There are four types of physical fonts that are available to the font mapper,
system-based raster fonts, system-based vector fonts, hardware-specific fonts
found on the device, and for Windows version 3.1, TrueType fonts. Fonts
generated by most bolt-on font packages like Adobe Type Manager (ATM)
appear to the font mapper as device fonts.

The system-based fonts are the non-TrueType fonts that are installed via the
Control Panel (TrueType fonts are also installed via the Control Panel). A few
are installed automatically when Windows is set up. The raster fonts usually
come in several sizes per facename, and because the fonts do not scale, these are
the only sizes that are available for mapping. The vector fonts that come with
Windows (Modern, Roman, and Script) are scalable fonts defined by polylines
and are the only fonts that can be printerd on a plotter device. They are
commonly referred to as the "stick fonts" because they are made up of line
segments, which results in rather poor typographic quality. Most applications
avoid the vector fonts by requesting a font with lfCharSet set to something other
than OEM_CHARSET (specifically, ANSI_CHARSET or
SYMBOL_CHARSET), the charset of the vector fonts, and it is common to see
these fonts screened out of the font selection lists shown to the user.

Device fonts are those fonts that are provided by the device driver, either via
hardware fonts or by downloading to the device. Usually these only exist for
printer drivers, but bolt-on font engines also provide the concept for display
drivers. Device fonts are controlled more by the device than by GDI. GDI only
has access to descriptive information about the font and not to the actual bit
information, and more importantly, the device driver acts as its own font mapper
to choose the best match among the available device fonts. During the font
mapping process, the Windows font mapper only inspects the one device font that
was chosen by the device driver. Windows sends the device driver the requested
logical font, and the device chooses the best match from its available hardware
and downloaded fonts. If the device has no font choice, there is no device font for

the font mapper to inspect.

TrueType font technology is new for Windows version 3.1 and introduces to the
system a class of fonts that are scalable and compatible with all raster devices.
On printers, these fonts are either built into the hardware, downloaded to the
hardware, or drawn to a bitmap which is then blted to the page. TrueType fonts,
like raster and vector fonts, are added to the Windows environment via the
Control Panel and managed by GDI. Because of their scalability, TrueType fonts
are not penalized for height, width, or aspect ratio, but they are treated like the
other fonts in all other respects.

The Core Mapper

The mapper itself, the big kahuna, compares each one of the possible physical
fonts to the requested font. Each of the physical fonts is identified using a set of
attributes that roughly parallel those found in the LOGFONT structure, and each
attribute is compared to the requested attribute. There is a penalty assessed for
each mismatch, and the penalties are accumulated. The mapper tracks the
physical font with the lowest penalty, and once all of the physical fonts have been
inspected, one font remains as the closest match. In case of a tie, the first closest
match encountered is the one selected.

The interesting part, of course, is the relative size of the penalties. At the end of
this article is a table that lists the specific penalties and their values. A quick
inspection of this table reveals that the penalties are heavily weighted to
discourage physical fonts whose major typographical features are not compatible
with the logical font. The big ticket items are charset, output precision, variable
instead of fixed pitch, facename, family type, and height. The lesser penalties
only come into play in cases where the logical font is too vague to hone in on a
desired physical font.

The height penalty is often a cause for confusion. The goal for the mapper is to
pick a font that is as large as possible without being taller than the requested
height. For example, when using raster fonts (height problems only apply to fonts
that do not scale arbitrarily), if the logical font has a height of 11 and the available
physical fonts have heights of 10 and 12, the shorter font is chosen. If the logical
font has a height of 8 and there was no font shorter than 10, then the font of height
10 is chosen. This "under-sizing" scheme can get undesired results if a super-
small font such as SMALLE.FON is available on the system because the font
maps to a 6-pixel hight font that is not exactly legible. Then again, an actual
small "filler" font may be exactly what the application wants.

In the case where two different fonts have exactly the same penalty, the first font
that was inspected is the one that is selected. An application does not have

control on this ordering. Non-device fonts are assessed an extra penalty to
encourage the selection of a device font over an identical non-device font. The
selection priority is 1) device, 2) raster, and 3) TrueType.

