
 DevGuide: Building applications with Delphi

Integrated development environment
Topic groups

When you start Delphi, you are immediately placed within the integrated development environment, also called the
IDE. This environment provides all the tools you need to design, develop, test, debug, and deploy applications.

Delphi’s development environment includes a visual form designer, Object Inspector, Object TreeView, Component
palette, Project Manager, source code editor, and debugger among other tools. Some tools may not be included in
all versions of the product. You can move freely from the visual representation of an object (in the form designer), to
the Object Inspector to edit the initial runtime state of the object, to the source code editor to edit the execution logic
of the object. Changing code-related properties, such as the name of an event handler, in the Object Inspector
automatically changes the corresponding source code. In addition, changes to the source code, such as renaming
an event handler method in a form class declaration, is immediately reflected in the Object Inspector.

The IDE supports application development throughout the stages of the product life cycle—from design to
deployment. Using the tools in the IDE allows for rapid prototyping and shortens development time.

A more complete overview of the development environment is presented in the Quick Start manual included with the
product.

 DevGuide: Building applications with Delphi

Designing applications
Topic groups See also

Delphi includes all the tools necessary to start designing applications:
A blank window, known as a form, on which to design the UI for your application.
Extensive class libraries with many reusable objects.
An Object Inspector for examining and changing object traits.
A Code editor that provides direct access to the underlying program logic.
A Project Manager for managing the files that make up one or more projects.
Many other tools such as an image editor on the toolbar and an integrated debugger on menus to support

application development in the IDE.
Command-line tools including compilers, linkers, and other utilities.

You can use Delphi to design any kind of 32-bit application—from general-purpose utilities to sophisticated data
access programs or distributed applications. Delphi’s database tools and data-aware components let you quickly
develop powerful desktop database and client/server applications. Using Delphi’s data-aware controls, you can view
live data while you design your application and immediately see the results of database queries and changes to the
application interface.

Creating applications introduces Delphi’s support for different types of applications.

Many of the objects provided in the class library are accessible in the IDE from the Component palette. The
Component palette shows all of the controls, both visual and nonvisual, that you can place on a form. Each tab
contains components grouped by functionality. By convention, the names of objects in the class library begin with a
T, such as TStatusBar.

One of the revolutionary things about Delphi is that you can create your own components using Object Pascal. Most
of the components provided are written in Object Pascal. You can add components that you write to the Component
palette and customize the palette for your use by including new tabs if needed.

You can also use Delphi for cross platform development on both Linux and Windows by using tCLX. CLX contains a
set of classes that, if used instead of those in the VCL, allow your program to port between Windows and Linux.

 DevGuide: Building applications with Delphi

Using the component libraries
Topic groups

VCL and CLX are class libraries made up of objects, some of which are also components or controls, that you use
when developing applications. Both libraries look very similar and contain many of the same objects. Some objects
in the VCL implement features that are available on Windows only such as objects that appear on the ADO, BDE,
QReport, COM+, Web Services, and Servers tabs on the Component palette. Virtually all CLX objects are available
on both Windows and Linux.

VCL and CLX objects are active entities that contain all necessary data and the “methods” (code) that modify the
data. The data is stored in the fields and properties of the objects, and the code is made up of methods that act
upon the field and property values. Each object is declared as a “class.” All VCL and CLX objects descend from the
ancestor object TObject including objects that you develop in Object Pascal.

A subset of objects are components. Components are objects that you can place on a form or data module and
manipulate at design time. Components appear on the Component palette. You can specify their properties without
writing code. All VCL or CLX components descend from the TComponent object.

Components are objects in the true object-oriented programming (OOP) sense because they
Encapsulate a set of data and data-access functions
Inherit data and behavior from the objects they are derived from
Operate interchangeably with other objects derived from a common ancestor, through a concept called

polymorphism
Unlike most components, objects do not appear on the Component palette. Instead, a default instance variable is
declared in the unit of the object, or you have to declare one yourself.

Controls are a special kind of component that is visible to users at runtime. Controls are a subset of components.
Controls are visual components that you can see when your application is running. All controls have properties in
common that specify their visual attributes, such as Height and Width. The properties, methods, and events that all
controls have in common are inherited from TControl.

Refer to Chapter    10, “Using CLX for cross-platform development”Developing cross-platform applications for details
about cross-platform programming and the differences between the Windows and Linux environments. CLX
components.

If you are using Kylix while developing cross-platform applications, Kylix also includes a Developer’s Guide that is
tailored for the Linux environment. You can refer to the manual both in the Kylix online Help or the printed manual
provided with the Kylix product.

 DevGuide: Building applications with Delphi

Properties, methods, and events
Topic groups See also

Both the VCL and CLX form hierarchies of objects that are tied to the Delphi IDE, where you can develop
applications quickly. The objects in both component libraries are based on properties, methods, and events. Each
object includes data members (properties), functions that operate on the data (methods), and a way to interact with
users of the class (events). The VCL is written in Object Pascal, whereas CLX is based on Qt, a C++ class library.

Properties

Properties are characteristics of an object that influence either the visible behavior or the operations of the object.
For example, the Visible property determines whether an object can be seen or not in an application interface. Well-
designed properties make your components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:
Unlike methods, which are only available at runtime, you can see and change properties at design time and

get immediate feedback as the components change in the IDE.
Properties can be accessed in the Object Inspector where you can modify the values of your object visually.

Setting properties at design time is easier than writing code and makes your code easier to maintain.
Because the data is encapsulated, it is protected and private to the actual object.
The actual calls to get and set the values are methods, so special processing can be done that is invisible to

the user of the object. For example, data could reside in a table, but could appear as a normal data member to the
programmer.

You can implement logic that triggers events or modifies other data during the access of the property. For
example, changing the value of one property may require the modification of another. You can make the change in
the methods created for the property.

Properties can be virtual.
A property is not restricted to a single object. Changing a one property on one object could effect several

objects. For example, setting the Checked property on a radio button effects all of the radio buttons in the group.

Methods

A method is a procedure that is always associated with a class. Methods define the behavior of an object. Class
methods can access all the public, protected, and private properties and data members of the class and are
commonly referred to as member functions.

Events

An event is an action or occurrence detected by a program. Most modern applications are said to be event-driven,
because they are designed to respond to events. In a program, the programmer has no way of predicting the exact
sequence of actions a user will perform next. They may choose a menu item, click a button, or mark some text. You
can write code to handle the events you're interested in, rather than writing code that always executes in the same
restricted order.

Regardless of how an event is called, Delphi looks to see if you have written any code to handle that event. If you
have, that code is executed; otherwise, the default event handling behavior takes place.

 DevGuide: Building applications with Delphi

Types of events
Topic groups See also

The kinds of events that can occur can be divided into two main categories:
User events
System events

Regardless of how the event was called, Delphi looks to see if you have assigned any code to handle that event. If
you have, then that code is executed; otherwise, nothing is done.

User events

User events are actions that are initiated by the user. Examples of user events are OnClick (the user clicked the
mouse), OnKeyPress (the user pressed a key on the keyboard), and OnDblClick (the user double-clicked a mouse
button). These events are always tied to a user's actions.

System events

System events are events that the operating system fires for you. For example, the OnTimer event (the Timer
component issues one of these events whenever a predefined interval has elapsed), the OnCreate event (the
component is being created), the OnPaint event (a component or window needs to be redrawn), and so on. Usually,
system events are not directly initiated by a user action.

 DevGuide: Building applications with Delphi

Object Pascal and the class libraries
Topic groups See also

Object Pascal, a set of object-oriented extensions to standard Pascal, is the language of Delphi. Using Delphi’s
Component palette and Object Inspector, you can place VCL or CLX components on forms and manipulate their
properties without writing code.

All objects descend from TObject, an abstract class whose methods encapsulate fundamental behavior like
construction, destruction, and message handling. TObject is the immediate ancestor of many simple classes.

Components in the VCL or CLX descend from the abstract class TComponent. Components are objects that you
can manipulate on forms at design time. Visual components—that is, components like TForm and TSpeedButton
that appear on the screen at runtime—are called controls, and they descend from TControl.

In addition to the visual components, the component libraries contain many nonvisual objects. The IDE allows you
to add many nonvisual components to your programs by dropping them onto forms. For example, if you were writing
an application that connects to a database, you might place a TDataSource component on a form. Although
TDataSource is nonvisual, it is represented on the form by an icon (which doesn’t appear at runtime). You can
manipulate the properties and events of TDataSource in the Object Inspector just as you would those of a visual
control.

When you write classes of your own in Object Pascal, they should descend from TObject in the class library that
you plan to use. Use VCL if you’re writing a Windows application or CLX if writing a cross-platform application. By
deriving new classes from the appropriate base class (or one of its descendants), you provide your classes with
essential functionality and ensure that they work with the other classes in the class library.

 DevGuide: Building applications with Delphi

Using the object model
Topic groups See also

Object-oriented programming is an extension of structured programming that emphasizes code reuse and
encapsulation of data with functionality. Once you create an object (or, more formally, a class), you and other
programmers can use it in different applications, thus reducing development time and increasing productivity.

If you want to create new components and put them on the Component palette, see Overview of component
creation.

The following topics discuss how to use objects in your applications:
What is an object?
Inheriting data and code from an object
Scope and qualifiers
Using object variables
Creating, instantiating, and destroying objects

 DevGuide: Building applications with Delphi

What is an object?
Topic groups See also

An object, or class, is a data type that encapsulates data and operations on data in a single unit. Before object-
oriented programming, data and operations (functions) were treated as separate elements.

You can begin to understand objects if you understand Object Pascal records or structures in C. Records are made
of up fields that contain data, where each field has its own type. Records make it easy to refer to a collection of
varied data elements.

Objects are also collections of data elements. But objects—unlike records—contain procedures and functions that
operate on their data. These procedures and functions are called methods.

An object’s data elements are accessed through properties. The properties of VCL and CLX objects have values
that you can change at design time without writing code. If you want a property value to change at runtime, you
need to write only a small amount of code.

The combination of data and functionality in a single unit is called encapsulation. In addition to encapsulation,
object-oriented programming is characterized by inheritance and polymorphism. Inheritance means that objects
derive functionality from other objects (called ancestors); objects can modify their inherited behavior. Polymorphism
means that different objects derived from the same ancestor support the same method and property interfaces,
which often can be called interchangeably.

 DevGuide: Building applications with Delphi

Examining a Delphi object
Topic groups See also

When you create a new project, Delphi displays a new form for you to customize. In the Code editor, Delphi
declares a new class type for the form and produces the code that creates the new form instance. The code
generated for a new Windows application looks like this:

unit Unit1;
interface
uses Windows, Classes, Graphics, Forms, Controls, Dialogs;
type
 TForm1 = class(TForm) { The type declaration of the form begins here }
 private
 { Private declarations }
 public
 { Public declarations }
 end;{ The type declaration of the form ends here }
var
 Form1: TForm1;
implementation { Beginning of implementation part }
{$R *.DFM}
end. { End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains methods—code that acts on
the object’s data. So far, TForm1 appears to contain no fields or methods, because you haven’t added to the form
any components (the fields of the new object) and you haven’t created any event handlers (the methods of the new
object). TForm1 does contain inherited fields and methods, even though you don’t see them in the type declaration.

This variable declaration declares a variable named Form1 of the new type TForm1.

var
 Form1: TForm1;

Form1 represents an instance, or object, of the class type TForm1. You can declare more than one instance of a
class type; you might want to do this, for example, to create multiple child windows in a Multiple Document Interface
(MDI) application. Each instance maintains its own data, but all instances use the same code to execute methods.

Although you haven’t added any components to the form or written any code, you already have a complete Delphi
application that you can compile and run. All it does is display a blank form.

Suppose you add a button component to this form and write an OnClick event handler that changes the color of the
form when the user clicks the button. The result might look like this:

A simple form

When the user clicks the button, the form’s color changes to green. This is the event-handler code for the button’s
OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Form1.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on a form, a new field appears
in the form’s type declaration. If you create the application described above and look at the code in the Code editor,
this is what you see:

unit Unit1;
interface
uses Windows, Classes, Graphics, Forms, Controls;
type
 TForm1 = class(TForm)
 Button1: TButton; { New data field }
 procedure Button1Click(Sender: TObject); { New method declaration }
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.Button1Click(Sender: TObject); { The code of the new method }
begin
 Form1.Color := clGreen;
end;
end.

TForm1 has a Button1 field that corresponds to the button you added to the form. TButton is a class type, so
Button1 refers to an object.

All the event handlers you write in Delphi are methods of the form object. Each time you create an event handler, a
method is declared in the form object type. The TForm1 type now contains a new method, the Button1Click
procedure, declared within the TForm1 type declaration. The code that implements the Button1Click method
appears in the implementation part of the unit.

 DevGuide: Building applications with Delphi

Changing the name of a component
Topic groups See also

You should always use the Object Inspector to change the name of a component. For example, suppose you want
to change a form’s name from the default Form1 to a more descriptive name, such as ColorBox. When you change
the form’s Name property in the Object Inspector, the new name is automatically reflected in the form’s .dfm or .xfm
file (which you usually don’t edit manually) and in the Object Pascal source code that Delphi generates:

unit Unit1;
interface
uses Windows, Classes, Graphics, Forms, Controls;
type
 TColorBox = class(TForm){ Changed from TForm1 to TColorBox }
 Button1: TButton;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 ColorBox: TColorBox; { Changed from Form1 to ColorBox }
implementation
{$R *.DFM}
procedure TColorBox.Button1Click(Sender: TObject);
begin
 Form1.Color := clGreen; { The reference to Form1 didn't change! }
end;
end.

Note that the code in the OnClick event handler for the button hasn’t changed. Because you wrote the code, you
have to update it yourself and correct any references to the form:

procedure TColorBox.Button1Click(Sender: TObject);
begin
 ColorBox.Color := clGreen;
end;

 DevGuide: Building applications with Delphi

Inheriting data and code from an object
Topic groups See also

The TForm1 object in Examining a Delphi object seems simple. TForm1 appears to contain one field (Button1), one
method (Button1Click), and no properties. Yet you can show, hide, or resize of the form, add or delete standard
border icons, and set up the form to become part of a Multiple Document Interface (MDI) application. You can do
these things because the form has inherited all the properties and methods of the component TForm. When you
add a new form to your project, you start with TForm and customize it by adding components, changing property
values, and writing event handlers. To customize any object, you first derive a new object from the existing one;
when you add a new form to your project, Delphi automatically derives a new form from the TForm type:

TForm1 = class(TForm)

A derived object inherits all the properties, events, and methods of the object it derives from. The derived object is
called a descendant and the object it derives from is called an ancestor. If you look up TForm in the online Help,
you’ll see lists of its properties, events, and methods, including the ones that TForm inherits from its ancestors. An
object can have only one immediate ancestor, but it can have many direct descendants.

 DevGuide: Building applications with Delphi

Scope and qualifiers
Topic groups See also

Scope determines the accessibility of an object’s fields, properties, and methods. All members declared within an
object are available to that object and its descendants. Although a method’s implementation code appears outside
of the object declaration, the method is still within the scope of the object because it is declared within the object’s
declaration.

When you write code to implement a method that refers to properties, methods, or fields of the object where the
method is declared, you don’t need to preface those identifiers with the name of the object. For example, if you put
a button on a new form, you could write this event handler for the button’s OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Color := clFuchsia;
 Button1.Color := clLime;
end;

The first statement is equivalent to

Form1.Color := clFuchsia

You don’t need to qualify Color with Form1 because the Button1Click method is part of TForm1; identifiers in the
method body therefore fall within the scope of the TForm1 instance where the method is called. The second
statement, in contrast, refers to the color of the button object (not of the form where the event handler is declared),
so it requires qualification.

Delphi creates a separate unit (source code) file for each form. If you want to access one form’s components from
another form’s unit file, you need to qualify the component names, like this:

Form2.Edit1.Color := clLime;

In the same way, you can access a component’s methods from another form. For example,

Form2.Edit1.Clear;

To access Form2’s components from Form1’s unit file, you must also add Form2’s unit to the uses clause of
Form1’s unit.

The scope of an object extends to the object’s descendants. You can, however, redeclare a field, property, or
method within a descendant object. Such redeclarations either hide or override the inherited member.

For more information about scope, see Blocks and scope. For more information about the uses clause, see Unit
references and the uses clause. For more information about hiding and overriding inherited members, see Classes
and objects.

 DevGuide: Building applications with Delphi

Private, protected, public, and published declarations
Topic groups See also

When you declare a field, property, or method, the new member has a visibility indicated by one of the keywords
private, protected, public, or published. The visibility of a member determines its accessibility to other objects
and units.

A private member is accessible only within the unit where it is declared. Private members are often used
within a class to implement other (public or published) methods and properties.

A protected member is accessible within the unit where its class is declared and within any descendant
class, regardless of the descendant class’s unit.

A public member is accessible from wherever the object it belongs to is accessible—that is, from the unit
where the class is declared and from any unit that uses that unit.

A published member has the same visibility as a public member, but the compiler generates runtime type
information for published members. Published properties appear in the Object Inspector at design time.
For more information about visibility, see Visibility of class members.

 DevGuide: Building applications with Delphi

Using object variables
Topic groups See also

You can assign one object variable to another object variable if the variables are of the same type or assignment
compatible. In particular, you can assign an object variable to another object variable if the type of the variable you
are assigning to is an ancestor of the type of the variable being assigned. For example, here is a TDataForm type
declaration (VCL only) and a variable declaration section declaring two variables, AForm and DataForm:

type
 TDataForm = class(TForm)
 Button1: TButton;
 Edit1: TEdit;
 DataGrid1: TDataGrid;
 Database1: TDatabase;
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 AForm: TForm;
 DataForm: TDataForm;

AForm is of type TForm, and DataForm is of type TDataForm. Because TDataForm is a descendant of TForm, this
assignment statement is legal:

AForm := DataForm;

Suppose you write an event handler for the OnClick event of a button. When the button is clicked, the event handler
for the OnClick event is called. Each event handler has a Sender parameter of type TObject:

procedure TForm1.Button1Click(Sender: TObject);
begin
...
end;

Because Sender is of type TObject, any object can be assigned to Sender. The value of Sender is always the
control or component that responds to the event. You can test Sender to find the type of component or control that
called the event handler using the reserved word is. For example,

if Sender is TEdit then
 DoSomething
else
 DoSomethingElse;

 DevGuide: Building applications with Delphi

Creating, instantiating, and destroying objects
Topic groups See also

Many of the objects you use in Delphi, such as buttons and edit boxes, are visible at both design time and runtime.
Some, such as common dialog boxes, appear only at runtime. Still others, such as timers and datasource
components, have no visual representation at runtime.

You may want to create your own objects. For example, you could create a TEmployee object that contains Name,
Title, and HourlyPayRate properties. You could then add a CalculatePay method that uses the data in
HourlyPayRate to compute a paycheck amount. The TEmployee type declaration might look like this:

type
 TEmployee = class(TObject)
 private
 FName: string;
 FTitle: string;
 FHourlyPayRate: Double;
 public
 property Name: string read FName write FName;
 property Title: string read FTitle write FTitle;
 property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
 function CalculatePay: Double;
 end;

In addition to the fields, properties, and methods you’ve defined, TEmployee inherits all the methods of TObject.
You can place a type declaration like this one in either the interface or implementation part of a unit, and then
create instances of the new class by calling the Create method that TEmployee inherits from TObject:

var
 Employee: TEmployee;
begin
 Employee := TEmployee.Create;
end;

The Create method is called a constructor. It allocates memory for a new instance object and returns a reference to
the object.

Components on a form are created and destroyed automatically by Delphi. But if you write your own code to
instantiate objects, you are responsible for disposing of them as well. Every object inherits a Destroy method (called
a destructor) from TObject. To destroy an object, however, you should call the Free method (also inherited from
TObject), because Free checks for a nil reference before calling Destroy. For example,

Employee.Free

destroys the Employee object and deallocates its memory.

 DevGuide: Building applications with Delphi

Components and ownership
Topic groups See also

Delphi has a built-in memory-management mechanism that allows one component to assume responsibility for
freeing another. The former component is said to own the latter. The memory for an owned component is
automatically freed when its owner's memory is freed. The owner of a component—the value of its Owner property
—is determined by a parameter passed to the constructor when the component is created. By default, a form owns
all components on it and is in turn owned by the application. Thus, when the application shuts down, the memory for
all forms and the components on them is freed.

Ownership applies only to TComponent and its descendants. If you create, for example, a TStringList or TCollection
object (even if it is associated with a form), you are responsible for freeing the object.

Note: Don’t confuse a component’s owner with its parent.

 DevGuide: Building applications with Delphi

Objects, components, and controls
Topic groups See also

The following diagram is a greatly simplified view of the inheritance hierarchy that illustraties the relationship
between objects, components, and controls.

Objects, components, and controls
Every object inherits from TObject, and many objects inherit from TComponent. Controls, which inherit from
TControl, have the ability to display themselves at runtime. A control like TCheckBox inherits all the functionality of
TObject, TComponent, and TControl, and adds specialized capabilities of its own.

The following diagram is an overview of the Visual Component Library (VCL) that shows the major branches of the
inheritance tree. The Borland Component Library for Cross-Platform (CLX) look very much the same at this level
but TWinControl is replaced by TWidgetControl.

Simplified object hierarchy
Several important base classes are shown in the figure, and they are described in the following table:

Class Description

TObject Signifies the base class and ultimate ancestor of everything in the VCL or CLX.
TObject encapsulates the fundamental behavior common to all VCL/CLX objects
by introducing methods that perform basic functions such as creating,
maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to exceptions. Exception
provides a consistent interface for error conditions, and enables applications to

handle error conditions gracefully.
TPersistent Specifies the base class for all objects that implement properties. Classes under

TPersistent deal with sending data to streams and allow for the assignment of
classes.

TComponent Specifies the base class for all nonvisual components such as TApplication.
TComponent is the common ancestor of all components. This class allows a
component to be displayed on the Component palette, lets the component own
other components, and allows the component to be manipulated directly on a
form.

TControl Represents the base class for all controls that are visible at runtime. TControl is
the common ancestor of all visual components and provides standard visual
controls like position and cursor. This class also provides events that respond to
mouse actions.

TWinControl Specifies the base class of all user interface objects also called widgets. Controls
under TWinControl are windowed controls that can capture keyboard input. (In
CLX, TWidgetControl replaces TWinControl.)

For a complete overview of the VCL object hierarchy, refer to the VCL Object Hierarchy wall chart that is included
with this product. For details on CLX, refer to the CLX Object Hierarchy wall chart included with the product and the
Kylix documentation.

 DevGuide: Building applications with Delphi

TObject Branch
Topic groups See also

The TObject branch includes all objects that descend from TObject but not from TPersistent. All VCL or CLX objects
descend from TObject, an abstract class whose methods define fundamental behavior like construction, destruction,
and message or system event handling. Much of the powerful capability of VCL and CLX objects are established by
the methods that TObject introduces. TObject encapsulates the fundamental behavior common to all objects in the
VCL and CLX by introducing methods that provide:

The ability to respond when object instances are created or destroyed.
Class type and instance information on an object, and runtime type information (RTTI) about its published

properties.
Support for message-handling (VCL only).

TObject is the immediate ancestor of many simple classes. Classes that are contained within this branch have one
common, important characteristic: they are transitory. What this means is that these classes do not have a method
to save the state that they are in prior to destruction; they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class provides a large set of built-in
exception classes for automatically handling divide-by-zero errors, file I/O errors, invalid typecasts, and many other
exception conditions.

Another type of group in the TObject branch are classes that encapsulate data structures, such as:
TBits, a class that stores an “array” of Boolean values
TList, a linked list class
TStack, a class that maintains a last-in first-out array of pointers
TQueue, a class that maintains a first-in first-out array of pointers

In the VCL, you can also find wrappers for external objects like TPrinter, which encapsulates the Windows printer
interface, and TRegistry, a low-level wrapper for the system registry and functions that operate on the registry.
These are specific to the Windows environment.

TStream is good example of another type of class in this branch. TStream is the base class type for stream objects
that can read from or write to various kinds of storage media, such as disk files, dynamic memory, and so on.

So you can see, this branch includes many different types of classes that are very useful to you as a developer.

 DevGuide: Building applications with Delphi

TPersistent Branch
Topic groups See also

Objects in this branch of the VCL and CLX descend from TPersistent but not from TComponent. TPersistent adds
persistence to objects. Persistence determines what gets saved with a form file or data module and what gets
loaded into the form or data module when it is retrieved from memory.

Objects in this branch implement properties for components. Properties are only loaded and saved with a form if
they have an owner. The owner must be some component. This branch introduces the GetOwner function which
lets you determine the owner of the property.

Objects in this branch are also the first to include a published section where properties can be automatically loaded
and saved. A DefineProperties method also allows you to indicate how to load and save properties.

Following are some of the other classes in the TPersistent branch of the hierarchy:
TGraphicsObject, an abstract base class for graphics objects such as: TBrush, TFont, and TPen.
TGraphic, an abstract base class for objects such as icons and bitmaps that can store and display visual

images: TBitmap andTIcon (and for Windows development only: TMetafile).
TStrings, a base class for objects that represent a list of strings.
TClipboard, a class that contains text or graphics that have been cut or copied from an application.
TCollection, TOwnedCollection, and TCollectionItem, classes that maintain indexed collections of specially

defined items.

 DevGuide: Building applications with Delphi

TComponent Branch
Topic groups See also

TComponent branch contains objects that descend from TComponent but not TControl. Objects in this branch are
components that you can manipulate on forms at design time. They are persistent objects that can do the following:

Appear on the Component palette and can be changed in the form designer.
Own and manage other components.
Load and save themselves.

Several methods in TComponent dictate how components act during design time and what information gets saved
with the component. Streaming is introduced in this branch of the VCL and CLX. Delphi handles most streaming
chores automatically. Properties are persistent if they are published and published properties are automatically
streamed.

The TComponent class also introduces the concept of ownership that is propagated throughout the VCL and CLX.
Two properties support ownership: Owner and Components. Every component has an Owner property that
references another component as its owner. A component may own other components. In this case, all owned
components are referenced in the component’s Array property.

A component's constructor takes a single parameter that is used to specify the new component's owner. If the
passed-in owner exists, the new component is added to the owner's Components list. Aside from using the
Components list to reference owned components, this property also provides for the automatic destruction of owned
components. As long as the component has an owner, it will be destroyed when the owner is destroyed. For
example, since TForm is a descendant of TComponent, all components owned by the form are destroyed and their
memory freed when the form is destroyed. This assumes that all of the components on the form clean themselves
up properly when their destructors are called.

If a property type is a TComponent or a descendant, the streaming system creates an instance of that type when
reading it in. If a property type is TPersistent but not TComponent, the streaming system uses the existing instance
available through the property and read values for that instance’s properties.

When creating a form file (a file used to store information about the components on the form), the form designer
loops through its components array and saves all the components on the form. Each component “knows” how to
write its changed properties out to a stream (in this case, a text file). Conversely, when loading the properties of
components in the form file, the form designer loops through the components array and loads each component.

The types of classes you’ll find in this branch include:
TMainMenu, a class that provides a menu bar and its accompanying drop-down menus for a form.
TTimer, a class that includes the timer functions.
TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on, provide commonly used

dialog boxes.
TActionList, a class that maintains a list of actions used with components and controls, such as menu items

and buttons.
TScreen, a class that keeps track of what forms and data modules have been instantiated by the application,

the active form, and the active control within that form, the size and resolution of the screen, and the cursors and
fonts available for the application to use.
Components that do not need a visual interface can be derived directly from TComponent. To make a tool such as a
TTimer device, you can derive from TComponent. This type of component resides on the Component palette but
performs internal functions that are accessed through code rather than appearing in the user interface at runtime.

In CLX, the TComponent branch also includes THandleComponent. This is the base class for nonvisual
components that require a handle to an underlying Qt object such as dialogs and menus.

 DevGuide: Building applications with Delphi

TControl Branch
Topic groups See also

The TControl branch consists of components that descend from TControl but not TWinControl (TWidgetControl in
CLX). Objects in this branch are controls that are visual objects which the application user can see and manipulate
at runtime. All controls have properties, methods, and events in common that relate to how the control looks, such
as its position, the cursor associated with the control’s window (or widget in CLX), methods to paint or move the
control, and events to respond to mouse actions. Controls can never receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior for all visual controls. This
includes drawing routines, standard events, and containership.

There are two basic types of control:
Those that have a window (or widget) of their own
Those that use the window (or widget) of their “parent”

Controls that have their own window are called “windowed” controls (VCL) or “widget-based” controls (CLX) and
descend from TWinControl (TWidgetControl in CLX). Buttons and check boxes fall into this class. See TWinControl
branch for details on windowed controls.

Controls that use a parent window (or widget) are called “graphic” controls and descend from TGraphicControl.
Image and label controls fall into this class. In the VCL, the main difference between these types of components is
that graphic controls do not maintain a window handle, and thus cannot receive the input focus. In CLX, the main
difference between these types of components is that graphic controls do not have an associated widget, and thus
cannot receive the input focus nor can they contain other controls. Because a graphic control does not need a
handle, its demand on system resources is lessened, and painting a graphic control is quicker than painting a
widget-based control.

TGraphicControl controls must draw themselves and include controls such as:

Control Description

 TImage Displays graphical images.

TLabel Displays text on a form.
TBevel Represents a beveled outline.
TPaintBox Provides a canvas that applications can use for drawing or rendering an image.

Notice that these include common paint routines (Repaint, Invalidate, and so on) that never need to receive focus.

 DevGuide: Building applications with Delphi

TWinControl Branch
Topic groups See also

The TWinControl branch(TWidgetControl replaces TWinControl in CLX) includes all controls that descend from
TWinControl. TWinControl is the base class for all windowed controls, including many of the items that you will use
in the user interface of an application.

TWidgetControl is the base class for all widget-based controls or widgets. The term widget comes from combining
“window” and “gadget.” A widget is almost anything you use in the user interface of an application. Examples of
widgets are buttons, labels, and scroll bars.

The following are features of windowed and widget-based controls:
Both can receive focus while an application is running.
Other controls may display data, but the user can use the keyboard to interact with windowed or widget-

based controls.
Windowed or widget-based controls can contain other controls.
A control that contains other controls is called a parent. Only a windowed or widget-based control can be a

parent of one or more child controls.
Windowed controls have a window handle. Widget-based controls have an associated widget.

Descendants of TWinControl (TWidgetControl in CLX) are controls that can receive focus, meaning they can
receive keyboard input from the application user. This implies that many more standard events apply to them.

This branch includes both controls that are drawn automatically (including TEdit, TListBox, TComboBox,
TPageControl, and so on) and custom controls that Delphi must draw (such as TDBNavigator, TMediaPlayer (VCL
only), TGauge (VCL only), and so on). Direct descendants of TWinControl (TWidgetControl in CLX) typically
implement standard controls, like an edit field, a combo box, list box, or page control, and, therefore, already know
how to paint themselves.

The TCustomControl class is provided for components that require a window handle but do not encapsulate a
standard control that includes the ability to repaint itself. You never have to worry about how the controls render
themselves or how they respond to events—Delphi completely encapsulates this behavior for you.

 DevGuide: Building applications with Delphi

Properties common to TControl
Topic groups See also

All visual controls (descendants of TControl) share certain properties including:
Action properties
Position, size, and alignment properties
Display properties
Parent properties
A navigation property
Drag-and-drop properties
Drag-and-dock properties (VCL only)

While these properties are inherited from TControl, they are published—and hence appear in the Object Inspector—
only for components to which they are applicable. For example, TImage does not publish the Color property, since
its color is determined by the graphic it displays.

 DevGuide: Building applications with Delphi

TControl action properties
Topic groups See also

Actions let you share common code for performing actions (for example, when a tool bar button and menu item do
the same thing), as well as providing a single, centralized way to enable and disable actions depending on the state
of your application.

Action designates the action associated with the control.
ActionLink contains the action link object associated with the control.

 DevGuide: Building applications with Delphi

TControl position, size, and alignment properties
Topic groups See also

This set of properties defines the position and size of a control on the parent control:
Height sets the vertical size.
Width sets the horizontal size.
Top positions the top edge.
Left positions the left edge.
AutoSize specifies whether the control sizes itself automatically to accommodate its contents.
Align determines how the control aligns within its container (parent control).
Anchor specifies how the control is anchored to its parent (VCL only).

This set of properties determine the height, width, and overall size of the control’s client area:
ClientHeight specifies the height of the control's client area in pixels.
ClientWidth specifies the width of the control's client area in pixels.

These properties aren’t accessible in nonvisual components, but Delphi does keep track of where you place the
component icons on your forms. Most of the time you’ll set and alter these properties by manipulating the control’s
image on the form or using the Alignment palette. You can, however, alter them at runtime.

 DevGuide: Building applications with Delphi

TControl display properties
Topic groups See also

The following properties govern the general appearance of a control:
Color changes the background color of a control.
Font changes the color, type family, style, or size of text.
Cursor specifies the image used to represent the mouse pointer when it passes into the region covered by

the control.
DesktopFont specifies whether the control uses the Windows icon font when writing text (VCL only).

 DevGuide: Building applications with Delphi

TControl parent properties
Topic groups See also

To maintain a consistent appearance across your application, you can make any control look like its container—
called its parent—by setting the parent properties to True.

ParentColor determines where a control looks for its color information.
ParentFont determines where a control looks for its font information.
ParentShowHint determines where a control looks to find out if its Help Hint should be shown.

 DevGuide: Building applications with Delphi

TControl navigation property
Topic groups See also

The following property determines how users navigate among the controls in a form:
Caption contains the text string that labels a component. To underline a character in a string, include an

ampersand (&) before the character. This type of character is called an accelerator key. The user can then select the
control or menu item by pressing Alt while typing the underlined character.

 DevGuide: Building applications with Delphi

TControl Drag-and-drop properties
Topic groups See also

Two component properties affect drag-and-drop behavior:
DragMode determines how dragging starts. By default, DragMode is dmManual, and the application must

call the BeginDrag method to start dragging. When DragMode is dmAutomatic, dragging starts as soon as the mouse
button goes down.

DragCursor determines the shape of the mouse pointer when it is over a draggable component (VCL only).

 DevGuide: Building applications with Delphi

TControl drag-and-dock properties (VCL only)
Topic groups See also

The following properties control drag-and-dock behavior in TWinControl and TWidgetControl:
Floating indicates whether the control is floating.
DragKind specifies whether the control is being dragged normally or for docking.
DragMode determines how the control initiates drag-and-drop or drag-and-dock operations.
FloatingDockSiteClass specifies the class of the temporary control that hosts the control when it is floating.
DragCursor is the cursor that is shown while dragging.
DockOrientation specifies how the control is docked relative to other controls docked in the same parent.
HostDockSite specifies the control in which the control is docked.
LRDockWidth specifies the width of the control when it is docked horizontally.
TBDockHeight specifies the height of the control when it is docked vertically.
UnDockHeight specifies the height of the control when it is floating.
UnDockWidth specifies the width of the control when it is floating.

For more information, see Implementing drag-and-dock in controls and TDrag-and-dock properties.

 DevGuide: Building applications with Delphi

Standard events common to TControl
Topic groups

The VCL defines a set of standard events for its controls. The following events are declared as part of the TControl
class, and are therefore available for all classes derived from TControl:

OnClick occurs when the user clicks the control.
OnContextPopup occurs when the user right-clicks the control or otherwise invokes the popup menu (such

as using the keyboard).
OnCanResize occurs when an attempt is made to resize the control.
OnResize occurs immediately after the control is resized.
OnConstrainedResize occurs immediately after OnCanResize.
OnStartDock occurs when the user begins to drag a control with a DragKind of dkDock (VCL only).
OnEndDock occurs when the dragging of an object ends, either by docking the object or by canceling the

dragging (VCL only).
OnStartDrag occurs when the user begins to drag the control or an object it contains by left-clicking on the

control and holding the mouse button down.
OnEndDrag occurs when the dragging of an object ends, either by dropping the object or by canceling the

dragging.
OnDragDrop occurs when the user drops an object being dragged.
OnMouseMove occurs when the user moves the mouse pointer while the mouse pointer is over a control.
OnDblClick occurs when the user double-clicks the primary mouse button when the mouse pointer is over

the control.
OnDragOver occurs when the user drags an object over a control (VCL only).
OnMouseDown occurs when the user presses a mouse button with the mouse pointer over a control.
OnMouseUp occurs when the user releases a mouse button that was pressed with the mouse pointer over a

component.

 DevGuide: Building applications with Delphi

Properties common to TWinControl and TWidgetControl
Topic groups See also

All windowed controls (descendants of TWinControl in the VCL and TWidgetControl in CLX) share certain
properties including:

Information about the control
Border style display properties
Navigation properties
Drag-and-dock properties (VCL only)

While these properties are inherited from TWinControl and TWidgetControl, they are published—and hence appear
in the Object Inspector—only for controls to which they are applicable.

 DevGuide: Building applications with Delphi

TWinControl general information properties
Topic groups See also

The general information properties contain information about the appearance of the TWinControl and
TWidgetControl, client area size and origin, windows assigned information, and help context information.

ClientOrigin specifies the screen coordinates (in pixels) of the top left corner of a control’s client area. The
screen coordinates of a control that is descended from TControl and not TWinControl are the screen coordinates of
the control’s parent added to its Left and Top properties.

ClientRect returns a rectangle with its Top and Left properties set to zero, and its Bottom and Right
properties set to the control's Height and Width, respectively. ClientRect is equivalent to Rect(0, 0, ClientWidth,
ClientHeight).

Brush determines the color and pattern used for painting the background of the control.
HelpContext provides a context number for use in calling context-sensitive online Help.
Handle provides access to the window or widget handle of the control.

 DevGuide: Building applications with Delphi

TWinControl border Style Display Properties
Topic groups See also

The bevel properties control the appearance of the beveled lines, boxes, or frames on the forms and windowed
controls in your application.

Many more objects in the VCL publish these properties; they are not all available in CLX and the border style
properties are published on fewer objects.

InnerBevel specifies whether the inner bevel has a raised, lowered, or flat look (VCL only).
BevelKind specifies the type of bevel if the control has beveled edges (VCL only).
BevelOuter specifies whether the outer bevel has a raised, lowered, or flat look.
BevelWidth specifies the width, in pixels, of the inner and outer bevels.
BorderWidth is used to get or set the width of the control’s border.
BevelEdges is used to get or set which edges of the control are beveled.

 DevGuide: Building applications with Delphi

TWinControl navigation properties
Topic groups See also

Two additional properties determine how users navigate among the controls on a form:
TabOrder indicates the position of the control in its parent’s tab order, the order in which controls receive

focus when the user presses the Tab key. Initially, tab order is the order in which the components are added to the
form, but you can change this by changing TabOrder. TabOrder is meaningful only if TabStop is True.

TabStop determines whether the user can tab to a control. If TabStop is True, the control is in the tab order.

 DevGuide: Building applications with Delphi

TWinControl drag-and-dock properties (VCL only)
Topic groups See also

The following properties manage drag-and-dock behavior in VCL objects:
UseDockManager specifies whether the dock manager is used in drag-and-dock operations.
DockClientCount specifies the number of controls that are docked on the windowed control.
VisibleDockClientCount specifies the number of visible controls that are docked on the windowed control.
DockManager specifies the control’s dock manager interface.
DockClients lists the controls that are docked to the windowed control.
DockSite specifies whether the control can be the target of drag-and-dock operations.

For more information, see Implementing drag-and-dock in controls and TControl Drag-and-dock properties.

 DevGuide: Building applications with Delphi

Standard events common to TWinControl and TWidgetControl
Topic groups

The following events exist for all controls derived from TWinControl in the VCL (this also includes all the controls
that Windows defines) and in TWidgetControl in CLX. These events are in addition to those that exist in all controls.

OnEnter occurs when the control is about to receive focus.
OnKeyDown occurs on the down stroke of a key press.
OnKeyPress occurs when a user presses a single character key.
OnKeyUp occurs when the user releases a key that has been pressed.
OnExit occurs when the input focus shifts away from one control to another.
OnMouseWheel occurs when the mouse wheel is rotated.
OnMouseWheelDown occurs when the mouse wheel is rotated downward.
OnMouseWheelUp occurs when the mouse wheel is rotated upward.

The following events relate to docking and are available in the VCL only:
OnUnDock occurs when the application tries to undock a control that is docked to a windowed control (VCL

only).
OnDockDrop occurs when another control is docked to the control (VCL only).
OnDockOver occurs when another control is dragged over the control (VCL only).
OnGetSiteInfo returns the control’s docking information (VCL only).

 DevGuide: Building applications with Delphi

Using components
Topic groups See also

Many visual components are provided in the development environment itself on the Component palette. All visual
design work in Delphi takes place on forms. When you open Kylix or create a new project, a blank form is displayed
on the screen. You select components from the Component palette and drop them onto the form. You design the
look and feel of the application’s user interface by arranging the visual components such as buttons and list boxes
on the form. Once a visual component is on the form, you can adjust its position, size, and other design-time
properties. Delphi takes care of the underlying programming details.

Delphi components are grouped functionally on different pages of the Component palette. For example, commonly
used components such as those to create menus, edit boxes, or buttons are located on the Standard page of the
Component palette. Handy VCL controls such as a timer, paint box, media player, and OLE container are on the
System page.

At first glance, Delphi’s components appear to be just like any other classes. But there are differences between
components in Delphi and the standard class hierarchies that many programmers work with. Some differences are
described here:

All Delphi components descend from TComponent.
Components are most often used as is and are changed through their properties, rather than serving as

“base classes” to be subclassed to add or change functionality. When a component is inherited, it is usually to add
specific code to existing event handling member functions.

Components can only be allocated on the heap, not on the stack.
Properties of components intrinsically contain runtime type information.
Components can be added to the Component palette in the Delphi user interface and manipulated on a

form.
Components often achieve a better degree of encapsulation than is usually found in standard classes. For example,
consider the use of a dialog containing a push button. In a Windows program developed using VCL components,
when a user clicks on the button, the system generates a WM_LBUTTONDOWN message. The program must
catch this message (typically in a switch statement, a message map, or a response table) and dispatch it to a
routine that will execute in response to the message.

Most Windows messages (VCL) or system events (CLX) are handled by Delphi components. When you want to
respond to a message, you only need to provide an event handler.

 DevGuide: Building applications with Delphi

Setting component properties
Topic groups See also

Published properties can be set at design time in the Object Inspector and, in some cases, with special property
editors.

To set properties at runtime, assign them new values in your application source code.

For information about the properties of each component, see the online Help.

 DevGuide: Building applications with Delphi

Using the Object Inspector
Topic groups See also

When you select a component on a form, the Object Inspector displays its published properties and (when
appropriate) allows you to edit them. Use the Tab key to toggle between the Value column and the Property column.
When the cursor is in the Property column, you can navigate to any property by typing the first letters of its name.
For properties of Boolean or enumerated types, you can choose values from a drop-down list or toggle their settings
by double-clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or typing ‘+’ when the property has
focus displays a list of subvalues for the property. Similarly, if a minus (-) symbol appears next to the property name,
clicking the minus symbol or typing ‘-’ hides the subvalues.

By default, properties in the Legacy category are not shown; to change the display filters, right-click in the Object
Inspector and choose View. For more information, see Property and event categories in the Object Inspector.

When more than one component is selected, the Object Inspector displays all properties—except Name—that are
shared by the selected components. If the value for a shared property differs among the selected components, the
Object Inspector displays either the default value or the value from the first component selected. When you change
a shared property, the change applies to all selected components.

 DevGuide: Building applications with Delphi

Using property editors
Topic groups

Some properties, such as Font, have special property editors. Such properties appear with ellipsis marks (...) next
to their values when the property is selected in the Object Inspector. To open the property editor, double-click in the
Value column, click the ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Property editors let you set complex properties from a single dialog box. They provide input validation and often let
you preview the results of an assignment.

 DevGuide: Building applications with Delphi

Setting properties at runtime
Topic groups See also

Any writable property can be set at runtime in your source code. For example, you can dynamically assign a caption
to a form:

Form1.Caption := MyString;

 DevGuide: Building applications with Delphi

Calling methods
Topic groups See also

Methods are called just like ordinary procedures and functions. For example, visual controls have a Repaint method
that refreshes the control’s image on the screen. You could call the Repaint method in a draw-grid object like this:

DrawGrid1.Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If you want, for example, to
repaint a form within an event handler of one of the form’s child controls, you don’t have to prepend the name of the
form to the method call:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Repaint;
end;

For more information about scope, see Scope and qualifiers.

 DevGuide: Building applications with Delphi

Working with events and event handlers
Topic groups See also

In Delphi, almost all the code you write is executed, directly or indirectly, in response to events. An event is a special
kind of property that represents a runtime occurrence, often a user action. The code that responds directly to an
event—called an event handler—is an Object Pascal procedure. The sections that follow show how to

Generate a new event handler
Generate a handler for a component’s default event
Locate event handlers
Associate an event with an existing event handler
Associate menu events with event handlers
Delete event handlers

 DevGuide: Building applications with Delphi

Generating a new event handler
Topic groups See also

Delphi can generate skeleton event handlers for forms and other components. To create an event handler,
1 Select a component.
2 Click the Events tab in the Object Inspector. The Events page of the Object Inspector displays all events

defined for the component.
3 Select the event you want, then double-click the Value column or press Ctrl+Enter. Delphi generates the event

handler in the Code editor and places the cursor inside the begin...end block.
4 Inside the begin...end block, type the code that you want to execute when the event occurs.

 DevGuide: Building applications with Delphi

Generating a handler for a component’s default event
Topic groups See also

Some components have a default event, which is the event the component most commonly needs to handle. For
example, a button’s default event is OnClick. To create a default event handler, double-click the component in the
Form Designer; this generates a skeleton event-handling procedure and opens the Code editor with the cursor in
the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don’t respond to any events. Other
components respond differently when you double-click on them in the Form Designer. For example, many
components open a default property editor or other dialog when they are double-clicked at design time.

 DevGuide: Building applications with Delphi

Locating event handlers
Topic groups See also

If you generated a default event handler for a component by double-clicking it in the Form Designer, you can locate
that event handler in the same way. Double-click the component, and the Code editor opens with the cursor at the
beginning of the event-handler body.

To locate an event handler that’s not the default,
1 In the form, select the component whose event handler you want to locate.
2 In the Object Inspector, click the Events tab.
3 Select the event whose handler you want to view and double-click in the Value column. The Code editor opens

with the cursor at the beginning of the event-handler body.

 DevGuide: Building applications with Delphi

Associating an event with an existing event handler
Topic groups See also

You can reuse code by writing event handlers that respond to more than one event. For example, many applications
provide speed buttons that are equivalent to drop-down menu commands. When a button initiates the same action
as a menu command, you can write a single event handler and assign it to both the button’s and the menu item’s
OnClick event.

To associate an event with an existing event handler,
1 On the form, select the component whose event you want to handle.
2 On the Events page of the Object Inspector, select the event to which you want to attach a handler.
3 Click the down arrow in the Value column next to the event to open a list of previously written event handlers.

(The list includes only event handlers written for events of the same name on the same form.) Select from the
list by clicking an event-handler name.

The procedure above is an easy way to reuse event handlers. Action lists and in the VCL, action
bands SettingUpActionBands , however, provide poweful tools for centrally organizing the code that responds to user
commands. Action lists can be used in cross-platform applications, whereas action bands cannot.

 DevGuide: Building applications with Delphi

Using the Sender parameter
Topic groups See also

In an event handler, the Sender parameter indicates which component received the event and therefore called the
handler. Sometimes it is useful to have several components share an event handler that behaves differently
depending on which component calls it. You can do this by using the Sender parameter in an if...then...else
statement. For example, the following code displays the title of the application in the caption of a dialog box only if
the OnClick event was received by Button1.

procedure TMainForm.Button1Click(Sender: TObject);
begin
if Sender = Button1 then
 AboutBox.Caption := 'About ' + Application.Title
else
 AboutBox.Caption := '';
AboutBox.ShowModal;
end;

 DevGuide: Building applications with Delphi

Displaying and coding shared events
Topic groups See also

When components share events, you can display their shared events in the Object Inspector. First, select the
components by holding down the Shift key and clicking on them in the Form Designer; then choose the Events tab
in the Object Inspector. From the Value column in the Object Inspector, you can now create a new event handler for,
or assign an existing event handler to, any of the shared events.

 DevGuide: Building applications with Delphi

Associating menu events with event handlers
Topic groups See also

The Menu Designer, along with the MainMenu and PopupMenu components, make it easy to supply your
application with drop-down and pop-up menus. For the menus to work, however, each menu item must respond to
the OnClick event, which occurs whenever the user chooses the menu item or presses its accelerator or shortcut
key. This topic explains how to associate event handlers with menu items. For information about the Menu Designer
and related components, see Creating and managing menus.

To create an event handler for a menu item,
1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu object.
2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a value is assigned to the

item’s Name property.
3 From the Menu Designer, double-click the menu item. Delphi generates an event handler in the Code editor

and places the cursor inside the begin...end block.
4 Inside the begin...end block, type the code that you want to execute when the user selects the menu

command.

To associate a menu item with an existing OnClick event handler,
1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu object.
2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a value is assigned to the

item’s Name property.
3 On the Events page of the Object Inspector, click the down arrow in the Value column next to OnClick to open

a list of previously written event handlers. (The list includes only event handlers written for OnClick events on
this form.) Select from the list by clicking an event handler name.

 DevGuide: Building applications with Delphi

Deleting event handlers
Topic groups See also

When you delete a component from a form using the Form Designer, Delphi removes the component from the
form’s type declaration. It does not, however, delete any associated methods from the unit file, since these methods
may still be called by other components on the form. You can manually delete a method—such as an event handler
—but if you do so, be sure to delete both the method’s forward declaration (in the interface section of the unit) and
its implementation (in the implementation section); otherwise you’ll get a compiler error when you build your
project.

 DevGuide: Building applications with Delphi

VCL and CLX components
Topic groups See also

The Component palette contains a selection of components that handle a wide variety of programming tasks. You
can add, remove, and rearrange components on the palette, and you can create component templates and frames
that group several components.

The components on the palette are arranged in pages according to their purpose and functionality. Which pages
appear in the default configuration depends on the version of Delphi you are running. The following table lists typical
default pages and components available for creating applications. Some of the tabs and components are not cross
platform and the table points them out. You can use some VCL-specific nonvisual components in Windows-only
CLX applications, however, the applications will not be cross-platform unless you isolate these portions of the code.

Page name Description Cross platform?

Standard Standard controls, menus Yes
Additional Specialized controls Yes except ApplicationEvents and

CustomizeDlg
Win32 Windows common controls Many of the same components are on the

Common Controls tab that appears
instead when creating CLX applications;
RichEdit, UpDown, HotKey, Animate,
DataTimePicker, MonthCalendar,
Coolbar, PageScroller, and ComboBoxEx
are not cross-platform

System Components and controls for system-level
access, including timers, multimedia, and
DDE

Timer is but PaintBox, MediaPlayer,
OleContainer, and the Dde components
are not

Data Access Components for working with database data
that are not tied to any particular data access
mechanism

Yes

Data Controls Visual, data-aware controls Yes except for DBRichEdit,
DBCtrlGrid, and DBChart

dbExpress Database controls that use dbExpress, a
cross-platform, database-independent layer
that provides methods for dynamic SQL
processing. It defines a common interface for
accessing SQL servers.

Yes

DataSnap Components used for creating multi-tiered
database applications

No but can be used in Windows CLX
applications

BDE Components that provide data access
through the Borland Database Engine

No but can be used in Windows CLX
applications

ADO Components that provide data access
through the ADO framework

No but can be used in Windows CLX
applications

InterBase Components that provide direct access to
InterBase

Yes

InternetExpress Components that are simultaneously a Web
Server application and the client of a multi-
tiered database application

No but can be used in Windows CLX
applications

Internet Components for Internet communication
protocols and Web applications

Yes except for ClientSocket,
ServerSocket, QueryTableProducer,
XMLDoc, and WebBrowser

WebSnap Components for building Web server
applications

No but can be used in Windows CLX
applications

FastNet NetMasters Internet controls No but can be used in Windows CLX
applications

QReport QuickReport components for creating
embedded reports

No but can be used in Windows CLX
applications

Dialogs Commonly used dialog boxes Yes except for OpenPictureDialog,
SavePictureDialog, PrinterSetup-Dialog,
and PageSetupDialog

Win 3.1 Old style Win 3.1 components No
Samples Sample custom components No

ActiveX Sample ActiveX controls; see Microsoft
documentation (msdn.microsoft.com)

No

COM+ Component for handling COM+ events No but can be used in Windows CLX
applications

WebServices Components for writing applications that
implement or use SOAP-based Web
Services

No but can be used in Windows CLX
applications

Servers COM Server examples for Microsoft Excel,
Word, and so on (see Microsoft MSDN
documentation)

No but can be used in Windows CLX
applications

Indy Clients Cross-platform Internet components for the
client (open source Winshoes Internet
components)

Yes

Indy Servers Cross-platform Internet components for the
server (open source Winshoes Internet
components)

Yes

Indy Misc Additional cross-platform Internet
components (open source Winshoes Internet
components)

Yes

The online Help provides information about the components on the Component palette. Some of the components
on the ActiveX, Servers, and Samples pages, however, are provided as examples only and are not documented.

 DevGuide: Building applications with Delphi

Adding custom components to the component palette
Topic groups See also

You can install custom components—written by yourself or third parties—on the Component palette and use them in
your applications. To write a component, see Overview of component creation. To install an existing component, see
Installing component packages.

 DevGuide: Building applications with Delphi

Text controls
Topic groups See also

Many applications present text to the user or allow the user to enter text. The type of control used for this purpose
depends on the size and format of the information.

Use this component: When you want users to do this:

TEdit Edit a single line of text
TMemo Edit multiple lines of text
TMaskEdit Adhere to a particular format, such as a postal code or phone number
TRichEdit Edit multiple lines of text using rich text format (VCL only)

TEdit and TMaskEdit are simple text controls that include a single line text edit box in which you can type
information. When the edit box has focus, a blinking insertion point appears.

You can include text in the edit box by assigning a string value to its Text property. You control the appearance of
the text in the edit box by assigning values to its Font property. You can specify the typeface, size, color, and
attributes of the font. The attributes affect all of the text in the edit box and cannot be applied to individual
characters.

An edit box can be designed to change its size depending on the size of the font it contains. You do this by setting
the AutoSize property to True. You can limit the number of characters an edit box can contain by assigning a value
to the MaxLength property.

TMaskEdit is a special edit control that validates the text entered against a mask that encodes the valid forms the
text can take. The mask can also format the text that is displayed to the user.

TMemo is for adding several lines of text.

 DevGuide: Building applications with Delphi

Text control properties
Topic groups See also

Following are some of the important properties of text controls:

Property Description

Text Determines the text that appears in the edit box or memo control.
Font Controls the attributes of text written in the edit box or memo control.
AutoSize Enables the edit box to dynamically change its height depending on the currently

selected font.
ReadOnly Specifies whether the user is allowed to change the text.
MaxLength Limits the number of characters in simple text controls.

 DevGuide: Building applications with Delphi

Properties of memo and rich text controls
Topic groups See also

Memo and rich text controls, which handle multiple lines of text, have several properties in common. Note that rich
text controls are not cross-platform.

TMemo is another type of edit box, which handles multiple lines of text. The lines in a memo control can extend
beyond the right boundary of the edit box, or they can wrap onto the next line. You control whether the lines wrap
using the WordWrap property.

Memo and rich text controls include other properties such as the following:
Alignment specifies how text is aligned (left, right, or center) in the component.
The Text property contains the text in the control. Your application can tell if the text changes by checking

the Modified property.
Lines contains the text as a list of strings.
OEMConvert determines whether the text is temporarily converted from ANSI to OEM as it is entered. This is

useful for validating file names (VCL only).
WordWrap determines whether the text will wrap at the right margin.
WantReturns determines whether the user can insert hard returns in the text.
WantTabs determines whether the user can insert tabs in the text.
AutoSelect determines whether the text is automatically selected (highlighted) when the control becomes

active.
SelText contains the currently selected (highlighted) part of the text.
SelStart and SelLength indicate the position and length of the selected part of the text.

At runtime, you can select all the text in the memo with the SelectAll method.

 DevGuide: Building applications with Delphi

Rich text controls (VCL only)
Topic groups See also

The rich edit (TRichEdit) component is a memo control that supports rich text formatting, printing, searching, and
drag-and-drop of text. It allows you to specify font properties, alignment, tabs, indentation, and numbering.

 DevGuide: Building applications with Delphi

Specialized input controls
Topic groups See also

The following components provide additional ways of capturing input.

Use this component: When you want users to do this:

TScrollBar Select values on a continuous range
TTrackBar Select values on a continuous range (more visually effective than a scroll bar)
TUpDown Select a value from a spinner attached to an edit component (VCL only)
THotKey Enter Ctrl/Shift/Alt keyboard sequences (VCL only)
TSpinEdit Select a value from a spinner widget (CLX only)

 DevGuide: Building applications with Delphi

Scroll bars
Topic groups See also

The scroll bar component creates a scroll bar that you can use to scroll the contents of a window, form, or other
control. In the OnScroll event handler, you write code that determines how the control behaves when the user
moves the scroll bar.

The scroll bar component is not used very often, because many visual components include scroll bars of their own
and thus don’t require additional coding. For example, TForm has VertScrollBar and HorzScrollBar properties that
automatically configure scroll bars on the form. To create a scrollable region within a form, use TScrollBox.

 DevGuide: Building applications with Delphi

Track bars
Topic groups See also

A track bar can set integer values on a continuous range. It is useful for adjusting properties like color, volume and
brightness. The user moves the slide indicator by dragging it to a particular location or clicking within the bar.

Use the Max and Min properties to set the upper and lower range of the track bar.
Use SelEnd and SelStart to highlight a selection range.
The Orientation property determines whether the track bar is vertical or horizontal.
By default, a track bar has one row of ticks along the bottom. Use the TickMarks property to change their

location. To control the intervals between ticks, use the TickStyle property and SetTick method.

Three views of the track bar component
Position sets a default position for the track bar and tracks the position at runtime.
By default, users can move one tick up or down by pressing the up and down arrow keys. Set LineSize to

change that increment.
Set PageSize to determine the number of ticks moved when the user presses Page Up and Page Down.

 DevGuide: Building applications with Delphi

Up-down controls (VCL only)
Topic groups See also

An up-down control (TUpDown) consists of a pair of arrow buttons that allow users to change an integer value in
fixed increments. The current value is given by the Position property; the increment, which defaults to 1, is specified
by the Increment property. Use the Associate property to attach another component (such as an edit control) to the
up-down control.

 DevGuide: Building applications with Delphi

Spin edit controls (CLX only)
Topic groups See also

A spin edit control (TSpinEdit) is also called an up-down widget, little arrows widget, or spin button. This control lets
the application user change an integer value in fixed increments, either by clicking the up or down arrow buttons to
increase or decrease the value currently displayed, or by typing the value directly into the spin box.

The current value is given by the Value property; the increment, which defaults to 1, is specified by the Increment
property.

 DevGuide: Building applications with Delphi

Hot key controls (VCL only)
Topic groups See also

Use the hot key component (THotKey) to assign a keyboard shortcut that transfers focus to any control. The HotKey
property contains the current key combination and the Modifiers property determines which keys are available for
HotKey.

The hot key component can be assigned as the ShortCut property of a menu item. Then, when a user enters the
key combination specified by the HotKey and Modifiers properties, Windows activates the menu item.

 DevGuide: Building applications with Delphi

Splitter control
Topic groups See also

A splitter (TSplitter) placed between aligned controls allows users to resize the controls. Used with components like
panels and group boxes, splitters let you divide a form into several panes with multiple controls on each pane.

After placing a panel or other control on a form, add a splitter with the same alignment as the control. The last
control should be client-aligned, so that it fills up the remaining space when the others are resized. For example,
you can place a panel at the left edge of a form, set its Alignment to alLeft, then place a splitter (also aligned to
alLeft) to the right of the panel, and finally place another panel (aligned to alLeft or alClient) to the right of the
splitter.

Set MinSize to specify a minimum size the splitter must leave when resizing its neighboring control. Set Beveled to
True to give the splitter’s edge a 3D look.

 DevGuide: Building applications with Delphi

Buttons and similar controls
Topic groups See also

Aside from menus, buttons provide the most common way to invoke a command in an application. Delphi offers
several button-like controls:

Use this component: To do this:

TButton Present command choices on buttons with text
TBitBtn Present command choices on buttons with text and glyphs
TSpeedButton Create grouped toolbar buttons
TCheckBox Present on/off options
TRadioButton Present a set of mutually exclusive choices
TToolBar Arrange tool buttons and other controls in rows and automatically adjust their

sizes and positions
TCoolBar Display a collection of windowed controls within movable, resizable bands

(VCL only)

 DevGuide: Building applications with Delphi

Button controls
Topic groups See also

Users click button controls to initiate actions. You can assign an action to a TButton component by creating an
OnClick event handler for it. Double-clicking a button at design time takes you to the button’s OnClick event handler
in the Code editor.

Set Cancel to True if you want the button to trigger its OnClick event when the user presses Esc.
Set Default to True if you want the Enter key to trigger the button’s OnClick event.

 DevGuide: Building applications with Delphi

Bitmap buttons
Topic groups See also

A bitmap button (BitBtn) is a button control that presents a bitmap image on its face.
To choose a bitmap for your button, set the Glyph property.
Use Kind to automatically configure a button with a glyph and default behavior.
By default, the glyph is to the left of any text. To move it, use the Layout property.
The glyph and text are automatically centered in the button. To move their position, use the Margin property.

Margin determines the number of pixels between the edge of the image and the edge of the button.
By default, the image and the text are separated by 4 pixels. Use Spacing to increase or decrease the

distance.
Bitmap buttons can have 3 states: up, down, and held down. Set the NumGlyphs property to 3 to show a

different bitmap for each state.

 DevGuide: Building applications with Delphi

Speed buttons
Topic groups See also

Speed buttons, which usually have images on their faces, can function in groups. They are commonly used with
panels to create toolbars.

To make speed buttons act as a group, give the GroupIndex property of all the buttons the same nonzero
value.

By default, speed buttons appear in an up (unselected) state. To initially display a speed button as selected,
set the Down property to True.

If AllowAllUp is True, all of the speed buttons in a group can be unselected. Set AllowAllUp to False if you
want a group of buttons to act like a radio group.

 DevGuide: Building applications with Delphi

Check boxes
Topic groups See also

A check box is a toggle that lets the user select an on or off state. When the choice is turned on, the check box is
checked. Otherwise, the check box is blank. You create check boxes using TCheckBox.

Set Checked to True to make the box appear checked by default.
Set AllowGrayed to True to give the check box three possible states: checked, unchecked, and grayed.
The State property indicates whether the check box is checked (cbChecked), unchecked (cbUnchecked), or

grayed (cbGrayed).
Note: Check box controls display one of two binary states. The indeterminate state is used when other settings

make it impossible to determine the current value for the check box.

 DevGuide: Building applications with Delphi

Radio buttons
Topic groups See also

Radio buttons present a set of mutually exclusive choices. You can create individual radio buttons using
TRadioButton or use the radio group component (TRadioGroup) to arrange radio buttons into groups automatically.
You can group radio buttons to let the user select one from a limited set of choices. See Grouping components for
more information.

A selected radio button is displayed as a circle filled in the middle. When not selected, the radio button shows an
empty circle. Assign the value True or False to the Checked property to change the radio button’s visual state.

 DevGuide: Building applications with Delphi

Toolbars
Topic groups See also

Toolbars provide an easy way to arrange and manage visual controls. You can create a toolbar out of a panel
component and speed buttons, or you can use the ToolBar component, then right-click and choose New Button to
add buttons to the toolbar.

The TToolBar component has several advantages: buttons on a toolbar automatically maintain uniform dimensions
and spacing; other controls maintain their relative position and height; controls can automatically wrap around to
start a new row when they do not fit horizontally; and TToolBar offers display options like transparency, pop-up
borders, and spaces and dividers to group controls.

You can use a centralized set of actions on toolbars and menus, by using action lists or action bands.

Toolbars can also parent other controls such as edit boxes, combo boxes, and so on.

 DevGuide: Building applications with Delphi

Cool bars (VCL only)
Topic groups See also

A cool bar contains child controls that can be moved and resized independently. Each control resides on an
individual band. The user positions the controls by dragging the sizing grip to the left of each band.

The cool bar requires version 4.70 or later of COMCTL32.DLL (usually located in the Windows\System or
Windows\System32 directory) at both design time and runtime. Cool bars cannot be used in cross-platform
applications.

The Bands property holds a collection of TCoolBand objects. At design time, you can add, remove, or modify
bands with the Bands editor. To open the Bands editor, select the Bands property in the Object Inspector, then
double-click in the Value column to the right, or click the ellipsis (...) button. You can also create bands by adding new
windowed controls from the palette.

The FixedOrder property determines whether users can reorder the bands.
The FixedSize property determines whether the bands maintain a uniform height.

 DevGuide: Building applications with Delphi

Handling lists
Topic groups See also

Lists present the user with a collection of items to select from. Several components display lists:

Use this component: To display:

TListBox A list of text strings
TCheckListBox A list with a check box in front of each item
TComboBox An edit box with a scrollable drop-down list
TTreeView A hierarchical list
TListView A list of (draggable) items with optional icons, columns, and headings
TDateTimePicker A list box for entering dates or times (VCL only)
TMonthCalendar A calendar for selecting dates (VCL only)

Use the nonvisual TStringList and TImageList components to manage sets of strings and images. For more
information about string lists, see Working with string lists.

 DevGuide: Building applications with Delphi

List boxes and check-list boxes
Topic groups See also

List boxes (TListBox) and check-list boxes display lists from which users can select items.
Items uses a TStrings object to fill the control with values.
ItemIndex indicates which item in the list is selected.
MultiSelect specifies whether a user can select more than one item at a time.
Sorted determines whether the list is arranged alphabetically.
Columns specifies the number of columns in the list control.
IntegralHeight specifies whether the list box shows only entries that fit completely in the vertical space (VCL

only).
ItemHeight specifies the height of each item in pixels. The Style property can cause ItemHeight to be

ignored.
The Style property determines how a list control displays its items. By default, items are displayed as strings.

By changing the value of Style, you can create owner-draw list boxes that display items graphically or in varying
heights. For information on owner-draw controls, see Adding graphics to controls.
To create a simple list box,
1 Within your project, drop a list box component from the Component palette onto a form.
2 Size the list box and set its alignment as needed.
3 Double-click the right side of the Items property or choose the ellipsis button to display the String List Editor.
4 Use the editor to enter free form text arranged in lines for the contents of the list box.
5 Then choose OK.

To let users select multiple items in the list box, you can use the ExtendedSelect and MultiSelect properties.

 DevGuide: Building applications with Delphi

Combo boxes
Topic groups See also

A combo box (TComboBox) combines an edit box with a scrollable list. When users enter data into the control—by
typing or selecting from the list—the value of the Text property changes. If AutoComplete is enabled, the application
looks for and displays the closest match in the list as the user types the data.

Three types of combo boxes are: standard, drop-down (the default), and drop-down list.
Use the Style property to select the type of combo box you need.
Use csDropDown if you want an edit box with a drop-down list. Use csDropDownList to make the edit box

read-only (forcing users to choose from the list). Set the DropDownCount property to change the number of items
displayed in the list.

Use csSimple to create a combo box with a fixed list that does not close. Be sure to resize the combo box so
that the list items are displayed.

Use csOwnerDrawFixed or csOwnerDrawVariable to create owner-draw combo boxes that display items
graphically or in varying heights. For information on owner-draw controls, see Adding graphics to controls.
At runtime, CLX combo boxes work differently than VCL combo boxes. In CLX (but not in the VCL combo box), you
can add a item to a drop down by entering text and pressing Enter in the edit field of a combo box. You can turn this
feature off by setting InsertMode to ciNone. It is also possible to add empty (no string) items to the list in the combo
box. Also, if you keep pressing the down arrow key, it does not stop at the last item of the combo box list. It cycles
around to the top again.

 DevGuide: Building applications with Delphi

Tree views
Topic groups See also

A tree view (TTreeView) displays items in an indented outline. The control provides buttons that allow nodes to be
expanded and collapsed. You can include icons with items’ text labels and display different icons to indicate whether
a node is expanded or collapsed. You can also include graphics, such as check boxes, that reflect state information
about the items.

Indent sets the number of pixels horizontally separating items from their parents.
ShowButtons enables the display of '+' and '–' buttons to indicate whether an item can be expanded.
ShowLines enables display of connecting lines to show hierarchical relationships (VCL only).
ShowRoot determines whether lines connecting the top-level items are displayed (VCL only).

To add items to a tree view control at design time, double-click on the control to display the TreeView Items editor.
The items you add become the value of the Items property. You can change the items at runtime by using the
methods of the Items property, which is an object of type TTreeNodes. TTreeNodes has methods for adding,
deleting, and navigating the items in the tree view.

Tree views can display columns and subitems similar to list views in vsReport mode.

 DevGuide: Building applications with Delphi

List views
Topic groups See also

List views, created using TListView, display lists in various formats. Use the ViewStyle property to choose the kind
of list you want:

vsIcon and vsSmallIcon display each item as an icon with a label. Users can drag items within the list view
window (VCL only).

vsList displays items as labeled icons that cannot be dragged.
vsReport displays items on separate lines with information arranged in columns. The leftmost column

contains a small icon and label, and subsequent columns contain subitems specified by the application. Use the
ShowColumnHeaders property to display headers for the columns.

 DevGuide: Building applications with Delphi

Date-time pickers and month calendars (VCL only)
Topic groups See also

The DateTimePicker component displays a list box for entering dates or times, while the MonthCalendar component
presents a calendar for entering dates or ranges of dates. To use these components, you must have version 4.70 or
later of COMCTL32.DLL (usually located in the Windows\System or Windows\System32 directory) at both design
time and runtime. They are not available for use in cross-platform applications.

 DevGuide: Building applications with Delphi

Grouping components
Topic groups See also

A graphical interface is easier to use when related controls and information are presented in groups. Delphi
provides several components for grouping components:

Use this component: When you want this:

TGroupBox A standard group box with a title
TRadioGroup A simple group of radio buttons
TPanel A more visually flexible group of controls
TScrollBox A scrollable region containing controls
TTabControl A set of mutually exclusive notebook-style tabs
TPageControl A set of mutually exclusive notebook-style tabs with corresponding pages,

each of which may contain other controls
THeaderControl Resizable column headers

 DevGuide: Building applications with Delphi

Group boxes and radio groups
Topic groups See also

A group box (TGroupBox) arranges related controls on a form. The most commonly grouped controls are radio
buttons. After placing a group box on a form, select components from the Component palette and place them in the
group box. The Caption property contains text that labels the group box at runtime.

The radio group component (TRadioGroup) simplifies the task of assembling radio buttons and making them work
together. To add radio buttons to a radio group, edit the Items property in the Object Inspector; each string in Items
makes a radio button appear in the group box with the string as its caption. The value of the ItemIndex property
determines which radio button is currently selected. Display the radio buttons in a single column or in multiple
columns by setting the value of the Columns property. To respace the buttons, resize the radio group component.

 DevGuide: Building applications with Delphi

Panels
Topic groups See also

The TPanel component provides a generic container for other controls. Panels are typically used to visually group
components together on a form. Panels can be aligned with the form to maintain the same relative position when
the form is resized. The BorderWidth property determines the width, in pixels, of the border around a panel.

You can also place other controls onto a panel and use the Align property to ensure proper positioning of all the
controls in the group on the form. You can make a panel alTop aligned so that its position will remain in place even if
the form is resized.

The look of the panel can be changed to a raised or lowered look by using the BevelOuter and BevelInner
properties. You can vary the values of these properties to create different visual 3-D effects. Note that if you merely
want a raised or lowered bevel, you can use the less resource intensive TBevel control instead.

You can also use one or more panels to build various status bars or information display areas.

 DevGuide: Building applications with Delphi

Scroll boxes
Topic groups See also

Scroll boxes (TScrollBox) create scrolling areas within a form. Applications often need to display more information
than will fit in a particular area. Some controls—such as list boxes, memos, and forms themselves—can
automatically scroll their contents.

Another use of scroll boxes is to create multiple scrolling areas (views) in a window. Views are common in
commercial word-processor, spreadsheet, and project management applications. Scroll boxes give you the
additional flexibility to define arbitrary scrolling subregions of a form.

Like panels and group boxes, scroll boxes contain other controls, such as TButton and TCheckBox objects. But a
scroll box is normally invisible. If the controls in the scroll box cannot fit in its visible area, the scroll box
automatically displays scroll bars.

Another use of a scroll box is to restrict scrolling in areas of a window, such as a toolbar or status bar (TPanel
components). To prevent a toolbar and status bar from scrolling, hide the scroll bars, and then position a scroll box
in the client area of the window between the toolbar and status bar. The scroll bars associated with the scroll box
will appear to belong to the window, but will scroll only the area inside the scroll box.

 DevGuide: Building applications with Delphi

Tab controls
Topic groups See also

The tab control component (TTabControl) creates a set of tabs that look like notebook dividers. You can create tabs
by editing the Tabs property in the Object Inspector; each string in Tabs represents a tab. The tab control is a single
panel with one set of components on it. To change the appearance of the control when the tabs are clicked, you
need to write an OnChange event handler. To create a multipage dialog box, use a page control instead.

 DevGuide: Building applications with Delphi

Page controls
Topic groups See also

The page control component (TPageControl) is a page set suitable for multipage dialog boxes. A page control
displays multiple overlapping pages that are TTabSheet objects. A page is selected in the user interface by clicking
a tab on top of the control.

To create a new page in a page control at design time, right-click the control and choose New Page. At runtime, you
add new pages by creating the object for the page and setting its PageControl property:

NewTabSheet = TTabSheet.Create(PageControl1);
NewTabSheet.PageControl := PageControl1;

To access the active page, use the ActivePage property. To change the active page, you can set either the
ActivePage or the ActivePageIndex property.

 DevGuide: Building applications with Delphi

Header controls
Topic groups See also

A header control (THeaderControl) is a is a set of column headers that the user can select or resize at runtime. Edit
the control’s Sections property to add or modify headers. You can place the header sections above columns or
fields. For example, header sections might be placed over a list box (TListBox).

 DevGuide: Building applications with Delphi

Providing visual feedback
Topic groups See also

There are many ways to provide users with information about the state of an application. For example, some
components—including TForm—have a Caption property that can be set at runtime. You can also create dialog
boxes to display messages. In addition, the following components are especially useful for providing visual
feedback at runtime.

Use this component or
property: To do this:

TLabeland TStaticText Display non-editable text
TStatusBar Display a status region (usually at the bottom of a window)
TProgressBar Show the amount of work completed for a particular task
Hint and ShowHint Activate fly-by or “tooltip” help
HelpContext and HelpFile Link context-sensitive online Help

 DevGuide: Building applications with Delphi

Labels and static text components
Topic groups See also

Labels (TLabel) display text and are usually placed next to other controls. You place a label on a form when you
need to identify or annotate another component such as an edit box or when you want to include text on a form. The
standard label component, TLabel, is a non-windowed control (not widget-based in CLX), so it cannot receive focus;
when you need a label with a window handle, use TStaticText instead.

