
What’s new
Delphi 6 introduces new features and enhancements in the following areas:

IDE
Internet
XML
Compiler
COM/Active X
Database support
CORBA
Actions
Custom Variants
VCL units and features
RTL units and features
Cross-platform development
Translation tools
Deployment changes
Help system extensibility

Note: Some features are not available in all editions of Delphi.

New IDE features
The IDE has new features in the following areas:

Data modules

Object TreeView

Code editor

Object Inspector

Code Insight tools

Project Manager

File menu

New Items dialog box

Internet toolbar

Component palette changes

Key mapping modules

Environment Options dialog box

Directories dialog box

Context menu display

Writing design-time packages

Data modules (All editions)
The Data Module Designer in Delphi 5 has been divided into three parts:

1. A standard data module (as in Delphi 4), replacing the Components page.

2. The Object TreeView, replacing the Data Module Designer’s left pane.

3. The Diagram page, replacing the Data Diagram page.

Object TreeView (All editions)
Located in the upper left-hand corner of the IDE, the TreeView is a tree diagram that displays the logical
relationships between visual and nonvisual components on a form, data module, or frame.

The TreeView is synchronized with the Object Inspector and Form Designer so, if you select an item and
change the focus in any one of these three tools, the focus changes in the other two tools. Furthermore,
the Diagram page on the Code editor works only by dragging and dropping elements from the Object
TreeView.

The Object TreeView has some added functionality:

The TreeView is positioned above the Object Inspector and if not displayed, appears when you
press Alt+Shift+F11 or choose View|Object TreeView.

The TreeView includes components on a form and a frame as well as a data module.
The TreeView includes visual as well as nonvisual components.
A new toolbar includes New Item, Delete, and Move Up/Down buttons. These buttons work for

component properties. For example, if you’ve added a dataset component, you can select the Aggregates
property and click the New Item button to add a field. If there is more than one type of thing that can be
added, the New Item button will drop down a menu to pick from.

Additional glyphs represent the type of item, such as a visual parent or child component,
nonvisual component, or implicit or unimplicit property. For example, items implicitly created for you
behind the scenes, such as a default session, are black-and-white.

Before, when a component’s property values were not completed, its glyph was surrounded by a
red circle. Now, a red question mark enclosed in a yellow circle appears to the left of the icon.

Right-clicking will display more options than what appeared in the Data Module Designer.

Code editor

Surface designers (Professional and Enterprise editions)

The Code editor now supports surface designers, or package-loaded custom views. These views are
accessible as tabs, or pages, located on the status bar. The only built-in view is the standard Code
page. Depending on which edition of Delphi you have, you can access the following Code editor
pages:

Diagram page (Professional and Enterprise editions)

The Diagram page on the Code editor provides visual tools for setting up a diagram of boxes and
lines to display relationships among visual and nonvisual components. It is a documentation tool,
since it illustrates these relationships schematically and lets you add comments to the diagram.
Components do not appear on the Diagram page until you drag them from the Object TreeView.

New features:

You can select multiple items from the Object TreeView and drag them to the Diagram page at
one time.

The left side of the Diagram page has an edit box where you can type a name and description for
each diagram you create and a drop-down list box to find previously named diagrams.

The toolbar of buttons for connector relationships and comment blocks sits at the top of the
Diagram page.

Property connectors are labeled automatically. You can drag the labels elsewhere on the page.
You can create a diagram for each data module, form, or frame you’ve added to your project.

WebSnap pages (Enterprise edition)

When creating a Web server application using WebSnap, the components in the Web page module
generate pages for HTML Script, HTML Result, Preview, XML Tree, and XSL Tree.

Drag-and-drop tabs (All editions)
The unit tabs on top of the Code editor and be reorganized by dragging and dropping them. For
example, if you have two units called About and TextEditor, you can drag About to the right of
TextEditor.

Object Inspector (All editions)
The Object Inspector is now located below the Object TreeView.

New features:

Instance list box
The instance drop-down list box is at the top of the Object Inspector:

New features:

The instance list displays the class name for each object in the list, not just the one at the top.
You can give a component the same name as the form or data module that it is on. For example,

you can add a button component to Form1 and rename the button as Form1; both names appear in the
instance list.

The instance list box displays a tooltip for the selected component, which is useful if a component
name is wider than the instance list.

The instance list box can be hidden.

Properties dialog box
The Object Inspector’s context menu has a new Properties dialog box, which can also be accessed
by choosing Tools|Environment Options and clicking the Object Inspector page. It includes several
display options:

SpeedSettings to customize the colors of the Object Inspector.
Displaying or hiding the instance list, class names in the instance list, status bar, background grid,

and read-only properties.
Properties of component references can be expanded inline and displayed on both the properties

and events pages.

Expanded inline component references
Expanded inline component references display the properties and events of a referenced component

without having to actually select the referenced component.

New features include:

Properties that reference a second component are red and the properties of that second
component are green, by default.

Events that reference a second component are red and the events of that second component are
green, by default.

Properties that are interfaces can be referenced inline.

Code Insight tools (All editions)
Code Insight has updated features for code completion and code parameters.

Code completion
When you manually (Ctrl+Space) invoke code completion on a blank statement line in the body of a
routine, the pop-up list box now shows symbols from additional RTL units even if they are not used by
the current unit.

New features:

Filters out all interface method declarations that are referred to by property read or write clauses.
The list box only shows properties and stand-alone methods declared in the interface type.

Filters as you type in the Code editor. The text is automatically removed when you select an item.
Works within a class declaration in the interface section with support for multiselect.
Displays inherited and virtual methods, interface methods and properties.
The pop-up window is resizable.
Colors have been added to help distinguish different items. For example, procedures are teal and

functions are dark blue. You can change default colors in the registry.
Supports WM_xxx, CM_xxx, and CN_xxx message methods based on like named constants from

all units in the uses clause.
Abstract methods now appear in red in type declarations. All other Code Insight contexts show

abstract methods using the normal procedure and function colors.

Code parameters
If an item is a procedure or function with parameters, a "(" is included and a code parameter

tooltip is displayed immediately.

New key mapping module (All editions)
The Visual Basic emulation key binding set has been added to the existing key mapping modules.

Packages in Project Manager (All editions)
Now all open package projects are displayed in the Project Manager view. These package project
reference nodes can be used to assist tracking the active project as well as navigating to any open
package, even when the package is not a member of the current project group.

File menu
The File menu has an updated File|New menu that displays six types of projects (Application, CLX
Application, Data Module, Form, Frame, and Unit) along with Other, which brings up the New Items
dialog box.

New Items dialog box
The New Items dialog box, or Object Repository, has three new pages with new wizards and data
modules:

WebSnap, which contains the WebSnap Application, WebSnap Data Module, and WebSnap
Page Module.

WebServices, which contains the Soap Server Application, Soap Server Data Module, and
WebServices Importer.

Corba, which contains the CORBA Client Application and CORBA Server Application. You can
also access these wizards by choosing Tools|Regenerate CORBA IDL Files.