Shortcut Mapping for Verstion 3.1

New for Windows version 3.1 is an attempt to circumvent the above penalty
scheme by searching for exact matches instead. For this algorithm, a physical
font is an exact match if it shares the following attributes with the logical font:

Ø charset

Ø face name

Ø height

Ø italicness

Ø weight

Because an exact match is the goal, GDI's italic and emboldening simulations are
not considered.

The shortcut mechanism is only invoked if the device is a raster device that can
accept raster fonts or a device that can output TrueType fonts (presumably by
downloading). Also, the logical font must specify either a face name or use the
OUT_TT_ONLY_PRECIS or CLIP_EMBED_PRECIS flags (in its
lfOutputPrecision and lfClipPrecision attributes, respectively) in order to be
considered a candidate for an exact match. Obviously if no face name is
specified, then an exact match cannot be found, but the two flags indicate that
only TrueType fonts should be considered for a match so some of the standard
mapping process can be avoided. If the shortcut method cannot be used, the
standard penalty-based mapper is used to pick the font.

Similar to the full font mapper, the shortcut inspects all the possible physical fonts
for a match, but instead of tracking penalties, it throws out of consideration any
candidate font that does not exactly match the above attributes. So if the logical
font is based directly on an existing physical font, the matching is very simple,
which is the entire goal of the shortcut.

If no exact match is found, the font mapping defaults to the penalty-based system.
Ties (that is, multiple physical fonts providing an exact match) are resolved based
on the filter setting of the lfOutputPrecision attribute. If no special filter is
specified, the default behavior is that device fonts beat out everything else and
raster fonts beat out TrueType fonts. The default behavior can be altered to have

the TrueType font win a tie by using the TTIfCollisions entry in the [TrueType]
section of win.ini. The possible filters are discussed in more detail below.

Extra Commentary

Below is a variety of issues and suggestions that affect the application's control of
the font mapping process.

TrueType

The existence of the TrueType font technology in Windows version 3.1 changes
the font mapping game to some degree. The basic mapping process remains
intact, but the availability of more fonts and the ability of these fonts to be scaled
to any desired size greatly increases the chance for a very close font match.

This is especially true for loosely defined fonts, those fonts that use a lot of
default attribute settings. For example, an application that assumes a logical font
created by specifying a height of 12 and setting all other attributes to 0 will map
to the system font is making a very bad assumption. While it might work under
Windows version 3.0, under version 3.1 at least 6 fonts can match that request
exactly even if only the base TrueType fonts are loaded. The one that is chosen
by the font mapper is suddenly not so obvious and depends on such untangibles as
the ordering of the fonts during initialization.

It is up to the application to be specific enough in its definition of the logical font
in order to avoid mapping confusion. The first thing to consider is that TrueType
fonts are fully scalable, so an apparently off-size height can be matched—there is
no penalty for height (or for width or aspect ratio).

Because most TrueType fonts are designed with a normal, italic, bold, and bold
italic version, a request for one of these variations maps directly to a non-
simulated variant of the standard font. Many fonts are also available in non-
traditional weights such as light, demibold, and black, so the exact lfWeight that
is specified could be meaningful. Lastly, an application needs to be careful in
choosing the lfFaceName to deal with the potential explosion of face names. The
EnumFontFamilies function is designed to help an application sort through the
face names and their family relationships. In the eyes of the font mapper, the
lfFaceName specified by the application can be either the full face name (for
example, "Arial Italic") or only the family name (in this example, "Arial").
Assuming that all of the attributes match (in this example, lfItalic needs to be set),
the two names are considered equivalent.

TrueType doesn't really introduce anything new into the font mapping picture, but
it does make the choice of physical fonts large enough to necessitate an

application to carefully define its logical fonts.

Substituted Face Names

Font face names are usually copyrighted strings, which adds a level of confusion
in trying to identify various fonts that are produced by different vendors but look
remarkably similar. Because much of the font mapping process relies on the
exact use of face names, the font mapper has the concept of face name
substitution to allow one face name to be substituted for another in the mapping
process. This is a feature new to Windows version 3.1. For example, Windows
version 3.0 had a raster font named "Helv" that is renamed to "MS Sans Serif" in
Windows version 3.1. With version 3.1's built-in substitutions, a logical font with
lfFaceName set to "Helv" is matched by face name to the physical font with the
name "MS Sans Serif".