Label properties include the following:
Caption contains the text string for the label.
Font, Color, and other properties determine the appearance of the label. Each label can use only one

typeface, size, and color.
FocusControl links the label to another control on the form. If Caption includes an accelerator key, the

control specified by FocusControl receives focus when the user presses the accelerator key.
ShowAccelChar determines whether the label can display an underlined accelerator character. If

ShowAccelChar is True, any character preceded by an ampersand (&) appears underlined and enables an
accelerator key.

Transparent determines whether items under the label (such as graphics) are visible.
Labels usually display read-only static text that cannot be changed by the application user. The application can
change the text while it is executing by assigning a new value to the Caption property. To add a text object to a form
that a user can scroll or edit, use TEdit.

 DevGuide: Building applications with Delphi

Status bars
Topic groups See also

Although you can use a panel to make a status bar, it is simpler to use the status bar component. By default, the
status bar’s Align property is set to alBottom, which takes care of both position and size.

If you only want to display one text string at a time in the status bar, set its SimplePanel property to True and use
the SimpleText property to control the text displayed in the status bar.

You can also divide a status bar into several text areas, called panels. To create panels, edit the Panels property in
the Object Inspector, setting each panel’s Width, Alignment, and Text properties from the Panels editor. Each
panel’s Text property contains the text displayed in the panel.

 DevGuide: Building applications with Delphi

Progress bars
Topic groups See also

When your application performs a time-consuming operation, you can use a progress bar to show how much of the
task is completed. A progress bar displays a dotted line that grows from left to right.

A progress bar
The Position property tracks the length of the dotted line. Max and Min determine the range of Position. To make the
line grow, increment Position by calling the StepBy or StepIt method. The Step property determines the increment
used by StepIt.

 DevGuide: Building applications with Delphi

Help and hint properties
Topic groups See also

Most visual controls can display context-sensitive Help as well as fly-by hints at runtime. The HelpContext and
HelpFile properties establish a Help context number and Help file for the control.

The Hint property contains the text string that appears when the user moves the mouse pointer over a control or
menu item. To enable hints, set ShowHint to True; setting ParentShowHint to True causes the control’s ShowHint
property to have the same value as its parent’s.

 DevGuide: Building applications with Delphi

Grids
Topic groups See also

Grids display information in rows and columns. If you’re writing a database application, use the TDBGrid or
TDBCtrlGrid component described in "Using data controls”. Otherwise, use a standard draw grid or string grid.

 DevGuide: Building applications with Delphi

Draw grids
Topic groups See also

A draw grid (TDrawGrid) displays arbitrary data in tabular format. Write an OnDrawCell event handler to fill in the
cells of the grid.

The CellRect method returns the screen coordinates of a specified cell, while the MouseToCell method
returns the column and row of the cell at specified screen coordinates. The Selection property indicates the
boundaries of the currently selected cells.

The TopRow property determines which row is currently at the top of the grid. The LeftCol property
determines the first visible column on the left. VisibleColCount and VisibleRowCount are the number of columns and
rows visible in the grid.

You can change the width or height of a column or row with the ColWidths and RowHeights properties. Set
the width of the grid lines with the GridLineWidth property. Add scroll bars to the grid with the ScrollBars property.

You can choose to have fixed or non-scrolling columns and rows with the FixedCols and FixedRows
properties. Assign a color to the fixed columns and rows with the FixedColor property.

The Options, DefaultColWidth, and DefaultRowHeight properties also affect the appearance and behavior of
the grid.

 DevGuide: Building applications with Delphi

String grids
Topic groups See also

The string grid component is a descendant of TDrawGrid that adds specialized functionality to simplify the display of
strings. The Cells property lists the strings for each cell in the grid; the Objects property lists objects associated with
each string. All the strings and associated objects for a particular column or row can be accessed through the Cols
or Rows property.

 DevGuide: Building applications with Delphi

Value list editors (VCL only)
Topic groups See also

TValueListEditor is a specialized grid for editing string lists that contain name/value pairs in the form Name=Value.
The names and values are stored as a TStrings descendant that is the value of the Strings property. You can look
up the value for any name using the Values property. TValueListEditor is not available for cross-platform
programming.

The grid contains two columns, one for the names and one for the values. By default, the Name column is named
“Key” and the Value column is named “Value”. You can change these defaults by setting the TitleCaptions property.
You can omit these titles using the DisplayOptions property (which also controls resize when you resize the control.)

You can control whether users can edit the Name column using the KeyOptions property. KeyOptions contains
separate options to allow editing, adding new names, deleting names, and controlling whether new names must be
unique.

You can control how users edit the entries in the Value column using the ItemProps property. Each item has a
separate TItemProp object that lets you

Supply an edit mask to limit the valid input.
Specify a maximum length for values.
Mark the value as read-only.
Specify that the value list editor displays a drop-down arrow that opens a pick list of values from which the

user can choose or an ellipsis button that triggers an event you can use for displaying a dialog in which users enter
values.

If you specify that there is a drop-down arrow, you must supply the list of values from which the user chooses.
These can be a static list (the PickList property of the TItemProp object) or they can be dynamically added at
runtime using the value list editor’s OnGetPickList event. You can also combine these approaches and have a
static list that the OnGetPickList event handler modifies.
If you specify that there is an ellipsis button, you must supply the response that occurs when the user clicks that
button (including the setting of a value, if appropriate). You provide this response by writing an
OnEditButtonClick event handler.

 DevGuide: Building applications with Delphi

Displaying graphics
Topic groups See also

The following components make it easy to incorporate graphics into an application.

Use this component: To display:

TImage Graphics files
TShape Geometric shapes
TBevel 3-D lines and frames
TPaintBox Graphics drawn by your program at runtime
TAnimate AVI files (VCL only)

 DevGuide: Building applications with Delphi

Images
Topic groups See also

The image component displays a graphical image, like a bitmap, icon, or metafile. The Picture property determines
the graphic to be displayed. Use Center, AutoSize, Stretch, and Transparent to set display options. For more
information, see Overview of graphics programming.

 DevGuide: Building applications with Delphi

Shapes
Topic groups See also

The shape component displays a geometric shape. It is a nonwindowed control (not widget-based in CLX) and
therefore, cannot receive user input. The Shape property determines which shape the control assumes. To change
the shape’s color or add a pattern, use the Brush property, which holds a TBrush object. How the shape is painted
depends on the Color and Style properties of TBrush.

 DevGuide: Building applications with Delphi

Bevels
Topic groups See also

The bevel component (TBevel) is a line that can appear raised or lowered. Some components, such as TPanel,
have built-in properties to create beveled borders. When such properties are unavailable, use TBevel to create
beveled outlines, boxes, or frames.

 DevGuide: Building applications with Delphi

Paint boxes
Topic groups See also

The paint box (TPaintBox) allows your application to draw on a form. Write an OnPaint event handler to render an
image directly on the paint box's Canvas. Drawing outside the boundaries of the paint box is prevented. For more
information, see Overview of graphics programming.

 DevGuide: Building applications with Delphi

Animation control (VCL only))
Topic groups See also

The animation component is a window that silently displays an Audio Video Interleaved (AVI) clip. An AVI clip is a
series of bitmap frames, like a movie. Although AVI clips can have sound, animation controls work only with silent
AVI clips. The files you use must be either uncompressed AVI files or AVI clips compressed using run-length
encoding (RLE). Animation control cannot be used in cross-platform programming.

Following are some of the properties of an animation component:
ResHandle is the Windows handle for the module that contains the AVI clip as a resource. Set ResHandle at

runtime to the instance handle or module handle of the module that includes the animation resource. After setting
ResHandle, set the ResID or ResName property to specify which resource in the indicated module is the AVI clip that
should be displayed by the animation control.

Set AutoSize to True to have the animation control adjust its size to the size of the frames in the AVI clip.
StartFrame and StopFrame specify in which frames to start and stop the clip.
Set CommonAVI to display one of the common Windows AVI clips provided in Shell32.DLL.
Specify when to start and interrupt the animation by setting the Active property to True and False,

respectively, and how many repetitions to play by setting the Repetitions property.
The Timers property lets you display the frames using a timer. This is useful for synchronizing the animation

sequence with other actions, such as playing a sound track.

 DevGuide: Building applications with Delphi

Developing dialog boxes
Topic groups

The dialog box components on the Dialogs page of the Component palette make various dialog boxes available to
your applications. These dialog boxes provide applications with a familiar, consistent interface that enables the user
to perform common file operations such as opening, saving, and printing files. Dialog boxes display and/or obtain
data.

Each dialog box opens when its Execute method is called. Execute returns a Boolean value: if the user chooses OK
to accept any changes made in the dialog box, Execute returns True; if the user chooses Cancel to escape from the
dialog box without making or saving changes, Execute returns False.

If you are developing cross-platform applications, you can use the dialogs provided with CLX in the QDialogs unit.
For operating systems that have native dialog box types for common tasks, such as for opening or saving a file or
for changing font or color, you can use the UseNativeDialog property. Set UseNativeDialog to True if your
application will run in such an environment, and if you want it to use the native dialogs instead of the Qt dialogs.

 DevGuide: Building applications with Delphi

Using open dialog boxes
Topic groups

One of the commonly used dialog box components is TOpenDialog. This component is usually invoked by a New or
Open menu item under the File option on the main menu bar of a form. The dialog box contains controls that let you
select groups of files using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your application. The purpose of this dialog
box is to let a user specify a file to open. You use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the TOpenDialog FileName property, which
you can then process as you want.

The following code snippet can be placed in an Action and linked to the Action property of a TMainMenu subitem or
be placed in the subitem’s OnClick event:

if OpenDialog1.Execute then
 filename := OpenDialog1.FileName;

This code will show the dialog box and if the user presses the OK button, it will copy the name of the file into a
previously declared AnsiString variable named filename.

 DevGuide: Building applications with Delphi

Using helper objects
Topic groups See also

The VCL and CLX include a variety of nonvisual objects that simplify common programming tasks. The following
topics describe a few Helper objects that make it easier to perform the following tasks:

Working with lists
Working with string lists
Changing the Windows registry and .INI files
Using streams

 DevGuide: Building applications with Delphi

Working with lists
Topic groups See also

The following objects provide functionality for creating and managing lists:

Object Maintains

TList A list of pointers
TObjectList A memory-managed list of instance objects
TComponentList A memory-managed list of components (that is, instances of classes descended from

TComponent)
TQueue A first-in first-out list of pointers
TStack A last-in first-out list of pointers
TObjectQueue A first-in first-out list of objects
TObjectStack A last-in first-out list of objects
TClassList A list of class types
TCollection, TOwnedCollection,
and TCollectionItem

Indexed collections of specially defined items

TStringList A list of strings

For more information about these objects, see the online reference.

 DevGuide: Building applications with Delphi

Working with string lists
Topic groups See also

Applications often need to manage lists of character strings. Examples include items in a combo box, lines in a
memo, names of fonts, and names of rows and columns in a string grid. The VCL and CLX provide a common
interface to any list of strings through an object called TStrings and its descendant TStringList. TStringList
implements the abstract properties and methods introduced by TStrings, and introduces properties, events, and
methods to

Sort the strings in the list.
Prohibit duplicate strings in sorted lists.
Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow easy interoperability; for
example, you can edit the lines of a memo (which are an instance of TStrings) and then use these lines as items in
a combo box (also an instance of TStrings).

A string-list property appears in the Object Inspector with TStrings in the Value column. Double-click TStrings to
open the String List editor, where you can edit, add, or delete lines.

You can also work with string-list objects at runtime to perform such tasks as
Loading and saving string lists
Creating a new string list
Manipulating strings in a list
Associating objects with a string list

 DevGuide: Building applications with Delphi

Loading and saving string lists
Topic groups See also

String-list objects provide SaveToFile and LoadFromFile methods that let you store a string list in a text file and load
a text file into a string list. Each line in the text file corresponds to a string in the list. Using these methods, you
could, for example, create a simple text editor by loading a file into a memo component, or save lists of items for
combo boxes.

The following example loads a copy of the WIN.INI file into a memo field and makes a backup copy called
WIN.BAK.

procedure EditWinIni;
var
 FileName: string; { storage for file name }
begin
 FileName := 'C:\WINDOWS\WIN.INI';{ set the file name }
 with Form1.Memo1.Lines do
 begin
 LoadFromFile(FileName); { load from file }
 SaveToFile(ChangeFileExt(FileName, '.BAK')); { save into backup file }
 end;
end;

 DevGuide: Building applications with Delphi

Creating a new string list
Topic groups See also

A string list is typically part of a component. There are times, however, when it is convenient to create independent
string lists, for example to store strings for a lookup table. The way you create and manage a string list depends on
whether the list is short-term (constructed, used, and destroyed in a single routine) or long-term (available until the
application shuts down). Whichever type of string list you create, remember that you are responsible for freeing the
list when you finish with it.

Short-term string lists

If you use a string list only for the duration of a single routine, you can create it, use it, and destroy it all in one
place. This is the safest way to work with string lists. Because the string-list object allocates memory for itself and its
strings, you should use a try...finally block to ensure that the memory is freed even if an exception occurs.
1 Construct the string-list object.
2 In the try part of a try...finally block, use the string list.
3 In the finally part, free the string-list object.

The following event handler responds to a button click by constructing a string list, using it, and then destroying it.

procedure TForm1.Button1Click(Sender: TObject);
var
 TempList: TStrings; { declare the list }
begin
 TempList := TStringList.Create; { construct the list object }
 try
 { use the string list }
 finally
 TempList.Free; { destroy the list object }
 end;
end;

Long-term string lists

If a string list must be available at any time while your application runs, construct the list at start-up and destroy it
before the application terminates.
1 In the unit file for your application’s main form, add a field of type TStrings to the form’s declaration.
2 Write an event handler for the main form’s constructor, which executes before the form appears. It should

create a string list and assign it to the field you declared in the first step.
3 Write an event handler that frees the string list for the form’s OnClose event.

This example uses a long-term string list to record the user’s mouse clicks on the main form, then saves the list to a
file before the application terminates.

unit Unit1;
interface
uses Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs;
{For CLX: uses SysUtils, Classes, QGraphics, QControls, QForms, Qialogs;}
type
 TForm1 = class(TForm)
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 private
 { Private declarations }
 public
 { Public declarations }
 ClickList: TStrings; { declare the field }
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}

procedure TForm1.FormCreate(Sender: TObject);
begin
 ClickList := TStringList.Create; { construct the list }
end;
procedure TForm1.FormDestroy(Sender: TObject);
begin
 ClickList.SaveToFile(ChangeFileExt(Application.ExeName, '.LOG')); { save the list
}
 ClickList.Free; { destroy the list object }
end;
procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 ClickList.Add(Format('Click at (%d, %d)', [X, Y])); { add a string to the list }
end;
end.

 DevGuide: Building applications with Delphi

Manipulating strings in a list
Topic groups See also

Operations commonly performed on string lists include:
Counting the strings in a list
Accessing a particular string
Finding the position of a string in the list
Iterating through strings in a list
Adding a string to a list
Moving a string within a list
Deleting a string from a list
Copying a complete string list

 DevGuide: Building applications with Delphi

Counting the strings in a list
Topic groups See also

The read-only Count property returns the number of strings in the list. Since string lists use zero-based indexes,
Count is one more than the index of the last string.

 DevGuide: Building applications with Delphi

Accessing a particular string
Topic groups See also

The Strings array property contains the strings in the list, referenced by a zero-based index. Because Strings is the
default property for string lists, you can omit the Strings identifier when accessing the list; thus

StringList1.Strings[0] := 'This is the first string.';

is equivalent to

StringList1[0] := 'This is the first string.';

 DevGuide: Building applications with Delphi

^$ Locating items in a string list
Topic groups See also

To locate a string in a string list, use the IndexOf method. IndexOf returns the index of the first string in the list that
matches the parameter passed to it, and returns –1 if the parameter string is not found. IndexOf finds exact
matches only; if you want to match partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found among the Items of a list box:

if FileListBox1.Items.IndexOf('WIN.INI') > -1 ...

 DevGuide: Building applications with Delphi

Iterating through strings in a list
Topic groups See also

To iterate through the strings in a list, use a for loop that runs from zero to Count – 1.

This example converts each string in a list box to uppercase characters.

procedure TForm1.Button1Click(Sender: TObject);
var
 Index: Integer;
begin
 for Index := 0 to ListBox1.Items.Count - 1 do
 ListBox1.Items[Index] := UpperCase(ListBox1.Items[Index]);
end;

 DevGuide: Building applications with Delphi

Adding a string to a list
Topic groups See also

To add a string to the end of a string list, call the Add method, passing the new string as the parameter. To insert a
string into the list, call the Insert method, passing two parameters: the string and the index of the position where you
want it placed. For example, to make the string “Three” the third string in a list, you would use:

Insert(2, 'Three');

To append the strings from one list onto another, call AddStrings:

StringList1.AddStrings(StringList2); { append the strings from StringList2 to
StringList1 }

 DevGuide: Building applications with Delphi

Moving a string within a list
Topic groups See also

To move a string in a string list, call the Move method, passing two parameters: the current index of the string and
the index you want assigned to it. For example, to move the third string in a list to the fifth position, you would use:

Move(2, 4)

 DevGuide: Building applications with Delphi

Deleting a string from a list
Topic groups See also

To delete a string from a string list, call the list’s Delete method, passing the index of the string you want to delete. If
you don’t know the index of the string you want to delete, use the IndexOf method to locate it. To delete all the
strings in a string list, use the Clear method.

This example uses IndexOf and Delete to find and delete a string:

with ListBox1.Items do
begin
 BIndex:=IndexOf('bureaucracy');
 if BIndex > -1 then
 Delete(BIndex);
end;

 DevGuide: Building applications with Delphi

Copying a complete string list
Topic groups See also

You can use the Assign method to copy strings from a source list to a destination list, overwriting the contents of the
destination list. To append strings without overwriting the destination list, use AddStrings. For example,

Memo1.Lines.Assign(ComboBox1.Items); { overwrites original strings }

copies the lines from a combo box into a memo (overwriting the memo), while

Memo1.Lines.AddStrings(ComboBox1.Items); { appends strings to end }

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one string-list variable to another—

StringList1 := StringList2;

—the original string-list object will be lost, often with unpredictable results.

 DevGuide: Building applications with Delphi

Associating objects with a string list
Topic groups See also

In addition to the strings stored in its Strings property, a string list can maintain references to objects, which it stores
in its Objects property. Like Strings, Objects is an array with a zero-based index. The most common use for Objects
is to associate bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to the list in a single step.
IndexOfObject returns the index of the first string in the list associated with a specified object. Methods like Delete,
Clear, and Move operate on both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property at the same index. You
cannot add an object without adding a corresponding string.

 DevGuide: Building applications with Delphi

Windows registry and INI files (VCL only)
Topic groups See also

The Windows system registry is a hierarchical database where applications store configuration information. The
VCL class TRegistry supplies methods that read and write to the registry.

Until Windows 95, most applications stored configuration information in initialization files, usually named with the
extension .INI. The VCL provides the following classes to facilitate maintenance and migration of programs that use
INI files:

TRegistry to work with the registry (VCL only).
TIniFile (VCL only) or TMemIniFile to work with INI files.
TRegistryIniFile when you want to work with both the registry and INI files (VCL only). TRegistryIniFile has

properties and methods similar to those of TIniFile, but it reads and writes to the system registry. By using a variable
of type TCustomIniFile (the common ancestor of TIniFile, TMemIniFile, and TRegistryIniFile), you can write generic
code that accesses either the registry or an INI file, depending on where it is called.
Only TMemIniFile can be used in cross-platform programming.

 DevGuide: Building applications with Delphi

Using TIniFile (VCL only)
Topic groups See also

The INI file format is still popular, many of the Delphi configuration files (such as the DSK Desktop settings file) are
in this format. Because this file format was and is prevalent, VCL provides a class to make reading and writing these
files very easy. TIniFile is not available for cross-platform programming.

When you instantiate the TIniFile object, you pass as a parameter to the constructor the name of the INI file. If the
file does not exist, it is automatically created. You are then free to read values using ReadString, ReadInteger, or
ReadBool. Alternatively, if you want to read an entire section of the INI file, you can use the ReadSection method.
Similarly, you can write values using WriteBool, WriteInteger, or WriteString.

Each of the Read routines takes three parameters. The first parameter identifies the section of the INI file. The
second parameter identifies the value you want to read, and the third is a default value in case the section or value
doesn't exist in the INI file. Similarly, the Write routines will create the section and/or value if they do not exist. The
example code creates an INI file the first time it is run that looks like this:

[Form]
Top=185
Left=280
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the INI values are read in during creation of the form and written back
out in the OnClose event.

 DevGuide: Building applications with Delphi

Using TRegistry (VCL only)
Topic groups See also

Most 32-bit applications store their information in the registry instead of INI files because the registry is hierarchical,
more robust, and doesn't suffer from the size limitations of INI files. The TRegistry object contains methods to open,
close, save, move, copy, and delete keys.

TRegistry is not available for cross-platform programming.

 DevGuide: Building applications with Delphi

Using TRegIniFile (VCL only)
Topic groups See also

If you are accustomed to using INI files and want to move your configuration information to the registry instead, you
can use the TRegIniFile class. TRegIniFile is designed to make registry entries look like INI file entries. All the
methods from TIniFile (read and write) exist in TRegIniFile.

When you construct a TRegIniFile object, the parameter you pass (the filename for an IniFile object) becomes a key
value under the user key in the registry, and all sections and values branch from that root. In fact, this object
simplifies the registry interface considerably, so you may want to use it instead of the TRegistry component even if
you aren't porting existing code.

TRegIniFile is not available for cross-platform programming.

 DevGuide: Building applications with Delphi

Creating drawing spaces
Topic groups See also

The TCanvas encapsulates a Windows device context in the VCL and a paint device (Qt painter) in CLX. which
handles all drawing for both forms, visual containers (such as panels) and the printer object (covered in
“Printing”Printing). Using the canvas object, you no longer have to worry about allocating pens, brushes, palettes,
and so on—all the allocation and deallocation are handled for you.

TCanvas includes a large number of primitive graphics routines to draw lines, shapes, polygons, fonts, etc. onto any
control that contains a canvas. For example, here is a button event handler that draws a line from the upper left
corner to the middle of the form and outputs some raw text onto the form:

procedure TForm1.Button1Click(Sender: TObject);
begin
 Canvas.Pen.Color := clBlue;
 Canvas.MoveTo(10, 10);
 Canvas.LineTo(100, 100);
 Canvas.Brush.Color := clBtnFace;
 Canvas.Font.Name := 'Arial';
 Canvas.TextOut(Canvas.PenPos.x, Canvas.PenPos.y,'This is the end of the line');
end;

In Windows applications, the TCanvas object also protects you against common Windows graphics errors, such as
restoring device contexts, pens, brushes, and so on to the value they had before the drawing operation. TCanvas is
used everywhere in Delphi that drawing is required or possible, and makes drawing graphics both fail-safe and
easy.

 DevGuide: Building applications with Delphi

TPrinter
Topic groups See also

The VCL TPrinter object encapsulates details of Windows printers. To get a list of installed and available printers,
use the Printers property. The CLX TPrinter object is a paint device that paints on a printer. It generates postscript
and sends that to lpr, lp, or another print command.

Both printer objects use a TCanvas (which is identical to the form's TCanvas) which means that anything that can
be drawn on a form can be printed as well. To print an image, call the BeginDoc method followed by whatever
canvas graphics you want to print (including text through the TextOut method) and send the job to the printer by
calling the EndDoc method.

This example uses a button and a memo on a form. When the user clicks the button, the content of the memo is
printed with a 200-pixel border around the page.

To run this example successfully, add Printers to your uses clause.

procedure TForm1.Button1Click(Sender: TObject);
var
 r: TRect;
 i: Integer;
begin
 with Printer do
 begin
 r := Rect(200,200,(Pagewidth - 200),(PageHeight - 200));
 BeginDoc;
 for i := 0 to Memo1.Lines.Count do
 Canvas.TextOut(200,200 + (i *
Canvas.TextHeight(Memo1.Lines.Strings[i])),
 Memo1.Lines.Strings[i]);
 Canvas.Brush.Color := clBlack;
 Canvas.FrameRect(r);
 EndDoc;
 end;
end;

 DevGuide: Building applications with Delphi

Using streams
Topic groups See also

Streams are just ways of reading and writing data. Steams provide a common interface for reading and writing to
different media such as memory, strings, sockets, and blob streams.

In the following streaming example, one file is copied to another one using streams. The application includes two
edit controls (From and To) and a Copy File button.

procedure TForm1.CopyFileClick(Sender: TObject);
var
 stream1, stream2:TStream;
begin
 stream1:=TFileStream.Create(From.Text,fmOpenRead or fmShareDenyWrite);
 try
 stream2 := TFileStream.Create(To.Text fmOpenCreate or fmShareDenyRead);
 try
 stream2.CopyFrom(Stream1,Stream1.Size);
 finally
 stream2.Free;
 finally
 stream1.Free
end;

Use specialized stream objects to read or write to storage media. Each descendant of TStream implements
methods for accessing a particular medium, such as disk files, dynamic memory, and so on. TStream descendants
include TFileStream, TStringStream, and TMemoryStream. In addition to methods for reading and writing, these
objects permit applications to seek to an arbitrary position in the stream. Properties of TStream provide information
about the stream, such as size and current position.

 DevGuide: Building applications with Delphi

Common programming tasks
Topic groups

This section of the Help system discusses how to perform some of the common programming tasks in Delphi:
Understanding classes
Defining classes
Handling exceptions
Using interfaces
Defining custom variants
Working with strings
Working with files
Converting measurements
Defining data types

 DevGuide: Building applications with Delphi

Understanding classes
Topic groups

A class is an abstract definition of properties, methods, events, and class members (such as variables local to the
class). When you create an instance of a class, this instance is called an object. The term object is often used more
loosely in the Delphi documentation and where the distinction between a class and an instance of the class is not
important, the term “object” may also refer to a class.

Although Delphi includes many classes in its object hierarchy, you are likely to need to create additional classes if
you are writing object-oriented programs. The classes you write must descend from TObject or one of its
descendants. A class type declaration contains three possible sections that control the accessibility of its fields and
methods:

Type
 TClassName = Class(TObject)
 public
 {public fields}
 {public methods}
 protected
 {protected fields}
 {protected methods}
 private
 {private fields}
 {private methods}
end;

The public section declares fields and methods with no access restrictions; class instances and descendant
classes can access these fields and methods.

The protected section includes fields and methods with some access restrictions; descendant classes can
access these fields and methods.

The private section declares fields and methods that have rigorous access restrictions; they cannot be
accessed by class instances or descendant classes.
The advantage of using classes comes from being able to create new classes as descendants of existing ones.
Each descendant class inherits the fields and methods of its parent and ancestor classes. You can also declare
methods in the new class that override inherited ones, introducing new, more specialized behavior.

The general syntax of a descendant class is as follows:

Type
 TClassName = Class(TParentClass)
 public
 {public fields}
 {public methods}
 protected
 {protected fields}
 {protected methods}
 private
 {private fields}
 {private methods}
end;

If no parent class name is specified, the class inherits directly from TObject. TObject defines only a handful of
methods, including a basic constructor and destructor.

For more information about the syntax, language definitions, and rules for classes, see Class types..

 DevGuide: Building applications with Delphi

Defining classes
Topic groups

Delphi allows you to declare classes that implement the programming features you need to use in your application.
Some versions of Delphi include a feature called class completion that simplifies the work of defining and
implementing new classes by generating skeleton code for the class members you declare.

To define a class,
1 In the IDE, start with a project open and choose File|New|Unit to create a new unit where you can define the

new class.
2 Add the uses clause and type section to the interface section.
3 In the type section, write the class declaration. You need to declare all the member variables, properties,

methods, and events.

TMyClass = class; {This implicitly descends from TObject}
public
 .
 .
 .
 .
 .
 .
private
 .
 .
 .
published{If descended from TPersistent or below}
 .
 .
 .

Note: The object that holds the custom variant’s data must be compiled with RTTI. This means it must be
compiled using the {$M+} compiler directive, or descend from TPersistent or below.

If you want the class to descend from a specific class, you need to indicate that class in the definition:
TMyClass = class(TParentClass); {This descends from TParentClass}

For example:
type TMyButton = class(TButton)
 property Size: Integer;
 procedure DoSomething;
end;

If your version of Delphi includes class completion: place the cursor within a method definition in the interface
section and press Ctrl+Shift+C (or right-click and select Complete Class at Cursor). Delphi completes any
unfinished property declarations and creates the empty methods you need in the implementation section. (If
you do not have class completion, you’ll need to write the code yourself, completing property declarations and
writing the methods.)
Given the example above, if you have class completion, Delphi adds read and write specifiers to your interface
declaration, including any supporting fields or methods:

type TMyButton = class(TButton)
 property Size: Integer read FSize write SetSize;
 procedure DoSomething;
private
 FSize: Integer;
 procedure SetSize(const Value: Integer);

It also adds the following code to the implementation section of the unit.
{ TMyButton }
procedure TMyButton.DoSomething;
begin
end;
procedure TMyButton.SetSize(const Value: Integer);
begin
FSize := Value;

end;

4 Fill in the methods. For example, to make it so the button beeps when you call the DoSomething method, add
the Beep between begin and end.

{ TMyButton }
procedure TMyButton.DoSomething;
begin
 Beep;
end;
procedure TMyButton.SetSize(const Value: Integer);
begin
 if fsize < > value then
 begin
 FSize := Value;
 DoSomething;
 end;
end;

Note that the button also beeps when you call SetSize to change the size of the button.
For more information about the syntax, language definitions, and rules for classes and methods, see Class types
and methods.

 DevGuide: Building applications with Delphi

Handling exceptions
Topic groups

Delphi provides a mechanism to handle errors in a consistent manner. Exception handling allows the application to
recover from errors if possible and to shut down if need be, without losing data or resources. Error conditions in
Delphi are indicated by exceptions. This topic describes the following tasks for using exceptions to create safe
applications:

Protecting blocks of code
Protecting resource allocations
Handling RTL exceptions
Handling component exceptions
Exception handling with external sources
Silent exceptions
Defining your own exceptions

 DevGuide: Building applications with Delphi

Protecting blocks of code
Topic groups

To make your applications robust, your code needs to recognize exceptions when they occur and respond to them.
If you don't specify a response, the application will present a message box describing the error. Your job, then, is to
recognize places where errors might happen, and define responses, particularly in areas where errors could cause
the loss of data or system resources.

When you create a response to an exception, you do so on blocks of code. When you have a series of statements
that all require the same kind of response to errors, you can group them into a block and define error responses that
apply to the whole block.

Blocks with specific responses to exceptions are called protected blocks because they can guard against errors that
might otherwise either terminate the application or damage data.

To protect blocks of code you need to understand
Responding to exceptions
Exceptions and the flow of control
Nesting exception responses

 DevGuide: Building applications with Delphi

Responding to exceptions
Topic groups

When an error condition occurs, the application raises an exception, meaning it creates an exception object. Once
an exception is raised, your application can execute cleanup code, handle the exception, or both.

Executing cleanup code

The simplest way to respond to an exception is to guarantee that some cleanup code is executed. This kind of
response doesn't correct the condition that caused the error but lets you ensure that your application doesn't leave
its environment in an unstable state. You typically use this kind of response to ensure that the application frees
allocated resources, regardless of whether errors occur.

Handling an exception

This is a specific response to a specific kind of exception. Handling an exception clears the error condition and
destroys the exception object, which allows the application to continue execution. You typically define exception
handlers to allow your applications to recover from errors and continue running. Types of exceptions you might
handle include attempts to open files that don't exist, writing to full disks, or calculations that exceed legal bounds.
Some of these, such as “File not found,” are easy to correct and retry, while others, such as running out of memory,
might be more difficult for the application or the user to correct.

To handle exceptions effectively, you need to understand the following:
Creating an exception handler
Exception handling statements
Using the exception instance
Scope of exception handlers
Providing default exception handlers
Handling classes of exceptions
Reraising the exception

 DevGuide: Building applications with Delphi

Exceptions and the flow of control
Topic groups

Object Pascal makes it easy to incorporate error handling into your applications because exceptions don't get in the
way of the normal flow of your code. In fact, by moving error checking and error handling out of the main flow of
your algorithms, exceptions can simplify the code you write.

When you declare a protected block, you define specific responses to exceptions that might occur within that block.
When an exception occurs in that block, execution immediately jumps to the response you defined, then leaves the
block.

Example: The following code that includes a protected block. If any exception occurs in the protected block,
execution jumps to the exception-handling part, which beeps. Execution resumes outside the block.

try
 AssignFile(F, FileName);
 Reset(F);
 ...
except
 on Exception do Beep;
end;
 ... { execution resumes here, outside the protected block }

 DevGuide: Building applications with Delphi

Nesting exception responses
Topic groups

Your code defines responses to exceptions that occur within blocks. Because Pascal allows you to nest blocks of
code inside other blocks, you can customize responses even within blocks that already contain customized
responses.

In the simplest case, for example, you can protect a resource allocation, and within that protected block, define
blocks that allocate and protect other resources. Conceptually, that might look something like this:

You can also use nested blocks to define local handling for specific exceptions that overrides the handling in the
surrounding block. Conceptually, that looks something like this:

You can also mix different kinds of exception-response blocks, nesting resource protections within exception handling
blocks and vice versa.

 DevGuide: Building applications with Delphi

Protecting resource allocations
Topic groups

One key to having a robust application is ensuring that if it allocates resources, it also releases them, even if an
exception occurs. For example, if your application allocates memory, you need to make sure it eventually releases
the memory, too. If it opens a file, you need to make sure it closes the file later.

Keep in mind that exceptions don't come just from your code. A call to an RTL routine, for example, or another
component in your application might raise an exception. Your code needs to ensure that if these conditions occur,
you release allocated resources.

To protect resources effectively, you need to understand the following:
What kind of resources need protection?
Creating a resource protection block

 DevGuide: Building applications with Delphi

What kind of resources need protection?
Topic groups

Under normal circumstances, you can ensure that an application frees allocated resources by including code for
both allocating and freeing. When exceptions occur, however, you need to ensure that the application still executes
the resource-freeing code.

Some common resources that you should always be sure to release are:
Files
Memory
Windows resources (VCL only)
Objects

Example: The following event handler allocates memory, then generates an error, so it never executes the
code to free the memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024); { allocate 1K of memory }
 AnInteger := 10 div ADividend; { this generates an error }
 FreeMem(APointer, 1024);{ it never gets here }
end;

Although most errors are not that obvious, the example illustrates an important point: When the division-by-zero
error occurs, execution jumps out of the block, so the FreeMem statement never gets to free the memory.

To guarantee that the FreeMem gets to free the memory allocated by GetMem, you need to put the code in a
resource-protection block.

 DevGuide: Building applications with Delphi

Creating a resource protection block
Topic groups

To ensure that you free allocated resources, even in case of an exception, you embed the resource-using code in a
protected block, with the resource-freeing code in a special part of the block. Here's an outline of a typical protected
resource allocation:

{ allocate the resource }
try
 { statements that use the resource }
finally
 { free the resource }
end;

The key to the try..finally block is that the application always executes any statements in the finally part of the
block, even if an exception occurs in the protected block. When any code in the try part of the block (or any routine
called by code in the try part) raises an exception, execution halts at that point. Once an exception handler is found,
execution jumps to the finally part, which is called the cleanup code. After the finally part is executed, the exception
handler is called. If no exception occurs, the cleanup code is executed in the normal order, after all the statements
in the try part.

Example: The following code illustrates an event handler that allocates memory and generates an error, but
still frees the allocated memory:

procedure TForm1.Button1Click(Sender: TComponent);
var
 APointer: Pointer;
 AnInteger, ADividend: Integer;
begin
 ADividend := 0;
 GetMem(APointer, 1024); { allocate 1K of memory }
 try
 AnInteger := 10 div ADividend; { this generates an error }
 finally
 FreeMem(APointer, 1024); { execution resumes here, despite the error }
 end;
end;

The statements in the finally block do not depend on an exception occurring. If no statement in the try part raises
an exception, execution continues through the finally block.

 DevGuide: Building applications with Delphi

Handling RTL exceptions
Topic groups

When you write code that calls routines in the runtime library (RTL), such as mathematical functions or file-handling
procedures, the RTL reports errors back to your application in the form of exceptions. By default, RTL exceptions
generate a message that the application displays to the user. You can define your own exception handlers to handle
RTL exceptions in other ways.

There are also silent exceptions that do not, by default, display a message.

RTL exceptions are handled like any other exceptions. To handle RTL exceptions effectively, you need to
understand the following:

What are RTL exceptions?
Creating an exception handler
Exception handling statements
Using the exception instance
Scope of exception handlers
Providing default exception handlers
Handling classes of exceptions
Reraising the exception

 DevGuide: Building applications with Delphi

What are RTL exceptions?
Topic groups

The runtime library's exceptions are defined in the SysUtils unit, and they all descend from a generic exception-
object type called Exception. Exception provides the string for the message that RTL exceptions display by default.

Several kinds of exceptions can be raised by the RTL, as described in the following table.

Error type Cause Meaning

Input/output Error accessing a file or I/O
device

Most I/O exceptions are related to error codes
returned when accessing a file.

Heap Error using dynamic
memory

Heap errors can occur when there is insufficient
memory available, or when an application disposes of
a pointer that points outside the heap.

Integer math Illegal operation on integer-
type expressions

Errors include division by zero, numbers or
expressions out of range, and overflows.

Floating-point math Illegal operation on real-
type expressions

Floating-point errors can come from either a hardware
coprocessor or the software emulator. Errors include
invalid instructions, division by zero, and overflow or
underflow.

Typecast Invalid typecasting with the
as operator

Objects can only be typecast to compatible types.

Conversion Invalid type conversion Type-conversion functions such as IntToStr, StrToInt,
and StrToFloat raise conversion exceptions when the
parameter cannot be converted to the desired type.

Hardware System condition Hardware exceptions indicate that either the
processor or the user generated some kind of error
condition or interruption, such as an access violation,
stack overflow, or keyboard interrupt.

Variant Illegal type coercion Errors can occur when referring to variants in
expressions where the variant cannot be coerced into
a compatible type.

For a list of the RTL exception types, see the code in the SysUtils unit.

 DevGuide: Building applications with Delphi

Creating an exception handler
Topic groups

An exception handler is code that handles a specific exception or exceptions that occur within a protected block of
code. In cross-platform programming, it is very rare that you will need to write an exception handler. Most
exceptions can be handled using try..finally blocks as described in Protecting blocks of code and Protecting
resource allocations.

To define an exception handler, embed the code you want to protect in an exception-handling block and specify the
exception handling statements in the except part of the block. Here is an outline of a typical exception-handling
block:

try
 { statements you want to protect }
except
 { exception-handling statements }
end;

The application executes the statements in the except part only if an exception occurs during execution of the
statements in the try part. Execution of the try part statements includes routines called by code in the try part. That
is, if code in the try part calls a routine that doesn't define its own exception handler, execution returns to the
exception-handling block, which handles the exception.

When a statement in the try part raises an exception, execution immediately jumps to the except part, where it
steps through the specified exception-handling statements, or exception handlers, until it finds a handler that
applies to the current exception.

Once the application locates an exception handler that handles the exception, it executes the statement, then
automatically destroys the exception object. Execution continues at the end of the current block.

 DevGuide: Building applications with Delphi

Exception handling statements
Topic groups

Each on statement in the except part of a try..except block defines code for handling a particular kind of exception.
The form of these exception-handling statements is as follows:

on <type of exception> do <statement>;

Example: You can define an exception handler for division by zero to provide a default result:
function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin
 try
 Result := Sum div NumberOfItems; { handle the normal case }
 except
 on EDivByZero do Result := 0; { handle the exception only if needed }
 end;
end;

Note that this is clearer than having to test for zero every time you call the function. Here's an equivalent function
that doesn't take advantage of exceptions:

function GetAverage(Sum, NumberOfItems: Integer): Integer;
begin
 if NumberOfItems <> 0 then { always test }
 Result := Sum div NumberOfItems{ use normal calculation }
 else Result := 0; { handle exceptional case }
end;

The difference between these two functions really defines the difference between programming with exceptions and
programming without them. This example is quite simple, but you can imagine a more complex calculation involving
hundreds of steps, any one of which could fail if one of dozens of inputs were invalid.

By using exceptions, you can spell out the “normal” expression of your algorithm, then provide for those exceptional
cases when it doesn't apply. Without exceptions, you have to test every single time to make sure you're allowed to
proceed with each step in the calculation.

 DevGuide: Building applications with Delphi

Using the exception instance
Topic groups

Most of the time, an exception handler doesn't need any information about an exception other than its type, so the
statements following on..do are specific only to the type of exception. In some cases, however, you might need
some of the information contained in the exception instance.

To read specific information about an exception instance in an exception handler, you use a special variation of
on..do that gives you access to the exception instance. The special form requires that you provide a temporary
variable to hold the instance.

Example: If you create a new project that contains a single form, you can add a scroll bar and a command
button to the form. Double-click the button and add the following line to its click-event handler:

ScrollBar1.Max := ScrollBar1.Min - 1;

That line raises an exception because the maximum value of a scroll bar must always exceed the minimum value.
The default exception handler for the application opens a dialog box containing the message in the exception
object. You can override the exception handling in this handler and create your own message box containing the
exception's message string:

try
 ScrollBar1.Max := ScrollBar1.Min - 1;
except
 on E: EInvalidOperation do
 MessageDlg('Ignoring exception: ' + E.Message, mtInformation, [mbOK], 0);
end;

The temporary variable (E in this example) is of the type specified after the colon (EInvalidOperation in this
example). You can use the as operator to typecast the exception into a more specific type if needed.

Note: Never destroy the temporary exception object. Handling an exception automatically destroys the exception
object. If you destroy the object yourself, the application attempts to destroy the object again, generating
an access violation.

 DevGuide: Building applications with Delphi

Scope of exception handlers
Topic groups

You do not need to provide handlers for every kind of exception in every block. In fact, you only need handlers for
exceptions that you want to handle specially within a particular block.

If a block does not handle a particular exception, execution leaves that block and returns to the block that contains
the block (or returns to the code that called the block), with the exception still raised. This process repeats with
increasingly broad scope until either execution reaches the outermost scope of the application or a block at some
level handles the exception.

 DevGuide: Building applications with Delphi

Providing default exception handlers
Topic groups

You can provide a single default exception handler to handle any exceptions you haven't provided specific handlers
for. To do that, you add an else part to the except part of the exception-handling block:

try
 { statements }
except
 on ESomething do
 { specific exception-handling code };
 else
 { default exception-handling code };
end;

Adding default exception handling to a block guarantees that the block handles every exception in some way,
thereby overriding all handling from the containing block.

Caution: It is not advisable to use this all-encompassing default exception handler. The else clause handles
all exceptions, including those you know nothing about. In general, your code should handle only
exceptions you actually know how to handle. If you want to handle cleanup and leave the exception
handling to code that has more information about the exception and how to handle it, then you can
do so use an enclosing try..finally block:

try
 try
 { statements }
 except
 on ESomething do { specific exception-handling code };
 end;
finally
 {cleanup code };
end;

For another approach to augmenting exception handling, see Reraising the exception.

 DevGuide: Building applications with Delphi

Handling classes of exceptions
Topic groups

Because exception objects are part of a hierarchy, you can specify handlers for entire parts of the hierarchy by
providing a handler for the exception class from which that part of the hierarchy descends.

Example: The following block outlines an example that handles all integer math exceptions specially:
try
 { statements that perform integer math operations }
except
 on EIntError do { special handling for integer math errors };
end;

You can still specify specific handlers for more specific exceptions, but you need to place those handlers above the
generic handler, because the application searches the handlers in the order they appear in, and executes the first
applicable handler it finds. For example, this block provides special handling for range errors, and other handling for
all other integer math errors:

try
 { statements performing integer math }
except
 on ERangeError do { out-of-range handling };
 on EIntError do { handling for other integer math errors };
end;

Note that if the handler for EIntError came before the handler for ERangeError, execution would never reach the
specific handler for ERangeError.

 DevGuide: Building applications with Delphi

Reraising the exception
Topic groups

Sometimes when you handle an exception locally, you actually want to augment the handling in the enclosing block,
rather than replacing it. Of course, when your local handler finishes its handling, it destroys the exception instance,
so the enclosing block's handler never gets to act. You can, however, prevent the handler from destroying the
exception, giving the enclosing handler a chance to respond.

Example: When an exception occurs, you might want to display a message to the user or record the error in a
log file, then proceed with the standard handling. To do that, you declare a local exception handler
that displays the message then calls the reserved word raise. This is called reraising the exception,
as shown in this example:

try
 { statements }
 try
 { special statements }
 except
 on ESomething do
 begin
 { handling for only the special statements }
 raise; { reraise the exception }
 end;
 end;
except
 on ESomething do ...; { handling you want in all cases }
end;

If code in the { statements } part raises an ESomething exception, only the handler in the outer except part
executes. However, if code in the { special statements } part raises ESomething, the handling in the inner except
part is executed, followed by the more general handling in the outer except part.

By reraising exceptions, you can easily provide special handling for exceptions in special cases without losing (or
duplicating) the existing handlers.

 DevGuide: Building applications with Delphi

Handling component exceptions
Topic groups

Delphi's components raise exceptions to indicate error conditions. Most component exceptions indicate
programming errors that would otherwise generate a runtime error. The mechanics of handling component
exceptions are no different than handling RTL exceptions.

Example: A common source of errors in components is range errors in indexed properties. For example, if a
list box has three items in its list (0..2) and your application attempts to access item number 3, the
list box raises a “List index out of bounds” exception.

The following event handler contains an exception handler to notify the user of invalid index access in a list box:

procedure TForm1.Button1Click(Sender: TObject);
begin
 ListBox1.Items.Add('a string'); { add a string to list box }
 ListBox1.Items.Add('another string'); { add another string... }
 ListBox1.Items.Add('still another string'); { ...and a third string }
 try
 Caption := ListBox1.Items[3]; { set form caption to fourth string in list
box }
 except
 on EStringListError do
 MessageDlg('List box contains fewer than four strings', mtWarning, [mbOK], 0);
 end;
end;

If you click the button once, the list box has only three strings, so accessing the fourth string (Items[3]) raises an
exception. Clicking a second time adds more strings to the list, so it no longer causes the exception.

 DevGuide: Building applications with Delphi

Exception handling with external sources
Topic groups

HandleException provides default handling of exceptions for the application. Normally when developing cross-
platform applications, you do not need to call TApplication.HandleException. However, you may need it when writing
shared object files or callback functions. You can use TApplication.HandleException to block an exception from
escaping from your code particularly when the code is being called from an external source that does not support
exceptions.

For example, if an exception passes through all the try blocks in the application code, the application automatically
calls the HandleException method, which displays a dialog box indicating that an error has occurred. You can use
HandleException in this fashion:

 try
 { statements }
 except
 Application.HandleException(Self);
 end;

For all exceptions but EAbort, HandleException calls the OnException event handler, if one exists. Therefore, if you
want to both handle the exception, and provide this default behavior as the built-in components do, you can add a
call to HandleException to your code:

 try
 { special statements }
 except
 on ESomething do
 begin
 { handling for only the special statements }
 Application.HandleException(Self); { call HandleException }
 end;
 end;

Note: Do not call HandleException from within a thread’s exception handling code.
For more information, search for exception handling routines in the Help index.

 DevGuide: Building applications with Delphi

Silent exceptions
Topic groups

Delphi applications handle most exceptions that your code doesn't specifically handle by displaying a message box
that shows the message string from the exception object. You can also define “silent” exceptions that do not, by
default, cause the application to show the error message.

Silent exceptions are useful when you don't intend to report an exception to the user, but you want to abort an
operation. Aborting an operation is similar to using the Break or Exit procedures to break out of a block, but can
break out of several nested levels of blocks.

Silent exceptions all descend from the standard exception type EAbort. The default exception handler for Delphi
VCL and CLX applications displays the error-message dialog box for all exceptions that reach it except those
descended from EAbort.

Note: For console applications, an error-message dialog is displayed on any unhandled EAbort exceptions.
There is a shortcut for raising silent exceptions. Instead of manually constructing the object, you can call the Abort
procedure. Abort automatically raises an EAbort exception, which will break out of the current operation without
displaying an error message.

Example: The following code shows a simple example of aborting an operation. On a form containing an
empty list box and a button, attach the following code to the button's OnClick event:

procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 for I := 1 to 10 do { loop ten times }
 begin
 ListBox1.Items.Add(IntToStr(I)); { add a numeral to the list }
 if I = 7 then Abort; { abort after the seventh one }
 end;
end;

 DevGuide: Building applications with Delphi

Defining your own exceptions
Topic groups

In addition to protecting your code from exceptions generated by the runtime library and various components, you
can use the same mechanism to manage exception conditions in your own code.

To use exceptions in your code, you need to complete these steps:
Declaring an exception object type
Raising an exception

 DevGuide: Building applications with Delphi

Declaring an exception object type
Topic groups

Because exceptions are objects, defining a new kind of exception is as simple as declaring a new object type.
Although you can raise any object instance as an exception, the standard exception handlers handle only
exceptions descended from Exception.

As a convention, new exception types should be derived from Exception or one of the other standard exceptions.
That way, if you raise your new exception in a block of code that isn't protected by a specific exception handler for
that exception, one of the standard handlers will handle it instead.

Example: For example, consider the following declaration:
type
 EMyException = class(Exception);

If you raise EMyException but don't provide a specific handler for it, a handler for Exception (or a default exception
handler) will still handle it. Because the standard handling for Exception displays the name of the exception raised,
you can see that it is your new exception that is raised.

 DevGuide: Building applications with Delphi

Raising an exception
Topic groups

To indicate a disruptive error condition in an application, you can raise an exception that involves constructing an
instance of that type and calling the reserved word raise.

To raise an exception, call the reserved word raise, followed by an instance of an exception object. This allows you
to establish an exception as coming from a particular address. When an exception handler actually handles the
exception, it finishes by destroying the exception instance, so you never need to do that yourself.

Raising an exception address set the ErrorAddr variable in the System unit to the address where the application
raised the exception. You can refer to ErrorAddr in your exception handlers, for example, to notify the user where
the error occurred. You can also specify a value in the raise clause which will appear in ErrorAddr when an
exception occurs.

Warning: Do not assign a value to ErrorAddr yourself. It is intended as read-only.
To specify an error address for an exception, add the reserved word at after the exception instance, followed by an
address expression such as an identifier.

For example, given the following declaration,

type
 EPasswordInvalid = class(Exception);

you can raise a “password invalid” exception at any time by calling raise with an instance of EPasswordInvalid, like
this:

if Password <> CorrectPassword then
 raise EPasswordInvalid.Create('Incorrect password entered');

 DevGuide: Building applications with Delphi

Using interfaces
Topic groups

Delphi’s interface keyword allows you to create and use interfaces in your application. Interfaces are a way
extending the single-inheritance model of Object Pascal by allowing a single class to implement more than one
interface, and by allowing several classes descended from different bases to share the same interface. Interfaces
are useful when the same sets of operations, such as streaming, are used across a broad range of objects.
Interfaces are also a fundamental aspect of the COM (the Component Object Model) and CORBA (Common Object
Request Broker Architecture) distributed object models.

 DevGuide: Building applications with Delphi

Interfaces as a language feature
Topic groups

An interface is like a class that contains only abstract methods and a clear definition of their functionality. Strictly
speaking, interface method definitions include the number and types of their parameters, their return type, and their
expected behavior. Interface methods are usually named to indicate the purpose of the interface. It is the
convention to name interfaces according to their behavior and to preface them with a capital I. For example, an
IMalloc interface would allocate, free, and manage memory. Similarly, an IPersist interface could be used as a
general base interface for descendants, each of which defines specific method prototypes for loading and saving
the state of an object to a storage, stream, or file.

An interface has the following syntax:

IMyObject = interface
 procedure MyProcedure;
end;

A simple example of declaring an interface is:

type
IEdit = interface
 procedure Copy;
 procedure Cut;
 procedure Paste;
 function Undo: Boolean;
end;

Like abstract classes, interfaces themselves can never be instantiated. To use an interface, you need to obtain it
from an implementing class.

To implement an interface, you must define a class that declares the interface in its ancestor list, indicating that it
will implement all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
 procedure Copy;
 procedure Cut;
 procedure Paste;
 function Undo: Boolean;
end;

While interfaces define the behavior and signature of their methods, they do not define the implementations. As long
as the class’s implementation conforms to the interface definition, the interface is fully polymorphic, meaning that
accessing and using the interface is the same for any implementation of it.

 DevGuide: Building applications with Delphi

Implementing interfaces across the hierarchy
Topic groups

Using interfaces offers a design approach to separating the way a class is used from the way it is implemented. Two
classes can implement the same interface without requiring that they descend from the same base class. This
polymorphic invocation of the same methods on unrelated objects is possible as long as the objects implement the
same interface. For example, consider the interface,

IPaint = interface
 procedure Paint;
end;

and the two classes,

TSquare = class(TPolygonObject, IPaint)
 procedure Paint;
end;
TCircle = class(TCustomShape, IPaint)
 procedure Paint;
end;

Whether or not the two classes share a common ancestor, they are still assignment compatible with a variable of
IPaint as in

var
 Painter: IPaint;
begin
 Painter := TSquare.Create;
 Painter.Paint;
 Painter := TCircle.Create;
 Painter.Paint;
end;

This could have been accomplished by having TCircle and TSquare descend from say, TFigure which implemented
a virtual method Paint. Both TCircle and TSquare would then have overridden the Paint method. The above IPaint
would be replaced by TFigure. However, consider the following interface:

IRotate = interface
 procedure Rotate(Degrees: Integer);
end;

which makes sense for the rectangle to support but not the circle. The classes would look like

TSquare = class(TRectangularObject, IPaint, IRotate)
 procedure Paint;
 procedure Rotate(Degrees: Integer);
end;
TCircle = class(TCustomShape, IPaint)
 procedure Paint;
end;

Later, you could create a class TFilledCircle that implements the IRotate interface to allow rotation of a pattern used
to fill the circle without having to add rotation to the simple circle.

Note: For these examples, the immediate base class or an ancestor class is assumed to have implemented the
methods of IInterface that manage reference counting. For more information, see Implementing IInterface
and Memory management of interface objects.

 DevGuide: Building applications with Delphi

Using interfaces with procedures
Topic groups

Interfaces also allow you to write generic procedures that can handle objects without requiring the objects to
descend from a particular base class. Using the above IPaint and IRotate interfaces you can write the following
procedures,

procedure PaintObjects(Painters: array of IPaint);
var
 I: Integer;
begin
 for I := Low(Painters) to High(Painters) do
 Painters[I].Paint;
end;
procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var
 I: Integer;
begin
 for I := Low(Rotaters) to High(Rotaters) do
 Rotaters[I].Rotate(Degrees);
end;

RotateObjects does not require that the objects know how to paint themselves and PaintObjects does not require
the objects know how to rotate.    This allows the above generic procedures to be used more often than if they were
written to only work against a TFigure class.

For details about the syntax, language definitions and rules for interfaces, see the Object Pascal Language Guide
online Help section on Object interfaces.

 DevGuide: Building applications with Delphi

Implementing IInterface
Topic groups

All interfaces derive either directly or indirectly from the IInterface interface. This interface provides the essential
functionality of an interface, that is, dynamic querying and lifetime management. This functionality is established in
the three IInterface methods:

QueryInterface provides a method for dynamically querying a given object and obtaining interface
references for the interfaces the object supports.

_AddRef is a reference counting method that increments the count each time the call to QueryInterface
succeeds. While the reference count is nonzero the object must remain in memory.

_Release is used with _AddRef to enable an object to track its own lifetime and to determine when it is safe
to delete itself. Once the reference count reaches zero, the object is freed from memory.
Every class that implements interfaces must implement the three IInterface methods, as well as all of the methods
declared by any other ancestor interfaces, and all of the methods declared by the interface itself. You can, however,
inherit the implementations of methods of interfaces declared in your class.

By implementing these methods yourself, you can provide an alternative means of life-time management, disabling
reference-counting. This is a powerful technique that lets you decouple interfaces from reference-counting.

 DevGuide: Building applications with Delphi

TInterfacedObject
Topic groups

Delphi defines a simple class, TInterfacedObject, that serves as a convenient base because it implements the
methods of IInterface. TInterfacedObject class is declared in the System unit as follows:

type
 TInterfacedObject = class(TObject, IInterface)
 protected
 FRefCount: Integer;
 function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
 function _AddRef: Integer; stdcall;
 function _Release: Integer; stdcall;
 public
 procedure AfterConstruction; override;
 procedure BeforeDestruction; override;
 class function NewInstance: TObject; override;
 property RefCount: Integer read FRefCount;
 end;

Deriving directly from TInterfacedObject is straightforward. In the following example declaration, TDerived is a direct
descendant of TInterfacedObject and implements a hypothetical IPaint interface.

type
 TDerived = class(TInterfacedObject, IPaint)
 ...
 end;

Because it implements the methods of IInterface, TInterfacedObject automatically handles reference counting and
memory management of interfaced objects. For more information, see Memory management of interface objects,
which also discusses writing your own classes that implement interfaces but that do not follow the reference-
counting mechanism inherent in TInterfacedObject.

 DevGuide: Building applications with Delphi

Using the as operator
Topic groups

Classes that implement interfaces can use the as operator for dynamic binding on the interface. In the following
example:

procedurePaintObjects(P: TInterfacedObject)
var
 X: IPaint;
begin
 X := P as IPaint;
{ statements }
end;

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an IPaint interface reference.
Dynamic binding makes this assignment possible. For this assignment, the compiler generates code to call the
QueryInterface method of P’s IInterface interface. This is because the compiler cannot tell from P’s declared type
whether P’s instance actually supports IPaint. At runtime, P either resolves to an IPaint reference or an exception is
raised. In either case, assigning P to X will not generate a compile-time error as it would if P was of a class type that
did not implement IInterface.

When you use the as operator for dynamic binding on an interface, you should be aware of the following
requirements:

Explicitly declaring IInterface: Although all interfaces derive from IInterface, it is not sufficient, if you want to
use the as operator, for a class to simply implement the methods of IInterface. This is true even if it also implements
the interfaces it explicitly declares. The class must explicitly declare IInterface in its interface list.

Using an IID: Interfaces can use an identifier that is based on a GUID (globally unique identifier). GUIDs that
are used to identify interfaces are referred to as interface identifiers (IIDs). If you are using the as operator with an
interface, it must have an associated IID. To create a new GUID in your source code you can use the Ctrl+Shift+G
editor shortcut key.

 DevGuide: Building applications with Delphi

Reusing code and delegation
Topic groups

One approach to reusing code with interfaces is to have an object contain, or be contained by another. Using
properties that are object types provides an approach to containment and code reuse. To support this design for
interfaces, Object Pascal has a keyword implements, that makes if easy to write code to delegate all or part of the
implementation of an interface to a subobject. Aggregation is another way of reusing code through containment and
delegation. In aggregation, an outer object contains an inner object that implements interfaces which are exposed
only by the outer object. The VCL and CLX have classes that support aggregation.

 DevGuide: Building applications with Delphi

Using implements for delegation
Topic groups

Many classes have properties that are subobjects. You can also use interfaces as property types. When a property
is of an interface type (or a class type that implements the methods of an interface) you can use the keyword
implements to specify that the methods of that interface are delegated to the object or interface reference which is
the property instance. The delegate only needs to provide implementation for the methods. It does not have to
declare the interface support. The class containing the property must include the interface in its ancestor list.

By default using the keyword implements delegates all interface methods. However, you can use methods
resolution clauses or declare methods in your class that implement some of the interface methods as a way of
overriding this default behavior.

The following example uses the implements keyword in the design of a color adapter object that converts an 8-bit
RGB color value to a Color reference:

unit cadapt;
type
IRGB8bit = interface
 ['{1d76360a-f4f5-11d1-87d4-00c04fb17199}']
 function Red: Byte;
 function Green: Byte;
 function Blue: Byte;
 end;
IColorRef = interface
 ['{1d76360b-f4f5-11d1-87d4-00c04fb17199}']
 function Color: Integer;
 end;
{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
 TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef)
 private
 FRGB8bit: IRGB8bit;
 FPalRelative: Boolean;
 public
 constructor Create(rgb: IRGB8bit);
 property RGB8Intf: IRGB8bit read FRGB8bit implements IRGB8bit;
 property PalRelative: Boolean read FPalRelative write FPalRelative;
 function Color: Integer;
 end;
implementation
constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8bit);
begin
 FRGB8bit := rgb;
end;
function TRGB8ColorRefAdapter.Color: Integer;
begin
 if FPalRelative then
 Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)
 else
 Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);
end;
end.

For more information about the syntax, implementation details, and language rules of the implements keyword, see
the Object Pascal Language Guide online Help section on Object interfaces.

 DevGuide: Building applications with Delphi

Aggregation
Topic groups

Aggregation offers a modular approach to code reuse through sub-objects that define the functionality of a
containing object, but that hide the implementation details from that object. In aggregation, an outer object
implements one or more interfaces. The only requirement is that it implement IInterface. The inner object, or
objects, can implement one or more interfaces, however only the outer object exposes the interfaces. These include
both the interfaces it implements and the ones implemented by its contained objects. Clients know nothing about
inner objects. While the outer object provides access to the inner object interfaces, their implementation is
completely transparent. Therefore, the outer object class can exchange the inner object class type for any class that
implements the same interface. Correspondingly, the code for the inner object classes can be shared by other
classes that want to use it.

The implementation model for aggregation defines explicit rules for implementing IInterface using delegation. The
inner object must implement an IInterface on itself, that controls the inner object’s reference count. This
implementation of IInterface tracks the relationship between the outer and the inner object. For example, when an
object of its type (the inner object) is created, the creation succeeds only for a requested interface of type IInterface.
The inner object also implements a second IInterface for all the interfaces it implements. These are the interfaces
exposed by the outer object. This second IInterface delegates calls to QueryInterface, AddRef, and Release to the
outer object. The outer IInterface is referred to as the “controlling Unknown.”

Refer to the MS online help for the rules about creating an aggregation. When writing your own aggregation
classes, you can also refer to the implementation details of IInterface in TComObject. TComObject is a COM class
that supports aggregation. If you are writing COM applications, you can also use TComObject directly as a base
class.

 DevGuide: Building applications with Delphi

Memory management of interface objects
Topic groups

One of the concepts behind the design of interfaces is ensuring the lifetime management of the objects that
implement them. The _AddRef and _Release methods of IInterface provide a way to implement this lifetime
management. _AddRef and _Release track the lifetime of an object by incrementing the reference count on the
object when an interface reference is passed to a client, and will destroy the object when that reference count is
zero.

If you are creating COM objects for distributed applications (in the Windows environment only), then you should
strictly adhere to the reference counting rules. However, if you are using interfaces only internally in your
application, then you have a choice that depends upon the nature of your object and how you decide to use it.

 DevGuide: Building applications with Delphi

Using reference counting
Topic groups See also

Delphi provides most of the IInterface memory management for you by its implementation of interface querying and
reference counting. Therefore, if you have an object that lives and dies by its interfaces, you can easily use
reference counting by deriving from these classes. TInterfacedObject is the non-CoClass that provides this
behavior. If you decide to use reference counting, then you must be careful to only hold the object as an interface
reference, and to be consistent in your reference counting. For example:

procedure beep(x: ITest);
function test_func()
var
 y: ITest;
begin
 y := TTest.Create; // because y is of type ITest, the reference count is one
 beep(y); // the act of calling the beep function increments the reference count
 // and then decrements it when it returns
 y.something; // object is still here with a reference count of one
end;

This is the cleanest and safest approach to memory management; and if you use TInterfacedObject it is handled
automatically. If you do not follow this rule, your object can unexpectedly disappear, as demonstrated in the
following code:

function test_func()
var
 x: TTest;
begin
 x := TTest.Create; // no count on the object yet
 beep(x as ITest); // count is incremented by the act of calling beep
 // and decremented when it returns
 x.something; // surprise, the object is gone
end;

Note: In the examples above, the beep procedure, as it is declared, increments the reference count (call
_AddRef) on the parameter, whereas either of the following declarations do not:

procedure beep(const x: ITest);

or

procedure beep(var x: ITest);

These declarations generate smaller, faster code.

One case where you cannot use reference counting, because it cannot be consistently applied, is if your object is a
component or a control owned by another component. In that case, you can still use interfaces, but you should not
use reference counting because the lifetime of the object is not dictated by its interfaces.

 DevGuide: Building applications with Delphi

Not using reference counting
Topic groups See also

If your object is a component or a control that is owned by another component, then your object is part of a different
memory management system that is based in TComponent. You should not mix the object lifetime management
approaches of VCL or CLX components and interface reference counting. If you want to create a component that
supports interfaces, you can implement the IInterface _AddRef and _Release methods as empty functions to
bypass the interface reference counting mechanism:

function TMyObject._AddRef: Integer;
begin
 Result := -1;
end;
function TMyObject._Release: Integer;
begin
 Result := -1;
end;

You would still implement QueryInterface as usual to provide dynamic querying on your object.

Note that, because you do implement QueryInterface, you can still use the as operator for interfaces on
components, as long as you create an interface identifier (IID). You can also use aggregation. If the outer object is a
component, the inner object implements reference counting as usual, by delegating to the “controlling Unknown.” It
is at the level of the outer, component object that the decision is made to circumvent the _AddRef and _Release
methods, and to handle memory management via the component-based approach. In fact, you can use
TInterfacedObject as a base class for an inner object of an aggregation that has a component as its containing
outer object.

Note: The “controlling Unknown” is the IUnknown implemented by the outer object and the one for which the
reference count of the entire object is maintained. IUnknown is the same as IInterface, but is used instead
in COM-based applications (Windows only). For more information distinguishing the various
implementations of the IUnknown or IInterface interface by the inner and outer objects, see Aggregation
and the Microsoft online Help topics on the “controlling Unknown.”

 DevGuide: Building applications with Delphi

Using interfaces in distributed applications (VCL only)
Topic groups

Interfaces are a fundamental element in the COM, SOAP, and CORBA distributed object models. Delphi provides
base classes for these technologies that extend the basic interface functionality in TInterfacedObject, which simply
implements the IInterface interface methods.

When using COM, classes and interfaces are defined in terms of IUnknown rather than IInterface. There is no
semantic difference between IUnknown and IInterface, the use of IUnknown is simply a way to adapt Delphi
interfaces to the COM definition. COM classes add functionality for using class factories and class identifiers
(CLSIDs). Class factories are responsible for creating class instances via CLSIDs. The CLSIDs are used to register
and manipulate COM classes. COM classes that have class factories and class identifiers are called CoClasses.
CoClasses take advantage of the versioning capabilities of QueryInterface, so that when a software module is
updated QueryInterface can be invoked at runtime to query the current capabilities of an object.

New versions of old interfaces, as well as any new interfaces or features of an object, can become immediately
available to new clients. At the same time, objects retain complete compatibility with existing client code; no
recompilation is necessary because interface implementations are hidden (while the methods and parameters
remain constant). In COM applications, developers can change the implementation to improve performance, or for
any internal reason, without breaking any client code that relies on that interface. For more information about COM
interfaces, see Overview of COM technologies.

When distributing an application using SOAP, interfaces are required to carry their own runtime type information
(RTTI). The compiler only adds RTTI to an interface when it is compiled using the {$M+} switch. Such interfaces are
called invokable interfaces. The descendant of any invokable interface is also invokable. However, if an invokable
interface descends from another interface that is not invokable, client applications can only call the methods defined
in the invokable interface and its descendants. Methods inherited from the non-invokable ancestors are not
compiled with type information and so can’t be called by clients.

The easiest way to define invokable interfaces is to define your interface so that it descends from IInvokable.
IInvokable is the same as IInterface, except that it is compiled using the {$M+} switch. For more information about
Web Service applications that are distributed using SOAP, and about invokable interfaces, see Using Web Services.

Another distributed application technology is CORBA. The use of interfaces in CORBA applications is mediated by
stub classes on the client and skeleton classes on the server. These stub and skeleton classes handle the details of
marshaling interface calls so that parameter values and return values can be transmitted correctly. Applications
must use either a stub or skeleton class, or employ the Dynamic Invocation Interface (DII) which converts all
parameters to special variants (so that they carry their own type information).

 DevGuide: Building applications with Delphi

Defining custom variants
Topic groups See also

One powerful built-in type of the Object Pascal language is the Variant type. Variants represent values whose type
is not determined at compile time. Instead, the type of their value can change at runtime. Variants can mix with
other variants and with integer, real, string, and boolean values in expressions and assignments; the compiler
automatically performs type conversions.

By default, variants can’t hold values that are records, sets, static arrays, files, classes, class references, or
pointers. You can, however, extend the Variant type to work with any particular example of these types. All you need
to do is create a descendant of the TCustomVariantType class that indicates how the Variant type performs
standard operations.

To create a Variant type,
1 Map the storage of the variant’s data on to the TVarData record.
2 Declare a class that descends from TCustomVariantType . Implement all required behavior (including type

conversion rules) in the new class.
3 Write utility methods for creating instances of your custom variant and recognizing its type.

The above steps extend the Variant type so that the standard operators work with your new type and the new
Variant type can be cast to other data types. You can further enhance your new Variant type so that it supports
properties and methods that you define. When creating a Variant type that supports properties or methods, you use
TInvokeableVariantType or TPublishableVariantType as a base class rather than TCustomVariantType.

 DevGuide: Building applications with Delphi

Storing a custom variant type’s data
Topic groups See also

Variants store their data in the TVarData record type. This type is a record that contains 16 bytes. The first Word
indicates the type of the variant, and the remaining 14 bytes are available to store the data. While your new Variant
type can work directly with a TVarData record, it is usually easier to define a record type whose members have
names that are meaningful for your new type, and cast that new type onto the TVarData record type.

For example, the VarConv unit defines a custom variant type that represents a measurement. The data for this type
includes the units (TConvType) of measurement, as well as the value (a double). The VarConv unit defines its own
type to represent such a value:

TConvertVarData = packed record
 VType: TVarType;
 VConvType: TConvType;
 Reserved1, Reserved2: Word;
 VValue: Double;
end;

This type is exactly the same size as the TVarData record. When working with a custom variant of the new type, the
variant (or its TVarData record) can be cast to TConvertVarData, and the custom Variant type simply works with the
TVarData record as if it were a TConvertVarData type.

Note: When defining a record that maps onto the TVarData record in this way, be sure to define it as a packed
record.

If your new custom Variant type needs more than 14 bytes to store its data, you can define a new record type that
includes a pointer or object instance. For example, the VarCmplx unit uses an instance of the class TComplexData
to represent the data in a complex-valued variant. It therefore defines a record type the same size as TVarData that
includes a reference to a TComplexData object:

TComplexVarData = packed record
 VType: TVarType;
 Reserved1, Reserved2, Reserved3: Word;
 VComplex: TComplexData;
 Reserved4: LongInt;
end;

Object references are actually pointers (two Words), so this type is the same size as the TVarData record. As
before, a complex custom variant (or its TVarData record), can be cast to TComplexVarData, and the custom
variant type works with the TVarData record as if it were a TComplexVarData type.

 DevGuide: Building applications with Delphi

Creating a class to enable the custom variant type
Topic groups See also

Custom variants work by using a special helper class that indicates how variants of the custom type can perform
standard operations. You create this helper class by writing a descendant of TCustomVariantType. This involves
overriding the appropriate virtual methods of TCustomVariantType.

The following topics provide details on how to implement and use a TCustomVariantType descendant:
Enabling casting
Implementing binary operations
Implementing comparison operations
Implementing unary operations
Copying and clearing custom variants
Loading and saving custom variant values
Using the TCustomVariantType descendant

 DevGuide: Building applications with Delphi

Enabling casting
Topic groups See also

One of the most important features of the custom variant type for you to implement is typecasting. The flexibility of
variants arises, in part, from their implicit typecasts.

There are two methods for you to implement that enable the custom Variant type to perform typecasts: Cast, which
converts another variant type to your custom variant, and CastTo, which converts your custom Variant type to
another type of Variant.

When implementing either of these methods, it is relatively easy to perform the logical conversions from the built-in
variant types. You must consider, however, the possibility that the variant to or from which you are casting may be
another custom Variant type. To handle this situation, you can try casting to one of the built-in Variant types as an
intermediate step.

For example, the following Cast method, from the TComplexVariantType class uses the type Double as an
intermediate type:

procedure TComplexVariantType.Cast(var Dest: TVarData; const Source: TVarData);
var
 LSource, LTemp: TVarData;
begin
 VarDataInit(LSource);
 try
 VarDataCopyNoInd(LSource, Source);
 if VarDataIsStr(LSource) then
 TComplexVarData(Dest).VComplex := TComplexData.Create(VarDataToStr(LSource))
 else
 begin
 VarDataInit(LTemp);
 try
 VarDataCastTo(LTemp, LSource, varDouble);
 TComplexVarData(Dest).VComplex := TComplexData.Create(LTemp.VDouble, 0);
 finally
 VarDataClear(LTemp);
 end;
 end;
 Dest.VType := VarType;
 finally
 VarDataClear(LSource);
 end;
end;

In addition to the use of Double as an intermediate Variant type, there are a few things to note in this
implementation:

The last step of this method sets the VType member of the returned TVarData record. This member gives
the Variant type code. It is set to the VarType property of TComplexVariantType, which is the Variant type code
assigned to the custom variant.

The custom variant’s data (Dest) is typecast from TVarData to the record type that is actually used to store
its data (TComplexVarData). This makes the data easier to work with.

The method makes a local copy of the source variant rather than working directly with its data. This prevents
side effects that may affect the source data.
When casting from a complex variant to another type, the CastTo method also uses an intermediate type of Double
(for any destination type other than a string):

procedure TComplexVariantType.CastTo(var Dest: TVarData; const Source: TVarData;
 const AVarType: TVarType);
var
 LTemp: TVarData;
begin
 if Source.VType = VarType then
 case AVarType of
 varOleStr:
 VarDataFromOleStr(Dest, TComplexVarData(Source).VComplex.AsString);
 varString:
 VarDataFromStr(Dest, TComplexVarData(Source).VComplex.AsString);

 else
 VarDataInit(LTemp);
 try
 LTemp.VType := varDouble;
 LTemp.VDouble := TComplexVarData(LTemp).VComplex.Real;
 VarDataCastTo(Dest, LTemp, AVarType);
 finally
 VarDataClear(LTemp);
 end;
 end
 else
 RaiseCastError;
end;

Note that the CastTo method includes a case where the source variant data does not have a type code that
matches the VarType property. This case only occurs for empty (unassigned) source variants.

 DevGuide: Building applications with Delphi

Implementing binary operations
Topic groups See also

To allow the custom variant type to work with standard binary operators (+, -, *, /, div, mod, shl, shr, and, or, xor
listed in the System unit), you must override the BinaryOp method. BinaryOp has three parameters: the value of the
left-hand operand, the value of the right-hand operand, and the operator. Implement this method to perform the
operation and return the result using the same variable that contained the left-hand operand.