Internet toolbar (Enterprise edition)
The Internet toolbar is a new toolbar to help you create a WebSnap Web server application. Choose
View|Toolbars|Internet to display the toolbar. The toolbar’s icons access three new wizards, New
WebSnap App, New WebSnap Page Module, and New WebSnap Data Module, and the External Editor.
These buttons correspond with the most commonly used functions for creating a Web server application
with WebSnap.

Component palette changes
The Additional page has new action band components for maintaining action lists and building

customized menus and toolbars, including TActionManager, TActionMainMenuBar, TActionToolBar, and
TCustomizeDlg.

For CLX applications, the Common Controls page substitutes the Win32 page. (Professional and
Enterprise editions)

A new WebSnap page has been added with components to build a Web server application with
multiple modules. (Enterprise edition)

The WebServices page has been added for writing multitier applications over a network or the
Web. (Enterprise edition)

Several changes have been made on the database Component palette pages. (Professional and
Enterprise editions)

A new COM+ page with the COMAdminCatalog component. (Professional and Enterprise
editions)

Three new Internet protocol pages have been added, including Indy Clients, Indy Servers, and
Indy Misc. The Internet Direct (Indy) components are open source Internet protocols based on blocking
sockets. (Professional and Enterprise editions)

Environment Options dialog box
The Tools|Environment Options dialog box has four new pages:

Designer page—The options for the Form Designer have been moved from the Preferences page
to the Designer page with one new option, Show extended control hints.

Environment Variables page—You can view system environment variables, and create, edit, and
delete user overrides to the system variables.

Object Inspector page—You can set preferences for the Object Inspector using the new
Properties dialog box, also accessible by right-clicking the Object Inspector and clicking Properties on the
context menu.

Internet page—You can set preferences for the file types and script options you want to use for
your WebSnap applications. (Enterprise edition)

Directories dialog box
The Directories dialog box for editing items such as Library Path now displays invalid paths in gray. You
can remove invalid paths with the Delete Invalid Paths button.

Context menu display
With an object selected on a form, a selected window, or with focus on any item in the IDE, you can now
display associated context menus by pressing Alt-F10 or by pressing the Menu key (on Microsoft
keyboards).

Writing design-time packages
You must add DesignIDE.dcp to your package’s requires list.

New Internet features (Professional and Enterprise editions)

Support for WebServices (Enterprise edition)
New components and changes to the compiler let you write WebServices applications and support
writing client applications that access WebServices using SOAP. These components and the
architecture that supports them is described in Using Web Services.

Note: WebServices is a new and evolving technology. Because of this, the components that support this
feature, including the interfaces, are subject to change.

Support for Web server applications (Professional and Enterprise editions)
Delphi 6 includes a host of new Internet features for building Web server applications, including changes
to the existing WebBroker features and a new set of features called WebSnap. To figure out what type of
application you want to build, see About WebBroker and WebSnap.

Apache Web Server (Professional and Enterprise editions)
Both WebSnap and WebBroker now support the Apache Web server in addition to ISAPI, CGI, and
WinCGI.

Web Application Debugger (Professional and Enterprise editions)
The Web application debugger enables you to monitor HTTP requests, responses, and response time
and to develop WebBroker and WebSnap applications without installing a commercial Web server.
Debugging a Web server application can be difficult because your application needs to run in
response to a message from a Web server. Therefore, the Web application debugger emulates this
message.

Improved WebBroker features (Professional and Enterprise editions)
WebBroker now:

Allows you to write Web server applications for CLX applications.
Is backward compatible with Delphi 3, Delphi 4, and Delphi 5 Web modules, with some

limitations. For example, old projects may need to add/change uses unit names. Multiple Web modules
will not be supported in old applications.

New WebSnap features (Enterprise edition)
WebSnap is based on the Delphi 5 WebBroker features with a lot of new functionality, including:

Multiple modules
New wizards
Server-side scripting
New components
Surface designers

To get familiar with building a WebSnap application, see the WebSnap tutorial.

Multiple Web modules
A single WebSnap application supports multiple Web modules, which partitions the application into
units and allows multiple developers to work on the same project with fewer conflicts. Furthermore:

Multiple instances support concurrent requests.
Component references are supported between modules.
Modules are automatically created to service a request or when referenced by another module.

New Web module wizards
With the Web server application wizard you can build an application with a customized Web
moduleWeb application module or a Web page module, using the following four new components:

TWebAppPageModule

TWebAppDataModule

TWebPageModule

TWebDataModule

A Web data module creates a container for components that are shared across your Web application.
It does not have an associated HTML template file.

A Web page module defines a new Web page in your application. It has an associated HTML template
file and displays your script using the WebSnap surface designers. It also defines a logical page
name, doesn’t need to define a dispatch action to access the Web page, and manages the HTML
template file by a virtual file system, displaying it in the Project Manager.

To access the Web module wizards, either choose File|New|Other, click the WebSnap tab, and
double-click WebSnap application, or choose View|Toolbars|Internet and click the New WebSnap
Application icon on the toolbar.

Server-side scripting
WebSnap includes server-side scripting, a simple scripting language designed for programming a
Web page. It includes:

A script that can access Delphi components.
Active scripting engine support, such as VB or JavaScript.
Mixed script and HTML.

New components
WebSnap comes with a host of new components, including dispatcher, adapter, page producer,
session, and user list.

Dispatcher components
Dispatcher components automatically handle different types of requests for page content, HTML
form submissions, and requests for dynamic images. New components include:

TPageDispatcher

TAdapterDispatcher

TWebDispatcher has a new OnException event: TCustomWebDispatcher.OnException

Adapter components
Adapters provide a means to define a scriptable interface to the business rules of your application.
For example, TDataSetAdapter is used to make dataset components scriptable. New components
include:

TAdapter

TApplicationAdapter

TPagedAdapter

TLoginFormAdapter

TApplicationAdapter

TEndUserAdapter

TEndUserSessionAdapter

TStringsValueList

TDataSetValueList

Page producer components
Page producers build complex data-driven forms and tables or use XSL to generate a page. New
components include:

TAdapterPageProducer

TXSLPageProducer

Session components
Session components keep track of end users. New components include:

TSessionsService

User List components
User list components provide access to user names, passwords, and access rights. New
components include:

TWebUserList

WebSnap surface designers
When you are scripting a Web server application with WebSnap, you can build Web pages and view
the results at design time on the Code editor on the following Code editor pages: HTML Script, HTML
Result, Preview, XML Tree, and XSL Tree.

XML support (Enterprise edition)

XML Data Binding wizard
This new wizard creates Delphi code that provides a very simple way to access and update XML data
files. The generated code presents a natural and intuitive property-based programming model that
makes working with XML data feel just like programming with a Delphi component. XML data bindings
replace the complex coding required to use the XML Document Object Model (DOM) interfaces, and are
ideally suited to applications that manipulate validated XML documents.

XML document programming
The XML data bindings are based on the new TXMLDocument component and its associated interfaces
IXMLDocument/IXMLNode. This component provides a simplified version of DOM interfaces for working
with XML data. Just drop TXMLDocument on your form, set the FileName property, set Active to true,
and you have instant access to all of your XML data.

