
 DevGuide: Component writer's guide

Overview of component creation
Topic groups See also

This set of topics provides an overview of component design and the process of writing components for Delphi
applications. The material here assumes that you are familiar with Delphi and its standard components.

The main topics discussed are
VCL and CLX
Components and classes
How do you create components?
What goes into a component?
Creating a new component
Testing uninstalled components
Testing installed components

For information on installing new components, see Installing component packages.

 DevGuide: Component writer's guide

VCL and CLX
Topic groups

Delphi’s components reside in two class hierarchies called the Visual Component Library (VCL) and the
Component Library for Cross Platform (CLX). The following figure shows the relationship of selected classes that
make up the VCL. The CLX hierarchy is similar to the VCL but Windows controls are called widgets (therefore
TWinControl is called TWidgetControl, for example), and there are other differences. For a more detailed discussion
of class hierarchies and the inheritance relationships among classes, see Object-oriented programming for
component writers For an overview of how CLX differs from the VCL, see CLX versus VCL and refer to the CLX
online reference for details on the components.

The TComponent class is the shared ancestor of every component in the VCL and CLX. TComponent provides the
minimal properties and events necessary for a component to work in Delphi. The various branches of the library
provide other, more specialized capabilities.

When you create a component, you add to the VCL or CLX by deriving a new class from one of the existing class
types in the hierarchy.

 DevGuide: Component writer's guide

Components and classes
Topic groups

Because components are classes, component writers work with objects at a different level from application
developers. Creating new components requires that you derive new classes.

Briefly, there are two main differences between creating components and using them in applications. When creating
components,

You access parts of the class that are inaccessible to application programmers.
You add new parts (such as properties) to your components.

Because of these differences, you need to be aware of more conventions and think about how application
developers will use the components you write.

 DevGuide: Component writer's guide

How do you create components?
Topic groups

A component can be almost any program element that you want to manipulate at design time. Creating a
component means deriving a new class from an existing one. You can derive a new component from any existing
component, but the following are the most common ways to create components:

Modifying existing controls
Creating windowed controls
Creating graphic controls
Subclassing Windows controls
Creating nonvisual components

The following table summarizes the different kinds of components and the classes you use as starting points for
each.

To do this Start with this type

Modify an existing component Any existing component, such as TButton or TListBox, or an abstract
component type, such as TCustomListBox

Create a windowed (or widget-based in CLX)
control

TWinControl (TWidgetControl in CLX)

Create a graphic control TGraphicControl
Subclassing a control Any Windows (VCL) or widget-based (CLX) control
Create a nonvisual component TComponent

You can also derive classes that are not components and cannot be manipulated on a form. Delphi includes many
such classes, like TRegIniFile and TFont.

 DevGuide: Component writer's guide

Modifying existing controls
Topic groups

The simplest way to create a component is to customize an existing one. You can derive a new component from
any of the components provided with Delphi.

Some controls, such as list boxes and grids, come in several variations on a basic theme. In these cases, the VCL
and CLX includes an abstract class (with the word “custom” in its name, such as TCustomGrid) from which to
derive customized versions.

For example, you might want to create a special list box that does not have some of the properties of the standard
TListBox class. You cannot remove (hide) a property inherited from an ancestor class, so you need to derive your
component from something above TListBox in the hierarchy. Rather than force you to start from the abstract
TWinControl (or TWidgetControl in CLX) class and reinvent all the list box functions, the VCL or CLX provides
TCustomListBox, which implements the properties of a list box but does not publish all of them. When you derive a
component from an abstract class like TCustomListBox, you publish only the properties you want to make available
in your component and leave the rest protected.

The section Creating properties explains publishing inherited properties. The section Modifying an existing
component and the section Customizing a grid show examples of modifying existing controls.

 DevGuide: Component writer's guide

Creating original controls
Topic groups

Windowed controls in the VCL and CLX are objects that appear at runtime and that the user can interact with. Each
windowed control has a window handle, accessed through its Handle property, that lets the operating system
identify and operate on the control. Tf using VCL controls, the handle allows the control to receive input focus and
can be passed to Windows API functions. In CLX, these controls are widget-based controls. Each widget-based
control has a handle, accessed through its Handle property, that identifies the underlying widget.

All windowed controls descend from the TWinControl (TWidgetControl in CLX) class. These include most standard
windowed controls, such as pushbuttons, list boxes, and edit boxes. While you could derive an original control (one
that’s not related to any existing control) directly from TWinControl (TWidgetControl in CLX), Delphi provides the
TCustomControl component for this purpose. TCustomControl is a specialized windowed control that makes it
easier to draw complex visual images.

The section Customizing a grid presents an example of creating a windowed control.

 DevGuide: Component writer's guide

Creating graphic controls
Topic groups

If your control does not need to receive input focus, you can make it a graphic control. Graphic controls are similar
to windowed controls, but have no window handles, and therefore consume fewer system resources. Components
like TLabel, which never receive input focus, are graphic controls. Although these controls cannot receive focus, you
can design them to react to mouse messages.

Delphi supports the creation of custom controls through the TGraphicControl component. TGraphicControl is an
abstract class derived from TControl. Although you can derive controls directly from TControl, it is better to start
from TGraphicControl, which provides a canvas to paint on and on Windows, handles WM_PAINT messages; all
you need to do is override the Paint method.

The section Creating a graphic component presents an example of creating a graphic control.

 DevGuide: Component writer's guide

Subclassing Windows controls
Topic groups

In traditional Windows programming, you create custom controls by defining a new window class and registering it
with Windows. The window class (which is similar to the objects or classes in object-oriented programming)
contains information shared among instances of the same sort of control; you can base a new window class on an
existing class, which is called subclassing. You then put your control in a dynamic-link library (DLL), much like the
standard Windows controls, and provide an interface to it.

Using Delphi, you can create a component “wrapper” around any existing window class. So if you already have a
library of custom controls that you want to use in Delphi applications, you can create Delphi components that
behave like your controls, and derive new controls from them just as you would with any other component.

For examples of the techniques used in subclassing Windows controls, see the components in the StdCtls unit that
represent standard Windows controls, such as TEdit. For CLX examples, see QStdCtls.

 DevGuide: Component writer's guide

Creating nonvisual components
Topic groups

Nonvisual components are used as interfaces for elements like databases (TDataSet or TSQLConnection) and
system clocks (TTimer), and as placeholders for dialog boxes (TCommonDialog (VCL) or TDialog (CLX) and its
descendants). Most of the components you write are likely to be visual controls. Nonvisual components can be
derived directly from TComponent, the abstract base class for all components.

 DevGuide: Component writer's guide

What goes into a component?
Topic groups

To make your components reliable parts of the Delphi environment, you need to follow certain conventions in their
design. This section discusses the following topics:

Removing dependencies
Properties, methods, and events
Graphics encapsulation
Registration

 DevGuide: Component writer's guide

Removing dependencies
Topic groups

One quality that makes components usable is the absence of restrictions on what they can do at any point in their
code. By their nature, components are incorporated into applications in varying combinations, orders, and contexts.
You should design components that function in any situation, without preconditions.

An excellent example of removing dependencies is the Handle property of TWinControl. If you have written
Windows applications before, you know that one of the most difficult and error-prone aspects of getting a program
running is making sure that you do not try to access a window or control until you have created it by calling the
CreateWindow API function. Delphi windowed controls relieve users from this concern by ensuring that a valid
window handle is always available when needed. By using a property to represent the window handle, the control
can check whether the window has been created; if the handle is not valid, the control creates a window and returns
the handle. Thus, whenever an application’s code accesses the Handle property, it is assured of getting a valid
handle.

By removing background tasks like creating the window, Delphi components allow developers to focus on what they
really want to do. Before passing a window handle to an API function, there is no need to verify that the handle
exists or to create the window. The application developer can assume that things will work, instead of constantly
checking for things that might go wrong.

Although it can take time to create components that are free of dependencies, it is generally time well spent. It not
only spares application developers from repetition and drudgery, but it reduces your documentation and support
burdens.

 DevGuide: Component writer's guide

Properties, methods, and events
Topic groups

Aside from the visible image manipulated in the Form designer, the most obvious attributes of a component are its
properties, events, and methods. Each of these has a section devoted to it in this file, but the discussion that follows
explains some of the motivation for their use.

Properties

Properties give the application developer the illusion of setting or reading the value of a variable, while allowing the
component writer to hide the underlying data structure or to implement special processing when the value is
accessed.

There are several advantages to using properties:
Properties are available at design time. The application developer can set or change initial values of

properties without having to write code.
Properties can check values or formats as the application developer assigns them. Validating input at design

time prevents errors.
The component can construct appropriate values on demand. Perhaps the most common type of error

programmers make is to reference a variable that has not been initialized. By representing data with a property, you
can ensure that a value is always available on demand.

Properties allow you to hide data under a simple, consistent interface. You can alter the way information is
structured in a property without making the change visible to application developers.
The section Overview of component creation explains how to add properties to your components.

Events

An event is a special property that invokes code in response to input or other activity at runtime. Events give the
application developer a way to attach specific blocks of code to specific runtime occurrences, such as mouse
actions and keystrokes. The code that executes when an event occurs is called an event handler.

Events allow application developers to specify responses to different kinds of input without defining new
components.

The section Creating events explains how to implement standard events and how to define new ones.

Methods

Class methods are procedures and functions that operate on a class rather than on specific instances of the class.
For example, every component’s constructor method (Create) is a class method. Component methods are
procedures and functions that operate on the component instances themselves. Application developers use
methods to direct a component to perform a specific action or return a value not contained by any property.

Because they require execution of code, methods can be called only at runtime. Methods are useful for several
reasons:

Methods encapsulate the functionality of a component in the same object where the data resides.
Methods can hide complicated procedures under a simple, consistent interface. An application developer

can call a component’s AlignControls method without knowing how the method works or how it differs from the
AlignControls method in another component.

Methods allow updating of several properties with a single call.
The section Creating methods explains how to add methods to your components.

 DevGuide: Component writer's guide

Graphics encapsulation
Topic groups

Delphi simplifies Windows graphics by encapsulating various graphic tools into a canvas. The canvas represents
the drawing surface of a window or control and contains other classes, such as a pen, a brush, and a font. A canvas
is like a Windows device context, but it takes care of all the bookkeeping for you.

If you have written a graphical Windows application, you are familiar with the requirements imposed by Windows’
graphics device interface (GDI). For example, GDI limits the number of device contexts available and requires that
you restore graphic objects to their initial state before destroying them.

With Delphi, you do not have to worry about these things. To draw on a form or other component, you access the
component’s Canvas property. If you want to customize a pen or brush, you set its color or style. When you finish,
Delphi disposes of the resources. Delphi caches resources to avoid recreating them if your application frequently
uses the same kinds of resource.

You still have full access to the Windows GDI, but you will often find that your code is simpler and runs faster if you
use the canvas built into Delphi components. Graphics features are detailed in the section Using graphics in
components.

CLX graphics encapsulation works differently. A canvas is a painter instead. To draw on a form or other component,
you access the component’s Canvas property. Canvas is a property and it is also an object called TCanvas.
TCanvas is a wrapper around a Qt painter that is accessible through the Handle property. You can use the handle to
access low-level Qt graphics library functions.

If you want to customize a pen or brush, you set its color or style. When you finish, Kylix disposes of the resources.
CLX also caches the resources.

You can use the canvas built into CLX components by descending from them. How graphics images work in the
component depends on the canvas of the object from which your component descends. the section Using graphics
in components.

 DevGuide: Component writer's guide

Registration Overview
Topic groups

Before you can install your components in the Delphi IDE, you have to register them. Registration tells Delphi where
to place the component on the Component palette. You can also customize the way Delphi stores your components
in the form file. For information on registering a component, see Registering components.

 DevGuide: Component writer's guide

Creating a new component
Topic groups

You can create a new component two ways:
Using the Component wizard
Creating a component manually

You can use either of these methods to create a minimally functional component ready to install on the Component
palette. After installing, you can add your new component to a form and test it at both design time and runtime. You
can then add more features to the component, update the Component palette, and continue testing.

There are several basic steps that you perform whenever you create a new component. These steps are described
below; other examples in this document assume that you know how to perform them.
1 Create a unit for the new component.
2 Derive your component from an existing component type.
3 Add properties, methods, and events.
4 Register your component with Delphi.
5 Create a Help file for your component and its properties, methods, and events.
6 Create a package (a special dynamic-link library) so that you can install your component in the Delphi IDE.

When you finish, the complete component includes the following files:
A package (.BPL) or package collection (.DPC) file
A compiled package (.DCP) file
A compiled unit (.DCU) file
A palette bitmap (.DCR) file
A Help (.HLP) file

Creating a help file to instruct component users on how to use the component is optional.