For example, the following BinaryOp method comes from the TComplexVariantType defined in the VarCmplx unit:

procedure TComplexVariantType.BinaryOp(var Left: TVarData; const Right: TVarData;
 const Operator: TVarOp);
begin
 if Right.VType = VarType then
 case Left.VType of
 varString:
 case Operator of
 opAdd: Variant(Left) := Variant(Left) +
TComplexVarData(Right).VComplex.AsString;
 else
 RaiseInvalidOp;
 end;
 else
 if Left.VType = VarType then
 case Operator of
 opAdd:
 TComplexVarData(Left).VComplex.DoAdd(TComplexVarData(Right).VComplex);
 opSubtract:

TComplexVarData(Left).VComplex.DoSubtract(TComplexVarData(Right).VComplex);
 opMultiply:

TComplexVarData(Left).VComplex.DoMultiply(TComplexVarData(Right).VComplex);
 opDivide:

TComplexVarData(Left).VComplex.DoDivide(TComplexVarData(Right).VComplex);
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

There are several things to note in this implementation:

This method only handles the case where the variant on the right side of the operator is a custom variant that
represents a complex number. If the left-hand operand is a complex variant and the right-hand operand is not, the
complex variant forces the right-hand operand first to be cast to a complex variant. It does this by overriding the
RightPromotion method so that it always requires the type in the VarType property:

function TComplexVariantType.RightPromotion(const V: TVarData;
 const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
 { Complex Op TypeX }
 RequiredVarType := VarType;
 Result := True;
end;

The addition operator is implemented for a string and a complex number (by casting the complex value to a string
and concatenating), and the addition, subtraction, multiplication, and division operators are implemented for two
complex numbers using the methods of the TComplexData object that is stored in the complex variant’s data. This
is accessed by casting the TVarData record to a TComplexVarData record and using its VComplex member.

Attempting any other operator or combination of types causes the method to call the RaiseInvalidOp method, which

causes a runtime error. The TCustomVariantType class includes a number of utility methods such as
RaiseInvalidOp that can be used in the implementation of custom variant types.

BinaryOp only deals with a limited number of types: strings and other complex variants. It is possible, however, to
perform operations between complex numbers and other numeric types. For the BinaryOp method to work, the
operands must be cast to complex variants before the values are passed to this method. We have already seen
(above) how to use the RightPromotion method to force the right-hand operand to be a complex variant if the left-
hand operand is complex. A similar method, LeftPromotion, forces a cast of the left-hand operand when the right-
hand operand is complex:

function TComplexVariantType.LeftPromotion(const V: TVarData;
 const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
 { TypeX Op Complex }
 if (Operator = opAdd) and VarDataIsStr(V) then
 RequiredVarType := varString
 else
 RequiredVarType := VarType;
 Result := True;
end;

This LeftPromotion method forces the left-hand operand to be cast to another complex variant, unless it is a string
and the operation is addition, in which case LeftPromotion allows the operand to remain a string.

 DevGuide: Building applications with Delphi

Implementing comparison operations
Topic groups See also

There are two ways to enable a custom variant type to support comparison operators (=, <>, <, <=, >, >=). You can
override the Compare method, or you can override the CompareOp method.

The Compare method is easiest if your custom variant type supports the full range of comparison operators.
Compare takes three parameters: the left-hand operand, the right-hand operand, and a var Parameter that returns
the relationship between the two. For example, the TConvertVariantType object in the VarConv unit implements the
following Compare method:

procedure TConvertVariantType.Compare(const Left, Right: TVarData;
 var Relationship: TVarCompareResult);
const
 CRelationshipToRelationship: array [TValueRelationship] of TVarCompareResult =
 (crLessThan, crEqual, crGreaterThan);
var
 LValue: Double;
 LType: TConvType;
 LRelationship: TValueRelationship;
begin
 // supports...
 // convvar cmp number
 // Compare the value of convvar and the given number
 // convvar1 cmp convvar2
 // Compare after converting convvar2 to convvar1's unit type
 // The right can also be a string. If the string has unit info then it is
 // treated like a varConvert else it is treated as a double
 LRelationship := EqualsValue;
 case Right.VType of
 varString:
 if TryStrToConvUnit(Variant(Right), LValue, LType) then
 if LType = CIllegalConvType then
 LRelationship := CompareValue(TConvertVarData(Left).VValue, LValue)
 else
 LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,
 TConvertVarData(Left).VConvType,
LValue, LType)
 else
 RaiseCastError;
 varDouble:
 LRelationship := CompareValue(TConvertVarData(Left).VValue,
TVarData(Right).VDouble);
 else
 if Left.VType = VarType then
 LRelationship := ConvUnitCompareValue(TConvertVarData(Left).VValue,
 TConvertVarData(Left).VConvType,
TConvertVarData(Right).VValue,
 TConvertVarData(Right).VConvType)
 else
 RaiseInvalidOp;
 end;
 Relationship := CRelationshipToRelationship[LRelationship];
end;

If the custom type does not support the concept of “greater than” or “less than,” only “equal” or “not equal,” however,
it is difficult to implement the Compare method, because Compare must return crLessThan, crEqual, or
crGreaterThan. When the only valid response is “not equal,” it is impossible to know whether to return crLessThan
or crGreaterThan. Thus, for types that do not support the concept of ordering, you can override the CompareOp
method instead.

CompareOp has three parameters: the value of the left-hand operand, the value of the right-hand operand, and the
comparison operator. Implement this method to perform the operation and return a boolean that indicates whether
the comparison is True. You can then call the RaiseInvalidOp method when the comparison makes no sense.

For example, the following CompareOp method comes from the TComplexVariantType object in the VarCmplx unit.
It supports only a test of equality or inequality:

function TComplexVariantType.CompareOp(const Left, Right: TVarData;
 const Operator: Integer): Boolean;
begin
 Result := False;
 if (Left.VType = VarType) and (Right.VType = VarType) then
 case Operator of
 opCmpEQ:
 Result :=
TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
 opCmpNE:
 Result := not
TComplexVarData(Left).VComplex.Equal(TComplexVarData(Right).VComplex);
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

Note that the types of operands that both these implementations support are very limited. As with binary operations,
you can use the RightPromotion and LeftPromotion methods to limit the cases you must consider by forcing a cast
before Compare or CompareOp is called.

 DevGuide: Building applications with Delphi

Implementing unary operations
Topic groups See also

To allow the custom variant type to work with standard unary operators (-, not), you must override the UnaryOp
method. UnaryOp has two parameters: the value of the operand and the operator. Implement this method to
perform the operation and return the result using the same variable that contained the operand.

For example, the following UnaryOp method comes from the TComplexVariantType defined in the VarCmplx unit:

procedure TComplexVariantType.UnaryOp(var Right: TVarData; const Operator: TVarOp);
begin
 if Right.VType = VarType then
 case Operator of
 opNegate:
 TComplexVarData(Right).VComplex.DoNegate;
 else
 RaiseInvalidOp;
 end
 else
 RaiseInvalidOp;
end;

Note that for the logical not operator, which does not make sense for complex values, this method calls
RaiseInvalidOp to cause a runtime error.

 DevGuide: Building applications with Delphi

Copying and clearing custom variants
Topic groups See also

In addition to typecasting and the implementation of operators, you must indicate how to copy and clear variants of
your custom Variant type.

To indicate how to copy the variant’s value, implement the Copy method. Typically, this is an easy operation,
although you must remember to allocate memory for any classes or structures you use to hold the variant’s value:

procedure TComplexVariantType.Copy(var Dest: TVarData; const Source: TVarData;
 const Indirect: Boolean);
begin
 if Indirect and VarDataIsByRef(Source) then
 VarDataCopyNoInd(Dest, Source)
 else
 with TComplexVarData(Dest) do
 begin
 VType := VarType;
 VComplex := TComplexData.Create(TComplexVarData(Source).VComplex);
 end;
end;

Note: The Indirect parameter in the Copy method signals that the copy must take into account the case when the
variant holds only an indirect reference to its data.

Tip: If your custom variant type does not allocate any memory to hold its data (if the data fits entirely in the
TVarData record), your implementation of the Copy method can simply call the SimplisticCopy method.

To indicate how to clear the variant’s value, implement the Clear method. As with the Copy method, the only tricky
thing about doing this is ensuring that you free any resources allocated to store the variant’s data:

procedure TComplexVariantType.Clear(var V: TVarData);
begin
 V.VType := varEmpty;
 FreeAndNil(TComplexVarData(V).VComplex);
end;

You will also need to implement the IsClear method. This way, you can detect any invalid values or special values
that represent “blank” data:

function TComplexVariantType.IsClear(const V: TVarData): Boolean;
begin
 Result := (TComplexVarData(V).VComplex = nil) or
 TComplexVarData(V).VComplex.IsZero;
end;

 DevGuide: Building applications with Delphi

Loading and saving custom variant values
Topic groups See also

By default, when the custom variant is assigned as the value of a published property, it is typecast to a string when
that property is saved to a form file, and converted back from a string when the property is read from a form file. You
can, however, provide your own mechanism for loading and saving custom variant values in a more natural
representation. To do so, the TCustomVariantType descendant must implement the IVarStreamable interface from
Classes.pas.

IVarStreamable defines two methods, StreamIn and StreamOut, for reading a variant’s value from a stream and for
writing the variant’s value to the stream. For example, TComplexVariantType, in the VarCmplx unit, implements the
IVarStreamable methods as follows:

procedure TComplexVariantType.StreamIn(var Dest: TVarData; constStream: TStream);
begin
 with TReader.Create(Stream, 1024) do
 try
 with TComplexVarData(Dest) do
 begin
 VComplex := TComplexData.Create;
 VComplex.Real := ReadFloat;
 VComplex.Imaginary := ReadFloat;
 end;
 finally
 Free;
 end;
end;
procedure TComplexVariantType.StreamOut(const Source: TVarData; const Stream:
TStream);
begin
 with TWriter.Create(Stream, 1024) do
 try
 with TComplexVarData(Source).VComplex do
 begin
 WriteFloat(Real);
 WriteFloat(Imaginary);
 end;
 finally
 Free;
 end;
end;

Note how these methods create a Reader or Writer object for the Stream parameter to handle the details of reading
or writing values.

 DevGuide: Building applications with Delphi

Using the TCustomVariantType descendant
Topic groups See also

In the initialization section of the unit that defines your TCustomVariantType descendant, create an instance of your
class. When you instantiate your object, it automatically registers itself with the variant-handling system so that the
new Variant type is enabled. For example, here is the initialization section of the VarCmplx unit:

initialization
 ComplexVariantType := TComplexVariantType.Create;

In the finalization section of the unit that defines your TCustomVariantType descendant, free the instance of your
class. This automatically unregisters the variant type. Here is the finalization section of the VarCmplx unit:

finalization
 FreeAndNil(ComplexVariantType);

 DevGuide: Building applications with Delphi

Writing utilities to work with a custom variant type
Topic groups See also

Once you have created a TCustomVariantType descendant to implement your custom variant type, it is possible to
use the new Variant type in applications. However, without a few utilities, this is not as easy as it should be.

It is a good idea to create a method that creates an instance of your custom variant type from an appropriate value
or set of values. This function or set of functions fills out the structure you defined to store your custom variant’s
data. For example, the following function could be used to create a complex-valued variant:

function VarComplexCreate(const AReal, AImaginary: Double): Variant;
begin
 VarClear(Result);
 TComplexVarData(Result).VType := ComplexVariantType.VarType;
 TComplexVarData(ADest).VComplex := TComplexData.Create(ARead, AImaginary);
end;

This function does not actually exist in the VarCmplx unit, but is a synthesis of methods that do exist, provided to
simplify the example. Note that the returned variant is cast to the record that was defined to map onto the TVarData
structure (TComplexVarData), and then filled out.

Another useful utility to create is one that returns the variant type code for your new Variant type. This type code is
not a constant. It is automatically generated when you instantiate your TCustomVariantType descendant. It is
therefore useful to provide a way to easily determine the type code for your custom variant type. The following
function from the VarCmplx unit illustrates how to write one, by simply returning the VarType property of the
TCustomVariantType descendant:

function VarComplex: TVarType;
begin
 Result := ComplexVariantType.VarType;
end;

Two other standard utilities provided for most custom variants check whether a given variant is of the custom type
and cast an arbitrary variant to the new custom type. Here is the implementation of those utilities from the VarCmplx
unit:

function VarIsComplex(const AValue: Variant): Boolean;
begin
 Result := (TVarData(AValue).VType and varTypeMask) = VarComplex;
end;
function VarAsComplex(const AValue: Variant): Variant;
begin
 if not VarIsComplex(AValue) then
 VarCast(Result, AValue, VarComplex)
 else
 Result := AValue;
end;

Note that these use standard features of all variants: the VType member of the TVarData record and the VarCast
function, which works because of the methods implemented in the TCustomVariantType descendant for casting
data.

In addition to the standard utilities mentioned above, you can write any number of utilities specific to your new
custom variant type. For example, the VarCmplx unit defines a large number of functions that implement
mathematical operations on complex-valued variants.

 DevGuide: Building applications with Delphi

Supporting properties and methods in custom variants
Topic groups See also

Some variants have properties and methods. For example, when the value of a variant is an interface, you can use
the variant to read or write the values of properties on that interface and call its methods. Even if your custom
variant type does not represent an interface, you may want to give it properties and methods that an application can
use in the same way.

Using TInvokeableVariantType

To provide support for properties an methods, the class you create to enable the new custom variant type should
descend from TInvokeableVariantType instead of directly from TCustomVariantType.

TInvokeableVariantType defines four methods:
DoFunction
DoProcedure
GetProperty
SetProperty

that you can implement to support properties and methods on your custom variant type.

For example, the VarConv unit uses TInvokeableVariantType as the base class for TConvertVariantType so that the
resulting custom variants can support properties. The following example shows the property getter for these
properties:

function TConvertVariantType.GetProperty(var Dest: TVarData;
 const V: TVarData; const Name: String): Boolean;
var
 LType: TConvType;
begin
 // supports...
 // 'Value'
 // 'Type'
 // 'TypeName'
 // 'Family'
 // 'FamilyName'
 // 'As[Type]'
 Result := True;
 if Name = 'VALUE' then
 Variant(Dest) := TConvertVarData(V).VValue
 else ifName = 'TYPE' then
 Variant(Dest) := TConvertVarData(V).VConvType
 else ifName = 'TYPENAME' then
 Variant(Dest) := ConvTypeToDescription(TConvertVarData(V).VConvType)
 else ifName = 'FAMILY' then
 Variant(Dest) := ConvTypeToFamily(TConvertVarData(V).VConvType)
 else if Name = 'FAMILYNAME' then
 Variant(Dest) :=
ConvFamilyToDescription(ConvTypeToFamily(TConvertVarData(V).VConvType))
 else ifSystem.Copy(Name, 1, 2) = 'AS' then
 begin
 if DescriptionToConvType(ConvTypeToFamily(TConvertVarData(V).VConvType),
 System.Copy(Name, 3, MaxInt), LType) then
 VarConvertCreateInto(Variant(Dest), Convert(TConvertVarData(V).VValue,
 TConvertVarData(V).VConvType, LType), LType)
 else
 Result := False;
 end
 else
 Result := False;
end;

The GetProperty method checks the Name parameter to determine what property is wanted. It then retrieves the
information from the TVarData record of the Variant (V), and returns it as a Variant (Dest). Note that this method
supports properties whose names are dynamically generated at runtime (As[Type]), based on the current value of
the custom variant.

Similarly, the SetProperty, DoFunction, and DoProcedure methods are sufficiently generic that you can dynamically
generate method names, or respond to variable numbers and types of parameters.

Using TPublishableVariantType

If the custom variant type stores its data using an object instance, then there is an easier way to implement
properties, as long as they are also properties of the object that represents the variant’s data. If you use
TPublishableVariantType as the base class for your custom variant type, then you need only implement the
GetInstance method, and all the published properties of the object that represents the variant’s data are
automatically implemented for the custom variants.

For example, as was seen in Storing a custom variant type’s data, TComplexVariantType stores the data of a
complex-valued variant using an instance of TComplexData. TComplexData has a number of published properties
(Real, Imaginary, Radius, Theta, and FixedTheta), that provide information about the complex value.
TComplexVariantType descends from TPublishableVariantType, and implements the GetInstance method to return
the TComplexData object (in TypInfo.pas) that is stored in a complex-valued variant’s TVarData record:

function TComplexVariantType.GetInstance(const V: TVarData): TObject;
begin
 Result := TComplexVarData(V).VComplex;
end;

TPublishableVariantType does the rest. It overrides the GetProperty and SetProperty methods to use the runtime
type information (RTTI) of the TComplexData object for getting and setting property values.

Note: For TPublishableVariantType to work, the object that holds the custom variant’s data must be compiled
with RTTI. This means it must be compiled using the {$M+} compiler directive, or descend from
TPersistent.

 DevGuide: Building applications with Delphi

Working with strings
Topic groups See also

Delphi has a number of different character and string types that have been introduced throughout the development
of the Object Pascal language. This section of the Help is an overview of these types, their purpose, and usage. For
language details, see String types..

 DevGuide: Building applications with Delphi

Character types
Topic groups

Delphi has three character types: Char, AnsiChar, and WideChar.

The Char character type came from standard Pascal, and was used in Turbo Pascal and then in Object Pascal.
Later Object Pascal added AnsiChar and WideChar as specific character types that were used to support standards
for character representation on the Windows operating system. AnsiChar was introduced to support an 8-bit
character ANSI standard, and WideChar was introduced to support a 16-bit Unicode standard. The name WideChar
is used because Unicode characters are also known as wide characters. Wide characters are two bytes instead of
one, so that the character set can represent many more different characters. When AnsiChar and WideChar were
implemented, Char became the default character type representing the currently recommended implementation. If
you use Char in your application, remember that its implementation is subject to change in future versions of Delphi.

Note: For cross-platform programming: The Linux wchar_t widechar is 32 bits per character. The 16-bit Unicode
standard that Object Pascal widechars support is a subset of the 32-bit UCS standard supported by Linux
and the GNU libraries. Pascal widechar data must be widened to 32 bits per character before it can be
passed to an OS function as wchar_t.

The following table summarizes these character types:

Type Bytes Contents Purpose

Char 1 A single character Default character type
AnsiChar 1 A single character 8-bit characters
WideChar 2 A single Unicode character 16-bit Unicode standard.

For more information about using these character types, see Character types. For more information about Unicode
characters, see About extended character sets.

 DevGuide: Building applications with Delphi

String types
Topic groups

Delphi has three categories of types that you can use when working with strings:
Character pointers
String types
String classes

This topic summarizes string types, and discusses using them with character pointers. For information about using
string classes, see TStrings.

Delphi has three string implementations: short strings, long strings, and wide strings. Several different string types
represent these implementations. In addition, there is a reserved word string that defaults to the currently
recommended string implementation.

 DevGuide: Building applications with Delphi

Short strings
Topic groups

String was the first string type used in Turbo Pascal. String was originally implemented as a short string. Short
strings are an allocation of between 1 and 256 bytes, of which the first byte contains the length of the string and the
remaining bytes contain the characters in the string:

S: string[0..n]// the original string type

When long strings were implemented, string was changed to a long string implementation by default and
ShortString was introduced as a backward compatibility type. ShortString is a predefined type for a maximum length
string:

S: string[255] // the ShortString type

The size of the memory allocated for a ShortString is static, meaning that it is determined at compile time. However,
the location of the memory for the ShortString can be dynamically allocated, for example if you use a PShortString,
which is a pointer to a ShortString. The number of bytes of storage occupied by a short string type variable is the
maximum length of the short string type plus one. For the ShortString predefined type the size is 256 bytes.

Both short strings, declared using the syntax string[0..n], and the ShortString predefined type exist primarily for
backward compatibility with earlier versions of Delphi and Borland Pascal.

A compiler directive, $H, controls whether the reserved word string represents a short string or a long string. In the
default state, {$H+}, string represents a long string. You can change it to a ShortString by using the {$H-} directive.
The {$H-} state is mostly useful for using code from versions of Object Pascal that used short strings by default.
However, short strings can be useful in data structures where you need a fixed-size component or in DLLs when
you don’t want to use the ShareMem unit (see also Memory Management). You can locally override the meaning of
string-type definitions to ensure generation of short strings. You can also change declarations of short string types
to string[255] or ShortString, which are unambiguous and independent of the $H setting.

For details about short strings and the ShortString type, see Short strings..

 DevGuide: Building applications with Delphi

Long strings
Topic groups

Long strings are dynamically allocated strings with a maximum length of 2 Gigabytes, but the practical limit is
usually dependent on the amount of available memory. Like short strings, long strings use 8-bit Ansi characters and
have a length indicator. Unlike short strings, long strings have no zeroth element that contains the dynamic string
length. To find the length of a long string you must use the Length standard function, and to set the length of a long
string you must use the SetLength standard procedure. Long strings are also reference-counted and, like PChars,
long strings are null-terminated. For details about the implementation of longs strings, see Long strings.

Long strings are denoted by the reserved word string and by the predefined identifier AnsiString. For new
applications, it is recommended that you use the long string type. All components in the VCL are compiled in this
state, typically using string. If you write components, they should also use long strings, as should any code that
receives data from string-type properties. If you want to write specific code that always uses a long string, then you
should use AnsiString. If you want to write flexible code that allows you to easily change the type as new string
implementations become standard, then you should use string.

 DevGuide: Building applications with Delphi

WideString
Topic groups

The WideChar type allows wide character strings to be represented as arrays of WideChars. Wide strings are
strings composed of 16-bit Unicode characters. As with long strings, wide strings are dynamically allocated with a
maximum length of two Gigabytes, but the practical limit is usually dependent on the amount of available memory.
In Delphi, wide strings are not reference-counted. Every assignment of a wide string to a wide string var creates a
copy of the string data. In Kylix, WideStrings are reference counted.

The dynamically allocated memory that contains the string is deallocated when the wide string goes out of scope. In
all other respects wide strings possess the same attributes as long strings. The WideString type is denoted by the
predefined identifier WideString.

Since the 32-bit version of OLE (Windows only) uses Unicode for all strings, strings must be of wide string type in
any OLE automated properties and method parameters. Also, most OLE API functions use null-terminated wide
strings.

For more information, see WideString.

 DevGuide: Building applications with Delphi

PChar types
Topic groups

A PChar is a pointer to a null-terminated string of characters of the type Char. Each of the three character types
also has a built-in pointer type:

A PChar is a pointer to a null-terminated string of 8-bit characters.
A PAnsiChar is a pointer to a null-terminated string of 8-bit characters.
A PWideChar is a pointer to a null-terminated string of 16-bit characters.

PChars are, with short strings, one of the original Object Pascal string types. They were created primarily as a C
language and Windows API compatibility type.

 DevGuide: Building applications with Delphi

OpenString
Topic groups

An OpenString is obsolete, but you may see it in older code. It is for 16-bit compatibility and is allowed only in
parameters. OpenString was used, before long strings were implemented, to allow a short string of an unspecified
length string to be passed as a parameter. For example, this declaration:

procedure a(v : openstring);

will allow any length string to be passed as a parameter, where normally the string length of the formal and actual
parameters must match exactly. You should not have to use OpenString in any new applications you write.

Refer also to the {$P+/-} switch in Compiler directives for strings.

 DevGuide: Building applications with Delphi

Runtime library string handling routines
Topic groups

The runtime library provides many specialized string handling routines specific to a string type. These are routines
for wide strings, longs strings, and null-terminated strings (meaning PChars). Routines that deal with PChar types
use the null-termination to determine the length of the string. For more details about null-terminated strings, see
Working with null-terminated strings.

The runtime library also includes a category of string formatting routines. There are no categories of routines listed
for ShortString types. However, some built-in compiler routines deal with the ShortString type. These include, for
example, the Low and High standard functions.

Because wide strings and long strings are the commonly used types, the remaining sections discuss these routines.

 DevGuide: Building applications with Delphi

Wide character routines
Topic groups

When working with strings you should make sure that the code in your application can handle the strings it will
encounter in the various target locales. Sometimes you will need to use wide characters and wide strings. In fact,
one approach to working with ideographic character sets is to convert all characters to a wide character encoding
scheme such as Unicode. The runtime library includes the following wide character string functions for converting
between standard single-byte character strings (or MBCS strings) and Unicode strings:

StringToWideChar
WideCharLenToString
WideCharLenToStrVar
WideCharToString
WideCharToStrVar

Using a wide character encoding scheme has the advantage that you can make many of the usual assumptions
about strings that do not work for MBCS systems. There is a direct relationship between the number of bytes in the
string and the number of characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

A disadvantage of working with wide characters is that Windows 95 does not support wide character API function
calls. Because of this, the VCL components represent all string values as single byte or MBCS strings. Translating
between the wide character system and the MBCS system every time you set a string property or read its value
would require tremendous amounts of extra code and slow your application down. However, you may want to
translate into wide characters for some special string processing algorithms that need to take advantage of the 1:1
mapping between characters and WideChars.

Note: Typically, CLX components represent string values as wide strings.

 DevGuide: Building applications with Delphi

Commonly used long string routines
Topic groups

The long string handling routines cover several functional areas. Within these areas, some are used for the same
purpose, the differences being whether or not they use a particular criteria in their calculations. The following tables
list these routines by these functional areas:

Comparison
Case conversion
Modification
Sub-string

Where appropriate, the tables also provide columns indicating whether or not a routine satisfies the following
criteria.

Uses case sensitivity: If locale settings are used, it determines the definition of case. If the routine does not
use locale settings, analyses are based upon the ordinal values of the characters. If the routine is case-insensitive,
there is a logical merging of upper and lower case characters that is determined by a predefined pattern.

Uses locale settings: Locale settings allow you to customize your application for specific locales, in
particular, for Asian language environments. Most locale settings consider lowercase characters to be less than the
corresponding uppercase characters. This is in contrast to ASCII order, in which lowercase characters are greater
than uppercase characters. Routines that use the Windows locale are typically prefaced with Ansi (that is, AnsiXXX).

Supports the multi-byte character set (MBCS): MBCSs are used when writing code for far eastern locales.
Multi-byte characters are represented as a mix of one- and two-byte character codes, so the length in bytes does not
necessarily correspond to the length of the string. The routines that support MBCS are written parse one- and two-
byte characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a two-byte character. Be
careful when using multi-byte characters not to truncate a string by cutting a two-byte character in half. Do not
pass characters as a parameter to a function or procedure, since the size of a character cannot be
predetermined. Pass, instead, a pointer to a to a character or string. For more information about MBCS, see
Enabling application code.

String comparison routines

Routine Case-sensitive Uses locale settings Supports MBCS

AnsiCompareStr yes yes yes
AnsiCompareText no yes yes
AnsiCompareFileName no yes yes
CompareStr yes no no
CompareText no no no

Case conversion routines

Routine Uses locale settings Supports MBCS

AnsiLowerCase yes yes
AnsiLowerCaseFileName yes yes
AnsiUpperCaseFileName yes yes
AnsiUpperCase yes yes
LowerCase no no
UpperCase no no

The routines used for string file names: AnsiCompareFileName, AnsiLowerCaseFileName, and
AnsiUpperCaseFileName all use the Windows locale. You should always use file names that are portable because
the locale (character set) used for file names can and might differ from the default user interface.

String modification routines

Routine Case-sensitive Supports MBCS

AdjustLineBreaks NA yes
AnsiQuotedStr NA yes
StringReplace optional by flag yes
Trim NA yes
TrimLeft NA yes
TrimRight NA yes
WrapText NA yes

Sub-string routines

Routine Case-sensitive Supports MBCS

AnsiExtractQuotedStr NA yes
AnsiPos yes yes
IsDelimiter yes yes
IsPathDelimiter yes yes
LastDelimiter yes yes
QuotedStr no no

String handling routines

Routine Case-sensitive Supports MBCS

AnsiContainsText no yes
AnsiEndsText no no
AnsiIndexText no yes
AnsiMatchText no yes
AnsiResemblesText no no
AnsiStartsText no yes
IfThen NA yes
LeftStr yes no
RightStr yes no
SoundEx NA no
SoundExInt NA no
DecodeSoundExInt NA no
SoundExWord NA no
DecodeSoundExWord NA no
SoundExSimilar NA no
SoundExCompare NA no

 DevGuide: Building applications with Delphi

Declaring and initializing strings
Topic groups

When you declare a long string:

S: string;

you do not need to initialize it. Long strings are automatically initialized to empty. To test a string for empty you can
either use the EmptyStr variable:

 S = EmptyStr;

or test against an empty string:

 S = '';

An empty string has no valid data. Therefore, trying to index an empty string is like trying to access nil and will
result in an access violation:

var
 S: string;
begin
 S[i]; // this will cause an access violation
 // statements
end;

Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you are passing such a PChar to a
routine that needs to read or write to it, be sure that the routine can handle nil:

var
 S: string; // empty string
begin
 proc(PChar(S)); // be sure that proc can handle nil
 // statements
end;

If it cannot, then you can either initialize the string:

 S := 'No longer nil';
 proc(PChar(S)); // proc does not need to handle nil now

or set the length, using the SetLength procedure:

 SetLength(S, 100); //sets the dynamic length of S to 100
 proc(PChar(S)); // proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the contents of any newly allocated
space is undefined. Following a call to SetLength, S is guaranteed to reference a unique string, that is a string with
a reference count of one. To obtain the length of a string, use the Length function.

Remember when declaring a string that:

 S: string[n];

implicitly declares a short string, not a long string of n length. To declare a long string of specifically n length,
declare a variable of type string and use the SetLength procedure.

 S: string;
 SetLength(S, n);

 DevGuide: Building applications with Delphi

Mixing and converting string types
Topic groups

Short, long, and wide strings can be mixed in assignments and expressions, and the compiler automatically
generates code to perform the necessary string type conversions. However, when assigning a string value to a
short string variable, be aware that the string value is truncated if it is longer than the declared maximum length of
the short string variable.

Long strings are already dynamically allocated. If you use one of the built-in pointer types, such as PAnsiString,
PString, or PWideString, remember that you are introducing another level of indirection. Be sure this is what you
intend.

Additional functions (CopyQStringListToTstrings, Copy TStringsToQStringList, QStringListToTStringList) are
provided for converting underlying Qt string types and CLX string types. These functions are located in Qtypes.pas.

 DevGuide: Building applications with Delphi

String to PChar conversions
Topic groups

Long string to PChar conversions are not automatic. Some of the differences between strings and PChars can
make conversions problematic:

Long strings are reference-counted, while PChars are not.
Assigning to a string copies the data, while a PChar is a pointer to memory.
Long strings are null-terminated and also contain the length of the string, while PChars are simply null-

terminated.
Situations in which these differences can cause subtle errors are discussed in this section.

 DevGuide: Building applications with Delphi

String dependencies
Topic groups

Sometimes you will need convert a long string to a null-terminated string, for example, if you are using a function
that takes a PChar. If you must cast a string to a PChar, be aware that you are responsible for the lifetime of the
resulting PChar. Because long strings are reference counted, typecasting a string to a PChar increases the
dependency on the string by one, without actually incrementing the reference count. When the reference count hits
zero, the string will be destroyed, even though there is an extra dependency on it. The cast PChar will also
disappear, while the routine you passed it to may still be using it. For example:

procedure my_func(x: string);
begin
 // do something with x
 some_proc(PChar(x)); // cast the string to a PChar
 // you now need to guarantee that the string remains
 // as long as the some_proc procedure needs to use it
end;

 DevGuide: Building applications with Delphi

Returning a PChar local variable
Topic groups

A common error when working with PChars is to store in a data structure, or return as a value, a local variable.
When your routine ends, the PChar will disappear because it is simply a pointer to memory, and is not a reference
counted copy of the string. For example:

function title(n: Integer): PChar;
var
 s: string;
begin
 s := Format('title - %d', [n]);
 Result := PChar(s); // DON'T DO THIS
end;

This example returns a pointer to string data that is freed when the title function returns.

 DevGuide: Building applications with Delphi

Passing a local variable as a PChar
Topic groups

Consider that you have a local string variable that you need to initialize by calling a function that takes a PChar.
One approach is to create a local array of char and pass it to the function, then assign that variable to the string:

// VCL version
// assume MAX_SIZE is a predefined constant
var
 i: Integer;
 buf: array[0..MAX_SIZE] of char;
 S: string;
begin
 i := GetModuleFilename(0, buf, SizeOf(buf));// treats @buf as a PChar
 S := buf;
 //statements
end;

Or, for cross-platform programs, the code is nearly identical:

// assume FillBuffer is a predefined function
function FillBuffer(Buf:PChar;Count:Integer):Integer
begin
 . . .
end;
// assume MAX_SIZE is a predefined constant
var
 i: Integer;
 buf: array[0..MAX_SIZE] of char;
 S: string;
begin
 i := FillBuffer(0, buf, SizeOf(buf)); // treats buf as a PChar
 S := buf;
 //statements
end;

This approach is useful if the size of the buffer is relatively small, since it is allocated on the stack. It is also safe,
since the conversion between an array of char and a string is automatic. The Length of the string is automatically
set to the right value after assigning buf to the string.

To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if you are certain that the
routine does not need the PChar to remain in memory). However, synchronizing the length of the string does not
happen automatically, as it does when you assign an array of char to a string. You should reset the string Length
so that it reflects the actual width of the string. If you are using a function that returns the number of bytes copied,
you can do this safely with one line of code:

var
 S: string;
begin
 SetLength(S, MAX_SIZE; // when casting to a PChar, be sure the string is not
empty
 SetLength(S, GetModuleFilename(0, PChar(S), Length(S)));
 // statements
end;

 DevGuide: Building applications with Delphi

Compiler directives for strings
Topic groups

The following compiler directives affect character and string types.

Directive Description

{$H+/-} A compiler directive, $H, controls whether the reserved word string represents a
short string or a long string. In the default state, {$H+}, string represents a long string. You
can change it to a ShortString by using the {$H-} directive.

{$P+/-} The $P directive is meaningful only for code compiled in the {$H-} state, and is provided
for backwards compatibility. $P controls the meaning of variable parameters declared
using the string keyword in the {$H-} state.
In the {$P-} state, variable parameters declared using the string keyword are normal
variable parameters, but in the {$P+} state, they are open string parameters. Regardless
of the setting of the $P directive, the OpenString identifier can always be used to declare
open string parameters.

{$V+/-} The $V directive controls type checking on short strings passed as variable parameters. In
the {$V+} state, strict type checking is performed, requiring the formal and actual
parameters to be of identical string types.
In the {$V-} (relaxed) state, any short string type variable is allowed as an actual
parameter, even if the declared maximum length is not the same as that of the formal
parameter. Be aware that this could lead to memory corruption. For example:

var S: string[3];
procedure Test(var T: string);
begin
 T := '1234';
end;
begin
 Test(S);
end.

{$X+/-}

The {$X+} compiler directive enables support for null-terminated strings by activating the
special rules that apply to the built-in PChar type and zero-based character arrays. (These
rules allow zero-based arrays and character pointers to be used with Write, Writeln, Val,
Assign, and Rename from the System unit.)

 DevGuide: Building applications with Delphi

Strings and characters: related topics
Topic groups

The following Object Pascal Language Guide topics discuss strings and character sets. Also see Creating
international applications.

About extended character sets (Discusses international character sets)
Working with null-terminated strings (Contains information about character arrays)
Character strings
Character pointers
String operators

 DevGuide: Building applications with Delphi

Working with files
Topic groups

This topic describes working with files and distinguishes between manipulating files on disk, and input/output
operations such as reading and writing to files. The first topic discusses the runtime library and Windows API
routines you would use for common programming tasks that involve manipulating files on disk. The next topic is an
overview of file types used with file I/O. The last topic focuses on the recommended approach to working with file
I/O, which is to use file streams.

Although the Object Pascal language is not case sensitive, the Linux operating system is. Be attentive to case when
working with files in cross-platform applications.

Note: Previous versions of the Object Pascal language performed operations on files themselves, rather than on
the filename parameters commonly used now. With these file types you had to locate a file and assign it to
a file variable before you could, for example, rename the file.

 DevGuide: Building applications with Delphi

Manipulating files
Topic groups

Several common file operations are built into Object Pascal's runtime library. The procedures and functions for
working with files operate at a high level. For most routines, you specify the name of the file and the routine makes
the necessary calls to the operating system for you. In some cases, you use file handles instead. Object Pascal
provides routines for most file manipulation. When it does not, alternative routines are discussed.

Caution: Although the Object Pascal language is not case sensitive, the Linux operating system is. Be
attentive to case when working with files in cross-platform applications.

 DevGuide: Building applications with Delphi

Deleting a file
Topic groups

Deleting a file erases the file from the disk and removes the entry from the disk's directory. There is no
corresponding operation to restore a deleted file, so applications should generally allow users to confirm deletions
of files. To delete a file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns True if it deleted the file and False if it did not (for example, if the file did not exist or if it was read-
only). DeleteFile erases the file named by FileName from the disk.

 DevGuide: Building applications with Delphi

Finding a file
Topic groups

There are three routines used for finding a file: FindFirst, FindNext, and FindClose. FindFirst searches for the first
instance of a filename with a given set of attributes in a specified directory. FindNext returns the next entry matching
the name and attributes specified in a previous call to FindFirst. FindClose releases memory allocated by FindFirst.
You should always use FindClose to terminates a FindFirst/FindNext sequence. If you want to know if a file exists, a
FileExists function returns True if the file exists, False otherwise.

The three file find routines take a TSearchRec as one of the parameters. TSearchRec defines the file information
searched for by FindFirst or FindNext. The declaration for TSearchRec is:

type
 TFileName = string;
 TSearchRec = record
 Time: Integer; //Time contains the time stamp of the file.
 Size: Integer; //Size contains the size of the file in bytes.
 Attr: Integer; //Attr represents the file attributes of the file.
 Name: TFileName; //Name contains the filename and extension.
 ExcludeAttr: Integer;
 FindHandle: THandle;
 FindData: TWin32FindData; //FindData contains additional information such as
 //file creation time, last access time, long and short filenames.
 end;

If a file is found, the fields of the TSearchRec type parameter are modified to describe the found file. You can test
Attr against the following attribute constants or values to determine if a file has a specific attribute:

Constant Value Description

faReadOnly $00000001 Read-only files
faHidden $00000002 Hidden files
faSysFile $00000004 System files
faVolumeID $00000008 Volume ID files
faDirectory $00000010 Directory files
faArchive $00000020 Archive files
faAnyFile $0000003F Any file

To test for an attribute, combine the value of the Attr field with the attribute constant with the and operator. If the file
has that attribute, the result will be greater than 0. For example, if the found file is a hidden file, the following
expression will evaluate to True: (SearchRec.Attr and faHidden > 0). Attributes can be combined by OR’ing their
constants or values. For example, to search for read-only and hidden files in addition to normal files, pass
(faReadOnly or faHidden) the Attr parameter.

Example: This example uses a label, a button named Search, and a button named Again on a form. When the
user clicks the Search button, the first file in the specified path is found, and the name and the
number of bytes in the file appear in the label's caption. Each time the user clicks the Again button,
the next matching filename and size is displayed in the label:

var
 SearchRec: TSearchRec;
procedure TForm1.SearchClick(Sender: TObject);
begin
 FindFirst('c:\Program Files\delphi6\bin*.*', faAnyFile, SearchRec);
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in
size';
end;
procedure TForm1.AgainClick(Sender: TObject);
begin
 if (FindNext(SearchRec) = 0)
 Label1.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes
in size';
 else
 FindClose(SearchRec);
end;

In cross-platform applications, you should replace any hardcoded pathnames such as c:\Program

Files\delphi6\bin*.* with the correct pathname for the system or use environment variables (on the Environment
Variables page when you choose Tools|Environment Options) to represent them.

 DevGuide: Building applications with Delphi

Renaming a file
Topic groups

To change a filename, simply use the RenameFile function:

function RenameFile(const OldFileName, NewFileName: string): Boolean;

which changes a filename, identified by OldFileName, to the name specified by NewFileName. If the operation
succeeds, RenameFile returns True. If it cannot rename the file, for example, if a file called NewFileName already
exists, it returns False. For example:

if not RenameFile('OLDNAME.TXT','NEWNAME.TXT') then
 ErrorMsg('Error renaming file!');

You cannot rename (move) a file across drives using RenameFile. You would need to first copy the file and then
delete the old one.

Note: RenameFile in the VCL is a wrapper around the Windows API MoveFile function, so MoveFile will not work
across drives either.

 DevGuide: Building applications with Delphi

File date-time routines
Topic groups

The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-time values. FileAge returns
the date-and-time stamp of a file, or -1 if the file does not exist. FileSetDate sets the date-and-time stamp for a
specified file, and returns zero on success or an error code on failure. FileGetDate returns a date-and-time stamp
for the specified file or -1 if the handle is invalid.

As with most of the file manipulating routines, FileAge uses a string filename. FileGetDate and FileSetDate,
however, take a Handle type as a parameter. To get access to a Windows file Handle either

Call the Windows API CreateFile function. CreateFile is a 32-bit only function that creates or opens a file and
returns a Handle that can be used to access the file.

Instantiate TFileStream to create or open a file. Then use the Handle property as you would a Windows’ file
Handle. See Using file streams for more information.

 DevGuide: Building applications with Delphi

Copying a file
Topic groups

The runtime library does not provide any routines for copying a file. However, if you are writing Windows-only
applications, you can directly call the Windows API CopyFile function to copy a file. Like most of the Delphi runtime
library file routines, CopyFile takes a filename as a parameter, not a Handle. When copying a file, be aware that the
file attributes for the existing file are copied to the new file, but the security attributes are not. CopyFile is also useful
when moving files across drives because neither the Delphi RenameFile function nor the Windows API MoveFile
function can rename/move files across drives.

 DevGuide: Building applications with Delphi

File types with file I/O
Topic groups

You can use three file types when working with file I/O: Pascal file types, file handles, and file stream objects. The
following table summarizes these types.

File type Description

Pascal file types In the System unit. These types are used with file variables, usually of the format "F:
Text:" or "F: File". The files have three types: typed, text, and untyped. A number of
file-handling routines, such as AssignPrn and writeln, use them. These file types are
obsolete and are incompatible with Windows file handles. If you need to work with
them, see Untyped files and File types.

File handles In the Sysutils unit. A number of routines use a handle to identify the file. You get the
handle when you open or create the file (for example, using FileOpen or FileCreate).
Once you have the handle, there are routines to work with the contents of the file
given its handle (write a line, read text, and so on).
In Windows programming, the Object Pascal file handles are wrappers for the
Windows file handle type. The runtime library file-handling routines that use Windows
file Handles are typically wrappers around Windows API functions. For example, the
FileRead calls the Windows ReadFile function. Because the Delphi functions use
Object Pascal syntax, and occasionally provide default parameter values, they are a
convenient interface to the Windows API. Using these routines is straightforward, and
if you are familiar and comfortable with the Windows API file routines, you may want
to use them when working with file I/O.

File streams File streams are object instances of the TFileStream class used to access
information in disk files. File streams are a portable and high-level approach to file I/O.
TFileStream has a Handle property that lets you access the file handle. The Using file
streams discusses TFileStream.

 DevGuide: Building applications with Delphi

Using file streams
Topic groups

TFileStream is a class that enables applications to read from and write to a file on disk. It is used for high-level
object representations of file streams. TFileStream offers multiple functionality: persistence, interaction with other
streams, and file I/O.

TFileStream is a descendant of the stream classes. As such, one advantage of using file streams is that they
inherit the ability to persistently store component properties. The stream classes work with the TFiler classes,
TReader, and TWriter, to stream objects out to disk. Therefore, when you have a file stream, you can use that same
code for the component streaming mechanism. For more information about using the component streaming system,
see TStream, TFiler, TReader, TWriter, and TComponent classes.

TFileStream can interact easily with other stream classes. For example, if you want to dump a dynamic
memory block to disk, you can do so using a TFileStream and a TMemoryStream.

TFileStream provides the basic methods and properties for file I/O. The following topics focus on this aspect
of file streams:

Creating and opening files
Using the file handle
Reading and writing to files
Reading and writing strings
File position and size
Seeking a file
Copying

 DevGuide: Building applications with Delphi

Creating and opening files
Topic groups

To create or open a file and get access to a handle for the file, you simply instantiate a TFileStream. This opens or
creates a named file and provides methods to read from or write to it. If the file cannot be opened, TFileStream
raises an exception.

constructor Create(const filename: string; Mode: Word);

The Mode parameter specifies how the file should be opened when creating the file stream. The Mode parameter
consists of an open mode and a share mode or’ed together. The open mode must be one of the following values:

Table 1.11 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name exists,
open the file in write mode.

fmOpenRead Open the file for reading only.
fmOpenWrite Open the file for writing only. Writing to the file completely replaces the current

contents.
fmOpenReadWrite Open the file to modify the current contents rather than replace them.

The share mode can be one of the following values with the restrictions listed below:

Table 1.12 Share modes

Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened.
fmShareExclusive Other applications can not open the file for any reason.
fmShareDenyWrite Other applications can open the file for reading but not for writing.
fmShareDenyRead Other applications can open the file for writing but not for reading.
fmShareDenyNone No attempt is made to prevent other applications from reading from or writing

to the file.

Note that which share mode you can use depends on which open mode you used. The following table shows
shared modes that are available for each open mode.

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can’t use Available Can’t use Available
fmOpenWrite Available Available Can’t use Available Available

fmOpenReadWrite Available Available Available Available Available

The file open and share mode constants are defined in the SysUtils unit.

 DevGuide: Building applications with Delphi

Using the file handle
Topic groups See also

When you instantiate TFileStream you get access to the file handle. The file handle is contained in the Handle
property. Handle is read-only and indicates the mode in which the file was opened. If you want to change the
attributes of the file Handle, you must create a new file stream object.

Some file manipulation routines take a window’s file handle as a parameter. Once you have a file stream, you can
use the Handle property in any situation in which you would use a window’s file handle. Be aware that, unlike
handle streams, file streams close file handles when the object is destroyed.

 DevGuide: Building applications with Delphi

Reading and writing to files
Topic groups See also

TFileStream has several different methods for reading from and writing to files. These are distinguished by whether
they perform the following:

Return the number of bytes read or written.
Require the number of bytes is known.
Raise an exception on error.

Read is a function that reads up to Count bytes from the file associated with the file stream, starting at the current
Position, into Buffer. Read then advances the current position in the file by the number of bytes actually transferred.
The prototype for Read is

function Read(var Buffer; Count: Longint): Longint; override;

Read is useful when the number of bytes in the file is not known. Read returns the number of bytes actually
transferred, which may be less than Count if the end of file marker is encountered.

Write is a function that writes Count bytes from the Buffer to the file associated with the file stream, starting at the
current Position. The prototype for Write is:

function Write(const Buffer; Count: Longint): Longint; override;

After writing to the file, Write advances the current position by the number bytes written, and returns the number of
bytes actually written, which may be less than Count if the end of the buffer is encountered.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and Write, do not return the
number of bytes read or written. These procedures are useful in cases where the number of bytes is known and
required, for example when reading in structures. ReadBuffer and WriteBuffer raise an exception on error
(EReadError and EWriteError) while the Read and Write methods do not. The prototypes for ReadBuffer and
WriteBuffer are:

procedure ReadBuffer(var Buffer; Count: Longint);
procedure WriteBuffer(const Buffer; Count: Longint);

These methods call the Read and Write methods, to perform the actual reading and writing.

 DevGuide: Building applications with Delphi

Reading and writing strings
Topic groups See also

If you are passing a string to a read or write function, you need to be aware of the correct syntax. The Buffer
parameters for the read and write routines are var and const types, respectively. These are untyped parameters, so
the routine takes the address of a variable.

The most commonly used type when working with strings is a long string. However, passing a long string as the
Buffer parameter does not produce the correct result. Long strings contain a size, a reference count, and a pointer
to the characters in the string. Consequently, dereferencing a long string does not result in only the pointer element.
What you need to do is first cast the string to a Pointer or PChar, and then dereference it. For example:

procedure caststring;
var
 fs: TFileStream;
const
 s: string = 'Hello';
begin
 fs := TFileStream.Create('temp.txt', fmCreate or fmOpenWrite);
 fs.Write(s, Length(s)); // this will give you garbage
 fs.Write(PChar(s)^, Length(s)); // this is the correct way
end;

 DevGuide: Building applications with Delphi

Seeking a file
Topic groups

Most typical file I/O mechanisms have a process of seeking a file in order to read from or write to a particular
location within it. For this purpose, TFileStream has a Seek method. The prototype for Seek is:

function Seek(Offset: Longint; Origin: Word): Longint; override;

The Origin parameter indicates how to interpret the Offset parameter. Origin should be one of the following values:

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position Offset. Offset
must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position + Offset.
soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a number of bytes

before the end of the file.

Seek resets the current Position of the stream, moving it by the indicated offset. Seek returns the new value of the
Position property, the new current position in the resource.

 DevGuide: Building applications with Delphi

File position and size
Topic groups

TFileStream has properties that hold the current position and size of the file. These are used by the Seek, read, and
write methods.

The Position property of TFileStream is used to indicate the current offset, in bytes, into the stream (from the
beginning of the streamed data). The declaration for Position is:

property Position: Longint;

The Size property indicates the size in bytes of the stream. It is used as an end of file marker to truncate the file.
The declaration for Size is:

property Size: Longint;

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the file. If the Size of the file cannot be changed, an exception is
raised. For example, trying to change the Size of a file that was opened in fmOpenRead mode raises an exception.

 DevGuide: Building applications with Delphi

Copying
Topic groups

CopyFrom copies a specified number of bytes from one (file) stream to another.

function CopyFrom(Source: TStream; Count: Longint): Longint;

Using CopyFrom eliminates the need to create, read into, write from, and free a buffer when copying data.

CopyFrom copies Count bytes from Source into the stream. CopyFrom then moves the current position by Count
bytes, and returns the number of bytes copied. If Count is 0, CopyFrom sets Source position to 0 before reading
and then copies the entire contents of Source into the stream. If Count is greater than or less than 0, CopyFrom
reads from the current position in Source.

 DevGuide: Building applications with Delphi

Converting measurements
Topic groups

The ConvUtils unit declares a general-purpose Convert function that you can use to convert a measurement from
one set of units to another. You can perform conversions between compatible units of measurement such as feet
and inches or days and weeks. Units that measure the same types of things are said to be in the same conversion
family. The units you’re converting must be in the same conversion family. For information on doing conversions,
see Performing conversions.

The StdConvs unit defines several conversion families and measurement units within each family. In addition, you
can create customized conversion families and associated units using the RegisterConversionType and
RegisterConversionFamily functions. For information on extending conversion and conversion units, see Adding
new measurement types.

 DevGuide: Building applications with Delphi

Performing conversions
Topic groups See also

You can use the Convert function to perform both simple and complex conversions. It includes a simple syntax and
a second syntax for performing conversions between complex measurement types.

Performing simple conversions

You can use the Convert function to convert a measurement from one set of units to another. The Convert function
converts between units that measure the same type of thing (distance, area, time, temperature, and so on).

To use Convert, you must specify the units from which to convert and to which to convert. You use the TConvType
type to identify the units of measurement.

For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

TempInKelvin := Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

Performing complex conversions

You can also use the Convert function to perform more complex conversions between the ratio of two measurement
types. Examples of when you might need to use this this are when converting miles per hour to meters per minute
for calculating speed or when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:

nKPL := Convert(StrToFloat(Edit1.Text), duMiles, vuGallons, duKilometers, vuLiter);

The units you’re converting must be in the same conversion family (they must measure the same thing). If the units
are not compatible, Convert raises an EConversionError exception. You can check whether two TConvType values
are in the same conversion family by calling CompatibleConversionTypes.

The StdConvs unit defines several families of TConvType values. See Conversion family variables for a list of the
predefined families of measurement units and the measurement units in each family.

 DevGuide: Building applications with Delphi

Adding new measurement types
Topic groups See also

If you want to perform conversions between measurement units not already defined in the StdConvs unit, you need
to create a new conversion family to represent the measurement units (TConvType values). When two TConvType
values are registered with the same conversion family, the Convert function can convert between measurements
made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using the RegisterConversionFamily
function. After you get a TConvFamily value (by registering a new conversion family or using one of the global
variables in the StdConvs unit), you can use the RegisterConversionType function to add the new units to the
conversion family. The following examples show how to do this:

Creating a simple conversion family and adding units
Using a conversion function
Using a class to manage conversions

For more examples, refer to the source code for the standard conversions unit (stdconvs.pas). (Note that the source
is not included in all versions of Delphi.)

 DevGuide: Building applications with Delphi

Creating a simple conversion family and adding units
Topic groups See also

One example of when you could create a new conversion family and add new measurement types might be when
performing conversions between long periods of time (such as months to centuries) where a loss of precision can
occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is the one that is used when
performing all conversions within that family. Therefore, all conversions must be done in terms of days. An
inaccuracy can occur when performing conversions using units of months or larger (months, years, decades,
centuries, millennia) because there is not an exact conversion between days and months, days and years, and so
on. Months have different lengths; years have correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can create a more accurate
conversion family with years as its base unit. This example creates a new conversion family called cbLongTime.

Declare variables

First, you need to declare variables for the identifiers. The identifiers are used in the new LongTime conversion
family, and the units of measurement that are its members:

var
cbLongTime: TConvFamily;
ltMonths: TConvType;
ltYears: TConvType;
ltDecades: TConvType;
ltCenturies: TConvType;
ltMillennia: TConvType;

Register the conversion family

Next, register the conversion family:

cbLongTime := RegisterConversionFamily ('Long Times');

Although an UnregisterConversionFamily procedure is provided, you don’t need to unregister conversion families
unless the unit that defines them is removed at runtime. They are automatically cleaned up when your application
shuts down.

Register measurement units

Next, you need to register the measurement units within the conversion family that you just created. You use the
RegisterConversionType function, which registers units of measurement within a specified family. You need to
define the base unit which in the example is years, and the other units are defined using a factor that indicates their
relation to the base unit. So, the factor for ltMonths is 1/12 because the base unit for the LongTime family is years.
You also include a description of the units to which you are converting.

The code to register the measurement units is shown here:

ltMonths:=RegisterConversionType(cbLongTime,'Months',1/12);
ltYears:=RegisterConversionType(cbLongTime,'Years',1);
ltDecades:=RegisterConversionType(cbLongTime,'Decades',10);
ltCenturies:=RegisterConversionType(cbLongTime,'Centuries',100);
ltMillennia:=RegisterConversionType(cbLongTime,'Millennia',1000);

Use the new units

You can now use the newly registered units to perform conversions. The global Convert function can convert
between any of the conversion types that you registered with the cbLongTime conversion family.

So instead of using the following Convert call,

Convert(StrToFloat(Edit1.Text),tuMonths,tuMillennia);

you can now use this one for greater accuracy:

Convert(StrToFloat(Edit1.Text),ltMonths,ltMillennia);

 DevGuide: Building applications with Delphi

Using a conversion function
Topic groups See also

For cases when the conversion is more complex, you can use a different syntax to specify a function to perform the
conversion instead of using a conversion factor. For example, you can’t convert temperature values using a
conversion factor, because different temperature scales have a different origins.

This example, which comes from the StdConvs unit, shows how to register a conversion type by providing functions
to convert to and from the base units.

Declare variables

First, declare variables for the identifiers. The identifiers are used in the cbTemperature conversion family, and the
units of measurement are its members:

var
cbTemperature: TConvFamily;
tuCelsius: TConvType;
tuKelvin: TConvType;
tuFahrenheit: TConvType;

Note: The units of measurement listed here are a subset of the temperature units actually registered in the
StdConvs unit.

Register the conversion family

Next, register the conversion family:

cbTemperature := RegisterConversionFamily ('Temperature');

Register the base unit

Next, define and register the base unit of the conversion family, which in the example is degrees Celsius. Note that
in the case of the base unit, we can use a simple conversion factor, because there is no actual conversion to make:

tuCelsius:=RegisterConversionType(cbTemperature,'Celsius',1);

Write methods to convert to and from the base unit

You need to write the code that performs the conversion from each temperature scale to and from degrees Celsius,
because these do not rely on a simple conversion factor. These functions are taken from the StdConvs unit:

function FahrenheitToCelsius(const AValue: Double): Double;
begin
 Result := ((AValue - 32) * 5) / 9;
end;
function CelsiusToFahrenheit(const AValue: Double): Double;
begin
 Result := ((AValue * 9) / 5) + 32;
end;
function KelvinToCelsius(const AValue: Double): Double;
begin
 Result := AValue - 273.15;
end;
function CelsiusToKelvin(const AValue: Double): Double;
begin
 Result := AValue + 273.15;
end;

Register the other units

Now that you have the conversion functions, you can register the other measurement units within the conversion
family. You also include a description of the units.

The code to register the other units in the family is shown here:

tuKelvin := RegisterConversionType(cbTemperature, 'Kelvin', KelvinToCelsius,
CelsiusToKelvin);
 tuFahrenheit := RegisterConversionType(cbTemperature, 'Fahrenheit',
FahrenheitToCelsius, CelsiusToFahrenheit);

Use the new units

You can now use the newly registered units to perform conversions in your applications. The global Convert function
can convert between any of the conversion types that you registered with the cbTemperature conversion family. For
example the following code converts a value from degrees Fahrenheit to degrees Kelvin.

Convert(StrToFloat(Edit1.Text), tuFahrenheit, tuKelvin);

 DevGuide: Building applications with Delphi

Using a class to manage conversions
Topic groups See also

You can always use conversion functions to register a conversion unit. There are times, however, when this requires
you to create an unnecessarily large number of functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a parameter or variable, you can create
a class to handle those conversions. For example, there is a set standard techniques for converting between the
various European currencies since the introduction of the Euro. Even though the conversion factors remain constant
(unlike the conversion factor between, say, dollars and Euros), you can’t use a simple conversion factor approach to
properly convert between European currencies for two reasons:

The conversion must round to a currency-specific number of digits.
The conversion factor approach uses an inverse factor to the one specified by the standard Euro

conversions.
However, this can all be handled by the conversion functions such as the following:

function FromEuro(const AValue: Double, Factor, FRound): Double;
begin
 Result := RoundTo(AValue * Factor, FRound);
end;
function ToEuro(const AValue: Double, Factor): Double;
begin
 Result := AValue / Factor;
end;

The problem is, this approach requires extra parameters on the conversion function, which means you can’t simply
register the same function with every European currency. In order to avoid having to write two new conversion
functions for every European currency, you can make use of the same two functions by making them the members
of a class.

Creating the conversion class

The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two methods, ToCommon and
FromCommon, for converting to and from the base units of a conversion family (in this case, to and from Euros).
Just as with the functions you use directly when registering a conversion unit, these methods have no extra
parameters, so you must supply the number of digits to round off and the conversion factor as private members of
your conversion class. This is shown in the EuroConv example in the demos\ConvertIt directory (see euroconv.pas):

type
 TConvTypeEuroFactor = class(TConvTypeFactor)
 private
 FRound: TRoundToRange;
 public
 constructor Create(const AConvFamily: TConvFamily;
 const ADescription: string; const AFactor: Double;
 const ARound: TRoundToRange);
 function ToCommon(const AValue: Double): Double; override;
 function FromCommon(const AValue: Double): Double; override;
 end;
end;

The constructor assigns values to those private members:

constructor TConvTypeEuroFactor.Create(const AConvFamily: TConvFamily;
 const ADescription: string; const AFactor: Double;
 const ARound: TRoundToRange);
begin
 inherited Create(AConvFamily, ADescription, AFactor);
 FRound := ARound;
end;

The two conversion functions simply use these private members:

function TConvTypeEuroFactor.FromCommon(const AValue: Double): Double;
begin
 Result := SimpleRoundTo(AValue * Factor, FRound);
end;
function TConvTypeEuroFactor.ToCommon(const AValue: Double): Double;

begin
 Result := AValue / Factor;
end;

Declare variables

Now that you have a conversion class, begin as with any other conversion family, by declaring identifiers:

var
 euEUR: TConvType; { EU euro }
 euBEF: TConvType; { Belgian francs }
 euDEM: TConvType; { German marks }
 euGRD: TConvType; { Greek drachmas }
 euESP: TConvType; { Spanish pesetas }
 euFFR: TConvType; { French francs }
 euIEP: TConvType; { Irish pounds }
 euITL: TConvType; { Italian lire }
 euLUF: TConvType; { Luxembourg francs }
 euNLG: TConvType; { Dutch guilders }
 euATS: TConvType; { Austrian schillings }
 euPTE: TConvType; { Portuguese escudos }
 euFIM: TConvType; { Finnish marks }
 euUSD: TConvType; { US dollars }
 euGBP: TConvType; { British pounds }
 euJPY: TConvType; { Japanese yen }

Register the conversion family and the other units

Now you are ready to register the conversion family and the European monetary units, using your new conversion
class:

cbEuro := RegisterConversionFamily ('European currency');
...
// Euro's various conversion types
euEUR := RegisterEuroConversionType(cbEuro, SEURDescription, EURToEUR, EURSubUnit);
euBEF := RegisterEuroConversionType(cbEuro, SBEFDescription, BEFToEUR, BEFSubUnit);
euDEM := RegisterEuroConversionType(cbEuro, SDEMDescription, DEMToEUR, DEMSubUnit);
euGRD := RegisterEuroConversionType(cbEuro, SGRDDescription, GRDToEUR, GRDSubUnit);
euESP := RegisterEuroConversionType(cbEuro, SESPDescription, ESPToEUR, ESPSubUnit);
euFFR := RegisterEuroConversionType(cbEuro, SFFRDescription, FFRToEUR, FFRSubUnit);
euIEP := RegisterEuroConversionType(cbEuro, SIEPDescription, IEPToEUR, IEPSubUnit);
euITL := RegisterEuroConversionType(cbEuro, SITLDescription, ITLToEUR, ITLSubUnit);
euLUF := RegisterEuroConversionType(cbEuro, SLUFDescription, LUFToEUR, LUFSubUnit);
euNLG := RegisterEuroConversionType(cbEuro, SNLGDescription, NLGToEUR, NLGSubUnit);
euATS := RegisterEuroConversionType(cbEuro, SATSDescription, ATSToEUR, ATSSubUnit);
euPTE := RegisterEuroConversionType(cbEuro, SPTEDescription, PTEToEUR, PTESubUnit);
euFIM := RegisterEuroConversionType(cbEuro, SFIMDescription, FIMToEUR, FIMSubUnit);
euUSD := RegisterEuroConversionType(cbEuro, SUSDDescription,
 ConvertUSDToEUR, ConvertEURToUSD);
euGBP := RegisterEuroConversionType(cbEuro, SGBPDescription,
 ConvertGBPToEUR, ConvertEURToGBP);
euJPY := RegisterEuroConversionType(cbEuro, SJPYDescription,
 ConvertJPYToEUR, ConvertEURToJPY);

Note that RegisterEuroConversionType is a wrapper function that simplifies the registering of the monetary types.
See the example code for details.

Use the new units

You can now use the newly registered units to perform conversions in your applications. The global Convert function
can convert between any of the European currencies you have registered with the new cbEuro family. For example,
the following code converts a value from Italian Lire to German Marks:

Edit2.Text = FloatToStr(Convert(StrToFloat(Edit1.Text), euITL, euDEM));

 DevGuide: Building applications with Delphi

Defining data types
Topic groups

Object Pascal has many predefined data types. You can use these predefined types to create new types that meet
the specific needs of your application. For an overview of types, see About types. The syntax for declaring new
types is described in Declaring types.

 DevGuide: Building applications with Delphi

Creating applications
Topic groups See also

The main use of Delphi is designing and building the following types of applications:
GUI applications
Console applications
Service applications (for Windows applications only)
Packages and DLLs

GUI applications generally have an easy-to-use interface. Console applications run from a console window. Service
applications are run as Windows services. These types of applications compile as executables with start-up code.

You can create other types of projects such as packages and DLLs that result in creating packages or dynamically
linkable libraries. These applications produce executable code without start-up code. Refer to Creating packages
and DLLs.

 DevGuide: Building applications with Delphi

GUI applications
Topic groups See also

A graphical user interface (GUI) application is one that is designed using graphical features such as windows,
menus, dialog boxes, and features that make the application easy to use. When you compile a GUI application, an
executable file with start-up code is created. The executable usually provides the basic functionality of your
program, and simple programs often consist of only an executable file. You can extend the application by calling
DLLs, packages, and other support files from the executable.

Delphi offers two application UI models:
Single document interface (SDI)
Multiple document interface (MDI)

In addition to the implementation model of your applications, the design-time behavior of your project and the
runtime behavior of your application can be manipulated by setting project options in the IDE.

 DevGuide: Building applications with Delphi

User interface models
Topic groups See also

Any form can be implemented as a multiple document interface (MDI) or single document interface (SDI) form. In an
MDI application, more than one document or child window can be opened within a single parent window. This is
common in applications such as spreadsheets or word processors. An SDI application, in contrast, normally
contains a single document view. To make your form an SDI application, set the FormStyle property of your Form
object to fsNormal.

For more information on developing the UI for an application, see Developing the application user interface.

 DevGuide: Building applications with Delphi

SDI applications
Topic groups See also

To create a new SDI application,
1 Select File|New|Other to bring up the New Items dialog.
2 Click on the Projects page and select SDI Application.
3 Click OK.

By default, the FormStyle property of your Form object is set to fsNormal, so Delphi assumes that all new
applications are SDI applications.

 DevGuide: Building applications with Delphi

MDI applications
Topic groups See also

To create a new MDI application,
1 Select File|New|Other to bring up the New Items dialog.
2 Click on the Projects page and select MDI Application.
3 Click OK.

MDI applications require more planning and are somewhat more complex to design than SDI applications. MDI
applications spawn child windows that reside within the client window; the main form contains child forms. Set the
FormStyle property of the TForm object to specify whether a form is a child (fsMDIForm) or main form (fsMDIChild).
It is a good idea to define a base class for your child forms and derive each child form from this class, to avoid
having to reset the child form’s properties.

 DevGuide: Building applications with Delphi

Setting IDE, project, and compilation options
Topic groups See also

Choose Project|Options to specify various options for your project.

Setting default project options

To change the default options that apply to all future projects, set the options in the Project Options dialog box and
check the Default box at the bottom right of the window. All new projects will use the current options selected by
default.

 DevGuide: Building applications with Delphi

Programming templates
Topic groups

Programming templates are commonly used “skeleton“ structures that you can add to your source code and then fill
in. Some standard code templates such as those for array, class, and function declarations, and many statements,
are included with Delphi.

You can also write your own templates for coding structures that you often use. For example, if you want to use a
for loop in your code, you could insert the following template:

for := to do
begin
end;

To insert a code template in the Code editor, press Ctrl-j and select the template you want to use. You can also add
your own templates to this collection. To add a template:
1 Select Tools|Editor Options.
2 Click the Code Insight tab.
3 In the Templates section, click Add.
4 Type a name for the template after Shortcut name and enter a brief description of the new template.
5 Add the template code to the Code text box.
6 Click OK.

 DevGuide: Building applications with Delphi

Console applications
Topic groups See also

Console applications are 32-bit programs that run without a graphical interface, usually in a console window. These
applications typically don’t require much user input and perform a limited set of functions.

To create a new console application,
1 Choose File|New|Other and select Console Application from the New Items dialog box.

Delphi then creates a project file for this type of source file and displays the code editor.

Note: When you create a new console application, the IDE does not create a new form. Only the code editor is
displayed.

Console applications should handle all exceptions to prevent windows from displaying a dialog during its execution.
For example, your application should include exception handling such as shown in the following code:

program Project1;
{$APPTYPE CONSOLE}
begin
try
 raise exception.create('hi');
 except
 WriteLn('exception occurred');
 end;
end.

 DevGuide: Building applications with Delphi

Service applications
Topic groups See also

Service applications take requests from client applications, process those requests, and return information to the
client applications. They typically run in the background, without much user input. A web, FTP, or e-mail server is an
example of a service application.

To create an application that implements a Win32 service, Choose File|New, and select Service Application from the
New Items page. This adds a global variable named Application to your project, which is of type
TServiceApplication.

Once you have created a service application, you will see a window in the designer that corresponds to a service
(TService). Implement the service by setting its properties and event handlers in the Object Inspector. You can add
additional services to your service application by choosing Service from the new items dialog. Do not add services
to an application that is not a service application. While a TService object can be added, the application will not
generate the requisite events or make the appropriate Windows calls on behalf of the service.

Once your service application is built, you can install its services with the Service Control Manager (SCM). Other
applications can then launch your services by sending requests to the SCM.

To install your application’s services, run it using the /INSTALL option. The application installs its services and exits,
giving a confirmation message if the services are successfully installed. You can suppress the confirmation
message by running the service application using the /SILENT option.

To uninstall the services, run it from the command line using the /UNINSTALL option. (You can also use the
/SILENT option to suppress the confirmation message when uninstalling).

Example: This service has a TServerSocket whose port is set to 80. This is the default port for Web Browsers
to make requests to Web Servers and for Web Servers to make responses to Web Browsers. This
particular example produces a text document in the C:\Temp directory called WebLogxxx.log (where
xxx is the ThreadID). There should be only one Server listening on any given port, so if you have a
web server, you should make sure that it is not listening (the service is stopped).

To see the results: open up a web browser on the local machine and for the address, type 'localhost' (with no
quotes). The Browser will time out eventually, but you should now have a file called weblogxxx.log in the C:\temp
directory.
1 To create the example, choose File|New and select Service Application from the New Items dialog. You will

see a window appear named Service1. From the Internet page of the Component palette, add a ServerSocket
component to the service window (Service1).

2 Next, add a private data member of type TMemoryStream to the TService1 class. The interface section of your
unit should now look like this:

interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, SvcMgr, Dialogs,
 ScktComp;
type
 TService1 = class(TService)
 ServerSocket1: TServerSocket;
 procedure ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
 procedure Service1Execute(Sender: TService);
 private
 { Private declarations }
 Stream: TMemoryStream; // Add this line here
 public
 function GetServiceController: PServiceController; override;
 { Public declarations }
 end;
var
 Service1: TService1;

3 Next, select ServerSocket1, the component you added in step 1. In the Object Inspector, double click the
OnClientRead event and add the following event handler:

procedure TService1.ServerSocket1ClientRead(Sender: TObject;
 Socket: TCustomWinSocket);
var

 Buffer: PChar;
begin
 Buffer := nil;
while Socket.ReceiveLength > 0 do begin
 Buffer := AllocMem(Socket.ReceiveLength);
 try
 Socket.ReceiveBuf(Buffer^, Socket.ReceiveLength);
 Stream.Write(Buffer^, StrLen(Buffer));
 finally
 FreeMem(Buffer);
 end;
 Stream.Seek(0, soFromBeginning);
 Stream.SaveToFile('c:\Temp\Weblog' + IntToStr(ServiceThread.ThreadID) + '.log');
 end;
end;

4 Finally, select Service1 by clicking in the window’s client area (but not on the ServiceSocket). In the Object
Inspector, double click the OnExecute event and add the following event handler:

procedure TService1.Service1Execute(Sender: TService);
begin
 Stream := TMemoryStream.Create;
 try
 ServerSocket1.Port := 80; // WWW port
 ServerSocket1.Active := True;
 while not Terminated do begin
 ServiceThread.ProcessRequests(True);
 end;
 ServerSocket1.Active := False;
 finally
 Stream.Free;
 end;
end;

When writing your service application, you should be aware of:
Service threads
Service name properties
Debugging service applications

 DevGuide: Building applications with Delphi

Service threads
Topic groups See also

Each service has its own thread (TServiceThread), so if your service application implements more than one service
you must ensure that the implementation of your services is thread-safe. TServiceThread is designed so that you
can implement the service in the TService OnExecute event handler. The service thread has its own Execute
method which contains a loop that calls the service’s OnStart and OnExecute handlers before processing new
requests.

Because service requests can take a long time to process and the service application can receive simultaneous
requests from more than one client, it is more efficient to spawn a new thread (derived from TThread, not
TServiceThread) for each request and move the implementation of that service to the new thread’s Execute
method. This allows the service thread’s Execute loop to process new requests continually without having to wait for
the service’s OnExecute handler to finish. The following example demonstrates.

Example: This service beeps every 500 milliseconds from within the standard thread. It handles pausing,
continuing, and stopping of the thread when the service is told to pause, continue, or stop.

1 Choose File|New|Other and select Service Application from the New Items dialog. You will see a window
appear named Service1.

2 In the interface section of your unit, declare a new descendant of TThread named TSparkyThread. This is the
thread that does the work for your service. The declaration should appear as follows:

TSparkyThread = class(TThread)
 public
 procedure Execute; override;
 end;

3 Next, in the implementation section of your unit, create a global variable for a TSparkyThread instance:

var
 SparkyThread: TSparkyThread;

4 Add the following code to the implementation section for the TSparkyThread Execute method (the thread
function):

procedure TSparkyThread.Execute;
begin
 while not Terminated do
 begin
 Beep;
 Sleep(500);
 end;
end;

5 Select the Service window (Service1), and double-click the OnStart event in the Object Inspector. Add the
following OnStart event handler:

procedure TService1.Service1Start(Sender: TService; var Started: Boolean);
begin
 SparkyThread := TSparkyThread.Create(False);
 Started := True;
end;

6 Double-click the OnContinue event in the Object Inspector. Add the following OnContinue event handler:

procedure TService1.Service1Continue(Sender: TService; var Continued: Boolean);
begin
 SparkyThread.Resume;
 Continued := True;
end;

7 Double-click the OnPause event in the Object Inspector. Add the following OnPause event handler:

procedure TService1.Service1Pause(Sender: TService; var Paused: Boolean);
begin
 SparkyThread.Suspend;
 Paused := True;
end;

8 Finally, double-click the OnStop event in the Object Inspector and add the following OnStop event handler:

procedure TService1.Service1Stop(Sender: TService; var Stopped: Boolean);
begin
 SparkyThread.Terminate;

 Stopped := True;
end;

When developing server applications, choosing to spawn a new thread depends on the nature of the service being
provided, the anticipated number of connections, and the expected number of processors on the computer running
the service.

 DevGuide: Building applications with Delphi

Service name properties (Windows only)
Topic groups See also

The VCL provides classes for creating service applications on the Windows platform (not available for cross-
platform applications). These include TService and TDependency. When using these classes, the various name
properties can be confusing. This section describes the differences.

Services have user names (called Service start names) that are associated with passwords, display names for
display in manager and editor windows, and actual names (the name of the service). Dependencies can be services
or they can be load ordering groups. They also have names and display names. And because service objects are
derived from TComponent, they inherit the Name property. The following sections summarize the name properties:

TDependency properties

The TDependency DisplayName is both a display name and the actual name of the service. It is nearly always the
same as the TDependency Name property.

TService name properties

The TService Name property is inherited from TComponent. It is the name of the component, and is also the name
of the service. For dependencies that are services, this property is the same as the TDependency Name and
DisplayName properties.

TService’s DisplayName is the name displayed in the Service Manager window. This often differs from the actual
service name (TService.Name, TDependency.DisplayName, TDependency.Name). Note that the DisplayName for
the Dependency and the DisplayName for the Service usually differ.