Cross platform/vendor-independent DOM programming
At the lowest level in the XML document programming support is the new xmldom.pas interface unit that
provides a cross platform and vendor independent set of interfaces for programming with the W3C DOM
Level 2 specification. Designed with an open architecture, the interfaces are easily integrated with
existing DOM-based XML solutions.

Using XML in database applications
A new set of components enables you to integrate XML documents into the product's database
architecture. The components make use of transformation files generated by XML Mapper, a design-
time tool for defining mappings between an arbitrary XML document and a client dataset's data packet.

New compiler features

Variants
All the variant handling routines were moved from the System unit to a new unit called Variants.
Although you can still use variant types without including the Variants unit in your applications, the RTL
functions manipulating variants are in the Variants unit. To use these functions, you'll need to include the
Variants unit in the uses statement of your application.

You can now define custom data types for variants. See Custom variant support.

Variants now support Int64.

Enumerated types
Enumerations may now be assigned a specific value.

For example:

type
 TInfo = (iZero, iOne, iTwo, iFour = 4);

Consts unit changes
Consts.pas was broken up into two files: Consts.pas and RTLConsts.pas.

New compiler directives
There are new library, deprecated, and platform directives, documented in the Object Pascal Language
Guide.

Microsoft increasingly relies on PE (portable executable) header flags to allow an application to indicate
compatibility with OS services or request advanced OS services. The Delphi 6 compiler now supports
two new directives that provide powerful options for tuning your applications on high-end NT systems:

{$SetPEFlags <integer expression>}
and

{$SetPEOptFlags <integer expression>}
These directives are for advanced developers only. See PE (portable executable) header flags.

Conditional directives
If you are writing for a Windows platform, you can use the symbol MSWINDOWS to detect the presence
of Windows rather than Linux. For example:

{$IFDEF MSWINDOWS}
 Get Desperate;
{$ENDIF}

$If directive
There is a new $IF directive with constant expression evaluation. For example:

{$IF Defined(WIN32) and (SomeConst > 12.0) }
...
{$ENDIF}

Pascal constant identifiers can be evaluated in $IF directives. Existence of a conditional define symbol
($IFDEF) can be tested with the Defined() intrinsic function, and existence of a Pascal constant identifier
symbol can be tested with the Declared() intrinsic function.

For example:

{$IF Defined(WIN32) and Declared(MyConst)}
...
{$ENDIF}

$ALIGN field

The $ALIGN field has new options: {$A1}, {$A2}, {$A4}, and {$A8}.

New built-in assembler
The product now has a completely new built-in assembler with:

New directives, VMTOFFSET and DMTINDEX
New instruction support: MMX, SIMD, Enhanced MMX, and Intel SSE for the Pentium Pro,

Pentium III, and Pentium 4 CPUs; and AMD Enhanced 3D for the AMD K7 CPUs.
New support for DQ (define quadword data) pseudo-opcode.

New default setting for writeable constants
The default setting for $WRITEABLECONST ($J) compiler directive has changed from ON to OFF. This
means that you must explicitly turn this compiler flag on before you can write to typed const values.

File type support
For greater cross-platform support, the compiler can handle Linux-style text files. That is, text files
whose lines end only with the linefeed character (ASCII 10) instead of the carriage return (ASCII 13) and
linefeed (ASCII 10) used in Windows.

Overload resolution changes
The process by which the Delphi compiler decides which overloaded function best matches a particular
argument list has been updated to support the following situations that the compiler previously
considered ambiguous:

The Delphi 6 compiler can now distinguish between overloaded functions that contain
AnsiString/PChar and WideString/WideChar parameters in the same parameter position.

Variants can now be parameters in overloaded function declarations. A Variant is considered
more general than any simple type.

Object instances passed to overloads with an object version and an interface version are no
longer ambiguous.

Nil is now accepted as a valid value for an interface-type parameter in an overloaded function.

See Overloading procedures and functions.

New COM/Active X features (Professional and Enterprise editions)

Registration/installation of COM configuration attributes
You can now set COM+ attributes to new COM objects.

Event Object Wizard
A new COM+ event wizard lets you create COM+ event objects. (You must still add code manually to
fire events or client code to respond to events.)

Implementing existing interfaces
You can now use the COM object wizard to generate a server object for an arbitrary interface that is in a
type library registered on your system. Previously, that wizard always implemented a newly created
interface (descending from IUnknown). Now, the COM object wizard also lets you select an interface
from any registered type library. The COM object wizard creates the type library information for a
CoClass to implement that interface, as well as an implementation class with skeletal methods for you to
fill in to complete the implementation. The implementation class inherits an implementation of IUnknown
and IDispatch methods.

Transactional Objects (MTS Wizard replacement)
Transactional objects can now be created using the Professional edition. Previously, MTS support was
limited to the Enterprise edition.

Dual MTS/COM+ support for transactional objects
The MTS object wizard has been replaced by a transactional object wizard, which creates objects that
can be used with either COM+ or MTS.

New database features (Professional and Enterprise editions)
Delphi 6 includes a new data access mechanism, dbExpress, that provides extremely fast, easy-to-
deploy access to SQL database servers using a framework that makes it easy to write third-party
database drivers.

Datasets now support two new field types.

A number of new components have been added to make it easier to work with client datasets, both for
two-tier and multi-tier database applications.

dbExpress
dbExpress is a set of lightweight database drivers that provide fast access to SQL database servers. For
each supported database, dbExpress provides a driver that adapts the server-specific software to a set
of uniform dbExpress interfaces. When you deploy your application, you need to include either a single
DLL (the server-specific driver) with the application files you build with optional, additional files that let
you load connection information at runtime. Or, you can deploy your application as a standalone .EXE.

Depending on your version, the following dbExpress drivers may be included with Delphi:

Driver File name

InterBase driver DBEXPINT.DLL

DB2 driver DBEXPDB2.DLL

Oracle driver DBEXPORA.DLL

MySQL driver DBEXPMYS.DLL

The main components, which are wrappers around dbExpress drivers,include:

TSQLConnection.
TSQLDataSet, a unidirectional dataset.
TSQLQuery, TSQLStoredProc, and TSQLTable, which are unidirectional datasets that are

compatible with existing elements if you want to port an application.
For more information about working with these components, see Using unidirectional datasets.

The datasets that use dbExpress are called unidirectional datasets, because dbExpress implements
only a unidirectional cursor for accessing records. Unidirectional datasets do not buffer data in memory,
which makes them faster and less resource-intensive than other types of dataset, but introduces several
limitations. For example, you can’t connect a unidirectional dataset to a data-aware grid, because there
are no buffered records. Many of the capabilities introduced by TDataSet are either unimplemented in
unidirectional datasets, or cause them to raise exceptions. Despite the limitations, unidirectional
datasets are a powerful way to access data. They are fast, and very simple to use and deploy.

To edit data from unidirectional datasets, connect them to a client dataset. The connection between the
client dataset and the unidirectional dataset is provided by a dataset provider.