 DevGuide: Component writer's guide

Using the Component wizard
Topic groups

The Component wizard simplifies the initial stages of creating a component. When you use the Component wizard,
you need to specify only these things:

The class from which it is derived
The class name for the new component
The Component palette page where you want it to appear
The name of the unit in which the component is created
The search path where the unit is found
The name of the package in which you want to place the component

The Component wizard performs the same tasks you would when creating a component manually:
Creating a unit
Deriving the component
Registering the component

The Component wizard cannot add components to an existing unit. You must add components to existing units
manually.

To start the Component wizard, choose one of these two methods:
Choose Component|New Component.
Choose File|New|Other and double-click on Component

Fill in the fields in the Component wizard:
1 In the Ancestor Type field, specify the class from which you are deriving your new component.

Note: In the drop-down list, many components are listed twice with different unit names, one for VCL and one for
CLX. The CLX-specific units begin with Q (such as QGraphics instead of Graphics). Be sure to descend
from the correct component.

2 In the Class Name field, specify the name of your new component class.
3 In the Palette Page field, specify the page on the Component palette on which you want the new component to

be installed.
4 In the Unit file name field, specify the name of the unit you want the component class declared in.
5 If the unit is not on the search path, edit the search path in the Search Path field as necessary.

To place the component in a new or existing package, click Component|Install and use the dialog box that appears
to specify a package.

Warning: If you derive a component from a VCL or CLX class whose name begins with “custom” (such as
TCustomControl), do not try to place the new component on a form until you have overridden any
abstract methods in the original component. Delphi cannot create instance objects of a class that
has abstract properties or methods.

To see the source code for your unit, click View Unit. (If the Component wizard is already closed, open the unit file
in the Code editor by selecting File|Open.) Delphi creates a new unit containing the class declaration and the
Register procedure, and adds a uses clause that includes all the standard Delphi units.

The unit looks like this if descending from TCustomControl in the Controls unit:

unit MyControl;
interface
uses
    Windows, Messages, SysUtils, Classes, Controls;
type
    TMyControl = class(TCustomControl)
    private
    { Private declarations }
    protected
    { Protected declarations }
    public
    { Public declarations }
    published
    { Published declarations }
end;
procedure Register;
implementation

procedure Register;
begin
    RegisterComponents('Samples', [TMyControl]);
end;
end.

If descending from TCustomControl in the QControls unit, the only difference is the uses clause which looks like
this:

uses
 Windows, Messages, SysUtils, Classes, QControls;

Where CLX uses separate units, they are replaced with units of the same name prefixed with a Q; Controls is
replaced by QControls.

 DevGuide: Component writer's guide

Creating a component manually
Topic groups

The easiest way to create a new component is to use the Component wizard. You can, however, perform the same
steps manually.

To create a component manually, follow these steps:
1 Creating a unit file
2 Deriving the component
3 Registering the component

 DevGuide: Component writer's guide

Creating a unit
Topic groups

A unit is a separately compiled module of Object Pascal code. Delphi uses units for several purposes. Every form
has its own unit, and most components (or groups of related components) have their own units as well.

When you create a component, you either create a new unit for the component or add the new component to an
existing unit.

To create a unit, choose File|New|Unit. Delphi creates a new unit file and opens it in the Code editor.

To open an existing unit, choose File|Open and select the source code unit that you want to add your component to.

Note: When adding a component to an existing unit, make sure that the unit contains only component code. For
example, adding component code to a unit that contains a form causes errors in the Component palette.

Once you have either a new or existing unit for your component, you can derive the component class.

 DevGuide: Component writer's guide

Deriving the component
Topic groups Example

Every component is a class derived from TComponent, from one of its more specialized descendants (such as
TControl or TGraphicControl), or from an existing component class. The section How do you create components?
describes which class to derive different kinds of components from.

Deriving classes is explained in more detail in The section Defining new classes.

To derive a component, add an object type declaration to the interface part of the unit that will contain the
component.

A simple component class is a nonvisual component descended directly from TComponent.

 DevGuide: Component writer's guide

Example: Deriving a component
To create a simple component class, add the following class declaration to the interface part of your component
unit:

type
    TNewComponent = class(TComponent)
    end;

So far the new component does nothing different from TComponent. You have created a framework on which to
build your new component.

 DevGuide: Component writer's guide

Registering the component
Topic groups Example

Registration is a simple process that tells Delphi which components to add to its component library, and on which
pages of the Component palette they should appear. For a more detailed discussion of the registration process, see
Making components available at design time

To register a component,
1 Add a procedure named Register to the interface part of the component’s unit. Register takes no parameters,

so the declaration is very simple:

procedure Register;

If you are adding a component to a unit that already contains components, it should already have a Register
procedure declared, so you do not need to change the declaration.

2 Write the Register procedure in the implementation part of the unit, calling RegisterComponents for each
component you want to register. RegisterComponents is a procedure that takes two parameters: the name of
a Component palette page and a set of component types. If you are adding a component to an existing
registration, you can either add the new component to the set in the existing statement, or add a new
statement that calls RegisterComponents.

 DevGuide: Component writer's guide

Example: Registering a component
To register a component named TMyControl and place it on the Samples page of the palette, you would add the
following Register procedure to the unit that contains TMyControl’s declaration:

procedure Register;
begin
    RegisterComponents('Samples', [TNewControl]);
end;

This Register procedure places TMyControl on the Samples page of the Component palette.

Once you register a component, you can compile it into a package (see Making components available at design
time) and install it on the Component palette.

 DevGuide: Component writer's guide

Testing uninstalled components
Topic groups Example

You can test the runtime behavior of a component before you install it on the Component palette. This is particularly
useful for debugging newly created components, but the same technique works with any component, whether or not
it is on the Component palette. For information on testing already installed components, see Testing installed
components.

You test an uninstalled component by emulating the actions performed by Delphi when the component is selected
from the palette and placed on a form.

To test an uninstalled component,
1 Add the name of component’s unit to the form unit’s uses clause.
2 Add an object field to the form to represent the component.

This is one of the main differences between the way you add components and the way Delphi does it. You add
the object field to the public part at the bottom of the form’s type declaration. Delphi would add it above, in the
part of the type declaration that it manages.
Never add fields to the Delphi-managed part of the form’s type declaration. The items in that part of the type
declaration correspond to the items stored in the form file. Adding the names of components that do not exist on
the form can render your form file invalid.

3 Attach a handler to the form’s OnCreate event.
4 Construct the component in the form’s OnCreate handler.

When you call the component’s constructor, you must pass a parameter specifying the owner of the component
(the component responsible for destroying the component when the time comes). You will nearly always pass
Self as the owner. In a method, Self is a reference to the object that contains the method. In this case, in the
form’s OnCreate handler, Self refers to the form.

5 Assign the Parent property.

Setting the Parent property is always the first thing to do after constructing a control. The parent is the
component that contains the control visually; usually it is the form on which the control appears, but it might be a
group box or panel. Normally, you’ll set Parent to Self, that is, the form. Always set Parent before setting other
properties of the control.

Warning: If your component is not a control (that is, if TControl is not one of its ancestors), skip this step. If
you accidentally set the form’s Parent property (instead of the component’s) to Self, you can cause
an operating-system problem.

6 Set any other component properties as desired.

 DevGuide: Component writer's guide

Example: Testing uninstalled components
Suppose you want to test a new component of type TMyControl in a unit named MyControl. Create a new project,
then follow the steps to end up with a form unit that looks like this:

unit Unit1;
interface
uses
    SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
    Forms, Dialogs, MyControl;  { 1. Add NewTest to uses clause }
type
    TForm1 = class(TForm)
        procedure FormCreate(Sender: TObject);                              { 3. Attach a handler to OnCreate }
    private
        { Private declarations }
    public
        { Public Declarations }
        MyControl1: TMyControl1;  { 2. Add an object field }
    end;
var
    Form1: TForm1;
implementation
{$R *.DFM}
procedure TForm1.FormCreate(Sender: TObject);
begin
    MyControl1 := TMyControl.Create(Self);  { 4. Construct the component }
    MyControl1.Parent := Self;                        { 5. Set Parent property if component is a control }
    MyControl1.Left := 12;  { 6. Set other properties...)
    ...  ...continue as needed }
end;
end.

 DevGuide: Component writer's guide

Testing installed components
Topic groups

You can test the design-time behavior of a component after you install it on the Component palette. This is
particularly useful for debugging newly created components, but the same technique works with any component,
whether or not it is on the Component palette. For information on testing components that have not yet been
installed, see Testing uninstalled components.

Testing your components after installing allows you to debug the component that only generates design-time
exceptions when dropped on a form.

Test an installed component using a second running instance of Delphi:
1 From the Delphi IDE menu select Project|Options|and on the Directories/Conditionals page, set the Debug

Source Path to the component’s source file.
2 Then select Tools|Debugger Options. On the Language Exceptions, page enable the exceptions you want to

track.
3 Open the component source file and set breakpoints.
4 Select Run|Parameters and set the Host Application field to the name and location of the Delphi executable

file.
5 In the Run Parameters dialog, click the Load button to start a second instance of Delphi.
6 Then drop the components to be tested on the form, which should break on your breakpoints in the source.

 DevGuide: Component writer's guide

Object-oriented programming for component writers
Topic groups

If you have written applications with Delphi, you know that a class contains both data and code, and that you can
manipulate classes at design time and at runtime. In that sense, you’ve become a component user.

When you create new components, you deal with classes in ways that application developers never need to. You
also try to hide the inner workings of the component from the developers who will use it. By choosing appropriate
ancestors for your components, designing interfaces that expose only the properties and methods that developers
need, and following the other guidelines in the following topics, you can create versatile, reusable components.

Before you start creating components, you should be familiar with these topics, which are related to object-oriented
programming (OOP):

Defining new classes
Ancestors, descendants, and class hierarchies
Controlling access
Dispatching methods
Abstract class members
Classes and pointers

 DevGuide: Component writer's guide

Defining new classes
Topic groups

The difference between component writers and application developers is that component writers create new classes
while application developers manipulate instances of classes.

A class is essentially a type. As a programmer, you are always working with types and instances, even if you do not
use that terminology. For example, you create variables of a type, such as Integer. Classes are usually more
complex than simple data types, but they work the same way: By assigning different values to instances of the
same type, you can perform different tasks.

For example, it is quite common to create a form containing two buttons, one labeled OK and one labeled Cancel.
Each is an instance of the class TButton, but by assigning different values to their Caption properties and different
handlers to their OnClick events, you make the two instances behave differently.

 DevGuide: Component writer's guide

Deriving new classes
Topic groups

There are two reasons to derive a new class:
To change class defaults to avoid repetition
To add new capabilities to a class

In either case, the goal is to create reusable objects. If you design components with reuse in mind, you can save
work later on. Give your classes usable default values, but allow them to be customized.

 DevGuide: Component writer's guide

Changing class defaults to avoid repetition
Topic groups

Most programmers try to avoid repetition. Thus, if you find yourself rewriting the same lines of code over and over,
you place the code in a subroutine or function, or build a library of routines that you can use in many programs. The
same reasoning holds for components. If you find yourself changing the same properties or making the same
method calls, you can create a new component that does these things by default.

For example, suppose that each time you create an application, you add a dialog box to perform a particular
operation. Although it is not difficult to recreate the dialog each time, it is also not necessary. You can design the
dialog once, set its properties, and install a wrapper component associated with it onto the Component palette. By
making the dialog into a reusable component, you not only eliminate a repetitive task, but you encourage
standardization and reduce the likelihood of errors each time the dialog is recreated.

Modifying an existing component shows an example of changing a component’s default properties.

Note: If you want to modify only the published properties of an existing component, or to save specific event
handlers for a component or group of components, you may be able to accomplish this more easily by
creating a component template.

 DevGuide: Component writer's guide

Adding new capabilities to a class
Topic groups

A common reason for creating new components is to add capabilities not found in existing components. When you
do this, you derive the new component from either an existing component or an abstract base class, such as
TComponent or TControl.

Derive your new component from the class that contains the closest subset of the features you want. You can add
capabilities to a class, but you cannot take them away; so if an existing component class contains properties that
you do not want to include in yours, you should derive from that component’s ancestor.

For example, if you want to add features to a list box, you could derive your component from TListBox. However, if
you want to add new features but exclude some capabilities of the standard list box, you need to derive your
component from TCustomListBox, the ancestor of TListBox. Then you can recreate (or make visible) only the list-
box capabilities you want, and add your new features.

Customizing a grid shows an example of customizing an abstract component class.

 DevGuide: Component writer's guide

Declaring a new component class
Topic groups Example

In addition to standard components, Delphi provides many abstract classes designed as bases for deriving new
components. The How do you create components? topic shows the classes you can start from when you create
your own components.

To declare a new component class, add a class declaration to the component’s unit file.