Service start names are distinct from both the service display names and the actual service names. A
ServiceStartName is the user name input on the Start dialog selected from the Service Control Manager.

 DevGuide: Building applications with Delphi

Debugging service applications
Topic groups See also

You can debug service applications by attaching to the service application process when it is already running (that
is, by starting the service first, and then attaching to the debugger). To attach to the service application process,
choose Run|Attach To Process, and select the service application in the resulting dialog.

In some cases, this approach may fail, due to insufficient rights. If that happens, you can use the Service Control
Manager to enable your service to work with the debugger:
1 First create a key called Image File Execution Options in the following registry location:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion

2 Create a subkey with the same name as your service (for example, MYSERV.EXE). To this subkey, add a
value of type REG_SZ, named Debugger. Use the full path to Delphi32.exe as the string value.

3 In the Services control panel applet, select your service, click Startup and check Allow Service to Interact with
Desktop.

On Windows NT systems, you can use another approach for debugging service applications. However, this
approach can be tricky, because it requires short time intervals:
1 First, launch the application in the debugger. Wait a few seconds until it has finished loading.
2 Quickly start the service from the control panel or from the command line:
start MyServ

You must launch the service quickly (within 15-30 seconds of application startup) because the application will
terminate if no service is launched.

 DevGuide: Building applications with Delphi

Creating packages and DLLs
Topic groups See also

Dynamic link libraries (DLLs) are modules of compiled code that work in conjunction with an executable to provide
functionality to an application. You can create DLLs in cross-platform programs. However, on Linux, DLLs (and
packages) recompile as shared objects.

Packages are special DLLs used by Delphi applications, the IDE, or both. There are two kinds of packages: runtime
packages and design-time packages. Runtime packages provide functionality to a program while that program is
running. Design-time packages extend the functionality of the IDE.

DLLs and libraries should handle all exceptions to prevent the display of errors and warnings through Windows
dialogs.

The following compiler directives can be placed in library project files:

Compiler Directive Description

{$LIBPREFIX 'string'} Adds a specified prefix to the output file name. For example, you could
specify {$LIBPREFIX 'dcl'} for a design-time package, or use {$LIBPREFIX '
'} to eliminate the prefix entirely.

{$LIBSUFFIX 'string'} Adds a specified suffix to the output file name before the extension. For
example, use {$LIBSUFFIX '-2.1.3'} in something.pas to generate
something-2.1.3.bpl.

{$LIBVERSION 'string'} Adds a second extension to the output file name after the .bpl extension. For
example, use {$LIBVERSION '2.1.3'} in something.pas to generate
something.bpl.2.1.3.

For more information on packages, see Working with packages and components.

 DevGuide: Building applications with Delphi

When to use packages and DLLs
Topic groups

For most applications written in Delphi, packages provide greater flexibility and are easier to create than DLLs.
However, there are several situations where DLLs would be better suited to your projects than packages:

Your code module will be called from non-Delphi applications.
You are extending the functionality of a web server.
You are creating a code module to be used by third-party developers.
Your project is an OLE container.

You cannot pass runtime type information (RTTI) across DLLs or from a DLL to an executable. That’s because DLLs
all maintain their own symbol information. If you need to pass a TStrings object from a DLL then using an is or as
operator, you need to create a package rather than a DLL. Packages share symbol information.

 DevGuide: Building applications with Delphi

Writing database applications
Topic groups

One of Delphi’s strengths is its support for creating advanced database applications. Delphi supports tools that
allow you to connect to SQL servers and databases such as Oracle, Sybase, InterBase, MySQL, MS-SQL, Informix,
and DB2 while providing transparent data sharing between applications.

Delphi includes many components for accessing databases and representing the information they contain. On the
Component palette, the database components are grouped according to the data access mechanism and function.

Palette page Contents

BDE Components that use the Borland Database Engine (BDE), a large API for interacting
with databases. The BDE supports the broadest range of functions and comes with
the most supporting utilities including Database Desktop, Database Explorer, SQL
Monitor, and BDE Administrator. See Using the Borland Database Engine for details.

ADO Components that use ActiveX Data Objects (ADO), developed by Microsoft, to access
database information. Many ADO drivers are available for connecting to different
database servers. ADO-based components let you integrate your application into an
ADO-based environment. See Working with ADO components for details.

dbExpress Cross-platform components that use dbExpress to access database information.
dbExpress drivers provide fast access to databases but need to be used with
TClientDataSet and TDataSetProvider to perform updates. See Using unidirectional
datasets for details.

InterBase Components that access InterBase databases directly, without going through a
separate engine layer. For more information about using the InterBase components,
see the online Help.Getting started with InterBase Express.

Data Access Components that can be used with any data access mechanism such as
TClientDataSet and TDataSetProvider. See Using client datasets for information
about client datasets. See Using provider componentsfor information about providers.

Data Controls Data-aware controls that can access information from a data source. See Using data
controls for details.

When designing a database application, you must decide which data access mechanism to use. Each data access
mechanism differs in its range of functional support, the ease of deployment, and the availability of drivers to
support different database servers.

Refer to Designing database applications for details on what type of database support is available and
considerations when designing database client applications and application servers.

 DevGuide: Building applications with Delphi

Distributing database applications
Topic groups See also

Delphi provides support for creating distributed database applications using a coordinated set of components.
Distributed database applications can be built on a variety of communications protocols, including DCOM, CORBA,
TCP/IP, and SOAP.

For more information about building distributed database applications, see Creating multi-tiered applications.

Distributing database applications often requires you to distribute the Borland Database Engine (BDE) in addition to
the application files. For information on deploying the BDE, see Deploying database applications.

 DevGuide: Building applications with Delphi

Creating Web server applications
Topic groups See also

Web server applications are applications that run on servers that deliver Web content such as HTML Web pages or
XML documents over the Internet. Examples of Web server applications include those which control access to a
Web site, generate purchase orders, or respond to information requests.

You can create several different types of Web server applications using the following Delphi technologies:
Web Broker
WebSnap
InternetExpress
Web Services

 DevGuide: Building applications with Delphi

Using Web Broker
Topic groups See also

You can use Web Broker (also called NetCLX architecture) to create Web server applications such as CGI
applications or dynamic-link libraries (DLLs). These Web server applications can contain any nonvisual component.
Components on the Internet page of the Component palette enable you to create event handlers, programmatically
construct HTML or XML documents, and transfer them to the client.

To create a new Web server application using the Web Broker architecture, select File|New|Other and select Web
Server Application in the New Items dialog box. Then select the Web server application type:

Web server application
type

Description

ISAPI and NSAPI Dynamic
Link Library

ISAPI and NSAPI Web server applications are DLLs that are loaded by the
Web server. Client request information is passed to the DLL as a structure
and evaluated by TISAPIApplication. Each request message is handled in a
separate execution thread.
Selecting this type of application adds the library header of the project files
and required entries to the uses list and exports clause of the project file.

CGI Stand-alone
executable

CGI Web server applications are console applications that receive requests
from clients on standard input, process those requests, and sends back the
results to the server on standard output to be sent to the client.
Selecting this type of application adds the required entries to the uses clause
of the project file and adds the appropriate $APPTYPE directive to the source.

Win-CGI Stand-alone
executable

Win-CGI Web server applications are Windows applications that receive
requests from clients from a configuration settings (INI) file written by the
server and writes the results to a file that the server passes back to the client.
The INI file is evaluated by TCGIApplication. Each request message is
handled by a separate instance of the application.
Selecting this type of application adds the required entries to the uses clause
of the project file and adds the appropriate $APPTYPE directive to the source.

Apache Shared Module
(DLL)

Selecting this type of application sets up your project as a DLL. Apache Web
server applications are DLLs loaded by the Web server. Information is passed
to the DLL, processed, and returned to the client by the Web server.

Web App Debugger Stand-
alone executable

Selecting this type of application sets up an environment for developing and
testing Web server applications. Web App Debugger applications are
executable files loaded by the Web server. This type of application is not
intended for deployment.

CGI and Win-CGI applications use more system resources on the server, so complex applications are better
created as ISAPI , NSAPI, or Apache DLL applications. If writing cross-platform applications, you should select CGI
stand-alone or Apache Shared Module (DLL) for Web server development. These are also the same options you
see when creating WebSnap and Web Service applications.

For more information on building Web server applications, see Creating Internet server applications.

 DevGuide: Building applications with Delphi

Creating WebSnap applications
Topic groups See also

WebSnap provides a set of components and wizards for building advanced Web servers that interact with Web
browsers. WebSnap components generate HTML or other mime content for Web pages. WebSnap is for server side
development. WebSnap cannot be used in cross-platform applications at this time.

To create a new WebSnap application, select File|New|Other and select the WebSnap tab in the New Items dialog
box. Choose WebSnap Application. Then select the Web server application type (ISAPI/NSAPI, CGI, Win-CGI,
Apache). See for details.

For more information on WebSnap, see Creating Internet server applications.

 DevGuide: Building applications with Delphi

Using InternetExpress
Topic groups See also

InternetExpress is a set of components that extends the basic Web server application architecture to act as the
client of an application server. You use InternetExpress for applications wherein browser-based clients can fetch
data from a provider, resolve updates to the provider, while executing on a client.

InternetExpress applications generate HTML pages that contain a mixture of HTML, XML, and javascript. The
HTML determines the layout and appearance of the pages displayed in end-user browsers. The XML encodes the
data packets and delta packets that represent database information. The javascript allows the HTML controls to
interpret and manipulate the data in the XML data packets on the client machine.

For more information on InternetExpress, see Building Web applications using InternetExpress.

 DevGuide: Building applications with Delphi

Creating Web Services applications
Topic groups See also

Web Services are self-contained modular applications that can be published and invoked over a network (such as
the World Wide Web). Web Services provide well-defined interfaces that describe the services provided. You use
Web Services to produce or consume programmable services over the Internet using emerging standards such as
XML, XML Schema, SOAP (Simple Object Access Protocol), and WSDL (Web Service Definition Language).

Web Services use SOAP, a standard lightweight protocol for exchanging information in a distributed environment. It
uses HTTP as a communications protocol and XML to encode remote procedure calls.

You can use Delphi to build servers to implement Web Services and clients that call on those services. You can
write clients for arbitrary servers to implement Web Services that respond to SOAP messages, and Delphi servers
to publish Web Services for use by arbitrary clients.

Refer to Using Web Services for more information on Web Services.

 DevGuide: Building applications with Delphi

Writing applications using COM
Topic groups See also

COM is the Component Object Model, a Windows-based distributed object architecture designed to provide object
interoperability using predefined routines called interfaces. COM applications use objects that are implemented by a
different process or, if you use DCOM, on a separate machine. You can also use COM+, ActiveX and Active Server
Pages.

COM is a language-independent software component model that enables interaction between software components
and applications running on a Windows platform. The key aspect of COM is that it enables communication between
components, between applications, and between clients and servers through clearly defined interfaces. Interfaces
provide a way for clients to ask a COM component which features it supports at runtime. To provide additional
features for your component, you simply add an additional interface for those features.

Using COM and DCOM

Delphi has classes and wizards that make it easy to create COM, OLE, or ActiveX applications. You can create
COM clients or servers that implement COM objects, Automation servers (including Active Server Objects), ActiveX
controls, or ActiveForms. COM also severs as the basis for other technologies such as Automation, ActiveX
controls, Active Documents, and Active Directories.

Using Delphi to create COM-based applications offers a wide range of possibilities, from improving software design
by using interfaces internally in an application, to creating objects that can interact with other COM-based API
objects on the system, such as the Win9x Shell extensions and DirectX multimedia support. Applications can
access the interfaces of COM components that exist on the same computer as the application or that exist on
another computer on the network using a mechanism called Distributed COM (DCOM).

For more information on COM and Active X controls, see Overview of COM technologies,    Creating an ActiveX
control and Distributing a client application as an ActiveX control.

For more information on DCOM, see Using DCOM connections.

Using MTS and COM+

COM applications can be augmented with special services for managing objects in a large distributed environment.
These services include transaction services, security, and resource management supplied by Microsoft Transaction
Server (MTS) on versions of Windows prior to Windows 2000) or COM+ (for Windows 2000 and later).

For more information on MTS and COM+, seeCreating MTS or COM+ objects and Using transactional data
modules.

 DevGuide: Building applications with Delphi

Using data modules
Topic groups See also

A data module is like a special form that contains nonvisual components. All the components in a data module could
be placed on ordinary forms alongside visual controls. But if you plan on reusing groups of database and system
objects, or if you want to isolate the parts of your application that handle database connectivity and business rules,
then data modules provide a convenient organizational tool.

There are several types of data modules, including standard, remote, Web modules, applet modules, and services,
depending on which edition of Delphi you have. Each type of data module serves a special purpose.

Standard data modules are particularly useful for single- and two-tiered database applications, but can be
used to organize the nonvisual components in any application. For more information, see Creating and editing data
modules.

Remote data modules form the basis of an application server in a multi-tiered database application. They
are not available in all editions. In addition to holding the nonvisual components in the application server, remote data
modules expose the interface that clients use to communicate with the application server. For more information about
using them, see Adding a remote data module to an application server project.

Web modules form the basis of Web server applications. In addition to holding the components that create
the content of HTTP response messages, they handle the dispatching of HTTP messages from client applications.
See Creating Internet server applications for more information about using Web modules.

Applet modules form the basis of control panel applets. In addition to holding the nonvisual controls that
implement the control panel applet, they define the properties that determine how the applet’s icon appears in the
control panel and include the events that are called when users execute the applet. For more information about
applet modules, see Control Panel Application wizard.

Services encapsulate individual services in an NT service application. In addition to holding any nonvisual
controls used to implement a service, services include the events that are called when the service is started or
stopped. For more information about services, see Service Applications.

 DevGuide: Building applications with Delphi

Creating and editing standard data modules
Topic groups See also

To create a standard data module for a project, choose File|New|Data Module. Delphi opens a data module
container on the desktop, displays the unit file for the new module in the Code editor, and adds the module to the
current project.

At design time, a data module looks like a standard Delphi form with a white background and no alignment grid. As
with forms, you can place nonvisual components from the Component palette onto a module, and edit their
properties in the Object Inspector. You can resize a data module to accommodate the components you add to it.

You can also right-click a module to display a context menu for it. The following table summarizes the context menu
options for a data module.

Menu item Purpose

Edit Displays a context menu with which you can cut, copy, paste, delete,
and select the components in the data module.

Position Aligns nonvisual components to the module’s invisible grid (Align To
Grid) or according to criteria you supply in the Alignment dialog box
(Align).

Tab Order Enables you to change the order that the focus jumps from
component to component when you press the tab key.

Creation Order Enables you to change the order that data access components are
created at start-up.

Revert to Inherited Discards changes made to a module inherited from another module in
the Object Repository, and reverts to the originally inherited module.

Add to Repository Stores a link to the data module in the Object Repository.
View as Text Displays the text representation of the data module’s properties.
View DFM Toggles between the formats (binary or text) in which this particular

form file is saved.

For more information about data modules, see About the Data Module Editor.

 DevGuide: Building applications with Delphi

Naming a data module and its unit file
Topic groups See also

The title bar of a data module displays the module’s name. The default name for a data module is “DataModuleN”
where N is a number representing the lowest unused unit number in a project. For example, if you start a new
project, and add a module to it before doing any other application building, the name of the module defaults to
“DataModule2.” The corresponding unit file for DataModule2 defaults to “Unit2.”

You should rename your data modules and their corresponding unit files at design time to make them more
descriptive. You should especially rename data modules you add to the Object Repository to avoid name conflicts
with other data modules in the Repository or in applications that use your modules.

To rename a data module:
1 Select the module.
2 Edit the Name property for the module in the Object Inspector.

The new name for the module appears in the title bar when the Name property in the Object Inspector no longer
has focus.

Changing the name of a data module at design time changes its variable name in the interface section of code. It
also changes any use of the type name in procedure declarations. You must manually change any references to the
data module in code you write.

To rename a unit file for a data module:
1 Select the unit file.

 DevGuide: Building applications with Delphi

Placing and naming components
Topic groups See also

You place nonvisual components in a data module just as you place visual components on a form. Click the desired
component on the appropriate page of the Component palette, then click in the data module to place the
component. You cannot place visual controls, such as grids, on a data module. If you attempt it, you receive an
error message.

For ease of use, components are displayed with their names in a data module. When you first place a component,
Delphi assigns it a generic name that identifies what kind of component it is, followed by a 1. For example, the
TDataSource component adopts the name DataSource1. This makes it easy to select specific components whose
properties and methods you want to work with.

You may still want to name a component a different name that reflects the type of component and what it is used for.

To change the name of a component in a data module:
1 Select the component.
2 Edit the component’s Name property in the Object Inspector.

The new name for the component appears under its icon in the data module as soon as the Name property in the
Object Inspector no longer has focus.

For example, suppose your database application uses the CUSTOMER table. To access the table, you need a
minimum of two data access components: a data source component (TDataSource) and a table component
(TClientDataSet). When you place these components in your data module, Delphi assigns them the names
DataSource1 and ClientDataSet1. To reflect the type of component and the database they access, CUSTOMER,
you could change these names to CustomerSource and CustomerTable.

 DevGuide: Building applications with Delphi

Using component properties and events in a data module
Topic groups See also

Placing components in a data module centralizes their behavior for your entire application. For example, you can
use the properties of dataset components, such as TClientDataSet, to control the data available to the data source
components that use those datasets. Setting the ReadOnly property to True for a dataset prevents users from
editing the data they see in a data-aware visual control on a form. You can also invoke the Fields editor for a
dataset, by double-clicking on ClientDataSet1, to restrict the fields within a table or query that are available to a data
source and therefore to the data-aware controls on forms. The properties you set for components in a data module
apply consistently to all forms in your application that use the module.

In addition to properties, you can write event handlers for components. For example, a TDataSource component
has three possible events: OnDataChange, OnStateChange, and OnUpdateData. A TClientDataSet component has
over 20 potential events. You can use these events to create a consistent set of business rules that govern data
manipulation throughout your application.

 DevGuide: Building applications with Delphi

Creating business rules in a data module
Topic groups See also

Besides writing event handlers for the components in a data module, you can code methods directly in the unit file
for a data module. These methods can be applied to the forms that use the data module as business rules. For
example, you might write a procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the data module. The prototypes for the procedures and
functions you write for a data module should appear in the module’s type declaration:

type
 TCustomerData = class(TDataModule)
 Customers: TClientDataSet;
 Orders: TClientDataSet;
 ...
 private
 { Private declarations }
 public
 { Public declarations }
 procedure LineItemsCalcFields(DataSet: TDataSet); { A procedure you add }
 end;
var
 CustomerData: TCustomerData;

The procedures and functions you write should follow in the implementation section of the code for the module.

 DevGuide: Building applications with Delphi

Accessing a data module from a form
Topic groups See also

To associate visual controls on a form with a data module, you must first add the data module to the form’s uses
clause. You can do this in several ways:

In the Code editor, open the form’s unit file and add the name of the data module to the uses clause in the
interface section.

Click the form’s unit file, choose File|Use Unit, and enter the name of the module or pick it from the list box in
the Use Unit dialog.

For database components, in the data module click a dataset or query component to open the Fields editor
and drag any existing fields from the editor onto the form. Delphi prompts you to confirm that you want to add the
module to the form’s uses clause, then creates controls (such as edit boxes) for the fields.
For example, if you’ve added the TClientDataSet component to your data module, double-click it to open the Fields
editor. Select a field and drag it to the form. An edit box component appears.

Because the data source is not yet defined, Delphi adds a new data source component, DataSource1, to the form
and sets the edit box’s DataSource property to DataSource1. The data source automatically sets its DataSet
property to the dataset component, ClientDataSet1, in the data module.

You can define the data source before you drag a field to the form by adding a TDataSource component to the data
module. Set the data source’s DataSet property to ClientDataSet1. After you drag a field to the form, the edit box
appears with its TDataSource property already set to DataSource1. This method keeps your data access model
cleaner.

 DevGuide: Building applications with Delphi

Adding a remote data module to an application server project
Topic groups See also

Some editions of Delphi allow you to add remote data modules to application server projects. A remote data module
has an interface that clients in a multi-tiered application can access across networks.

To add a remote data module to a project:
1 Choose File|New|Other.
2 Select the Multitier page in the New Items dialog box.
3 Double-click the desired type of module (CORBA Data Module, Remote Data Module, or Transactional Data

Module) to open the Remote Data Module wizard.

Once you add a remote data module to a project, you use it just like a standard data module.

For more information about multi-tiered database applications, see Creating multi-tiered applications.

 DevGuide: Building applications with Delphi

Using the Object Repository
Topic groups See also

The Object Repository (Tools|Repository) makes it easy share forms, dialog boxes, frames, and data modules. It
also provides templates for new projects and wizards that guide the user through the creation of forms and projects.
The repository is maintained in DELPHI32.DRO (by default in the BIN directory), a text file that contains references
to the items that appear in the Repository and New Items dialogs.

 DevGuide: Building applications with Delphi

Sharing items within a project
Topic groups See also

You can share items within a project without adding them to the Object Repository. When you open the New Items
dialog box (File|New|Other), you'll see a page tab with the name of the current project. This page lists all the forms,
dialog boxes, and data modules in the project. You can derive a new item from an existing item and customize it as
needed.

 DevGuide: Building applications with Delphi

Adding items to the Object Repository
Topic groups See also

You can add your own projects, forms, frames, and data modules to those already available in the Object
Repository. To add an item to the Object Repository,
1 If the item is a project or is in a project, open the project.
2 For a project, choose Project|Add To Repository. For a form or data module, right-click the item and choose

Add To Repository.
3 Type a description, title, and author.
4 Decide which page you want the item to appear on in the New Items dialog box, then type the name of the

page or select it from the Page combo box. If you type the name of a page that doesn’t exist, Delphi creates a
new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.
6 Choose OK.

 DevGuide: Building applications with Delphi

Sharing objects in a team environment
Topic groups See also

You can share objects with your workgroup or development team by making a repository available over a network.
To use a shared repository, all team members must select the same Shared Repository directory in the Environment
Options dialog:
1 Choose Tools|Environment Options.
2 On the Preferences page, locate the Shared Repository panel. In the Directory edit box, enter the directory

where you want to locate the shared repository. Be sure to specify a directory that’s accessible to all team
members.

The first time an item is added to the repository, Delphi creates a DELPHI32.DRO file in the Shared Repository
directory if one doesn’t exist already.

 DevGuide: Building applications with Delphi

Using an Object Repository item in a project
Topic groups See also

To access items in the Object Repository, choose File|New|Other. The New Items dialog appears, showing all the
items available. Depending on the type of item you want to use, you have up to three options for adding the item to
your project:

Copy
Inherit
Use

 DevGuide: Building applications with Delphi

Copying an item
Topic groups See also

Choose Copy to make an exact copy of the selected item and add the copy to your project. Future changes made to
the item in the Object Repository will not be reflected in your copy, and alterations made to your copy will not affect
the original Object Repository item.

Copy is the only option available for project templates.

 DevGuide: Building applications with Delphi

Inheriting an item
Topic groups See also

Choose Inherit to derive a new class from the selected item in the Object Repository and add the new class to your
project. When you recompile your project, any changes that have been made to the item in the Object Repository
will be reflected in your derived class, in addition to changes you make to the item in your project. Changes made to
your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project templates. It is the only option
available for reusing items within the same project.

 DevGuide: Building applications with Delphi

Using an item
Topic groups See also

Choose Use when you want the selected item itself to become part of your project. Changes made to the item in
your project will appear in all other projects that have added the item with the Inherit or Use option. Select this
option with caution.

The Use option is available for forms, dialog boxes, and data modules.

 DevGuide: Building applications with Delphi

Using project templates
Topic groups See also

Templates are predesigned projects that you can use as starting points for your own work. To create a new project
from a template,
1 Choose File|New|Other to display the New Items dialog box.
2 Choose the Projects tab.
3 Select the project template you want and choose OK.
4 In the Select Directory dialog, specify a directory for the new project’s files.

Delphi copies the template files to the specified directory, where you can modify them. The original project template
is unaffected by your changes.

 DevGuide: Building applications with Delphi

Modifying shared items
Topic groups See also

If you modify an item in the Object Repository, your changes will affect all future projects that use the item as well as
existing projects that have added the item with the Use or Inherit option. To avoid propagating changes to other
projects, you have several alternatives:

Copy the item and modify it in your current project only.
Copy the item to the current project, modify it, then add it to the Repository under a different name.
Create a component, DLL, component template, or frame from the item. If you create a component or DLL,

you can share it with other developers.

 DevGuide: Building applications with Delphi

Specifying a default project, new form, and main form
Topic groups See also

By default, when you choose File|New|Application or File|New|Form, Delphi displays a blank form. You can change
this behavior by reconfiguring the Repository:
1 Choose Tools|Repository
2 If you want to specify a default project, select the Projects page and choose an item under Objects. Then

select the New Project check box.
3 If you want to specify a default form, select a Repository page (such as Forms), them choose a form under

Objects. To specify the default new form (File|New|Form), select the New Form check box. To specify the
default main form for new projects, select the Main Form check box.

4 Click OK.

 DevGuide: Building applications with Delphi

Enabling Help in applications
Topic groups See also

Both the VCL and CLX support displaying Help from applications using an object-based mechanism that allows
Help requests to be passed on to one of multiple external Help viewers. To support this, an application must include
a class that implements the ICustomHelpViewer interface (and, optionally, one of several interfaces descended from
it), and registers itself with the global Help Manager.

The VCL provides to all applications an instance of TWinHelpViewer, which implements all of these interfaces and
provides a link between applications and WinHelp; CLX requires that application developers provide their own
implementation.

The Help Manager maintains a list of registered viewers and passes requests to them in a two-phase process: it
first asks each viewer if it can provide support for a particular Help keyword or context, and then it passes the Help
request on to the viewer which says it can provide such support. (If more than one viewer supports the keyword, as
would be the case in an application which had registered viewers for both Man and Info, the Help Manager can
display a selection box through which the user of the application can determine which Help viewer to invoke.
Otherwise, it displays the first responding Help system encountered).

 DevGuide: Building applications with Delphi

Help system interfaces
Topic groups See also

The Help system allows communication between your application and Help viewers through a series of interfaces.
These interfaces are all defined in HelpIntfs.pas, which also contains the implementation of the Help Manager.

ICustomHelpViewer provides support for displaying Help based upon a provided keyword and for displaying a table
of contents listing all Help available in a particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric Help context and for displaying
topics; in most Help systems, topics function as high-level keywords (for example, “IntToStr” might be a keyword in
the Help system, but “String manipulation routines” could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp messages that an application
running under Windows may receive and which are not easily generalizable. In general, only applications operating
in the Windows environment need to implement this interface, and even then it is only required for applications that
make extensive use of non-standard WinHelp messages.

IHelpManager provides a mechanism for the Help viewer to communicate back to the application’s Help Manager
and request additional information. An IHelpManager is obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests on to the Help system.
TApplication obtains an instance of an object which implements both IHelpSystem and IHelpManager at application
load time and exports that instance as a property; this allows other code within the application to file Help requests
directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the user interface to ask which
Help viewer should be used in cases where more than one viewer is capable of handling a Help request, and to
display a Table of Contents. This display capability is not built into the Help Manager directly to allow the Help
Manager code to be identical regardless of which widget set or class library is in use.

 DevGuide: Building applications with Delphi

Implementing ICustomHelpViewer
Topic groups See also

The ICustomHelpViewer interface contains three types of methods: methods used to communicate system-level
information (for example, information not related to a particular Help request) with the Help Manager; methods
related to showing Help based upon a keyword provided by the Help Manager; and methods for displaying a table
of contents.

For information on ICustomHelpViewer methods, see
Communicating with the Help Manager
Displaying keyword-based Help
Asking the Help Manager for information

 DevGuide: Building applications with Delphi

Communicating with the Help Manager
Topic groups See also

ICustomHelpViewer provides four functions that can be used to communicate system information with the Help
Manager:

GetViewerName
NotifyID
ShutDown
SoftShutDown

The Help Manager calls through these functions in the following circumstances:
ICustomHelpViewer.GetViewerName : String is called when the Help Manager wants to know the name of

the viewer (for example, if the application is asked to display a list of all registered viewers). This information is
returned via a string, and is required to be logically static (that is, it cannot change during the operation of the
application). Multibyte character sets are not supported.

ICustomHelpViewer.NotifyID(const ViewerID: Integer) is called immediately following registration to provide
the viewer with a unique cookie that identifies it. This information must be stored off for later use; if the viewer shuts
down on its own (as opposed to in response to a notification from the Help Manager), it must provide the Help
Manager with the identifying cookie so that the Help Manager can release all references to the viewer. (Failing to
provide the cookie, or providing the wrong one, causes the Help Manager to potentially release references to the
wrong viewer.)

ICustomHelpViewer.ShutDown is called by the Help Manager to notify the Help viewer that the Manager is
shutting down and that any resources the Help viewer has allocated should be freed. It is recommended that all
resource freeing be delegated to this method.

ICustomHelpViewer.SoftShutDown is called by the Help Manager to ask the Help viewer to close any
externally visible manifestations of the help system (for example, windows displaying help information) without
unloading the viewer.

 DevGuide: Building applications with Delphi

Asking the Help Manager for information
Topic groups See also

Help viewers communicate with the Help Manager through the IHelpManager interface, an instance of which is
returned to them when they register with the Help Manager. IHelpManager allows the Help viewer to communicate
four things: a request for the window handle of the currently active control; a request for the name of the Help file
which the Help Manager believes should contain help for the currently active control; a request for the path to that
Help file; and a notification that the Help viewer is shutting itself down in response to something other than a
request from the Help Manager that it do so.

IHelpManager.GetHandle : LongInt is called by the Help viewer if it needs to know the handle of the currently active
control; the result is a window handle.

IHelpManager.GetHelpFile: String is called by the Help viewer if it wishes to know the name of the Help file which
the currently active control believes contains its help.

IHelpManager.Release is called to notify the Help Manager when a Help viewer is disconnecting. It should never be
called in response to a request through ICustomHelpViewer.ShutDown; it is only used to notify the Help Manager of
unexpected disconnects.

 DevGuide: Building applications with Delphi

Displaying keyword-based Help
Topic groups See also

Help requests typically come through to the Help viewer as either keyword-based Help, in which case the viewer is
asked to provide help based upon a particular string, or as context-based Help, in which case the viewer is asked to
provide help based upon a particular numeric identifier. (Numeric help contexts are the default form of Help
requests in applications running under Windows, which use the WinHelp system; while CLX supports them, they are
not recommended for use in CLX applications because most Linux Help systems do not understand them.)
ICustomHelpViewer implementations are required to provide support for keyword-based Help requests, while
IExtendedHelpViewer implementations are required to support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:
UnderstandsKeyword
GetHelpStrings
ShowHelp

ICustomHelpViewer.UnderstandsKeyword(const HelpString: String): Integer

is the first of the three methods called by the Help Manager, which will call each registered Help viewer with the
same string to ask if the viewer provides help for that string; the viewer is expected to respond with an integer
indicating how many different Help pages it can display in response to that Help request. The viewer can use any
method it wants to determine this — inside the IDE, the HyperHelp viewer maintains its own index and searches it.
If the viewer does not support help on this keyword, it should return zero. Negative numbers are currently
interpreted as meaning zero, but this behavior is not guaranteed in future releases.

ICustomHelpViewer.GetHelpStrings(const HelpString: String): TStringList

is called by the Help Manager if more than one viewer can provide help on a topic. The viewer is expected to return
a TStringList. The strings in the returned list should map to the pages available for that keyword, but the
characteristics of that mapping can be determined by the viewer. In the case of the HyperHelp viewer, the string list
always contains exactly one entry (HyperHelp provides its own indexing, and duplicating that elsewhere would be
pointless duplication); in the case of the Man page viewer, the string list consists of multiple strings, one for each
section of the manual which contains a page for that keyword.

ICustomHelpViewer.ShowHelp(const HelpString: String)

is called by the Help Manager if it needs the Help viewer to display help for a particular keyword. This is the last
method call in the operation; it is guaranteed to never be called unless UnderstandsKeyword is invoked first.

 DevGuide: Building applications with Delphi

Displaying tables of contents
Topic groups See also

ICustomHelpViewer provides two methods relating to displaying tables of contents:
CanShowTableOfContents
ShowTableOfContents

The theory behind their operation is similar to the operation of the keyword Help request functions: the Help
Manager first queries all Help viewers by calling ICustomHelpViewer.CanShowTableOfContents : Boolean and then
invokes a particular Help viewer by calling ICustomHelpViewer.ShowTableOfContents.

It is reasonable for a particular viewer to refuse to allow requests to support a table of contents. The Man page
viewer does this, for example, because the concept of a table of contents does not map well to the way Man pages
work; the HyperHelp viewer supports a table of contents, on the other hand, by passing the request to display a
table of contents directly to HyperHelp. It is not reasonable, however, for an implementation of ICustomHelpViewer
to respond to queries through CanShowTableOfContents with the answer true, and then ignore requests through
ShowTableOfContents.

 DevGuide: Building applications with Delphi

Implementing IExtendedHelpViewer
Topic groups See also

ICustomHelpViewer only provides direct support for keyword-based Help. Some Help systems (especially WinHelp)
work by associating numbers (known as context IDs) with keywords in a fashion which is internal to the Help system
and therefore not visible to the application. Such systems require that the application support context-based Help in
which the application invokes the Help system with that context, rather than with a string, and the Help system
translates the number itself.

Applications written in CLX can talk to systems requiring context-based Help by extending the object which
implements ICustomHelpViewer to also implement IExtendedHelpViewer. IExtendedHelpViewer also provides
support for talking to Help systems that allow you to jump directly to high-level topics instead of using keyword
searches.

IExtendedHelpViewer exposes four functions. Two of them — UnderstandsContext and DisplayHelpByContext —
are used to support context-based Help; the other two — UnderstandsTopic and DisplayTopic — are used to
support topics.

When an application user presses F1, the Help Manager calls

IExtendedHelpViewer.UnderstandsContext(const ContextID: Integer;
const HelpFileName: String): Boolean

and the currently activated control supports context-based, rather than keyword-based Help. As with
ICustomHelpViewer.UnderstandsKeyword, the Help Manager queries all registered Help viewers iteratively. Unlike
the case with ICustomHelpViewer.UnderstandsKeyword, however, if more than one viewer supports a specified
context, the first registered viewer with support for a given context is invoked.

The Help Manager calls

IExtendedHelpViewer.DisplayHelpByContext(const ContextID: Integer;
const HelpFileName: String)

after it has polled the registered Help viewers.

The topic support functions work the same way:

IExtendedHelpViewer.UnderstandsTopic(const Topic: String): Boolean

is used to poll the Help viewers asking if they support a topic;

IExtendedHelpViewer.DisplayTopic(const Topic: String)

is used to invoke the first registered viewer which reports that it is able to provide help for that topic.

 DevGuide: Building applications with Delphi

Implementing IHelpSelector
Topic groups See also

IHelpSelector is a companion to ICustomHelpViewer. When more than one registered viewer claims to provide
support for a given keyword, context, or topic, or provides a table of contents, the Help Manager must choose
between them. In the case of contexts or topics, the Help Manager always selects the first Help viewer that claims
to provide support. In the case of keywords or the table of context, the Help Manager will, by default, select the first
Help viewer. This behavior can be overridden by an application.

To override the decision of the Help Manager in such cases, an application must register a class that provides an
implementation of the IHelpSelector interface. IHelpSelector exports two functions: SelectKeyword, and
TableOfContents. Both take as arguments a TStrings containing, one by one, either the possible keyword matches
or the names of the viewers claiming to provide a table of contents. The implementor is required to return the index
(in the TStrings) that represents the selected string.

Note: The Help Manager may get confused if the strings are re-arranged; it is recommended that implementors
of IHelpSelector refrain from doing this. The Help system only supports one HelpSelector; when new
selectors are registered, any previously existing selectors are disconnected.

 DevGuide: Building applications with Delphi

RegisteringHelpSystemObjects
Topic groups See also

For the Help Manager to communicate with them, objects that implement ICustomHelpViewer,
IExtendedHelpViewer, ISpecialWinHelpViewer, and IHelpSelector must register with the Help Manager.

To register Help system objects with the Help Manager, you need to
Register the Help viewer
Register the Help Selector

Registering Help viewers

The unit that contains the object implementation must use HelpIntfs. An instance of the object must be declared in
the var section of the implementing unit.

The initialization section of the implementing unit must assign the instance variable and pass it to the function
RegisterViewer. RegisterViewer is a flat function exported by HelpIntfs.pas which takes as an argument an
ICustomHelpViewer and returns an IHelpManager. The IHelpManager should be stored for future use.

Registering Help selectors

The unit that contains the object implementation must use HelpIntfs and QForms. An instance of the object must be
declared in the var section of the implementing unit.

The initialization section of the implementing unit must register the Help selector through the HelpSystem property
of the global Application object:

Application.HelpSystem.AssignHelpSelector(myHelpSelectorInstance)

This procedure does not return a value.

 DevGuide: Building applications with Delphi

Using Help in a VCL Application
Topic groups See also

The following sections explain how to use Help within a VCL application.
How TApplication processes VCL Help
How VCL controls process Help
Calling a Help system directly
Using IHelpSystem

 DevGuide: Building applications with Delphi

How TApplication processes VCL Help
Topic groups See also

TApplication in the VCL provides four methods that are accessible from application code:

HelpCommand Takes a Windows Help style HELP_COMMAND and passes it off to WinHelp. Help
requests forwarded through this mechanism are passed only to implementations of
IspecialWinHelpViewer.

HelpContext Invokes the Help System with a request for context-based Help.
HelpKeyword Invokes the HelpSystem with a request for keyword-based Help.
HelpJump Requests the display of a particular topic.

All four functions take the data passed to them and forward it through a data member of TApplication which
represents the Help System. That data member is directly accessible through the property HelpSystem.

 DevGuide: Building applications with Delphi

How VCL controls process Help
Topic groups See also

All controls that derive from TControl expose three properties which are used by the Help system: HelpSystem,
HelpType, HelpContext, and HelpKeyword.

The HelpType property contains an instance of an enumerated type that determines if the control’s designer expects
help to be provided via keyword-based Help or context-based Help. If the HelpType is set to htKeyword, then the
Help system expects the control to use keyword-based Help, and the Help system only looks at the contents of the
HelpKeyword property. Conversely, if the HelpType is set to htContext, the Help system expects the control to use
context-based Help and only looks at the contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, that can be called to pass a request to
the Help system. It takes no parameters and calls the methods in the global Application object, which correspond to
the type of Help the control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown method of TWinControl calls
InvokeHelp.

 DevGuide: Building applications with Delphi

Using Help in a CLX Application
Topic groups See also

The following sections explain how to use Help within a CLX application.
How TApplication processes CLX Help
How CLX controls process Help
Calling a Help system directly
Using IHelpSystem

 DevGuide: Building applications with Delphi

How TApplication processes CLX Help
Topic groups See also

TApplication in CLX provides two methods that are accessible from application code:
ContextHelp, which invokes the Help system with a request for context-based Help
KeywordHelp, which invokes the Help system with a request for keyword-based Help

Both functions take as an argument the context or keyword being passed and forward the request on through a data
member of TApplication, which represents the Help system. That data member is directly accessible through the
read-only property HelpSystem.

 DevGuide: Building applications with Delphi

How CLX controls process Help
Topic groups See also

All controls that derive from TControl expose four properties which are used by the Help system: HelpType,
HelpFile, HelpContext, and HelpKeyword. HelpFile is supposed to contain the name of the file in which the control’s
help is located; if the help is located in an external Help system that does not care about file names (say, for
example, the Man page system), then the property should be left blank.

The HelpType property contains an instance of an enumerated type which determines if the control’s designer
expects help to be provided via keyword-based Help or context-based Help; the other two properties are linked to it.
If the HelpType is set to htKeyword, then the Help system expects the control to use keyword-based Help, and the
Help system only looks at the contents of the HelpKeyword property. Conversely, if the HelpType is set to htContext,
the Help system expects the control to use context-based Help and only looks at the contents of the HelpContext
property.

In addition to the properties, controls expose a single method, InvokeHelp, which can be called to pass a request to
the Help system. It takes no parameters and calls the methods in the global Application object, which correspond to
the type of help the control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown method of TWidgetControl
calls InvokeHelp.

 DevGuide: Building applications with Delphi

Calling a Help system directly
Topic groups See also

For additional Help system functionality not provided by the VCL or CLX, TApplication provides a read-only property
that allows direct access to the Help system. This property is an instance of an implementation of the interface
IHelpSystem. IHelpSystem and IHelpManager are implemented by the same object, but one interface is used to
allow the application to talk to the Help Manager, and one is used to allow the Help viewers to talk to the Help
Manager.

 DevGuide: Building applications with Delphi

Using IHelpSystem
Topic groups See also

IHelpSystem allows a VCL or CLX application to do three things:
Provides path information to the Help Manager
Provides a new Help selector
Asks the Help Manager to display help

Assigning a Help selector allows the Help Manager to delegate decision-making in cases where multiple external
Help systems can provide help for the same keyword. For more information, see the topic Implementing
IHelpSelector.

IHelpSystem exports four procedures and one function to request the Help Manager to display help:
ShowHelp
ShowContextHelp
ShowTopicHelp
ShowTableOfContents
Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a CLX application; it allows
processing of WM_HELP messages that cannot be mapped directly onto requests for keyword-based, context-
based, or topic-based Help. The other methods each take two arguments: the keyword, context ID, or topic for
which help is being requested, and the Help file in which it is expected that help can be found.

In general, unless you are asking for topic-based help, it is equally effective and more clear to pass help requests to
the Help Manager through the InvokeHelp method of your control.

 DevGuide: Building applications with Delphi

Customizing the IDE Help system
Topic groups See also

The Delphi IDE supports multiple Help viewers in exactly the same way that a VCL or CLX application does: it
delegates Help requests to the Help Manager, which forwards them to registered Help viewers. The IDE makes use
of the same WinHelpViewer that the VCL uses.

To install a new Help viewer in the IDE, you do exactly what you would do in a CLX application, with one difference.
You write an object that implements ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to forward Help
requests to the external viewer of your choice, and you register the ICustomHelpViewer with the IDE.

To register a custom Help viewer with the IDE,
1 Make sure that the unit implementing the Help viewer contains HelpIntfs.pas.
2 Build the unit into a design-time package registered with the IDE, and build the package with runtime

packages turned on. (This is necessary to ensure that the Help Manager instance used by the unit is the same
as the Help Manager instance used by the IDE.)

3 Make sure that the Help viewer exists as a global instance within the unit.
4 In the initialization section of the unit, make sure that the instance is passed to the RegisterHelpViewer

function.

 DevGuide: Building applications with Delphi

Developing the application user interface: Overview
Topic groups

With Delphi, you design a user interface (UI) by selecting components from the component palette and dropping
them onto forms. You get the components to do what you want by setting their properties and coding their event
handlers. Select Topic Groups or browse (choose >>) to read topics on how to develop the user interface.

 DevGuide: Building applications with Delphi

Controlling application behavior
Topic groups See also

TApplication, TScreen, and TForm are the classes that form the backbone of all Delphi applications by controlling
the behavior of your project. The TApplication class forms the foundation of an application by providing properties
and methods that encapsulate the behavior of a standard program. TScreen is used at runtime to keep track of
forms and data modules that have been loaded as well as maintaining system-specific information such as screen
resolution and available display fonts. Instances of the TForm class are the building blocks of your application’s
user interface. The windows and dialog boxes in your application are based on TForm.

 DevGuide: Building applications with Delphi

Using the main form
Topic groups See also

TForm is the key class for creating GUI applications. When you open Delphi displaying a default project or when
you create a new project, a form is displayed on which you can begin your UI design.

The first form you create and save in a project becomes, by default, the project’s main form, which is the first form
created at runtime. As you add forms to your projects, you might decide to designate a different form as your
application’s main form. Also, specifying a form as the main form is an easy way to test it at runtime, because
unless you change the form creation order, the main form is the first form displayed in the running application.

To change the project main form,
1 Choose Project|Options and select the Forms page.
2 In the Main Form combo box, select the form you want to use as the project’s main form and choose OK.

Now if you run the application, the form you selected as the main form is displayed.

 DevGuide: Building applications with Delphi

Adding forms
Topic groups See also

To add a form to your project, select File|New Form. You can see all your project’s forms and their associated units
listed in the Project Manager (View|Project Manager) and you can display a list of the forms alone by choosing
View|Forms.

Linking forms

Adding a form to a project adds a reference to it in the project file, but not to any other units in the project. Before
you can write code that references the new form, you need to add a reference to it in the referencing forms’ unit
files. This is called form linking.

A common reason to link forms is to provide access to the components in that form. For example, you’ll often use
form linking to enable a form that contains data-aware components to connect to the data-access components in a
data module.

To link a form to another form,
1 Select the form that needs to refer to another.
2 Choose File|Use Unit.
3 Select the name of the form unit for the form to be referenced.
4 Choose OK.

Linking a form to another just means that the uses clauses of one form unit contains a reference to the other’s form
unit, meaning that the linked form and its components are now in scope for the linking form.

Avoiding circular unit references

When two forms must reference each other, it’s possible to cause a “Circular reference” error when you compile
your program. To avoid such an error, do one of the following:

Place both uses clauses, with the unit identifiers, in the implementation parts of the respective unit files.
(This is what the File|Use Unit command does.)

Place one uses clause in an interface part and the other in an implementation part. (You rarely need to
place another form’s unit identifier in this unit’s interface part.)
Do not place both uses clauses in the interface parts of their respective unit files. This will generate the “Circular
reference” error at compile time.

 DevGuide: Building applications with Delphi

Hiding the main form
Topic groups See also

You can prevent the main form from displaying when your application first starts up. To do so, you must use the
global Application variable .

To hide the main form at startup,
1 Choose Project|View Source to display the main project file.
2 Add the following lines after the call to Application.CreateForm and before the call to Application.Run.

Application.ShowMainForm := False;
Form1.Visible := False; { the name of your main form may differ }

Note: You can set the form’s Visible property to False using the Object Inspector at design time rather than
setting it at runtime as shown above.

 DevGuide: Building applications with Delphi

Working at the application level
Topic groups See also

The global variable Application, of type TApplication, is in every VCL or CLX based application. Application
encapsulates your application as well as providing many functions that occur in the background of the program. For
instance, Application would handle how you would call a help file from the menu of your program. Understanding
how TApplication works is more important to a component writer than to developers of stand-alone applications, but
you should set the options that Application handles in the Project|Options Application page when you create a
project.

In addition, Application receives many events that apply to the application as a whole. For example, the OnActivate
event lets you perform actions when the application first starts up, the OnIdle event lets you perform background
processes when the application is not busy, the OnMessage event lets you intercept Windows messages (on
Windows only), the OnEvent event lets you intercept events, and so on. Although you can’t use the IDE to examine
the properties and events of the global Application variable, another component, TApplicationEvents, intercepts the
events and lets you supply event-handlers using the IDE.

 DevGuide: Building applications with Delphi

Handling the screen
Topic groups See also

A global variable of type TScreen called Screen is created when you create a project. Screen encapsulates the
state of the screen on which your application is running. Common tasks performed by Screen include specifying

the look of the cursor
the size of the window in which your application is running
a list of fonts available to the screen device
multiple screen behavior (not available for cross-platform)

If your Windows application runs on multiple monitors, Screen maintains a list of monitors and their dimensions so
that you can effectively manage the layout of your user interface.

If using CLX for cross-platform programming, the default behavior is that applications create a screen component
based on information about the current screen device and assign it to Screen.

 DevGuide: Building applications with Delphi

Managing layout
Topic groups See also

At its simplest, you control the layout of your user interface by where you place controls in your forms. The
placement choices you make are reflected in the control’s Top, Left, Width, and Height properties. You can change
these values at runtime to change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to automatically adjust to their contents or
containers. This allows you to lay out your forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent. The Align property lets you force
a control to fit perfectly within its parent along a specific edge or filling up the entire client area after any other
controls have been aligned. When the parent is resized, the controls aligned to it are automatically resized and
remain positioned so that they fit against a particular edge.

If you want to keep a control positioned relative to a particular edge of its parent, but don’t want it to necessarily
touch that edge or be resized so that it always runs along the entire edge, you can use the Anchors property.

If you want to ensure that a control does not grow too big or too small, you can use the Constraints property.
Constraints lets you specify the control’s maximum height, minimum height, maximum width, and minimum width.
Set these to limit the size (in pixels) of the control’s height and width. For example, by setting the MinWidth and
MinHeight of the constraints on a container object, you can ensure that child objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an object’s size can be constrained
because it contains aligned children that have size constraints. Constraints can also prevent a control from being
scaled in a particular dimension when its ChangeScale method is called.

TControl introduces a protected event, OnConstrainedResize, of type TConstrainedResizeEvent:

TConstrainedResizeEvent = procedure(Sender: TObject; var MinWidth, MinHeight,
MaxWidth, MaxHeight: Integer) of object;

This event allows you to override the size constraints when an attempt is made to resize the control. The values of
the constraints are passed as var parameters which can be changed inside the event handler.
OnConstrainedResize is published for container objects (TForm, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that causes the control to adjust its
size to its font or contained objects.

 DevGuide: Building applications with Delphi

Responding to event notification
Topic groups See also

The operating system will notify your application when an event has occurred (such as a mouse click, keystrokes
entered, and so on) while it is running. The underlying way that event notifications are handled by VCL and CLX
objects is different, but the way you work with event notifications at the component level is typically the same.
Components have events and methods built-in for the most commonly occurring events. You can use the methods
provided with the component in most cases. If you need to write additional event handling, you can override an
existing method to write your own. Unless you are writing your own components, you do not need to change the
underlying event notification schema.

VCL: If developing applications for Windows only, you need to understand that Windows is a message-
based operating system. System messages are handled by a message handler that translates the
message to an event or event handler. The message itself is a record passed to a control by
Windows. For instance, when you click a mouse button on a dialog box, Windows sends a message
to the active control and the application containing that control reacts to this new event. If the click
occurs over a button, the OnClick event could be activated upon receipt of the message. If the click
occurs just in the form, the application can ignore the message.

The record type passed to the application by Windows is called a TMsg. Windows predefines a constant for each
message, and these values are stored in the message field of the TMsg record. Each of these constants begin with
the letters wm.

The VCL automatically handles messages unless you override the message handling system and create your own
message handlers. For more information on messages and message handling, see Understanding the message-
handling system, Changing message handling, and Creating new message handlers.

CLX: For cross-platform programming: The operating system notification that an event occurred is sent to
the underlying Qt widget layer where it is translated into an event and eventually into event objects
by HookEvents. EventFilter is called automatically when a CLX control needs to handle a Qt mouse
or keyboard event.

EventFilter responds to event notifications by performing the default response. Typically, this involves dispatching
the event to the appropriate virtual method (such as the Click method, which generates an OnClick event).

CLX Note: When overriding the EventFilter method, you need to call the inherited method so that the default
event processing can occur.

 DevGuide: Building applications with Delphi

Using forms
Topic groups See also

When you create a form in Delphi from the IDE, Delphi automatically creates the form in memory by including code
in the main entry point of your application function. Usually, this is the desired behavior and you don’t have to do
anything to change it. That is, the main window persists through the duration of your program, so you would likely
not change the default Delphi behavior when creating the form for your main window.

However, you may not want all your application’s forms in memory for the duration of the program execution. That
is, if you do not want all your application’s dialogs in memory at once, you can create the dialogs dynamically when
you want them to appear.

Forms can be modal or modeless. Modal forms are forms with which the user must interact before switching to
another form (for example, a dialog box requiring user input). Modeless forms are windows that are displayed until
they are either obscured by another window or until they are closed or minimized by the user.

 DevGuide: Building applications with Delphi

Controlling when forms reside in memory
Topic groups See also

By default, Delphi automatically creates the application’s main form in memory by including the following code in the
application’s main entry point:

Application.CreateForm(TForm1, Form1);

This function creates a global variable with the same name as the form. So, every form in an application has an
associated global variable. This variable is a pointer to an instance of the form’s class and is used to reference the
form while the application is running. Any unit that includes the form’s unit in its uses clause can access the form
via this variable.

All forms created in this way in the project unit appear when the program is invoked and exist in memory for the
duration of the application.

 DevGuide: Building applications with Delphi

Displaying an auto-created form
Topic groups See also

If you choose to create a form at startup, and do not want it displayed until sometime later during program
execution, the form’s event handler uses the ShowModal method to display the form that is already loaded in
memory:

procedure TMainForm.Button1Click(Sender: TObject);
begin
ResultsForm.ShowModal;

end;

In this case, since the form is already in memory, there is no need to create another instance or destroy that
instance.

 DevGuide: Building applications with Delphi

Creating forms dynamically
Topic groups See also

You may not always want all your application’s forms in memory at once. To reduce the amount of memory required
at load time, you may want to create some forms only when you need to use them. For example, a dialog box
needs to be in memory only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:
1 Select the File|New Form from the main menu to display the new form.
2 Remove the form from the Auto-create forms list of the Project|Options|Forms page.

This removes the form’s invocation. As an alternative, you can manually remove the following line from
program’s main entry point:

Application.CreateForm(TResultsForm, ResultsForm);
3 Invoke the form when desired by using the form’s Show method, if the form is modeless, or ShowModal

method, if the form is modal.

An event handler for the main form must create an instance of the result form and destroy it. One way to invoke the
result form is to use the global variable as follows. Note that ResultsForm is a modal form so the handler uses the
ShowModal method.

procedure TMainForm.Button1Click(Sender: TObject);
begin
ResultsForm:=TResultForm.Create(self);
try
 ResultsForm.ShowModal;
finally
 ResultsForm.Free;
end;

In the above example, note the use of try..finally. Putting in the line ResultsForm.Free; in the finally clause
ensures that the memory for the form is freed even if the form raises an exception.

The event handler in the example deletes the form after it is closed, so the form would need to be recreated if you
needed to use ResultsForm elsewhere in the application. If the form were displayed using Show you could not
delete the form within the event handler because Show returns while the form is still open.

Note: If you create a form using its constructor, be sure to check that the form is not in the Auto-create forms list
on the Project Options|Forms page. Specifically, if you create the new form without deleting the form of the
same name from the list, Delphi creates the form at startup and this event-handler creates a new instance
of the form, overwriting the reference to the auto-created instance. The auto-created instance still exists,
but the application can no longer access it. After the event-handler terminates, the global variable no
longer points to a valid form. Any attempt to use the global variable will likely crash the application.

 DevGuide: Building applications with Delphi

Creating modeless forms such as windows
Topic groups See also

You must guarantee that reference variables for modeless forms exist for as long as the form is in use. This means
that these variables should have global scope. In most cases, you use the global reference variable that was
created when you made the form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global variables for each instance.

 DevGuide: Building applications with Delphi

Using a local variable to create a form instance
Topic groups See also

A safer way to create a unique instance of a modal form is to use a local variable in the event handler as a
reference to a new instance. If a local variable is used, it does not matter whether ResultsForm is auto-created or
not. The code in the event handler makes no reference to the global form variable. For example:

procedure TMainForm.Button1Click(Sender: TObject);
var
 RF:TResultForm;
begin
 RF:=TResultForm.Create(self)
 RF.ShowModal;
 RF.Free;
end;

Notice how the global instance of the form is never used in this version of the event handler.

Typically, applications use the global instances of forms. However, if you need a new instance of a modal form, and
you use that form in a limited, discrete section of the application, such as a single function, a local instance is
usually the safest and most efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms because they must have global
scope to ensure that the forms exist for as long as the form is in use. Show returns as soon as the form opens, so if
you used a local variable, the local variable would go out of scope immediately.

 DevGuide: Building applications with Delphi

Passing additional arguments to forms
Topic groups See also

Typically, you create forms for your application from within the IDE. When created this way, the forms have a
constructor that takes one argument, Owner, which is the owner of the form being created. (The owner is the calling
application object or form object.) Owner can be nil.

To pass additional arguments to a form, create a separate constructor and instantiate the form using this new
constructor. The example form class below shows an additional constructor, with the extra argument whichButton.
This new constructor is added to the form class manually.

TResultsForm = class(TForm)
 ResultsLabel: TLabel;
 OKButton: TButton;
 procedure OKButtonClick(Sender: TObject);
private
public
 constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

Here’s the manually coded constructor that passes the additional argument, whichButton. This constructor uses the
whichButton parameter to set the Caption property of a Label control on the form.

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin
 inherited Create(Owner);
 case whichButton of
 1: ResultsLabel.Caption := 'You picked the first button.';
 2: ResultsLabel.Caption := 'You picked the second button.';
 3: ResultsLabel.Caption := 'You picked the third button.';
 end;
end;

When creating an instance of a form with multiple constructors, you can select the constructor that best suits your
purpose. For example, the following OnClick handler for a button on a form calls creates an instance of
TResultsForm that uses the extra parameter:

procedure TMainForm.SecondButtonClick(Sender: TObject);
var
 rf: TResultsForm;
begin
 rf := TResultsForm.CreateWithButton(2, self);
 rf.ShowModal;
 rf.Free;
end;

 DevGuide: Building applications with Delphi

Retrieving data from forms
Topic groups See also

Most real-world applications consist of several forms. Often, information needs to be passed between these forms.
Information can be passed to a form by means of parameters to the receiving form’s constructor, or by assigning
values to the form’s properties. The way you get information from a form depends on whether the form is modal or
modeless.

 DevGuide: Building applications with Delphi

Retrieving data from modeless forms
Topic groups See also

You can easily extract information from modeless forms by calling public member functions of the form or by
querying properties of the form. For example, assume an application contains a modeless form called ColorForm
that contains a listbox called ColorListBox with a list of colors (“Red”, “Green”, “Blue”, and so on). The selected color
name string in ColorListBox is automatically stored in a property called CurrentColor each time a user selects a new
color. The class declaration for the form is as follows:

TColorForm = class(TForm)
 ColorListBox:TListBox;
 procedure ColorListBoxClick(Sender: TObject);
private
 FColor:String;
public
 property CurColor:String read FColor write FColor;
end;

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the CurrentColor property each time
a new item in the listbox is selected. The event handler gets the string from the listbox containing the color name
and assigns it to CurrentColor. The CurrentColor property uses the setter function, SetColor, to store the actual
value for the property in the private data member FColor:

procedure TColorForm.ColorListBoxClick(Sender: TObject);
var
 Index: Integer;
begin
 Index := ColorListBox.ItemIndex;
 if Index >= 0 then
 CurrentColor := ColorListBox.Items[Index]
 else
 CurrentColor := '';
end;

Now suppose that another form within the application, called ResultsForm, needs to find out which color is currently
selected on ColorForm whenever a button (called UpdateButton) on ResultsForm is clicked. The OnClick event
handler for UpdateButton might look like this:

procedure TResultForm.UpdateButtonClick(Sender: TObject);
var
 MainColor: String;
begin
 if Assigned(ColorForm) then
 begin
 MainColor := ColorForm.CurrentColor;
 {do something with the string MainColor}
 end;
end;

The event handler first verifies that ColorForm exists using the Assigned function. It then gets the value of
ColorForm’s CurrentColor property.

Alternatively, if ColorForm had a public function named GetColor, another form could get the current color without
using the CurrentColor property (for example, MainColor := ColorForm.GetColor;). In fact, there’s nothing to prevent
another form from getting the ColorForm’s currently selected color by checking the listbox selection directly:

with ColorForm.ColorListBox do
 MainColor := Items[ItemIndex];

However, using a property makes the interface to ColorForm very straightforward and simple. All a form needs to
know about ColorForm is to check the value of CurrentColor.

 DevGuide: Building applications with Delphi

Retrieving data from modal forms
Topic groups See also

Just like modeless forms, modal forms often contain information needed by other forms. The most common
example is form A launches modal form B. When form B is closed, form A needs to know what the user did with
form B to decide how to proceed with the processing of form A. If form B is still in memory, it can be queried through
properties or member functions just as in the modeless forms example above. But how do you handle situations
where form B is deleted from memory upon closing? Since a form does not have an explicit return value, you must
preserve important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be a modal form. The class
declaration is as follows:

TColorForm = class(TForm)
 ColorListBox:TListBox;
 SelectButton: TButton;
 CancelButton: TButton;
 procedure CancelButtonClick(Sender: TObject);
 procedure SelectButtonClick(Sender: TObject);
private
 FColor: Pointer;
public
 constructor CreateWithColor(Value: Pointer; Owner: TComponent);
end;

The form has a listbox called ColorListBox with a list of names of colors. When pressed, the button called
SelectButton makes note of the currently selected color name in ColorListBox then closes the form. CancelButton is
a button that simply closes the form.

Note that a user-defined constructor was added to the class that takes a Pointer argument. Presumably, this Pointer
points to a string that the form launching ColorForm knows about. The implementation of this constructor is as
follows:

constructor TColorForm(Value: Pointer; Owner: TComponent);
begin
 FColor := Value;
 String(FColor^) := '';
end;

The constructor saves the pointer to a private data member FColor and initializes the string to an empty string.

Note: To use the above user-defined constructor, the form must be explicitly created. It cannot be auto-created
when the application is started. For details, see Controlling when forms reside in memory.

In the application, the user selects a color from the listbox and presses SelectButton to save the choice and close
the form. The OnClick event handler for SelectButton might look like this:

procedure TColorForm.SelectButtonClick(Sender: TObject);
begin
 with ColorListBox do
 if ItemIndex >= 0 then
 String(FColor^) := ColorListBox.Items[ItemIndex];
 end;
 Close;
end;

Notice that the event handler stores the selected color name in the string referenced by the pointer that was passed
to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to an existing string. For example,
assume ColorForm was instantiated by a form called ResultsForm in response to a button called UpdateButton on
ResultsForm being clicked. The event handler would look as follows:

procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var
 MainColor: String;
begin
 GetColor(Addr(MainColor));
 if MainColor <> '' then
 {do something with the MainColor string}

 else
 {do something else because no color was picked}
end;
procedure GetColor(PColor: Pointer);
begin
 ColorForm := TColorForm.CreateWithColor(PColor, Self);
 ColorForm.ShowModal;
 ColorForm.Free;
end;

UpdateButtonClick creates a String called MainColor. The address of MainColor is passed to the GetColor function
which creates ColorForm, passing the pointer to MainColor as an argument to the constructor. As soon as
ColorForm is closed it is deleted, but the color name that was selected is still preserved in MainColor, assuming that
a color was selected. Otherwise, MainColor contains an empty string which is a clear indication that the user exited
ColorForm without selecting a color.

This example uses one string variable to hold information from the modal form. Of course, more complex objects
can be used depending on the need. Keep in mind that you should always provide a way to let the calling form
know if the modal form was closed without making any changes or selections (such as having MainColor default to
an empty string).

 DevGuide: Building applications with Delphi

Reusing components and groups of components
Topic groups See also

Delphi offers several ways to save and reuse work you’ve done with components:
Component templates provide a simple, quick way of configuring and saving groups of components.
You can save forms, data modules, and projects in the Repository. This gives you a central database of

reusable elements and lets you use form inheritance to propagate changes.
You can save frames on the component palette or in the repository. Frames use form inheritance and can be

embedded into forms or other frames.
Creating a custom component is the most complicated way of reusing code, but it offers the greatest

flexibility.

 DevGuide: Building applications with Delphi

Creating and using component templates
Topic groups See also

You can create templates that are made up of one or more components. After arranging components on a form,
setting their properties, and writing code for them, save them as a component template. Later, by selecting the
template from the component palette, you can place the preconfigured components on a form in a single step; all
associated properties and event-handling code are added to your project at the same time.

Once you place a template on a form, you can reposition the components independently, reset their properties, and
create or modify event handlers for them just as if you had placed each component in a separate operation.

To create a component template,
1 Place and arrange components on a form. In the Object Inspector, set their properties and events as desired.
2 Select the components. The easiest way to select several components is to drag the mouse over all of them.

Gray handles appear at the corners of each selected component.
3 Choose Component|Create Component Template.
4 Specify a name for the component template in the Component Name edit box. The default proposal is the

component type of the first component selected in step 2 followed by the word “Template”. For example, if you
select a label and then an edit box, the proposed name will be “TLabelTemplate”. You can change this name,
but be careful not to duplicate existing component names.

5 In the Palette Page edit box, specify the component palette page where you want the template to reside. If you
specify a page that does not exist, a new page is created when you save the template.

6 Under Palette Icon, select a bitmap to represent the template on the palette. The default proposal will be the
bitmap used by the component type of the first component selected in step 2. To browse for other bitmaps,
click Change. The bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the component palette, choose Component|Configure Palette.

 DevGuide: Building applications with Delphi

Working with frames
Topic groups See also

A frame (TFrame), like a form, is a container for other components. It uses the same ownership mechanism as
forms for automatic instantiation and destruction of the components on it, and the same parent-child relationships
for synchronization of component properties.

In some ways, however, a frame is more like a customized component than a form. Frames can be saved on the
component palette for easy reuse, and they can be nested within forms, other frames, or other container objects.
After a frame is created and saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or form, it continues to inherit
changes made to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in your application. For example, if
you have a bitmap that is used on multiple forms, you can put it in a frame and only one copy of that bitmap is
included in the resources of your application. You could also describe a set of edit fields that are intended to edit a
table with a frame and use that whenever you want to enter data into the table.

Creating frames

Using and modifying frames

Sharing frames

 DevGuide: Building applications with Delphi

Creating frames
Topic groups See also

To create an empty frame, choose File|New|Frame, or choose File|New and double-click on Frame. You can then
drop components (including other frames) onto your new frame.

It is usually best—though not necessary—to save frames as part of a project. If you want to create a project that
contains only frames and no forms, choose File|New| Application, close the new form and unit without saving them,
then choose File|New|Frame and save the project.

Note: When you save frames, avoid using the default names Unit1, Project1, and so forth, since these are likely
to cause conflicts when you try to use the frames later.

At design time, you can display any frame included in the current project by choosing View|Forms and selecting a
frame. As with forms and data modules, you can toggle between the Form Designer and the frame’s form file by
right-clicking and choosing View as Form or View as Text.

Adding frames to the component palette

Frames are added to the component palette as component templates. To add a frame to the component palette,
open the frame in the Form Designer (you cannot use a frame embedded in another component for this purpose),
right-click on the frame, and choose Add to Palette. When the Component Template Information dialog opens,
select a name, palette page, and icon for the new template.

 DevGuide: Building applications with Delphi

Using and modifying frames
Topic groups See also

To use a frame in an application, you must place it, directly or indirectly, on a form. You can add frames directly to
forms, to other frames, or to other container objects such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:
Select a frame from the component palette and drop it onto a form, another frame, or another container

object. If necessary, the Form Designer asks for permission to include the frame’s unit file in your project.
Select Frames from the Standard page of the component palette and click on a form or another frame. A

dialog appears with a list of frames that are already included in your project; select one and click OK.
When you drop a frame onto a form or other container, Delphi declares a new class that descends from the frame
you selected. (Similarly, when you add a new form to a project, Delphi declares a new class that descends from
TForm.) This means that changes made later to the original (ancestor) frame propagate to the embedded frame, but
changes to the embedded frame do not propagate backward to the ancestor.

Suppose, for example, that you wanted to assemble a group of data-access components and data-aware controls
for repeated use, perhaps in more than one application. One way to accomplish this would be to collect the
components into a component template; but if you started to use the template and later changed your mind about
the arrangement of the controls, you would have to go back and manually alter each project where the template
was placed.

If, on the other hand, you put your database components into a frame, later changes would need to be made in only
one place; changes to an original frame automatically propagate to its embedded descendants when your projects
are recompiled. At the same time, you are free to modify any embedded frame without affecting the original frame or
other embedded descendants of it. The only limitation on modifying embedded frames is that you cannot add
components to them.

A frame with data-aware controls and a data source component
In addition to simplifying maintenance, frames can help you to use resources more efficiently. For example, to use a
bitmap or other graphic in an application, you might load the graphic into the Picture property of a TImage control. If,
however, you use the same graphic repeatedly in one application, each Image object you place on a form will result
in another copy of the graphic being added to the form’s resource file. (This is true even if you set TImage.Picture
once and save the Image control as a component template.) A better solution is to drop the Image object onto a
frame, load your graphic into it, then use the frame where you want the graphic to appear. This results in smaller
form files and has the added advantage of letting you change the graphic everywhere it occurs simply by modifying
the Image on the original frame.

 DevGuide: Building applications with Delphi

Sharing frames
Topic groups See also

You can share a frame with other developers in two ways:
Add the frame to the Object Repository.
Distribute the frame’s unit (.pas) and form (.dfm or .xfm) files.

To add a frame to the Repository, open any project that includes the frame, right-click in the Form Designer, and
choose Add to Repository For more information, see Using the Object Repository.

If you send a frame’s unit and form files to other developers, they can open them and add them to the component
palette. If the frame has other frames embedded in it, they will have to open it as part of a project.

 DevGuide: Building applications with Delphi

Organizing actions for toolbars and menus
Topic groups See also

Delphi provides several features that simplify the work of creating, customizing, and maintaining menus and
toolbars. These features allow you to organize lists of actions that users of your application can initiate by pressing
a button on a toolbar, choosing a command on a menu, or pointing and clicking on an icon.

Often a set of actions is used in more than one user interface element. For example, the Cut, Copy, and Paste
commands often appear on both an Edit menu and on a toolbar. You only need to add the action once to use it in
multiple UI elements in your application.

On the Windows platform, tools are provided to make it easy to define and group actions, create different layouts,
and customize menus at design time or runtime. These tools are known collectively as ActionBand tools, and the
menus and toolbars you create with them are known as action bands. In general, you can create an ActionBand
user interface as follows:

Build the action list to create a set of actions that will be available for your application (use the Action
Manager, TActionManager)

Add the user interface elements to the application (use ActionBand components such as
TActionMainMenuBar and TActionToolBar)

Drag and drop actions from the Action Manager onto the user interface elements
The following table defines the terminology related to setting up menus and toolbars:

Term Definition

Action A response to something a user does, such as clicking a menu item. Many
standard actions that are frequently required are provided for you to use in your
applications as is. For example, file operations such as File Open, File SaveAs,
File Run, and File Exit are included along with many others for editing,
formatting, searches, help, dialogs, and window actions. You can also program
custom actions and access them using action lists and the Action Manager.

Action band A container for a set of actions associated with a customizable menu or toolbar.
The ActionBand components for main menus and toolbars
(TActionMainMenuBar and TActionToolBar) are examples of action bands.

Action category Lets you group actions and drop them as a group onto a menu or toolbar. For
example, one of the standard action categories is Search which includes Find,
FindFirst, FindNext, and Replace actions all at once.

Action classes Classes that perform the actions used in your application. All of the standard
actions are defined in action classes such as TEditCopy, TEditCut, and
TEditUndo. You can use these classes by dragging and dropping them from
the Customize dialog onto an action band.

Action client Most often represents a menu item or a button that receives a notification to
initiate an action. When the client receives a user command (such as a mouse
click), it initiates an associated action.

Action list Maintains a list of actions that your application can take in response to
something a user does.

Action Manager Groups and organizes logical sets of actions that can be reused on ActionBand
components. See TActionManager.

Menu Lists commands that the user of the application can execute by clicking on
them. You can create menus by using the ActionBand menu class
TActionMainMenuBar, or by using cross-platform components such as
TMainMenu or TPopupMenu.

Target Represents the item an action does something to. The target is usually a
control, such as a memo or a data control. Not all actions require a target. For
example, the standard help actions ignore the target and simply launch the
help system.

Toolbar Displays a visible row of button icons which, when clicked, cause the program
to perform some action, such as printing the current document. You can create
toolbars by using the ActionBand toolbar component TActionToolBar, or by
using the cross-platform component TToolBar.

If you are doing cross-platform development, refer to Using action lists for details.

 DevGuide: Building applications with Delphi

What is an action?
Topic groups See also

As you are developing your application, you can create a set of actions that you can use on various UI elements.
You can organize them into categories that can be dropped onto a menu as a set (for example, Cut, Copy, and
Paste) or one at a time (for example, Tools|Customize).

An action corresponds to one or more elements of the user interface, such as menu commands or toolbar buttons.
Actions serve two functions: (1) they represent properties common to the user interface elements, such as whether
a control is enabled or checked, and (2) they respond when a control fires, for example, when the application user
clicks a button or chooses a menu item. You can create a repertoire of actions that are available to your application
through menus, through buttons, through toolbars, context menus, and so on.

Actions are associated with other components:
Clients: One or more clients use the action. The client most often represents a menu item or a button (for

example, TToolButton, TSpeedButton, TMenuItem, TButton, TCheckBox, TRadioButton, and so on). Actions also
reside on ActionBand components such as TActionMainMenuBar and TActionToolBar. When the client receives a
user command (such as a mouse click), it initiates an associated action. Typically, a client’s OnClick event is
associated with its action’s OnExecute event.

Target: The action acts on the target. The target is usually a control, such as a memo or a data control.
Component writers can create actions specific to the needs of the controls they design and use, and then package
those units to create more modular applications. Not all actions use a target. For example, the standard help actions
ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to an associated dataset.
The client influences the action—the action responds when a client fires the action. The action also influences the
client—action properties dynamically update the client properties. For example, if at runtime an action is disabled
(by setting its Enabled property to False), every client of that action is disabled, appearing grayed.

You can add, delete, and rearrange actions using the Action Manager or the Action List editor (displayed by double-
clicking an action list object, TActionList). These actions are later connected to client controls. See Creating toolbars
and menus and, for cross-platform development, Setting up action lists for details.

 DevGuide: Building applications with Delphi

Setting up action bands
Topic groups See also

Because actions do not maintain any “layout” (either appearance or positional) information, Delphi provides action
bands which are capable of storing this data. Action bands provide a mechanism that allows you to specify layout
information and a set of controls. You can render actions as UI elements such as toolbars and menus.

You organize sets of actions using the Action Manager (TActionManager). You can use standard actions provided or
create new actions of your own.

You then create the action bands:
Use TActionMainMenuBar to create a main menu.
Use TActionToolBar to create a toolbar.

The action bands act as containers that hold and render sets of actions. You can drag and drop items from the
Action Manager editor onto the action band at design time. At runtime, application users can also customize the
application’s menus or toolbars using a dialog box similar to the Action Manager editor.

 DevGuide: Building applications with Delphi

Creating toolbars and menus
Topic groups See also

Note: This section describes the recommended method for creating menus and toolbars in Windows
applications. For cross-platform development, you need to use TToolBar and the menu components, such
as TMainMenu, organizing them using action lists (TActionList). See Setting up action lists for details.

You use the Action Manager to automatically generate toolbars and main menus based on the actions contained in
your application. The Action Manager manages standard actions and any custom actions that you have written. You
then create UI elements based on these actions and use action bands to render the actions items as either menu
items or as buttons on a toolbar.

The general procedure for creating menus, toolbars, and other action bands involves these steps:
Drop an Action Manager onto a form.
Add actions to the Action Manager, which organizes them into appropriate action lists.
Create the action bands (that is, the menu or the toolbar) for the user interface.
Drag and drop the actions into the application interface.