New field types
A new field type, TFMTBCDField, has been added. This represents a true binary-coded decimal, as
opposed to the existing TBCDField type, which converted BCD values to the Currency type. You can
specify a TFMTBCDField as a persistent field for a BCD field from any dataset. With dbExpress
datasets, dynamic field components of type TFMTBCDField are created when using TBCDField would
result in a loss of precision. (Eventually, this may be expanded to include BDE, ADO, and/or IBX
datasets as well).

Note: In support of TFMTBCDField, the global CurrToBCD and BCDToCurr routines have moved to the
FMTBCD unit (from the db unit).

Another new field type, TSQLTimeStampField supports the date/time representation used in dbExpress
drivers.

Client dataset enhancements

Three new client datasets have been added that include a built-in provider and source dataset. These
datasets are intended to simplify the process of using a provider and client dataset to cache updates in
very simple applications. They are:

TBDEClientDataSet
TSQLClientDataSet
TIBClientDataSet

A new common base class (TCustomClientDataset) now exists for both TClientDataSet and these new
datasets.

Note: These components are only intended for simple applications. When the application uses
master/detail relationships or needs to refetch data from the server multiple times, performance is
much better when using an external provider and client dataset.

TClientDataSet has several new properties:

ConnectionBroker lets you add an extra layer of indirection to the specification of a connection
component. This is especially useful when you want to use one type of connection at design time and
another when you deploy your application. If you have several client datasets in an application that all use
the same connection broker, then you can change the component that connects them all to the
application server by changing a single property (the Connection property of the connection broker) rather
than having to change the RemoteServer property for every client dataset in the application.

DisableStringTrim lets you control how the client dataset handles spaces in values that users
enter into fields.

XMLData gives you access to the client dataset’s data packet in XML format.
A new set of components lets you convert between client datasets and arbitrary XML documents. These
are described in Using XML in database applications.

TUpdateSQL has been enhanced so that you can now use multiple update objects when caching
updates using a client dataset. The TUpdateSQL.DataSet property has changed from requiring a
TBDEDataSet to only requiring TDataSet. When using a client dataset and multiple update objects, you
should set this to the DeltaDS parameter of the provider's BeforeUpdateRecord event handler. In this
case, TUpdateSQL can't infer the database name and session from its DataSet property and you must
also set the new DatabaseName and SessionName properties. This process is described in Using
Multiple Update Objects.

TUpdateSQL works the same as before when there is only a single update object or when using the
BDE-enabled dataset to cache updates.

Support for multi-tiered applications
Two new connection components are available that let you work more flexibly with client datasets in
multi-tiered applications. These are:

TSharedConnection, which lets the client application form several connections to multiple remote
data modules in a single application server. By using TSharedConnection components, all the
connections to the remote data modules use a single shared connection to the application server,
allowing the server application to recognize them as all originating from the same client.

TLocalConnection, which acts like a connection component for local providers (in the same
application as the client dataset). By using TLocalConnection, you can make explicit use of the
IAppServer interface, and it can simplify the process of later scaling up to the use of a remote provider on
an application server.
In addition, a new factory object, TPacketInterceptFactory, makes it easier to intercept messages

between the client application and the application server when using socket connections. By using
TPacketInterceptFactory, the intercept object is automatically registered so that you can assign it to
the socket connection component using a drop-down list in the Object Inspector.

Component palette changes
The component palette has been changed to reflect the growing variety of options available when
working with databases and Internet applications.

The component palette has been reorganized to emphasize that the Borland Database Engine is

one choice among many, rather than the primary data access mechanism. The BDE-based components
have been moved to a new BDE page of the Component palette.

The InterBaseExpress components have been updated, including enhanced event support and
support for InterBase generators that auto-generate field values. A new InterBase Admin page has been
added.

A new dbExpress page has been added to house the new dbExpress components described
previously.

The Midas page has been removed, as has use of the term MIDAS. The client dataset and
dataset provider that used to be on the Midas page has moved to the Data Access page. The connection
components for connecting to an application server and the simple object broker have moved to the new
DataSnap page.

The new DataSnap page now holds the components used for connecting client datasets to an
application server. These include the connection components and simple object broker, that used to be on
the Midas page. In addition, the DataSnap page holds three new components: TConnectionBroker, which
acts as an intermediate component between a client dataset and a connection component,
TSharedConnection, which connects to an application server that is partitioned into multiple remote data
modules, and TLocalConnection, which represents the connection to providers that are in the same
application as a client dataset.

New CORBA features (Enterprise edition)
Some versions of Delphi come with an IDL2PAS compiler for writing CORBA applications. This IDL2PAS
compiler has been enhanced to support writing CORBA servers (generating skeleton code) as well as
clients (generating stub code). You can launch this IDL2PAS compiler from within the IDE by choosing
Tools|Regenerate CORBA IDL files or by choosing File|New|Other and clicking the CORBA page. The
compiler is useful for creating clients and servers, and maintaining existing CORBA projects where you
make a change to the IDL file and just want to refresh the project files.

It is highly recommended that you use the new IDL2PAS compiler for CORBA applications, rather than
using the older CORBA support that was integrated with Delphi’s support for COM applications. When
using the new IDL2PAS compiler, you should use the corba.pas and orbpas30.pas or orbpas40.pas
units to interact with the ORB rather than the older corbaobj.pas and orbpas.pas units. In addition, two
new units, cosevent.pas and cosnaming.pas wrap the event and naming services, respectively.

The documentation for the CORBA support has not been integrated into the main Delphi documentation.
Instead, the IDL2PAS compiler is documented in Doc\IDL2PAS\index.htm.

New actions features (Professional and Enterprise editions)

Action bands
Actions are easier to work with, simplifying the process of developing your user interface by using a set
of new tools collectively known as ActionBands. You can organize actions and images and add them to
customizable, Microsoft Office-style menus and toolbars. These tools are accessed from the Additional
page of the Component palette and include:

TActionManager—The Action Manager manages action lists to organize customized and
standard actions.

TActionMainMenuBar and TActionToolBar—The action band menu and toolbar are customized
menus and toolbars onto which you can drag and drop actions, or commands, from the Action Manager
editor. You can drop a category of actions (you get all of the actions included on a submenu) or a specific
action onto a menu or toolbar.

TCustomizeDlg—The Customize dialog box works in the same way as the Action Manager editor,
but is provided for your users to modify the contents of menus and toolbars at runtime. TCustomizeDlg
component works in conjunction with TActionManager: you can either set the ActionManager property to
the ActionManager component, or add a standard action (TCustomizeActionBars) to the Action Manager
editor and to an action band menu.
For more information on using these tools, see Organizing actions for toolbars and menus and Creating
toolbars and menus. For CLX applications, use the ActionList to organize your actions.

Delphi includes new standard actions that you can add to your menu and toolbar commands. New
predefined action classes include Format, File, Search, Tab, List, Dialog, Internet, and Tools.