 DevGuide: Component writer's guide

Example: Declaring a new component class
Here is the declaration of a simple graphical component:

type
 TSampleShape = class(TGraphicControl)
 end;

A finished component declaration usually includes property, event, and method declarations before the end. But a
declaration like the one above is also valid, and provides a starting point for the addition of component features.

 DevGuide: Component writer's guide

Ancestors and descendants
Topic groups

Application developers take for granted that every control has properties named Top and Left that determine its
position on the form. To them, it may not matter that all controls inherit these properties from a common ancestor,
TControl. When you create a component, however, you must know which class to derive it from so that it inherits
the appropriate features. And you must know everything that your control inherits, so you can take advantage of
inherited features without recreating them.

The class from which you derive a component is called its immediate ancestor. Each component inherits from its
immediate ancestor, and from the immediate ancestor of its immediate ancestor, and so forth. All of the classes
from which a component inherits are called its ancestors; the component is a descendant of its ancestors.

Together, all the ancestor-descendant relationships in an application constitute a hierarchy of classes. Each
generation in the hierarchy contains more than its ancestors, since a class inherits everything from its ancestors,
then adds new properties and methods or redefines existing ones.

If you do not specify an immediate ancestor, Delphi derives your component from the default ancestor, TObject.
TObject is the ultimate ancestor of all classes in the object hierarchy.

The general rule for choosing which object to derive from is simple: Pick the object that contains as much as
possible of what you want to include in your new object, but which does not include anything you do not want in the
new object. You can always add things to your objects, but you cannot take things out.

 DevGuide: Component writer's guide

Controlling access
Topic groups

There are five levels of access control—also called visibility—on properties, methods, and fields. Visibility
determines which code can access which parts of the class. By specifying visibility, you define the interface to your
components.

The table below shows the levels of visibility, from most restrictive to most accessible:

Visibility Meaning Used for

private Accessible only to code in the unit where the
class is defined.

Hiding implementation details.

protected Accessible to code in the unit(s) where the class
and its descendants are defined.

Defining the component writer’s interface.

public Accessible to all code. Defining the runtime interface.
automated Accessible to all code. Automation type

information is generated.
OLE automation only.

published Accessible to all code and from the Object
Inspector.

Defining the design-time interface.

Declare members as private if you want them to be available only within the class where they are defined; declare
them as protected if you want them to be available only within that class and its descendants. Remember, though,
that if a member is available anywhere within a unit file, it is available everywhere in that file. Thus, if you define two
classes in the same unit, the classes will be able to access each other’s private methods. And if you derive a class
in a different unit from its ancestor, all the classes in the new unit will be able to access the ancestor’s protected
methods.

 DevGuide: Component writer's guide

Hiding implementation details
Topic groups Example

Declaring part of a class as private makes that part invisible to code outside the class’s unit file. Within the unit that
contains the declaration, code can access the part as if it were public.

 DevGuide: Component writer's guide

Example: Hiding implementation details
Here is an example that shows how declaring a field as private hides it from application developers. The listing
shows two VCL form units. Each form has a handler for its OnCreate event which assigns a value to a private field.
The compiler allows assignment to the field only in the form where it is declared.

unit HideInfo;
interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms,
Dialogs;
type
 TSecretForm = class(TForm) { declare new
form }
 procedure FormCreate(Sender: TObject);
 private { declare private
part }
 FSecretCode: Integer; { declare a private
field }
 end;
var
 SecretForm: TSecretForm;
implementation
procedure TSecretForm.FormCreate(Sender: TObject);
begin
 FSecretCode := 42; { this compiles
correctly }
end;
end. { end of
unit }
unit TestHide; { this is the main form
file }
interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms,
Dialogs,
 HideInfo; { use the unit with
TSecretForm }
type
 TTestForm = class(TForm)
 procedure FormCreate(Sender: TObject);
 end;
var
 TestForm: TTestForm;
implementation
procedure TTestForm.FormCreate(Sender: TObject);
begin
 SecretForm.FSecretCode := 13; { compiler stops with "Field identifier
expected" }
end;
end. { end of
unit }

Although a program using the HideInfo unit can use objects of type TSecretForm, it cannot access the FSecretCode
field in any of those objects.

 DevGuide: Component writer's guide

Defining the developer's interface
Topic groups

Declaring part of a class as protected makes that part visible only to the class itself and its descendants (and to
other classes that share their unit files).

You can use protected declarations to define a component writer’s interface to the class. Application units do not
have access to the protected parts, but derived classes do. This means that component writers can change the way
a class works without making the details visible to application developers.

Note: A common mistake is trying to access protected methods from an event handler. Event handlers are
typically methods of the form, not the component that receives the event. As a result, they do not have
access to the component’s protected methods (unless the component is declared in the same unit as the
form).

 DevGuide: Component writer's guide

Defining the runtime interface
Topic groups Example

Declaring part of a class as public makes that part visible to any code that has access to the class as a whole.

Public parts are available at runtime to all code, so the public parts of a class define its runtime interface. The
runtime interface is useful for items that are not meaningful or appropriate at design time, such as properties that
depend on runtime input or which are read-only. Methods that you intend for application developers to call must also
be public.

 DevGuide: Component writer's guide

Example: Defining the runtime interface
Here is an example that shows two read-only properties declared as part of a component’s runtime interface:

type
 TSampleComponent = class(TComponent)
 private
 FTempCelsius: Integer; { implementation details are
private }
 function GetTempFahrenheit: Integer;
 public
 property TempCelsius: Integer read FTempCelsius; { properties are
public }
 property TempFahrenheit: Integer read GetTempFahrenheit;
 end;
...
function TSampleComponent.GetTempFahrenheit: Integer;
begin
 Result := FTempCelsius * 9 div 5 + 32;
end;

 DevGuide: Component writer's guide

Defining the design-time interface
Topic groups Example

Declaring part of a class as published makes that part public and also generates runtime type information. Among
other things, runtime type information allows the Object Inspector to access properties and events.

Because they show up in the Object Inspector, the published parts of a class define that class’s design-time
interface. The design-time interface should include any aspects of the class that an application developer might
want to customize at design time, but must exclude any properties that depend on specific information about the
runtime environment.

Read-only properties cannot be part of the design-time interface because the application developer cannot assign
values to them directly. Read-only properties should therefore be public, rather than published.

 DevGuide: Component writer's guide

Example: Defining the design-time interface
Here is an example of a published property called Temperature. Because it is published, it appears in the Object
Inspector at design time.

type
 TSampleComponent = class(TComponent)
 private
 FTemperature: Integer; { implementation details are
private }
 published
 property Temperature: Integer read FTemperature write FTemperature;
{ writable! }
 end;

 DevGuide: Component writer's guide

Dispatching methods
Topic groups

Dispatch refers to the way a program determines where a method should be invoked when it encounters a method
call. The code that calls a method looks like any other procedure or function call. But classes have different ways of
dispatching methods.

The three types of method dispatch are
Static
Virtual
Dynamic

 DevGuide: Component writer's guide

Static methods
Topic groups Example

All methods are static unless you specify otherwise when you declare them. Static methods work like regular
procedures or functions. The compiler determines the exact address of the method and links the method at compile
time.

The primary advantage of static methods is that dispatching them is very quick. Because the compiler can
determine the exact address of the method, it links the method directly. Virtual and dynamic methods, by contrast,
use indirect means to look up the address of their methods at runtime, which takes somewhat longer.

A static method does not change when inherited by a descendant class. If you declare a class that includes a static
method, then derive a new class from it, the derived class shares exactly the same method at the same address.
This means that you cannot override static methods; a static method always does exactly the same thing no matter
what class it is called in. If you declare a method in a derived class with the same name as a static method in the
ancestor class, the new method simply replaces the inherited one in the derived class.

 DevGuide: Component writer's guide

Example: Static methods
In the following code, the first component declares two static methods. The second declares two static methods with
the same names that replace the methods inherited from the first component.

type
 TFirstComponent = class(TComponent)
 procedure Move;
 procedure Flash;
 end;
 TSecondComponent = class(TFirstComponent)
 procedure Move; { different from the inherited method, despite same
declaration }
 function Flash(HowOften: Integer): Integer; { this is also
different }
 end;

 DevGuide: Component writer's guide

Virtual methods
Topic groups

Virtual methods employ a more complicated, and more flexible, dispatch mechanism than static methods. A virtual
method can be redefined in descendant classes, but still be called in the ancestor class. The address of a virtual
method isn’t determined at compile time; instead, the object where the method is defined looks up the address at
runtime.

To make a method virtual, add the directive virtual after the method declaration. The virtual directive creates an
entry in the object’s virtual method table, or VMT, which holds the addresses of all the virtual methods in an object
type.

When you derive a new class from an existing one, the new class gets its own VMT, which includes all the entries
from the ancestor’s VMT plus any additional virtual methods declared in the new class.

 DevGuide: Component writer's guide

Overriding methods
Topic groups Example

Overriding a method means extending or refining it, rather than replacing it. A descendant class can override any of
its inherited virtual methods.

To override a method in a descendant class, add the directive override to the end of the method declaration.

Overriding a method causes a compilation error if
The method does not exist in the ancestor class.
The ancestor’s method of that name is static.
The declarations are not otherwise identical (number and type of arguments parameters differ).

 DevGuide: Component writer's guide
Example: Overriding methods
The following code shows the declaration of two simple components. The first declares three methods, each with a
different kind of dispatching. The other, derived from the first, replaces the static method and overrides the virtual
methods.

type
 TFirstComponent = class(TCustomControl)
 procedure Move; { static method }
 procedure Flash; virtual; { virtual method }
 procedure Beep; dynamic; { dynamic virtual method }
 end;
 TSecondComponent = class(TFirstComponent)
 procedure Move; { declares new method }
 procedure Flash; override; { overrides inherited method }
 procedure Beep; override; { overrides inherited method }
 end;

 DevGuide: Component writer's guide

Dynamic methods
Topic groups

Dynamic methods are virtual methods with a slightly different dispatch mechanism. Because dynamic methods
don’t have entries in the object’s virtual method table, they can reduce the amount of memory that objects consume.
However, dispatching dynamic methods is somewhat slower than dispatching regular virtual methods. If a method is
called frequently, or if its execution is time-critical, you should probably declare it as virtual rather than dynamic.

Objects must store the addresses of their dynamic methods. But instead of receiving entries in the virtual method
table, dynamic methods are listed separately. The dynamic method list contains entries only for methods introduced
or overridden by a particular class. (The virtual method table, in contrast, includes all of the object’s virtual methods,
both inherited and introduced.) Inherited dynamic methods are dispatched by searching each ancestor’s dynamic
method list, working backwards through the inheritance tree.

To make a method dynamic, add the directive dynamic after the method declaration.

 DevGuide: Component writer's guide

Abstract class members
Topic groups

When a method is declared as abstract in an ancestor class, you must surface it (by redeclaring and implementing
it) in any descendant component before you can use the new component in applications. Delphi cannot create
instances of a class that contains abstract members. For more information about surfacing inherited parts of
classes, see Creating properties and Creating methods.

 DevGuide: Component writer's guide

Classes and pointers
Topic groups

Every class (and therefore every component) is really a pointer. The compiler automatically dereferences class
pointers for you, so most of the time you do not need to think about this. The status of classes as pointers becomes
important when you pass a class as a parameter. In general, you should pass classes by value rather than by
reference. The reason is that classes are already pointers, which are references; passing a class by reference
amounts to passing a reference to a reference.

 DevGuide: Component writer's guide

Creating properties
Topic groups

Properties are the most visible parts of components. The application developer can see and manipulate them at
design time and get immediate feedback as the components react in the Form designer. Well-designed properties
make your components easier for others to use and easier for you to maintain.

To make the best use of properties in your components, you should understand the following:
Why create properties?
Types of properties
Publishing inherited properties
Defining properties
Creating array properties
Storing and loading properties

 DevGuide: Component writer's guide

Why create properties?
Topic groups

From the application developer’s standpoint, properties look like variables. Developers can set or read the values of
properties as if they were fields. (About the only thing you can do with a variable that you cannot do with a property
is pass it as a var parameter.)

Properties provide more power than simple fields because
Application developers can set properties at design time. Unlike methods, which are available only at

runtime, properties let the developer customize components before running an application. Properties can appear in
the Object Inspector, which simplifies the programmer’s job; instead of handling several parameters to construct an
object, you let Delphi read the values from the Object Inspector. The Object Inspector also validates property
assignments as soon as they are made.

Properties can hide implementation details. For example, data stored internally in an encrypted form can
appear unencrypted as the value of a property; although the value is a simple number, the component may look up
the value in a database or perform complex calculations to arrive at it. Properties let you attach complex effects to
outwardly simple assignments; what looks like an assignment to a field can be a call to a method which implements
elaborate processing.