Face name substitutions are used only for raster and TrueType fonts and not for
device fonts. Also, when a face name is matched via substitution, it is not
considered an exact match— a penalty is assessed for substitute face names, and
an exact match always takes precedence.

The substitutions come from two places: one list is predefined in GDI and a
second is defined by the user in win.ini under the [FontSubstitutes] section. The
user-defined list can override GDI's predefined list to customize the Windows
environment to the user's font needs. GDI's list consists of approximately 20
substitutions that map "Tms Rmn" to "MS Serif", "Helv" to "MS Sans Serif", and
various PostScript names to the corresponding TrueType fonts that ship in
Windows and in the Windows Font Pack.

Filters

An application can, to some extent, filter which physical fonts are examined by
the font mapper. Aspect ratio filtering, which is available in both Windows
version 3.0 and version 3.1 allows an application to specify that only fonts
designed for the device's aspect ratio should be considered by the font mapper.
An application enables and disables this filter by using the SetMapperFlags
function. Because nonscaling raster fonts are designed with a certain aspect ratio
in mind, it is sometimes desirable to ensure that only fonts actually designed for
the device are used. When this filter is enabled, the font mapper does not
consider any physical fonts whose design aspect ratio does not match that of the
device. Aspect ratio filtering does not affect TrueType fonts because they can
scale to match any aspect ratio. This filter affects all font selections to the DC
until the filter is turned off. Aspect ratio filtering is a holdover from earlier times
and is not a recommended approach in today's font world.

The second type of filtering is new for Windows version 3.1 and allows an
application to choose what type of physical font should be chosen in the case of a
facename conflict. These filters only affect the shortcut mapping described
above; if no shortcut match is found, the font mapper continues with its standard
matching scheme and ignores these filters. The application defines the filter in
the lfOutputPrecision attribute of the logical font. Unlike the aspect ratio filter,
this filter is specific to a given logical font. The three possible filter settings are
OUT_TT_PRECIS for TrueType fonts, OUT_DEVICE_PRECIS for device fonts,
and OUT_RASTER_PRECIS for raster fonts. For example, if the shortcut
mechanism finds two fonts, one TrueType and one raster, that provide an exact
match for the logical font and the logical font is defined with OUT_TT_PRECIS,
the TrueType font is chosen.

Another shortcut filter, OUT_TT_ONLY_PRECIS, specifies that only TrueType
fonts should be considered for the exact matching. None of the other types of
physical fonts is considered. This filter is useful for an application that wants to
guarantee that the realized font is a TrueType font.

Default Values

Many of the attributes that define a font have a defined default setting. For most
attributes, the font mapper ignores default attributes in its penalty scheme so that
no penalty is given for that attribute for any candidate font. This is a simple way
to indicate that an attribute is not important in the font mapping.

There are times when this gets dangerous. Using DEFAULT_CHARSET for
specifying the font's lfCharSet can lead to the font mapper choosing a non-ANSI
font that may not contain needed characters and may not even be composed of
alphanumeric glyphs. Internally, the DEFAULT_CHARSET is an actual charset
definition, so all candidate fonts get an equally large penalty for not matching the
charset. It is always a good idea to use a non-default charset when defining a
logical font.

The font mapper treats a logical font with an lfHeight of 0 as a font that is 12
points high. The actual pixel height depends on the resolution of the device being
used. With the advent of TrueType technology in Windows version 3.1, this
default height becomes even less meaningful (more on that below). The moral:
always specify a height.

By specifying no face name (lfFaceName) for the logical font, an application
indicates to the font mapper that the exact face name of the physical font is not
critical. An application that does not specify a face name is just asking for
trouble. Because the face name is the most unique identifier of a font, ignoring it
leaves the application open to more ambiguity in realizing a physical font. The

more fonts are available on the system, the less control the application has over
the mapping process. An application can overcome some of this ambiguity by
defining the generalized look of the font using the lfPitchAndFamily field, but as
more and more fonts become available in the Windows system, a font's unique
face name becomes critical in its identification. The moral: always specify a face
name.