You can also set up your menus to hide or display actions based on their frequency of usage. You do
this using the HideUnused property of the various TActionClient objects, which places less frequently
used menu items on a submenu accessible by pointing to a double arrow button on a menu or toolbar.
For more information, see Hiding unused items and categories in action bands.

New standard actions
The following standard actions have been added to the VCL:

Format actions

TRichEditBold

TRichEditItalic

TRichEditUnderline

TRichEditStrikeOut

TRichEditBullets

TRichEditAlignLeft

TRichEditAlignRight

TRichEditAlignCenter

Help actions

THelpContextAction

File actions

TFileOpen

TFileSaveAs

TFilePrintSetup

TFileRun

TFileExit

Search actions

TSearchFind

TSearchFindFirst

TSearchReplace

TSearchFindNext

Tab (page control) actions

TPreviousTab

TNextTab

List actions

TListControlCopySelection

TListControlDeleteSelection

TListControlSelectAll

TListControlClearSelection

TListControlMoveSelection

TStaticListAction

TVirtualListAction

Dialog actions

TOpenPicture

TSavePicture

TColorSelect

TFontEdit

TPrintDlg

Internet actions

TBrowseURL

TDownLoadURL

TSendMail

Tools actions

TCustomizeActionBars

Enhancements to action classes
TCustomAction has been enhanced to include the following new properties:

GroupIndex
SecondaryShortCuts
HelpKeyword
HelpType
AutoCheck

TCustomActionList now has a State property that lets you temporarily turn off all the actions in the list.

New VCL units and features (All editions)

New components:

TLabeledEdit
TLabeledEdit is an addition to the ExtCtrls.pas unit and demonstrates using sub-components. It is an
Edit control that has a label attached to it. The Label appears as a property of the control.

TValueListEditor
The TValueListEditor is a custom grid used for editing TStrings that contain key/value pairs. It works
similarly to the Object Inspector.

TComboBoxEx
TComboBoxEx is new combo box control that allows images to appear next to the items in the list.

TColorBox
TColorBox is new combo box control for selecting colors.

Improved features include:
Most of the windowed controls now publish the following Bevel properties:

BevelEdges
BevelInner
BevelOuter
BevelKind
BevelWidth

Subcomponents
Components can now own other components that create subcomponents. For example, a component
can have a property that is a component reference and that can be either internal (a subcomponent) or
external (a normal component reference). If the reference is internal, the subcomponent is not owned by
the form but by the component on the form. This means that components can now publish the properties
of the subcomponent and they will be streamed correctly. Additionally, the Object Inspector has been
modified to allow you to view the properties of component references inline (for example, the Font
property). To create a component that has a sub-component requires a call to
TComponent.SetSubComponent.

Publishable interface properties
Interface properties (properties whose type is an interface) can now be published if and only if the
implementer of the property is a streamable component.

This means you can now see properties that take an interface in the Object Inspector, which will provide
a drop-down list of components that support the interface.

Unit additions and changes

CheckLst.pas
TCheckListBox now publishes several new properties, including AutoComplete, HeaderColor, and
HeaderBackgroundColor.

Classes.pas
TList has a new Assign method that not only copies but also allows for primitive set operations.

TCollection has two new protected methods that are used to allow descendants of TCollection to
enhance the process of adding and deleting items. The two new methods are Added and Deleting,
neither of which have a default implementation. There are no OnAdded and OnDeleting events, to
keep TCollection small. However, descendant classes can easily add these events. In addition,
TCollection has a new Owner property to make it easier to identify the owner.

TStringList has a new CaseSensitive property that lets you control whether string list operations

(sorting, string matching) are case sensitive.

TDataModule was moved here from the Forms unit to remove dependencies on visual controls. This
lets you write much smaller server applications that include no user interface.

TThread has a new FatalException property that identifies any exception that stops the thread
function from a normal completion.

TStream overloaded the Seek function to allow Int64 values to be used to identify positions.
Descendant classes can override one or the other overload, but should not override both.

TInterfacedPersistent is a new base class for persistent objects that are not components but that
implement interfaces.

ComCtrls.pas
TTreeView—CreateTreeNodes has been added.

Generalized the creation of nodes and made an event so that simple tree users won't have to
create a descendent just to override the node class. Also AddNode has been changed so you can now
pass in the node (of whatever class) you want added.

Added OnAddition event, which occurs when nodes are added.
The API for sorting TreeViews has been augmented and simplified. You can now recursively sort

subtrees, and non-recursively sort the top-level nodes. The TCustomTreeView and TTreeNode classes
now offer more uniform definitions for AlphaSort and CustomSort, and these methods have been added to
TTreeNodes. All changes are backward compatible with the previous version.

Added MultiSelect with four properties and eight methods.
TListView—CreateListItems has been added, which matches TTreeView's CreateTreeNodes.

TStatusBar—The size grip now appears even if the status panel is not directly parented by its form.
As long as the lower right corner of the status bar is in the lower right corner of the form then the size
grip will appear.

TDateTimePicker has a new Format property that controls the format of the date values using
standard date/time formatting strings.

THeaderControl has a number of new properties and events to support column dragging. A new
HotTrack property allows header sections to be highlighted when the user pauses with the mouse.

TToolBar now has a Menu property that fills the toolbar with buttons corresponding to the items in a
menu. A number of new events respond when the user customizes the toolbar using a customize
dialog.

Contnrs.pas
Last and First have been added to TObjectList, TComponentList, and TClassList. These are typecast
functions.

TStack, TQueue, TObjectStack, and TObjectQueue's Push is now a function that simply returns the
item pushed on to the stack. Think of it as a Push/Peek. This is very useful when pushing things that
are created when pushed.

TBucketList and TObjectBucketList are simple hash tables.

Controls.pas
TCustomListControl is a new common base class for controls that represent a list of items (combo
boxes, list boxes, and list views). It introduces a number of new methods for manipulating the lists
that are then inherited by all descendants.

TDragObjectEx, TDragControlObjectEx, and TDragDockObjectEx, are three new drag objects that
are automatically freed at the end of drag operations. They correspond to TDragObject,
TDragControlObject, and TDragDockObject, differing only in that the older objects are not freed at the
end of a drag operation.

TControl has two new methods: ClientToParent and ParentToClient, that let you map your pixels to
one of the parents or children. They work very similarly to ClientToScreen and ScreenToClient.

TWinControl has a new overload of the PaintTo method that takes a canvas instead of an HDC.

TModalResult has been moved from Forms.pas. In addition, the following support functions have

been added:
function IsPositiveResult(const AModalResult: TModalResult): Boolean;
function IsNegativeResult(const AModalResult: TModalResult): Boolean;
function IsAbortResult(const AModalResult: TModalResult): Boolean;
function IsAnAllResult(const AModalResult: TModalResult): Boolean;
function StripAllFromResult(const AModalResult: TModalResult):
TModalResult;

DbCtrls.pas
TDBLookupListBox and TDBLookupComboBox have a new NullValueKey property that lets users
assign blank (NULL) values.

TDBComboBox now has AutoComplete and AutoDropDown properties.

TDBListBox also has a new AutoComplete property.

