Creating a Custom Raster Font

The information in this article applies to:
Microsoft Windows Software Development Kit for Windows version 3.0

Summary:

Fonts are stored as resources in resource-only dynamic-link libraries (DLLs). The
process of creating a custom font library involves creating new font resources and
inserting them into a DLL that has no code. Fonts must be in a resource-only
library.

The Windows 3.0 Font Editor supports editing raster fonts compatible with
Windows versions 2.x and Windows version 3.0. FONTEDIT cannot be used to
edit vector fonts. (See Chapter 6 of the "Microsoft Windows Software
Development Kit Tools" manual for more information.)

It is also possible to create a font-resource DLL that does have a code segment,
which alleviates the problem of having to use a special linker.

Sample code for creating a font using the LINK4 linker is available in a file called
FONTRES in the Software/Data Library. Sample code that demonstrates using
the normal linker is also available in the Software/Data Library, in a file called
MYFONT.

FONTRES and MYFONT can be found in the Software/Data Library by
searching on the word FONTRES or MYFONT, the Q number of this article, or
S13177 or S13181, respectively. FONTRES and MYFONT were archived using
the PKware file-compression utility.

More Information:

Basic Steps (Overview)

I. Create font files using the Font Editor.

II. Create a font-resource script.

III. Create a dummy code module.

IV. Create a module-definition file that describes the fonts.
V. Compile and link the sources.

Note: Read Chapter 18 of the "Microsoft Windows Software Development Kit
Guide to Programming." The following procedure is very similar.

1. Create a resource script (RC) file.
2. Add one FONT statement per font file created. For example:

MyFontl FONT MYFONT1.FNT
MyFont2 FONT MYFONT2.FNT

Step I: Create a Font File

1. Invoke the Font Editor.

2. Open an existing font file (FNT).

3. Edit the cell arrays and attributes of the existing font.

4. Save the new font under a different name.

Note 1: It is not possible to generate a new font from scratch; an existing font file
must be edited. Two fonts, ATRM1111.FNT and VGASYS.FNT, are supplied
with the Windows 3.0 SDK to provide a font on which to base new fonts.

Note 2: The names of the font formats are deceiving. Windows 3.0-compatible
format works only in 386 enhanced mode. Window 2.0-compatible format works
in all modes; therefore, it is usually better to save fonts in 2.0 format.

Step II: Create a Font Resource Script
1. Create a resource script (RC) file.
2. Add one FONT statement per font file created. For example:

MyFontl FONT MYFONT1.FNT
MyFont2 FONT MYFONT2.FNT

Step III: Create a Dummy Code Module

1. Write an assembly language procedure that generates no code.

2. Assemble the code to create an object file (OBJ). (This step may seem
unnecessary but it is required; otherwise, the linker will complain because the
linker will create an executable that does not have any object files. Creating
the dummy code module with its null code segment forces the linker to create
the required executable DLL).

The code for the dummy code segment might resemble the following:
xlist
include cmacros.inc
Jist
sBegin CODE
sEnd CODE
end

Step IV: Create a Module Definition File

1. Add a LIBRARY statement with the font resource title.

2. Add a DESCRIPTION statement that indicates the font characteristics.
3. Add a STUB statement in case the library is invoked from DOS.

4. Add a DATA statement with the NONE attribute.

The DEF file for a font library might resemble the following:
LIBRARY FONTLIB

DESCRIPTION 'FONTRES 133, 96, 72: MyFont, Terminal (7 point)'
STUB 'WINSTUB.EXE'
DATA NONE

Note: The DESCRIPTION statement specifies a string that describes the font
attributes, and supplies a comment that is displayed by the Windows Control
Panel when the font is loaded.

WINSTUB.EXE is a small file that prints the message "This application requires
Microsoft Windows" if the user tries to run the application under DOS.

The NONE attribute indicates that the library does not require its own automatic
data segment.

The description string MUST begin with the FONTRES text so that

Windows will know that this is a font resource library.

(See the "Microsoft Windows Software Development Kit Guide to Programming"
for more information and examples.)

Step V: Building the Font Resource Library

1. Use MASM to assemble the dummy code into an object file. 2. Use LINK4 to
generate the library body.

3. Use RC to insert the font into the library.

4. Rename the font library to have the FON extension.

The following is an sample makefile:
all: fontlib.exe
fontlib.obj: fontlib.asm
masm fontlib.asm;
fontlib.exe: fontlib.mak fontlib.def fontlib.obj \
fontlib.rc fontlib.fnt
link4 fontlib.obj, fontlib.exe, NUL, /NOD, fontlib.def rc fontlib.rc
rename fontlib.exe fontlib.fon

Using LINK Instead of LINK4:

Important note: The specification of LINK4 in the sample above is not an error.
The standard linkers supplied with Microsoft C version 5.1 and Microsoft C
version 6.0 produce error messages when an attempt is made to create an
executable file that has no segments. LINK4.EXE is not shipped with the
Windows 3.0 SDK. However, it is shipped with the Windows 2.x SDK and with
the Windows 3.0 DDK.

If Steps 111, IV, and V of the procedure given above are modified as follows,
LINK versions 5.12 and later can be used to create font files:

NEW Step III: Create a Dummy Code Module
Create a code segment in the dummy code module by creating an empty Windows

Exit Procedure (WEP). This code might resemble the following:
xlist
include cmacros.inc
Jist
sBegin CODE
cProc WEP,<FAR,PASCAL,PUBLIC>,<si,di>
parmW EntryCode
cBegin WEP
cEnd WEP
cEnd CODE
end

NEW Step IV: Create a Module Definition File

Modify the DEF file provided above to add the following lines:
EXETYPE WINDOWS

CODE MOVEABLE DISCARDABLE

EXPORTS WEP @1 RESIDENTNAME

NEW Step V: Building the Font Resource Library
Modify the makefile to refer to LINK instead of to LINK4.

Using MASM 6.0 Instead of MASM 5.1

If the font file is built using version 6.0 of the Microsoft Macro Assembler
(MASM), use version 5.3 of the CMACROS.INC file included with MASM
instead of version 5.2 of the file included with the Windows SDK.

To access the fonts, use AddFontResource() with the DLL name, and
RemoveFontResource(). Use CreateFont() or CreateFontIndirect() to retrieve a
handle to a font with the specified attributes. Use SelectObject() to put the font
into a specified DC.

The face name of the font (for example, "System" or "Helv") can be specified
when the font is created using the Font Editor. This same face name is specified
as the IpFaceName parameter when calling CreateFont() or CreateFontIndirect().
The face name can be any name desired.

End.

	Creating a Custom Raster Font
	Summary:
	More Information:

	End.