Properties can be virtual. Hence, what looks like a single property to an application developer may be
implemented differently in different components.
A simple example is the Top property of all controls. Assigning a new value to Top does not just change a stored
value; it repositions and repaints the control. And the effects of setting a property need not be limited to an individual
component; for example, setting the Down property of a speed button to True sets Down property of all other speed
buttons in its group to False.

 DevGuide: Component writer's guide

Types of properties
Topic groups

A property can be of any type. Different types are displayed differently in the Object Inspector, which validates
property assignments as they are made at design time.

Property type Object Inspector treatment

Simple Numeric, character, and string properties appear as numbers, characters, and strings. The
application developer can edit the value of the property directly.

Enumerated Properties of enumerated types (including Boolean) appear as editable strings. The
developer can also cycle through the possible values by double-clicking the value column,
and there is a drop-down list that shows all possible values.

Set Properties of set types appear as sets. By double-clicking on the property, the developer
can expand the set and treat each element as a Boolean value (true if it is included in the
set).

Object Properties that are themselves classes often have their own property editors, specified in
the component’s registration procedure. If the class held by a property has its own
published properties, the Object Inspector lets the developer to expand the list (by double-
clicking) to include these properties and edit them individually. Object properties must
descend from TPersistent.

Interface Properties that are interfaces can appear in the Object Inspector as long as the value is an
interface that is implemented by a component (a descendant of TComponent). Interface
properties often have their own property editors.

Array Array properties must have their own property editors; the Object Inspector has no built-in
support for editing them. You can specify a property editor when you register your
components.

 DevGuide: Component writer's guide

Publishing inherited properties
Topic groups Example

All components inherit properties from their ancestor classes. When you derive a new component from an existing
one, your new component inherits all the properties of its immediate ancestor. If you derive from one of the abstract
classes, many of the inherited properties are either protected or public, but not published.

To make a protected or public property available at design time in the Object Inspector, you must redeclare the
property as published. Redeclaring means adding a declaration for the inherited property to the declaration of the
descendant class.

 DevGuide: Component writer's guide
Example: Publishing an inherited property
If you derive a VCL component from TWinControl, for example, it inherits the protected DockSite property. By
redeclaring DockSite in your new component, you can change the level of protection to either public or published.

The following code shows a redeclaration of DockSite as published, making it available at design time.

type
 TSampleComponent = class(TWinControl)
 published
 property DockSite;
 end;

When you redeclare a property, you specify only the property name, not the type and other information described in
Defining properties. You can also declare new default values and specify whether to store the property.

Redeclarations can make a property less restricted, but not more restricted. Thus you can make a protected
property public, but you cannot hide a public property by redeclaring it as protected.

 DevGuide: Component writer's guide

Defining component properties
Topic groups

This section shows how to declare new properties and explains some of the conventions followed in the standard
components. Topics include

The property declaration
Internal data storage
Direct access
Access methods
Default property values

 DevGuide: Component writer's guide

The property declaration
Topic groups Example

A property is declared in the declaration of its component class. To declare a property, you specify three things:
The name of the property.
The type of the property.
The methods used to read and write the value of the property. If no write method is declared, the property is

read-only.
Properties declared in a published section of the component’s class declaration are editable in the Object Inspector
at design time. The value of a published property is saved with the component in the form file. Properties declared
in a public section are available at runtime and can be read or set in program code.

 DevGuide: Component writer's guide

Example: Property declaration
Here is a typical declaration for a property called Count.

type
 TYourComponent = class(TComponent)
 private
 FCount: Integer; { used for internal storage }
 procedure SetCount (Value: Integer); { write method }
 public
 property Count: Integer read FCount write SetCount;
 end;

 DevGuide: Component writer's guide

Internal data storage (properties)
Topic groups

There are no restrictions on how you store the data for a property. In general, however, Delphi components follow
these conventions:

Property data is stored in class fields.
The fields used to store property data are private and should be accessed only from within the component

itself. Derived components should use the inherited property; they do not need direct access to the property’s internal
data storage.

Identifiers for these fields consist of the letter F followed by the name of the property. For example, the raw
data for the Width property defined in TControl is stored in a field called FWidth.
The principle that underlies these conventions is that only the implementation methods for a property should access
the data behind it. If a method or another property needs to change that data, it should do so through the property,
not by direct access to the stored data. This ensures that the implementation of an inherited property can change
without invalidating derived components.

 DevGuide: Component writer's guide

Direct access
Topic groups Example

The simplest way to make property data available is direct access. That is, the read and write parts of the property
declaration specify that assigning or reading the property value goes directly to the internal-storage field without
calling an access method. Direct access is useful when you want to make a property available in the Object
Inspector but changes to its value trigger no immediate processing.

It is common to have direct access for the read part of a property declaration but use an access method for the
write part. This allows the status of the component to be updated when the property value changes.

 DevGuide: Component writer's guide

Example: A property that uses direct access
The following component-type declaration shows a property that uses direct access for both the read and the write
parts.

type
 TSampleComponent = class(TComponent)
 private { internal storage is
private}
 FMyProperty: Boolean; { declare field to hold property
value }
 published { make property available at design
time }
 property MyProperty: Boolean read FMyProperty write FMyProperty;
 end;

 DevGuide: Component writer's guide

Access methods (properties)
Topic groups Example

You can specify an access method instead of a field in the read and write parts of a property declaration. Access
methods should be protected, and are usually declared as virtual; this allows descendant components to override
the property’s implementation.

Avoid making access methods public. Keeping them protected ensures that application developers do not
inadvertently modify a property by calling one of these methods.

 DevGuide: Component writer's guide

Example: Property access methods
Here is a class that declares three properties using the index specifier, which allows all three properties to have the
same read and write access methods:

type
 TSampleCalendar = class(TCustomGrid)
 public
 property Day: Integer index 3 read GetDateElement write SetDateElement;
 property Month: Integer index 2 read GetDateElement write SetDateElement;
 property Year: Integer index 1 read GetDateElement write SetDateElement;
 private
 function GetDateElement(Index: Integer): Integer; { note the Index parameter }
 procedure SetDateElement(Index: Integer; Value: Integer);
 ...

Because each element of the date (day, month, and year) is an int, and because setting each requires encoding the
date when set, the code avoids duplication by sharing the read and write methods for all three properties. You need
only one method to read a date element, and another to write the date element.

Here is the read method that obtains the date element:

function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var
 AYear, AMonth, ADay: Word;
begin
 DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into
elements }
 case Index of
 1: Result := AYear;
 2: Result := AMonth;
 3: Result := ADay;
 else Result := -1;
 end;
end;

This is the write method that sets the appropriate date element:

procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var
 AYear, AMonth, ADay: Word;
begin
 if Value > 0 then { all elements must be positive }
 begin
 DecodeDate(FDate, AYear, AMonth, ADay); { get current date elements }
 case Index of { set new element depending on
Index }
 1: AYear := Value;
 2: AMonth := Value;
 3: ADay := Value;
 else Exit;
 end;
 FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified date }
 Refresh; { update the visible calendar }
 end;
end;

 DevGuide: Component writer's guide

The read method
Topic groups

The read method for a property is a function that takes no parameters (except as noted below) and returns a value
of the same type as the property. By convention, the function’s name is Get followed by the name of the property.
For example, the read method for a property called Count would be GetCount. The read method manipulates the
internal storage data as needed to produce the value of the property in the appropriate type.

The only exceptions to the no-parameters rule are for array properties and properties that use index specifiers (see
Creating array properties), both of which pass their index values as parameters. (Use index specifiers to create a
single read method that is shared by several properties. For more information about index specifiers, see the Object
Pascal Language Guide.)

If you do not declare a read method, the property is write-only. Write-only properties are seldom used.

 DevGuide: Component writer's guide

The write method
Topic groups

The write method for a property is a procedure that takes a single parameter (except as noted below) of the same
type as the property. The parameter can be passed by reference or by value, and can have any name you choose.
By convention, the write method’s name is Set followed by the name of the property. For example, the write method
for a property called Count would be SetCount. The value passed in the parameter becomes the new value of the
property; the write method must perform any manipulation needed to put the appropriate data in the property’s
internal storage.

The only exceptions to the single-parameter rule are for array properties and properties that use index specifiers,
both of which pass their index values as a second parameter. (Use index specifiers to create a single write method
that is shared by several properties. For more information about index specifiers, see the Object Pascal Language
Guide.)

If you do not declare a write method, the property is read-only.

Write methods commonly test whether a new value differs from the current value before changing the property. For
example, here is a simple write method for an integer property called Count that stores its current value in a field
called FCount.

procedure TMyComponent.SetCount(Value: Integer);
begin
 if Value <> FCount then
 begin
 FCount := Value;
 Update;
 end;
end;

 DevGuide: Component writer's guide

Default property values
Topic groups

When you declare a property, you can specify a default value for it. Delphi uses the default value to determine
whether to store the property in a form file. If you do not specify a default value for a property, Delphi always stores
the property.

To specify a default value for a property, append the default directive to the property’s declaration (or redeclaration),
followed by the default value. For example,

property Cool Boolean read GetCool write SetCool default True;

Note: Declaring a default value does not set the property to that value. The component’s constructor method
should initialize property values when appropriate. However, since objects always initialize their fields to 0,
it is not strictly necessary for the constructor to set integer properties to 0, string properties to null, or
Boolean properties to False.

 DevGuide: Component writer's guide

Specifying no default value
Topic groups Example

When redeclaring a property, you can specify that the property has no default value, even if the inherited property
specified one.

To designate a property as having no default value, append the nodefault directive to the property’s declaration.
For example,

property FavoriteFlavor string nodefault;

When you declare a property for the first time, there is no need to include nodefault. The absence of a declared
default value means that there is no default.

 DevGuide: Component writer's guide

Example: A property with a default value
Here is the declaration of a component that includes a single Boolean property called IsTrue with a default value of
True. Below the declaration (in the implementation section of the unit) is the constructor that initializes the property.

type
 TSampleComponent = class(TComponent)
 private
 FIsTrue: Boolean;
 public
 constructor Create(AOwner: TComponent); override;
 published
 property IsTrue: Boolean read FIsTrue write FIsTrue default True;
 end;
...
constructor TSampleComponent.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { call the inherited constructor }
 FIsTrue := True; { set the default value }
end;

 DevGuide: Component writer's guide

Creating array properties
Topic groups Example

Some properties lend themselves to being indexed like arrays. For example, the Lines property of TMemo is an
indexed list of the strings that make up the text of the memo; you can treat it as an array of strings. Lines provides
natural access to a particular element (a string) in a larger set of data (the memo text).

Array properties are declared like other properties, except that
The declaration includes one or more indexes with specified types. The indexes can be of any type.
The read and write parts of the property declaration, if specified, must be methods. They cannot be fields.

The read and write methods for an array property take additional parameters that correspond to the indexes. The
parameters must be in the same order and of the same type as the indexes specified in the declaration.

There are a few important differences between array properties and arrays. Unlike the index of an array, the index
of an array property does not have to be an integer type. You can index a property on a string, for example. In
addition, you can reference only individual elements of an array property, not the entire range of the property.

 DevGuide: Component writer's guide

Example: Array property
The following example shows the declaration of a property that returns a string based on an integer index.

type
 TDemoComponent = class(TComponent)
 private
 function GetNumberName(Index: Integer): string;
 public
 property NumberName[Index: Integer]: string read GetNumberName;
 end;
...
function TDemoComponent.GetNumberName(Index: Integer): string;
begin
 Result := 'Unknown';
 case Index of
 -MaxInt..-1: Result := 'Negative';
 0: Result := 'Zero';
 1..100: Result := 'Small';
 101..MaxInt: Result := 'Large';
 end;
end;

 DevGuide: Component writer's guide

Creating properties for subcomponents
Topic groups

By default, when a property’s value is another component, you assign a value to that property by adding an
instance of the other component to the form or data module and then assigning that component as the value of the
property. However, it is also possible for your component to create its own instance of the object that implements
the property value. Such a dedicated component is called a subcomponent.

Subcomponents can be any persistent object (any descendant of TPersistent). Unlike separate components that
happen to be assigned as the value of a property, the published properties of subcomponents are saved with the
component that creates them. In order for this to work, however, the following conditions must be met:

The Owner of the subcomponent must be the component that creates it and uses it as the value of a
published property. For subcomponents that are descendants of TComponent, you can accomplish this by setting the
Owner property of the subcomponent. For other subcomponents, you must override the GetOwner method of the
persistent object so that it returns the creating component.