TOpenDialog now has an OptionsEx property that expands your control over open and save dialogs.

ExtCtrls.pas
TImage—A Proportional property has been added which maintains the aspect ratio of the image
regardless of the size of the TImage control.

Forms.pas
TApplication (and TApplicationEvents) has a new OnSettingChange event that lets you respond to
changes in system-wide settings.

TForm now supports layered forms with the new AlphaBlend, AlphaBlendValue, TransparentColor,
and TransparentColorValue properties.

TScreen has a new set of properties for getting the work area of the desktop (WorkAreaRect,
WorkAreaTop, WorkAreaLeft, WorkAreaHeight, and WorkAreaWidth). In addition, a set of new
methods let you locate which monitor best matches a point, rectangle, or window.

TMonitor expands the multi-monitor support by indicating which monitor is the primary monitor, and
providing WorkareaRect and BoundsRect properties.

AutoDragDocking support has been added. This allows you to turn off auto-docking for your
application. Additionally a flag has been added to Delphi's options dialog that allows you to set this
property.

TModalResult has been moved to Controls.pas.

Graphics.pas
TFontRecall, TPenRecall and TBrushRecall have been added. These allow quick saving and
restoring of fonts, pens, and brushes. They descend from TRecall (from Classes) which works with
TPersistent classes in general.

The system colors have been have sorted to make things easier to find.

Four colors have been added to the standard sixteen:

clMoneyGreen
clSkyBlue
clCream
clMedGray

ImgList.pas
Overloads have been added for the Draw, DrawOverlay, and GetIcon methods, which let you override
the image list property settings.

IniFiles.pas
Ini files now support reading and writing binary data using a stream.

TMemIniFile now lets you control whether strings are treated in a case-sensitive manner.

THashedStringList is a new TStrings descendant that uses an internal hash table to improve
performance.

Masks.pas
EditMask and Text now use custom types so their property editors are more useful.

Menus.pas
TMenuItem has a new AutoCheck property that checks or unchecks menu items automatically when
the user selects them.

Registry.pas
TRegistry now supports reading and writing binary data using a stream.

StdCtrls.pas
OnCloseUp and OnSelect have been added to TCustomComboBox (and in turn TComboBox).
OnCloseUp fires when the combo box's drop-down list closes (think of it as the opposite of
OnDropDown). OnSelect fires when something is selected from the combo box's drop-down list (or
when the contents of the combo box are changed by scrolling its contents up and down). Combo
boxes now have an AutoComplete property which is true by default.

TListBox now supports two new styles: lbVirtual and lbVirtualOwnerDraw. These styles are for virtual
list boxes, which do not store their items. Rather, you indicate the number of items by setting the
Count property, and then supply items (and their associated objects) using the new OnData,
OnDataFind, and OnDataObject events.

TypInfo.pas
It is now safe to call GetPropInfo with an object that does not have any RTTI information. It simply
returns nil.

FreeAndNilProperties has been added. This will take any RTTI-enabled object and free and nil out
each of its object properties. Note that it will also clear any objects this object may have property
references to, so nil those out first.

New RTL units and features (All editions)
Some functions have been moved from other units into System, while many System functions have
moved to the new Variants unit. Many new overloaded versions of RTL functions have been added to
support WideString parameters in addition to AnsiString parameters (SysUtils), such as Trim and
WideFormat.

Variants.pas
This new unit contains many utilities for working with Variants. Much of this code was moved from the
system unit, so that now, if your code uses Variants, you must add Variants to you uses clause. This unit
also contains a number of new Variant support routines, as well as support for the new Custom Variant
types.

To support cross-platform development, the utilities in the Variants unit no longer make calls directly into
the Windows API. Instead, a new unit, VarUtils.pas, contains low-level routines that provide a platform-
neutral basis for the routines in Variants.pas. You have to be careful using the generic code in
VarUtils.pas because it is not exactly like the Windows code and if you mix Windows calls and generic
code you will run into problems.

ConvUtils.pas
A collection of routines for converting between measures has been added.

StdConvs.pas
A set of global variables for use with the routines in ConvUtils.pas.

DateUtils.pas
A collection of date and time functions has been added.

StrUtils.pas
This new unit contains string functions in addition to the ones in SysUtils.pas.

FMTBCD.pas
This new unit contains utilities for working with binary-coded decimal (BCD) values.

Math.pas
Const has been added to the extended parameters to speed things up. There are also many new
constants and functions.

System.pas
The System unit has many new routines, most of which support cross-platform development and
conversion between the different character encoding systems that are used on Windows and Linux. The
routines that support Variants have been moved out to the new Variants unit.

IInterface has been added for use with other than COM interfaces.

SysUtils.pas
The SysUtils unit has been upgraded to support the cross-platform features of CLX. Some services that
were previously provided by the native Windows API are now provided by SysUtils routines. However,
many of these routines appear in Linux-specific areas of the source file and are not compiled into the
Windows binary.

Custom Variant support (All editions)
You can now define custom data types for Variants. This introduces operator overloading while the type
is assigned to the Variant. To create a new Variant type, descend from the class, TCustomVariantType
(or one of its descendants, TInvokeableVariantType or TPublishableVariantType) and instantiate your
new Variant type.

See Defining custom Variants for more information on how to create custom Variants.

Two new units provide examples of custom Variants:

The VarCmplx unit implements a custom Variant for complex numbers. The Variant type supports
direct manipulation using the addition, subtraction, multiplication, division (but not integer division), and
negation operators. It supports 5 properties: Real, Imaginary, Radius, Theta, and FixedTheta. It can be
cast to and from integer types, floating point types, string types, TDateTime values, and boolean values.
In addition, the VarCmplx unit implements a number of global functions for operating on complex Variants.

The VarConv unit implements a custom Variant for measurements such as those used in the
ConvUtils unit. Convert custom Variants support addition, subtraction, multiplication, and division between
Convert custom Variants and numbers, or between two Convert custom Variants (except that you can’t
multiply two Convert custom Variants that use different units). The Convert Variant type automatically
adjusts the units when you perform these operations. You can cast Convert Variants to OleStr, String, and
Double. They also support Value, Type, TypeName, Family, and FamilyName, and As<Unit> properties for
obtaining the numerical value, the unit type, the name of the unit, the measurement family to which the
unit belongs, its name, and the value when converted to another unit in the same family.

Cross-platform development (Professional and Enterprise editions)
Delphi 6 ships with the Borland Component Library for Cross-Platform (CLX), a class library similar to
the VCL that can run on both Windows and Linux platforms. Many of the CLX objects are named the
same as VCL objects and include many of the same properties, methods, and events. You can use CLX
with Delphi 6 to develop applications that can be compiled under either Windows or Linux to run on
Linux.

CLX differences
There are differences due to the operating system and features that relate to technologies that are
limited to Windows:

The CLX class library between VCL and are similar although CLX’s TWidgetControl replaces the
VCL's TWinControl. Thus, other components, such as TScrollingWidget, have corresponding names.