The font mapper interprets an lfWeight of FW_DONTCARE as though it was
really FW_NORMAL, and any corresponding penalty is tabulated.

It is generally considered a good thing to specify a default lfWidth by setting this
attribute to 0. While for most fonts the character widths cannot be changed and
are not actually affected, scalable fonts (TrueType and many device fonts) are
altered in shape by a non-default width. This is usually not desired. Because
height is more important in the matching process, a non-default width usually
does not affect the matching, but it could. The font mapper compares this value
to the average width value of the candidate font (accessible via the tmAvgWidth
field of the TEXTMETRIC structure), a value which for nonscalable, variable
pitch fonts is an approximation at best. For scalable fonts, the lfWidth field is
used to define an x-scaling factor for the font (x-scale = lfWidth/tmAvgWidth)
where an lfWidth of 0 means a scaling factor of 1.0, the default.

Font Rotation

An application specifies the desired rotation of a logical font using the
lfEscapement and lfOrientation attributes. The main font mapper does not use
these attributes in its font selection process—no penalties are assessed for
candidate fonts that are not rotated or rotatable—but the shortcut method does not
select a raster font if either of the attributes is nonzero. The key issue here is that
not all fonts, raster fonts especially, can be rotated effectively. Because font
rotation is not a factor in the mapping, it is possible that the chosen physical font
is not able to rotate as desired by the application. Fonts that do rotate are
TrueType fonts, the vector fonts, and some device fonts. It is wise for an
application that desires rotated fonts to specifically ask for a font that can actually
be rotated.

Other Warnings

Most applications do not want a vector font selected as the physical font because
vector fonts are ugly. Before TrueType, the vector fonts were the only fonts that
could be arbitrarily scaled and rotated, and it could be argued that they maintained
more dignity than a GDI-scaled raster fonts at very large size. Mostly, though,
they are to be avoided. The simplest way to do this is to explicitly use
ANSI_CHARSER or SYMBOL_CHARSET when defining a logical font. The
penalty for the charset is large enough to keep the vector fonts from font matching
contention. Vector fonts can also be culled out of an enumeration by ignoring any

enumerated font that is not a raster, TrueType, or device font. With the
ChooseFont common dialog, vector fonts can be removed from the user's view
through use of the CF_NOVECTORFONTS flag.

The height and width of a logical font are defined in logical units. When the font
is selected into a DC, these values are converted to device units before the font
mapping takes place. As a result, the realized font may be larger or smaller,
depending on the DC's current mapping mode. Also, if an application changes the
mapping mode of a DC, the currently selected font is re-realized based on the new
coodinate system. This is entirely consistent with GDI's handling of logical and
physical coordinates and is something to keep in mind when specifying the height
of a font. The one exception to this process is new to Windows version 3.1: if the
logical font is one of the stock objects (available through GetStockObject
function-- copies don't count), the height and width are always treated as
MM_TEXT values, regardless of the DC's current mapping mode.

GDI simulations

GDI provides simulations for some font attributes. It emboldens a normal weight
font by overstriking, italicizes a nonitalic font by shearing the output (TrueType
fonts are sheared during rasterization), underlines or strikes-out fonts, and scales
raster fonts independently in x and y by integral amounts. In cases where GDI's
simulations help a font to become a better match, the font mapper reduces but
does not eliminate the penalty for a mismatch of the simluated attribute. This
makes the font a more palatable choice. Unfortunately, those simulations that
alter the shape of the font (emboldening, italicizing, and scaling) are not always
typographically pleasing. With the exception of scaling, all of these simulations
can be performed on any of the available fonts.

When GDI scales a raster font, it does so by simply stretching the font's original
bitmap definition horizontally and vertically, as appropriate. Because the scaling
is always integral, none of the really nasty side-effects of bitmap stretching occur,
but a stretched font still looks very clunky, especially at larger scaler factors.

GDI can trivially simulate underlines and strikethroughs using horizontal lines, so
these attributes are not a real concern. While TrueType fonts have special metrics
for the placement of underlines and strikethroughs, GDI approximates these
values for other fonts with the underline on the baseline and the strikethrough 1/3
of the ascent above the baseline.