If the subcomponent is a descendant of TComponent, it must indicate that it is a subcomponent by calling
the SetSubComponent method. Typically, this call is made either by the owner when it creates the subcomponent or
by the constructor of the subcomponent.
Typically, properties whose values are subcomponents are read-only. If you allow a property whose value is a
subcomponent to be changed, the property setter must free the subcomponent when another component is
assigned as the property value. In addition, the component often re-instantiates its subcomponent when the
property is set to nil. Otherwise, once the property is changed to another component, the subcomponent can never
be restored at design time. The following example illustrates such a property setter for a property whose value is a
TTimer:

procedure TDemoComponent.SetTimerProp(Value: TTimer);
begin
 if Value <> FTimer then
 begin
 if Value <> nil then
 begin
 if (FTimer <> nil and FTimer.Owner = self then
 FTimer.Free;
 FTimer := Value;
 FTimer,FreeNotification(self);
 end
 else { nil value }
 begin
 if FTimer.Owner <> self then
 {
 FTimer := TTimer.Create(self);
 FTimer.SetSubComponent(True);
 FTimer.FreeNotification(self);
 }
 end;
 end;
end;

Note that the property setter above called the FreeNotification method of the component that is set as the property
value. This call ensures that the component that is the value of the property sends a notification if it is about to be
destroyed. It sends this notification by calling the Notification method. You handle this call by overriding the
Notification method, as follows:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation:
TOperation);
begin
 inherited Notification(AComponent, Operation);
 if (Operation = opRemove) and (AComponent = FTimer) then
 FTimer := nil;
end;

 DevGuide: Component writer's guide

Creating properties for interfaces
Topic groups

You can use an interface as the value of a published property, much as you can use an object. However, the
mechanism by which your component receives notifications from the implementation of that interface differs. In
Creating properties for subcomponents, the property setter called the FreeNotification method of the component
that was assigned as the property value. This allowed the component to update itself when the component that was
the value of the property was freed. When the value of the property is an interface, however, you don’t have access
to the component that implements that interface. As a result, you can’t call its FreeNotification method.

To handle this situation, you can call your component’s ReferenceInterface method:

procedure TDemoComponent.SetMyIntfProp(const Value: IMyInterface);
begin
 ReferenceInterface(FIntfField, opRemove);
 FIntfField := Value;
 ReferenceInterface(FIntfField, opInsert);
end;

Calling ReferenceInterface with a specified interface does the same thing as calling another component’s
FreeNotification method. Thus, after calling ReferenceInterface from the property setter, you can override the
Notification method to handle the notifications from the implementor of the interface:

procedure TDemoComponent.Notification(AComponent: TComponent; Operation:
TOperation);
begin
 inherited Notification(AComponent, Operation);
 if (Assigned(MyIntfProp)) and (AComponent.IsImplementorOf(MyInftProp)) then
 MyIntfProp := nil;
end;

Note that the Notification code assigns nil to the MyIntfProp property, not to the private field (FIntfField). This
ensures that Notification calls the property setter, which calls ReferenceInterface to remove the notifcation request
that was established when the property value was set previously. All assignments to the interface property must be
made through the property setter.

 DevGuide: Component writer's guide

Storing and loading properties
Topic groups

Delphi stores forms and their components in form (.dfm in VCL and .xfm in CLX) files. A form file stores the
properties of a form and its components. When Delphi developers add the components you write to their forms,
your components must have the ability to write their properties to the form file when saved. Similarly, when loaded
into Delphi or executed as part of an application, the components must restore themselves from the form file.

Most of the time you will not need to do anything to make your components work with form files because the ability
to store a representation and load from it are part of the inherited behavior of components. Sometimes, however,
you might want to alter the way a component stores itself or the way it initializes when loaded; so you should
understand the underlying mechanism.

These are the aspects of property storage you need to understand:
Using the store-and-load mechanism
Specifying default values
Determining what to store
Initializing after loading
Storing and loading unpublished properties

 DevGuide: Component writer's guide

Using the store-and-load mechanism
Topic groups

The description of a form consists of a list of the form’s properties, along with similar descriptions of each
component on the form. Each component, including the form itself, is responsible for storing and loading its own
description.

By default, when storing itself, a component writes the values of all its public and published properties that differ
from their default values, in the order of their declaration. When loading itself, a component first constructs itself,
setting all properties to their default values, then reads the stored, non-default property values.

This default mechanism serves the needs of most components, and requires no action at all on the part of the
component writer. There are several ways you can customize the storing and loading process to suit the needs of
your particular components, however.

 DevGuide: Component writer's guide

Specifying default values
Topic groups Example

Delphi components save their property values only if those values differ from the defaults. If you do not specify
otherwise, Delphi assumes a property has no default value, meaning the component always stores the property,
whatever its value.

To specify a default value for a property, add the default directive and the new default value to the end of the
property declaration.

You can also specify a default value when redeclaring a property. In fact, one reason to redeclare a property is to
designate a different default value.

Note: Specifying the default value does not automatically assign that value to the property on creation of the
object. You must make sure that the component’s constructor assigns the necessary value. A property
whose value is not set by a component’s constructor assumes a zero value—that is, whatever value the
property assumes when its storage memory is set to 0. Thus numeric values default to 0, Boolean values
to False, pointers to nil, and so on. If there is any doubt, assign a value in the constructor method.

 DevGuide: Component writer's guide

Example: Specifying a default value
The following code shows a component declaration that specifies a default value for the Align property and the
implementation of the component’s constructor that sets the default value. In this case, the new component is a
special case of the standard panel component that will be used for status bars in a window, so its default alignment
should be to the bottom of its owner.

type
 TStatusBar = class(TPanel)
 public
 constructor Create(AOwner: TComponent); override; { override to set new
default }
 published
 property Align default alBottom; { redeclare with new default
value }
 end;
...
constructor TStatusBar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { perform inherited
initialization }
 Align := alBottom; { assign new default value for
Align }
end;

 DevGuide: Component writer's guide

Determining what to store
Topic groups Example

You can control whether Delphi stores each of your components’ properties. By default, all properties in the
published part of the class declaration are stored. You can choose not to store a given property at all, or you can
designate a function that determines dynamically whether to store the property.

To control whether Delphi stores a property, add the stored directive to the property declaration, followed by True,
False, or the name of a Boolean function.

 DevGuide: Component writer's guide

Example: Stored properties
The following code shows a component that declares three new properties. One is always stored, one is never
stored, and the third is stored depending on the value of a Boolean function:

type
 TSampleComponent = class(TComponent)
 protected
 function StoreIt: Boolean;
 public
 ...
 published
 property Important: Integer stored True; { always stored }
 property Unimportant: Integer stored False; { never stored }
 property Sometimes: Integer stored StoreIt; { storage depends on function
value }
 end;

 DevGuide: Component writer's guide

Initializing after loading
Topic groups

After a component reads all its property values from its stored description, it calls a virtual method named Loaded,
which performs any required initializations. The call to Loaded occurs before the form and its controls are shown, so
you do not need to worry about initialization causing flicker on the screen.

To initialize a component after it loads its property values, override the Loaded method.

Note: The first thing to do in any Loaded method is call the inherited Loaded method. This ensures that any
inherited properties are correctly initialized before you initialize your own component.

The following code comes from the TDatabase component. After loading, the database tries to reestablish any
connections that were open at the time it was stored, and specifies how to handle any exceptions that occur while
connecting.

procedure TDatabase.Loaded;
begin
 inherited Loaded; { call the inherited method
first}
 try
 if FStreamedConnected then Open { reestablish
connections }
 else CheckSessionName(False);
 except
 if csDesigning in ComponentState then { at design
time... }
 Application.HandleException(Self) { let Delphi handle the
exception }
 else raise; { otherwise,
reraise }
 end;
end;

 DevGuide: Component writer's guide

Storing and loading unpublished properties
Topic groups

By default, only published properties are loaded and saved with a component. However, it is possible to load and
save unpublished properties. This allows you to have persistent properties that do not appear in the Object
Inspector. It also allows components to store and load property values that Delphi does not know how to read or
write because the value of the property is too complex. For example, the TStrings object can’t rely on Delphi’s
automatic behavior to store and load the strings it represents and must use the following mechanism.

You can save unpublished properties by adding code that tells Delphi how to load and save your property’s value.

To write your own code to load and save properties, use the following steps:
1 Create methods to store and load the property value.
2 Override the DefineProperties method , passing those methods to a filer object.

 DevGuide: Component writer's guide

Creating methods to store and load property values
Topic groups

To store and load unpublished properties, you must first create a method to store your property value and another to
load your property value. You have two choices:

Create a method of type TWriterProc to store your property value and a method of type TReaderProc to load
your property value. This approach lets you take advantage of Delphi’s built-in capabilities for saving and loading
simple types. If your property value is built out of types that Delphi knows how to save and load, use this approach.

Create two methods of type TStreamProc, one to store and one to load your property’s value. TStreamProc
takes a stream as an argument, and you can use the stream’s methods to write and read your property values.
For example, consider a property that represents a component that is created at runtime. Delphi knows how to write
this value, but does not do so automatically because the component is not created in the form designer. Because
the streaming system can already load and save components, you can use the first approach. The following
methods load and store the dynamically created component that is the value of a property named
MyCompProperty:

procedure TSampleComponent.LoadCompProperty(Reader: TReader);
begin
 ifReader.ReadBoolean then
 MyCompProperty := Reader.ReadComponent(nil);
end;
procedure TSampleComponent.StoreCompProperty(Writer: TWriter);
begin
 Writer.WriteBoolean(MyCompProperty <> nil);
 if MyCompProperty <> nil then
 Writer.WriteComponent(MyCompProperty);
end;

 DevGuide: Component writer's guide

Overriding the DefineProperties method
Topic groups

Once you have created methods to store and load your property value, you can override the component’s
DefineProperties method. Delphi calls this method when it loads or stores the component. In the DefineProperties
method, you must call the DefineProperty method or the DefineBinaryProperty method of the current filer, passing it
the method to use for loading or saving your property value. If your load and store methods are of type TWriterProc
and type TReaderProc, then you call the filer’s DefineProperty method. If you created methods of type
TStreamProc, call DefineBinaryProperty instead.

No matter which method you use to define the property, you pass it the methods that store and load your property
value as well as a boolean value indicating whether the property value needs to be written. If the value can be
inherited or has a default value, you do not need to write it.

For example, given the LoadCompProperty method of type TReaderProc and the StoreCompProperty method of
type TWriterProc, you would override DefineProperties as follows:

procedure TSampleComponent.DefineProperties(Filer: TFiler);
 functionDoWrite: Boolean;
 begin
 if Filer.Ancestor <> nil then { check Ancestor for an inherited value }
 begin
 if TSampleComponent(Filer.Ancestor).MyCompProperty = nil then
 Result := MyCompProperty <> nil
 else if MyCompProperty = nil or
 TSampleComponent(Filer.Ancestor).MyCompProperty.Name <> MyCompProperty.Name
then
 Result := True
 else Result := False;
 end
 else { no inherited value -- check for default (nil) value }
 Result := MyCompProperty <> nil;
 end;
begin
 inherited; { allow base classes to define properties }
 Filer.DefineProperty('MyCompProperty', LoadCompProperty, StoreCompProperty,
DoWrite);
end;

 DevGuide: Component writer's guide

Creating events
Topic groups

An event is a link between an occurrence in the system (such as a user action or a change in focus) and a piece of
code that responds to that occurrence. The responding code is an event handler, and is nearly always written by the
application developer. Events let application developers customize the behavior of components without having to
change the classes themselves. This is known as delegation.

Events for the most common user actions (such as mouse actions) are built into all the standard components, but
you can also define new events. To create events in a component, you need to understand the following:

What are events?
Implementing the standard events
Defining your own events

Events are implemented as properties, so you should already be familiar with the material in Creating properties
before you attempt to create or change a component’s events.

 DevGuide: Component writer's guide

What are events?
Topic groups

An event is a mechanism that links an occurrence to some code. More specifically, an event is a method pointer
that points to a method in a specific class instance.

From the application developer’s perspective, an event is just a name related to a system occurrence, such as
OnClick, to which specific code can be attached. For example, a push button called Button1 has an OnClick
method. By default, Delphi generates an event handler called Button1Click in the form that contains the button and
assigns it to OnClick. When a click event occurs in the button, the button calls the method assigned to OnClick, in
this case, Button1Click.To write an event, you need to understand the following:

Events are method pointers.
Events are properties.
Event types are method-pointer types
Event-handler types are procedures
Event handlers are optional.

 DevGuide: Component writer's guide

Events are method pointers
Topic groups

Delphi uses method pointers to implement events. A method pointer is a special pointer type that points to a specific
method in an instance object. As a component writer, you can treat the method pointer as a placeholder: When your
code detects that an event occurs, you call the method (if any) specified by the user for that event.

Method pointers work just like any other procedural type, but they maintain a hidden pointer to an object. When the
application developer assigns a handler to a component’s event, the assignment is not just to a method with a
particular name, but rather to a method in a specific instance object. That object is usually the form that contains the
component, but it need not be.

 DevGuide: Component writer's guide

Calling the click-event handler
Topic groups

All controls, for example, inherit a dynamic method called Click for handling click events:

procedure Click; dynamic;

The implementation of Click calls the user’s click-event handler, if one exists. If the user has assigned a handler to a
control’s OnClick event, clicking the control results in that method being called. If no handler is assigned, nothing
happens.