The following procedure explains these steps in more detail.

To create menus and toolbars using action bands:
1 From the Additional page of the component palette, drop an Action Manager component (TActionManager)

onto the form where you want to create the toolbar or menu.
2 If you want images on the menu or toolbar, drop an ImageList component from the Win32 page of the

component palette onto a form. (You need to add the images you want to use to the ImageList or use the one
provided.)

3 From the Additional page of the component palette, drop one or more of the following action bands onto the
form:

TActionMainMenuBar (for designing main menus)
TActionToolBar (for designing toolbars)

4 Connect the ImageList to the Action Manager: with focus on the Action Manager and in the Object Inspector,
select the name of the ImageList from the Images property.

5 Add actions to the Action Manager editor’s action pane:
Double-click the Action Manager to display the Action Manager editor.
Click the drop-down arrown next to the New Action button (the leftmost button at the top right corner of the

Actions tab) and select New Action or New Standard Action. A tree view is displayed. Add one or more actions or
categories of actions to the Action Manager’s actions pane. The Action Manager adds the actions to its action lists.

6 Drag and drop single actions or categories of actions from the Action Manager editor onto the menu or toolbar
you are designing.

To add user-defined actions, create a new TAction by pressing the New Action button and writing an event handler
that defines how it will respond when fired. See What happens when an action fires for details. Once you’ve defined
the actions, you can drag and drop them onto menus or toolbars like the standard actions.

 DevGuide: Building applications with Delphi

Adding icons to menus and toolbars
Topic groups See also

You can use the Background and BackgroundLayout properties to specify a color, pattern, or bitmap to use on a
menu item or button. These properties also let you set up a banner the runs up the left or right side of a menu.

You assign backgrounds and layouts to subitems from their action client objects. If you want to set the background
of the items in a menu, in the form designer click on the menu item that contains the items. For example, selecting
File lets you change the background of items appearing on the File menu. You can assign a color, pattern, or bitmap
in the Background property in the Object Inspector.

Use the BackgroundLayout property to describe how to place the background on the element. Colors or images can
be placed behind the caption normally, stretched to fit the item area, or tiled in small squares to cover the area.

Items with normal (blNormal), stretched (blStretch), or tiled (blTile) backgrounds are rendered with a transparent
background. If you create a banner, the full image is placed on the left (blLeftBanner) or the right (blRightBanner) of
the item. You need to make sure it is the correct size because it is not stretched or shrunk to fit.

To change the background of an action band (that is, on a main menu or toolbar), select the action band and
choose the TActionClientBar through the action band collection editor. You can set Background and
BackgroundLayout properties to specify a color, pattern, or bitmap to use on the entire toolbar or menu.

 DevGuide: Building applications with Delphi

Adding icons to menus and toolbars
Topic groups See also

You can add icons next to menu items or replace captions on toolbars with icons. You organize bitmaps or icons
using an ImageList.
1 Drop an ImageList component from the Win32 page of the component palette onto a form.
2 Add the images you want to use to the ImageList: Double-click the ImageList. Click Add and navigate to the

images you want to use and click OK when done. Some sample images are included in Program
Files\Common Files\Borland Shared\Images. (The buttons images include two views of each for active and
inactive buttons.)

3 From the Additional page of the component palette, drop one or more of the following action bands onto the
form:

TActionMainMenuBar (for designing main menus)
TActionToolBar (for designing toolbars)

4 Connect the ImageList to the Action Manager. First, set the focus on the Action Manager. Next, in the Object
Inspector, select the name of the ImageList from the Images property.

5 Use the Action Manager editor to add actions to the Action Manager. You can associate an image with an
action by setting its ImageIndex property to its number in the ImageList.

6 Drag and drop single actions or categories of actions from the Action Manager editor onto the menu or toolbar.
7 For toolbars where you only want to display the icon and no caption: select the Toolbar action band and

double-click its Items property. In the collection editor, you can select one or more items and set their Caption
properties.

8 The images automatically appear on the menu or toolbar.

 DevGuide: Building applications with Delphi

Creating toolbars and menus that users can customize
Topic groups See also

You can use action bands with the Action Manager to create customizable toolbars and menus. At runtime, users of
your application can customize the toolbars and menus (action bands) in the application user interface using a
customization dialog similar to the Action Manager editor.

To allow the user of your application to customize an action band in your application:
1 Drop an Action Manager component onto a form.
2 Drop your action band components (TActionMainMenuBar, TActionToolBar).
3 Double-click the Action Manager to display the Action Manager editor:

Add the actions you want to use in your application. Also add the Customize action, which appears at the
bottom of the standard actions list.

Drop a TCustomizeDlg component from the Additional tab onto the form, and connect it to the Action
Manager using its ActionManager property. You specify a filename for where to stream customizations made by
users.

Drag and drop the actions onto the action band components. (Make sure you add the Customize action to
the toolbar or menu.)

4 Complete your application.

When you compile and run the application, users can access a Customize command that displays a customization
dialog box similar to the Action Manager editor. They can drag and drop menu items and create toolbars using the
same actions you supplied in the Action Manager.

 DevGuide: Building applications with Delphi

Hiding unused items and categories in action bands
Topic groups See also

One benefit of using ActionBands is that unused items and categories can be hidden from the user. Over time, the
action bands become customized for the application users, showing only the items that they use and hiding the rest
from view. Hidden items can become visible again when the user presses a drop-down button. Also, the user can
restore the visibility of all action band items by resetting the usage statistics from the customization dialog. Item
hiding is the default behavior of action bands, but that behavior can be changed to prevent hiding of individual
items, all the items in a particular collection (like the File menu), or all of the items in a given action band.

The action manager keeps track of the number of times an action has been called by the user, which is stored in the
associated TActionClientItem’s UsageCount field. The action manager also records the number of times the
application has been run, which we shall call the session number, as well as the session number of the last time an
action was used. The value of UsageCount is used to look up the maximum number of sessions the item can go
unused before it becomes hidden, which is then compared with the difference between the current session number
and the session number of the last use of the item. If that difference is greater than the number determined in
PrioritySchedule, the item is hidden. The default values of PrioritySchedule are shown in the table below:

Number of sessions in which an
action band item was used

Number of sessions an item will remain unhidden after
its last use

0, 1 3
2 6
3 9
4, 5 12
6-8 17
9-13 23
14-24 29
25 or more 31

It is possible to disable item hiding at design time. To prevent a specific action (and all the collections containing it)
from becoming hidden, find its TActionClientItem object and set its UsageCount to -1. To prevent hiding for an entire
collection of items, such as the File menu or even the main menu bar, find the TActionClients object associated with
the collection and set its HideUnused property to False.

 DevGuide: Building applications with Delphi

Using action lists
Topic groups See also

Note: The contents of this section apply to setting up toolbars and menus for cross-platform development. For
Windows development you can also use the methods described here. However, using action bands
instead is simpler and offers more options. The action lists will be handled automatically by the Action
Manager. See Organizing actions for toolbars and menus for details.

Action lists maintain a list of actions that your application can take in response to something a user does. By using
action objects, you centralize the functions performed by your application from the user interface. This lets you
share common code for performing actions (for example, when a toolbar button and menu item do the same thing),
as well as providing a single, centralized way to enable and disable actions depending on the state of your
application.

 DevGuide: Building applications with Delphi

Setting up action lists
Topic groups See also

Setting up action lists is fairly easy once you understand the basic steps involved:
Create the action list.
Add actions to the action list.
Set properties on the actions.
Attach clients to the action.

Here are the steps in more detail:
1 Drop a TActionList object onto your form or data module. (ActionList is on the Standard page of the

component palette.)
2 Double-click the TActionList object to display the Action List editor.

1 Use one of the predefined actions listed in the editor: right-click and choose New Standard Action.
2 The predefined actions are organized into categories (such as Dataset, Edit, Help, and Window) in the

Standard Action Classes dialog box. Select all the standard actions you want to add to the action list and click
OK.

or
3 Create a new action of your own: right-click and choose New Action.

3 Set the properties of each action in the Object Inspector. (The properties you set affect every client of the
action.)

The Name property identifies the action, and the other properties and events (Caption, Checked, Enabled,
HelpContext, Hint, ImageIndex, ShortCut, Visible, and Execute) correspond to the properties and events of its
client controls. The client’s corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action’s Enabled property corresponds to a TToolButton’s
Enabled property. However, an action’s Checked property corresponds to a TToolButton’s Down property.

4 If you use the predefined actions, the action includes a standard response that occurs automatically. If creating
your own action, you need to write an event handler that defines how the action responds when fired. See
What happens when an action fires for details.

5 Attach the actions in the action list to the clients that require them:
Click on the control (such as the button or menu item) on the form or data module. In the Object Inspector,

the Action property lists the available actions.
Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you would expect. You can look
at the online reference Help for details on how all of the standard actions work if you need to. If writing your own
actions, you’ll need to understand more about what happens when the action is fired. See What happens when an
action fires for details.

 DevGuide: Building applications with Delphi

What happens when an action fires
Topic groups See also

When an event fires, a series of events intended primarily for generic actions occurs. Then if the event doesn’t
handle the action, another sequence of events occurs.

Responding with events

When a client component or control is clicked or otherwise acted on, a series of events occurs to which you can
respond. For example, the following code illustrates the event handler for an action that toggles the visibility of a
toolbar when the action is executed:

procedure TForm1.Action1Execute(Sender: TObject);
begin
{ Toggle Toolbar1's visibility }
ToolBar1.Visible := not ToolBar1.Visible;

end;

Note: For general information about events and event handlers, see Working with events and event
handlers“Working with events and event handlers” on page 25.

You can supply an event handler that responds at one of three different levels: the action, the action list, or the
application. This is only a concern if you are using a new generic action rather than a predefined standard action.
You do not have to worry about this if using the standard actions because standard actions have built-in behavior
that executes when these events occur.

The order in which the event handlers will respond to events is as follows:
Action list
Application
Action

When the user clicks on a client control, Delphi calls the action's Execute method which defers first to the action list,
then the Application object, then the action itself if neither action list nor Application handles it. To explain this in
more detail, Delphi follows this dispatching sequence when looking for a way to respond to the user action:
1 If you supply an OnExecute event handler for the action list and it handles the action, the application

proceeds.

The action list’s event handler has a parameter called Handled, that returns False by default. If the handler is
assigned and it handles the event, it returns True, and the processing sequence ends here. For example:

procedure TForm1.ActionList1ExecuteAction(Action: TBasicAction; var Handled:
Boolean);
begin
Handled := True;

end;

If you don’t set Handled to True in the action list event handler, then processing continues.
2 If you did not write an OnExecute event handler for the action list or if the event handler doesn’t handle the

action, the application’s OnActionExecute event handler fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in the application fails to
handle an event. Like the action list’s OnExecute event handler, the OnActionExecute handler has a parameter
Handled that returns False by default. If an event handler is assigned and handles the event, it returns True,
and the processing sequence ends here. For example:

procedure TForm1.ApplicationExecuteAction(Action: TBasicAction; var Handled:
Boolean);
begin
 { Prevent execution of all actions in Application }
 Handled := True;
end;

3 If the application’s OnExecute event handler doesn’t handle the action, the action’s OnExecute event handler
fires.

You can use built-in actions or create your own action classes that know how to operate on specific target classes
(such as edit controls). When no event handler is found at any level, the application next tries to find a target on
which to execute the action. When the application locates a target that the action knows how to address, it invokes
the action. See How actions find their targets for details on how the application locates a target that can respond to
a predefined action class.

 DevGuide: Building applications with Delphi

How actions find their targets
Topic groups See also

What happens when an action fires describes the execution cycle that occurs when a user invokes an action. If no
event handler is assigned to respond to the action, either at the action list, application, or action level, then the
application tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:
1 Active control: The application looks first for an active control as a potential target.
2 Active form: If the application does not find an active control or if the active control can’t act as a target, it looks

at the screen’s ActiveForm.
3 Controls on the form: If the active form is not an appropriate target, the application looks at the other controls

on the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component; for example, data-aware
controls defer to the associated dataset component. Also, some predefined actions do not use a target; for example,
the File Open dialog.

 DevGuide: Building applications with Delphi

Updating actions
Topic groups See also

When the application is idle, the OnUpdate event occurs for every action that is linked to a control or menu item that
is showing. This provides an opportunity for applications to execute centralized code for enabling and disabling,
checking and unchecking, and so on. For example, the following code illustrates the OnUpdate event handler for an
action that is “checked” when the toolbar is visible:

procedure TForm1.Action1Update(Sender: TObject);
begin
{ Indicate whether ToolBar1 is currently visible }
(Sender as TAction).Checked := ToolBar1.Visible;

end;

Warning: Do not add time-intensive code to the OnUpdate event handler. This executes whenever the
application is idle. If the event handler takes too much time, it will adversely affect performance of
the entire application.

 DevGuide: Building applications with Delphi

Predefined action classes
Topic groups See also

You can add predefined actions to your application by right-clicking on the Action Manager and choosing New
Standard Action. The New Standard Action Classes dialog box is displayed listing the predefined action classes and
the associated standard actions. These are actions that are included with Delphi and they are objects that
automatically perform actions. The predefined actions are organized within the following classes:

Class Description

Edit Standard edit actions: Used with an edit control target. TEditAction is the base
class for descendants that each override the ExecuteTarget method to
implement copy, cut, and paste tasks by using the clipboard.

Format Standard formatting actions: Used with rich text to apply text formatting
options such as bold, italic, underline, strikeout, and so on. TRichEditAction is
the base class for descendants that each override the ExecuteTarget and
UpdateTarget methods to implement formatting of the target.

Help Standard Help actions: Used with any target. THelpAction is the base class
for descendants that each override the ExecuteTarget method to pass the
command onto a Help system.

Window Standard window actions: Used with forms as targets in an MDI application.
TWindowAction is the base class for descendants that each override the
ExecuteTarget method to implement arranging, cascading, closing, tiling, and
minimizing MDI child forms.

File File actions: Used with operations on files such as File Open, File Run, or File
Exit.

Search Search actions: Used with search options. TSearchAction implements the
common behavior for actions that display a modeless dialog where the user
can enter a search string for searching an edit control.

Tab Tab control actions: Used to move between tabs on a tab control such as the
Prev and Next buttons on a wizard.

List List control actions: Used for managing items in a list view.
Dialog Dialog actions: Used with dialog components. TDialogAction implements the

common behavior for actions that display a dialog when executed. Each
descendant class represents a specific dialog.

Internet Internet actions: Used for functions such as Internet browsing, downloading,
and sending mail.

DataSet DataSet actions: Used with a dataset component target. TDataSetAction is
the base class for descendants that each override the ExecuteTarget and
UpdateTarget methods to implement navigation and editing of the target.
TDataSetAction introduces a DataSource property that ensures actions are
performed on that dataset. If DataSource is nil, the currently focused data-
aware control is used.

Tools Tools: Additional tools such as TCustomizeActionBars for automatically
displaying the customization dialog for action bands.

All of the action objects are described under the action object names in the online reference Help.

 DevGuide: Building applications with Delphi

Writing action components
Topic groups See also

You can also create your own predefined action classes. When you write your own action classes, you can build in
the ability to execute on certain target classes of object. Then, you can use your custom actions in the same way
you use pre-defined action classes. That is, when the action can recognize and apply itself to a target class, you
can simply assign the action to a client control, and it acts on the target with no need to write an event handler.

Component writers can use the classes in the QStdActns and DBActns units as examples for deriving their own
action classes to implement behaviors specific to certain controls or components. The base classes for these
specialized actions (TEditAction, TWindowAction, and so on) generally override HandlesTarget, UpdateTarget, and
other methods to limit the target for the action to a specific class of objects. The descendant classes typically
override ExecuteTarget to perform a specialized task. These methods are described here:

Method Description

HandlesTarget Called automatically when the user invokes an object (such as a toolbutton or
menu item) that is linked to the action. The HandlesTarget method lets the action
object indicate whether it is appropriate to execute at this time with the object
specified by the Target parameter as a “target”. See How actions find their targets
for details.

UpdateTarget Called automatically when the application is idle so that actions can update
themselves according to current conditions. Use in place of OnUpdateAction. See
Updating actions for details.

ExecuteTarget Called automatically when the action fires in response to a user action in place of
OnExecute (for example, when the user selects a menu item or presses a tool
button that is linked to this action). See What happens when an action fires for
details.

When you write your own action classes, it is important to understand the following:
How actions find their targets
Registering actions

 DevGuide: Building applications with Delphi

Registering actions
Topic groups See also

When you write your own actions, you can register actions to enable them to appear in the Action List editor. You
register and unregister actions by using the global routines in the Actnlist unit:

procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);
procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

When you call RegisterActions, the actions you register appear in the Action List editor for use by your applications.
You can supply a category name to organize your actions, as well as a Resource parameter that lets you supply
default property values.

For example, the following code registers the standard actions with the IDE:

{ Standard action registration }
RegisterActions('', [TAction], nil);
RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);
RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

When you call UnRegisterActions, the actions no longer appear in the Action List editor.

 DevGuide: Building applications with Delphi

Creating and managing menus
Topic groups See also

Menus provide an easy way for your users to execute logically grouped commands. The Menu Designer enables
you to easily add a menu—either predesigned or custom tailored—to your form. You add a menu component to the
form, open the Menu Designer, and type menu items directly into the Menu Designer window. You can add or delete
menu items, or drag and drop them to rearrange them during design time.

You don't even need to run your program to see the results—your design is immediately visible in the form,
appearing just as it will during runtime. Your code can also change menus at runtime, to provide more information or
options to the user.

This section explains how to use the Menu Designer to design menu bars and pop-up (local) menus. It discusses
the following ways to work with menus at design time and runtime:

Opening the Menu Designer
Building menus
Editing menu items in the Object Inspector
Using the Menu Designer context menu
Using menu templates
Saving a menu as a template
Adding images to menu items

For information about hooking up menu items to the code that executes when they are selected, see Associating
menu events with event handlers.

 DevGuide: Building applications with Delphi

Opening the Menu Designer
Topic groups See also

You design menus for your application using the Menu Designer. Before you can start using the Menu Designer, first
add either a MainMenu or PopupMenu component to your form. Both menu components are located on the
Standard page of the component palette.

A MainMenu component creates a menu that’s attached to the form’s title bar. A PopupMenu component creates a
menu that appears when the user right-clicks in the form. Pop-up menus do not have a menu bar.
To open the Menu Designer, select a menu component on the form, and then either:

Double-click the menu component.
or

From the Properties page of the Object Inspector, select the Items property, and then either double-click
[Menu] in the Value column, or click the ellipsis (...) button.

The Menu Designer appears, with the first (blank) menu item highlighted in the Designer, and the Caption
property selected in the Object Inspector.

 DevGuide: Building applications with Delphi

Building menus
Topic groups See also

You add a menu component to your form, or forms, for every menu you want to include in your application. You can
build each menu structure entirely from scratch, or you can start from one of the predesigned menu templates.

For more information about menu templates, see Using menu templates.

For more information about creating a menu using the menu designer see

Naming menus

Naming the menu items

Adding, inserting, and deleting menu items

Creating submenus

Adding images to menu items

Viewing the menu

 DevGuide: Building applications with Delphi

Naming menus
Topic groups See also

As with all components, when you add a menu component to the form, Delphi gives it a default name; for example,
MainMenu1. You can give the menu a more meaningful name that follows Object Pascal naming conventions.

Delphi adds the menu name to the form’s type declaration, and the menu name then appears in the Component list.

 DevGuide: Building applications with Delphi

Naming the menu items
Topic groups See also

In contrast to the menu component itself, you need to explicitly name menu items as you add them to the form. You
can do this in one of two ways:

Directly type the value for the Name property.

Type the value for the Caption property first, and let Delphi derive the Name property from the caption.
For example, if you give a menu item a Caption property value of File, Delphi assigns the menu item a Name
property of File1. If you fill in the Name property before filling in the Caption property, Delphi leaves the Caption
property blank until you type a value.

Note: If you enter characters in the Caption property that are not valid for Object Pascal identifiers, Delphi
modifies the Name property accordingly. For example, if you want the caption to start with a number,
Delphi precedes the number with a character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items shown appear in the same
menu bar.

Component caption Derived name Explanation

&File File1 Removes ampersand
&File (2nd occurrence) File2 Numerically orders duplicate items
1234 N12341 Adds a preceding letter and numerical order
1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name
$@@@# N1 Removes all non-standard characters, adding preceding

letter and numerical order
- (hyphen) N2 Numerical ordering of second occurrence of caption

with no standard characters

As with the menu component, Delphi adds any menu item names to the form’s type declaration, and those names
then appear in the Component list.

 DevGuide: Building applications with Delphi

Adding, inserting, and deleting menu items
Topic groups See also

The following procedures describe how to perform the basic tasks involved in building your menu structure. Each
procedure assumes you have the Menu Designer window open.

To add menu items at design time,
1 Select the position where you want to create the menu item.

If you’ve just opened the Menu Designer, the first position on the menu bar is already selected.
2 Begin typing to enter the caption. Or enter the Name property first by specifically placing your cursor in the

Object Inspector and entering a value. In this case, you then need to reselect the Caption property and enter a
value.

3 Press Enter.

The next placeholder for a menu item is selected.
If you entered the Caption property first, use the arrow keys to return to the menu item you just entered. You’ll
see that Delphi has filled in the Name property based on the value you entered for the caption. (See Naming the
menu items.)

4 Continue entering values for the Name and Caption properties for each new item you want to create, or press
Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move between items in the list; press
Enter to complete an action. To return to the menu bar, press Esc.

To insert a new, blank menu item,
1 Place the cursor on a menu item.
2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above the selected item in the
menu list.

To delete a menu item or command,
1 Place the cursor on the menu item you want to delete.
2 Press Del.

Note: You cannot delete the default placeholder that appears below the item last entered in a menu list, or next
to the last item on the menu bar. This placeholder does not appear in your menu at runtime.

Separator bars insert a line between menu items. You can use separator bars to indicate groupings within the menu
list, or simply to provide a visual break in a list.

To add a separator bar

Add a menu item as described above and type a hyphen (-) for the caption.
To add accelerators or shortcuts to menu items

see Specifying accelerator keys and keyboard shortcuts

 DevGuide: Building applications with Delphi

Specifying accelerator keys and keyboard shortcuts
Topic groups See also

Accelerator keys enable the user to access a menu command from the keyboard by pressing Alt+ the appropriate
letter, indicated in your code by the preceding ampersand. The letter after the ampersand appears underlined in the
menu.

Delphi automatically checks for duplicate accelerators and adjusts them at runtime. This ensures that menus built
dynamically at runtime contain no duplicate accelerators and that all menu items have an accelerator. You can turn
off this automatic checking by setting the AutoHotkeys property of a menu item to maManual.

To specify an accelerator,

Add an ampersand in front of the appropriate letter.
For example, to add a Save menu command with the S as an accelerator key, type &Save.

Keyboard shortcuts enable the user to perform the action without using the menu directly, by typing in the shortcut
key combination.

To specify a keyboard shortcut,

Use the Object Inspector to enter a value for the ShortCut property, or select a key combination from the
drop-down list.

This list is only a subset of the valid combinations you can type in.
When you add a shortcut, it appears next to the menu item caption.

Caution: Keyboard shortcuts, unlike accelerator keys, are not checked automatically for duplicates. You must
ensure uniqueness yourself.

 DevGuide: Building applications with Delphi

Creating submenus
Topic groups See also

Many application menus contain drop-down lists that appear next to a menu item to provide additional, related
commands. Such lists are indicated by an arrow to the right of the menu item. Delphi supports as many levels of
such submenus as you want to build into your menu.

Organizing your menu structure this way can save vertical screen space. However, for optimal design purposes you
probably want to use no more than two or three menu levels in your interface design. (For pop-up menus, you might
want to use only one submenu, if any.)

To create a submenu,
1 Select the menu item under which you want to create a submenu.
2 Press Ctrl® to create the first placeholder, or right-click and choose Create Submenu.
3 Type a name for the submenu item, or drag an existing menu item into this placeholder.
4 Press Enter, or ¯, to create the next placeholder.
5 Repeat steps 3 and 4 for each item you want to create in the submenu.
6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus

You can create a submenu by inserting a menu item from the menu bar (or a menu template) between menu items
in a list. When you move a menu into an existing menu structure, all its associated items move with it, creating a
fully intact submenu. This pertains to submenus as well—moving a menu item into an existing submenu just creates
one more level of nesting.

 DevGuide: Building applications with Delphi

Moving menu items
Topic groups See also

During design time, you can move menu items simply by dragging and dropping. You can move menu items along
the menu bar, or to a different place in the menu list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the menu bar into its own menu; nor
can you move a menu item into its own submenu. However, you can move any item into a different menu, no matter
what its original position is.

While you are dragging, the cursor changes shape to indicate whether you can release the menu item at the new
location. When you move a menu item, any items beneath it move as well.

To move a menu item along the menu bar,
1 Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new location.
2 Release the mouse button to drop the menu item at the new location.

To move a menu item into a menu list,
1 Drag the menu item along the menu bar until the arrow tip of the drag cursor points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.
2 Drag the menu item into the list, releasing the mouse button to drop the menu item at the new location.

 DevGuide: Building applications with Delphi

Adding images to menu items
Topic groups See also

Images can help users navigate in menus by matching glyphs and images to menu item action, similar to toolbar
images. You can add single bitmaps to menu items, or you can organize images for your application into an image
list and add them to a menu from the image list. If you’re using several bitmaps of the same size in your application,
it’s useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference the name of the bitmap to use
on the menu or menu item.

To add an image to a menu item using an image list:
1 Drop a TMainMenu or TPopupMenu object on a form.
2 Drop a TImageList object on the form.
3 Open the ImageList editor by double clicking on the TImageList object.
4 Click Add to select the bitmap or bitmap group you want to use in the menu. Click OK.
5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you just created.
6 Create your menu items and submenu items as described in this topic group.
7 Select the menu item you want to have an image in the Object Inspector and set the ImageIndex property to

the corresponding number of the image in the ImageList (the default value for ImageIndex is -1, which doesn’t
display an image).

Note: Use images that are 16 by 16 pixels for proper display in the menu. Although you can use other sizes for
the menu images, alignment and consistency problems may result when using images greater than or
smaller than 16 by 16 pixels.

 DevGuide: Building applications with Delphi

Viewing the menu
Topic groups See also

You can view your menu in the form at design time without first running your program code. (Pop-up menu
components are visible in the form at design time, but the pop-up menus themselves are not. Use the Menu
Designer to view a pop-up menu at design time.)

To view the menu,
1 If the form is visible, click the form, or from the View menu, choose the form whose menu you want to view.
2 If the form has more than one menu, select the menu you want to view from the form’s Menu property drop-

down list.

The menu appears in the form exactly as it will when you run the program.

 DevGuide: Building applications with Delphi

Editing menu items in the Object Inspector
Topic groups See also

This section has discussed how to set several properties for menu items—for example, the Name and Caption
properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut property, directly in the
Object Inspector, just as you would for any component selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still displayed in the Object Inspector.
You can switch focus to the Object Inspector and continue editing the menu item properties there. Or you can select
the menu item from the Component list in the Object Inspector and edit its properties without ever opening the
Menu Designer.

To close the Menu Designer window and continue editing menu items,
1 Switch focus from the Menu Designer window to the Object Inspector by clicking the properties page of the

Object Inspector.
2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing properties for the selected menu
item. To edit another menu item, select it from the Component list.

 DevGuide: Building applications with Delphi

Using the Menu Designer context menu
Topic groups See also

The Menu Designer context menu provides quick access to the most common Menu Designer commands, and to
the menu template options. (For more information about menu templates, refer to Using menu templates.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10 when the cursor is in the Menu
Designer window.

Commands on the context menu

The following table summarizes the commands on the Menu Designer context menu.

Menu command Action

 Insert Inserts a placeholder above or to the left of the cursor.

Delete Deletes the selected menu item (and all its sub-items, if any).
Create Submenu Creates a placeholder at a nested level and adds an arrow to the right of the

selected menu item.
Select Menu Opens a list of menus in the current form. Double-clicking a menu name opens

the designer window for the menu.
Save As Template Opens the Save Template dialog box, where you can save a menu for future

reuse.
Insert From Template Opens the Insert Template dialog box, where you can select a template to

reuse.
Delete Templates Opens the Delete Templates dialog box, where you can choose to delete any

existing templates.
Insert From Resource Opens the Insert Menu from Resource file dialog box, where you can choose

an .mnu file to open in the current form.

 DevGuide: Building applications with Delphi

Switching between menus at design time
Topic groups See also

If you’re designing several menus for your form, you can use the Menu Designer context menu or the Object
Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,
1 Right-click in the Menu Designer and choose Select Menu.

The Select Menu dialog box appears.
This dialog box lists all the menus associated with the form whose menu is currently open in the Menu
Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or edit.

To use the Object Inspector to switch between menus in a form,
1 Give focus to the form whose menus you want to choose from.
2 From the Component list, select the menu you want to edit.
3 On the Properties page of the Object Inspector, select the Items property for this menu, and then either click

the ellipsis button, or double-click [Menu].

 DevGuide: Building applications with Delphi

Using menu templates
Topic groups See also

Delphi provides several predesigned menus, or menu templates, that contain frequently used commands. You can
use these menus in your applications without modifying them (except to write code), or you can use them as a
starting point, customizing them as you would a menu you originally designed yourself. Menu templates do not
contain any event handler code.

The menu templates shipped with Delphi are stored in the BIN subdirectory in a default installation. These files have
a .DMT (Delphi menu template) extension.

You can also save as a template any menu that you design using the Menu Designer. After saving a menu as a
template, you can use it as you would any predesigned menu. If you decide you no longer want a particular menu
template, you can delete it from the list.

To add a menu template to your application,
1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the context menu.)
The Insert Template dialog box opens, displaying a list of available menu templates.

2 Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your cursor is on a menu item in a
list, the menu template is inserted above the selected item. If your cursor is on the menu bar, the menu template
is inserted to the left of the cursor.

To delete a menu template,
1 Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the context menu.)
The Delete Templates dialog box opens, displaying a list of available templates.

2 Select the menu template you want to delete, and press Del.

Delphi deletes the template from the templates list and from your hard disk.

 DevGuide: Building applications with Delphi

Saving a menu as a template
Topic groups See also

Any menu you design can be saved as a template so you can use it again. You can use menu templates to provide
a consistent look to your applications, or use them as a starting point which you then further customize.

The menu templates you save are stored in your BIN subdirectory as .DMT files.

To save a menu as a template,
1 Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like; everything in the active Menu
Designer window will be saved as one reusable menu.

2 Right-click in the Menu Designer and choose Save As Template.

The Save Template dialog box appears.
3 In the Template Description edit box, type a brief description for this menu, and then choose OK.

The Save Template dialog box closes, saving your menu design and returning you to the Menu Designer
window.

Note: The description you enter is displayed only in the Save Template, Insert Template, and Delete Templates
dialog boxes. It is not related to the Name or Caption property for the menu.

 DevGuide: Building applications with Delphi

Naming conventions for template menu items and event handlers
Topic groups See also

When you save a menu as a template, Delphi does not save its Name property, since every menu must have a
unique name within the scope of its owner (the form). However, when you insert the menu as a template into a new
form by using the Menu Designer, Delphi then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you name it MyFile. If you insert it
as a template into a new menu, Delphi names it File1. If you insert it into a menu with an existing menu item named
File1, Delphi names it File2.

Delphi also does not save any OnClick event handlers associated with a menu saved as a template, since there is
no way to test whether the code would be applicable in the new form. When you generate a new event handler for
the menu template item, Delphi still generates the event handler name.

You can easily associate items in the menu template with existing OnClick event handlers in the form For more
information, see Associating an event with an existing event handler.

 DevGuide: Building applications with Delphi

Manipulating menu items at runtime
Topic groups See also

Sometimes you want to add menu items to an existing menu structure while the application is running, to provide
more information or options to the user. You can insert a menu item by using the menu item’s Add or Insert method,
or you can alternately hide and show the items in a menu by changing their Visible property. The Visible property
determines whether the menu item is displayed in the menu. To dim a menu item without hiding it, use the Enabled
property.

For examples that use the menu item’s Visible and Enabled properties, see Disabling menu items.

In multiple document interface (MDI) and Object Linking and Embedding (OLE) applications, you can also merge
menu items into an existing menu bar. See Merging menus for more information.

 DevGuide: Building applications with Delphi

Merging menus
Topic groups See also

For MDI applications, such as the text editor sample application, and for OLE client applications, your application’s
main menu needs to be able to receive menu items either from another form or from the OLE server object. This is
often called merging menus. Note that OLE technology is limited to Windows applications only and is not available
for use in cross-platform programming.

You prepare menus for merging by specifying values for two properties:

Menu, a property of the form

GroupIndex, a property of menu items in the menu

 DevGuide: Building applications with Delphi

Specifying the active menu: Menu property
Topic groups See also

The Menu property specifies the active menu for the form. Menu-merging operations apply only to the active menu.
If the form contains more than one menu component, you can change the active menu at runtime by setting the
Menu property in code. For example,

Form1.Menu := SecondMenu;

 DevGuide: Building applications with Delphi

Determining the order of merged menu items: GroupIndex property
Topic groups See also

The GroupIndex property determines the order in which the merging menu items appear in the shared menu bar.
Merging menu items can replace those on the main menu bar, or can be inserted.

The default value for GroupIndex is 0. Several rules apply when specifying a value for GroupIndex:

Lower numbers appear first (farther left) in the menu.
For instance, set the GroupIndex property to 0 (zero) for a menu that you always want to appear leftmost, such
as a File menu. Similarly, specify a high number (it needn’t be in sequence) for a menu that you always want to
appear rightmost, such as a Help menu.

To replace items in the main menu, give items on the child menu the same GroupIndex value.
This can apply to groupings or to single items. For example, if your main form has an Edit menu item with a
GroupIndex value of 1, you can replace it with one or more items from the child form's menu by giving them a
GroupIndex value of 1 as well.
Giving multiple items in the child menu the same GroupIndex value keeps their order intact when they merge
into the main menu.

To insert items without replacing items in the main menu, leave room in the numeric range of the main
menu’s items and “plug in” numbers from the child form.

For example, number the items in the main menu 0 and 5, and insert items from the child menu by numbering
them 1, 2, 3, and 4.

 DevGuide: Building applications with Delphi

Importing resource files
Topic groups See also

Delphi supports use of menus built with other applications, so long as they are in the standard Windows resource
(.RC) file format. You can import such menus directly into your Delphi project, saving you the time and effort of
rebuilding menus that you created elsewhere.

To load existing .RC menu files,
1 In the Menu Designer, place your cursor where you want the menu to appear.

The imported menu can be part of a menu you are designing, or an entire menu in itself.
2 Right-click and choose Insert From Resource.

The Insert Menu From Resource dialog box appears.
3 In the dialog box, select the resource file you want to load, and choose OK.

The menu appears in the Menu Designer window.
Note: If your resource file contains more than one menu, you first need to save each menu as a separate

resource file before importing it.

 DevGuide: Building applications with Delphi

Designing toolbars and cool bars
Topic groups See also

A toolbar is a panel, usually across the top of a form (under the menu bar), that holds buttons and other controls. A
cool bar (also called a rebar) is a kind of toolbar that displays controls on movable, resizable bands. If you have
multiple panels aligned to the top of the form, they stack vertically in the order added.

Note: Cool bars are not available in CLX for cross-platform applications.
You can put controls of any sort on a toolbar. In addition to buttons, you may want to put use color grids, scroll bars,
labels, and so on.

You can add a toolbar to a form in several ways:

Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

Use a toolbar component (TToolBar) instead of TPanel, and add controls to it. TToolBar manages buttons
and other controls, arranging them in rows and automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons functionally and provides other
display options.

Use a cool bar (TCoolBar) component and add controls to it. The cool bar displays controls on
independently movable and resizable bands.
How you implement your toolbar depends on your application. The advantage of using the Panel component is that
you have total control over the look and feel of the toolbar.

By using the toolbar and cool bar components, you are ensuring that your application has the look and feel of a
Windows application because you are using the native Windows controls. If these operating system controls change
in the future, your application could change as well. Also, since the toolbar and cool bar rely on common
components in Windows, your application requires the COMCTL32.DLL. Toolbars and cool bars are not supported
in WinNT 3.51 applications.

The following sections describe how to

Adding a toolbar using a panel component

Adding a toolbar using the toolbar component

Adding a cool bar component

Responding to clicks

Adding hidden toolbars

Hiding and showing toolbars

 DevGuide: Building applications with Delphi

Adding a toolbar using a panel component
Topic groups See also

To add a toolbar to a form using the panel component,
1 Add a panel component to the form (from the Standard page of the component palette).
2 Set the panel’s Align property to alTop. When aligned to the top of the form, the panel maintains its height, but

matches its width to the full width of the form’s client area, even if the window changes size.
3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no caption, only a small graphic
(called a glyph), which represents the button’s function.

Speed buttons have three possible modes of operation. They can

Act like regular pushbuttons

Toggle on and off when clicked

Act like a set of radio buttons
To implement speed buttons on toolbars, do the following:

Adding a speed button to a panel

Assigning a speed button’s glyph

Setting the initial condition of a speed button

Creating a group of speed buttons

Allowing toggle buttons

 DevGuide: Building applications with Delphi

Adding a speed button to a panel
Topic groups See also

To add a speed button to a toolbar panel, place the speed button component (from the Additional page of the
component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the panel also moves or hides the
speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If you set the Top property of
each button to 8, they’ll be vertically centered. The default grid setting snaps the speed button to that vertical
position for you.

 DevGuide: Building applications with Delphi

Assigning a speed button’s glyph
Topic groups See also

Each speed button needs a graphic image called a glyph to indicate to the user what the button does. If you supply
the speed button only one image, the button manipulates that image to indicate whether the button is pressed,
unpressed, selected, or disabled. You can also supply separate, specific images for each state if you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign different glyphs at runtime.

To assign a glyph to a speed button at design time,
1 Select the speed button.
2 In the Object Inspector, select the Glyph property.
3 Double-click the Value column beside Glyph to open the Picture Editor and select the desired bitmap.

 DevGuide: Building applications with Delphi

Setting the initial condition of a speed button
Topic groups See also

Speed buttons use their appearance to give the user clues as to their state and purpose. Because they have no
caption, it’s important that you use the right visual cues to assist users.

The table below lists some actions you can set to change a speed button’s appearance:

To make a speed button: Set the toolbar’s:

Appear pressed GroupIndex property to a value other than zero and its
Down property to True.

Appear disabled Enabled property to False.
Have a left margin Indent property to a value greater than 0.

If your application has a default drawing tool, ensure that its button on the toolbar is pressed when the application
starts. To do so, set its GroupIndex property to a value other than zero and its Down property to True.

 DevGuide: Building applications with Delphi

Creating a group of speed buttons
Topic groups See also

A series of speed buttons often represents a set of mutually exclusive choices. In that case, you need to associate
the buttons into a group, so that clicking any button in the group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to each speed button’s
GroupIndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with the whole group selected, set
GroupIndex to a unique value.

 DevGuide: Building applications with Delphi

Allowing toggle buttons
Topic groups See also

Sometimes you want to be able to click a button in a group that’s already pressed and have it pop up, leaving no
button in the group pressed. Such a button is called a toggle. Use AllowAllUp to create a grouped button that acts
as a toggle: click it once, it’s down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to True.

Setting AllowAllUp to True for any speed button in a group automatically sets the same property value for all buttons
in the group. This enables the group to act as a normal group, with only one button pressed at a time, but also
allows every button to be up at the same time.

 DevGuide: Building applications with Delphi

Adding a toolbar using the toolbar component
Topic groups See also

The toolbar component (TToolBar) offers button management and display features that panel components do not.
To add a toolbar to a form using the toolbar component,
1 Add a toolbar component to the form (from the Win32 page of the component palette). The toolbar

automatically aligns to the top of the form.
2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool buttons can

Act like regular pushbuttons

Toggle on and off when clicked

Act like a set of radio buttons
To implement tool buttons on a toolbar, do the following:

Adding a tool button

Assigning images to tool buttons

Setting tool button appearance and initial conditions

Creating groups of tool buttons

Allowing toggled tool buttons

 DevGuide: Building applications with Delphi

Adding a tool button
Topic groups See also

To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or hides the button. In addition, all
tool buttons on the toolbar automatically maintain the same height and width. You can drop other controls from the
component palette onto the toolbar, and they will automatically maintain a uniform height. Controls will also wrap
around and start a new row when they do not fit horizontally on the toolbar.

 DevGuide: Building applications with Delphi

Assigning images to tool buttons
Topic groups See also

Each tool button has an ImageIndex property that determines what image appears on it at runtime. If you supply the
tool button only one image, the button manipulates that image to indicate whether the button is disabled. To assign
images to tool buttons at design time,
1 Select the toolbar on which the buttons appear.
2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property. An image list is a

collection of same-sized icons or bitmaps.
3 Select a tool button.
4 In the Object Inspector, assign an integer to the tool button’s ImageIndex property that corresponds to the

image in the image list that you want to assign to the button.

You can also specify separate images to appear on the tool buttons when they are disabled and when they are
under the mouse pointer. To do so, assign separate image lists to the toolbar’s DisabledImages and HotImages
properties.

 DevGuide: Building applications with Delphi

Setting tool button appearance and initial conditions
Topic groups See also

The table below lists some actions you can set to change a tool button’s appearance:

To make a tool button: Set the toolbar’s:

Appear pressed (on tool button) Style property to tbsCheck and Down
property to True.

Appear disabled Enabled property to False.
Have a left margin Indent property to a value greater than 0.
Appear to have “pop-up” borders, thus
making the toolbar appear transparent

Flat property to True.

Note: Using the Flat property of TToolBar requires version 4.70 or later of COMCTL32.DLL.
To force a new row of controls after a specific tool button, Select the tool button that you want to appear last in the
row and set its Wrap property to True.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to False.

 DevGuide: Building applications with Delphi

Creating groups of tool buttons
Topic groups See also

To create a group of tool buttons, select the buttons you want to associate and set their Style property to tbsCheck;
then set their Grouped property to True. Selecting a grouped tool button causes other buttons in the group to pop
up, which is helpful to represent a set of mutually exclusive choices.

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and Grouped set to True forms a single
group. To break up a group of tool buttons, separate the buttons with any of the following:

A tool button whose Grouped property is False.

A tool button whose Style property is not set to tbsCheck. To create spaces or dividers on the toolbar, add a
tool button whose Style is tbsSeparator or tbsDivider.

Another control besides a tool button.

 DevGuide: Building applications with Delphi

Allowing toggled tool buttons
Topic groups See also

Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is down; click it again, it pops
up. To make a grouped tool button a toggle, set its AllowAllUp property to True.

As with speed buttons, setting AllowAllUp to True for any tool button in a group automatically sets the same
property value for all buttons in the group.

 DevGuide: Building applications with Delphi

Adding a cool bar component
Topic groups See also

The cool bar component (TCoolBar)—also called a rebar—displays windowed controls on independently movable,
resizable bands. The user can position the bands by dragging the resizing grips on the left side of each band.

To add a cool bar to a form in a Windows application,
1 Add a cool bar component to the form (from the Win32 page of the component palette). The cool bar

automatically aligns to the top of the form.
2 Add windowed controls from the component palette to the bar.

Only VCL components that descend from TWinControl are windowed controls. You can add graphic controls—such
as labels or speed buttons—to a cool bar, but they will not appear on separate bands.

 DevGuide: Building applications with Delphi

Setting the appearance of the cool bar
Topic groups

The cool bar component offers several useful configuration options. The table below lists some actions you can set
to change a tool button’s appearance:

To make the cool bar: Set the toolbar’s:

Resize automatically to accommodate the bands
it contains

AutoSize property to True.

Bands maintain a uniform height FixedSize property to True.
Reorient to vertical rather than horizontal Vertical property to True. This changes the effect of the FixedSize

property.
Prevent the Text properties of the bands from
displaying at runtime

ShowText property to False. Each band in a cool bar has its own
Text property.

Remove the border around the bar BandBorderStyle to bsNone.
Keep users from changing the bands’ order at
runtime. (The user can still move and resize the
bands.)

FixedOrder to True.

Create a background image for the cool bar Bitmap property to TBitmap object.
Choose a list of images to appear on the left of
any band

Images property to TImageList object.

To assign images to individual bands, select the cool bar and double-click on the Bands property in the Object
Inspector. Then select a band and assign a value to its ImageIndex property.

 DevGuide: Building applications with Delphi

Responding to clicks
Topic groups See also

When the user clicks a control, such as a button on a toolbar, the application generates an OnClick event which you
can respond to with an event handler. Since OnClick is the default event for buttons, you can generate a skeleton
handler for the event by double-clicking the button at design time. For more information, see Working with events
and event handlers and Generating a handler for a component’s default event.

 DevGuide: Building applications with Delphi

Assigning a menu to a tool button
Topic groups See also

If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can associate menu with a specific button:
1 Select the tool button.
2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s DropDownMenu property.

If the menu’s AutoPopup property is set to True, it will appear automatically when the button is pressed.

 DevGuide: Building applications with Delphi

Adding hidden toolbars
Topic groups See also

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a number of toolbars available,
but show them only when the user wants to use them. Often you create a form that has several toolbars, but hide
some or all of them.

To create a hidden toolbar,
1 Add a toolbar, cool bar, or panel component to the form.
2 Set the component’s Visible property to False.

Although the toolbar remains visible at design time so you can modify it, it remains hidden at runtime until the
application specifically makes it visible.

 DevGuide: Building applications with Delphi

Hiding and showing toolbars
Topic groups See also

Often, you want an application to have multiple toolbars, but you do not want to clutter the form with them all at
once. Or you may want to let users decide whether to display toolbars. As with all components, toolbars can be
shown or hidden at runtime as needed.

To hide or show a toolbar at runtime, set its Visible property to False or True, respectively. Usually you do this in
response to particular user events or changes in the operating mode of the application. To do this, you typically
have a close button on each toolbar. When the user clicks that button, the application hides the corresponding
toolbar.

You can also provide a means of toggling the toolbar. In the following example, a toolbar of pens is toggled from a
button on the main toolbar. Since each click presses or releases the button, an OnClick event handler can show or
hide the Pen toolbar depending on whether the button is up or down.

procedure TForm1.PenButtonClick(Sender: TObject);
begin
 PenBar.Visible := PenButton.Down;
end;

 DevGuide: Building applications with Delphi

Demo programs
Topic groups See also

For examples of Windows applications that use actions and action lists, refer to Demos\RichEdit. In addition, the
Application wizard (File|New Project page), MDI Application, SDI Application, and Winx Logo Applications can use
the action and action list objects. For examples of cross-platform applications, refer to Demos\CLX.

 DevGuide: Building applications with Delphi

Implementing drag-and-drop in controls
Topic groups See also

Drag-and-drop is often a convenient way for users to manipulate objects. You can let users drag an entire control, or
let them drag items from one control—such as a list box or tree view—into another.

Starting a drag operation

Accepting dragged items

Dropping items

Ending a drag operation

Customizing drag and drop with a drag object

Changing the drag mouse pointer

 DevGuide: Building applications with Delphi

Starting a drag operation
See also

Every control has a property called DragMode that determines how drag operations are initiated. If DragMode is
dmAutomatic, dragging begins automatically when the user presses a mouse button with the cursor on the control.
Because dmAutomatic can interfere with normal mouse activity, you may want to set DragMode to dmManual (the
default) and start the dragging by handling mouse-down events.

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag takes a Boolean parameter
called Immediate and, optionally, an integer parameter called Threshold. If you pass True for Immediate, dragging
begins immediately. If you pass False, dragging does not begin until the user moves the mouse the number of
pixels specified by Threshold. Calling

BeginDrag False)

allows the control to accept mouse clicks without beginning a drag operation.

You can place other conditions on whether to begin dragging, such as checking which mouse button the user
pressed, by testing the parameters of the mouse-down event before calling BeginDrag. The following code, for
example, handles a mouse-down event in a file list box by initiating a drag operation only if the left mouse button
was pressed.

procedure TFMForm.FileListBox1MouseDown(Sender: TObject;
 Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
 if Button = mbLeft then { drag only if left button pressed }
 with Sender as TFileListBox do { treat Sender as TFileListBox }
 begin
 if ItemAtPos(Point(X, Y), True) >= 0 then { is there an item here? }
 BeginDrag(False); { if so, drag it }
 end;
end;

 DevGuide: Building applications with Delphi

Accepting dragged items
See also

When the user drags something over a control, that control receives an OnDragOver event, at which time it must
indicate whether it can accept the item if the user drops it there. The drag cursor changes to indicate whether the
control can accept the dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragOver event.

The drag-over event has a parameter called Accept that the event handler can set to True if it will accept the item. If
Accept is True, the application sends a drag-and-drop event to the control.

The drag-over event has other parameters, including the source of the dragging and the current location of the
mouse cursor, that the event handler can use to determine whether to accept the drop. In the following example, a
directory tree view accepts dragged items only if they come from a file list box.

procedure TFMForm.DirectoryOutline1DragOver(Sender, Source: TObject; X,
 Y: Integer; State: TDragState; var Accept: Boolean);
begin
 if Source is TFileListBox then
 Accept := True
 else
 Accept := False;
end;

 DevGuide: Building applications with Delphi

Dropping items
See also

If a control indicates that it can accept a dragged item, it needs to handle the item should it be dropped. To handle
dropped items, attach an event handler to the OnDragDrop event of the control accepting the drop. Like the drag-
over event, the drag-and-drop event indicates the source of the dragged item and the coordinates of the mouse
cursor over the accepting control. The latter parameter allows you to monitor the path an item takes while being
dragged; you might, for example, want to use this information to change the color of components as they are
passed over.

In the following example, a directory tree view, accepting items dragged from a file list box, responds by moving files
to the directory on which they are dropped.

procedure TFMForm.DirectoryOutline1DragDrop(Sender, Source: TObject; X,
 Y: Integer);
begin
 if Source is TFileListBox then
 with DirectoryOutline1 do
 ConfirmChange('Move', FileListBox1.FileName, Items[GetItem(X, Y)].FullPath);
end;

 DevGuide: Building applications with Delphi

Ending a drag operation
Topic groups See also

A drag operation ends when the item is either successfully dropped or released over a control that cannot accept it.
At this point an end-drag event is sent to the control from which the item was dragged. To enable a control to
respond when items have been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which indicates which control, if any,
accepts the drop. If Target is nil, it means no control accepts the dragged item. The OnEndDrag event also includes
the coordinates on the receiving control.

In this example, a file list box handles an end-drag event by refreshing its file list.

procedure TFMForm.FileListBox1EndDrag(Sender, Target: TObject; X, Y: Integer);
begin
 if Target <> nil then FileListBox1.Update;
end;

 DevGuide: Building applications with Delphi

Customizing drag and drop with a drag object
See also

You can use a TDragObject descendant to customize an object’s drag-and-drop behavior. The standard drag-over
and drag-and-drop events indicate the source of the dragged item and the coordinates of the mouse cursor over the
accepting control. To get additional state information, derive a custom drag object from TDragObject or
TDragObjectEx and override its virtual methods. Create the custom drag object in the OnStartDrag event.

Normally, the source parameter of the drag-over and drag-and-drop events is the control that starts the drag
operation. If different kinds of control can start an operation involving the same kind of data, the source needs to
support each kind of control. When you use a descendant of TDragObject, however, the source is the drag object
itself; if each control creates the same kind of drag object in its OnStartDrag event, the target needs to handle only
one kind of object. The drag-over and drag-and-drop events can tell if the source is a drag object, as opposed to the
control, by calling the IsDragObject function.

TDragObjectEx descendants are freed automatically whereas descendants of TDragObject are not. If you have
TDragObject descendants that you are not explicitly freeing, you can change them so they descend from
TDragObjectEx instead to prevent memory loss.

Drag objects let you drag items between a form implemented in the application’s main executable file and a form
implemented using a DLL, or between forms that are implemented using different DLLs.

 DevGuide: Building applications with Delphi

Changing the drag mouse pointer
See also

You can customize the appearance of the mouse pointer during drag operations by setting the source component’s
DragCursor property (VCL only).

 DevGuide: Building applications with Delphi

Implementing drag-and-dock in controls
Topic groups See also

Note: Drag and dock properties are available in the VCL but not CLX.
Descendants of TWinControl can act as docking sites and descendants of TControl can act as child windows that
are docked into docking sites. For example, to provide a docking site at the left edge of a form window, align a panel
to the left edge of the form and make the panel a docking site. When dockable controls are dragged to the panel
and released, they become child controls of the panel.

Making a windowed control a docking site

Making a control a dockable child

Controlling how child controls are docked

Controlling how child controls are undocked

Controlling how child controls respond to drag-and-dock operations

 DevGuide: Building applications with Delphi

Making a windowed control a docking site
Topic groups See also

Note: Drag and dock properties are available in the VCL but not CLX.
To make a windowed control a docking site,
1 Set the DockSite property to True.
2 If the dock site object should not appear except when it contains a docked client, set its AutoSize property to

True. When AutoSize is True, the dock site is sized to 0 until it accepts a child control for docking. Then it
resizes to fit around the child control.

 DevGuide: Building applications with Delphi

Making a control a dockable child
Topic groups See also

Note: Drag and dock properties are available in the VCL but not CLX.
To make a control a dockable child,
1 Set its DragKind property to dkDock. When DragKind is dkDock, dragging the control moves the control to a

new docking site or undocks the control so that it becomes a floating window. When DragKind is dkDrag (the
default), dragging the control starts a drag-and-drop operation which must be implemented using the
OnDragOver, OnEndDrag, and OnDragDrop events.

2 Set its DragMode to dmAutomatic. When DragMode is dmAutomatic, dragging (for drag-and-drop or docking,
depending on DragKind) is initiated automatically when the user starts dragging the control with the mouse.
When DragMode is dmManual, you can still begin a drag-and-dock (or drag-and-drop) operation by calling the
BeginDrag method.

3 Set its FloatingDockSiteClass property to indicate the TWinControl descendant that should host the control
when it is undocked and left as a floating window. When the control is released and not over a docking site, a
windowed control of this class is created dynamically, and becomes the parent of the dockable child. If the
dockable child control is a descendant of TWinControl, it is not necessary to create a separate floating dock
site to host the control, although you may want to specify a form in order to get a border and title bar. To omit a
dynamic container window, set FloatingDockSiteClass to the same class as the control, and it will become a
floating window with no parent.

 DevGuide: Building applications with Delphi

Controlling how child controls are docked
Topic groups See also

Note: Drag and dock properties are available in the VCL but not CLX.
A docking site automatically accepts child controls when they are released over the docking site. For most controls,
the first child is docked to fill the client area, the second splits that into separate regions, and so on. Page controls
dock children into new tab sheets (or merge in the tab sheets if the child is another page control).

Three events allow docking sites to further constrain how child controls are docked:

property OnGetSiteInfo: TGetSiteInfoEvent;
TGetSiteInfoEvent = procedure(Sender: TObject; DockClient: TControl; var
InfluenceRect: TRect; var CanDock: Boolean) of object;

OnGetSiteInfo occurs on the docking site when the user drags a dockable child over the control. It allows the site to
indicate whether it will accept the control specified by the DockClient parameter as a child, and if so, where the child
must be to be considered for docking. When OnGetSiteInfo occurs, InfluenceRect is initialized to the screen
coordinates of the docking site, and CanDock is initialized to True. A more limited docking region can be created by
changing InfluenceRect and the child can be rejected by setting CanDock to False.

property OnDockOver: TDockOverEvent;
TDockOverEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer;
State: TDragState; var Accept: Boolean) of object;

OnDockOver occurs on the docking site when the user drags a dockable child over the control. It is analogous to
the OnDragOver event in a drag-and-drop operation. Use it to signal that the child can be released for docking, by
setting the Accept parameter. If the dockable control is rejected by the OnGetSiteInfo event handler (perhaps
because it is the wrong type of control), OnDockOver does not occur.

property OnDockDrop: TDockDropEvent;
TDockDropEvent = procedure(Sender: TObject; Source: TDragDockObject; X, Y: Integer)
of object;

OnDockDrop occurs on the docking site when the user releases the dockable child over the control. It is analogous
to the OnDragDrop event in a normal drag-and-drop operation. Use this event to perform any necessary
accommodations to accepting the control as a child control. Access to the child control can be obtained using the
Control property of the TDockObject specified by the Source parameter.

 DevGuide: Building applications with Delphi

Controlling how child controls are undocked
Topic groups See also

Note: Drag and dock properties are available in the VCL but not CLX.
A docking site automatically allows child controls to be undocked when they are dragged and have a DragMode
property of dmAutomatic. Docking sites can respond when child controls are dragged off, and even prevent the
undocking, in an OnUnDock event handler:

property OnUnDock: TUnDockEvent;
TUnDockEvent = procedure(Sender: TObject; Client: TControl; var Allow: Boolean) of
object;

The Client parameter indicates the child control that is trying to undock, and the Allow parameter lets the docking
site (Sender) reject the undocking. When implementing an OnUnDock event handler, it can be useful to know what
other children (if any) are currently docked. This information is available in the read-only DockClients property,
which is an indexed array of TControl. The number of dock clients is given by the read-only DockClientCount
property.

 DevGuide: Building applications with Delphi

Controlling how child controls respond to drag-and-dock operations
Topic groups See also

Note: Drag and dock properties are available in the VCL but not CLX.
Dockable child controls have two events that occur during drag-and-dock operations: OnStartDock, analogous to
the OnStartDrag event of a drag-and-drop operation, allows the dockable child control to create a custom drag
object. OnEndDock, like OnEndDrag, occurs when the dragging terminates.

 DevGuide: Building applications with Delphi

Working with text in controls
Topic groups

The following topics how to use various features of rich edit and memo controls. Some of these features work with
edit controls as well.

Setting text alignment

Adding scrollbars at runtime

Adding the clipboard object

Selecting text

Selecting all text

Cutting, copying, and pasting text

Deleting selected text

Disabling menu items

Providing a pop-up menu

Handling the OnPopup event

 DevGuide: Building applications with Delphi

Setting text alignment
Topic groups See also

In a rich edit or memo component, text can be left- or right-aligned or centered. To change text alignment, set the
edit component’s Alignment property. Alignment takes effect only if the WordWrap property is True; if word wrapping
is turned off, there is no margin to align to.

For example, the following code attaches an OnClick event handler to the Character|Left menu item, then attaches
the same event handler to both the Right and Center menu items on the Character menu.

procedure TEditForm.AlignClick(Sender: TObject);
begin
 Left1.Checked := False; { clear all three checks }
 Right1.Checked := False;
 Center1.Checked := False;
 with Sender as TMenuItem do Checked := True; { check the item clicked }
 with Editor do { then set Alignment to match }
 if Left1.Checked then
 Alignment := taLeftJustify
 else if Right1.Checked then
 Alignment := taRightJustify
 else if Center1.Checked then
 Alignment := taCenter;
end;

 DevGuide: Building applications with Delphi

Adding scroll bars at runtime
Topic groups See also

Rich edit and memo components can contain horizontal or vertical scroll bars, or both, as needed. When word-
wrapping is enabled, the component needs only a vertical scroll bar. If the user turns off word-wrapping, the
component might also need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime,
1 Determine whether the text might exceed the right margin. In most cases, this means checking whether word

wrapping is enabled. You might also check whether any text lines actually exceed the width of the control.
2 Set the rich edit or memo component’s ScrollBars property to include or exclude scroll bars.

The following example attaches an OnClick event handler to a Character|WordWrap menu item.

procedure TEditForm.WordWrap1Click(Sender: TObject);
begin
 with Editor do
 begin
 WordWrap := not WordWrap; { toggle word-wrapping }
 if WordWrap then
 ScrollBars := ssVertical { wrapped requires only vertical }
 else
 ScrollBars := ssBoth; { unwrapped might need both }
 WordWrap1.Checked := WordWrap; { check menu item to match property }
 end;
end;

The rich edit and memo components handle their scroll bars in a slightly different way. The rich edit component can
hide its scroll bars if the text fits inside the bounds of the component. The memo always shows scroll bars if they
are enabled.

 DevGuide: Building applications with Delphi

Adding the clipboard object
Topic groups See also

Most text-handling applications provide users with a way to move selected text between documents, including
documents in different applications. The Clipboard object in Delphi encapsulates a clipboard (such as the Windows
Clipboard) and includes methods for cutting, copying, and pasting text (and other formats, including graphics). The
Clipboard object is declared in the Clipbrd unit.

To add the Clipboard object to an application,
1 Select the unit that will use the clipboard.
2 Search for the implementation reserved word.

3 Add Clipbrd to the uses clause below implementation.

If there is already a uses clause in the implementation part, add Clipbrd to the end of it.

If there is not already a uses clause, add one that says
 uses Clipbrd;

For example, in an application with a child window, the uses clause in the unit's implementation part might look like
this:

uses
 MDIFrame, Clipbrd;

 DevGuide: Building applications with Delphi

Selecting text
Topic groups See also

Before you can send any text to the clipboard, that text must be selected. Highlighting of selected text is built into
the edit components. When the user selects text, it appears highlighted.

The table below lists properties commonly used to handle selected text.

Property Description

SelText Contains a string representing the selected text in the component.
SelLength Contains the length of a selected string.
SelStart Contains the starting position of a string.

 DevGuide: Building applications with Delphi

Selecting all text
Topic groups

The SelectAll method selects the entire contents of the rich edit or memo component. This is especially useful when
the component’s contents exceed the visible area of the component. In most other cases, users select text with
either keystrokes or mouse dragging.

To select the entire contents of a rich edit or memo control, call the RichEdit1 control’s SelectAll method.

For example,

procedure TMainForm.SelectAll(Sender: TObject);
begin
 RichEdit1.SelectAll; { select all text in RichEdit }
end;

 DevGuide: Building applications with Delphi

Cutting, copying, and pasting text
Topic groups See also

Applications that use the Clipbrd unit can cut, copy, and paste text, graphics, and objects through the clipboard. The
edit components that encapsulate the standard text-handling controls all have methods built into them for interacting
with the clipboard.

To cut, copy, or paste text with the clipboard, call the edit component’s CutToClipboard, CopyToClipboard, and
PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the Edit|Cut, Edit|Copy, and Edit|
Paste commands, respectively:

procedure TEditForm.CutToClipboard(Sender: TObject);
begin
 Editor.CutToClipboard;
end;
procedure TEditForm.CopyToClipboard(Sender: TObject);
begin
 Editor.CopyToClipboard;
end;
procedure TEditForm.PasteFromClipboard(Sender: TObject);
begin
 Editor.PasteFromClipboard;
end;

 DevGuide: Building applications with Delphi

Deleting selected text
Topic groups

You can delete the selected text in an edit component without cutting it to the clipboard. To do so, call the
ClearSelection method. For example, if you have a Delete item on the Edit menu, your code could look like this:

procedure TEditForm.Delete(Sender: TObject);
begin
 RichEdit1.ClearSelection;
end;

 DevGuide: Building applications with Delphi

Disabling menu items
Topic groups See also

It is often useful to disable menu commands without removing them from the menu. For example, in a text editor, if
there is no text currently selected, the Cut, Copy, and Delete commands are inapplicable. An appropriate time to
enable or disable menu items is when the user selects the menu. To disable a menu item, set its Enabled property
to False.

In the following example, an event handler is attached to the OnClick event for the Edit item on a child form’s menu
bar. It sets Enabled for the Cut, Copy, and Delete menu items on the Edit menu based on whether RichEdit1 has
selected text. The Paste command is enabled or disabled based on whether any text exists on the clipboard.

procedure TEditForm.Edit1Click(Sender: TObject);
var
 HasSelection: Boolean; { declare a temporary variable }
begin
 Paste1.Enabled := Clipboard.HasFormat(CF_TEXT); {enable or disable the Paste
menu item}
 HasSelection := Editor.SelLength > 0; { True if text is selected }
 Cut1.Enabled := HasSelection; { enable menu items if HasSelection is True }
 Copy1.Enabled := HasSelection;
 Delete1.Enabled := HasSelection;
end;

The HasFormat method of the clipboard returns a Boolean value based on whether the clipboard contains objects,
text, or images of a particular format. By calling HasFormat with the parameter CF_TEXT, you can determine
whether the clipboard contains any text, and enable or disable the Paste item as appropriate.

 DevGuide: Building applications with Delphi

Providing a pop-up menu
Topic groups See also

Pop-up, or local, menus are a common ease-of-use feature for any application. They enable users to minimize
mouse movement by clicking the right mouse button in the application workspace to access a list of frequently used
commands.

In a text editor application, for example, you can add a pop-up menu that repeats the Cut, Copy, and Paste editing
commands. These pop-up menu items can use the same event handlers as the corresponding items on the Edit
menu. You don’t need to create accelerator or shortcut keys for pop-up menus because the corresponding regular
menu items generally already have shortcuts.

A form’s PopupMenu property specifies what pop-up menu to display when a user right-clicks any item on the form.
Individual controls also have PopupMenu properties that can override the form’s property, allowing customized
menus for particular controls.

To add a pop-up menu to a form,
1 Place a pop-up menu component on the form.
2 Use the Menu Designer to define the items for the pop-up menu.
3 Set the PopupMenu property of the form or control that displays the menu to the name of the pop-up menu

component.
4 Attach handlers to the OnClick events of the pop-up menu items.

 DevGuide: Building applications with Delphi

Handling the OnPopup event
Topic groups See also

You may want to adjust pop-up menu items before displaying the menu, just as you may want to enable or disable
items on a regular menu. With a regular menu, you can handle the OnClick event for the item at the top of the
menu.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-up menu commands, you
handle the event in the menu component itself. The pop-up menu component provides an event just for this
purpose, called OnPopup.

To adjust menu items on a pop-up menu before displaying them,
1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in Disabling menu items is attached to the
pop-up menu component’s OnPopup event. A line of code is added to Edit1Click for each item in the pop-up menu.

procedure TEditForm.Edit1Click(Sender: TObject);
var
 HasSelection: Boolean;
begin
 Paste1.Enabled := Clipboard.HasFormat(CF_TEXT);
 Paste2.Enabled := Paste1.Enabled;{Add this line}
 HasSelection := Editor.SelLength <> 0;
 Cut1.Enabled := HasSelection;
 Cut2.Enabled := HasSelection; {Add this line}
 Copy1.Enabled := HasSelection;
 Copy2.Enabled := HasSelection; {Add this line}
 Delete1.Enabled := HasSelection;
end;

 DevGuide: Building applications with Delphi

Adding graphics to controls
Topic groups See also

Several controls let you customize the way the control is rendered. These include list boxes, combo boxes, menus,
headers, tab controls, list views, status bars, tree views, and tool bars. Instead of using the standard method of
drawing a control or its items, the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text for items. For information on
using owner-draw to add images to menus, see .Adding images to menu items.

All owner-draw controls contain lists of items. Usually, those lists are lists of strings that are displayed as text, or
lists of objects that contain strings that are displayed as text. You can associate an object with each item in a list to
make it easy to use that object when drawing items.

In general, creating an owner-draw control in Delphi involves these steps:
1 Indicating that a control is owner-drawn
2 Adding graphical objects to a string list
3 Drawing owner-drawn items

 DevGuide: Building applications with Delphi

Indicating that a control is owner-drawn
Topic groups

To customize the drawing of a control, you must supply event handlers that render the control’s image when it
needs to be painted. Some controls receive these events automatically. For example, list views, tree views, and tool
bars all receive events at various stages in the drawing process without your having to set any properties. These
events have names such as “OnCustomDraw” or “OnAdvancedCustomDraw”.

Other controls, however, require you to set a property before they receive owner-draw events. List boxes, combo
boxes, header controls, and status bars have a property called Style. Style determines whether the control uses the
default drawing (called the “standard” style) or owner drawing. Grids use a property called DefaultDrawing to enable
or disable the default drawing. List views and tab controls have a property called OwnerDraw that enables or
disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and variable, as the following table
describes. Other controls are always fixed, although the size of the item that contains the text may vary, the size of
each item is determined before drawing the control.

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height determined
by the ItemHeight property.

lbOwnerDrawFixed,
csOwnerDrawFixed

Variable Each item might have a different height, determined by the
data at runtime.

lbOwnerDrawVariable,
csOwnerDrawVariable

 DevGuide: Building applications with Delphi

Adding graphical objects to a string list
Topic groups See also

Every string list has the ability to hold a list of objects in addition to its list of strings.

For example, in a file manager application, you may want to add bitmaps indicating the type of drive along with the
letter of the drive. To do that, you need to add the bitmap images to the application, then copy those images into the
proper places in the string list as described in the following sections.

 DevGuide: Building applications with Delphi

Adding images to an application
Topic groups See also

An image control is a nonvisual control that contains a graphical image, such as a bitmap. You use image controls
to display graphical images on a form. You can also use them to hold hidden images that you’ll use in your
application. For example, you can store bitmaps for owner-draw controls in hidden image controls, like this:
1 Add image controls to the main form.
2 Set their Name properties.
3 Set the Visible property for each image control to False.
4 Set the Picture property of each image to the desired bitmap using the Picture editor from the Object

Inspector.

The image controls are invisible when you run the application.

 DevGuide: Building applications with Delphi

Adding images to a string list
Topic groups See also

Once you have graphical images in an application, you can associate them with the strings in a string list. You can
either add the objects at the same time as the strings, or associate objects with existing strings. The preferred
method is to add objects and strings at the same time, if all the needed data is available.

The following example shows how you might want to add images to a string list. This is part of a file manager
application where, along with a letter for each valid drive, it adds a bitmap indicating each drive’s type. The
OnCreate event handler looks like this:

procedure TFMForm.FormCreate(Sender: TObject);
var
 Drive: Char;
 AddedIndex: Integer;
begin
 for Drive := 'A' to 'Z' do { iterate through all possible drives }
 begin
 case GetDriveType(Drive + ':/') of { positive values mean valid drives }
 DRIVE_REMOVABLE: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Floppy.Picture.Graphic);
 DRIVE_FIXED: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Fixed.Picture.Graphic);
 DRIVE_REMOTE: { add a tab }
 AddedIndex := DriveTabSet.Tabs.AddObject(Drive, Network.Picture.Graphic);
 end;
 if UpCase(Drive) = UpCase(DirectoryOutline.Drive) then { current drive? }
 DriveTabSet.TabIndex := AddedIndex; { then make that current tab }
 end;
end;

 DevGuide: Building applications with Delphi

Drawing owner-drawn items
Topic groups

When you indicate that a control is owner-drawn, either by setting a property or supplying a custom draw event
handler, the control is no longer drawn on the screen. Instead, the operating system generates events for each
visible item in the control. Your application handles the events to draw the items.

To draw the items in an owner-draw control, do the following for each visible item in the control. Use a single event
handler for all items.
1 Size the item, if needed.

Items of the same size (for example, with a list box style of lsOwnerDrawFixed), do not require sizing.
2 Draw the item.

 DevGuide: Building applications with Delphi

Sizing owner-draw items
Topic groups

Before giving your application the chance to draw each item in a variable owner-draw control, the operating system
generates a measure-item event. The measure-item event tells the application where the item appears on the
control.

Delphi determines the size of the item (generally, it is just large enough to display the item’s text in the current font).
Your application can handle the event and change the rectangle chosen. For example, if you plan to substitute a
bitmap for the item’s text, change the rectangle to be the size of the bitmap. If you want a bitmap and text, adjust
the rectangle to be big enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-item event in the owner-draw
control. Depending on the control, the name of the event can vary. List boxes and combo boxes use
OnMeasureItem. Grids have no measure-item event.

The sizing event has two important parameters: the index number of the item and the size of that item. The size is
variable: the application can make it either smaller or larger. The positions of subsequent items depend on the size
of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of the first item to five pixels, the
second item starts at the sixth pixel down from the top, and so on. In list boxes and combo boxes, the only aspect of
the item the application can alter is the height of the item. The width of the item is always the width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of each row and column is set
before drawing by the ColWidths and RowHeights properties.

The following code, attached to the OnMeasureItem event of an owner-draw list box, increases the height of each
list item to accommodate its associated bitmap.

procedure TFMForm.DriveTabSetMeasureTab(Sender: TObject; Index: Integer;
 var TabWidth: Integer); { note that TabWidth is a var parameter}
var
 BitmapWidth: Integer;
begin
 BitmapWidth := TBitmap(DriveTabSet.Tabs.Objects[Index]).Width;
 { increase tab width by the width of the associated bitmap plus two }
 Inc(TabWidth, 2 + BitmapWidth);
end;

Note: You must typecast the items from the Objects property in the string list. Objects is a property of type
TObject so that it can hold any kind of object. When you retrieve objects from the array, you need to
typecast them back to the actual type of the items.

 DevGuide: Building applications with Delphi

Drawing owner-draw items
Topic groups

When an application needs to draw or redraw an owner-draw control, the operating system generates draw-item
events for each visible item in the control. Depending on the control, the item may also receive draw events for the
item as a whole or subitems.

To draw each item in an owner-draw control, attach an event handler to the draw-item event for that control.

The names of events for owner drawing typically start with one of the following:

OnDraw, such as OnDrawItem or OnDrawCell

OnCustomDraw, such as OnCustomDrawItem

OnAdvancedCustomDraw, such as OnAdvancedCustomDrawItem
The draw-item event contains parameters identifying the item to draw, the rectangle in which to draw, and usually
some information about the state of the item (such as whether the item has focus). The application handles each
event by rendering the appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has bitmaps associated with each string.
It attaches this handler to the OnDrawItem event for the list box:

procedure TFMForm.DriveTabSetDrawTab(Sender: TObject; TabCanvas: TCanvas;
 R: TRect; Index: Integer; Selected: Boolean);
var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap(DriveTabSet.Tabs.Objects[Index]);
 with TabCanvas do
 begin
 Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap }
 TextOut(R.Left + 2 + Bitmap.Width, { position text }
 R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the
bitmap }
 end;
end;

 DevGuide: Building applications with Delphi

Working with graphics and multimedia
Topic groups

Graphics and multimedia elements can add polish to your applications. Delphi offers a variety of ways to introduce
these features into your application. To add graphical elements, you can insert pre-drawn pictures at design time,
create them using graphical controls at design time, or draw them dynamically at runtime. To add multimedia
capabilities, Delphi includes special components that can play audio and video clips. Note that multimedia
components are not available for cross-platform programming.

This following topics describe how to enhance your applications by introducing graphics or multimedia elements:

Overview of graphics programming

Working with multimedia

 DevGuide: Building applications with Delphi

Overview of graphics programming
Topic groups See also

The VCL graphics components defined in the Graphics unit encapsulate the Windows Graphics Device Interface
(GDI), making it easy to add graphics to your Windows applications. CLX graphics components defined in the
QGraphics unit encapsulate the Qt graphics widgets for adding graphics to cross-platform applications.

To draw graphics in a Delphi application, you draw on an object’s canvas, rather than directly on the object. The
canvas is a property of the object, and is itself an object. A main advantage of the canvas object is that it handles
resources effectively and it takes care of device context, so your programs can use the same methods regardless of
whether you are drawing on the screen, to a printer, or on bitmaps or metafiles (drawings in CLX). Canvases are
available only at runtime, so you do all your work with canvases by writing code.