Stock Object Special Case

Under Windows version 3.0, a font's logical height and width are always

translated to physical units before font mapping, so a stock font could potentially
map to an unexpected font if the DC's coordinate system results in a different-
sized physical font. This can be a real "gotcha" for an application that assumes it
can use the SYSTEM_FONT stock object (for example) without regard to the
scaling being done. The physical font scales with the coordinate system.

Under Windows version 3.1, if an application selects a stock font into a DC, the
requested font's logical height and width are not translated into logical units. The
effect is that a stock font remains the same size regardless of the DC's mapping
mode. A copy of a logical object does not qualify for this special feature, only the
actual stock object does. Because objects recorded in metafiles are simply copies
of objects, a stock font recorded in a metafile is an ordinary font when the
metafile is played back.

Actual Weights

The following table specifies the penalty weights used by the font mapper in
Windows versions 3.0 and 3.1. Penalties that are new for Windows version 3.1
are identified as such. Note very carefully that this information is version specific
and is subject to change without warning in future versions of the Windows
product. In the table, requested refers to the logical font, and candidate refers to
the physical font to which it is being compared. The candidate with the smallest
penalty is the one that is elected.

penalty
description

penalty
weight

comments

CharSet 65000 charset does not match

Output Precision 19000 request
OUT_STROKE_PRECIS,
but device can't do it or
candidate is not vector
font

OR don't request

OUT_STROKE_PRECIS,
candidate is a vector font,
and device doesn't support
it

FixedPitch 15000 request fixed pitch,
candidate variable pitch

FaceName 10000 request face name,
candidate does not match

FaceNameSubst 500 new for 3.1

candidate is a substitute
face name

Family 9000 request a family,
candidate's family is
different

FamilyUnknown 8000 request a family, but
candidate has no family

FamilyUnlikely 50 new for 3.1

request
roman/modern/swiss,
candidate
decorative/script or vice
versa

HeightBigger 600 candidate non-vector font
and bigger than requested

PitchVariable 350 request variable pitch,
candidate not variable
pitch

HeightSmaller 150 raster candidate and
smaller than requested

penalty * height
difference

HeightBigger 150 raster candidate and
bigger than requested

penalty * height
difference

Width 50 request a width, candidate
doesn't match

penalty * width difference

SizeSynth 50 raster candidate needs
scaling by GDI

UnevenSizeSynt
h

4 raster font scaled
unequally in width and

height

penalty * (100 * bigger
multiplier / smaller
multiplier)

IntSizeSynth 20 raster font needs scaling

penalty * (height
multiplier + width
multiplier)

Aspect 30 candidate aspect ratio
different from device

penalty * ((100 *
devY/devX) - (100 *
candidateY / candidateX))

Italic 4 request and candidate do
not agree on italic status,
and the desired result
cannot be simulated

ItalicSim 1 new for win 3.1

request italic, candidate
not italic but can be
simulated to be italic

Weight 3 candidate's weight does
not match

penalty * (weight
difference/10)

Underline 3 request no underline,
candidate is underlined

StrikeOut 3 request no strike-out,
candidate is struck

DefaultPitchFixe
d

1 request
DEFAULT_PITCH and
candidate is fixed pitch

SmallPenalty 1 new for win 3.1

request rotated font,
candidate needs bold or
italic simulation and is a
raster or vector font

VectorHeightSm
aller

2 candidate vector font is
smaller

penalty * height
difference

VectorHeightBig
ger

1 candidate vector font is
bigger

penalty * height
difference

DeviceFavor 2 extra penalty for all non-
device fonts

new for win 3.1, request
OUT_TT_PRECIS and
candidate is not
TrueType. Penalty is
twice this value.

End.

	by Ron Gery
	This article discusses the Windows font mapper and how it controls the realization of fonts. In the process, the article also looks at what it takes to effectively create a logical font so that the font mapping is predictable and useful. Some of the information is specific to Windows version 3.1, but most of it applies to both versions 3.0 and 3.1.
	Introduction
	The "Right" Way to Create Fonts
	Point Sizes and Cell Heights
	The Core Mapper
	Shortcut Mapping for Verstion 3.1

	Extra Commentary
	TrueType
	Substituted Face Names
	Filters
	Default Values
	GDI simulations
	Stock Object Special Case

	Actual Weights