 DevGuide: Component writer's guide

Events are properties
Topic groups

Components use properties to implement their events. Unlike most other properties, events do not use methods to
implement their read and write parts. Instead, event properties use a private class field of the same type as the
property.

By convention, the field’s name is the name of the property preceded by the letter F. For example, the OnClick
method’s pointer is stored in a field called FOnClick of type TNotifyEvent, and the declaration of the OnClick event
property looks like this:

type
 TControl = class(TComponent)
 private
 FOnClick: TNotifyEvent; { declare a field to hold the method
pointer }
 ...
 protected
 property OnClick: TNotifyEvent read FOnClick write FOnClick;
 end;

To learn about TNotifyEvent and other event types, see the next section, Event types are method-pointer types.

As with any other property, you can set or change the value of an event at runtime. The main advantage to having
events be properties, however, is that component users can assign handlers to events at design time, using the
Object Inspector.

 DevGuide: Component writer's guide

Event types are method-pointer types
Topic groups

Because an event is a pointer to an event handler, the type of the event property must be a method-pointer type.
Similarly, any code to be used as an event handler must be an appropriately typed method of an object.

All event-handler methods are procedures. To be compatible with an event of a given type, an event-handler
method must have the same number and type of parameters, in the same order, passed in the same way.

Delphi defines method types for all its standard events. When you create your own events, you can use an existing
type if that is appropriate, or define one of your own.

 DevGuide: Component writer's guide

Event handler types are procedures
Topic groups

Although the compiler allows you to declare method-pointer types that are functions, you should never do so for
handling events. Because an empty function returns an undefined result, an empty event handler that was a
function might not always be valid. For this reason, all your events and their associated event handlers should be
procedures.

Although an event handler cannot be a function, you can still get information from the application developer’s code
using var parameters. When doing this, make sure you assign a valid value to the parameter before calling the
handler so you don’t require the user’s code to change the value.

An example of passing var parameters to an event handler is the OnKeyPress event, of type TKeyPressEvent.
TKeyPressEvent defines two parameters, one to indicate which object generated the event, and one to indicate
which key was pressed:

type
 TKeyPressEvent = procedure(Sender: TObject; var Key: Char) of object;

Normally, the Key parameter contains the character pressed by the user. Under certain circumstances, however, the
user of the component may want to change the character. One example might be to force all characters to
uppercase in an editor. In that case, the user could define the following handler for keystrokes:

procedure TForm1.Edit1KeyPressed(Sender: TObject; var Key: Char);
begin
 Key := UpCase(Key);
end;

You can also use var parameters to let the user override the default handling.

 DevGuide: Component writer's guide

Event handlers are optional
Topic groups

When creating events, remember that developers using your components may not attach handlers to them. This
means that your component should not fail or generate errors simply because there is no handler attached to a
particular event. (The mechanics of calling handlers and dealing with events that have no attached handler are
explained in Calling the event.)

Events happen almost constantly in a GUI application. Just moving the mouse pointer across a visual component
sends numerous mouse-move messages, which the component translates into OnMouseMove events. In most
cases, developers do not want to handle the mouse-move events, and this should not cause a problem. So the
components you create should not require handlers for their events.

Moreover, application developers can write any code they want in an event handler. The components in the VCL
and CLX have events written in such a way as to minimize the chance of an event handler generating errors.
Obviously, you cannot protect against logic errors in application code, but you can ensure that data structures are
initialized before calling events so that application developers do not try to access invalid data.

 DevGuide: Component writer's guide

Implementing the standard events
Topic groups

The controls that come with Delphi inherit events for the most common occurrences. These are called the standard
events. Although all these events are built into the controls, they are often protected, meaning developers cannot
attach handlers to them. When you create a control, you can choose to make events visible to users of your control.

There are three things you need to consider when incorporating the standard events into your controls:
Identifying standard events
Making events visible
Changing the standard event handling

 DevGuide: Component writer's guide

Identifying standard events
Topic groups

There are two categories of standard events: those defined for all controls and those defined only for the standard
windowed controls.

Standard events for all controls

The most basic events are defined in the class TControl. All controls, whether windowed, graphical, or custom,
inherit these events. The following events are available in all controls:

OnClick OnDragDrop OnEndDrag OnMouseMove

OnDblClick OnDragOver OnMouseDown OnMouseUp

The standard events have corresponding protected virtual methods declared in TControl, with names that
correspond to the event names. For example, OnClick events call a method named Click, and OnEndDrag events
call a method named DoEndDrag.

Standard events for standard controls

In addition to the events common to all controls, standard windowed controls (those that descend from TWinControl
in the VCL and TWidgetControl in CLX) have the following events:

OnEnter OnKeyDown OnKeyPress

OnKeyUp OnExit

Like the standard events in TControl, the windowed-control events have corresponding methods. The standard key
events listed above respond to all normal keystrokes.

VCL Note: To respond to special keystrokes (such as the Alt key), however, you must respond to the
WM_GETDLGCODE or CM_WANTSPECIALKEYS message from Windows. See Handling
messages for information on writing message handlers.

 DevGuide: Component writer's guide

Making events visible
Topic groups Example

The declarations of the standard events in TControl and TWinControl (TWidgetControl in CLX) are protected, as are
the methods that correspond to them. If you are inheriting from one of these abstract classes and want to make
their events accessible at runtime or design time, you need to redeclare the events as either public or published.

Redeclaring a property without specifying its implementation keeps the same implementation methods, but changes
the protection level. You can, therefore, take an event that is defined in TControl but not made visible, and surface it
by declaring it as public or published.

 DevGuide: Component writer's guide

Example: Making an event visible
For example, to create a component that surfaces the OnClick event at design time, you would add the following to
the component’s class declaration.

type
 TMyControl = class(TCustomControl)
 ...
 published
 property OnClick;
 end;

 DevGuide: Component writer's guide

Changing the standard event handling
Topic groups Example

If you want to change the way your component responds to a certain kind of event, you might be tempted to write
some code and assign it to the event. As an application developer, that is exactly what you would do. But when you
are creating a component, you must keep the event available for developers who use the component.

This is the reason for the protected implementation methods associated with each of the standard events. By
overriding the implementation method, you can modify the internal event handling; and by calling the inherited
method you can maintain the standard handling, including the event for the application developer’s code.

The order in which you call the methods is significant. As a rule, call the inherited method first, allowing the
application developer’s event-handler to execute before your customizations (and in some cases, to keep the
customizations from executing). There may be times when you want to execute your code before calling the
inherited method, however. For example, if the inherited code is somehow dependent on the status of the
component and your code changes that status, you should make the changes and then allow the user’s code to
respond to them.

 DevGuide: Component writer's guide

Example: Changing the standard event handler
Suppose you are writing a component and you want to modify the way it responds to mouse clicks. Instead of
assigning a handler to the OnClick event as a application developer would, you override the protected method Click:

procedure click override { forward declaration }
...
procedure TMyControl.Click;
begin
 inherited Click; { perform standard handling, including calling
handler }
... { your customizations go here }
end;

 DevGuide: Component writer's guide

Defining your own events
Topic groups

Defining entirely new events is relatively unusual. There are times, however, when a component introduces
behavior that is entirely different from that of any other component, so you will need to define an event for it.

There are the issues you will need to consider when defining an event:
Triggering the event
Defining the handler type
Declaring the event
Calling the event

 DevGuide: Component writer's guide

Triggering the event
Topic groups

You need to know what triggers the event. For some events, the answer is obvious. For example, a mouse-down
event occurs when the user presses the left button on the mouse and Windows sends a WM_LBUTTONDOWN
message to the application. Upon receiving that message, a component calls its MouseDown method, which in turn
calls any code the user has attached to the OnMouseDown event.

But some events are less clearly tied to specific external occurrences. For example, a scroll bar has an OnChange
event, which is triggered by several kinds of occurrence, including keystrokes, mouse clicks, and changes in other
controls. When defining your events, you must ensure that all the appropriate occurrences call the proper events.

 DevGuide: Component writer's guide

Two kinds of events
Topic groups

There are two kinds of occurrence you might need to provide events for: user interactions and state changes. User-
interaction events are nearly always triggered by a message from Windows, indicating that the user did something
your component may need to respond to. State-change events may also be related to messages from Windows
(focus changes or enabling, for example), but they can also occur through changes in properties or other code.

You have total control over the triggering of the events you define. Define the events with care so that developers
are able to understand and use them.

 DevGuide: Component writer's guide

Defining the handler type
Topic groups

Once you determine when the event occurs, you must define how you want the event handled. This means
determining the type of the event handler. In most cases, handlers for events you define yourself are either simple
notifications or event-specific types. It is also possible to get information back from the handler.

Simple notifications

A notification event is one that only tells you that the particular event happened, with no specific information about
when or where. Notifications use the type TNotifyEvent, which carries only one parameter, the sender of the event.
All a handler for a notification “knows” about the event is what kind of event it was, and what component the event
happened to. For example, click events are notifications. When you write a handler for a click event, all you know is
that a click occurred and which component was clicked.

Notification is a one-way process. There is no mechanism to provide feedback or prevent further handling of a
notification.

Event-specific handlers

In some cases, it is not enough to know which event happened and what component it happened to. For example, if
the event is a key-press event, it is likely that the handler will want to know which key the user pressed. In these
cases, you need handler types that include parameters for additional information.

If your event was generated in response to a message, it is likely that the parameters you pass to the event handler
come directly from the message parameters.

Returning information from the handler

Because all event handlers are procedures, the only way to pass information back from a handler is through a var
parameter. Your components can use such information to determine how or whether to process an event after the
user’s handler executes.

For example, all the key events (OnKeyDown, OnKeyUp, and OnKeyPress) pass by reference the value of the key
pressed in a parameter named Key. The event handler can change Key so that the application sees a different key
as being involved in the event. This is a way to force typed characters to uppercase, for example.

 DevGuide: Component writer's guide

Declaring the event
Topic groups

Once you have determined the type of your event handler, you are ready to declare the method pointer and the
property for the event. Be sure to give the event a meaningful and descriptive name so that users can understand
what the event does. Try to be consistent with names of similar properties in other components.

Event names start with “On”

The names of most events in Delphi begin with “On.” This is just a convention; the compiler does not enforce it. The
Object Inspector determines that a property is an event by looking at the type of the property: all method-pointer
properties are assumed to be events and appear on the Events page.

Developers expect to find events in the alphabetical list of names starting with “On.” Using other kinds of names is
likely to confuse them.

Note: The main exception to this rule is that many events that occur before and after some occurrence begin with
“Before” and “After”.

 DevGuide: Component writer's guide

Calling the event
Topic groups

You should centralize calls to an event. That is, create a virtual method in your component that calls the
application’s event handler (if it assigns one) and provides any default handling.

Putting all the event calls in one place ensures that someone deriving a new component from yours can customize
event handling by overriding a single method, rather than searching through your code for places where you call the
event.

There are two other considerations when calling the event:
Empty handlers must be valid.
Users can override default handling.

 DevGuide: Component writer's guide

HeadingTitle
Topic groups Example

You should never create a situation in which an empty event handler causes an error, nor should the proper
functioning of your component depend on a particular response from the application’s event-handling code.

 DevGuide: Component writer's guide

Example: Calling an event handler
An empty handler should produce the same result as no handler at all. So the code for calling an application’s event
handler should look like this:

if Assigned(OnClick) then OnClick(Self);
... { perform default handling }

You should never have something like this:

if Assigned(OnClick) then OnClick(Self)
else { perform default handling };

 DevGuide: Component writer's guide

Users can override default handling
Topic groups Example

For some kinds of events, developers may want to replace the default handling or even suppress all responses. To
allow this, you need to pass an argument by reference to the handler and check for a certain value when the
handler returns.

This is in keeping with the rule that an empty handler should have the same effect as no handler at all. Because an
empty handler will not change the values of arguments passed by reference, the default handling always takes
place after calling the empty handler.

 DevGuide: Component writer's guide

Example: Overriding default event handling
When handling key-press events, for example, application developers can suppress the component’s default
handling of the keystroke by setting the var parameter Key to a null character (#0). The logic for supporting this
looks like

if Assigned(OnKeyPress) then OnKeyPress(Self, Key);
if Key <> #0 then ... { perform default handling }

The actual code is a little different from this because it deals with Windows messages, but the logic is the same. By
default, the component calls any user-assigned handler, then performs its standard handling. If the user’s handler
sets Key to a null character, the component skips the default handling.