The IDE uses a smaller subset of objects in the Object Repository and on the Component palette
pages.

All of the variant/safe array code that was in System is in two new units: Variants.pas and
VarUtils.pas

You can define custom data types for variants. This introduces operator overloading while the
type is assigned to the variant. To create a new variant type, descend from the class,
TCustomVariantType, and instantiate your new variant type.

Application-wide “styles” can be used in addition to the OwnerDraw properties. You can use the
TApplication.Style property to specify the look and feel of an application's graphical elements.

Most strings for controls in CLX are wide strings whereas in VCL they are ANSI strings.
Typecasting a wide string to PChar or String to PWideChar won't work and will cause the compiler to
issue a "Suspicious typecast " warning.

Linux does not use a registry to store configuration information. Instead, you use text
configuration files and environment variables.

Creating a cross-platform application
To create a cross-platform application, choose File|New|CLX Application. The Component palette
changes dynamically to show the objects that are available for use in Windows CLX applications.

There are some Windows-specific features that do not port to the Linux environment.

Improved translation tools (Enterprise edition)
The term Translation Tools, which includes the Translation Manager, Resource DLL Wizard, and
Translation Repository, has replaced the term Integrated Translation Environment (ITE). The Translation
Manager is now a standalone executable that can be used outside the IDE. When used externally, it is
called the External Translation Manager (ETM) (etm60.exe), and can be sent to translators without their
needing to install Delphi.

The Translation Manager and ETM dialog boxes have some added functionality:

A form viewer so that users can view and visually resize the form as they make translations.
Three new Environment, Files, and Workspace tabs to organize your project.
Additional menu and toolbar buttons for File, Project, and Tools commands. The commands vary

depending on whether you are running the Translation Manager internally or externally.

Deployment changes (All editions)
In Delphi 5, users deployed runtime packages by distributing the appropriate packages (.BPLs) with
their application, using InstallShield to automatically include needed libraries.

Delphi 6 ships with InstallShield Express 3.0, which is based on Windows Installer (MSI) technology and
uses merge modules to deploy your application. Merge modules are MSI components that contain files
and logic necessary to install the runtime libraries. Delphi’s libraries have interdependencies which
Delphi’s merge modules are designed to resolve.

To deploy applications with InstallShield 3.0 and to display a list of the library dependencies for each
Delphi merge module, see deploying applications and Merge modules.

Help system extensibility (All editions)
Delphi now allows you to pass Help requests to Help viewers other than the standard Windows Help
viewer, enabling you to write Help applications for both Windows- and Linux-based applications. New
features include:

New interfaces that communicate between your application and Help viewers. Defined in
HelpIntfs.pas, these interfaces include IExtendedViewer, ISpecialHelpWinViewer, IHelpManager,
IHelpSystem, IHelpSelector, and ICustomHelpViewer.

The Help Manager, which maintains a list of registered viewers and passes requests to them.
The VCL provides an implementation of ICustomHelpViewer designed for talking to WinHelp.

Note: Third-party component developers wishing to provide Help using the standard Windows Help
engine must now provide a list of "ALinks" used in the compiled Help file. The list must be given
an .ALS file extension and copied into the directory specified by the Delphi registry entry Help|
WinHelpPath. ALink lists can be created from compiled Help files using the Report feature in the
Help Compiler Workshop (installed into the Tools folder of your Delphi/Help directory). See the file
DELPHI6.ALS in your /Help directory for an example of ALS list preparation.

Upgrading to Delphi 6
When you load a Delphi 5 or earlier project into Delphi 6, it is automatically updated. The following
topics describe changes that could potentially impact existing Delphi projects:

IDE issues
Automatic package name updates
Compatibility issues

Refer also to the What ’ s New for information on additional features that you may want to incorporate
into your applications.

IDE issues
When you open your project for the first time in Delphi 6, it will not look the way it did in previous
versions of Delphi. There have been many changes to the IDE, including changes to the window layout
and the component palette. For a more complete summary of these changes, refer to the New IDE
Features section of the What ’ s New document.

Automatic package name updates
As in prior Delphi upgrades, the names of many packages have changed. For example, "vclide50" is
now "vclide60." Past releases of Delphi performed automatic package name updates, and this release is
no different. The mechanism for the updates has changed, however. It now relies on a list of changed
files (found in the file Delphi.upg in the Bin directory) instead of simply changing suffixes.

In the past, when Delphi detected an error that could be related to a package name change, it searched
the package names for obselete suffixes and automatically replaced them with the correct suffix. For
example, Delphi 5 would have automatically updated a reference to "package40" (if such a package
existed) so that it read "package50" instead. Delphi 6 performs this task by searching a list of obselete
package names and replacing them as indicated by the list. The list is contained in the file Delphi.upg,
which can be found in the Bin directory.

Users can examine and change the contents of the file using a text editor (including the Delphi IDE's
editor). This may be a useful feature for component designers, who might want to modify their
components for Delphi 6 and keep the components in a different package than they used previously.

Compatibility issues
Following are general compatibility issues that may affect your Delphi applications:

Provider, client dataset events affected by VCL hierarchy change

Code change required for default Database Login dialog

Potential binary form file incompatibilities

Change in writeable constants

Unary negation of Cardinal type

DsgnIntf renamed and related changes

Component editor changes

TDesignWindow changes

VCL package changes

OpenGL interface unit moved to rtl.dcp

Types moved from HTTPApp.pas to HTTPProd.pas

Search unit removed, SearchBuf moved and changed

Some specific topics in the What ’ s New document may have compatibility consequences for your
application, such as:

New compiler features
New VCL features, particularly the "Unit additions and changes" section

Provider, client dataset events affected by VCL hierarchy change
Compatibility issues

The introduction of TCustomClientDataSet requires changes to event handlers in Delphi 5 and earlier
code.

Six events in five types are affected by the change to DBCLIENT.PAS. They are:

Type Event/change

TResolverErrorEvent Affects the provider’s OnUpDateError event.

TBeforeUpdateRecordEvent Affects the provider’s BeforeUpdateRecord event.

TAfterUpdateRecordEvent Affects the provider’s AfterUpdateRecord event.

TProviderDataEvent Affects the provider’s OnGetData and OnUpdateData events.

TReconcileErrorEvent Affects the client dataset’s OnReconcileError event

In event handlers using the events noted above, you must replace TClientDataSet with
TCustomClientDataSet.

Code change required for default Database Login dialog
Compatibility issues

Previously, setting the LoginPrompt property of a connection component (such as TDatabase,
TADOConnection, or TDCOMConnection) caused a default login dialog to appear. This is no longer the
case unless you add DBLogDlg to your uses clause. Applications that depend on the default login dialog
must be edited to add DBLogDlg to the uses clause or they will not prompt for user name and
password.

Potential binary form file incompatibilities
Compatibility issues

In the past, binary form files (or DFM files) created with newer versions of Delphi could be read by older
versions. This is no longer true in Delphi 6; some binary form files may be read incorrectly because of
the way that Delphi 6 performs internal string streaming. In the past, streaming was performed assuming
a locale specific character set. Now streaming assumes that the character set is UTF-8. As a
consequence, if there are characters with a code greater than 127 (such as the copyright symbol ©) in a
Delphi 6 binary form file, that file cannot be read by older versions of Delphi.