VCL Note: Since TCanvas is a wrapper resource manager around the Windows device context, you can also
use all Windows GDI functions on the canvas. The Handle property of the canvas is the device
context Handle.

CLX Note: TCanvas is a wrapper resource manager around a Qt painter. The Handle property of the canvas is
typed pointer to an instance of a Qt painter object. Having this instance pointer exposed allows you
to use low-level Qt graphics library functions that require an instance pointer to a painter object.

How graphic images appear in your application depends on the type of object whose canvas you draw on. If you are
drawing directly onto the canvas of a control, the picture is displayed immediately. However, if you draw on an
offscreen image such as a TBitmap canvas, the image is not displayed until a control copies from the bitmap onto
the control’s canvas. That is, when drawing bitmaps and assigning them to an image control, the image appears
only when the control has an opportunity to process its OnPaint message (VCL) or event (CLX).

When working with graphics, you often encounter the terms drawing and painting:

Drawing is the creation of a single, specific graphic element, such as a line or a shape, with code. In your
code, you tell an object to draw a specific graphic in a specific place on its canvas by calling a drawing method of the
canvas.

Painting is the creation of the entire appearance of an object. Painting usually involves drawing. That is, in
response to OnPaint events, an object generally draws some graphics. An edit box, for example, paints itself by
drawing a rectangle and then drawing some text inside. A shape control, on the other hand, paints itself by drawing a
single graphic.
The following topics describe how to use graphics components to simplify your coding.

Refreshing the screen

Types of graphic objects

Common properties and methods of canvases

Handling multiple drawing objects in an application

Drawing on a bitmap

Loading and saving graphics files

Using the clipboard with graphics

Rubber banding example

 DevGuide: Building applications with Delphi

Refreshing the screen
Topic groups See also

At certain times, the operating system determines that objects onscreen need to refresh their appearance, so it
generates WM_PAINT messages on Windows, which the VCL routes to OnPaint events. (If you are using CLX for
cross-platform development, a paint event is generated, which CLX routes to OnPaint events.) If you have written
an OnPaint event handler for that object, it is called when you use the Refresh method. The default name generated
for the OnPaint event handler in a form is FormPaint. You may want to use the Refresh method at times to refresh a
component or form. For example, you might call Refresh in the form’s OnResize event handler to redisplay any
graphics or if using the VCL, you want to paint a background on a form.

While some operating systems automatically handle the redrawing of the client area of a window that has been
invalidated, Windows does not. In the Windows operating system anything drawn on the screen is permanent.
When a form or control is temporarily obscured, for example during window dragging, the form or control must
repaint the obscured area when it is re-exposed. For more information about the WM_PAINT message, see the
Windows online Help.

If you use the TImage control to display a graphical image on a form, the painting and refreshing of the graphic
contained in the TImage is handled automatically. The Picture property specifies the actual bitmap, drawing, or
other graphic object that TImage displays. You can also set the Proportional property to ensure that the image can
be fully displayed in the image control without any distortion. Drawing on a TImage creates a persistent image.
Consequently, you do not need to do anything to redraw the contained image. In contrast, TPaintBox’s canvas
maps directly onto the screen device (VCL) or the painter (CLX), so that anything drawn to the PaintBox’s canvas is
transitory. This is true of nearly all controls, including the form itself. Therefore, if you draw or paint on a TPaintBox
in its constructor, you will need to add that code to your OnPaint event handler in order for the image to be
repainted each time the client area is invalidated.

 DevGuide: Building applications with Delphi

Types of graphic objects
Topic groups See also

The VCL/CLX provides the following graphic objects. These objects have methods to draw on the canvas, which
are described in Using Canvas methods to draw graphic objects and to load and save to graphics files, as
described in Loading and saving graphics files

Object Description

Picture Used to hold any graphic image. To add additional graphic file formats,
use the Picture Register method. Use this to handle arbitrary files such
as displaying images in an image control.

Bitmap A powerful graphics object used to create, manipulate (scale, scroll,
rotate, and paint), and store images as files on a disk. Creating copies of
a bitmap is fast since the handle is copied, not the image.

Clipboard Represents the container for any text or graphics that are cut, copied, or
pasted from or to an application. With the clipboard, you can get and
retrieve data according to the appropriate format; handle reference
counting, and opening and closing the clipboard; manage and manipulate
formats for objects in the clipboard.

Icon Represents the value loaded from an icon file (::ICO file).
Metafile (VCL only)
Drawing (CLX only)

Contains a file that records the operations required to construct an
image, rather than contain the actual bitmap pixels of the image.
Metafiles or drawings are extremely scalable without the loss of image
detail and often require much less memory than bitmaps, particularly for
high-resolution devices, such as printers. However, metafiles and
drawings do not display as fast as bitmaps. Use a metafile or drawing
when versatility or precision is more important than performance.

 DevGuide: Building applications with Delphi

Common Properties and Methods of Canvas
Topic groups See also

The following table lists the commonly used properties of the Canvas object.

Properties Descriptions

Font Specifies the font to use when writing text on the image. Set the
properties of the TFont object to specify the font face, color, size, and
style of the font.

Brush Determines the color and pattern the canvas uses for filling graphical
shapes and backgrounds. Set the properties of the TBrush object to
specify the color and pattern or bitmap to use when filling in spaces
on the canvas.

Pen Specifies the kind of pen the canvas uses for drawing lines and
outlining shapes. Set the properties of the TPen object to specify the
color, style, width, and mode of the pen.

PenPos Specifies the current drawing position of the pen.
Pixels Specifies the color of the area of pixels within the current ClipRect.

These properties are described in more detail in Using the properties of the Canvas object.

Here is a list of several methods you can use:

Method Descriptions

 Arc Draws an arc on the image along the perimeter of the ellipse bounded
by the specified rectangle.

Chord Draws a closed figure represented by the intersection of a line and an
ellipse.

CopyRect Copies part of an image from another canvas into the canvas.
Draw Renders the graphic object specified by the Graphic parameter on the

canvas at the location given by the coordinates (X, Y).
Ellipse Draws the ellipse defined by a bounding rectangle on the canvas.
FillRect Fills the specified rectangle on the canvas using the current brush.
FloodFill (VCL only) Fills an area of the canvas using the current brush.
FrameRect Draws a rectangle using the Brush of the canvas to draw the border.
LineTo Draws a line on the canvas from PenPos to the point specified by X

and Y, and sets the pen position to (X, Y).
MoveTo Changes the current drawing position to the point (X,Y).
Pie Draws a pie-shaped the section of the ellipse bounded by the

rectangle (X1, Y1) and (X2, Y2) on the canvas.
Polygon Draws a series of lines on the canvas connecting the points passed in

and closing the shape by drawing a line from the last point to the first
point.

Polyline Draws a series of lines on the canvas with the current pen, connecting
each of the points passed to it in Points.

Rectangle Draws a rectangle on the canvas with its upper left corner at the point
(X1, Y1) and its lower right corner at the point (X2, Y2). Use
Rectangle to draw a box using Pen and fill it using Brush.

RoundRect Draws a rectangle with rounded corners on the canvas.
StretchDraw Draws a graphic on the canvas so that the image fits in the specified

rectangle. The graphic image may need to change its magnitude or
aspect ratio to fit.

TextHeight, TextWidth Returns the height and width, respectively, of a string in the current
font. Height includes leading between lines.

TextOut Writes a string on the canvas, starting at the point (X,Y), and then
updates the PenPos to the end of the string.

TextRect Writes a string inside a region; any portions of the string that fall
outside the region do not appear.

These methods are described in more detail in Using Canvas methods to draw graphic objects.

 DevGuide: Building applications with Delphi

Using the properties of the Canvas object
Topic groups See also

With the Canvas object, you can set the properties of a pen for drawing lines, a brush for filling shapes, a font for
writing text, and an array of pixels to represent the image.

This section describes

Using pens

Using brushes

Reading and setting pixels

 DevGuide: Building applications with Delphi

Using pens
Topic groups See also

The Pen property of a canvas controls the way lines appear, including lines drawn as the outlines of shapes.
Drawing a straight line is really just changing a group of pixels that lie between two points.

The pen itself has four properties you can change: Color, Width, Style, and Mode.

Color property: Changes the pen color

Width property: Changes the pen width

Style property: Changes the pen style

Mode property: Changes the pen mode
The values of these properties determine how the pen changes the pixels in the line. By default, every pen starts
out black, with a width of 1 pixel, a solid style, and a mode called copy that overwrites anything already on the
canvas.

You can use TPenRecall for quick saving off and restoring the properties of pens.

 DevGuide: Building applications with Delphi

Changing the pen color
Topic groups See also

You can set the color of a pen as you would any other Color property at runtime. A pen’s color determines the color
of the lines the pen draws, including lines drawn as the boundaries of shapes, as well as other lines and polylines.
To change the pen color, assign a value to the Color property of the pen.

To let the user choose a new color for the pen, put a color grid on the pen’s toolbar. A color grid can set both
foreground and background colors. For a non-grid pen style, you must consider the background color, which is
drawn in the gaps between line segments. Background color comes from the Brush color property.

Since the user chooses a new color by clicking the grid, this code changes the pen’s color in response to the
OnClick event:

procedure TForm1.PenColorClick(Sender: TObject);
begin
 Canvas.Pen.Color := PenColor.ForegroundColor;
end;

 DevGuide: Building applications with Delphi

Changing the pen width
Topic groups See also

A pen’s width determines the thickness, in pixels, of the lines it draws.

Note: When the thickness is greater than 1, Windows 95/98 always draw solid lines, regardless of the value of
the pen’s Style property.

To change the pen width, assign a numeric value to the pen’s Width property.

Suppose you have a scroll bar on the pen’s toolbar to set width values for the pen. And suppose you want to update
the label next to the scroll bar to provide feedback to the user. Using the scroll bar’s position to determine the pen
width, you update the pen width every time the position changes.

This is how to handle the scroll bar’s OnChange event:

procedure TForm1.PenWidthChange(Sender: TObject);
begin
 Canvas.Pen.Width := PenWidth.Position; { set the pen width directly }
 PenSize.Caption := IntToStr(PenWidth.Position); { convert to string for caption }
end;

 DevGuide: Building applications with Delphi

Changing the pen style
Topic groups See also

A pen’s Style property allows you to set solid lines, dashed lines, dotted lines, and so on.

VCL Note: If developing a cross-platform application for deployment under Windows, Windows 95/98 does not
support dashed or dotted line styles for pens wider than one pixel and makes all larger pens solid,
no matter what style you specify.

The task of setting the properties of pen is an ideal case for having different controls share same event handler to
handle events. To determine which control actually got the event, you check the Sender parameter.

To create one click-event handler for six pen-style buttons on a pen’s toolbar, do the following:
1 Select all six pen-style buttons and select the Object Inspector|Events|OnClick event and in the Handler

column, type SetPenStyle.

Delphi generates an empty click-event handler called SetPenStyle and attaches it to the OnClick events of all
six buttons.

2 Fill in the click-event handler by setting the pen’s style depending on the value of Sender, which is the control
that sent the click event:

procedure TForm1.SetPenStyle(Sender: TObject);
begin
 with Canvas.Pen do
 begin
 if Sender = SolidPen then Style := psSolid
 else if Sender = DashPen then Style := psDash
 else if Sender = DotPen then Style := psDot
 else if Sender = DashDotPen then Style := psDashDot
 else if Sender = DashDotDotPen then Style := psDashDotDot
 else if Sender = ClearPen then Style := psClear;
 end;
end;

 DevGuide: Building applications with Delphi

Changing the pen mode
Topic groups See also

A pen’s Mode property lets you specify various ways to combine the pen’s color with the color on the canvas. For
example, the pen could always be black, be an inverse of the canvas background color, inverse of the pen color,
and so on.

 DevGuide: Building applications with Delphi

Getting the pen position
Topic groups See also

The current drawing position—the position from which the pen begins drawing its next line—is called the pen
position. The canvas stores its pen position in its PenPos property . Pen position affects the drawing of lines only; for
shapes and text, you specify all the coordinates you need.

To set the pen position, call the MoveTo method of the canvas. For example, the following code moves the pen
position to the upper left corner of the canvas:

Canvas.MoveTo(0, 0);

Note: Drawing a line with the LineTo method also moves the current position to the endpoint of the line.

 DevGuide: Building applications with Delphi

Using brushes
Topic groups See also

The Brush property of a canvas controls the way you fill areas, including the interior of shapes. Filling an area with a
brush is a way of changing a large number of adjacent pixels in a specified way.

The brush has three properties you can manipulate:

Color property: Changes the fill color

Style property: Changes the brush style

Bitmap property: Uses a bitmap as a brush pattern
The values of these properties determine the way the canvas fills shapes or other areas. By default, every brush
starts out white, with a solid style and no pattern bitmap.

You can use TBrushRecall for quick saving off and restoring the properties of brushes.

 DevGuide: Building applications with Delphi

Changing the brush color
Topic groups See also

A brush’s color determines what color the canvas uses to fill shapes. To change the fill color, assign a value to the
brush’s Color property. Brush is used for background color in text and line drawing so you typically set the
background color property.

You can set the brush color just as you do the pen color, in response to a click on a color grid on the brush’s
toolbar :

procedure TForm1.BrushColorClick(Sender: TObject);
begin
 Canvas.Brush.Color := BrushColor.ForegroundColor;
end;

 DevGuide: Building applications with Delphi

Changing the brush style
Topic groups See also

A brush style determines what pattern the canvas uses to fill shapes. It lets you specify various ways to combine the
brush’s color with any colors already on the canvas. The predefined styles include solid color, no color, and various
line and hatch patterns.

To change the style of a brush, set its Style property to one of the predefined values: bsSolid, bsClear, bsHorizontal,
bsVertical, bsFDiagonal, bsBDiagonal, bsCross, or bsDiagCross.

This example sets brush styles by sharing a click-event handler for a set of eight brush-style buttons. All eight
buttons are selected, the Object Inspector|Events|OnClick is set, and the OnClick handler is named SetBrushStyle.
Here is the handler code:

procedure TForm1.SetBrushStyle(Sender: TObject);
begin
 with Canvas.Brush do
 begin
 if Sender = SolidBrush then Style := bsSolid
 else if Sender = ClearBrush then Style := bsClear
 else if Sender = HorizontalBrush then Style := bsHorizontal
 else if Sender = VerticalBrush then Style := bsVertical
 else if Sender = FDiagonalBrush then Style := bsFDiagonal
 else if Sender = BDiagonalBrush then Style := bsBDiagonal
 else if Sender = CrossBrush then Style := bsCross
 else if Sender = DiagCrossBrush then Style := bsDiagCross;
 end;
end;

 DevGuide: Building applications with Delphi

Setting the Brush Bitmap property
Topic groups See also

A brush’s Bitmap property lets you specify a bitmap image for the brush to use as a pattern for filling shapes and
other areas.

The following example loads a bitmap from a file and assigns it to the Brush of the Canvas of Form1:

var
 Bitmap: TBitmap;
begin
 Bitmap := TBitmap.Create;
 try
 Bitmap.LoadFromFile('MyBitmap.bmp');
 Form1.Canvas.Brush.Bitmap := Bitmap;
 Form1.Canvas.FillRect(Rect(0,0,100,100));
 finally
 Form1.Canvas.Brush.Bitmap := nil;
 Bitmap.Free;
 end;
end;

Note: The brush does not assume ownership of a bitmap object assigned to its Bitmap property. You must
ensure that the Bitmap object remains valid for the lifetime of the Brush, and you must free the Bitmap
object yourself afterwards.

 DevGuide: Building applications with Delphi

Reading and setting pixels
Topic groups See also

You will notice that every canvas has an indexed Pixels property that represents the individual colored points that
make up the image on the canvas. You rarely need to access Pixels directly, it is available only for convenience to
perform small actions such as finding or setting a pixel’s color.

Note: Setting and getting individual pixels is thousands of times slower than performing graphics operations on
regions. Do not use the Pixel array property to access the image pixels of a general array. For high-
performance access to image pixels, see the TBitmap.ScanLine property .

 DevGuide: Building applications with Delphi

Using Canvas methods to draw graphic objects
Topic groups See also

This section shows how to use some common methods to draw graphic objects. It covers:

Drawing lines and polylines

Drawing shapes

Drawing rounded rectangles

Drawing polygons

 DevGuide: Building applications with Delphi

Drawing lines and polylines
Topic groups See also

A canvas can draw straight lines and polylines. A straight line is just a line of pixels connecting two points. A polyline
is a series of straight lines, connected end-to-end. The canvas draws all lines using its pen.

 DevGuide: Building applications with Delphi

Drawing lines
Topic groups See also

To draw a straight line on a canvas, use the LineTo method of the canvas.

LineTo draws a line from the current pen position to the point you specify and makes the endpoint of the line the
current position. The canvas draws the line using its pen.

For example, the following method draws crossed diagonal lines across a form whenever the form is painted:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 begin
 MoveTo(0, 0);
 LineTo(ClientWidth, ClientHeight);
 MoveTo(0, ClientHeight);
 LineTo(ClientWidth, 0);
 end;
end;

 DevGuide: Building applications with Delphi

Drawing polylines
Topic groups See also Example

In addition to individual lines, the canvas can also draw polylines, which are groups of any number of connected line
segments.

To draw a polyline on a canvas, call the Polyline method of the canvas.

The parameter passed to the Polyline method is an array of points. You can think of a polyline as performing a
MoveTo on the first point and LineTo on each successive point. For drawing multiple lines, Polyline is faster than
using the MoveTo method and the LineTo method because it eliminates a lot of call overhead.

 DevGuide: Building applications with Delphi

Example: Drawing polylines
The following method draws a rhombus in a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 Polyline([Point(0, 0), Point(50, 0), Point(75, 50), Point(25, 50), Point(0, 0)]);
end;

This example takes advantage of Delphi's ability to create an open-array parameter on-the-fly. You can pass any
array of points, but an easy way to construct an array quickly is to put its elements in brackets and pass the whole
thing as a parameter.

 DevGuide: Building applications with Delphi

Drawing shapes
Topic groups See also

Canvases have methods for drawing different kinds of shapes. The canvas draws the outline of a shape with its
pen, then fills the interior with its brush. The line that forms the border for the shape is controlled by the current Pen
object.

This section covers:

Drawing rectangles and ellipses

Drawing rounded rectangles

Drawing polygons

 DevGuide: Building applications with Delphi

Drawing rectangles and ellipses
Topic groups See also Example

To draw a rectangle or ellipse on a canvas, call the canvas’s Rectangle method or Ellipse method , passing the
coordinates of a bounding rectangle.

The Rectangle method draws the bounding rectangle; Ellipse draws an ellipse that touches all sides of the
rectangle.

 DevGuide: Building applications with Delphi

Example: Drawing rectangles and ellipses
The following method draws a rectangle filling a form’s upper left quadrant, then draws an ellipse in the same area:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Rectangle(0, 0, ClientWidth div 2, ClientHeight div 2);
 Canvas.Ellipse(0, 0, ClientWidth div 2, ClientHeight div 2);
end;

 DevGuide: Building applications with Delphi

Drawing rounded rectangles
Topic groups See also Example

To draw a rounded rectangle on a canvas, call the canvas’s RoundRect method .

The first four parameters passed to RoundRect are a bounding rectangle, just as for the Rectangle method or the
Ellipse method . RoundRect takes two more parameters that indicate how to draw the rounded corners.

 DevGuide: Building applications with Delphi

Example: Drawing rounded rectangles
The following method draws a rounded rectangle in a form’s upper left quadrant, rounding the corners as sections
of a circle with a diameter of 10 pixels:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.RoundRect(0, 0, ClientWidth div 2, ClientHeight div 2, 10, 10);
end;

 DevGuide: Building applications with Delphi

Drawing polygons
Topic groups See also

To draw a polygon with any number of sides on a canvas, call the Polygon method of the canvas.

Polygon takes an array of points as its only parameter and connects the points with the pen, then connects the last
point to the first to close the polygon. After drawing the lines, Polygon uses the brush to fill the area inside the
polygon.

 DevGuide: Building applications with Delphi

Example: Drawing polygons
The following code draws a right triangle in the lower left half of a form:

procedure TForm1.FormPaint(Sender: TObject);
begin
 Canvas.Polygon([Point(0, 0), Point(0, ClientHeight),
 Point(ClientWidth, ClientHeight)]);
end;

 DevGuide: Building applications with Delphi

Handling multiple drawing objects in your application
Topic groups See also

Various drawing methods (rectangle, shape, line, and so on) are typically available on the toolbar and button panel.
Applications can respond to clicks on speed buttons to set the desired drawing objects. This section describes how
to:

Keep track of which drawing tool to use

Changing the tool with speed buttons

Using drawing tools

 DevGuide: Building applications with Delphi

Keeping track of which drawing tool to use
Topic groups See also

A graphics program needs to keep track of what kind of drawing tool (such as a line, rectangle, ellipse, or rounded
rectangle) a user might want to use at any given time. You could assign numbers to each kind of tool, but then you
would have to remember what each number stands for. You can do that more easily by assigning mnemonic
constant names to each number, but your code won't be able to distinguish which numbers are in the proper range
and of the right type. Fortunately, Object Pascal provides a means to handle both of these shortcomings. You can
declare an enumerated type.

An enumerated type is really just a shorthand way of assigning sequential values to constants. Since it's also a type
declaration, you can use Object Pascal's type-checking to ensure that you assign only those specific values.

To declare an enumerated type, use the reserved work type, followed by an identifier for the type, then an equal
sign, and the identifiers for the values in the type in parentheses, separated by commas.

For example, the following code declares an enumerated type for each drawing tool available in a graphics
application:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);

By convention, type identifiers begin with the letter T, and groups of similar constants (such as those making up an
enumerated type) begin with a 2-letter prefix (such as dt for “drawing tool”).

The declaration of the TDrawingTool type is equivalent to declaring a group of constants:

const
 dtLine = 0;
 dtRectangle = 1;
 dtEllipse = 2;
 dtRoundRect = 3;

The main difference is that by declaring the enumerated type, you give the constants not just a value, but also a
type, which enables you to use Object Pascal's type-checking to prevent many errors. A variable of type
TDrawingTool can be assigned only one of the constants dtLine..dtRoundRect. Attempting to assign some other
number (even one in the range 0..3) generates a compile-time error.

In the following code, a field added to a form keeps track of the form’s drawing tool:

type
 TDrawingTool = (dtLine, dtRectangle, dtEllipse, dtRoundRect);
 TForm1 = class(TForm)
 ... { method declarations }
 public
 Drawing: Boolean;
 Origin, MovePt: TPoint;
 DrawingTool: TDrawingTool; { field to hold current tool }
 end;

 DevGuide: Building applications with Delphi

Changing the tool with speed buttons
Topic groups See also

Each drawing tool needs an associated OnClick event handler. Suppose your application had a toolbar button for
each of four drawing tools: line, rectangle, ellipse, and rounded rectangle. You would attach the following event
handlers to the OnClick events of the four drawing-tool buttons, setting DrawingTool to the appropriate value for
each:

procedure TForm1.LineButtonClick(Sender: TObject); { LineButton }
begin
 DrawingTool := dtLine;
end;
procedure TForm1.RectangleButtonClick(Sender: TObject);{ RectangleButton }
begin
 DrawingTool := dtRectangle;
end;
procedure TForm1.EllipseButtonClick(Sender: TObject); { EllipseButton }
begin
 DrawingTool := dtEllipse;
end;
procedure TForm1.RoundedRectButtonClick(Sender: TObject); { RoundRectButton }
begin
 DrawingTool := dtRoundRect;
end;

 DevGuide: Building applications with Delphi

Using drawing tools
Topic groups See also

Now that you can tell what tool to use, you must indicate how to draw the different shapes. The only methods that
perform any drawing are the mouse-move and mouse-up handlers, and the only drawing code draws lines, no
matter what tool is selected.

To use different drawing tools, your code needs to specify how to draw, based on the selected tool. You add this
instruction to each tool’s event handler.

This section describes

Drawing shapes

Sharing code among event handlers

 DevGuide: Building applications with Delphi

Drawing shapes
Topic groups See also

Drawing shapes is just as easy as drawing lines: Each one takes a single statement; you just need the coordinates.

Here’s a rewrite of the OnMouseUp event handler that draws shapes for all four tools:

procedure TForm1.FormMouseUp(Sender: TObject; Button TMouseButton; Shift:
TShiftState;
 X,Y: Integer);
begin
 case DrawingTool of
 dtLine:
 begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y)
 end;
 dtRectangle: Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 dtEllipse: Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 dtRoundRect: Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 end;
 Drawing := False;
end;

Of course, you also need to update the OnMouseMove handler to draw shapes:

procedure TForm1.FormMouseMove(Sender: TObject; Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor;
 case DrawingTool of
 dtLine: begin
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(MovePt.X, MovePt.Y);
 Canvas.MoveTo(Origin.X, Origin.Y);
 Canvas.LineTo(X, Y);
 end;
 dtRectangle: begin
 Canvas.Rectangle(Origin.X, Origin.Y, MovePt.X, MovePt.Y);
 Canvas.Rectangle(Origin.X, Origin.Y, X, Y);
 end;
 dtEllipse: begin
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 Canvas.Ellipse(Origin.X, Origin.Y, X, Y);
 end;
 dtRoundRect: begin
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 Canvas.RoundRect(Origin.X, Origin.Y, X, Y,
 (Origin.X - X) div 2, (Origin.Y - Y) div 2);
 end;
 end;
 MovePt := Point(X, Y);
 end;
 Canvas.Pen.Mode := pmCopy;
end;

Typically, all the repetitious code that is in the above example would be in a separate routine. The next section
shows all the shape-drawing code in a single routine that all mouse-event handlers can call.

 DevGuide: Building applications with Delphi

Sharing code among event handlers
Topic groups See also Example

Any time you find that many your event handlers use the same code, you can make your application more efficient
by moving the repeated code into a routine that all event handlers can share.

To add a method to a form,
1 Add the method declaration to the form object.

You can add the declaration in either the public or private parts at the end of the form object’s declaration. If
the code is just sharing the details of handling some events, it’s probably safest to make the shared method
private.

2 Write the method implementation in the implementation part of the form unit.

The header for the method implementation must match the declaration exactly, with the same parameters in the
same order.

 DevGuide: Building applications with Delphi

Example: Sharing code among event handlers
The following code adds a method to the form called DrawShape and calls it from each of the handlers. First, the
declaration of DrawShape is added to the form object’s declaration:

type
 TForm1 = class(TForm)
 ... { fields and methods declared here}
 public
 { Public declarations }
 procedure DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
 end;

Then, the implementation of DrawShape is written in the implementation part of the unit:

implementation
{$R *.FRM}
... { other method implementations omitted for brevity }
procedure TForm1.DrawShape(TopLeft, BottomRight: TPoint; AMode: TPenMode);
begin
 with Canvas do
 begin
 Pen.Mode := AMode;
 case DrawingTool of
 dtLine:
 begin
 MoveTo(TopLeft.X, TopLeft.Y);
 LineTo(BottomRight.X, BottomRight.Y);
 end;
 dtRectangle: Rectangle(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtEllipse: Ellipse(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y);
 dtRoundRect: RoundRect(TopLeft.X, TopLeft.Y, BottomRight.X, BottomRight.Y,
 (TopLeft.X - BottomRight.X) div 2, (TopLeft.Y - BottomRight.Y) div 2);
 end;
 end;
end;

The other event handlers are modified to call DrawShape.

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 DrawShape(Origin, Point(X, Y), pmCopy); { draw the final shape }
 Drawing := False;
end;
procedure TForm1.FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 DrawShape(Origin, MovePt, pmNotXor); { erase the previous shape }
 MovePt := Point(X, Y); { record the current point }
 DrawShape(Origin, MovePt, pmNotXor); { draw the current shape }
 end;
end;

 DevGuide: Building applications with Delphi

Drawing on a graphic
Topic groups See also

You don’t need any components to manipulate your application’s graphic objects. You can construct, draw on, save,
and destroy graphic objects without ever drawing anything on screen. In fact, your applications rarely draw directly
on a form. More often, an application operates on graphics and then uses an image control component to display
the graphic on a form.

Once you move the application’s drawing to the graphic in the image control, it is easy to add printing, clipboard,
and loading and saving operations for any graphic objects. graphic objects can be bitmap files, drawings, icons or
whatever other graphics classes that have been installed such as jpeg graphics.

Note: Because you are drawing on an offscreen image such as a TBitmap canvas, the image is not displayed
until a control copies from a bitmap onto the control’s canvas. That is, when drawing bitmaps and
assigning them to an image control, the image appears only when the control has an opportunity to
process its paint message. But if you are drawing directly onto the canvas property of a control, the picture
object is displayed immediately.

 DevGuide: Building applications with Delphi

Making scrollable graphics
Topic groups See also

The graphic need not be the same size as the form: it can be either smaller or larger. By adding a scroll box control
to the form and placing the graphic image inside it, you can display graphics that are much larger than the form or
even larger than the screen. To add a scrollable graphic first you add a TScrollBox component and then you add the
image control.

 DevGuide: Building applications with Delphi

Adding an image control
Topic groups See also

An image control is a container component that allows you to display your bitmap objects. You use an image control
to hold a bitmap that is not necessarily displayed all the time, or which an application needs to use to generate other
pictures.

Note: Adding graphics to controls shows how to use graphics in controls.

 DevGuide: Building applications with Delphi

Placing the control
Topic groups See also

You can place an image control anywhere on a form. If you take advantage of the image control’s ability to size itself
to its picture, you need to set the top left corner only. If the image control is a nonvisible holder for a bitmap, you can
place it anywhere, just as you would a nonvisual component.

If you drop the image control on a scroll box already aligned to the form’s client area, this assures that the scroll box
adds any scroll bars necessary to access offscreen portions of the image’s picture. Then set the image control’s
properties.

 DevGuide: Building applications with Delphi

Setting the initial bitmap size
Topic groups See also

When you place an image control, it is simply a container. However, you can set the image control’s Picture
property at design time to contain a static graphic. The control can also load its picture from a file at runtime, as
described in .

To create a blank bitmap when the application starts,
1 Attach a handler to the OnCreate event for the form that contains the image.
2 Create a bitmap object, and assign it to the image control’s Picture.Graphic property.

In this example, the image is in the application’s main form, Form1, so the code attaches a handler to Form1’s
OnCreate event:

procedure TForm1.FormCreate(Sender: TObject);
var
 Bitmap: TBitmap; { temporary variable to hold the bitmap }
begin
 Bitmap := TBitmap.Create; { construct the bitmap object }
 Bitmap.Width := 200; { assign the initial width... }
 Bitmap.Height := 200; { ...and the initial height }
 Image.Picture.Graphic := Bitmap; { assign the bitmap to the image control }
 Bitmap.Free; {We are done with the bitmap, so free it }
end;

Assigning the bitmap to the picture’s Graphic property copies the bitmap to the picture object. However, the picture
object does not take ownership of the bitmap, so after making the assignment, you must free it.

If you run the application now, you see that client area of the form has a white region, representing the bitmap. If
you size the window so that the client area cannot display the entire image, you’ll see that the scroll box
automatically shows scroll bars to allow display of the rest of the image. But if you try to draw on the image, you
don’t get any graphics, because the application is still drawing on the form, which is now behind the image and the
scroll box.

 DevGuide: Building applications with Delphi

Drawing on the bitmap
Topic groups See also

To draw on a bitmap, use the image control’s canvas and attach the mouse-event handlers to the appropriate
events in the image control. Typically, you would use region operations (fills, rectangles, polylines, and so on).
These are fast and efficient methods of drawing.

An efficient way to draw images when you need to access individual pixels is to use the bitmap ScanLine property.
For general-purpose usage, you can set up the bitmap pixel format to 24 bits and then treat the pointer returned
from ScanLine as an array of RGB. Otherwise, you will need to know the native format of the ScanLine property.
This example shows how to use ScanLine to get pixels one line at a time.

procedure TForm1.Button1Click(Sender: TObject);
// This example shows drawing directly to the Bitmap
var
 x,y : integer;
 Bitmap : TBitmap;
 P : PByteArray;
begin
 Bitmap := TBitmap.create;
 try
 Bitmap.LoadFromFile('C:\Program Files\Borland\Delphi
4\Images\Splash\256color\factory.bmp');
 for y := 0 to Bitmap.height -1 do
 begin
 P := Bitmap.ScanLine[y];
 for x := 0 to Bitmap.width -1 do
 P[x] := y;
 end;
 canvas.draw(0,0,Bitmap);
 finally
 Bitmap.free;
 end;
end;

 DevGuide: Building applications with Delphi

Loading and saving graphics files
Topic groups See also

Graphic images that exist only for the duration of one running of an application are of very limited value. Often, you
either want to use the same picture every time, or you want to save a created picture for later use. The image
component makes it easy to load pictures from a file and save them again.

The components you use to load, save, and replace graphic images support many graphic formats including bitmap
files, metafiles, glyphs, and so on. They also support installable graphic classes.

The way to load and save graphics files is the similar to any other files and is described in these topics:

Loading a picture from a file

Saving a picture to a file

Replacing the picture

 DevGuide: Building applications with Delphi

Loading a picture from a file
Topic groups See also

Your application should provide the ability to load a picture from a file if your application needs to modify the picture
or if you want to store the picture outside the application so a person or another application can modify the picture.

To load a graphics file into an image control, call the LoadFromFile method of the image control’s Picture object.

The following code gets a file name from an open picture file dialog box, and then loads that file into an image
control named Image:

procedure TForm1.Open1Click(Sender: TObject);
begin
 if OpenPictureDialog1.Execute then
 begin
 CurrentFile := OpenPictureDialog1.FileName;
 Image.Picture.LoadFromFile(CurrentFile);
 end;
end;

 DevGuide: Building applications with Delphi

Saving a picture to a file
Topic groups See also

The picture object can load and save graphics in several formats, and you can create and register your own
graphic-file formats so that picture objects can load and store them as well.

To save the contents of an image control in a file, call the SaveToFile method of the image control’s Picture object.

The SaveToFile method requires the name of a file in which to save. If the picture is newly created, it might not have
a file name, or a user might want to save an existing picture in a different file. In either case, the application needs
to get a file name from the user before saving, as shown in the next section.

The following pair of event handlers, attached to the File|Save and File|Save As menu items, respectively, handle
the resaving of named files, saving of unnamed files, and saving existing files under new names.

procedure TForm1.Save1Click(Sender: TObject);
begin
 if CurrentFile <> '' then
 Image.Picture.SaveToFile(CurrentFile) { save if already named }
 else SaveAs1Click(Sender); { otherwise get a name }
end;
procedure TForm1.Saveas1Click(Sender: TObject);
begin
 if SaveDialog1.Execute then { get a file name }
 begin
 CurrentFile := SaveDialog1.FileName; { save the user-specified name }
 Save1Click(Sender); { then save normally }
 end;
end;

 DevGuide: Building applications with Delphi

Replacing the picture
Topic groups See also

You can replace the picture in an image control at any time. If you assign a new graphic to a picture that already has
a graphic, the new graphic replaces the existing one.

To replace the picture in an image control, assign a new graphic to the image control’s Picture object.

Creating the new graphic is the same process you used to create the initial graphic , but you should also provide a
way for the user to choose a size other than the default size used for the initial graphic. An easy way to provide that
option is to present a dialog box.

With such a dialog box in your project, add it to the uses clause in the unit for your main form. You can then attach
an event handler to the File|New menu item’s OnClick event. Here’s an example:

procedure TForm1.New1Click(Sender: TObject);
var
 Bitmap: TBitmap; { temporary variable for the new bitmap }
begin
 with NewBMPForm do
 begin
 ActiveControl := WidthEdit; { make sure focus is on width field }
 WidthEdit.Text := IntToStr(Image.Picture.Graphic.Width); { use current
dimensions... }
 HeightEdit.Text := IntToStr(Image.Picture.Graphic.Height); { ...as default }
 if ShowModal <> idCancel then { continue if user doesn't cancel dialog box }
 begin
 Bitmap := TBitmap.Create; { create fresh bitmap object }
 Bitmap.Width := StrToInt(WidthEdit.Text);{ use specified width }
 Bitmap.Height := StrToInt(HeightEdit.Text); { use specified height }
 Image.Picture.Graphic := Bitmap; { replace graphic with new bitmap }
 CurrentFile := ''; { indicate unnamed file }
 Bitmap.Free;
 end;
 end;
end;

Note: Assigning a new bitmap to the picture object’s Graphic property causes the picture object to copy the new
graphic, but it does not take ownership of it. The picture object maintains its own internal graphic object.
Because of this, the previous code frees the bitmap object after making the assignment.

 DevGuide: Building applications with Delphi

Using the clipboard with graphics
Topic groups See also

You can use the Windows clipboard to copy and paste graphics within your applications or to exchange graphics
with other applications. The VCL’s clipboard object makes it easy to handle different kinds of information, including
graphics.

Before you can use the clipboard object in your application, you must add the Clipbrd (QClipbrd in CLX) unit to the
uses clause of any unit that needs to access clipboard data.

For cross-platform applications, data that is stored on the clipboard when using CLX is stored as a mime type with
an associated TStream object. CLX provides the following predefined mime source and mime type string constants
for the following CLX objects:

TBitmap = ‘image/delphi.bitmap’

TComponent = ‘application/delphi.component’

TPicture = ‘image/delphi.picture’

TDrawing = ‘image/delphi.drawing’

 DevGuide: Building applications with Delphi

Copying graphics to the clipboard
Topic groups See also

You can copy any picture, including the contents of image controls, to the clipboard. Once on the clipboard, the
picture is available to all applications.

To copy a picture to the clipboard, assign the picture to the clipboard object using the Assign method.

This code shows how to copy the picture from an image control named Image to the clipboard in response to a click
on an Edit|Copy menu item:

procedure TForm1.Copy1Click(Sender: TObject);
begin
 Clipboard.Assign(Image.Picture)
end.

 DevGuide: Building applications with Delphi

Cutting graphics to the clipboard
Topic groups See also

Cutting a graphic to the clipboard is exactly like copying it, but you also erase the graphic from the source.

To cut a graphic from a picture to the clipboard, first copy it to the clipboard, then erase the original.

In most cases, the only issue with cutting is how to show that the original image is erased. Setting the area to white
is a common solution, as shown in the following code that attaches an event handler to the OnClick event of the
Edit|Cut menu item:

procedure TForm1.Cut1Click(Sender: TObject);
var
 ARect: TRect;
begin
 Copy1Click(Sender); { copy picture to clipboard }
 with Image.Canvas do
 begin
 CopyMode := cmWhiteness; { copy everything as white }
 ARect := Rect(0, 0, Image.Width, Image.Height); { get bitmap rectangle }
 CopyRect(ARect, Image.Canvas, ARect); { copy bitmap over itself }
 CopyMode := cmSrcCopy; { restore normal mode }
 end;
end;

 DevGuide: Building applications with Delphi

Pasting graphics from the clipboard
Topic groups See also

If the clipboard contains a bitmapped graphic, you can paste it into any image object, including image controls and
the surface of a form.

To paste a graphic from the clipboard,
1 Call the clipboard’s HasFormat method (if using the VCL) or Provides method (if using CLX) to see whether

the clipboard contains a graphic.

HasFormat (or Provides in CLX) is a Boolean function. It returns True if the clipboard contains an item of the
type specified in the parameter. To test for graphics on the Windows platform, you pass CF_BITMAP. In cross-
platform applications, you pass SDelphiBitmap.

2 Assign the clipboard to the destination.

This code shows how to paste a picture from the clipboard into an image control in response to a click on an Edit|
Paste menu item:

procedure TForm1.PasteButtonClick(Sender: TObject);
var
 Bitmap: TBitmap;
begin
 if Clipboard.HasFormat(CF_BITMAP) then { is there a bitmap on the Windows
clipboard?)
 begin
 Image1.Picture.Bitmap.Assign(Clipboard);
 end;
end;

The same example in CLX for cross-platform development would look as follows:

procedure TForm1.PasteButtonClick(Sender: TObject);
var
 Bitmap: TBitmap;
begin
 if Clipboard.Provides(SDelphiBitmap) then { is there a bitmap on the clipboard?)
 begin
 Image1.Picture.Bitmap.Assign(Clipboard);
 end;
end;

The graphic on the clipboard could come from this application, or it could have been copied from another
application, such as Microsoft Paint. You do not need to check the clipboard format in this case because the paste
menu should be disabled when the clipboard does not contain a supported format.

 DevGuide: Building applications with Delphi

Rubber banding example
Topic groups See also

This example describes the details of implementing the “rubber banding” effect in an graphics application that tracks
mouse movements as the user draws a graphic at runtime. The example code in this section is taken from a sample
application located in the Demos\DOC\Graphexdirectory. The application draws lines and shapes on a window’s
canvas in response to clicks and drags: pressing a mouse button starts drawing, and releasing the button ends the
drawing.

To start with, the example code shows how to draw on the surface of the main form. Later examples demonstrate
drawing on a bitmap.

The following topics describe the example:

Responding to the mouse

Adding a field to a form object to track mouse actions

Refining line drawing

 DevGuide: Building applications with Delphi

Responding to the mouse
Topic groups See also

Your application can respond to the mouse actions: mouse-button down, mouse moved, and mouse-button up. It
can also respond to a click (a complete press-and-release, all in one place) that can be generated by some kinds of
keystrokes (such as pressing Enter in a modal dialog box).

This section covers:

What’s in a mouse event

Responding to a mouse-down action

Responding to a mouse-up action

Responding to a mouse move

 DevGuide: Building applications with Delphi

What’s in a mouse event
Topic groups See also

The VCL has three mouse events: OnMouseDown event , OnMouseMove event , and OnMouseUp event .

When an application detects a mouse action, it calls whatever event handler you’ve defined for the corresponding
event, passing five parameters. Use the information in those parameters to customize your responses to the events.
The five parameters are as follows:

Parameter Meaning

Sender The object that detected the mouse action
Button Indicates which mouse button was involved: mbLeft, mbMiddle, or mbRight
Shift Indicates the state of the Alt, Ctrl, and Shift keys at the time of the mouse action
X, Y The coordinates where the event occurred

Most of the time, you need the coordinates returned in a mouse-event handler, but sometimes you also need to
check Button to determine which mouse button caused the event.

Note: Delphi uses the same criteria as Microsoft Windows in determining which mouse button has been pressed.
Thus, if you have switched the default “primary” and “secondary” mouse buttons (so that the right mouse
button is now the primary button), clicking the primary (right) button will record mbLeft as the value of the
Button parameter.

 DevGuide: Building applications with Delphi

Responding to a mouse-down action
Topic groups See also Example

Whenever the user presses a button on the mouse, an OnMouseDown event goes to the object the pointer is over.
The object can then respond to the event.

To respond to a mouse-down action, attach an event handler to the OnMouseDown event.

The VCL generates an empty handler for a mouse-down event on the form:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
end;

 DevGuide: Building applications with Delphi

Example: Responding to a mouse-down action
The following code displays the string 'Here!' at the location on a form clicked with the mouse:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.TextOut(X, Y, 'Here!'); { write text at (X, Y) }
end;

When the application runs, you can press the mouse button down with the mouse cursor on the form and have the
string, “Here!” appear at the point clicked. This code sets the current drawing position to the coordinates where the
user presses the button:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(X, Y); { set pen position }
end;

Pressing the mouse button now sets the pen position, setting the line’s starting point. To draw a line to the point
where the user releases the button, you need to respond to a mouse-up event.

 DevGuide: Building applications with Delphi

Responding to a mouse-up action
Topic groups See also Example

An OnMouseUp event occurs whenever the user releases a mouse button. The event usually goes to the object the
mouse cursor is over when the user presses the button, which is not necessarily the same object the cursor is over
when the button is released. This enables you, for example, to draw a line as if it extended beyond the border of the
form.

To respond to mouse-up actions, define a handler for the OnMouseUp event.

 DevGuide: Building applications with Delphi

Example: Responding to a mouse-up action
Here’s a simple OnMouseUp event handler that draws a line to the point of the mouse-button release:

procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y); { draw line from PenPos to (X, Y) }
end;

This code lets a user draw lines by clicking, dragging, and releasing. In this case, the user cannot see the line until
the mouse button is released.

 DevGuide: Building applications with Delphi

Responding to a mouse move
Topic groups See also

An OnMouseMove event occurs periodically when the user moves the mouse. The event goes to the object that
was under the mouse pointer when the user pressed the button. This allows you to give the user some intermediate
feedback by drawing temporary lines while the mouse moves.

To respond to mouse movements, define an event handler for the OnMouseMove event. This example uses mouse-
move events to draw intermediate shapes on a form while the user holds down the mouse button, thus providing
some feedback to the user. The OnMouseMove event handler draws a line on a form to the location of the
OnMouseMove event:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y); { draw line to current position }
end;

With this code, moving the mouse over the form causes drawing to follow the mouse, even before the mouse button
is pressed.

Mouse-move events occur even when you haven’t pressed the mouse button.

If you want to track whether there is a mouse button pressed, you need to add an object field to the form object.

 DevGuide: Building applications with Delphi

Adding a field to a form object to track mouse actions
Topic groups See also Example

To track whether a mouse button was pressed, you must add an object field to the form object. When you add a
component to a form, Delphi adds a field that represents that component to the form object, so that you can refer to
the component by the name of its field. You can also add your own fields to forms by editing the type declaration in
the form unit’s header file.

In the following example, the form needs to track whether the user has pressed a mouse button. To do that, it adds
a Boolean field and sets its value when the user presses the mouse button.

To add a field to an object, edit the object’s type definition, specifying the field identifier and type after the public
directive at the bottom of the declaration.

Delphi “owns” any declarations before the public directive: that’s where it puts the fields that represent controls and
the methods that respond to events.

 DevGuide: Building applications with Delphi

Example: Adding a field to a form object to track mouse actions
The following code gives a form a field called Drawing of type Boolean, in the form object’s declaration. It also adds
two fields to store points Origin and MovePt of typeTPoint.

type
 TForm1 = class(TForm)
 procedure FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 procedure FormMouseMove(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
 public
 Drawing: Boolean; { field to track whether button was pressed }
 Origin, MovePt: TPoint; { fields to store points }
 end;

When you have a Drawing field to track whether to draw, set it to True when the user presses the mouse button,
and False when the user releases it:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True; { set the Drawing flag }
 Canvas.MoveTo(X, Y);
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.LineTo(X, Y);
 Drawing := False; { clear the Drawing flag }
end;

Then you can modify the OnMouseMove event handler to draw only when Drawing is True:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then { only draw if Drawing flag is set }
 Canvas.LineTo(X, Y);
end;

This results in drawing only between the mouse-down and mouse-up events, but you still get a scribbled line that
tracks the mouse movements instead of a straight line.

The problem is that each time you move the mouse, the mouse-move event handler calls LineTo, which moves the
pen position, so by the time you release the button, you’ve lost the point where the straight line was supposed to
start.

 DevGuide: Building applications with Delphi

Refining line drawing
Topic groups See also

With fields in place to track various points, you can refine an application’s line drawing.

 DevGuide: Building applications with Delphi

Tracking the origin point
Topic groups See also

When drawing lines, track the point where the line starts with the Origin field.

Origin must be set to the point where the mouse-down event occurs, so the mouse-up event handler can use Origin
to place the beginning of the line, as in this code:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y); { record where the line starts }
end;
procedure TForm1.FormMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Canvas.MoveTo(Origin.X, Origin.Y); { move pen to starting point }
 Canvas.LineTo(X, Y);
 Drawing := False;
end;

Those changes get the application to draw the final line again, but they do not draw any intermediate actions--the
application does not yet support “rubber banding.”

 DevGuide: Building applications with Delphi

Tracking movement
Topic groups See also

The problem with this example as the OnMouseMove event handler is currently written is that it draws the line to the
current mouse position from the last mouse position, not from the original position. You can correct this by moving
the drawing position to the origin point, then drawing to the current point:

procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.MoveTo(Origin.X, Origin.Y); { move pen to starting point }
 Canvas.LineTo(X, Y);
 end;
end;

The above tracks the current mouse position, but the intermediate lines do not go away, so you can hardly see the
final line. The example needs to erase each line before drawing the next one, by keeping track of where the
previous one was. The MovePt field allows you to do this.

MovePt must be set to the endpoint of each intermediate line, so you can use MovePt and Origin to erase that line
the next time a line is drawn:

procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Drawing := True;
 Canvas.MoveTo(X, Y);
 Origin := Point(X, Y);
 MovePt := Point(X, Y); { keep track of where this move was }
end;
procedure TForm1.FormMouseMove(Sender: TObject;Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 if Drawing then
 begin
 Canvas.Pen.Mode := pmNotXor; { use XOR mode to draw/erase }
 Canvas.MoveTo(Origin.X, Origin.Y); { move pen back to origin }
 Canvas.LineTo(MovePt.X, MovePt.Y); { erase the old line }
 Canvas.MoveTo(Origin.X, Origin.Y); { start at origin again }
 Canvas.LineTo(X, Y); { draw the new line }
 end;
 MovePt := Point(X, Y); { record point for next move }
 Canvas.Pen.Mode := pmCopy;
end;

Now you get a “rubber band” effect when you draw the line. By changing the pen’s mode to pmNotXor, you have it
combine your line with the background pixels. When you go to erase the line, you’re actually setting the pixels back
to the way they were. By changing the pen mode back to pmCopy (its default value) after drawing the lines, you
ensure that the pen is ready to do its final drawing when you release the mouse button.

 DevGuide: Building applications with Delphi

Working with multimedia
Topic groups See also

Delphi allows you to add multimedia components to your applications. To do this, you can use either the TAnimate
component on the Win32 page or the TMediaPlayer component on the System page of the Component palette. Use
the animate component when you want to add silent video clips to your application. Use the media player
component when you want to add audio and/or video clips to an application.

The following topics are discussed in this section:

Adding silent video clips to an application

Adding audio and/or video clips to an application

 DevGuide: Building applications with Delphi

Adding silent video clips to an application
Topic groups See also

The animation control in Delphi allows you to add silent video clips to your application.

To add a silent video clip to an application:
1 Double-click the animate icon on the Win32 page of the Component palette. This automatically puts an

animation control on the form window in which you want to display the video clip.
2 Using the Object Inspector, select the Name property and enter a new name for your animation control. You

will use this name when you call the animation control. (Follow the standard rules for naming Delphi
identifiers).

Always work directly with the Object Inspector when setting design time properties and creating event handlers.
3 Do one of the following:

 Select the Common AVI property and choose one of the AVIs available from the drop down list; or

Select the FileName property and click the ellipsis (...) button, choose an AVI file from any available local or
network directories and click Open in the Open AVI dialog; or

Select the resource of an AVI using the ResName or ResID properties. Use ResHandle to indicate the
module that contains the resource identified by ResName or ResID.

This loads the AVI file into memory. If you want to display the first frame of the AVI clip on-screen until it is
played using the Active property or the Play method, then set the Open property to True.

4 Set the Repetitions property to the number of times you want to the AVI clip to play. If this value is 0, then the
sequence is repeated until the Stop method is called.

5 Make any other changes to the animation control settings. For example, if you want to change the first frame
displayed when animation control opens, then set the StartFrame property to the desired frame value.

6 Set the Active property to True using the drop down list or write an event handler to run the AVI clip when a
specific event takes place at runtime. For example, to activate the AVI clip when a button object is clicked,
write the button’s OnClick event specifying that. You may also call the Play method to specify when to play the
AVI.

Note: If you make any changes to the form or any of the components on the form after setting Active to True, the
Active property becomes False and you have to reset it to True. Do this either just before runtime or at
runtime.

For more information on using the animation control, see the topic called Example of adding silent video clips.

 DevGuide: Building applications with Delphi

Example of adding silent video clips
Topic groups See also

Suppose you want to display an animated logo as the first screen that appears when your application starts. After
the logo finishes playing the screen disappears.

To run this example, create a new project and save the Unit1.pas file as Frmlogo.pas and save the Project1.dpr file
as Logo.dpr. Then:
1 Double-click the animate icon from the Win32 page of the Component palette.
2 Using the Object Inspector, set its Name property to Logo1.
3 Select its FileName property, click the ellipsis (...) button, choose the cool.avi file from your ..\Demos\Coolstuf

directory. Then click Open in the Open AVI dialog.

This loads the cool.avi file into memory.
4 Position the animation control box on the form by clicking and dragging it to the top right hand side of the form.
5 Set its Repetitions property to 5.
6 Click the form to bring focus to it and set its Name property to LogoForm1 and its Caption property to Logo

Window. Now decrease the height of the form to right-center the animation control on it.
7 Double-click the form’s OnActivate event and write the following code to run the AVI clip when the form is in

focus at runtime:

Logo1.Active := True;
8 Double-click the Label icon on the Standard page of the Component palette. Select its Caption property and

enter Welcome to Cool Images 4.0. Now select its Font property, click the ellipsis (...) button and choose Font
Style: Bold, Size: 18, Color: Navy from the Font dialog and click OK. Click and drag the label control to center
it on the form.

9 Click the animation control to bring focus back to it. Double-click its OnStop event and write the following code
to close the form when the AVI file stops:

LogoForm1.Close;
10 Select Run|Run to execute the animated logo window.

 DevGuide: Building applications with Delphi

Adding audio and/or video clips to an application
Topic groups See also

The media player component in Delphi allows you to add audio and/or video clips to your application. It opens a
media device and plays, stops, pauses, records, etc., the audio and/or video clips used by the media device. The
media device may be hardware or software.

Note: Audio and video clip support is not provided for cross-platform programming.
 To add an audio and/or video clip to an application:
1 Double-click the media player icon on the System page of the Component palette. This automatically put a

media player control on the form window in which you want the media feature.
2 Using the Object Inspector, select the Name property and enter a new name for your media player control. You

will use this when you call the media player control. (Follow the standard rules for naming Delphi identifiers.)

Always work directly with the Object Inspector when setting design time properties and creating event handlers.
3 Select the DeviceType property and choose the appropriate device type to open using the AutoOpen property

or the Open method. (If DeviceType is dtAutoSelect the device type is selected based on the file extension of
the media file specified by the FileName property.) For more information on device types and their functions,
see the table below.

4 If the device stores its media in a file, specify the name of the media file using the FileName property. Select
the FileName property, click the ellipsis (...) button, and choose a media file from any available local or
network directories and click Open in the Open dialog. Otherwise, insert the hardware the media is stored in
(disk, cassette, and so on) for the selected media device, at runtime.

5 Set the AutoOpen property to True. This way the media player automatically opens the specified device when
the form containing the media player control is created at runtime. If AutoOpen is False, the device must be
opened with a call to the Open method.

6 Set the AutoEnable property to True to automatically enable or disable the media player buttons as required at
runtime; or, double-click the EnabledButtons property to set each button to True or False depending on which
ones you want to enable or disable.

The multimedia device is played, paused, stopped, and so on when the user clicks the corresponding button on
the media player component. The device can also be controlled by the methods that correspond to the buttons
(Play, Pause, Stop, Next, Previous, and so on).

7 Position the media player control bar on the form by either clicking and dragging it to the appropriate place on
the form or by selecting the Align property and choosing the appropriate align position from the drop down list.

If you want the media player to be invisible at runtime, set the Visible property to False and control the device by
calling the appropriate methods (Play, Pause, Stop, Next, Previous, Step, Back, Start Recording, Eject).

8 Make any other changes to the media player control settings. For example, if the media requires a display
window, set the Display property to the control that displays the media. If the device uses multiple tracks, set
the Tracks property to the desired track.

Device Type Software/Hardware used Plays Uses Tracks

dtAVIVideo AVI Video Player for Windows AVI Video files No
dtCDAudio CD Audio Player for Windows or a CD

Audio Player
CD Audio Disks Yes

dtDAT Digital Audio Tape Player Digital Audio Tapes Yes
dtDigitalVideo Digital Video Player for Windows AVI, MPG, MOV files No
dtMMMovie MM Movie Player MM film No
dtOverlay Overlay device Analog Video No
dtScanner Image Scanner N/A for Play (scans images on

Record)
No

dtSequencer MIDI Sequencer for Windows MIDI files Yes
dtVCR Video Cassette Recorder Video Cassettes No
dtWaveAudio Wave Audio Player for Windows WAV files No

For more information on using the media player control, see the topic called Example of adding audio and/or video
clips.

 DevGuide: Building applications with Delphi

Example of adding audio and/or video clips (VCL only)(
Topic groups See also

This example runs an AVI video clip of a multimedia advertisement for Delphi. To run this example, create a new
project and save the Unit1.pas file to FrmAd.pas and save the Project1.dpr file to DelphiAd.dpr. Then:
1 Double-click the media player icon on the System page of the Component palette.
2 Using the Object Inspector, set the Name property of the media player to VideoPlayer1.
3 Select its DeviceType property and choose dtAVIVideo from the drop down list.
4 Select its FileName property, click the ellipsis (...) button,    choose the speedis.avi file from your ..

\Demos\Coolstuf directory. Click Open in the Open dialog.
5 Set its AutoOpen property to True and its Visible property to False.
6 Double-click the Animate icon from the Win32 page of the Component palette. Set its AutoSize property to

False, its Height property to 175 and Width property to 200. Click and drag the animation control to the top left
corner of the form.

7 Click the media player to bring back focus to it. Select its Display property and choose Animate1 from the drop
down list.

8 Click the form to bring focus to it and select its Name property and enter Delphi_Ad. Now resize the form to
the size of the animation control.

9 Double-click the form’s OnActivate event and write the following code to run the AVI video when the form is in
focus:

VideoPlayer1.Play;
10 Choose Run|Run to execute the AVI video.

 DevGuide: Building applications with Delphi

Writing multi-threaded applications
Topic groups See also

Delphi provides several objects that make writing multi-threaded applications easier. Multi-threaded applications are
applications that include several simultaneous paths of execution. While using multiple threads requires careful
thought, it can enhance your programs by

Avoiding bottlenecks. With only one thread, a program must stop all execution when waiting for slow
processes such as accessing files on disk, communicating with other machines, or displaying multimedia content.
The CPU sits idle until the process completes. With multiple threads, your application can continue execution in
separate threads while one thread waits for the results of a slow process.

Organizing program behavior. Often, a program’s behavior can be organized into several parallel
processes that function independently. Use threads to launch a single section of code simultaneously for each of
these parallel cases. Use threads to assign priorities to various program tasks so that you can give more CPU time to
more critical tasks.

Multiprocessing. If the system running your program has multiple processors, you can improve
performance by dividing the work into several threads and letting them run simultaneously on separate processors.
Note: Not all operating systems implement true multi-processing, even when it is supported by the underlying

hardware. For example, Windows 9x only simulates multiprocessing, even if the underlying hardware
supports it.

The following topics discuss support for threads in Delphi:

Defining thread objects

Coordinating threads

Executing thread objects

Debugging multi-threaded applications

 DevGuide: Building applications with Delphi

Defining thread objects
Topic groups See also

For most applications, you can use a thread object to represent an execution thread in your application. Thread
objects simplify writing multi-threaded applications by encapsulating the most commonly needed uses of threads.

Note: Thread objects do not allow you to control the security attributes or stack size of your threads. If you need
to control these, you must use the BeginThread function. Even when using BeginThread, you can still
benefit from some of the thread synchronization objects and methods described in Coordinating threads.

To use a thread object in your application, you must create a new descendant of TThread. To create a descendant
of TThread, choose File|New from the main menu. In the new objects dialog box, select Thread Object. You are
prompted to provide a class name for your new thread object. After you provide the name, Delphi creates a new unit
file to implement the thread.

Note: Unlike most dialog boxes in the IDE that require a class name, the New Thread Object dialog does not
automatically prepend a ‘T’ to the front of the class name you provide.

The automatically generated unit file contains the skeleton code for your new thread object. If you named your
thread TMyThread, it would look like the following:

unit Unit2;
interface
uses
 Classes;
type
 TMyThread = class(TThread)
 private
 { Private declarations }
 protected
 procedure Execute; override;
 end;
implementation
{ TMyThread }
procedure TMyThread.Execute;
begin
 { Place thread code here }
end;
end.

In the automatically generated unit file, you

Optionally, Initialize the thread.

Write the thread function by filling in the Execute method.

Optionally, Write clean-up code.

 DevGuide: Building applications with Delphi

Initializing the thread
Topic groups See also

If you want to write initialization code for your new thread class, you must override the Create method. Add a new
constructor to the declaration of your thread class and write the initialization code as its implementation. This is
where you can assign a default priority for your thread and indicate whether it should be freed automatically when it
finishes executing.

Assigning a default priority

Priority indicates how much preference the thread gets when the operating system schedules CPU time among all
the threads in your application. Use a high priority thread to handle time critical tasks, and a low priority thread to
perform other tasks. To indicate the priority of your thread object, set the Priority property.

If writing a Windows application, Priority values fall along a seven-point scale, as described in the following table:

Value Priority

tpIdle The thread executes only when the system is idle. Windows won't interrupt other
threads to execute a thread with tpIdle priority.

tpLowest The thread's priority is two points below normal.
tpLower The thread's priority is one point below normal.
tpNormal The thread has normal priority.
tpHigher The thread's priority is one point above normal.
tpHighest The thread's priority is two points above normal.
tpTimeCritical The thread gets highest priority.

Note: If writing a cross-platform application, you must use separate code for assigning priorities on Windows and
Linux. On Linux, Priority is a numeric value that depends on the threading policy which can only be
changed by root. See the CLX version of TThread and ~JMPPriority ~!
Alink(tthread_priority,1,TopicNotFound,main) JMP~> online Help for details.

Warning: Boosting the thread priority of a CPU intensive operation may “starve” other threads in the
application. Only apply priority boosts to threads that spend most of their time waiting for external
events.

The following code shows the constructor of a low-priority thread that performs background tasks which should not
interfere with the rest of the application’s performance:

constructor TMyThread.Create(CreateSuspended: Boolean);
begin
 inherited Create(CreateSuspended);
 Priority := tpIdle;
end;

Indicating when threads are freed

Usually, when threads finish their operation, they can simply be freed. In this case, it is easiest to let the thread
object free itself. To do this, set the FreeOnTerminate property to True.

There are times, however, when the termination of a thread must be coordinated with other threads. For example,
you may be waiting for one thread to return a value before performing an action in another thread. To do this, you
do not want to free the first thread until the second has received the return value. You can handle this situation by
setting FreeOnTerminate to False and then explicitly freeing the first thread from the second.

 DevGuide: Building applications with Delphi

Writing the thread function
Topic groups See also

The Execute method is your thread function. You can think of it as a program that is launched by your application,
except that it shares the same process space. Writing the thread function is a little trickier than writing a separate
program because you must make sure that you don’t overwrite memory that is used by other threads in your
application. On the other hand, because the thread shares the same process space with other threads, you can use
the shared memory to communicate between threads.

When implementing the Execute method, you can manage these issues by

Using the main VCL/CLX thread

Using thread-local variables

Avoiding simultaneous access

Waiting for other threads

Checking for termination by other threads

Handling exceptions in the thread function

 DevGuide: Building applications with Delphi

Using the main VCL/CLX thread
Topic groups See also

When you use objects from the VCL or CLX object hierarchies, their properties and methods are not guaranteed to
be thread-safe. That is, accessing properties or executing methods may perform some actions that use memory
which is not protected from the actions of other threads. Because of this, a main thread is set aside for access of
VCL and CLX objects. This is the thread that handles all Windows messages received by components in your
application.

If all objects access their properties and execute their methods within this single thread, you need not worry about
your objects interfering with each other. To use the main thread, create a separate routine that performs the
required actions. Call this separate routine from within your thread’s Synchronize method. For example:

procedure TMyThread.PushTheButton;
begin
 Button1.Click;
end;
procedure TMyThread.Execute;
begin
 ...
 Synchronize(PushTheButton);
 ...
end;

Synchronize waits for the main thread to enter the message loop and then executes the passed method.

Note: Because Synchronize uses the message loop, it does not work in console applications. You must use other
mechanisms, such as critical sections, to protect access to VCL or CLX objects in console applications.

You do not always need to use the main thread. Some objects are thread-aware. Omitting the use of the
Synchronize method when you know an object’s methods are thread-safe will improve performance because you
don’t need to wait for the VCL or CLX thread to enter its message loop. You do not need to use the Synchronize
method in the following situations:

Data access components are thread-safe as follows: For BDE-enabled datasets, each thread must have its
own database session component. The one exception to this is when you are using Access drivers, which are built
using a Microsoft library that is not thread-safe. For dbDirect, as long as the vendor client library is thread-safe, the
dbDirect components will be thread-safe. ADO and InterbaseExpress components are thread-safe.

When using data access components, you must still wrap all calls that involve data-aware controls in the
Synchronize method. Thus, for example, you need to synchronize calls that link a data control to a dataset by
setting the DataSet property of the data source object, but you don’t need to synchronize to access the data in a
field of the dataset.
For more information about using database sessions with threads in BDE-enabled applications, see Managing
multiple sessions.

VisualCLX objects are not thread-safe.

DataCLX objects are thread-safe.

Graphics objects are thread-safe. You do not need to use the main VCL or CLX thread to access TFont,
TPen, TBrush, TBitmap, TMetafile (VCL only), TDrawing (CLX only), or TIcon. Canvas objects can be used outside
the Synchronize method by locking them.

While list objects are not thread-safe, you can use a thread-safe version, TThreadList, instead of TList.
Call the CheckSynchronize routine periodically within the main thread of your application so that background
threads can synchronize their execution with the main thread. The best place to call CheckSynchronize is when the
application is idle (for example, from an OnIdle event handler). This ensures that it is safe to make method calls in
the background thread.

 DevGuide: Building applications with Delphi

Using thread-local variables
Topic groups See also

 The thread function and any of the routines it calls have their own local variables, just like any other Object Pascal
routines. These routines also can access any global variables. In fact, global variables provide a powerful
mechanism for communicating between threads.

Sometimes, however, you may want to use variables that are global to all the routines running in your thread, but
not shared with other instances of the same thread class. You can do this by declaring thread-local variables. Make
a variable thread-local by declaring it in a threadvar section. For example,

threadvar
 x : integer;

declares an integer type variable that is private to each thread in the application, but global within each thread.

The threadvar section can only be used for global variables. Pointer and Function variables can’t be thread
variables. Types that use copy-on-write semantics, such as long strings don’t work as thread variables either.

 DevGuide: Building applications with Delphi

Checking for termination by other threads
Topic groups See also

Your thread object begins running when the Execute method is called (see Executing thread objects) and continues
until Execute finishes. This reflects the model that the thread performs a specific task, and then stops when it is
finished. Sometimes, however, an application needs a thread to execute until some external criterion is satisfied.

You can allow other threads to signal that it is time for your thread to finish executing by checking the Terminated
property. When another thread tries to terminate your thread, it calls the Terminate method. Terminate sets your
thread’s Terminated property to True. It is up to your Execute method to implement the Terminate method by
checking and responding to the Terminated property. The following example shows one way to do this:

procedure TMyThread.Execute;
begin
 while not Terminated do
 PerformSomeTask;
end;

 DevGuide: Building applications with Delphi

Handling exceptions in the thread function
Topic groups See also

The Execute method must catch all exceptions that occur in the thread. If you fail to catch an exception in your
thread function, your application can cause access violations. This may not be obvious when you are developing
your application, because the IDE catches the exception, but when you run your application outside of the
debugger, the exception will cause a runtime error and the application will stop running.

To catch the exceptions that occur inside your thread function, add a try...except block to the implementation of the
Execute method:

procedure TMyThread.Execute;
begin
 try
 while not Terminated do
 PerformSomeTask;
 except
 { do something with exceptions }
 end;
end;

 DevGuide: Building applications with Delphi

Writing clean-up code
Topic groups See also

You can centralize the code that cleans up when your thread finishes executing. Just before a thread shuts down,
an OnTerminate event occurs. Put any clean-up code in the OnTerminate event handler to ensure that it is always
executed, no matter what execution path the Execute method follows.

The OnTerminate event handler is not run as part of your thread. Instead, it is run in the context of the main VCL or
CLX thread of your application. This has two implications:

You can’t use any thread-local variables in an OnTerminate event handler (unless you want the main VCL or
CLX thread values).

You can safely access any components and VCL or CLX objects from the OnTerminate event handler
without worrying about clashing with other threads.

 DevGuide: Building applications with Delphi

Coordinating threads
Topic groups See also

When writing the code that runs when your thread is executed, you must consider the behavior of other threads that
may be executing simultaneously. In particular, care must be taken to avoid two threads trying to use the same
global object or variable at the same time. In addition, the code in one thread can depend on the results of tasks
performed by other threads.

Whether using thread objects or generating threads using BeginThread, the following topics describe techniques for
coordinating threads:

Avoiding simultaneous access

Waiting for other threads

Using the main VCL/CLX thread
When global memory does not need to be shared by multiple threads, consider using thread-local variables instead
of global variables. By using thread-local variables, your thread does not need to wait for or lock out any other
threads.

 DevGuide: Building applications with Delphi

Avoiding simultaneous access
Topic groups See also

To avoid clashing with other threads when accessing global objects or variables, you may need to block the
execution of other threads until your thread code has finished an operation. Be careful not to block other execution
threads unnecessarily. Doing so can cause performance to degrade seriously and negate most of the advantages of
using multiple threads.

The VCL and CLX include support for three techniques that prevent other threads from accessing the same memory
as your thread:

Locking objects

Using critical sections

Using a multi-read exclusive-write synchronizer

 DevGuide: Building applications with Delphi

Locking objects
Topic groups See also

Some objects have built-in locking that prevents the execution of other threads from using that object instance.

For example, canvas objects (TCanvas and descendants) have a Lock method that prevents other threads from
accessing the canvas until the Unlock method is called.

The VCL and CLX also both include a thread-safe list object, TThreadList. Calling TThreadList.LockList returns the
list object while also blocking other execution threads from using the list until the UnlockList method is called. Calls
to TCanvas.Lock or TThreadList.LockList can be safely nested. The lock is not released until the last locking call is
matched with a corresponding unlock call in the same thread.

 DevGuide: Building applications with Delphi

Using critical sections
Topic groups See also

If objects do not provide built-in locking, you can use a critical section. Critical sections work like gates that allow
only a single thread to enter at a time. To use a critical section, create a global instance of TCriticalSection.
TCriticalSection has two methods, Acquire (which blocks other threads from executing the section) and Release
(which removes the block).

Each critical section is associated with the global memory you want to protect. Every thread that accesses that
global memory should first use the Acquire method to ensure that no other thread is using it. When finished, threads
call the Release method so that other threads can access the global memory by calling Acquire.

Warning: Critical sections only work if every thread uses them to access the associated global memory.
Threads that ignore the critical section and access the global memory without calling Acquire can
introduce problems of simultaneous access.

For example, consider an application that has a global critical section variable, LockXY, that blocks access to global
variables X and Y. Any thread that uses X or Y must surround that use with calls to the critical section such as the
following:

LockXY.Acquire; { lock out other threads }
try
 Y := sin(X);
finally
 LockXY.Release;
end;

 DevGuide: Building applications with Delphi

Using the multi-read exclusive-write synchronizer
Topic groups See also

When you use critical sections to protect global memory, only one thread can use the memory at a time. This can be
more protection than you need, especially if you have an object or variable that must be read often but to which you
very seldom write. There is no danger in multiple threads reading the same memory simultaneously, as long as no
thread is writing to it.

When you have some global memory that is read often, but to which threads occasionally write, you can protect it
using TMultiReadExclusiveWriteSynchronizer. This object acts like a critical section, but allows multiple threads to
read the memory it protects as long as no thread is writing to it. Threads must have exclusive access to write to
memory protected by TMultiReadExclusiveWriteSynchronizer.

To use a multi-read exclusive-write synchronizer, create a global instance of TMultiReadExclusiveWriteSynchronizer
that is associated with the global memory you want to protect. Every thread that reads from this memory must first
call the BeginRead method. BeginRead ensures that no other thread is currently writing to the memory. When a
thread finishes reading the protected memory, it calls the EndRead method. Any thread that writes to the protected
memory must call BeginWrite first. BeginWrite ensures that no other thread is currently reading or writing to the
memory. When a thread finishes writing to the protected memory, it calls the EndWrite method, so that threads
waiting to read the memory can begin.

Warning: Like critical sections, the multi-read exclusive-write synchronizer only works if every thread uses it to
access the associated global memory. Threads that ignore the synchronizer and access the global
memory without calling BeginRead or BeginWrite introduce problems of simultaneous access.

 DevGuide: Building applications with Delphi

Waiting for other threads
Topic groups See also

If your thread must wait for another thread to finish some task, you can tell your thread to temporarily suspend
execution. You can either

Wait for another thread to completely finish executing, or

Wait for a task to be completed.

 DevGuide: Building applications with Delphi

Waiting for a thread to finish executing
Topic groups See also

To wait for another thread to finish executing, use the WaitFor method of that other thread. WaitFor doesn’t return
until the other thread terminates, either by finishing its own Execute method or by terminating due to an exception.
For example, the following code waits until another thread fills a thread list object before accessing the objects in
the list:

if ListFillingThread.WaitFor then
begin
 with ThreadList1.LockList do
 begin
 for I := 0 to Count - 1 do
 ProcessItem(Items[I]);
 end;
 ThreadList1.UnlockList;
end;

In the previous example, the list items were only accessed when the WaitFor method indicated that the list was
successfully filled. This return value must be assigned by the Execute method of the thread that was waited for.
However, because threads that call WaitFor want to know the result of thread execution, not code that calls
Execute, the Execute method does not return any value. Instead, the Execute method sets the ReturnValue
property. ReturnValue is then returned by the WaitFor method when it is called by other threads. Return values are
integers. Your application determines their meaning.

 DevGuide: Building applications with Delphi

Waiting for a task to be completed
Topic groups See also

Sometimes, you need to wait for a thread to finish some operation rather than waiting for a particular thread to
complete execution. To do this, use an event object. Event objects (TEvent) should be created with global scope so
that they can act like signals that are visible to all threads.

When a thread completes an operation that other threads depend on, it calls TEvent.SetEvent. SetEvent turns on
the signal, so any other thread that checks will know that the operation has completed. To turn off the signal, use the
ResetEvent method.

For example, consider a situation where you must wait for several threads to complete their execution rather than a
single thread. Because you don’t know which thread will finish last, you can’t simply use the WaitFor method of one
of the threads. Instead, you can have each thread increment a counter when it is finished, and have the last thread
signal that they are all done by setting an event.

The following code shows the end of the OnTerminate event handler for all of the threads that must complete.
CounterGuard is a global critical section object that prevents multiple threads from using the counter at the same
time. Counter is a global variable that counts the number of threads that have completed.

procedure TDataModule.TaskThreadTerminate(Sender: TObject);
begin
 ...
 CounterGuard.Acquire; { obtain a lock on the counter }
 Dec(Counter); { decrement the global counter variable }
 if Counter = 0 then
 Event1.SetEvent; { signal if this is the last thread }
 CounterGuard.Release; { release the lock on the counter }
 ...
end;

The main thread initializes the Counter variable, launches the task threads, and waits for the signal that they are all
done by calling the WaitFor method. WaitFor waits for a specified time period for the signal to be set, and returns
one of the values from the following table:

Value Meaning

wrSignaled The signal of the event was set.
wrTimeout The specified time elapsed without the signal being set.
wrAbandoned The event object was destroyed before the timeout period elapsed.
wrError An error occurred while waiting.