 DevGuide: Component writer's guide

Creating methods
Topic groups

Component methods are procedures and functions built into the structure of a class. Although there are essentially
no restrictions on what you can do with the methods of a component, Delphi does use some standards you should
follow. These guidelines include

Avoiding dependencies
Naming methods
Protecting methods
Making methods virtual
Declaring methods

In general, components should not contain many methods and you should minimize the number of methods that an
application needs to call. The features you might be inclined to implement as methods are often better encapsulated
into properties. Properties provide an interface that suits the Delphi environment and are accessible at design time.

 DevGuide: Component writer's guide

Avoiding interdependencies
Topic groups

At all times when writing components, minimize the preconditions imposed on the developer. To the greatest extent
possible, developers should be able to do anything they want to a component, whenever they want to do it. There
will be times when you cannot accommodate that, but your goal should be to come as close as possible.

This list gives you an idea of the kinds of dependencies to avoid:
Methods that the user must call to use the component
Methods that must execute in a particular order
Methods that put the component into a state or mode where certain events or methods could be invalid

The best way to handle these situations is to ensure that you provide ways out of them. For example, if calling a
method puts your component into a state where calling another method might be invalid, then write that second
method so that if an application calls it when the component is in a bad state, the method corrects the state before
executing its main code. At a minimum, you should raise an exception in cases when a user calls a method that is
invalid.

In other words, if you create a situation where parts of your code depend on each other, the burden should be on
you to be sure that using the code in incorrect ways does not cause problems. A warning message, for example, is
preferable to a system failure if the user does not accommodate your dependencies.

 DevGuide: Component writer's guide

Naming methods
Topic groups

Delphi imposes no restrictions on what you name methods or their parameters. There are a few conventions that
make methods easier for application developers, however. Keep in mind that the nature of a component
architecture dictates that many different kinds of people can use your components.

If you are accustomed to writing code that only you or a small group of programmers use, you might not think too
much about how you name things. It is a good idea to make your method names clear because people unfamiliar
with your code (and even unfamiliar with coding) might have to use your components.

Here are some suggestions for making clear method names:
Make names descriptive. Use meaningful verbs.

A name like PasteFromClipboard is much more informative than simply Paste or PFC.
Function names should reflect the nature of what they return.

Although it might be obvious to you as a programmer that a function named X returns the horizontal position of
something, a name like GetHorizontalPosition is more universally understandable.

As a final consideration, make sure the method really needs to be a method. A good guideline is that method names
have verbs in them. If you find that you create a lot of methods that do not have verbs in their names, consider
whether those methods ought to be properties.

 DevGuide: Component writer's guide

Protecting methods
Topic groups

All parts of classes, including fields, methods, and properties, have a level of protection or “visibility,” as explained in
Controlling access. Choosing the appropriate visibility for a method is simple.

Most methods you write in your components are public or protected. You rarely need to make a method private,
unless it is truly specific to that type of component, to the point that even derived components should not have
access to it.

 DevGuide: Component writer's guide

Methods that should be public
Topic groups

Any method that application developers need to call must be declared as public. Keep in mind that most method
calls occur in event handlers, so methods should avoid tying up system resources or putting the operating system in
a state where it cannot respond to the user.

Note: Constructors and destructors should always be public.

 DevGuide: Component writer's guide

Methods that should be protected
Topic groups

Any implementation methods for the component should be protected so that applications cannot call them at the
wrong time. If you have methods that application code should not call, but that are called in derived classes, declare
them as protected.

For example, suppose you have a method that relies on having certain data set up for it beforehand. If you make
that method public, there is a chance that applications will call it before setting up the data. On the other hand, by
making it protected, you ensure that applications cannot call it directly. You can then set up other, public methods
that ensure that data setup occurs before calling the protected method.

Property-implementation methods should be declared as virtual protected methods. Methods that are so declared
allow the application developers to override the property implementation, either augmenting its functionality or
replacing it completely. Such properties are fully polymorphic. Keeping access methods protected ensures that
developers do not accidentally call them, inadvertently modifying a property.

 DevGuide: Component writer's guide

Abstract methods
Topic groups

Sometimes a method is declared as abstract in a Delphi component. In the VCL and CLX, abstract methods
usually occur in classes whose names begin with “custom,” such as TCustomGrid. Such classes are themselves
abstract, in the sense that they are intended only for deriving descendant classes.

While you can create an instance object of a class that contains an abstract member, it is not recommended. Calling
the abstract member leads to an EAbstractError exception.

The abstract directive is used to indicate parts of classes that should be surfaced and defined in descendant
components; it forces Component writers to redeclare the abstract member in descendant classes before actual
instances of the class can be created.

 DevGuide: Component writer's guide

Making methods virtual
Topic groups

You make methods virtual when you want different types to be able to execute different code in response to the
same method call.

If you create components intended to be used directly by application developers, you can probably make all your
methods nonvirtual. On the other hand, if you create abstract components from which other components will be
derived, consider making the added methods virtual. This way, derived components can override the inherited
virtual methods.

 DevGuide: Component writer's guide

Declaring methods
Topic groups Example

Declaring a method in a component is the same as declaring any class method.

To declare a new method in a component, you do two things:
Add the declaration to the component’s object-type declaration.
Implement the method in the implementation part of the component’s unit.

 DevGuide: Component writer's guide

Example: Declaring methods
The following code shows a component that defines two new methods, one protected static method and one public
virtual method.

type
 TSampleComponent = class(TControl)
 protected
 procedure MakeBigger; { declare protected static
method }
 public
 function CalculateArea: Integer; virtual; { declare public virtual
method }
 end;
...
implementation
...
procedure TSampleComponent.MakeBigger; { implement first
method }
begin
 Height := Height + 5;
 Width := Width + 5;
end;
function TSampleComponent.CalculateArea: Integer; { implement second
method }
begin
 Result := Width * Height;
end;

 DevGuide: Component writer's guide

Using graphics in components
Topic groups

Windows provides a powerful Graphics Device Interface (GDI) for drawing device-independent graphics. The GDI,
however, imposes extra requirements on the programmer, such as managing graphic resources. Delphi takes care
of all the GDI drudgery, allowing you to focus on productive work instead of searching for lost handles or unreleased
resources.

As with any part of the Windows API, you can call GDI functions directly from your Delphi application. But you will
probably find that using Delphi’s encapsulation of the graphic functions is faster and easier.

The topics in this section include
Overview of graphics
Using the canvas
Working with pictures
Off-screen bitmaps
Responding to changes

 DevGuide: Component writer's guide

Overview of graphics
Topic groups Example

Delphi encapsulates the Windows GDI at several levels. The most important to you as a component writer is the
way components display their images on the screen. When calling GDI functions directly, you need to have a
handle to a device context, into which you have selected various drawing tools such as pens, brushes, and fonts.
After rendering your graphic images, you must restore the device context to its original state before disposing of it.

CLX Note: GDI functions are Windows-specific and do not apply to CLX or cross-platform applications.
Instead of forcing you to deal with graphics at a detailed level, Delphi provides a simple yet complete interface: your
component’s Canvas property. The canvas ensures that it has a valid device context, and releases the context
when you are not using it. Similarly, the canvas has its own properties representing the current pen, brush, and font.

The canvas manages all these resources for you, so you need not concern yourself with creating, selecting, and
releasing things like pen handles. You just tell the canvas what kind of pen it should use, and it takes care of the
rest.

One of the benefits of letting Delphi manage graphic resources is that it can cache resources for later use, which
can speed up repetitive operations. For example, if you have a program that repeatedly creates, uses, and disposes
of a particular kind of pen tool, you need to repeat those steps each time you use it. Because Delphi caches graphic
resources, chances are good that a tool you use repeatedly is still in the cache, so instead of having to recreate a
tool, Delphi uses an existing one.

An example of this is an application that has dozens of forms open, with hundreds of controls. Each of these
controls might have one or more TFont properties. Though this could result in hundreds or thousands of instances
of TFont objects, most applications wind up using only two or three font handles thanks to a font cache.

 DevGuide: Component writer's guide

Example: Simplified graphics
Here are two examples of how simple Delphi’s graphics code can be. The first uses standard GDI functions to draw
a yellow ellipse outlined in blue on a window, the way you would using other development tools. The second uses a
canvas to draw the same ellipse in an application written with Delphi.

procedure TMyWindow.Paint(PaintDC: HDC; var PaintInfo: TPaintStruct);
var
 PenHandle, OldPenHandle: HPEN;
 BrushHandle, OldBrushHandle: HBRUSH;
begin
 PenHandle := CreatePen(PS_SOLID, 1, RGB(0, 0, 255)); { create blue
pen }
 OldPenHandle := SelectObject(PaintDC, PenHandle); { tell DC to use blue
pen }
 BrushHandle := CreateSolidBrush(RGB(255, 255, 0)); { create a yellow
brush }
 OldBrushHandle := SelectObject(PaintDC, BrushHandle); { tell DC to use yellow
brush }
 Ellipse(HDC, 10, 10, 50, 50); { draw the
ellipse }
 SelectObject(OldBrushHandle); { restore original
brush }
 DeleteObject(BrushHandle); { delete yellow
brush }
 SelectObject(OldPenHandle); { restore original
pen }
 DeleteObject(PenHandle); { destroy blue
pen }
end;
procedure TForm1.FormPaint(Sender: TObject);
begin
 with Canvas do
 begin
 Pen.Color := clBlue; { make the pen
blue }
 Brush.Color := clYellow; { make the brush
yellow }
 Ellipse(10, 10, 50, 50); { draw the
ellipse }
 end;
end;

 DevGuide: Component writer's guide

Using the canvas
Topic groups

The canvas class encapsulates graphics controls at several levels, including high-level functions for drawing
individual lines, shapes, and text; intermediate properties for manipulating the drawing capabilities of the canvas;
and in the VCL, provides low-level access to the Windows GDI.

The following table summarizes the capabilities of the canvas.

Level Operation Tools

High Drawing lines and shapes Methods such as MoveTo, LineTo, Rectangle,
and Ellipse

Displaying and measuring text TextOut, TextHeight, TextWidth, and TextRect
methods

Filling areas FillRect and FloodFill methods
Intermediate Customizing text and graphics Pen, Brush, and Font properties

Manipulating pixels Pixels property.
Copying and merging images Draw, StretchDraw, BrushCopy, and CopyRect

methods; CopyMode property
Low Calling Windows GDI functions Handle property

 DevGuide: Component writer's guide

Working with pictures
Topic groups

Most of the graphics work you do in Delphi is limited to drawing directly on the canvases of components and forms.
Delphi also provides for handling stand-alone graphic images, such as bitmaps, metafiles, and icons, including
automatic management of palettes.

There are three important aspects to working with pictures in Delphi:
Using a picture, graphic, or canvas
Loading and storing graphics
Handling palettes

 DevGuide: Component writer's guide

Using a picture, graphic, or canvas
Topic groups

There are three kinds of classes in Delphi that deal with graphics:
A canvas represents a bitmapped drawing surface on a form, graphic control, printer, or bitmap. A canvas is

always a property of something else, never a stand-alone class.
A graphic represents a graphic image of the sort usually found in a file or resource, such as a bitmap, icon,

or metafile. Delphi defines classes TBitmap, TIcon, and TMetafile, all descended from a generic TGraphic. You can
also define your own graphic classes. By defining a minimal standard interface for all graphics, TGraphic provides a
simple mechanism for applications to use different kinds of graphics easily.

A picture is a container for a graphic, meaning it could contain any of the graphic classes. That is, an item of
type TPicture can contain a bitmap, an icon, a metafile, or a user-defined graphic type, and an application can access
them all in the same way through the picture class. For example, the image control has a property called Picture, of
type TPicture, enabling the control to display images from many kinds of graphics.
Keep in mind that a picture class always has a graphic, and a graphic might have a canvas. (The only standard
graphic that has a canvas is TBitmap.) Normally, when dealing with a picture, you work only with the parts of the
graphic class exposed through TPicture. If you need access to the specifics of the graphic class itself, you can refer
to the picture’s Graphic property.

 DevGuide: Component writer's guide

Loading and storing graphics
Topic groups Example

All pictures and graphics in Delphi can load their images from files and store them back again (or into different files).
You can load or store the image of a picture at any time.

CLX Note: You can also load images from and save them to a Qt MIME source, or a stream object if creating
CLX components.

To load an image into a picture from a file, call the picture’s LoadFromFile method. To save an image from a picture
into a file, call the picture’s SaveToFile method.

LoadFromFile and SaveToFile each take the name of a file as the only parameter. LoadFromFile uses the extension
of the file name to determine what kind of graphic object it will create and load. SaveToFile saves whatever type of
file is appropriate for the type of graphic object being saved.

 DevGuide: Component writer's guide

Example: Loading a bitmap
To load a bitmap into an image control’s picture, pass the name of a bitmap file to the picture’s LoadFromFile
method:

procedure TForm1.LoadBitmapClick(Sender: TObject);
begin
 Image1.Picture.LoadFromFile('RANDOM.BMP');
end;

The picture recognizes .bmp as the standard extension for bitmap files, so it creates its graphic as a TBitmap, then
calls that graphic’s LoadFromFile method. Because the graphic is a bitmap, it loads the image from the file as a
bitmap.