If you intend to use a Delphi 6 form file (including older form files imported into and modified with Delphi
6) in an older version of Delphi, the file should be saved in text format instead of binary format.

Change in writeable constants
Compatibility issues

The $WRITEABLECONST compiler switch (aka $J) now has a default state of OFF, which will prevent
Delphi projects from having writeable constants. Writeable constants refers to the use of a typed
constant as a variable modifiable at runtime. Here is an example:

const
 foo: Integer = 12;
begin
 foo := 14;
end.

In prior releases of Delphi, this was an acceptable construct; constants weren't really constant. With
$WRITEABLECONST OFF, this code will now produce a compile error on the assignment to the foo
variable in the begin..end block. To fix it, simply change the const declaration to a var declaration.

You may have code that uses a typed const as an initialized local variable with global lifetime, like this:

procedure MyProc;
const
 somedata: Integer = 12;
begin
 Inc(somedata, 3);
end;
You will need to move the local const out of the procedure and declare it for what it is: a global variable.
After making this change, the code segment above becomes:

var
 somedata: Integer = 12;
procedure MyProc;
begin
 Inc(somedata, 3);
end;
Code that relies heavily on the typed const quirk (such as the ActiveX control wrapper generator) can
insert a {$WRITEABLECONST ON} directive in the source file as a quick fix. This practice is forbidden in
the RTL, VCL, CLX, and DB source code and discouraged in the IDE sources, but acceptable for fringe
units such as ActiveX control wrappers.

In general, you should note that the phrase "writeable constant" is an oxymoron. Prior versions of Delphi
allowed them by default to maintain compatibility with an older 16-bit compiler, which is no longer
important for most Delphi developers. Use good programming practice; avoid writeable constants.

Unary negation of Cardinal type
Compatibility issues

In the past, Delphi handled unary negation of Cardinal type numbers using 32 bit operations, which
could lead to some odd results. Here is an example of code which uses unary negation:

var
 c: Cardinal;
 i: Int64;
begin
 c := 4294967294;
 i := -c;
 WriteLn(i);
end;

In previous versions of Delphi, the value of i displayed would be 2. This is obviously incorrect behavior
for this case. In Delphi 6, the unary negation is handled after promoting the Cardinal type to a 64 bit
signed type, so the final value of i displayed is -4294967294.

It is possible that existing code may rely on the incorrect behavior of unary negation. Delphi users
should be aware of this new behavior. It may be worth your time to check your code for instances of
unary negation of Cardinal variables, and make sure that your application responds to the new behavior
appropriately.

DsgnIntf renamed and related changes
Compatibility issues

References to DsgnIntf in your project should be changed to the new Delphi 6 name, DesignIntf. You
may also need to add DesignEditors, VCLEditors and RTLConsts to your uses clause. You will also
need to add designide to your package's requires list. References to dsnide50 should probably also be
changed to designide if that isn't changed automatically by Delphi.

Any runtime packages that use IDesigner need to use IDesignerHook to avoid a requirement of
designide at runtime. In runtime code, IDesignerHook should suffice. Design-time code can use
IDesigner, but should use something like

var
 RealDesigner: IDesigner;
...
SomeDesignerHook.QueryInterface(IDesigner,RealDesigner);
...

to get the real IDesigner interface from an instance of IDesignerHook. IDesignerHook only requires
Classes and Forms to be available. IDesigner requires DesignIntf, which includes many other packages,
some of which may not be redistributable.

Borland wishes to thank field tester Matt Palcic for bringing these changes to our attention.

Component editor changes
Compatibility issues

The class TComponentEditor has a different ancestry in Delphi 6. In Delphi 5, it descended from
TInterfacedObject; it now descends from a new class, TBaseComponentEditor. Also, the class
TComponentEditorClass is now a class of TBaseComponentEditor instead of TComponentEditor. These
changes in hierarchy may require you to modify your older Delphi projects.

Borland wishes to thank field tester Clive Walden for bringing these changes to our attention.

TDesignWindow changes
Compatibility issues

There have been a number of changes related to the class TDesignWindow. It has been moved to the
DesignWindows unit, and its FormClosed method has been replaced by DesignerClosed. In the past,
one could obtain access to the form within FormClosed by using the AForm parameter. In
DesignerClosed, it is now necessary to use Designer's Root property to access the form.

In FormClosed, one would create selection lists by calling TDesignerSelectionList.Create or
TComponentList.Create. To create selection lists within DesignerClosed, it is necessary to use an
IDesignerSelections interface. You can create one using the CreateSelectionList function.

Parameters for the SelectionClosed method are also different from what they were in Delphi 5.

Borland wishes to thank field tester Matt Palcic for bringing these changes to our attention.

VCL package changes
Compatibility issues

The contents of some of the VCL-related packages have been redistributed into other packages. If you
made references to vcl50.dcp in your project, you will need to change those references to other units,
such as vcl.dcp and rtl.dcp.

Borland wishes to thank field tester Clay Shannon for bringing this change to our attention.

OpenGL interface unit moved to rtl.dcp
Compatibility issues

The Borland OpenGL interface unit (opengl.dcu) was an independent unit in the Delphi 5 Lib folder. It
has been incorporated into rtl.dcp in Delphi 6. This may cause some problems for Delphi 5 projects
ported to Delphi 6.

Here is an example. In a Delphi 5 project, it was possible to make a project-specific override of the
OpenGL unit by placing a unit with the same name somewhere in your project path. The same method
used in Delphi 6 causes a name conflict in any component that uses rtl.dcp also, and a name change is
now required.

Borland wishes to thank field tester John Williams for bringing this change to our attention.

Types moved from HTTPApp.pas to HTTPProd.pas
Compatibility issues

Several types in the HTTPApp unit have been moved to the HTTPProd unit. They are THTMLBgColor,
THTMLAlign and THTMLVAlign. If your projects use any of these units, you should change your uses
statements to refer to HTTPProd instead HTTPApp.

Search unit removed, SearchBuf moved and changed
Compatibility issues

The unit Search no longer exists in Delphi 6. The SearchBuf routine, which locates a substring within a
text buffer, has been moved to the StrUtils unit and its parameters have changed. The final parameter is
now a TStringSearchOptions object. If your project won't compile because the compiler can't find the
Search unit, change your uses statement to include StrUtils instead of Search. You will also want to
check your SearchBuf calls to ensure that your parameters match the new syntax.

Link not found
The topic you requested is either not available or not linked to this Help system. This can occur if you
launched this Help file from a system on which Delphi has not yet been installed, or if the subject matter
you are requesting is not available in your edition of Delphi.

The topic you requested is now loading. If it does not appear within a few seconds, the topic is either not
available or not linked to this Help system. This can occur if you launched this Help file from a system on
which Delphi has not yet been installed, or if the subject matter you are requesting is not available in
your edition of Delphi.