The following shows how the main thread launches the task threads and then resumes when they have all
completed:

Event1.ResetEvent; { clear the event before launching the threads }
for i := 1 to Counter do
 TaskThread.Create(False); { create and launch task threads }
if Event1.WaitFor(20000) <> wrSignaled then
 raise Exception;
{ now continue with the main thread. All task threads have finished }

Note: If you do not want to stop waiting for an event after a specified time period, pass the WaitFor method a
parameter value of INFINITE. Be careful when using INFINITE, because your thread will hang if the
anticipated signal is never received.

 DevGuide: Building applications with Delphi

Executing thread objects
Topic groups See also

Once you have implemented a thread class by giving it an Execute method, you can use it in your application to
launch the code in the Execute method. To use a thread, first create an instance of the thread class. You can create
a thread instance that starts running immediately, or you can create your thread in a suspended state so that it only
begins when you call the Resume method. To create a thread so that it starts up immediately, set the constructor’s
CreateSuspended parameter to False. For example, the following line creates a thread and starts its execution:

SecondProcess := TMyThread.Create(false); {create and run the thread }

Warning: Do not create too many threads in your application. The overhead in managing multiple threads can
impact performance. The recommended limit is 16 threads per process on single processor
systems. This limit assumes that most of those threads are waiting for external events. If all threads
are active, you will want to use fewer.

You can create multiple instances of the same thread type to execute parallel code. For example, you can launch a
new instance of a thread in response to some user action, allowing each thread to perform the expected response.

The following topics discuss how to use the threads in your application:

Overriding the default priority.

Starting and stopping threads

 DevGuide: Building applications with Delphi

Overriding the default priority
Topic groups See also

When the amount of CPU time the thread should receive is implicit in the thread’s task, its priority is set in the
constructor. This is described in Initializing the thread. However, if the thread priority varies depending on when the
thread is executed, create the thread in a suspended state, set the priority, and then start the thread running:

SecondProcess := TMyThread.Create(True); { create but don't run }
SecondProcess.Priority := tpLower; { set the priority lower than normal }
SecondProcess.Resume; { now run the thread }

Note: If writing a cross-platform application, you must use separate code for assigning priorities on Windows and
Linux. On Linux, Priority is a numeric value that depends on the threading policy which can only be
changed by root. See the CLX version of TThread and ~JMPPriority~!
Alink(tthread_priority,1,TopicNotFound,main) JMP~> online Help for details.

 DevGuide: Building applications with Delphi

Starting and stopping threads
Topic groups See also

A thread can be started and stopped any number of times before it finishes executing. To stop a thread temporarily,
call its Suspend method. When it is safe for the thread to resume, call its Resume method. Suspend increases an
internal counter, so you can nest calls to Suspend and Resume. The thread does not resume execution until all
suspensions have been matched by a call to Resume.

You can request that a thread end execution prematurely by calling the Terminate method. Terminate sets the
thread’s Terminated property to True. If you have implemented the Execute method properly, it checks the
Terminated property periodically, and stops execution when Terminated is True.

 DevGuide: Building applications with Delphi

Debugging multi-threaded applications
Topic groups See also

When debugging multi-threaded applications, it can be confusing trying to keep track of the status of all the threads
that are executing simultaneously, or even to determine which thread is executing when you stop at a breakpoint.
You can use the Thread Status box to help you keep track of and manipulate all the threads in your application. To
display the Thread status box, choose View|Threads from the main menu.

When a debug event occurs (breakpoint, exception, paused), the thread status view indicates the status of each
thread. Right-click the Thread Status box to access commands that locate the corresponding source location or
make a different thread current. When a thread is marked as current, the next step or run operation is relative to
that thread.

The Thread Status box lists all your application’s execution threads by their thread ID. If you are using thread
objects, the thread ID is the value of the ThreadID property. If you are not using thread objects, the thread ID for
each thread is returned by the call to BeginThread.

 DevGuide: Building applications with Delphi

Using CLX for cross-platform development
Topic groups See also

You can use Delphi to develop cross-platform 32-bit applications that run on both the Windows and Linux operating
systems. To do this, you can start with an existing Windows application and modify it, or you can create a new
application by following the recommended practices for writing platform-independent code. Kylix is Borland’s Delphi
for Linux software that allows you to compile and develop applications on Linux. If you want to develop and deploy
applications on Linux and Windows, you’ll need to use Kylix as well as Delphi.

Note: Most applications developed using CLX (with no operating system specific API calls) will run on both Linux
and Windows platforms. The application must be compiled on the platform on which you want it to run.

The following topics provide additional information:

Creating cross-platform applications

Porting VCL applications to CLX

Porting your application

CLX versus VCL

What CLX does differently

Features that will not port

Writing portable code

Messages and system events

 DevGuide: Building applications with Delphi

Creating cross-platform applications
Topic groups See also

You create cross-platform applications much as you create any Delphi application. You need to use CLX visual
components, and you should not use operating system specific APIs if you want the application to be completely
cross-platform. (See Writing portable code for tips on writing cross-platform applications.)

To create a cross-platform application:
1 In the IDE, choose File|New|CLX application.

The Component palette shows components that can be used in CLX applications.
2 Develop your application within the IDE. Remember to use only CLX components in your application.
3 Compile and test the application on each platform on which you want to run the application. Review any error

messages to see where additional changes need to be made.

When moving an application to Kylix, you need to reset your project options. That’s because the .dof file which
stores the project options is recreated on Kylix and called .kof (with the default options set). You can also store
many of the compiler options with the application by typing Ctrl+O+O. The options are placed at the beginning of
the currently open file.

The form file in cross-platform applications has an extension of xfm instead of dfm. This is to distinguish cross-
platform forms that use CLX components from forms that use VCL components. An xfm form file works on both
Windows or Linux but a dfm form only works on Windows.

You could also begin development of a cross-platform application by starting on Kylix instead of Delphi:
1 Develop, compile and test the application on Linux using Kylix.
2 Move the application source files over to Windows.
3 Reset your project options.
4 Recompile the application on Windows using Delphi.

For information on writing platform-independent database or internet applications, see

Cross-platform database applications

Cross-platform Internet applications

 DevGuide: Building applications with Delphi

Porting VCL applications to CLX
Topic groups

If you have Delphi applications that were written for the Windows environment, you can make them cross platform.
How easy it will be depends on the nature and complexity of the application and how many Windows dependencies
there are.

The following topics describe some of the major differences between the Windows and Linux environments and
provide guidelines on how to get started porting an application:

Porting techniques

Porting your application

CLX versus VCL

Features that will not port

Environmental differences between Windows and Linux

Writing portable code

Programming differences on Linux

Cross-platform database applications

 DevGuide: Building applications with Delphi

Porting techniques
Topic groups See also

The following are different approaches you can take to port an application from one platform to another:

Technique Description

Platform-specific port Targets an operating system and underlying APIs
Cross-platform port Targets a cross-platform API
Windows emulation Leave the code alone and port the API it uses

Platform-specific ports

Platform-specific ports tend to be time-consuming, expensive, and only produce a single targeted result. They
create different code bases, which makes them particularly difficult to maintain. However, each port is designed for
the specific operating system and can take advantage of platform-specific functionality. So, the application typically
runs faster.

Cross-platform ports

Cross-platform ports generally provide the quickest technique and the ported applications target multiple platforms.
In reality, the amount of work involved in developing cross-platform applications is highly dependent on the existing
code. If code has been developed without regard for platform independence, you may run into scenarios where
platform-independent “logic” and platform-dependent “implementation” are mixed together.

The cross-platform approach is the preferable approach because business logic is expressed in platform-
independent terms. Some services are abstracted behind an internal interface that looks the same on all platforms,
but has a specific implementation on each. Delphi’s runtime library is an example of this: The interface is very
similar on both platforms, although the implementation may be vastly different. You should separate cross-platform
parts, then implement specific services on top. In the end, this approach is the least expensive solution, because of
reduced maintenance costs due to a largely shared source base and an improved application architecture.

Windows emulation ports

Windows emulation is the most complex method and it can be very costly, but the resulting Linux application will
look most similar to an existing Windows application. This approach involves implementing Windows functionality
on Linux. From an engineering point of view, this is solution is very hard to maintain.

Where you want to emulate Windows APIs, you can include two distinct sections using $IFDEFs to indicate sections
of the code that apply specifically to Windows or Linux.

 DevGuide: Building applications with Delphi

Porting your application
Topic groups See also

If you are porting an application that you want to run on both Windows and Linux, you need to modify your code or
use $IFDEFs to indicate sections of the code that apply specifically to Windows or Linux.

Follow these general steps to port your VCL application to CLX:
1 Open the project containing the application you want to change in Delphi.
2 Copy .dfm files to .xfm files of the same name (for example, rename unit1.dfm to unit1.xfm). Rename (or

$IFDEF) the reference to the .dfm file in the unit file(s) from {$R *.dfm} to {$R *.xfm}. (The .xfm file will work in
both Kylix and Delphi.)

For example, change the form reference in the implementation section from
{$R *.dfm}

to
{$R *.xfm}

3 Change (or $IFDEF) all uses clauses so they refer to the correct units in CLX. (See CLX and VCL unit
comparison for information.)

For example, change the following uses clause in a Windows application
uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

to the following for a CLX application:
uses Windows, Messages, SysUtils, Variants, Classes, QForms, QControls, QStdCtrls;

4 Save the project and reopen it. Now the Component palette shows components that can be used in CLX
applications.

Note: Some Windows only nonvisual components can be used in CLX applications but they contain functionality
that will only work in Windows CLX applications. If you plan to compile your application on Linux as well,
do not use the nonvisual VCL components in your applications or use $IFDEFs to mark these sections of
the code as Windows only. You cannot use the visual part of VCL with VisualCLX in the same application.

5 Rewrite any code that does not require Windows dependencies making the code more platform-independent.
Do this using the runtime library routines and constants. (See Writing portable code for information.)

6 Find equivalent functionality for features that are different on Linux. Use $IFDEFs (sparingly) to delimit
Windows-specific information. (See Using conditional directives for information.)

For example, you can $IFDEF platform-specific code in your source files:
[$IFDEF MSWINDOWS]
IniFile.LoadfromFile('c:\x.txt');
[$ENDIF]
[$IFDEF LINUX]
IniFile.LoadfromFile('/home/name/x.txt');
[$ENDIF]

7 Search for references to pathnames in all the project files.

Pathnames in Linux use a forward slash / as a delimiter (for example, /usr/lib) and files may be located in
different directories on the Linux system. Use the PathDelim constant (in SysUtils) to specify the path delimiter that is
appropriate for the system. Determine the correct location for any files on Linux.

Change references to drive letters (for example, C:\) and code that looks for drive letters by looking for a
colon at position 2 in the string. Use the DriveDelim constant (in SysUtils) to specify the location in terms that are
appropriate for the system.

In places where you specify multiple paths, change the path separator from semicolon (;) to colon (:). Use
the PathSep constant (in SysUtils) to specify the path separator that is appropriate for the system.

Because file names are case-sensitive in Linux, make sure that your application doesn’t change the case of
file names or assume a certain case.

8 Compile, text and debug your application.

To transfer the application to Linux:
1 Move your Delphi Windows application source files and other project-related files onto your Linux computer.

(You can share source files between Linux and Windows if you want the program to run on both platforms. Or
you can transfer the files using a tool such as ftp using the ASCII mode.)

Source files should include your unit files (.pas files), project file (.dpr file), and any package files (.dpk files).

Project-related files include form files (.xfm files), resource files (.res files), and project options files (.dof files–in
Kylix these change to .kof files). If you want to compile your application from the command line only (rather than
using the IDE), you’ll need the configuration file (.cfg file–in Kylix this changes to .conf).

2 Open the project in Kylix. You will receive warnings on Windows-specific features that are in use.
3 Compile the project using Kylix. Review any error messages to see where additional changes need to be

made.

 DevGuide: Building applications with Delphi

CLX versus VCL
Topic groups See also

Kylix uses the Borland Component Library for Cross Platform (CLX) in place of the Visual Component Library
(VCL). Within the VCL, many controls provide an easy way to access Windows controls. Similarly, CLX provides
access to Qt widgets (from window + gadget) in the Qt shared libraries. Delphi includes both CLX and the VCL.

CLX looks much like the VCL. Most of the component names are the same, many properties have the same names.
In addition, CLX, as well as the VCL, will be available on Windows (check the latest release of Delphi to determine
availability).

CLX components can be grouped into the following parts:

Part Description

VisualCLX Native cross-platform GUI components and graphics. The components in this
area may differ on Linux and Windows.

DataCLX Client data-access components. The components in this area are a subset of
the local, client/server, and n-tier based on client datasets. The code is the
same on Linux and Windows.

NetCLX Internet components including Apache DSO and CGI Web Broker. These are
the same on Linux and Windows.

RTL Runtime Library up to and including Classes.pas. The code is the same on
Linux and Windows.

Widgets in VisualCLX replace Windows controls. In CLX, TWidgetControl replaces the VCL's TWinControl. Other
components (such as TScrollingWidget) have corresponding names. However, you do not need to change
occurrences of TWinControl to TWidgetControl. Type declarations, such as the following

TWinControl = TWidgetControl;

appear in the QControls.pas source file to simplify sharing of source code. TWidgetControl and its descendants all
have a Handle property that is a reference to the Qt object; and a Hooks property, which is a reference to the hook
objects that handle the event mechanism.

Unit names and locations of some classes are different for CLX. You will need to modify uses clauses to eliminate
references to units that don’t exist in CLX and to change the names to CLX units. (Most project files and the
interface sections of most units contain a uses clause. The implementation section of a unit can also contain its
own uses clause.)

 DevGuide: Building applications with Delphi

What CLX does differently
Topic groups See also

Although much of CLX is implemented so that it is consistent with the VCL, some features are implemented
differently. This section provides an overview of some of the differences between CLX and VCL implementations to
be aware of when writing cross-platform applications.

Look and feel

The visual environment in Linux looks somewhat different than it does in Windows. The look of dialogs may differ
depending on which window manager is in use (for example, if using KDE or Gnome).

Styles

Application-wide “styles” can be used in addition to the OwnerDraw properties. You can use the TApplication.Style
property to specify the look and feel of an application's graphical elements. Using styles, a widget or an application
can take on a whole new look. You can still use owner draw on Linux but using styles is recommended.

Variants

All of the variant/safe array code that was in System is in two new units:

Variants.pas

VarUtils.pas
The operating system dependent code is now isolated in VarUtils.pas, and it also contains generic versions of
everything needed by Variants.pas. If you are converting a VCL application that included Windows calls to a CLX
application, you need to replace these calls to calls into VarUtils.pas.

If you want to use variants, you must include the Variants unit to your uses clause.

VarIsEmpty does a simple test against varEmpty to see if a variant is clear, and on Linux you need to use the
VarIsClear function to clear a variant.

Custom variant data handler

You can define custom data types for variants. This introduces operator overloading while the type is assigned to
the variant. To create a new variant type, descend from the class, TCustomVariantType, and instantiate your new
variant type.

For an example, see VarCmplx.pas. This unit implements complex mathematics support via custom variants. It
supports the following variant operations: addition, subtraction, multiplication, division (not integer division), and
negation. It also handles conversion to and from: SmallInt, Integer, Single, Double, Currency, Date, Boolean, Byte,
OleStr, and String. Any of the float/ordinal conversion will lose any imaginary portion of the complex value.

Registry

Linux does not use a registry to store configuration information. Instead, you use text configuration files and
environment variables instead of using the registry. System configuration files on Linux are often located in /etc, for
example, /etc/hosts. Other user profiles are located in hidden files (preceded with a dot), such as .bashrc, which
holds bash shell settings or .XDefaults, which is used to set defaults for X programs.

Registry-dependent code may be changed to using a local configuration text file instead stored, for example, in the
same directory as the application. Writing a unit containing all the registry functions but diverting all output to a local
configuration file is one way you could handle a former dependency on the registry.

To place information in a global location on Linux, you could store a global configuration file in the root directory.
This makes it so all of your applications can access the same configuration file. However, you must be sure that the
file permissions and access rights are set up correctly.

You can also use ini files in cross-platform applications. However, in CLX, you need to use TMemIniFile instead of
TRegIniFile.

Other differences

CLX implementation also has some other differences that affect the way your application works. This section
describes some of those differences.

ToggleButton doesn't get toggled by the Enter key. Pressing Enter doesn't simulate a click event on Kylix as it does
in Delphi.

TColorDialog does not have a TColorDialog.Options property to set. Therefore, you cannot customize the

appearance and functionality of the color selection dialog. Also, TColorDialog is not always modal. You can
manipulate the title bar of an application with a modal dialog on Kylix (that is, you can select the parent form of the
color dialog and do things like maximizing it while the color dialog is open).

At runtime, combo boxes work differently on Kylix than they do in Delphi. On Kylix (but not on Delphi), you can add
a item to a drop down by entering text and pressing Enter in the edit field of a combo box. You can turn this feature
off by setting InsertMode to ciNone. It is also possible to add empty (no string) items to the list in the combo box.
Also, if you keep pressing the down arrow key, it does not stop at the last item of the combo box list. It cycles
around to the top again.

TCustomEdit does not implement Undo, ClearUndo, or CanUndo. So there is no way to programmatically undo
edits. But application users can undo their edits in an edit box (TEdit) at runtime by right-clicking on the edit box and
choosing the Undo command.

The key value in a OnKeyDown event or KeyUp event for the Enter key on Windows is 13. On Linux, this value is
4100. If you check for a hardcoded numeric value for a key, such as checking for a value of 13 for the Enter key,
you need to change this when porting a Delphi application to Kylix.

Additional differences exist. Refer to the CLX online documentation for details on all of the CLX objects or in
versions of Delphi that include the source code you can refer to the code, it is located in ..
\Delphi6\Source\VCL\CLX.

 DevGuide: Building applications with Delphi

Features that will not port
Topic groups See also

When using CLX instead of the VCL, many of the objects are the same. However, the objects may be missing some
features (such as properties, methods, or events). The following general features are missing in CLX:

Bi-directional properties (BidiMode) for right-to-left text output or input

Generic bevel properties on common controls (note that some objects still have bevel properties)

Docking properties and methods

Backward compatibility features such components on the Win3.1 tab and Ctl3D

DragCursor and DragKind (but drag and drop is included)
See Features that will not port for information on Windows-specific features that are missing in Linux.

 DevGuide: Building applications with Delphi

Features that will not port
Topic groups See also

Some Windows-specific features supported on Delphi will not transport directly to Linux environments. Features,
such as COM, ActiveX, OLE, BDE, and ADO are dependent on Windows technology and are not available in Kylix.
The following table lists features that are different on the two platforms and lists the equivalent Kylix feature, if one
is available.

Delphi/Windows feature Kylix/Linux feature

ADO components Regular database components
Automation Servers Not available
BDE dbExpress and regular database components
COM+ components (including ActiveX) Not available
DataSnap Not yet available
FastNet Not available
Internet Express Not yet available
Legacy components (such as items on the
Win 3.1 Component palette tab)

Not available

Messaging Application Programming
Interface (MAPI) includes a standard library
of Windows messaging functions.

SMTP/POP3 let you send, receive, and save email messages

Quick Reports Not available
Web Services (SOAP) Not yet available
WebSnap Not yet available
Windows API calls CLX methods, Qt calls, libc calls, or calls to other system

libraries
Windows messaging Qt events
Winsock BSD sockets

The Linux equivalent of Windows DLLs are shared object libraries (.so files), which contain position-independent
code (PIC). This has the following consequences:

Variables referring to an absolute address in memory (using the absolute directive) are not allowed.

Global memory references and calls to external functions are made relative to the EBX register, which must
be preserved across calls.
You only need to worry about global memory references and calls to external functions if using assembler—Kylix or
Delphi generates the correct code. (For information, see Including inline assembler code.)

Kylix library modules and packages are implemented using .so files.

 DevGuide: Building applications with Delphi

CLX and VCL unit comparison
Topic groups See also

All of the objects in the VCL or CLX are defined in unit files (.pas source files). For example, you can find the
implementation of TObject in the System unit, and the Classes unit defines the base TComponent class. When you
drop an object onto a form or use an object within your application, the name of the unit is added to the uses clause
which tells the compiler which units to link into the project.

This topic provides tables that list the CLX units and the comparable VCL unit, list the units that are for CLX only,
and list the units that are for VCL only.

The following table lists VCL units and the comparable CLX units:

VCL units CLX units

ActnList QActnList
Buttons QButtons
CheckLst QCheckLst
Classes Classes
Clipbrd QClipbrd
ComCtrls QComCtrls
Consts Consts, QConsts, and RTLConsts
Contnrs Contnrs
Controls QControls
DateUtils DateUtils
DB DB
DBActns QDBActns
DBClient DBClient
DBCommon DBCommon
DBConnAdmin DBConnAdmin
DBConsts DBConsts
DBCtrls QDBCtrls
DBGrids QDBGrids
DBLocal DBLocal
DBLocalS DBLocalS
DBLogDlg DBLogDlg
DBXpress DBXpress
Dialogs QDialogs
DSIntf DSIntf
ExtCtrls QExtCtrls
FMTBCD FMTBCD
Forms QForms
Graphics QGraphics
Grids QGrids
HelpIntfs HelpIntfs
ImgList QImgList
IniFiles IniFiles
Mask QMask
MaskUtils MaskUtils
Masks Masks
Math Math
Menus QMenus
Midas Midas
MidConst MidConst
Printers QPrinters
Provider Provider
Qt Qt
Search QSearch

Sockets Sockets
StdActns QStdActns
StdCtrls QStdCtrls
SqlConst SqlConst
SqlExpr SqlExpr
SqlTimSt SqlTimSt
SyncObjs SyncObjs
SysConst SysConst
SysInit SysInit
System System
SysUtils SysUtils
Types Types and QTypes
TypInfo TypInfo
Variants Variants
VarUtils VarUtils

The following units are in CLX but not VCL:

Unit Description

DirSel Directory selection
QStyle GUI look and feel

The following Windows VCL units are not included in CLX mostly because they concern Windows-specific features
that are not available on Linux such as ADO, COM, and the BDE. The reason for the unit’s exclusion is listed.

Unit Reason for exclusion

ADOConst No ADO feature
ADODB No ADO feature
AppEvnts No TApplicationEvent object
AxCtrls No COM feature
BdeConst No BDE feature
ComStrs No COM feature
ConvUtils New feature for Delphi 6
CorbaCon No Corba feature
CorbaStd No Corba feature
CorbaVCL No Corba feature
CtlPanel No Windows Control Panel support
DataBkr May appear later in upsell
DBCGrids No BDE feature
DBExcept No BDE feature
DBInpReq No BDE feature
DBLookup Obsolete
DbOleCtl No COM feature
DBPWDlg No BDE feature
DBTables No BDE feature
DdeMan No DDE feature
DRTable No BDE feature
ExtActns New feature to Delphi 6
ExtDlgs No picture dialogs
FileCtrl Obsolete
ListActns New feature to Delphi 6
MConnect No COM feature
Messages Windows-specific area
MidasCon Obsolete
MPlayer Windows-specific media player
Mtsobj No COM feature
MtsRdm No COM feature
Mtx No COM feature
mxConsts No COM feature

ObjBrkr May appear later in upsell
OleConstMay No COM feature
OleCtnrs No COM feature
OleCtrls No COM feature
OLEDB No COM feature
OleServer No COM feature
Outline Obsolete
Registry Windows-specific registry support
ScktCnst Replaced by Sockets
ScktComp Replaced by Sockets
SConnect Unsupported connection protocols
StdConvs New feature to Delphi 6
SvcMgr NT Services support
Tabnotbk Obsolete
Tabs Obsolete
ToolWin No docking feature
VarCmplx New feature to Delphi 6
VarConv New feature to Delphi 6
VCLCom No COM feature
WebConst Windows-specific constants
Windows Windows-specific (API)

 DevGuide: Building applications with Delphi

Features that will not port
Topic groups See also

When a CLX object is created, either implicitly in the Forms Designer by placing that object on the form or explicitly
in code by using the Create method of the object, an instance of the underlying associated widget is created also.
The instance of the widget is owned by this CLX object. When the CLX object is deleted by calling the Free method
or automatically deleted by the CLX object's parent container, the underlying widget is also deleted. This is the
same type of functionality that you see in the VCL in Windows applications.

When you explicitly create a CLX object in code, by calling into the Qt interface library such as QWidget_Create(),
you are creating an instance of a Qt widget that is not owned by a CLX object. This passes the instance of an
existing Qt widget to the CLX object to use during its construction. This CLX object does not own the Qt widget that
is passed to it. Therefore, when you call the Free method after creating the object in this manner, only the CLX
object is destroyed and not the underlying Qt widget instance. This is different from the VCL.

Some CLX objects let you assume ownership of the underlying widget using the OwnHandle method. After calling
OwnHandle, if you delete the CLX object, the underlying widget is destroyed as well.

 DevGuide: Building applications with Delphi

Sharing source files between Windows and Linux
Topic groups See also

If you want your application to run on both Windows and Linux, you can share the source files making them
accessible to both operating systems. You can do this many ways such as placing the source files on a server that
is accessible to both computers or by using Samba on the Linux machine to provide access to files through
Microsoft network file sharing for both Linux and Windows. You can choose to keep the source on Linux and create
a shared drive on Linux. Or you can keep the source on Windows and create a share on Windows for the Linux
machine to access.

You can continue to develop and compile the file on Kylix using objects that are supported by both VCL and CLX.
When you are finished, you can compile on both Linux and Windows.

Form files (.dfm files in Delphi) are called .xfm files in Kylix. If you create a new CLX application in Delphi or Kylix,
an .xfm is created instead of a .dfm. If you plan to write cross-platform applications, the .xfm will work both on
Delphi and Kylix.

 DevGuide: Building applications with Delphi

Environmental differences between Windows and Linux
Topic groups See also

Currently, cross-platform means an application that can run virtually unchanged on both the Windows and Linux
operating systems. The following table lists some of the differences between Linux and the Windows operating
environments.

Difference Description

File name case sensitivity In Linux, a capital letter is not the same as a lowercase letter. The file
Test.txt is not the same file as test.txt. You need to pay close attention to
capitalization of file names on Linux.

Line ending characters On Windows, lines of text are terminated by CR/LF (that is, ASCII 13 +
ASCII 10), but on Linux it is LF. While the code editor in Kylix can handle
the difference, you should be aware of this when importing code from
Windows.

End of file character In DOS and Windows, the character value #26 (Ctrl-Z) is treated as the
end of the text file, even if there is data in the file after that character. Linux
has no special end of file character; the text data ends at the end of the
file.

Batch files/shell scripts The Linux equivalent of .bat files are shell scripts. A script is a text file
containing instructions, saved and made executable with the command,
chmod +x <scriptfile>. To execute it, type its name. (The scripting
language depends on the shell you are using on Linux. Bash is commonly
used.)

Command confirmation In DOS or Windows, if you try to delete a file or folder, it asks for
confirmation (“Are you sure you want to do that?”). Generally, Linux won't
ask; it will just do it. This makes it easy to accidentally destroy a file or the
entire file system. There is no way to undo a deletion on Linux unless a file
is backed up on another media.

Command feedback If a command succeeds on Linux, it redisplays the command prompt
without a status message.

Command switches Linux uses a dash (-) to indicate command switches or a double dash (--)
for multiple character options where DOS uses a slash (/) or dash (-).

Configuration files On Windows, configuration is done in the registry or in files such as
autoexec.bat.
On Linux, configuration files are created as hidden files starting with a dot
(.). Many are placed in the /etc directory and your home directory.
Linux also uses environment variables such as LD_LIBRARY_PATH
(search path for libraries). Other important environment variables:
HOME Your home directory (/home/sam)
TERM Terminal type (xterm, vt100, console)
SHELL Path to your shell (/bin/bash)
USER Your login name (sfuller)
PATH List to search for programs
They are specified in the shell or in rc files such as the .bashrc.

DLLs On Linux, you use shared object files (.so). In Windows, these are
dynamic link libraries (DLLs).

Drive letters Linux doesn't have drive letters. An example Linux pathname is
/lib/security. See DriveDelim in the runtime library.

Exceptions Operating system exceptions are called signals on Linux.
Executable files On Linux, executable files require no extension. On Windows, executable

files have an exe extension.
File name extensions Linux does not use file name extensions to identify file types or to

associate files with applications.
File permissions On Linux, files (and directories) are assigned read, write, and execute

permissions for the file owner, group, and others. For example,
-rwxr-xr-x means, from left to right:
- is the file type (- = ordinary file, d = directory, l = link); rwx are the
permissions for the file owner (read, write, execute); r-x are the
permissions for the group of the file owner (read, execute); and r-x are the

permissions for all other users (read, execute). The root user (superuser)
can override these permissions.
You need to make sure that your application runs under the correct user
and has proper access to required files.

Make utility Borland's make utility is not available on the Linux platform. Instead, you
can use Linux's own GNU make utility.

Multitasking Linux fully supports multitasking. You can run several programs (in Linux,
called processes) at the same time. You can launch processes in the
background (using & after the command) and continue working straight
away. Linux also lets you have several sessions.

Pathnames Linux uses a forward slash (/) wherever DOS uses a backslash (\). A
PathDelim constant can be used to specify the appropriate character for
the platform. See PathDelim in the runtime library.

Search path When executing programs, Windows always checks the current directory
first, then looks at the PATH environment variable. Linux never looks in the
current directory but searches only the directories listed in PATH. To run a
program in the current directory, you usually have to type ./ before it.
You can also modify your PATH to include ./ as the first path to search.

Search path separator Windows uses the semicolon as a search path separator. Linux uses a
colon. See PathDelim in the runtime library.

Symbolic links On Linux, a symbolic link is a special file that points to another file on disk.
Place symbolic links in the global bin directory that points to your
application's main files and you don't have to modify the system search
path. A symbolic link is created with the ln (link) command.
Windows has shortcuts for the GUI desktop. To make a program available
at the command line, Windows install programs typically modify the
system search path.

 DevGuide: Building applications with Delphi

Directory structure on Linux
Topic groups See also

Directories are different in Linux. Any file or device can be mounted anywhere on the file system.

Note: Linux pathnames use forward slashes as opposed to Windows use of backslashes. The initial slash stands
for the root directory.

Following are some commonly used directories in Linux.

Directory Contents

 / The root or top directory of the entire Linux file system

/root The root file system; the Superuser's home directory
/bin Commands, utilities
/sbin System utilities
/dev Devices shown as files
/lib Libraries
/home/username Files owned by the user where username is the user's login name.
/opt Optional
/boot Kernel that gets called when the system starts up
/etc Configuration files
/usr Applications, programs. Usually includes directories like /usr/spool,

/usr/man, /usr/include, /usr/local
/mnt Other media mounted on the system such as a CD or a floppy disk drive
/var Logs, messages, spool files
/proc Virtual file system and reporting system statistics
/tmp Temporary files

Note: Different distributions of Linux sometimes place files in different locations. A utility program may be placed
in /bin in a Red Hat distribution but in /usr/local/bin in a Debian distribution.

Refer to www.pathname.com for additional details on the organization of the UNIX/Linux hierarchical file system and
to read the Filesystem Hierarchy Standard.

 DevGuide: Building applications with Delphi

Writing portable code
Topic groups See also

If you are writing cross-platform applications that are meant to run on Windows and Linux, you can write code that
compiles under different conditions. Using conditional compilation, you can maintain your Windows coding, yet also
make allowances for Linux operating system differences.

To create applications that are easily portable between Windows and Linux, remember to

reduce or isolate calls to platform-specific (Win32 or Linux) APIs; use CLX methods instead.

eliminate Windows messaging (PostMessage, SendMessage) constructs within an application.

use TMemIniFile instead of TRegIniFile.

observe and preserve case-sensitivity in file and directory names.

port any external assembler TASM code. The GNU assembler, “as,” does not support the TASM syntax.
(See Including inline assembler code.)
Try to write the code to use platform-independent runtime library routines and use constants found in System,
SysUtils, and other runtime library units. For example, use the PathDelim constant to insulate your code from ‘/’
versus ‘\’ platform differences.

Another example involves the use of multibyte characters on both platforms. Windows code traditionally expects
only 2 bytes per multibyte character. In Linux, multibyte character encoding can have many more bytes per char (up
to 6 bytes for UTF-8). Both platforms can be accommodated using the StrNextChar function in SysUtils. Existing
Windows code such as the following

while p^ <> #0 do
begin
 if p^ in LeadBytes then
 inc(p);
 inc(p);
end;

can be replaced with platform-independent code like this:

while p^ <> #0 do
begin
 if p^ in LeadBytes then
 p := StrNextChar(p)
 else
 inc(p);
end;

This example is platform portable and supports multibyte characters longer than 2 bytes, but still avoids the
performance cost of a procedure call for non-multibyte locales.

If using runtime library functions is not a workable solution, try to isolate the platform-specific code in your routine
into one chunk or into a subroutine. Try to limit the number of $IFDEF blocks to maintain source code readability
and portability. The conditional symbol WIN32 is not defined on Linux. The conditional symbol LINUX is defined,
indicating the source code is being compiled for the Linux platform. For more information, see Using conditional
directives.

 DevGuide: Building applications with Delphi

Using conditional directives
Topic groups See also

Using $IFDEF compiler directives is a reasonable way to conditionalize your code for the Windows and Linux
platforms. However, because $IFDEFs make source code harder to understand and maintain, you need to
understand when it is reasonable to use $IFDEFs. When considering the use of $IFDEFs, the top questions should
be “Why does this code require an $IFDEF?” and “Can this be written without an $IFDEF?”

Follow these guidelines for using $IFDEFs within cross-platform applications:

Try not to use $IFDEFs unless absolutely necessary. $IFDEFs in a source file are only evaluated when
source code is compiled. Unlike C/C++, Delphi does not require unit sources (header files) to compile a project. Full
rebuilds of all source code is an uncommon event for most Delphi projects.

Do not use $IFDEFs in package (.dpk) files. Limit their use to source files. Component writers need to create
two design-time packages when doing cross-platform development, not one package using $IFDEFs.

In general, use $IFDEF MSWINDOWS to test for any Windows platform including WIN32. Reserve the use
of $IFDEF WIN32 for distinguishing between specific Windows platforms, such as 32-bit versus 64-bit Windows.
Don’t limit your code to WIN32 unless you know for sure that it will not work in WIN64.

Avoid negative tests like $IFNDEF unless absolutely required. $IFNDEF LINUX is not equivalent to $IFDEF
MSWINDOWS.

Avoid $IFNDEF/$ELSE combinations. Use a positive test instead ($IFDEF) for better readability.

Avoid $ELSE clauses on platform-sensitive $IFDEFs. Use separate $IFDEF blocks for LINUX- and
MSWINDOWS-specific code instead of $IFDEF LINUX/$ELSE or $IFDEF MSWINDOWS/$ELSE.

For example, old code may contain
{$IFDEF WIN32}
 (32-bit Windows code)
{$ELSE}
 (16-bit Windows code) //!! By mistake, Linux could fall into this code.
{$ENDIF}

For any non-portable code in $IFDEFs, it is better for the source code to fail to compile than to have the
platform fall into an $ELSE clause and fail mysteriously at runtime. Compile failures are easier to find than
runtime failures.

Use the $IF syntax for complicated tests. Replace nested $IFDEFs with a boolean expression in an $IF
directive. You should terminate the $IF directive using $IFEND, not $ENDIF. This allows you to place $IF expressions
within $IFDEFs to hide the new $IF syntax from previous compilers.
For recommendations concerning ending these directives, see Terminating conditional directives. For an overview
of using conditional directives, see Conditional compilation.

 DevGuide: Building applications with Delphi

Terminating conditional directives
Topic groups See also

Use the $IFEND directive to terminate $IF and $ELSEIF conditional directives. This allows $IF/$IFEND blocks to be
hidden from older compilers inside of using $IFDEF/$ENDIF. Older compilers won't recognize the $IFEND directive.
$IF can only be terminated with $IFEND. You can only terminate old-style directives ($IFDEF, $IFNDEF, $IFOPT)
with $ENDIF.

Note: When nesting an $IF inside of $IFDEF/$ENDIF, do not use $ELSE with the $IF. Older compilers will see
the $ELSE and think it is part of the $IFDEF, producing a compile error down the line. You can use
{$ELSEIF True} as a substitute for {$ELSE} in this situation, since the $ELSEIF won't be taken if the $IF is
taken first, and the older compilers won't know $ELSEIF. Hiding $IF for backwards compatibility is primarily
an issue for third party vendors and application developers who want their code to run on several different
versions.

$ELSEIF is a combination of $ELSE and $IF. The $ELSEIF directive allows you to write multi-part conditional
blocks where only one of the conditional blocks will be taken. For example:

{$IFDEF doit}
 do_doit
{$ELSEIF RTLVersion >= 14}
 goforit
{$ELSEIF somestring = 'yes'}
 beep
{$ELSE}
 last chance
{$IFEND}

Of these four cases, only one is taken. If none of the first three conditions is true, the $ELSE clause is taken.
$ELSEIF must be terminated by $IFEND. $ELSEIF cannot appear after $ELSE. Conditions are evaluated top to
bottom like a normal $IF...$ELSE sequence. In the example, if doit is not defined, RTLVersion is 15, and somestring
= 'yes', only the “goforit” block will be taken not the “beep” block, even though the conditions for both are true.

If you forget to use an $ENDIF to end one of your $IFDEFs, the compiler reports the following error message at the
end of the source file:

Missing ENDIF

If you have more than a few $IF/$IFDEF directives in your source file, it can be difficult to determine which one is
causing the problem. Kylix or Delphi reports the following error message on the source line of the last $IF/$IFDEF
compiler directive with no matching $ENDIF/$IFEND:

Unterminated conditional directive

You can start looking for the problem at that location.

For more information, see Emitting messages.

 DevGuide: Building applications with Delphi

Emitting messages
Topic groups See also

The $MESSAGE compiler directive allows source code to emit hints, warnings, and errors just as the compiler
does.

{$MESSAGE HINT|WARN|ERROR|FATAL 'text string' }

The message type is optional. If no message type is indicated, the default is HINT. The text string is required and
must be enclosed in single quotes.

Examples:

{$MESSAGE 'Boo!'}    emits a hint.

{$Message Hint 'Feed the cats'}    emits a hint.

{$Message Warn 'Looks like rain.'}    emits a warning.

{$Message Error 'Not implemented'} emits an error, continues compiling.

{$Message Fatal 'Bang. Yer dead.'} emits an error, terminates the compiler.

 DevGuide: Building applications with Delphi

Including inline assembler code
Topic groups

If you include inline assembler code in your Windows applications, you may not be able to use the same code on
Linux because of position-independent code (PIC) requirements on Linux. Linux shared object libraries (DLL
equivalents) require that all code be relocatable in memory without modification. This primarily affects inline
assembler routines that use global variables or other absolute addresses, or that call external functions.

For units that contain only Object Pascal code, the compiler automatically generates PIC when required. PIC units
have a .dpu extension (instead of .dcu). It's a good idea to compile every Pascal unit source file into both PIC and
non-PIC formats; use the -p compiler switch to generate PIC. Precompiled units are available in both forms.

You may want to code assembler routines differently depending on whether you'll be compiling to an executable or
a shared library; use {$IFDEF PIC} to branch the two versions of your assembler code. Or you can consider
rewriting the routine in Object Pascal to avoid the issue.

Following are the PIC rules for inline assembler code:

PIC requires all memory references be made relative to the EBX register, which contains the current
module's base address pointer (in Linux called the Global Offset Table or GOT). So, instead of

MOV EAX,GlobalVar

use
MOV EAX,[EBX].GlobalVar

PIC requires that you preserve the EBX register across calls into your assembly code (same as on Win32),
and also that you restore the EBX register before making calls to external functions (different from Win32).

While PIC code will work in base executables, it may slow the performance and generate more code. You
don't have any choice in shared objects, but in executables you probably still want to get the highest level of
performance that you can.

 DevGuide: Building applications with Delphi

Messages and system events
Topic groups See also

Message loops and events work differently on Linux and in CLX, but this primarily affects component writing. Most
component and property editors port easily. TObject.Dispatch and message method syntax on classes work fine on
Linux; under Linux, however, operating system notifications are handled using system events rather than
messages.

To create an event handler in a cross-platform application, you can override one of the methods described in Table
10.9 to write your own custom message instead of responding to Windows messages. In the override, call the
inherited method so any default processes still take place.

Method Description

 ChangeBounds Used when a TWidgetControl is resized. Roughly analogous to WM_SIZE or
WM_MOVE in Windows. Qt sets the “geometry” of a widget based on the client
area, VCL uses the entire control size, which includes what Qt refers to as the
frame.

ChangeScale Called automatically when resizing controls. Used to change the scale of a form
and all its controls for a different screen resolution or font size. Because
ChangeScale modifies the control’s Top, Left, Width, and Height properties, it
changes the position of the control and its children as well as their size.

ColorChanged Called when the color of the control has been changed.
CursorChanged Called when the cursor changes shape. The mouse cursor assumes this shape

when it's over this widget.
EnabledChanged Called when an application changes the enabled state of a window or control.
FontChanged Called when the collection of font resources changed. It sets the font for the

widget and informs all children about the change. Roughly analogous to the
WM_FONTCHANGE message.

PaletteChanged Called when the system palette has been changed. .
ShowHintChanged Called when Help hints are displayed or hidden on a control.
StyleChanged Called when the window or control’s GUI styles have changed.
TabStopChanged Called when the tab order on the form has been changed.
VisibleChanged Called when a control is hidden or shown.
WidgetDestroyed Called when a widget underlying a control is destroyed.

Qt is a C++ toolkit, so all of its widgets are C++ objects. CLX is written in Object Pascal, and Object Pascal does not
interact directly with C++ objects. In addition, Qt uses multiple inheritance in a few places. So Delphi includes an
interface layer that converts all of the Qt classes to a series of straight C functions. These are then wrapped in a
shared object in Linux and a DLL in Windows.

Every TWidgetControl has CreateWidget, InitWidget, and HookEvents virtual methods that almost always have to
be overridden. CreateWidget creates the Qt widget, and assigns the Handle to the FHandle private field variable.
InitWidget gets called after the widget is constructed, and the Handle is valid.

Some property assignments in Delphi CLX have moved from the Create constructor to InitWidget. This will allow
delayed construction of the Qt object until it's really needed. For example, say you have a property named Color. In
SetColor, you can check with HandleAllocated to see if you have a Qt handle. If the Handle is allocated, you can
make the proper call to Qt to set the color. If not, you can store the value in a private field variable, and, in
InitWidget, you set the property.

Linux supports two types of events: Widget and System. HookEvents is a virtual method that hooks the CLX
controls event methods to a special hook object that communicates with the Qt object. The hook object is really just
a set of method pointers. System events on Kylix go through EventHandler, which is basically a replacement for
WndProc.

 DevGuide: Building applications with Delphi

Programming differences on Linux
Topic groups See also

The Linux wchar_t widechar is 32 bits per character. The 16-bit Unicode standard that Object Pascal widechars
support is a subset of the 32-bit UCS standard supported by Linux and the GNU libraries. Pascal widechar data
must be widened to 32 bits per character before it can be passed to an OS function as wchar_t.

In Linux, widestrings are reference counted like long strings (in Windows, they're not).

Multibyte handling differs in Linux. In Windows, multibyte characters (MBCS) are represented as 1- and 2-byte char
codes. In Linux, they are represented in 1 to 6 bytes.

AnsiStrings can carry multibyte character sequences, dependent upon the user's locale settings. The Linux
encoding for multibyte characters such as Japanese, Chinese, Hebrew, and Arabic may not be compatible with the
Windows encoding for the same locale. Unicode is portable, whereas multibyte is not.

In Linux, you cannot use variables on absolute addresses. The syntax var X: Integer absolute $1234; is not
supported in PIC and is not allowed in Delphi.

 DevGuide: Building applications with Delphi

Cross-platform database applications
Topic groups See also

On Windows, Delphi provides several choices for how to access database information. These include using ADO,
the Borland Database Engine (BDE), and InterBase Express. These three choices are not available on Kylix,
however. Instead, you can use dbExpress, a new, cross-platform data access technology, which is also available on
Windows, starting with Delphi version 6.

Before you port a database application to dbExpress so that it will run on Linux, you should understand the
differences between using dbExpress and the data access mechanism you were using. These differences occur at
different levels.

At the lowest level, there is a layer that communicates between your application and the database server.
This could be ADO, the BDE, or the InterBase client software. This layer is replaced by dbExpress, which is a set of
lightweight drivers for dynamic SQL processing. See dbExpress differences for details on how DBExpress differs from
other low-level data access implementations.

The low-level data access is wrapped in a set of components that you add to data modules or forms. These
components include database connection components, which represent the connection to a database server, and
datasets, which represent the data fetched from the server. Although there are some very important differences, due
to the unidirectional nature of dbExpress cursors, the differences are less pronounced at this level, because datasets
all share a common ancestor, as do database connection components. See Component-level differences for details
on how DBExpress applications differ at the component level.

At the user-interface level, there are the fewest differences. CLX data-aware controls are designed to be as
similar as possible to the corresponding Windows controls. The major differences at the user interface level arise
from changes needed to accommodate the use of cached updates. See Updating data in dbExpress applications for
details.
For information on porting existing database applications to dbExpress, see Porting database applications to Linux.
For information on designing new dbExpress applications, see Designing database applications.

 DevGuide: Building applications with Delphi

dbExpress differences
Topic groups See also

On Linux, dbExpress manages the communication with database servers. dbExpress consists of a set of lightweight
drivers that implement a set of common interfaces. Each driver is a shared object (.so file) that must be linked to
your application. Because dbExpress is designed to be cross-platform, it will also be available on Windows as a set
of dynamic-link libraries (.dlls).

As with any data-access layer, dbExpress requires the client-side software provided by the database vendor. In
addition, it uses a database-specific driver, plus two configuration files, dbxconnections and dbxdrivers. This is
markedly less than you need for, say, the BDE, which requires the main Borland Database Engine library
(Idapi32.dll) plus a database-specific driver and a number of other supporting libraries.

Here are some other differences between dbExpress and the other data-access layers from which you need to port
your application:

dbExpress allows for a simpler and faster path to remote databases. As a result, you can expect a
noticeable performance increase for simple, straight-through data access.

dbExpress can process queries and stored procedures, but does not support the concept of opening tables.

dbExpress returns only unidirectional cursors.

dbExpress has no built-in update support other than the ability to execute an INSERT, DELETE, or UPDATE
query.

dbExpress does no metadata caching, and the design time metadata access interface is implemented using
the core data-access interface.

dbExpress executes only queries requested by the user, thereby optimizing database access by not
introducing any extra queries.

dbExpress manages a record buffer or a block of record buffers internally. This differs from the BDE, where
clients are required to allocate the memory used to buffer records.

dbExpress does not support local tables that are not SQL-based (such as Paradox, dBase, or FoxPro).

dbExpress drivers exist for InterBase, Oracle, DB2, and MySQL. If you are using a different database server,
you must either port your data to one of these databases, write a dbExpress driver for the database server you are
using, or obtain a third-party dbExpress driver for your database server.

 DevGuide: Building applications with Delphi

Component-level differences
Topic groups See also

When you write a dbExpress application, it requires a different set of data-access components than those used in
your existing database applications. The dbExpress components share the same base classes as other data-
access components (TDataSet and TCustomConnection), which means that many of the properties, methods, and
events are the same as the components used in your existing applications.

The following table lists some of the important database components used in InterBase Express, BDE, and ADO in
the Windows environment and shows the comparable dbExpress components for use on Linux and in cross-
platform applications.

InterBase Express
components

BDE components ADO components dbExpress
components

TIBDatabase TDatabase TADOConnection TSQLConnection
TIBTable TTable TADOTable TSQLTable
TIBQuery TQuery TADOQuery TSQLQuery
TIBStoredProc TStoredProc TADOStoredProc TSQLStoredProc
TIBDataSet TADODataSet TSQLDataSet

The dbExpress datasets (TSQLTable, TSQLQuery, TSQLStoredProc, and TSQLDataSet) are more limited than
their counterparts, however, because they do not support editing and only allow forward navigation. For details on
the differences between the dbExpress datasets and the other datasets that are available on Windows, see Using
unidirectional datasets.

Because of the lack of support for editing and navigation, most dbExpress applications do not work directly with the
dbExpress datasets. Rather, they connect the dbExpress dataset to a client dataset, which buffers records in
memory and provides support for editing and navigation. For more information about this architecture, see
Database architecture.

Note: For very simple applications, you can use TSQLClientDataSet instead of a dbExpress dataset connected
to a client dataset. This has the benefit of simplicity, because there is a 1:1 correspondence between the
dataset in the application you are porting and the dataset in the ported application, but is less flexible that
explicitly connecting a dbExpress dataset to a client dataset. For most applications, it is recommended that
you use a dbExpress dataset connected to a TClientDataSet component.

 DevGuide: Building applications with Delphi

User interface-level differences
Topic groups See also

CLX data-aware controls are designed to be as similar as possible to the corresponding Windows controls. As a
result, porting the user-interface portion of your database applications introduces few additional considerations
beyond those involved in porting any Windows application to CLX.

The major differences at the user interface level arise from differences in the way dbExpress datasets or client
datasets supply data.

If you are using only dbExpress datasets, then you must adjust your user interface to accommodate the fact that the
datasets do not support editing and only support forward navigation. Thus, for example, you may need to remove
controls that allow users to move to a previous record. Because dbExpress datasets do not buffer data, you can’t
display data in a data-aware grid: only one record can be displayed at a time.

If you have connected the dbExpress dataset to a client dataset, then the user interface elements associated with
editing and navigation should still work. You need only reconnect them to the client dataset. The main consideration
in this case is handling how updates are written to the database. By default, most datasets on Windows write
updates to the database server automatically when they are posted (for example, when the user moves to a new
record). Client datasets, on the other hand, always cache updates in memory. For information on how to
accommodate this difference, see Updating data in dbExpress applications.

 DevGuide: Building applications with Delphi

Porting database applications to Linux
Topic groups See also

Porting your database application to dbExpress allows you to create a cross-platform application that runs both on
Windows and Linux. The porting process involves making changes to your application because the technology is
different. How difficult it is to port depends on the type of application it is, how complex it is, and what it needs to
accomplish. An application that heavily uses Windows-specific technologies such as ADO will be more difficult to
port than one that uses Delphi database technology.

Follow these general steps to port your Windows/VCL database application to Kylix/CLX:
1 Consider where database data is stored. dbExpress provides drivers for Oracle, Interbase, DB2, and MySQL.

The data needs to reside on one of these SQL servers.

Some versions of Delphi include the Data Pump utility which you can use to move local database data from
platforms such as Paradox, dBase, and FoxPro onto one of the supported platforms. (See the datapump.hlp file
in Program Files\Common Files\Borland\Shared\BDE for information on using the utility.)

2 If you have not isolated your user interface forms from data modules containing the datasets and connection
components, you may want to consider doing so before you start the port. That way, you isolate the portions of
your application that require a completely new set of components into data modules. Forms that represent the
user interface can then be ported like any other application. For details, see Porting your application.

The remaining steps assume that your datasets and connection components are isolated in their own data
modules.

3 Create a new data module to hold the CLX versions of your datasets and connection components.
4 For each dataset in the original application, add a dbExpress dataset, TDataSetProvider component, and

TClientDataSet component. Use the correspondences described in Component-level differences to decide
which dbExpress dataset to use. Give these components meaningful names.

Set the ProviderName property of the TClientDataSet component to the name of the TDataSetProvider
component.

Set the DataSet property of the TDataSetProvider component to the dbExpress dataset.

Change the DataSet property of any data source components that referred to the original dataset so that it
now refers to the client dataset.

5 Set properties on the new dataset to match the original dataset:

If the original dataset was a TTable, TADOTable, or TIBTable component, set the new TSQLTable’s
TableName property to the original dataset’s TableName. Also copy any properties used to set up master/detail
relationships or specify indexes. Properties specifying ranges and filters should be set on the client dataset rather
than the new TSQLTable component.

If the original dataset was a TQuery, TADOQuery, or TIBQuery component, set the new TSQLQuery
component’s SQL property to the original dataset’s SQL property. Set the Params property of the new TSQLQuery to
match the value of the original dataset’s Params or Parameters property. If you have set the DataSource property to
establish a master/detail relationship, copy this as well.

If the original dataset was a TStoredProc, TADOStoredProc, or TIBStoredProc component, set the new
TSQLStoredProc component’s StoredProcName to the StoredProcName or ProcedureName property of the original
dataset. Set the Params property of the new TSQLStoredProc to match the value of the original dataset’s Params or
Parameters property.

6 For any database connection components in the original application (TDatabase, TIBDatabase, or
TADOConnection), add a TSQLConnection component to the new data module. You must also add a
TSQLConnection component for every database server to which you connected without a connection
component (for example, by using the ConnectionString property on an ADO dataset or by setting the
DatabaseName property of a BDE dataset to a BDE alias).

7 For each dbExpress dataset placed in step 4, set its SQLConnection property to the TSQLConnection
component that corresponds to the appropriate database connection.

8 On each TSQLConnection component, specify the information needed to establish a database connection. To
do so, double-click the TSQLConnection component to display the Connection Editor and set parameter
values to indicate the appropriate settings. If you had to transfer data to a new database server in step 1, then
specify settings appropriate to the new server. If you are using the same server as before, you can look up
some of this information on the original connection component:

If the original application used TDatabase, you must transfer the information that appears in the Params and
TransIsolation properties.

If the original application used TADOConnection, you must transfer the information that appears in the
ConnectionString and IsolationLevel properties.

If the original application used TIBDatabase, you must transfer the information that appears in the
DatabaseName and Params properties.

If there was no original connection component, you must transfer the information associated with the BDE
alias or that appeared in the dataset’s ConnectionString property.

You may want to save this set of parameters under a new connection name. For more details on this process,
see Controlling connections.

 DevGuide: Building applications with Delphi

Updating data in dbExpress applications
Topic groups See also

dbExpress applications use client datasets to support editing. When you post edits to a client dataset, the changes
are written to the client dataset’s in-memory snapshot of the data, but are not automatically written to the database
server. If your original application used a client dataset for caching updates, then you do not need to change
anything to support editing on Linux. However, if you relied on the default behavior of most datasets on Windows,
which is to write edits to the database server when you post records, you must make changes to accommodate the
use of a client dataset.

There are two ways to convert an application that did not previously cache updates:

You can mimic the behavior of the dataset on Windows by writing code to apply each updated record to the
database server as soon as it is posted. To do this, supply the client dataset with an AfterPost event handler that
applies update to the database server:

procedure TForm1.ClientDataSet1AfterPost(DataSet: TDataSet);
begin
 with DataSet as TClientDataSet do
 ApplyUpdates(1);
end;

You can adjust your user interface to deal with cached updates. This approach has certain advantages, such
as reducing the amount of network traffic and minimizing transaction times. However, if you switch to using cached
updates, you must decide when to apply those updates back to the database server, and probably make user
interface changes to let users initiate the application of updates or inform provide them with feedback about whether
their edits have been written to the database. Further, because update errors are not detected when the user posts a
record, you will need to change the way you report such errors to the user, so that they can see which update caused
a problem as well as what type of problem occurred.
If your original application used the support provided by the BDE or ADO for caching updates, you will need to make
some adjustments in your code to switch to using a client dataset. The following table lists the properties, events,
and methods that support cached updates on BDE and ADO datasets, and the corresponding properties, methods
and events on TClientDataSet:

On BDE datasets
(or TDatabase)

On ADO datasets On TClientDataSet Purpose

 CachedUpdates LockType Not needed, client datasets
always cache updates.

Determines whether cached updates are in
effect.

Not supported. CursorType Not supported. Specifies how isolated the dataset is from
changes on the server.

UpdatesPending Not supported. ChangeCount Indicates whether the local cache contains
updated records that need to be applied to the
database.

UpdateRecordTypes FilterGroup StatusFilter Indicates the kind of updated records to make
visible when applying cached updates.

UpdateStatus RecordStatus UpdateStatus Indicates if a record is unchanged, modified,
inserted, or deleted.

OnUpdateError Not supported. OnReconcileError An event for handling update errors on a
record-by-record basis.

ApplyUpdates
(on dataset or database)

UpdateBatch ApplyUpdates Applies records in the local cache to the
database.

CancelUpdates CancelUpdates or
CancelBatch

CancelUpdates Removes pending updates from the local cache
without applying them.

CommitUpdates Handled automatically Reconcile Clears the update cache following successful
application of updates.

 FetchAll Not supported GetNextPacket
(and PacketRecords)

Copies database records to the local cache for
editing and updating.

 RevertRecord CancelBatch RevertRecord Undoes updates to the current record if updates
are not yet applied.

 DevGuide: Building applications with Delphi

Cross-platform Internet applications
Topic groups See also

An Internet application is a client/server application that uses standard Internet protocols for connecting the client to
the server. Because your applications use standard Internet protocols for client/server communications, you can
make your applications cross-platform. For example, a server-side program for an Internet application
communicates with the client through the Web server software for the machine. The server application is typically
written for Linux or Windows, but can also be cross-platform. The clients can be on either platform.

You can use Delphi or Kylix to create Web server applications as CGI or Apache applications for deployment on
Linux. On Windows, you can create other types of Web servers such as Microsoft Server DLLs (ISAPI), Netscape
Server DLLs (NSAPI), and Windows CGI applications. Only straight CGI applications and some applications that
use Web Broker will run on both Windows and Linux.

 DevGuide: Building applications with Delphi

Porting Internet applications to Linux
Topic groups See also

If you have existing Internet applications that you want to make cross-platform, you should consider whether you
want to port your Web server application or if you want to create a new application on Linux. See Creating Internet
server applications for information on writing Web servers. If your application uses Web Broker and writes to the
Web Broker interface and does not use native API calls, it will not be as difficult to port it to Linux.

If your application writes to ISAPI, NSAPI, Windows CGI, or other Web APIs, it will be more difficult to port. You will
need to search through your source files and translate these API calls into Apache (see httpd.pas in the Internet
directory for function prototypes for Apache APIs) or CGI calls. You also need to make all other suggested changes
described in Porting VCL applications to CLX.

 DevGuide: Building applications with Delphi

About packages
Topic groups See also

A package is a special dynamic-link library used by Delphi applications, the IDE, or both. Runtime packages provide
functionality when a user runs an application. Design-time packages are used to install components in the IDE and
to create special property editors for custom components. A single package can function at both design time and
runtime, and design-time packages frequently work by calling runtime packages. To distinguish them from other
DLLs, package libraries are stored in files that end with the .bpl (Borland package library) extension.

Like other runtime libraries, packages contain code that can be shared among applications. For example, the most
frequently used Delphi components reside in a package called vcl. Each time you create an application, it
automatically uses vcl. When you compile an application created this way, the application’s executable image
contains only the code and data unique to it; the common code is in the runtime package called vcl60.bpl. A
computer with several package-enabled applications installed on it needs only a single copy of vcl60.bpl, which is
shared by all the applications and the Delphi IDE itself.

Delphi ships with several precompiled runtime packages that encapsulate VCL and CLX components. Delphi also
uses design-time packages to manipulate components in the IDE.

You can build applications with or without packages. However, if you want to add custom components to the IDE,
you must install them as design-time packages.

You can create your own runtime packages to share among applications. If you write Delphi components, you can
compile your components into design-time packages before installing them.

Package topics:

Why use packages?

Packages and standard DLLs

Runtime packages

Using runtime packages in an application

Deciding which runtime packages to use

Custom packages

Design-time packages

Installing component packages

Creating and editing packages

Creating a package

Editing an existing package

Editing package source files manually

Understanding the structure of a package

          Naming packages

          The Requires clause

              Avoiding circular package references

              Handling duplicate package references

          The Contains clause

              Avoiding redundant source code uses

Compiling packages

      Package-specific compiler directives

          Weak packaging

      Using the command-line compiler and linker

      Package files created by a successful compilation

Deploying packages

Deploying applications that use packages

Distributing packages to other developers

Package collection files

 DevGuide: Building applications with Delphi

Why use packages?
Topic groups See also

Design-time packages simplify the tasks of distributing and installing custom components. Runtime packages,
which are optional, offer several advantages over conventional programming. By compiling reused code into a
runtime library, you can share it among applications. For example, all of your applications—including Delphi itself—
can access standard components through packages. Since the applications don’t have separate copies of the
component library bound into their executables, the executables are much smaller—saving both system resources
and hard disk storage. Moreover, packages allow faster compilation because only code unique to the application is
compiled with each build.

For more information, see Packages and standard DLLs.

 DevGuide: Building applications with Delphi

Packages and standard DLLs
Topic groups See also

Create a package when you want to make a custom component that’s available through the IDE. Create a standard
DLL when you want to build a library that can be called from any application, regardless of the development tool
used to build the application.

The following table lists the file types associated with packages:

File extension Contents

dpk The source file listing the units contained in the package.
dcp A binary image containing a package header and the concatenation of all dcu files in

the package, including all symbol information required by the compiler. A single dcp
file is created for each package. The base name for the dcp is the base name of the
dpk source file. You must have a .dcp file to build an application with packages.

dcu A binary image for a unit file contained in a package. One dcu is created, when
necessary, for each unit file.

bpl The runtime package. This file is a Windows DLL with special Delphi-specific
features. The base name for the bpl is the base name of the dpk source file.

You can include VCL or CLX or both types of components in a package. Packages meant to be cross-platform
should include CLX components only.

Note: Packages share their global data with other modules in an application.

 DevGuide: Building applications with Delphi

Runtime packages
Topic groups See also

Runtime packages are deployed with Delphi applications. They provide functionality when a user runs the
application.

To run an application that uses packages, a computer must have both the application’s executable file and all the
packages (.bpl files) that the application uses. The .bpl files must be on the system path for an application to use
them. When you deploy an application, you must make sure that users have correct versions of any required .bpls.

Using runtime packages in an application

Deciding which runtime packages to use

Custom packages

 DevGuide: Building applications with Delphi

Using runtime packages in an application
Topic groups See also

To use packages in an application,
1 Load or create a project in the IDE.
2 Choose Project|Options.
3 Choose the Packages tab.
4 Select the “Build with Runtime Packages” check box, and enter one or more package names in the edit box

underneath. (Runtime packages associated with installed design-time packages are already listed in the edit
box.)

5 To add a package to an existing list, click the Add button and enter the name of the new package in the Add
Runtime Package dialog. To browse from a list of available packages, click the Add button, then click the
Browse button next to the Package Name edit box in the Add Runtime Package dialog.

If you edit the Search Path edit box in the Add Runtime Package dialog, you will be changing Delphi’s global
Library Path.
You do not need to include file extensions with package names (or the number representing the Delphi release);
that is, vcl60.bpl is written as vcl. If you type directly into the Runtime Packages edit box, be sure to separate
multiple names with semicolons. For example:

rtl;vcl;vcldb;vclado;vclx;Vclbde;

Packages listed in the Runtime Packages edit box are automatically linked to your application when you compile.
Duplicate package names are ignored, and if the edit box is empty the application is compiled without packages.

Runtime packages are selected for the current project only. To make the current choices into automatic defaults for
new projects, select the “Defaults” check box at the bottom of the dialog.

Note: When you create an application with packages, you still need to include the names of the original Delphi
units in the uses clause of your source files. For example, the source file for your main form might begin
like this:

unit MainForm;
interface
uses
Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
 Dialogs;

The units referenced in this example are contained in the vcl and rtl packages. Nonetheless, you must keep these
references in the uses clause, even if you use vcl and rtl in your application, or you will get compiler errors. In
generated source files, Delphi adds these units to the uses clause automatically.

Deciding which runtime packages to use

 DevGuide: Building applications with Delphi

Dynamically loading packages
Topic groups See also

To load a package at runtime, call the LoadPackage function. LoadPackage loads the package, checks for duplicate
units, and calls the initialization blocks of all units contained in the package. For example, the following code could
be executed when a file is chosen in a file-selection dialog.

with OpenDialog1 do
 if Execute then
 with PackageList.Items do
 AddObject(FileName, Pointer(LoadPackage(FileName)));

To unload a package dynamically, call UnloadPackage. Be careful to destroy any instances of classes defined in the
package and to unregister classes that were registered by it.

 DevGuide: Building applications with Delphi

Deciding which runtime packages to use
Topic groups See also

Delphi ships with several precompiled runtime packages, including rtl and vcl, which supply basic language and
component support.

The vcl package contains the most commonly used components; the rtl package includes all the non-component
system functions and Windows interface elements. It does not include database or other special components, which
are available in separate packages.

To create a client/server database application that uses packages, you need at least three runtime packages: vcl
and vcldb. If you want to use Outline components in your application, you also need vclx. To use these packages,
choose Project|Options, select the Packages tab, and enter the following list in the Runtime Packages edit box.

rtl;vcl;Vcldb;vclx;

Actually, you don’t have to include vcl and rtl, because they are referenced in the Requires clause of vcldb. Your
application will compile just the same whether or not vcl and rtl are included in the Runtime Packages edit box.

 DevGuide: Building applications with Delphi

Custom packages
Topic groups See also

A custom package is either a bpl you code and compile yourself or a precompiled package from a third-party
vendor. To use a custom runtime package with an application, choose Project|Options and add the name of the
package to the Runtime Packages edit box on the Packages page. For example, suppose you have a statistical
package called stats.bpl. To use it in an application, the line you enter in the Runtime Packages edit box might look
like this:

rtl;vcl;vcldb;stats

If you create your own packages, you can add them to the list as needed.

 DevGuide: Building applications with Delphi

Design-time packages
Topic groups See also

Design-time packages are used to install components on the IDE’s Component palette and to create special
property editors for custom components.

Delphi ships with many design-time component packages preinstalled in the IDE. Which ones are installed depends
on which version of Delphi you are using and whether or not you have customized it. You can view a list of what
packages are installed on your system by choosing Component|Install Packages.

The design-time packages work by calling runtime packages, which they reference in their Requires clause. For
example, dclstd references vcl. Dclstd itself contains additional functionality that makes most of the standard
components available on the Component palette.

In addition to preinstalled packages, you can install your own component packages, or component packages from
third-party developers, in the IDE. The dclusr design-time package is provided as a default container for new
components.

Installing component packages

 DevGuide: Building applications with Delphi

Installing component packages
Topic groups See also

All components are installed in the IDE as packages. If you’ve written your own components, create and compile a
package that contains them. Your component source code must follow the model described in Overview of
component creation.

To install or uninstall your own components, or components from a third-party vendor, follow these steps:
1 If you are installing a new package, copy or move the package files to a local directory. If the package is

shipped with .bpl, .dcp, and .dcu files be sure to copy all of them.

The directory where you store the .dcp file—and the .dcu files, if they are included with the distribution—must be
in the Delphi Library Path.
If the package is shipped as a .dpc (package collection) file, only the one file needs to be copied; the .dpc file
contains the other files. (For more information about package collection files, see Package collection files.)

2 Choose Component|Install Packages from the IDE menu, or choose Project|Options and click the Packages
tab.

3 A list of available packages appears under “Design packages.”

To install a package in the IDE, select the check box next to it.

To uninstall a package, deselect its check box.

To see a list of components included in an installed package, select the package and click Components.

To add a package to the list, click Add and browse in the Open Package dialog box for the directory where
the .bpl or .dpc file resides (see step 1). Select the .bpl or .dpc file and click Open. If you select a .dpc file, a new
dialog box appears to handle the extraction of the .bpl and other files from the package collection.

To remove a package from the list, select the package and click Remove.
4 Click OK.

The components in the package are installed on the Component palette pages specified in the components’
RegisterComponents procedure, with the names they were assigned in the same procedure.

New projects are created with all available packages installed, unless you change the default settings. To make the
current installation choices into the automatic default for new projects, check the Default check box at the bottom of
the Packages tab of the Project Options dialog box.

To remove components from the Component palette without uninstalling a package, select Component|Configure
Palette, or select Tools|Environment Options and click the Palette tab. The Palette options tab lists each installed
component along with the name of the Component palette page where it appears. Selecting any component and
clicking Hide removes the component from the palette.

 DevGuide: Building applications with Delphi

Creating and editing packages
Topic groups See also

Creating a package involves specifying

A name for the package.

A list of other packages to be required by, or linked to, the new package.

A list of unit files to be contained by, or bound into, the package when it is compiled. The package is
essentially a wrapper for these source-code units, which contain the functionality of the compiled .bpl. The Contains
clause is where you put the source-code units for custom components that you want to compile into a package.
Package source files, which end with the .dpk extension, are generated by the Package editor.

Creating a package

Editing an existing package

Editing package source files manually

Understanding the structure of a package

Compiling packages

 DevGuide: Building applications with Delphi

Creating a package
Topic groups See also

To create a package, follow the procedure below. Refer to Understanding the structure of a package for more
information about the steps outlined here.

Note: Do not use IFDEFs in a package file (.dpk) such as when doing cross-platform development. You can use
them in the source code, however.

1 Choose File|New, select the Package icon, and click OK.
2 The generated package is displayed in the Package editor.
3 The Package editor shows a Requires node and a Contains node for the new package.
4 To add a unit to the contains clause, click the Add to package speed button. In the Add unit page, type a .pas

file name in the Unit file name edit box, or click Browse to browse for the file, and then click OK. The unit
you’ve selected appears under the Contains node in the Package editor. You can add additional units by
repeating this step.

5 To add a package to the requires clause, click the Add to package speed button. In the Requires page, type
a .dcp file name in the Package name edit box, or click Browse to browse for the file, and then click OK. The
package you’ve selected appears under the Requires node in the Package editor. You can add additional
packages by repeating this step.

6 Click the Options speed button, and decide what kind of package you want to build.

To create a design-time only package (a package that cannot be used at runtime), select the Designtime
only radio button. (Or add the {$DESIGNONLY} compiler directive to the dpk file.)

To create a runtime-only package (a package that cannot be installed), select the Runtime only radio button.
(Or add the {$RUNONLY} compiler directive to the dpk file.)

To create a package that is available at both design time and runtime, select the Designtime and runtime
radio button.

7 In the Package editor, click the Compile package speed button to compile your package.

 DevGuide: Building applications with Delphi

Editing an existing package
Topic groups See also

You can open an existing package for editing in several ways:

Choose File|Open (or File|Reopen) and select a dpk file.

Choose Component|Install Packages, select a package from the Design Packages list, and click the Edit
button.

When the Package editor is open, select one of the packages in the Requires node, right-click, and choose
Open.
To edit a package’s description or set usage options, click the Options speed button in the Package editor and
select the Description tab.

The Project Options dialog has a Default check box in the lower left corner. If you click OK when this box is
checked, the options you’ve chosen are saved as default settings for new projects. To restore the original defaults,
delete or rename the defproj.dof file.

 DevGuide: Building applications with Delphi

Editing Package source files manually
Topic groups See also

Package source files, like project files, are generated by Delphi from information you supply. Like project files, they
can also be edited manually. A package source file should be saved with the .dpk (Delphi package) extension to
avoid confusion with other files containing Object Pascal source code.

To open a package source file in the Code editor,
1 Open the package in the Package editor.
2 Right-click in the Package editor and select View Source.

The package heading specifies the name for the package.

The requires clause lists other, external packages used by the current package. If a package does not
contain any units that use units in another package, then it doesn’t need a requires clause.

The contains clause identifies the unit files to be compiled and bound into the package. All units used by
contained units which do not exist in required packages will also be bound into the package, although they won’t be
listed in the contains clause (the compiler will give a warning).

For example, the following code declares the vcldb package (in the source file vcldb60.bpl):
package vcldb;
requires vcldb;
contains rtl, vcl, Db, DBActns, DBOleCtl, Dbcgrids, dbCommon, dbConsts, Dbctrls,

Dbgrids, Dblogdlg, SQLTimSt, FmtBcd;
end.

 DevGuide: Building applications with Delphi

Understanding the structure of a package
Topic groups See also

Packages include the following parts:

Package name

Requires clause

Contains clause

Naming packages

Package names must be unique within a project. If you name a package STATS, the Package editor generates a
source file for it called STATS.dpk; the compiler generates an executable and a binary image called STATS.bpl and
STATS.dcp, respectively. Use STATS to refer to the package in the requires clause of another package, or when
using the package in an application.

Requires clause

The requires clause specifies other, external packages that are used by the current package. An external package
included in the requires clause is automatically linked at compile time into any application that uses both the
current package and one of the units contained in the external package.

If the unit files contained in your package make references to other packaged units, the other packages should
appear in your package’s requires clause or you should add them. If the other packages are omitted from the
requires clause, the compiler will import them into your package ‘implicitly contained units’.

Note: Most packages that you create will require rtl. If using VCL components, you’ll also need to include the vcl
package. If using CLX components for cross-platform programming, you need to include VisualCLX.

Avoiding circular package references

Packages cannot contain circular references in their requires clause. This means that

A package cannot reference itself in its own requires clause.

A chain of references must terminate without rereferencing any package in the chain. If package A requires
package B, then package B cannot require package A; if package A requires package B and package B requires
package C, then package C cannot require package A.

Handling duplicate package references

Duplicate references in a package’s requires clause—or in the Runtime Packages edit box—are ignored by the
compiler. For programming clarity and readability, however, you should catch and remove duplicate package
references.

Contains clause

The contains clause identifies the unit files to be bound into the package. If you are writing your own package, put
your source code in pas files and include them in the contains clause.

Avoiding redundant source code uses

A package cannot appear in the contains clause of another package.

All units included directly in a package’s contains clause, or included indirectly in any of those units, are bound into
the package at compile time.

A unit cannot be contained (directly or indirectly) in more than one package used by the same application, including
the Delphi IDE. This means that if you create a package that contains one of the units in vcl you won’t be able to
install your package in the IDE. To use an already-packaged unit file in another package, put the first package in the
second package’s requires clause.

 DevGuide: Building applications with Delphi

Compiling packages
Topic groups See also

You can compile a package from the IDE or from the command line. To recompile a package by itself from the IDE,
1 Choose File|Open.
2 Select Delphi package (*.dpk) from the Files of Type drop-down list.
3 Select a .dpk file in the dialog.
4 When the Package editor opens, click the Compile speed button.

You can insert compiler directives into your package source code. For more information, see “Package-specific
compiler directives”, below.

If you compile from the command line, several package-specific switches are available. For more information, see
“Using the command-line compiler and linker” on page 11-12.

Package-specific compiler directives

Weak packaging

Using the command-line compiler and linker

Package files created by a successful compilation

 DevGuide: Building applications with Delphi

Package-specific compiler directives
Topic groups See also

The following table lists package-specific compiler directives that you can insert into your source code.

Directive Purpose

{$IMPLICITBUILD OFF} Prevents a package from being implicitly recompiled later. Use
in .dpk files when compiling packages that provide low-level
functionality, that change infrequently between builds, or whose
source code will not be distributed.

{$G-} or {IMPORTEDDATA OFF} Disables creation of imported data references. This directive
increases memory-access efficiency, but prevents the unit where
it occurs from referencing variables in other packages.

{$WEAKPACKAGEUNIT ON} Packages unit “weakly.” See Weak packaging.
{$DENYPACKAGEUNIT ON} Prevents unit from being placed in a package.
{$DESIGNONLY ON} Compiles the package for installation in the IDE. (Put in .dpk file.)
{$RUNONLY ON} Compiles the package as runtime only. (Put in .dpk file.)

Note: Including {$DENYPACKAGEUNIT ON} in your source code prevents the unit file from being packaged.
Including {$G-} or {$IMPORTEDDATA OFF} may prevent a package from being used in the same
application with other packages. Packages compiled with the {$DESIGNONLY ON} directive should not
ordinarily be used in applications, since they contain extra code required by the IDE. Other compiler
directives may be included, if appropriate, in package source code. See Compiler directives for information
on compiler directives not discussed here.

Refer to Creating packages and DLLs for additional directives that can be used in all libraries.

 DevGuide: Building applications with Delphi

Weak packaging
Topic groups See also

The $WEAKPACKAGEUNIT directive affects the way a .dcu file is stored in a package’s .dcp and .bpl files. (For
information about files generated by the compiler, see Package files created by a successful compilation .) If
{$WEAKPACKAGEUNIT ON} appears in a unit file, the compiler omits the unit from bpls when possible, and
creates a non-packaged local copy of the unit when it is required by another application or package. A unit compiled
with this directive is said to be “weakly packaged.”

For example, suppose you’ve created a package called PACK that contains only one unit, UNIT1. Suppose UNIT1
does not use any further units, but it makes calls to RARE.dll. If you put {$WEAKPACKAGEUNIT ON} in
UNIT1.pas when you compile your package, UNIT1 will not be included in PACK.bpl; you will not have to distribute
copies of RARE.dll with PACK. However, UNIT1 will still be included in PACK.dcp. If UNIT1 is referenced by another
package or application that uses PACK, it will be copied from PACK.dcp and compiled directly into the project.

Now suppose you add a second unit, UNIT2, to PACK. Suppose that UNIT2 uses UNIT1. This time, even if you
compile PACK with {$WEAKPACKAGEUNIT ON} in UNIT1.pas, the compiler will include UNIT1 in PACK.bpl. But
other packages or applications that reference UNIT1 will use the (non-packaged) copy taken from PACK.dcp.

Note: Unit files containing the {$WEAKPACKAGEUNIT ON} directive must not have global variables,
initialization sections, or finalization sections.

The $WEAKPACKAGEUNIT directive is an advanced feature intended for developers who distribute their packages
to other Delphi programmers. It can help you to avoid distribution of infrequently used DLLs, and to eliminate
conflicts among packages that may depend on the same external library.

For example, Delphi’s PenWin unit references PenWin.dll. Most projects don’t use PenWin, and most computers
don’t have PenWin.dll installed on them. For this reason, the PenWin unit is weakly packaged in vcl. When you
compile a project that uses PenWin and the vcl package, PenWin is copied from VCL60.dcp and bound directly into
your project; the resulting executable is statically linked to PenWin.dll.

If PenWin were not weakly packaged, two problems would arise. First, vcl itself would be statically linked to
PenWin.dll, and so you could not load it on any computer which didn’t have PenWin.dll installed. Second, if you
tried to create a package that contained PenWin, a compiler error would result because the PenWin unit would be
contained in both vcl and your package. Thus, without weak packaging, PenWin could not be included in standard
distributions of vcl.

 DevGuide: Building applications with Delphi

Using the command-line compiler and linker
Topic groups See also

When you compile from the command line, you can use the package-specific switches listed in the following table.

Switch Purpose

-$G- Disables creation of imported data references. Using this switch increases memory-
access efficiency, but prevents packages compiled with it from referencing variables in
other packages.

-LEpath Specifies the directory where the package bpl file will be placed.
-LNpath Specifies the directory where the package dcp file will be placed.
-LUpackage Use packages.
-Z Prevents a package from being implicitly recompiled later. Use when compiling

packages that provide low-level functionality, that change infrequently between builds,
or whose source code will not be distributed.

Note: Using the -$G- switch may prevent a package from being used in the same application with other
packages. Other command-line options may be used, if appropriate, when compiling packages. See The
Command-line compiler for information on command-line options not discussed here.

 DevGuide: Building applications with Delphi

Package files created by a successful compilation
Topic groups See also

To create a package, you compile a source file that has a .dpk extension. The base name of the .dpk file becomes
the base name of the files generated by the compiler. For example, if you compile a package source file called
traypak.dpk, the compiler creates a package called traypak.bpl.

The following table lists the files produced by the successful compilation of a package.

File extension Contents

dcp A binary image containing a package header and the concatenation of all dcu files in the
package. A single dcp file is created for each package. The base name for the dcp is the
base name of the dpk source file.

dcu A binary image for a unit file contained in a package. One dcu is created, when necessary, for
each unit file.

bpl The runtime package. This file is a Windows DLL with special Delphi-specific features. The
base name for the bpl is the base name of the dpk source file.

When compiled, the bpi, bpl, and lib files are generated by default in the directories specified in Library page of the
Tools|Environment Options dialog. You can override the default settings by clicking the Options speed button in the
Package editor to display the Project Options dialog; make any changes on the Directories/Conditionals page.

 DevGuide: Building applications with Delphi

Deploying packages
Topic groups See also

You deploy packages much like you deploy other applications. For general deployment information, refer to
Deploying applications.

Deploying applications that use packages

When distributing an application that uses runtime packages, make sure that your users have the application’s .exe
file as well as all the library (.bpl or .dll) files that the application calls. If the library files are in a different directory
from the .exe file, they must be accessible through the user’s Path. You may want to follow the convention of putting
library files in the Windows\System directory. If you use InstallShield Express, your installation script can check the
user’s system for any packages it requires before blindly reinstalling them.

Distributing packages to other developers

If you distribute runtime or design-time packages to other Delphi developers, be sure to supply both .dcp and .bpl
files. You will probably want to include .dcu files as well.

 DevGuide: Building applications with Delphi

Package collection files
Topic groups See also

Package collections (.dpc files) offer a convenient way to distribute packages to other developers. Each package
collection contains one or more packages, including bpls and any additional files you want to distribute with them.
When a package collection is selected for IDE installation, its constituent files are automatically extracted from
their .pce container; the Installation dialog box offers a choice of installing all packages in the collection or installing
packages selectively.

To create a package collection,
1 Choose Tools|Package Collection Editor to open the Package Collection editor.
2 Click the Add a Package speed button, then select a bpl in the Select Package dialog and click Open. To add

more bpls to the collection, click the Add a Package speed button again. A tree diagram on the left side of the
Package editor displays the bpls as you add them. To remove a package, select it and click the Remove
Package speed button.

3 Select the Collection node at the top of the tree diagram. On the right side of the Package Collection editor,
two fields will appear:

In the Author/Vendor Name edit box, you can enter optional information about your package collection that
will appear in the Installation dialog when users install packages.

Under Directory List, list the default directories where you want the files in your package collection to be
installed. Use the Add, Edit, and Delete buttons to edit this list. For example, suppose you want all source code files
to be copied to the same directory. In this case, you might enter Source as a Directory Name with C:
\MyPackage\Source as the Suggested Path. The Installation dialog box will display C:\MyPackage\Source as the
suggested path for the directory.

4 In addition to bpls, your package collection can contain .dcp, .dcu, and .pas (unit) files, documentation, and
any other files you want to include with the distribution. Ancillary files are placed in file groups associated with
specific packages (bpls); the files in a group are installed only when their associated bpl is installed. To place
ancillary files in your package collection, select a bpl in the tree diagram and click the Add File Group speed
button; type a name for the file group. Add more file groups, if desired, in the same way. When you select a file
group, new fields will appear on the right in the Package Collection editor,

In the Install Directory list box, select the directory where you want files in this group to be installed. The
drop-down list includes the directories you entered under Directory List in step 3, above.

Check the Optional Group check box if you want installation of the files in this group to be optional.

Under Include Files, list the files you want to include in this group. Use the Add, Delete, and Auto buttons to
edit the list. The Auto button allows you to select all files with specified extensions that are listed in the contains
clause of the package; the Package Collection editor uses Delphi’s global Library Path to search for these files.

5 You can select installation directories for the packages listed in the requires clause of any package in your
collection. When you select a bpl in the tree diagram, four new fields appear on the right side of the Package
Collection editor:

In the Required Executables list box, select the directory where you want the .bpl files for packages listed in
the requires clause to be installed. (The drop-down list includes the directories you entered under Directory List in
step 3, above.) The Package Collection Editor searches for these files using Delphi’s global Library Path and lists
them under Required Executable Files.

In the Required Libraries list box, select the directory where you want the .dcp files for packages listed in the
requires clause to be installed. (The drop-down list includes the directories you entered under Directory List in step
3, above.) The Package Collection Editor searches for these files using Delphi’s global Library Path and lists them
under Required Library Files.

6 To save your package collection source file, choose File|Save. Package collection source files should be
saved with the .pce extension.

7 To build your package collection, click the Compile speed button. The Package Collection editor generates
a .dpc file with the same name as your source (.pce) file. If you have not yet saved the source file, the editor
queries you for a file name before compiling.

To edit or recompile an existing .pce file, select File|Open in the Package Collection editor and locate the file you
want to work with.

 DevGuide: Building applications with Delphi

Creating international applications
Topic groups See also

This topic discusses guidelines for writing applications that you plan to distribute to an international market. By
planning ahead, you can reduce the amount of time and code necessary to make your application function in its
foreign market as well as in its domestic market.

The following topics are discussed in this section:

Internationalization and localization

Internationalizing applications

Localizing applications

 DevGuide: Building applications with Delphi

Internationalization and localization
Topic groups See also

To create an application that you can distribute to foreign markets, there are two major steps that need to be
performed:

Internationalization

Localization
If your version of Delphi includes the Translation Tools, you can use the them to manage localization. For more
information, see the online Help for the Translation Tools (ETM.hlp).

 DevGuide: Building applications with Delphi

Internationalization
Topic groups See also

Internationalization is the process of enabling your program to work in multiple locales. A locale is the user’s
environment, which includes the cultural conventions of the target country as well as the language. Windows
supports a large set of locales, each of which is described by a language and country pair.

 DevGuide: Building applications with Delphi

Localization
Topic groups See also

Localization is the process of translating an application so that it functions in a specific locale. In addition to
translating the user interface, localization may include functionality customization. For example, a financial
application may be modified to be aware of the different tax laws in different countries.

 DevGuide: Building applications with Delphi

Internationalizing applications
Topic groups See also

You need to complete the following steps to create internationalized applications:

You must enable your code to handle strings from international character sets.

You need to design your user interface so that it can accommodate the changes that result from localization.

You need to isolate all resources that need to be localized.

 DevGuide: Building applications with Delphi

Enabling application code
Topic groups See also

You must make sure that the code in your application can handle the strings it will encounter in the various target
locales. To do this, you must consider the following:

Character sets

OEM and ANSI character sets

Double byte character sets

Wide characters

Locale-specific features

 DevGuide: Building applications with Delphi

Character sets
Topic groups See also

The United States edition of Windows uses the ANSI Latin-1 (1252) character set. However, other editions of
Windows use different character sets. For example, the Japanese version of Windows uses the Shift-JIS character
set (code page 932), which represents Japanese characters as multibyte character codes.

There are generally three types of characters sets:

Single-byte

Multibyte

Fixed-width multibyte
Windows and Linux both support single-byte and multibyte character sets as well as Unicode. With a single-byte
character set, each byte in a string represents one character. The ANSI character set used by many Western
operating systems is a single-byte character set.

In a multibyte character set, some characters are represented by one byte and others by more than one byte. The
first byte of a multibyte character is called the lead byte. In general, the lower 128 characters of a multibyte
character set map to the 7-bit ASCII characters, and any byte whose ordinal value is greater than 127 is the lead
byte of a multibyte character. Only single-byte characters can contain the null value (#0). Multibyte character sets—
especially double-byte character sets (DBCS)—are widely used for Asian languages, while the UTF-8 character set
used by Linux is a multibyte encoding of Unicode.

 DevGuide: Building applications with Delphi

OEM and ANSI character sets
Topic groups See also

It is sometimes necessary to convert between the Windows character set (ANSI) and the character set specified by
the code page of the user’s machine (called the OEM character set).

 DevGuide: Building applications with Delphi

Double byte character sets
Topic groups See also

The ideographic character sets used in Asia cannot use the simple 1:1 mapping between characters in the
language and the one byte (8-bit) char type. These languages have too many characters to be represented using
the 1-byte char. Instead, a multibyte string can contain one or more bytes per character. AnsiStrings can contain a
mix of single-byte and multibyte characters.

The lead byte of every multibyte character code is taken from a reserved range that depends on the specific
character set. The second and subsequent bytes can sometimes be the same as the character code for a separate
1-byte character, or it can fall in the range reserved for the first byte of multibyte characters. Thus, the only way to
tell whether a particular byte in a string represents a single character or is part of a multibyte character is to read the
string, starting at the beginning, parsing it into 2 or more byte characters when a lead byte from the reserved range
is encountered.

When writing code for Asian locales, you must be sure to handle all string manipulation using functions that are
enabled to parse strings into multibyte characters. Delphi provides you with many runtime library functions that
allow you to do this, many of which are listed here:

AdjustLineBreaks AnsiStrLower ExtractFileDir

AnsiCompareFileName AnsiStrPos ExtractFileExt

AnsiExtractQuotedStr AnsiStrRScan ExtractFileName

AnsiLastChar AnsiStrScan ExtractFilePath

AnsiLowerCase AnsiStrUpper ExtractRelativePath

AnsiLowerCaseFileName AnsiUpperCase FileSearch

AnsiPos AnsiUpperCaseFileName IsDelimiter

AnsiQuotedStr ByteToCharIndex IsPathDelimiter

AnsiStrComp ByteToCharLen LastDelimiter

AnsiStrIComp ByteType StrByteType

AnsiStrLastChar ChangeFileExt StringReplace

AnsiStrLComp CharToByteIndex WrapText

AnsiStrLIComp CharToByteLen

Remember that the length of the strings in bytes does not necessarily correspond to the length of the string in
characters. Be careful not to truncate strings by cutting a multibyte character in half. Do not pass characters as a
parameter to a function or procedure, since the size of a character can’t be known up front. Instead, always pass a
pointer to a character or a string.

 DevGuide: Building applications with Delphi

Wide characters
Topic groups See also

One approach to working with ideographic character sets is to convert all characters to a wide character encoding
scheme such as Unicode. Unicode characters and strings are also called wide characters and wide character
strings. In the Unicode character set, each character is represented by two bytes. Thus a Unicode string is a
sequence not of individual bytes but of two-byte words.

The first 256 Unicode characters map to the ANSI character set. The Windows operating system supports Unicode
(UCS-2). The Linux operating system supports UCS-4, a superset of UCS-2. Delphi/Kylix supports UCS-2 on both
platforms. Because wide characters are two bytes instead of one, the character set can represent many more
different characters.

Using a wide character encoding scheme has the advantage that you can make many of the usual assumptions
about strings that do not work for MBCS systems. There is a direct relationship between the number of bytes in the
string and the number of characters in the string. You do not need to worry about cutting characters in half or
mistaking the second half of a character for the start of a different character.

The biggest disadvantage of working with wide characters is that Windows 9x only supports a few wide character
API function calls. Because of this, the VCL components represent all string values as single byte or MBCS strings.
Translating between the wide character system and the MBCS system every time you set a string property or read
its value would require additional code and slow your application down. However, you may want to translate into
wide characters for some special string processing algorithms that need to take advantage of the 1:1 mapping
between characters and WideChars.

 DevGuide: Building applications with Delphi

Including bi-directional functionality in applications
Topic groups See also

Some languages do not follow the left to right reading order commonly found in western languages, but rather read
words right to left and numbers left to right. These languages are termed bi-directional (BiDi) because of this
separation. The most common bi-directional languages are Arabic and Hebrew, although other Middle East
languages are also bi-directional.

TApplication has two properties, BiDiKeyboard and NonBiDiKeyboard, that allow you to specify the keyboard layout.
In addition, the VCL supports bi-directional localization through the BiDiMode and ParentBiDiMode properties. The
following table lists VCL objects that have these properties:

Component palette page VCL object

Standard TButton
 TCheckBox
 TComboBox
 TEdit
 TGroupBox
 TLabel
 TListBox
 TMainMenu
 TMemo
 TPanel
 TPopupMenu
 TRadioButton
 TRadioGroup
 TScrollBar
Additional TActionMainMenuBar

TActionToolBar
 TCheckListBox
 TDrawGrid
 TMaskEdit
 TScrollBox
 TSpeedButton
 TStaticLabel
Win32 TComboBoxEx
 THeaderControl
 TListView
 TMonthCalendar
 TPageControl
 TRichEdit
 TStatusBar
 TTreeView
Data Controls TDBCheckBox
 TDBComboBox
 TDBEdit
 TDBGrid
 TDBListBox
 TDBLookupComboBox
 TDBLookupListBox
 TDBMemo
 TDBRadioGroup
 TDBRichEdit
 TDBText
QReport TQRDBText
 TQRExpr
 TQRLabel

 TQRMemo
 TQRSysData
Other classes TApplication (has no ParentBiDiMode)
 TForm
 THintWindow (has no ParentBiDiMode)
 TValueListEditor

Notes: THintWindow picks up the BiDiMode of the control that activated the hint.

 DevGuide: Building applications with Delphi

Bi-directional properties
Topic groups See also

TApplication‘s BiDiKeyboard and NonBiDiKeyboard, support bi-directional localization.

Note: Bi-directional properties are not available in CLX for cross-platform programming.
The property BiDiMode is a new enumerated type, TBiDiMode, with four states: bdLeftToRight, bdRightToLeft,
bdRightToLeftNoAlign, and bdRightToLeftReadingOnly.

bdLeftToRight

bdLeftToRight draws text using left to right reading order, and the alignment and scroll bars are not changed. For
instance, when entering right to left text, such as Arabic or Hebrew, the cursor goes into push mode and the text is
entered right to left. Latin text, such as English or French, is entered left to right. bdLeftToRight is the default value.

bdRightToLeft

bdRightToLeft draws text using right to let reading order, the alignment is changed and the scroll bar is moved. Text
is entered as normal for right-to-left languages such as Arabic or Hebrew. When the keyboard is changed to a Latin
language, the cursor goes into push mode and the text is entered left-to-right.

bdRightToLeftNoAlign

bdRightToLeftNoAlign draws text using right to left reading order, the alignment is not changed, and the scroll bar is
moved.

bdRightToLeftReadingOnly

bdRightToLeftReadingOnly draws text using right to left reading order, and the alignment and scroll bars are not
changed.

 DevGuide: Building applications with Delphi

ParentBiDiMode property
Topic groups See also

ParentBiDiMode is a Boolean property. When True (the default) the control looks to its parent to determine what
BiDiMode to use. If the control is a TForm object, the form uses the BiDiMode setting from Application. If all the
ParentBiDiMode properties are True, when you change Application’s BiDiMode property, all forms and controls in
the project are updated with the new setting.

 DevGuide: Building applications with Delphi

FlipChildren method
Topic groups See also

The FlipChildren method allows you to flip the position of a container control’s children. Container controls are
controls that can accept other controls, such as TForm, TPanel, and TGroupBox. FlipChildren has a single boolean
parameter, AllLevels. When False, only the immediate children of the container control are flipped. When True, all
the levels of children in the container control are flipped.

Delphi flips the controls by changing the Left property and the alignment of the control. If a control’s left side is five
pixels from the left edge of its parent control, after it is flipped the edit control’s right side is five pixels from the right
edge of the parent control. If the edit control is left aligned, calling FlipChildren will make the control right aligned.

To flip a control at design-time select Edit|Flip Children and select either All or Selected, depending on whether you
want to flip all the controls, or just the children of the selected control. You can also flip a control by selecting the
control on the form, right-clicking, and selecting Flip Children from the context menu.

Note: Selecting an edit control and issuing a Flip Children|Selected command does nothing. This is because edit
controls are not containers.

 DevGuide: Building applications with Delphi

Additional methods
Topic groups See also

There are several other methods useful for developing applications for bi-directional users.

Method Description

OkToChangeFieldAlignment Used with database controls. Checks to see if the alignment
of a control can be changed.

DBUseRightToLeftAlignment A wrapper for database controls for checking alignment.
ChangeBiDiModeAlignment Changes the alignment parameter passed to it. No check is

done for BiDiMode setting, it just converts left alignment into
right alignment and vice versa, leaving center-aligned
controls alone.

IsRightToLeft Returns True if any of the right to left options are selected. If it
returns False the control is in left to right mode.

UseRightToLeftReading Returns True if the control is using right to left reading.
UseRightToLeftAlignment Returns True if the control is using right to left alignment. It

can be overridden for customization.
UseRightToLeftScrollBar Returns True if the control is using a left scroll bar.
DrawTextBiDiModeFlags Returns the correct draw text flags for the BiDiMode of the

control.
DrawTextBiDiModeFlagsReadingOnly Returns the correct draw text flags for the BiDiMode of the

control, limiting the flag to its reading order.
AddBiDiModeExStyle Adds the appropriate ExStyle flags to the control that is being

created.

 DevGuide: Building applications with Delphi

Locale-specific features
Topic groups See also

You can add extra features to your application for specific locales. In particular, for Asian language environments,
you may want your application to control the input method editor (IME) that is used to convert the keystrokes typed
by the user into character strings.

VCL components offer support in programming the IME. Most windowed controls that work directly with text input
have an ImeName property that allows you to specify a particular IME that should be used when the control has
input focus. They also provide an ImeMode property that specifies how the IME should convert keyboard input.
ImeName introduces several protected methods that you can use to control the IME from classes you define. In
addition, the global Screen variable provides information about the IMEs available on the user’s system.

The global Screen variable (available in VCL and CLX) also provides information about the keyboard mapping
installed on the user’s system. You can use this to obtain locale-specific information about the environment in which
your application is running.

 DevGuide: Building applications with Delphi

Designing the user interface
Topic groups See also

When creating an application for several foreign markets, it is important to design your user interface so that it can
accommodate the changes that occur during translation.

The following topics are discussed in this section:

Text

Graphic images

Formats and sort order

Keyboard mappings

 DevGuide: Building applications with Delphi

Text
Topic groups See also

All text that appears in the user interface must be translated. English text is almost always shorter than its
translations. Design the elements of your user interface that display text so that there is room for the text strings to
grow. Create dialogs, menus, status bars, and other user interface elements that display text so that they can easily
display longer strings. Avoid abbreviations—they do not exist in languages that use ideographic characters.

Short strings tend to grow in translation more than long phrases. The following table provides a rough estimate of
how much expansion you should plan for given the length of your English strings:

Length of English string (in characters) Expected increase

1-5 100%
6-12 80%
13-20 60%
21-30 40%
31-50 20%
over 50 10%

 DevGuide: Building applications with Delphi

Graphic images
Topic groups See also

Ideally, you will want to use images that do not require translation. Most obviously, this means that graphic images
should not include text, which will always require translation. If you must include text in your images, it is a good
idea to use a label object with a transparent background over an image rather than including the text as part of the
image.

There are other considerations when creating graphic images. Try to avoid images that are specific to a particular
culture. For example, mailboxes in different countries look very different from each other. Religious symbols are not
appropriate if your application is intended for countries that have different dominant religions. Even color can have
different symbolic connotations in different cultures.

 DevGuide: Building applications with Delphi

Formats and sort order
Topic groups See also

The date, time, number, and currency formats used in your application should be localized for the target locale. If
you use only the Windows formats, there is no need to translate formats, as these are taken from the user’s
Windows Registry. However, if you specify any of your own format strings, be sure to declare them as resourced
constants so that they can be localized.

The order in which strings are sorted also varies from country to country. Many European languages include
diacritical marks that are sorted differently, depending on the locale. In addition, in some countries, 2-character
combinations are treated as a single character in the sort order. For example, in Spanish, the combination ch is
sorted like a single unique letter between c and d. Sometimes a single character is sorted as if it were two separate
characters, such as the German eszett.

 DevGuide: Building applications with Delphi

Keyboard mappings
Topic groups See also

Be careful with key-combinations shortcut assignments. Not all the characters available on the US keyboard are
easily reproduced on all international keyboards. Where possible, use number keys and function keys for shortcuts,
as these are available on virtually all keyboards.

 DevGuide: Building applications with Delphi

Isolating resources
Topic groups See also

The most obvious task in localizing an application is translating the strings that appear in the user interface. To
create an application that can be translated without altering code everywhere, the strings in the user interface
should be isolated into a single module. Delphi automatically creates a .dfm (.xfm in CLX applications) file that
contains the resources for your menus, dialogs, and bitmaps.

In addition to these obvious user interface elements, you will need to isolate any strings, such as error messages,
that you present to the user. String resources are not included in the form file. You can isolate them by declaring
constants for them using the resourcestring keyword. For more information about resource string constants, see
the Object Pascal Language Guide. It is best to include all resource strings in a single, separate unit.

For information on using resource DLLs in your applications see "Creating resource DLLs” and "Using resource
DLLs.”

 DevGuide: Building applications with Delphi

Creating resource DLLs
Topic groups See also

Isolating resources simplifies the translation process. The next level of resource separation is the creation of a
resource DLL. A resource DLL contains all the resources and only the resources for a program. Resource DLLs
allow you to create a program that supports many translations simply by swapping the resource DLL.

Use the Resource DLL wizard to create a resource DLL for your program. The Resource DLL wizard requires an
open, saved, compiled project. It will create an RC file that contains the string tables from used RC files and
resourcestring strings of the project, and generate a project for a resource only DLL that contains the relevant
forms and the created RES file. The RES file is compiled from the new RC file.

You should create a resource DLL for each translation you want to support. Each resource DLL should have a file
name extension specific to the target locale. The first two characters indicate the target language, and the third
character indicates the country of the locale. If you use the Resource DLL wizard, this is handled for you. Otherwise,
use the following code to obtain the locale code for the target translation:

unit locales;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs,
 StdCtrls;
type
 TForm1 = class(TForm)
 Button1: TButton;
 LocaleList: TListBox;
 procedure Button1Click(Sender: TObject);
 private
 { Private declarations }
 public
 { Public declarations }
 end;
var
 Form1: TForm1;
implementation
{$R *.DFM}
function GetLocaleData(ID: LCID; Flag: DWORD): string;
var
 BufSize: Integer;
begin
 BufSize := GetLocaleInfo(ID, Flag, nil, 0);
 SetLength(Result, BufSize);
 GetLocaleinfo(ID, Flag, PChar(Result), BufSize);
 SetLength(Result, BufSize - 1);
end;
{ Called for each supported locale. }
function LocalesCallback(Name: PChar): Bool; stdcall;
var
 LCID: Integer;
begin
 LCID := StrToInt('$' + Copy(Name, 5, 4));
 Form1.LocaleList.Items.Add(GetLocaleData(LCID, LOCALE_SLANGUAGE));
 Result := Bool(1);
end;
procedure TForm1.Button1Click(Sender: TObject);
var
 I: Integer;
begin
 with Languages do
 begin
 for I := 0 to Count - 1 do
 begin

 ListBox1.Items.Add(Name[I]);
 end;
 end;
end;

 DevGuide: Building applications with Delphi

Using resource DLLs
Topic groups See also

The executable, DLLs, and packages that make up your application contain all the necessary resources. However,
to replace those resources by localized versions, you need only ship your application with localized resource DLLs
that have the same name as your EXE, DLL, or BPL files.

When your application starts up, it checks the locale of the local system. If it finds any resource DLLs with the same
name as the EXE, DLL, or BPL files it is using, it checks the extension on those DLLs. If the extension of the
resource module matches the language and country of the system locale, your application will use the resources in
that resource module instead of the resources in the executable, DLL, or package. If there is not a resource module
that matches both the language and the country, your application will try to locate a resource module that matches
just the language. If there is no resource module that matches the language, your application will use the resources
compiled with the executable, DLL, or package.

If you want your application to use a different resource module than the one that matches the locale of the local
system, you can set a locale override entry in the Windows registry. Under the
HKEY_CURRENT_USER\Software\Borland\Locales key, add your application’s path and file name as a string value
and set the data value to the extension of your resource DLLs. At startup, the application will look for resource DLLs
with this extension before trying the system locale. Setting this registry entry allows you to test localized versions of
your application without changing the locale on your system.

For example, the following procedure can be used in an install or setup program to set the registry key value that
indicates the locale to use when loading Delphi applications:

procedure SetLocalOverrides(FileName: string, LocaleOverride: string);
var
 Reg: TRegistry;
begin
 Reg := TRegistry.Create;
 try
 if Reg.OpenKey('Software\Borland\Locales', True) then
 Reg.WriteString(LocalOverride, FileName);
 finally
 Reg.Free;
end;

Within your application, use the global FindResourceHInstance function to obtain the handle of the current resource
module. For example:

LoadStr(FindResourceHInstance(HInstance), IDS_AmountDueName, szQuery,
SizeOf(szQuery));

You can ship a single application that adapts itself automatically to the locale of the system it is running on, simply
by providing the appropriate resource DLLs.

 DevGuide: Building applications with Delphi

Dynamic switching of resource DLLs
Topic groups See also

In addition to locating a resource DLL at application startup, it is possible to switch resource DLLs dynamically at
runtime. To add this functionality to your own applications, you need to include the ReInit unit in your uses
statement. (ReInit is located in the Richedit sample in the Demos directory.) To switch languages, you should call
LoadResourceModule, passing the LCID for the new language, and then call ReinitializeForms.

For example, the following code switches the interface language to French:

const
 FRENCH = (SUBLANG_FRENCH shl 10) or LANG_FRENCH;
if LoadNewResourceModule(FRENCH) <> 0 then
 ReinitializeForms;

The advantage of this technique is that the current instance of the application and all of its forms are used. It is not
necessary to update the registry settings and restart the application or reacquire resources required by the
application, such as logging in to database servers.

When you switch resource DLLs the properties specified in the new DLL overwrite the properties in the running
instances of the forms.

Note: Any changes made to the form properties at runtime will be lost. Once the new DLL is loaded, default
values are not reset. Avoid code that assumes that the form objects are reinitialized to the their startup
state, apart from differences due to localization.

 DevGuide: Building applications with Delphi

Localizing applications
Topic groups See also

Once your application is internationalized, you can create localized versions for the different foreign markets in
which you want to distribute it.

Ideally, your resources have been isolated into a resource DLL that contains form files (.dfm or .xfm) and a resource
file. You can open your forms in the IDE and translate the relevant properties.

Note: In a resource DLL project, you cannot add or delete components. It is possible, however, to change
properties in ways that could cause runtime errors, so be careful to modify only those properties that
require translation. To avoid mistakes, you can configure the Object Inspector to display only localizable
properties; to do so, right-click in the Object Inspector and use the View menu to filter out unwanted
property categories.

You can open the RC file and translate relevant strings. Use the StringTable editor by opening the RC file from the
Project Manager.

 DevGuide: Building applications with Delphi

Deploying applications
Topic groups See also

Once your Delphi application is up and running, you can deploy it. That is, you can make it available for others to
run. A number of steps must be taken to deploy an application to another computer so that the application is
completely functional. What is required by a given application varies, depending on the type of application. The
following sections describe considerations when deploying different types of applications:

Deploying general applications

Deploying CLX applications

Deploying database applications

Deploying Web applications

Programming for varying host environments

Software license requirements
Note: Information included in these sections is for deploying applications on Windows. If writing cross-platform

applications for deployment on Linux, you need to refer to deployment information provided in your Kylix
documentation.

 DevGuide: Building applications with Delphi

Deploying general applications
Topic groups See also

Beyond the executable file, an application may require a number of supporting files, such as DLLs, package files,
and helper applications. In addition, the Windows registry may need to contain entries for an application, from
specifying the location of supporting files to simple program settings. The process of copying an application’s files to
a computer and making any needed registry settings can be automated by an installation program, such as
InstallShield Express. These are the main deployment concerns common to nearly all types of applications:

Using installation programs

Identifying application files

Helper applications

DLL locations
Delphi applications that access databases and those that run across the Web require additional installation steps
beyond those that apply to general applications.For additional information on installing database applications, see
Deploying database applications. For more information on installing Web applications, see Deploying Web
applications. For more information on installing ActiveX controls, see Deploying an ActiveX control on the Web.

 DevGuide: Building applications with Delphi

Using installation programs
Topic groups See also

Simple Delphi applications that consist of only an executable file are easy to install on a target computer. Just copy
the executable file onto the computer. However, more complex applications that comprise multiple files require more
extensive installation procedures. These applications require dedicated installation programs.

Setup toolkits automate the process of creating installation programs, often without needing to write any code.
Installation programs created with Setup toolkits perform various tasks inherent to installing Delphi applications,
including: copying the executable and supporting files to the host computer, making Windows registry entries, and
installing the Borland Database Engine for BDE database applications.

InstallShield Express is a setup toolkit that is bundled with Delphi. InstallShield Express is certified for use with
Delphi and the Borland Database Engine. It is based on Windows Installer (MSI) technology.

InstallShield Express is not automatically installed when Delphi is installed, so it must be manually installed if you
want to use it to create installation programs. Run the installation program from the Delphi CD to install InstallShield
Express. For more information on using InstallShield Express to create installation programs, see the InstallShield
Express online help.

Other setup toolkits are available. However, if deploying BDE database applications, you should only use toolkits
based on MSI technology and those which are certified to deploy the Borland Database Engine.

 DevGuide: Building applications with Delphi

Identifying application files
Topic groups See also

Besides the executable file, a number of other files may need to be distributed with an application.

Application files, listed by file name extension

Package files

Merge modules

ActiveX controls

 DevGuide: Building applications with Delphi

Application files, listed by file name extension
Topic groups See also

The following types of files may need to be distributed with an application.

Type File name extension

Program files .exe and .dll
Package files .bpl and .dcp
Help files .hlp, .cnt, and .toc (if used) or any other help files your application supports
ActiveX files .ocx (sometimes supported by a DLL)
Local table files .dbf, .mdx, .dbt, .ndx, .db, .px, .y*, .x*, .mb, .val, .qbe, .gd*

 DevGuide: Building applications with Delphi

Package files
Topic groups See also

If the application uses runtime packages, those package files need to be distributed with the application.
InstallShield Express handles the installation of package files the same as DLLs, copying the files and making
necessary entries in the Windows registry. You can also use merge modules for deploying runtime packages with
MSI-based setup tools including InstallShield Express. See Merge modules for details.

Borland recommends installing the runtime package files supplied by Borland in the Windows\System directory. This
serves as a common location so that multiple applications would have access to a single instance of the files. For
packages you created, it is recommended that you install them in the same directory as the application. Only
the .BPL files need to be distributed.

Note: If deploying packages with CLX applications, you need to include clx60.bpl rather than vcl60.bpl.
If you are distributing packages to other developers, supply both the .BPL and the .DCP files.

 DevGuide: Building applications with Delphi

Merge modules
Topic groups See also

InstallShield Express 3.0 is based on Windows Installer (MSI) technology. That is why Delphi includes merge
modules. Merge modules provide a standard method that you can use to deliver shared code, files, resources,
Registry entries, and setup logic to applications as a single compound file. You can use merge modules for
deploying runtime packages with MSI-based setup tools including InstallShield Express.

The runtime libraries have some interdependencies because of the way they are grouped together. The result of
this is that when one package is added to an install project, the install tool automatically adds or reports a
dependency on one or more other packages. For example, if you add the VCLInternet merge module to an install
project, the install tool should also automatically add or report a dependency on the VCLDatabase and
StandardVCL modules.

The dependencies for each merge module are listed in the table below. The various install tools may react to these
dependencies differently. The InstallShield for Windows Installer automatically adds the required modules if it can
find them. Other tools may simply report a dependency or may generate a build failure if all required modules are
not included in the project.

Merge module BPLs included Dependencies

ADORTL adortl60.bpl DatabaseRTL, BaseRTL
BaseClientDataSet cds60.bpl DatabaseRTL, BaseRTL, DataSnap, dbExpress
BaseRTL rtl60.bpl No dependencies
BaseVCL vcl60.bpl, vclx60.bpl BaseRTL
BDEClientDataSet bdecds60.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,

DataSnap, dbExpress, BDERTL
BDEInternet inetdbbde60.bpl Internet, DatabaseRTL, BaseRTL, BDERTL
BDERTL bdertl60.bpl DatabaseRTL, BaseRTL
DatabaseRTL dbrtl60.bpl BaseRTL
DatabaseVCL vcldb60.bpl BaseVCL, DatabaseRTL, BaseRTL
DataSnap dsnap60.bpl DatabaseRTL, BaseRTL
DataSnapConnection dsnapcon60.bpl DataSnap, DatabaseRTL, BaseRTL
DataSnapCorba dsnapcrba60.bpl DataSnapConnection, DataSnap, DatabaseRTL,

BaseRTL, BaseVCL
DataSnapEntera dsnapent60.bpl DataSnap, DatabaseRTL, BaseRTL, BaseVCL
DBCompatVCL vcldbx60.bpl DatabaseVCL, BaseVCL, BaseRTL
dbExpress dbexpress60.bpl DatabaseRTL, BaseRTL
dbExpressClientDataSet dbxcds60.bpl BaseClientDataSet, DataBaseRTL, BaseRTL,

DataSnap, dbExpress
DBXInternet inetdbxpress60.bpl Internet, DatabaseRTL, BaseRTL, dbExpress,

DatabaseVCL, BaseVCL
DecisionCube dss60.bpl TeeChart, BaseVCL, BaseRTL, DatabaseVCL,

DatabaseRTL, BDERTL
FastNet nmfast60.bpl BaseVCL, BaseRTL
InterbaseVCL vclib60.bpl BaseClientDataSet, DatabaseRTL, BaseRTL,

DataSnap, dbExpress, BaseVCL
Internet inet60.bpl, inetdb60.bpl DatabaseRTL, BaseRTL
InternetDirect indy60.bpl BaseVCL, BaseRTL
Office2000Components dcloffice2k60.bpl DatabaseVCL, BaseVCL, DatabaseRTL,

BaseRTL
QuickReport qrpt60.bpl BaseVCL, BaseRTL, BDERTL, DatabaseRTL
SampleVCL vclsmp60.bpl BaseVCL, BaseRTL
TeeChart tee60.bpl, teedb60.bpl,

teeqr60.bpl, teeui60.bpl
BaseVCL, BaseRTL

VCLIE vclie60.bpl BaseVCL, BaseRTL
VisualCLX visualclx60.bpl BaseRTL
WebDataSnap webdsnap60.bpl XMLRTL, Internet, DataSnapConnection,

DataSnap, DatabaseRTL, BaseRTL
WebSnap websnap60.bpl, vcljpg60.bpl WebDataSnap, XMLRTL, Internet,

DataSnapConnection, DataSnap, DatabaseRTL,

BaseRTL, BaseVCL
XMLRTL xmlrtl60.bpl Internet, DatabaseRTL, BaseRTL

 DevGuide: Building applications with Delphi

ActiveX controls
Topic groups See also

Certain components bundled with Delphi are ActiveX controls. The component wrapper is linked into the
application’s executable file (or a runtime package), but the .OCX file for the component also needs to be deployed
with the application. These components include

Chart FX, copyright SoftwareFX Inc.

VisualSpeller Control, copyright Visual Components, Inc.

Formula One (spreadsheet), copyright Visual Components, Inc.

First Impression (VtChart), copyright Visual Components, Inc.

Graph Custom Control, copyright Bits Per Second Ltd.
ActiveX controls of your own creation need to be registered on the deployment computer before use. Installation
programs such as InstallShield Express automate this registration process. To manually register an ActiveX control,
use the TRegSvr demo application or the Microsoft utility REGSRV32.EXE (not included with all Windows versions).

DLLs that support an ActiveX control also need to be distributed with an application.

 DevGuide: Building applications with Delphi

Helper applications
Topic groups See also

Helper applications are separate programs without which your Delphi application would be partially or completely
unable to function. Helper applications may be those supplied with the operating system, by Borland, or they might
be third-party products. An example of a helper application is the InterBase utility program Server Manager, which
administers InterBase databases, users, and security.

If an application depends on a helper program, be sure to deploy it with your application, where possible.
Distribution of helper programs may be governed by redistribution license agreements. Consult the documentation
for the helper for specific information.

 DevGuide: Building applications with Delphi

DLL locations
Topic groups See also

You can install .dll files used only by a single application in the same directory as the application. DLLs that will be
used by a number of applications should be installed in a location accessible to all of those applications. A common
convention for locating such community DLLs is to place them either in the Windows or the Windows\System
directory. A better way is to create a dedicated directory for the common .dll files, similar to the way the Borland
Database Engine is installed.

 DevGuide: Building applications with Delphi

Deploying CLX applications
Topic groups See also

If you are writing cross-platform applications that will be deployed on both Windows and Linux, you need to compile
and deploy the applications on both platforms. The steps for deploying CLX applications are the same as those for
general applications. For information on deploying general applications, see Deploying general applications. For
information on installing database CLX applications, see Deploying database applications.

Note: When deploying CLX applications on Windows, you need to include qtintf.dll with the application to include
the CLX runtime. If deploying packages with CLX applications, you need to include clx60.bpl rather than
vcl60.bpl.

See Developing cross-platform applications for information on writing CLX applications.

 DevGuide: Building applications with Delphi

Deploying database applications
Topic groups See also

Applications that access databases involve special installation considerations beyond copying the application’s
executable file onto the host computer. Database access is most often handled by a separate database engine, the
files of which cannot be linked into the application’s executable file. The data files, when not created beforehand,
must be made available to the application. Multi-tier database applications require even more specialized handling
on installation, because the files that make up the application are typically located on multiple computers.

Since several different database technologies (ADO, BDE, dbExpress, and InterBase Express) are supported,
deployment requirements differ for each. Regardless of which you are using, you need to make sure that the client
side software is installed on the system where you plan to run the database application. BDE, ADO, and dbExpress
also require drivers to interact with the client-side software of the database. InterBase does not require drivers
because the IBX components communicate directly with the database.

Specific information on how to deploy dbExpress, BDE, and multi-tiered database applications is described in the
following topics:

Deploying dbExpress database applications

Deploying BDE applications

Deploying multi-tiered database applications (DataSnap)
Database applications that use client datasets such as TClientDataSet or TSQLClientDataSet or dataset providers
require you to include libmidas.dcu and crtl.dcu (for static linking when providing a standalone executable); if you
are packaging your application (with the executable and any needed DLLs), you need to include Midas.dll.

If deploying database applications that use ADO, you need to be sure that MDAC version 2.1 or later is installed on
the system where you plan to run the application. MDAC is automatically installed with software such as Windows
2000 and Internet Explorer version 5 or later. You also need to be sure the drivers for the database server you want
to connect to are installed on the client. No other deployment steps are required.

If deploying database applications that use InterBase Express, you need to be sure that the InterBase client is
installed on the system where you plan to run the application. InterBase requires gd32.dll and interbase.msg to be
located in an accessible directory. No other deployment steps are required. InterBase Express components
communicate directly with the database and do not require additional drivers. For more information, refer to the
Embedded Installation Guide posted on the Borland Web site.

In addition to the technologies described here, you can also use third-party database engines to provide database
access for Delphi applications. Consult the documentation or vendor for the database engine regarding
redistribution rights, installation, and configuration.

 DevGuide: Building applications with Delphi

Deploying dbExpress database applications
Topic groups See also

dbExpress is a set of drivers that provide fast access to database information. dbExpress components support
cross-platform development because they are also available on Linux. Refer to Using unidirectional datasets for
more information about using the dbExpress components.

You can deploy dbExpress applications either as a stand-alone executable file or as an executable file that includes
associated dbExpress driver DLLs.

To deploy dbExpress applications as standalone executable files, the dbExpress object files must be statically
linked into your executable. You do this by including the following DCUs, located in the lib directory:

Database unit When to include

dbExpInt Applications connecting to InterBase databases
dbExpOra Applications connecting to Oracle databases
dbExpDb2 Applications connecting to DB2 databases
dbExpMy Applications connecting to MySQL databases
Crtl, MidasLib Required by dbExpress executables that use client datasets such as

TSQLClientDataSet

If you are not deploying a standalone executable, you can deploy associated dbExpress drivers and DataSnap
DLLs with your executable. The following table lists the appropriate DLLs and when to include them:

Database DLL When to deploy

dbexpint.dll Applications connecting to InterBase databases
dbexpora.dll Applications connecting to Oracle databases
dbexpdb2.dll. Applications connecting to DB2 databases
dbexpmy.dll Applications connecting to MySQL databases
Midas.dll Required by database applications that use client datasets

 DevGuide: Building applications with Delphi

Deploying BDE applications
Topic groups See also

The Borland Database Engine (BDE) defines a large API for interacting with databases. Of all the data access
mechanisms, the BDE supports the broadest range of functions and comes with the most supporting utilities. It is
the best way to work with data in Paradox or dBASE tables.

Database access for an application is provided by various database engines. An application can use the BDE or a
third-party database engine. SQL Links is provided (not available in all versions) to enable native access to SQL
database systems. The following topics describe installation of the database access elements of an application:

Borland Database Engine

SQL Links

 DevGuide: Building applications with Delphi

Borland Database Engine
Topic groups See also

For standard Delphi data components to have database access, the Borland Database Engine (BDE) must be
present and accessible. See the BDEDEPLOY document for specific rights and limitations on redistributing the
BDE.

Borland recommends use of InstallShield Express (or other certified installation program) for installing the BDE.
InstallShield Express will create the necessary registry entries and define any aliases the application may require.
Using a certified installation program to deploy the BDE files and subsets is important because:

Improper installation of the BDE or BDE subsets can cause other applications using the BDE to fail. Such
applications include not only Borland products, but many third-party programs that use the BDE.

Under Windows 9x and Windows NT, BDE configuration information is stored in the Windows registry
instead of .INI files, as was the case under 16-bit Windows. Making the correct entries and deletions for install and
uninstall is a complex task.
It is possible to install only as much of the BDE as an application actually needs. For instance, if an application only
uses Paradox tables, it is only necessary to install that portion of the BDE required to access Paradox tables. This
reduces the disk space needed for an application. Certified installation programs, like InstallShield Express, are
capable of performing partial BDE installations. Be sure to leave BDE system files that are not used by the deployed
application, but that are needed by other programs.

 DevGuide: Building applications with Delphi

SQL Links
Topic groups See also

SQL Links provides the drivers that connect an application (through the Borland Database Engine) with the client
software for an SQL database. See the DEPLOY document for specific rights and limitations on redistributing SQL
Links. As is the case with the Borland Database Engine (BDE), SQL Links must be deployed using InstallShield
Express (or other certified installation program).

Note: SQL Links only connects the BDE to the client software, not to the SQL database itself. It is still necessary
to install the client software for the SQL database system used. See the documentation for the SQL
database system or consult the vendor that supplies it for more information on installing and configuring
client software.

The following table shows the names of the driver and configuration files SQL Links uses to connect to the different
SQL database systems. These files come with SQL Links and are redistributable in accordance with the Delphi
license agreement.

Vendor Redistributable files

Oracle 7 SQLORA32.DLL and SQL_ORA.CNF
Oracle8 SQLORA8.DLL and SQL_ORA8.CNF
Sybase Db-Lib SQLSYB32.DLL and SQL_SYB.CNF
Sybase Ct-Lib SQLSSC32.DLL and SQL_SSC.CNF
Microsoft SQL Server SQLMSS32.DLL and SQL_MSS.CNF
Informix 7 SQLINF32.DLL and SQL_INF.CNF
Informix 9 SQLINF9.DLL and SQL_INF9.CNF
DB/2 SQLDB232.DLL and SQL_DB2.CNF
InterBase SQLINT32.DLL and SQL_INT.CNF

Install SQL Links using InstallShield Express or other certified installation program. For specific information
concerning the installation and configuration of SQL Links, see the help file SQLLNK32.HLP, by default installed into
the main BDE directory.

 DevGuide: Building applications with Delphi

Deploying multi-tiered database applications (DataSnap)
Topic groups See also

DataSnap provides multi-tier database capability to Delphi applications by allowing client applications to connect to
providers in an application server.

Install DataSnap along with a multi-tier application using InstallShield Express (or other Borland-certified installation
scripting utility). See the DEPLOY document (found in the main Delphi directory) for details on the files that need to
be redistributed with an application. Also see the REMOTE document for related information on what DataSnap files
can be redistributed and how.

 DevGuide: Building applications with Delphi

Deploying Web applications
Topic groups See also

Some Delphi applications are designed to be run over the World Wide Web, such as those in the form of Server-
side Extension DLLs (ISAPI and Apache), CGI applications, and ActiveForms.

The steps for deploying Web applications are the same as those for general applications, except the application’s
files are deployed on the Web server. For information on installing general applications, seeDeploying general
applications. For information on deploying database Web applications, seeDeploying database applications.

Here are some special considerations for deploying Web applications:

For BDE database applications, the Borland Database Engine (or alternate database engine) is installed
with the application files on the Web server.

For dbExpress applications, the dbExpress DLLs must be included in the path. If included, the dbExpress
driver is installed with the application files on the Web server.

Security for the directories should be set so that the application can access all needed database files.

The directory containing an application must have read and execute attributes.

The application should not use hard-coded paths for accessing database or other files.

The location of an ActiveX control is indicated by the CODEBASE parameter of the <OBJECT> HTML tag.
For information on deploying applications on Apache servers, see Deployment on Apache.

 DevGuide: Building applications with Delphi

Deployment on Apache
Topic groups See also

WebBroker supports Apache version 1.3.9 and later for DLLs and CGI applications. Apache is configured by files in
the conf directory.

If creating Apache DLLs, you need to be sure to set appropriate directives in the Apache server configuration file,
called httpd.conf. The DLL should be physically located in the Modules subdirectory of the Apache software.

If creating CGI applications, the physical directory (specified in the Directory directive of the httpd.conf file) must
have the ExecCGI option set to allow execution of programs so the CGI script can be executed. To ensure that
permissions are set up properly, you need to either use the ScriptAlias directive or set Options ExecCGI to on.

The ScriptAlias directive creates a virtual directory on your server and marks the target directory as containing CGI
scripts. For example, you could add the following line to your httpd.conf file:

ScriptAlias /cgi-bin "c:\inetpub\cgi-bin"

This would cause requests such as /cgi-bin/mycgi to be satisfied by running the script c:\inetpub\cgi-bin\mycgi.

You can also set Options to All or to ExecCGI using the Directory directive in httpd.conf. The Options directive
controls which server features are available in a particular directory. Directory directives are used to enclose a set of
directives that apply to the named directory and its subdirectories. An example of the Directory directive is shown
below:

<Directory <apache-root-dir>\cgi-bin>
 AllowOverride None
 Options ExecCGI
 Order allow,deny
 Allow from all
</Directory>

In this example, Options is set to ExecCGI permitting execution of CGI scripts in the directory cgi-bin.

Note: Apache executes locally on the server within the account specified in the User directive in the httpd.conf
file. Make sure that the user has the appropriate rights to access the resources needed by the application.

Information concerning the deployment of Apache software can be found in the Apache LICENSE file, which is
included in the Apache distribution. You can also find configuration information on the Apache Web site at
www.apache.org.

 DevGuide: Building applications with Delphi

Programming for varying host environments
Topic groups See also

Due to the nature of various operating system environments, there are a number of factors that vary with user
preference or configuration. The following factors can affect an application deployed to another computer:

Screen resolutions and color depths

Fonts

Windows versions

 DevGuide: Building applications with Delphi

Screen resolutions and color depths
Topic groups See also

The size of the desktop and number of available colors on a computer is configurable and dependent on the
hardware installed. These attributes are also likely to differ on the deployment computer compared to those on the
development computer.

An application’s appearance (window, object, and font sizes) on computers configured for different screen
resolutions can be handled in various ways:

Design the application for the lowest resolution users will have (typically, 640x480). Take no special actions
to dynamically resize objects to make them proportional to the host computer’s screen display. Visually, objects will
appear smaller the higher the resolution is set.

Design using any screen resolution on the development computer and, at runtime, dynamically resize all
forms and objects proportional to the difference between the screen resolutions for the development and deployment
computers (a screen resolution difference ratio).

Design using any screen resolution on the development computer and, at runtime, dynamically resize only
the application’s forms. Depending on the location of visual controls on the forms, this may require the forms be
scrollable for the user to be able to access all controls on the forms.
The following topics are discussed in this section:

Considerations when not dynamically resizing

Considerations when dynamically resizing forms and controls

Accommodating varying color depths

 DevGuide: Building applications with Delphi

Considerations when not dynamically resizing
Topic groups See also

If the forms and visual controls that make up an application are not dynamically resized at runtime, design the
application’s elements for the lowest resolution. Otherwise, the forms of an application run on a computer
configured for a lower screen resolution than the development computer may overlap the boundaries of the screen.

For example, if the development computer is set up for a screen resolution of 1024x768 and a form is designed with
a width of 700 pixels, not all of that form will be visible within the desktop on a computer configured for a 640x480
screen resolution.

 DevGuide: Building applications with Delphi

Considerations when dynamically resizing forms and controls
Topic groups See also

If the forms and visual controls for an application are dynamically resized, accommodate all aspects of the resizing
process to ensure optimal appearance of the application under all possible screen resolutions. Here are some
factors to consider when dynamically resizing the visual elements of an application:

The resizing of forms and visual controls is done at a ratio calculated by comparing the screen resolution of
the development computer to that of the computer onto which the application installed. Use a constant to represent
one dimension of the screen resolution on the development computer: either the height or the width, in pixels.
Retrieve the same dimension for the user’s computer at runtime using the TScreen.Height Screen object’s Height or
TScreen.Width Width property. Divide the value for the development computer by the value for the user’s computer to
derive the difference ratio between the two computers’ screen resolutions.

Resize the visual elements of the application (forms and controls) by reducing or increasing the size of the
elements and their positions on forms. This resizing is proportional to the difference between the screen resolutions
on the development and user computers. Resize and reposition visual controls on forms automatically by setting the
CustomForm.Scaled form’s Scaled property to True and calling TWinControl.ScaleBy its ScaleBy method
(TWidgetControl.ScaleBy for cross-platform applications). The ScaleBy method does not change the form’s height
and width, though. Do this manually by multiplying the current values for the Height and Width properties by the
screen resolution difference ratio.

The controls on a form can be resized manually, instead of automatically with the TWinControl.ScaleBy
method (TWidgetControl.ScaleBy for cross-platform applications), by referencing each visual control in a loop and
setting its dimensions and position. The Height and Width property values for visual controls are multiplied by the
screen resolution difference ratio. Reposition visual controls proportional to screen resolution differences by
multiplying the Top and Left property values by the same ratio.

If an application is designed on a computer configured for a higher screen resolution than that on the user’s
computer, font sizes will be reduced in the process of proportionally resizing visual controls. If the size of the font at
design time is too small, the font as resized at runtime may be unreadable. For example, the default font size for a
form is 8. If the development computer has a screen resolution of 1024x768 and the user’s computer 640x480, visual
control dimensions will be reduced by a factor of 0.625 (640 / 1024 = 0.625). The original font size of 8 is reduced to 5
(8 * 0.625 = 5). Text in the application appears jagged and unreadable as it is displayed in the reduced font size.

Some visual controls, such as TLabel and TEdit, dynamically resize when the size of the font for the control
changes. This can affect deployed applications when forms and controls are dynamically resized. The resizing of the
control due to font size changes are in addition to size changes due to proportional resizing for screen resolutions.
This effect is offset by setting the AutoSize property of these controls to False.

Avoid making use of explicit pixel coordinates, such as when drawing directly to a canvas. Instead, modify
the coordinates by a ratio proportionate to the screen resolution difference ratio between the development and user
computers. For example, if the application draws a rectangle to a canvas ten pixels high by twenty wide, instead
multiply the ten and twenty by the screen resolution difference ratio. This ensures that the rectangle visually appears
the same size under different screen resolutions.

 DevGuide: Building applications with Delphi

Accommodating varying color depths
Topic groups See also

To account for all deployment computers not being configured with the same color availability, the safest way is to
use graphics with the least possible number of colors. This is especially true for control glyphs, which should
typically use 16-color graphics. For displaying pictures, either provide multiple copies of the images in different
resolutions and color depths or explain in the application the minimum resolution and color requirements for the
application.

 DevGuide: Building applications with Delphi

Fonts
Topic groups See also

The Windows and Linux operating systems come with a standard sets of fonts. When designing an application to be
deployed on other computers, realize that not all computers will have fonts outside the standard sets.

Text components used in the application should all use fonts that are likely to be available on all deployment
computers.

When use of a nonstandard font is absolutely necessary in an application, you need to distribute that font with the
application. Either the installation program or the application itself must install the font on the deployment computer.
Distribution of third-party fonts may be subject to limitations imposed by the font creator.

Windows has a safety measure to account for attempts to use a font that does not exist on the computer. It
substitutes another, existing font that it considers the closest match. While this may circumvent errors concerning
missing fonts, the end result may be a degradation of the visual appearance of the application. It is better to prepare
for this eventuality at design time.

To make a nonstandard font available to a Windows application, use the Windows API functions AddFontResource
and DeleteFontResource. Deploy the .fot file for the nonstandard font with the application.

 DevGuide: Building applications with Delphi

Windows versions
Topic groups See also

When using operating system APIs or accessing areas of the operating system from an application, there is the
possibility that the function, operation, or area may not be available on computers with different operating system
versions.

To account for this possibility, you have a few options:

Specify in the application’s system requirements the versions of the operating system on which the
application can run. It is the user’s responsibility to install and use the application only under compatible operating
system versions.

Check the version of the operating system as the application is installed. If an incompatible version of the
operating system is present, either halt the installation process or at least warn the installer of the problem.

Check the operating system version at runtime, just prior to executing an operation not applicable to all
versions. If an incompatible version of the operating system is present, abort the process and alert the user.
Alternately, provide different code to run dependent on different operating system versions. For example, some
operations are performed differently on Windows 95/98 than on Windows NT/2000. Use the Windows API function
GetVersionEx to determine the Windows version.

 DevGuide: Building applications with Delphi

Software license requirements
Topic groups See also

The distribution of some files associated with Delphi applications is subject to limitations or cannot be redistributed
at all. The following documents describe the legal stipulations regarding the distribution of these files:

DEPLOY
DEPLOY covers the some of the legal aspects of distributing of various components and utilities, and other
product areas that can be part of or associated with your application. DEPLOY is a document installed in the
main directory. The topics covered include, but are not limited to

.EXE, .DLL, and .BPL files

Components and design-time packages

Borland Database Engine (BDE)

ActiveX controls

Sample Images

SQL Links

README
README contains last minute information about Delphi possibly including information that could affect the
redistribution rights for components, or utilities, or other product areas. README is a document installed into
the main Delphi directory.

No-nonsense license agreement
The Delphi no-nonsense license agreement, a printed document, covers other legal rights and obligations
concerning Delphi.

Third-party product documentation
Redistribution rights for third-party components, utilities, helper applications, database engines, and other
products are governed by the vendor supplying the product. Consult the documentation for the product or the
vendor for information regarding the redistribution of the product with Delphi applications prior to distribution.

Building applications with Delphi
· The Delphi Development Environment

· Building applications, components, and libraries

· Working with controls

· Deploying applications

· Developing the application user interface

· Working with graphics

· Creating international applications

· Working with multimedia

· Working with packages and components

· Common programming tasks

· Writing multi-threaded applications

· Using Object Pascal with the VCL

· Developing cross-platform applications

The Delphi Development Environment
Related topic groups
· Integrated development environment

· Using the component libraries

· Designing applications

· Properties, methods, and events

· Types of events

· Object Pascal and the class libraries

· Using the object model

· What is an object?

· Examining a Delphi object

· Changing the name of a component

· Inheriting data and code from an object

· Scope and qualifiers

· Private, protected, public, and published declarations

· Using object variables

· Creating, instantiating, and destroying objects

· Components and ownership

· Objects, components, and controls

· TObject Branch

· TPersistent Branch

· TComponent Branch

· TControl Branch

· TWinControl Branch

· Properties common to TControl

· Action properties

· Position, size, and alignment properties

· TControl display properties

· Parent properties

· A navigation property

· Drag-and-drop properties

· TControl drag-and-dock properties (VCL only)

· Standard events common to TControl

· Properties common to TWinControl and TWidgetControl

· TWinControl General Information Properties

· Border Style Display Properties

· Navigation properties

· TWinControl drag-and-dock properties (VCL only)

· Standard events common to TWinControl and TWidgetControl

· Using components

· Setting component properties

· Using the Object Inspector

· Using property editors

· Setting properties at runtime

· Calling methods

· Working with events and event handlers

· Generating a new event handler

· Generating a handler for a component's default event

· Locating event handlers

· Associating an event with an existing event handler

· Using the Sender parameter

· Displaying and coding shared events

· Associating menu events with event handlers

· Deleting event handlers

· VCL and CLX components

· Adding custom components to the component palette

· Text controls

· Text control properties

· Properties of memo and rich text controls

· Rich text controls (VCL only)

· Specialized input controls

· Scroll bars

· Track bars

· Up-down controls (VCL only)

· Spin edit controls (CLX only)

· Hot key controls (VCL only)

· Splitter control

· Buttons and similar controls

· Button controls

· Bitmap buttons

· Speed buttons

· Check boxes

· Radio buttons

· Toolbars

· Cool bars (VCL only)

· Handling lists

· List boxes and check-list boxes

· Combo boxes

· Tree views

· List views

· Date-time pickers and month calendars (VCL only)

· Grouping components

· Group boxes and radio groups

· Panels

· Scroll boxes

· Tab controls

· Page controls

· Header controls

· Providing visual feedback

· Labels and static text components

· Status bars

· Progress bars

· Help and hint properties

· Grids

· Draw grids

· String grids

· Value list editors (VCL only)

· Displaying graphics

· Images

· Shapes

· Bevels

· Paint boxes

· Animation control (VCL only)

· Developing dialog boxes

· Using Windows Common Dialog Boxes

· Using helper objects

· Working with lists

· Working with string lists

· Loading and saving string lists

· Creating a new string list

· Manipulating strings in a list

· Counting the strings in a list

· Accessing a particular string

· Locating items in a string list

· Iterating through strings in a list

· Adding a string to a list

· Deleting a string from a list

· Copying a complete string list

· Associating objects with a string list

· Windows registry and INI files (VCL only)

· Using TIniFile (VCL only)

· Using TRegistry (VCL only)

· Using TRegIniFile (VCL only)

· Creating drawing spaces

· Printing

· Using streams

Building applications, components, and libraries
Related topic groups
· Creating applications

· GUI applications

· User interface models

· SDI applications

· MDI applications

· Setting IDE, project, and compilation options

· Programming templates

· Console applications

· Service applications

· Service threads

· Service name properties (Windows only)

· Debugging service applications

· Creating packages and DLLs

· When to use packages and DLLs

· Writing database applications

· Distributing database applications

· Creating Web server applications

· Using Web Broker

· Creating WebSnap applications

· Using InternetExpress

· Creating Web Services applications

· Writing applications using COM

· Using data modules

· Creating and editing standard data modules

· Naming a data module and its unit file

· Placing and naming components

· Using component properties and events in a data module

· Creating business rules in a data module

· Accessing a data module from a form

· Adding a remote data module to an application server project

Working with controls
Related topic groups
· Implementing drag-and-drop in controls

· Ending a drag operation

· Implementing drag-and-dock in controls

· Making a windowed control a docking site

· Making a control a dockable child

· Controlling how child controls are docked

· Controlling how child controls are undocked

· Controlling how child controls respond to drag-and-dock operations

· Working with text in controls

· Setting text alignment

· Adding scroll bars at runtime

· Adding the clipboard object

· Selecting text

· Selecting all text

· Cutting, copying, and pasting text

· Deleting selected text

· Disabling menu items

· Providing a pop-up menu

· Handling the OnPopup event

· Adding graphics to controls

· Indicating that a control is owner-drawn

· Adding graphical objects to a string list

· Adding images to an application

· Adding images to a string list

· Drawing owner-drawn items

· Sizing owner-draw items

· Drawing owner-draw items

Deploying applications
Related topic groups
· Deploying applications: Overview

· Deploying general applications

· Using installation programs

· Identifying application files

· Application files, listed by file name extension

· Package files

· Merge modules

· ActiveX controls

· Helper applications

· DLL locations

· Deploying CLX applications

· Deploying database applications

· Deploying dbExpress database applications

· Deploying BDE applications

· Borland Database Engine

· SQL Links

· Deploying multi-tiered database applications (DataSnap)

· Deploying Web applications

· Deployment on Apache

· Programming for varying host environments

· Screen resolutions and color depths

· Considerations when not dynamically resizing

· Considerations when dynamically resizing forms and controls

· Accommodating varying color depths

· Fonts

· Windows versions

· Software license requirements

Developing the application user interface
Related topic groups
· Developing the application user interface: Overview

· Controlling application behavior

· Using the main form

· Adding forms

· Hiding the main form

· Working at the application level

· Handling the screen

· Managing layout

· Responding to event notification

· Using forms

· Controlling when forms reside in memory

· Displaying an auto-created form

· Creating forms dynamically

· Creating modeless forms such as windows

· Using a local variable to create a form instance

· Passing additional arguments to forms

· Retrieving data from forms

· Retrieving data from modeless forms

· Retrieving data from modal forms

· Reusing components and groups of components

· Creating and using component templates

· Working with frames

· Creating frames

· Using and modifying frames

· Creating frames

· Organizing actions for toolbars and menus

· What is an action?

· Setting up action bands

· Creating toolbars and menus

· Adding icons to menus and toolbars

· Adding icons to menus and toolbars

· Creating toolbars and menus that users can customize

· Hiding unused items and categories in action bands

· Using action lists

· Setting up action lists

· What happens when an action fires

· How actions find their targets

· Updating actions

· Predefined action classes

· Writing action components

· Registering actions

· Creating and managing menus

· Opening the Menu Designer

· Building menus

· Naming menus

· Naming the menu items

· Adding, inserting, and deleting menu items

· Specifying accelerator keys and keyboard shortcuts

· Creating submenus

· Moving menu items

· Adding images to menu items

· Viewing the menu

· Editing menu items in the Object Inspector

· Using the Menu Designer context menu

· Switching between menus at design time

· Using menu templates

· Saving a menu as a template

· Naming conventions for template menu items and event handlers

· Manipulating menu items at runtime

· Merging menus

· Specifying the active menu: Menu property

· Determining the order of merged menu items: GroupIndex property

· Importing resource files

· Designing toolbars and cool bars

· Adding a toolbar using a panel component

· Adding a speed button to a panel

· Assigning a speed button's glyph

· Setting the initial condition of a speed button

· Creating a group of speed buttons

· Allowing toggle buttons

· Adding a toolbar using the toolbar component

· Adding a tool button

· Assigning images to tool buttons

· Setting tool button appearance and initial conditions

· Creating groups of tool buttons

· Allowing toggled tool buttons

· Adding a cool bar component

· Setting the appearance of the cool bar

· Responding to clicks

· Assigning a menu to a tool button

· Adding hidden toolbars

· Hiding and showing toolbars

· Demo programs

Working with graphics
Related topic groups
· Working with graphics and multimedia

· Overview of graphics programming

· Refreshing the screen

· Types of graphic objects

· Common properties and methods of Canvas

· Using the properties of the Canvas object

· Using pens

· Changing the pen color

· Changing the pen width

· Changing the pen style

· Changing the pen mode

· Getting the pen position

· Using brushes

· Changing the brush color

· Changing the brush style

· Setting the Brush Bitmap property

· Reading and setting pixels

· Using Canvas methods to draw graphic objects

· Drawing lines and polylines

· Drawing lines

· Drawing polylines

· Drawing shapes

· Drawing rectangles and ellipses

· Drawing rounded rectangles

· Drawing polygons

· Handling multiple drawing objects in your application

· Keeping track of which drawing tool to use

· Changing the tool with speed buttons

· Using drawing tools

· Drawing shapes

· Sharing code among event handlers

· Drawing on a graphic

· Making scrollable graphics

· Adding an image control

· Placing the control

· Setting the initial bitmap size

· Drawing on the bitmap

· Loading and saving graphics files

· Loading a picture from a file

· Saving a picture to a file

· Replacing the picture

· Using the clipboard with graphics

· Copying graphics to the clipboard

· Cutting graphics to the clipboard

· Pasting graphics from the clipboard

· Rubber banding example

· Responding to the mouse

· What's in a mouse event

· Responding to a mouse-down action

· Responding to a mouse-up action

· Responding to a mouse move

· Adding a field to a form object to track mouse actions

· Refining line drawing

· Tracking the origin point

· Tracking movement

· Working with multimedia

Creating international applications
Related topic groups
· Creating international applications: Overview

· Internationalization and localization

· Internationalization

· Localization

· Internationalizing applications

· Enabling application code

· Character sets

· OEM and ANSI character sets

· Double byte character sets

· Wide characters

· Including bi-directional functionality in applications

· Bi-directional properties

· ParentBiDiMode property

· FlipChildren method

· Additional methods

· Locale-specific features

· Designing the user interface

· Text

· Graphic images

· Formats and sort order

· Keyboard mappings

· Isolating resources

· Creating resource DLLs

· Using resource DLLs

· Dynamic switching of resource DLLs

· Localizing applications

Working with multimedia
Related topic groups
· Adding silent video clips to an application

· Example of adding silent video clips

· Adding audio and/or video clips to an application

· Example of adding audio and/or video clips (VCL only)(

Working with packages and components
Related topic groups
· Working with packages and components: Overview

· Why use packages?

· Packages and standard DLLs

· Runtime packages

· Using packages in an application

· Dynamically loading packages

· Deciding which runtime packages to use

· Custom packages

· Design-time packages

· Installing component packages

· Creating and editing packages

· Creating a package

· Editing an existing package

· Editing package source files manually

· Understanding the structure of a package

· Compiling packages

· Package-specific compiler directives

· Weak packaging

· Using the command-line compiler and linker

· Package files created by a successful compilation

· Deploying packages

· Package collection files

Common programming tasks
Related topic groups
· Common programming tasks

· Understanding classes

· Defining classes

· Handling exceptions

· Protecting blocks of code

· Responding to exceptions

· Exceptions and the flow of control

· Nesting exception responses

· Protecting resource allocations

· What kind of resources need protection?

· Creating a resource protection block

· Handling RTL exceptions

· What are RTL exceptions?

· Creating an exception handler

· Exception handling statements

· Using the exception instance

· Scope of exception handlers

· Providing default exception handlers

· Handling classes of exceptions

· Reraising the exception

· Handling component exceptions

· Exception handling with external sources

· Silent exceptions

· Defining your own exceptions

· Declaring an exception object type

· Raising an exception

· Using interfaces

· Interfaces as a language feature

· Implementing interfaces across the hierarchy

· Using interfaces with procedures

· Implementing IInterface

· TInterfacedObject

· Using the as operator

· Reusing code and delegation

· Using implements for delegation

· Aggregation

· Memory management of interface objects

· Using reference counting

· Not using reference counting

· Using interfaces in distributed applications (VCL only)

· Defining custom variants

· Storing a custom variant type's data

· Creating a class to enable the custom variant type

· Enabling casting

· Implementing binary operations

· Implementing binary operations

· Implementing unary operations

· Copying and clearing custom variants

· Loading and saving custom variant values

· Using the TCustomVariantType descendant

· Writing utilities to work with a custom variant type

· Supporting properties and methods in custom variants

· Working with strings

· Character types

· String types

· Short strings

· Long strings

· WideString

· PChar types

· OpenString

· Runtime library string handling routines

· Wide character routines

· Commonly used long string routines

· Declaring and initializing strings

· Mixing and converting string types

· String to PChar conversions

· String dependencies

· Returning a PChar local variable

· Passing a local variable as a PChar

· Compiler directives for strings

· Strings and characters: related topics

· Working with files

· Manipulating files

· Deleting a file

· Finding a file

· Renaming a file

· File date-time routines

· Copying a file

· File types with file I/O

· Using file streams

· Creating and opening files

· Using the file handle

· Reading and writing to files

· Reading and writing strings

· Seeking a file

· File position and size

· Copying

· Converting measurements

· Performing conversions

· Adding new measurement types

· Creating a simple conversion family and adding units

· Using a conversion function

· Using a class to manage conversions

· Defining data types

Writing multi-threaded applications
Related topic groups
· Writing multi-threaded applications

· Defining thread objects

· Initializing the thread

· Writing the thread function

· Using the main VCL/CLX thread

· Using thread-local variables

· Checking for termination by other threads

· Handling exceptions in the thread function

· Writing clean-up code

· CoordinatingThreads

· Avoiding simultaneous access

· Locking objects

· Using critical sections

· Using the multi-read exclusive-write synchronizer

· Waiting for other threads

· Waiting for a thread to finish executing

· Waiting for a task to be completed

· Executing thread objects

· Overriding the default priority

· Starting and stopping threads

· Debugging multi-threaded applications

Using Object Pascal with the VCL
Related topic groups
· Using the Object Repository

· Sharing items within a project

· Adding items to the Object Repository

· Sharing objects in a team environment

· Using an Object Repository item in a project

· Copying an item

· Inheriting an item

· Using an item

· Using project templates

· Modifying shared items

· Specifying a default project, new form, and main form

· Enabling Help in applications

· Help system interfaces

· Implementing ICustomHelpViewer

· Communicating with the Help Manager

· Asking the Help Manager for information

· Displaying keyword-based Help

· Displaying tables of contents

· Implementing IExtendedHelpViewer

· Implementing IHelpSelector

· Registering Help system objects

· Using Help in a VCL Application

· How TApplication processes VCL Help

· How VCL controls process Help

· Using Help in a CLX Application

· How TApplication processes CLX Help

· How CLX controls process Help

· Calling a Help system directly

· Using IHelpSystem

· Customizing the IDE Help system

Developing cross-platform applications
Related topic groups
· Using CLX for cross-platform development

· Creating cross-platform applications

· Porting VCL applications to CLX

· Porting techniques

· Porting your application

· CLX versus VCL

· What CLX does differently

· Missing in CLX

· Features that will not port

· CLX and VCL unit comparison

· Features that will not port

· Sharing source files between Windows and Linux

· Environmental differences between Windows and Linux

· Directory structure on Linux

· Writing portable code

· Using conditional directives

· Terminating conditional directives

· Emitting messages

· Including inline assembler code

· Messages and system events

· Programming differences on Linux

· Cross-platform database applications

· dbExpress differences

· Component-level differences

· User interface-level differences

· Porting database applications to Linux

· Updating data in dbExpress applications

· Cross-platform Internet applications

· Porting Internet applications to Linux

Link not found
The topic you requested is either not available or not linked to this Help system. This can occur if you
launched this Help file from a system on which Delphi has not yet been installed, or if the subject matter
you are requesting is not available in your edition of Delphi.

The topic you requested is now loading. If it does not appear within a few seconds, the topic is either not
available or not linked to this Help system. This can occur if you launched this Help file from a system on
which Delphi has not yet been installed, or if the subject matter you are requesting is not available in
your edition of Delphi.