 DevGuide: Component writer's guide

Handling palettes
Topic groups

For VCL components, when running on a palette-based device (typically, a 256-color video mode), Delphi controls
automatically support palette realization. That is, if you have a control that has a palette, you can use two methods
inherited from TControl to control how Windows accommodates that palette.

Palette support for controls has these two aspects:
Specifying a palette for a control
Responding to palette changes

Most controls have no need for a palette, but controls that contain “rich color” graphic images (such as the image
control) might need to interact with Windows and the screen device driver to ensure the proper appearance of the
control. Windows refers to this process as realizing palettes.

Realizing palettes is the process of ensuring that the foremost window uses its full palette, and that windows in the
background use as much of their palettes as possible, then map any other colors to the closest available colors in
the “real” palette. As windows move in front of one another, Windows continually realizes the palettes.

Note: Delphi itself provides no specific support for creating or maintaining palettes, other than in bitmaps. If you
have a palette handle, however, Delphi controls can manage it for you.

 DevGuide: Component writer's guide

Specifying a palette for a control
Topic groups

To specify a palette for a VCL control, override the control’s GetPalette method to return the handle of the palette.

Specifying the palette for a control does these things for your application:
It tells the application that your control’s palette needs to be realized.
It designates the palette to use for realization.

 DevGuide: Component writer's guide

Responding to palette changes
Topic groups

If your VCL control specifies a palette by overriding GetPalette, Delphi automatically takes care of responding to
palette messages from Windows. The method that handles the palette messages is PaletteChanged.

The primary role of PaletteChanged is to determine whether to realize the control’s palette in the foreground or the
background. Windows handles this realization of palettes by making the topmost window have a foreground palette,
with other windows resolved in background palettes. Delphi goes one step further, in that it also realizes palettes for
controls within a window in tab order. The only time you might need to override this default behavior is if you want a
control that is not first in tab order to have the foreground palette.

 DevGuide: Component writer's guide

Offscreen bitmaps
Topic groups

When drawing complex graphic images, a common technique in graphics programming is to create an off-screen
bitmap, draw the image on the bitmap, and then copy the complete image from the bitmap to the final destination
onscreen. Using an off-screen image reduces flicker caused by repeated drawing directly to the screen.

The bitmap class in Delphi, which represents bitmapped images in resources and files, can also work as an off-
screen image.

There are two main aspects to working with off-screen bitmaps:
Creating and managing off-screen bitmaps.
Copying bitmapped images.

 DevGuide: Component writer's guide

Creating and managing off-screen bitmaps
Topic groups

When creating complex graphic images, you should avoid drawing them directly on a canvas that appears
onscreen. Instead of drawing on the canvas for a form or control, you can construct a bitmap object, draw on its
canvas, and then copy its completed image to the onscreen canvas.

The most common use of an off-screen bitmap is in the Paint method of a graphic control. As with any temporary
object, the bitmap should be protected with a try..finally block:

type
 TFancyControl = class(TGraphicControl)
 protected
 procedure Paint; override; { override the Paint
method }
 end;
procedure TFancyControl.Paint;
var
 Bitmap: TBitmap; { temporary variable for the off-screen
bitmap }
begin
 Bitmap := TBitmap.Create; { construct the bitmap
object }
 try
 { draw on the bitmap }
 { copy the result into the control's canvas }
 finally
 Bitmap.Free; { destroy the bitmap
object }
 end;
end;

 DevGuide: Component writer's guide

Copying bitmapped images
Topic groups

Delphi provides four different ways to copy images from one canvas to another. Depending on the effect you want to
create, you call different methods.

The following table summarizes the image-copying methods in canvas objects.

To create this effect Call this method

Copy an entire graphic. Draw
Copy and resize a graphic. StretchDraw
Copy part of a canvas. CopyRect
Copy a bitmap with raster operations. BrushCopy (VCL)
Copy a graphic repeatedly to tile an area. TiledDraw(CLX)

 DevGuide: Component writer's guide

Responding to changes
Topic groups Example

All graphic objects, including canvases and their owned objects (pens, brushes, and fonts) have events built into
them for responding to changes in the object. By using these events, you can make your components (or the
applications that use them) respond to changes by redrawing their images.

Responding to changes in graphic objects is particularly important if you publish them as part of the design-time
interface of your components. The only way to ensure that the design-time appearance of the component matches
the properties set in the Object Inspector is to respond to changes in the objects.

To respond to changes in a graphic object, assign a method to the class’s OnChange event.

 DevGuide: Component writer's guide

Example: Responding to changes
The shape component publishes properties representing the pen and brush it uses to draw its shape. The
component’s constructor assigns a method to the OnChange event of each, causing the component to refresh its
image if either the pen or brush changes:

type
 TShape = class(TGraphicControl)
 public
 procedure StyleChanged(Sender: TObject);
 end;
...
implementation
...
constructor TShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited
constructor! }
 Width := 65;
 Height := 65;
 FPen := TPen.Create; { construct the
pen }
 FPen.OnChange := StyleChanged; { assign method to OnChange
event }
 FBrush := TBrush.Create; { construct the
brush }
 FBrush.OnChange := StyleChanged; { assign method to OnChange
event }
end;
procedure TShape.StyleChanged(Sender: TObject);
begin
 Invalidate(); { erase and repaint the
component }
end;

 DevGuide: Component writer's guide

Handling messages
Topic groups

One of the keys to traditional Windows programming is handling the messages sent by Windows to applications.
Delphi handles most of the common ones for you. It is possible, however, that you will need to handle messages
that Delphi does not already handle or that you will create your own messages. CLX components do not handle
Windows messages but you can create message handlers for your own messages.

There are three aspects to working with messages:
Understanding the message-handling system
Changing message handling
Creating new message handlers

 DevGuide: Component writer's guide

Understanding the message-handling system
Topic groups

All Delphi classes have a built-in mechanism for handling messages, called message-handling methods or
message handlers. The basic idea of message handlers is that the class receives messages of some sort and
dispatches them, calling one of a set of specified methods depending on the message received. If no specific
method exists for a particular message, there is a default handler.

The following diagram shows the message-dispatch system:

The Visual Component Library defines a message-dispatching system that translates all Windows messages
(including user-defined messages) directed to a particular class into method calls. (Note that for CLX, the dispatch
system does not include MainWndProc and WndProc.) You should never need to alter this message-dispatch
mechanism. All you will need to do is create message-handling methods. See the section Declaring a new
message-handling method for more on this subject.

 DevGuide: Component writer's guide

What's in a Windows message?
Topic groups

Note: This information is applicable when writing VCL components only.
A Windows message is a data record that contains several fields. The most important of these is an integer-size
value that identifies the message. Windows defines many messages, and the Messages unit declares identifiers for
all of them. Other useful information in a message comes in two parameter fields and a result field.

One parameter contains 16 bits, the other 32 bits. You often see Windows code that refers to those values as
wParam and lParam, for “word parameter” and “long parameter.” Often, each parameter will contain more than one
piece of information, and you see references to names such as lParamHi, which refers to the high-order word in the
long parameter.

Originally, Windows programmers had to remember or look up in the Windows API what each parameter contained.
More recently, Microsoft has named the parameters. This so-called “message cracking” makes it much simpler to
understand what information accompanies each message. For example, the parameters to the WM_KEYDOWN
message are now called nVirtKey and lKeyData, which gives much more specific information than wParam and
lParam.

For each type of message, Delphi defines a record type that gives a mnemonic name to each parameter. For
example, mouse messages pass the x- and y-coordinates of the mouse event in the long parameter, one in the
high-order word, and the other in the low-order word. Using the mouse-message structure, you do not have to worry
about which word is which, because you refer to the parameters by the names XPos and YPos instead of lParamLo
and lParamHi.

 DevGuide: Component writer's guide

Dispatching messages
Topic groups

Note: This information is applicable when writing VCL components only.
When an application creates a window, it registers a window procedure with the Windows kernel. The window
procedure is the routine that handles messages for the window. Traditionally, the window procedure contains a huge
case statement with entries for each message the window has to handle. Keep in mind that “window” in this sense
means just about anything on the screen: each window, each control, and so on. Every time you create a new type
of window, you have to create a complete window procedure.

Delphi simplifies message dispatching in several ways:
Each component inherits a complete message-dispatching system.
The dispatch system has default handling. You define handlers only for messages you need to respond to

specially.
You can modify small parts of the message handling and rely on inherited methods for most processing.

The greatest benefit of this message dispatch system is that you can safely send any message to any component at
any time. If the component does not have a handler defined for the message, the default handling takes care of it,
usually by ignoring the message.

Tracing the flow of messages

Delphi registers a method called MainWndProc as the window procedure for each type of component in an
application. MainWndProc contains an exception-handling block, passing the message structure from Windows to a
virtual method called WndProc and handling any exceptions by calling the application class’s HandleException
method.

MainWndProc is a nonvirtual method that contains no special handling for any particular messages. Customizations
take place in WndProc, since each component type can override the method to suit its particular needs.

WndProc methods check for any special conditions that affect their processing so they can “trap” unwanted
messages. For example, while being dragged, components ignore keyboard events, so the WndProc method of
TWinControl passes along keyboard events only if the component is not being dragged. Ultimately, WndProc calls
Dispatch, a nonvirtual method inherited from TObject, which determines which method to call to handle the
message.

Dispatch uses the Msg field of the message structure to determine how to dispatch a particular message. If the
component defines a handler for that particular message, Dispatch calls the method. If the component does not
define a handler for that message, Dispatch calls DefaultHandler.

 DevGuide: Component writer's guide

Changing message handling
Topic groups

Note: This information is applicable when writing VCL components only.
Before changing the message handling of your components, make sure that is what you really want to do. Delphi
translates most Windows messages into events that both the component writer and the component user can
handle. Rather than changing the message-handling behavior, you should probably change the event-handling
behavior.

To change message handling in VCL components, you override the message-handling method. You can also
prevent a component from handling a message under certain circumstances by trapping the message.

 DevGuide: Component writer's guide

Overriding the handler method
Topic groups Example

To change the way a component handles a particular message, you override the message-handling method for that
message. If the component does not already handle the particular message, you need to declare a new message-
handling method.

To override a message-handling method, you declare a new method in your component with the same message
index as the method it overrides. Do not use the override directive; you must use the message directive and a
matching message index.

Note that the name of the method and the type of the single var parameter do not have to match the overridden
method. Only the message index is significant. For clarity, however, it is best to follow the convention of naming
message-handling methods after the messages they handle.

 DevGuide: Component writer's guide

Example: Overriding a message handler
For example, to override a component’s handling of the WM_PAINT message, you redeclare the WMPaint method:

type
 TMyComponent = class(...)
 ...
 procedure WMPaint(var Message: TWMPaint); message WM_PAINT;
end;

 DevGuide: Component writer's guide

Using message parameters
Topic groups

Once inside a message-handling method, your component has access to all the parameters of the message
structure. Because the parameter passed to the message handler is a var parameter, the handler can change the
values of the parameters if necessary. The only parameter that changes frequently is the Result field for the
message: the value returned by the SendMessage call that sends the message.

Note: This information is applicable when writing VCL components only.
Because the type of the Message parameter in the message-handling method varies with the message being
handled, you should refer to the documentation on Windows messages for the names and meanings of individual
parameters. If for some reason you need to refer to the message parameters by their old-style names (WParam,
LParam, and so on), you can typecast Message to the generic type TMessage, which uses those parameter names.

 DevGuide: Component writer's guide

Trapping messages
Topic groups

Under some circumstances, you might want your components to ignore messages. That is, you want to keep the
component from dispatching the message to its handler. To trap a message, you override the virtual method
WndProc.

For VCL components, the WndProc method screens messages before passing them to the Dispatch method, which
in turn determines which method gets to handle the message. By overriding WndProc, your component gets a
chance to filter out messages before dispatching them. An override of WndProc for a control derived from
TWinControl looks like this:

procedure TMyControl.WndProc(var Message: TMessage);
begin
 { tests to determine whether to continue processing }
 inherited WndProc(Message);
end;

The TControl component defines entire ranges of mouse messages that it filters when a user is dragging and
dropping controls. Overriding WndProc helps this in two ways:

It can filter ranges of messages instead of having to specify handlers for each one.
It can preclude dispatching the message at all, so the handlers are never called.

For CLX, a control might be descended from TWidgetControl and you would override EventFilter instead of
WndProc.

 DevGuide: Component writer's guide

The WndProc method
Topic groups

Here is part of the WndProc method for TControl, for example:

procedure TControl.WndProc(var Message: TMessage);
begin
 ...
 if (Message.Msg >= WM_MOUSEFIRST) and (Message.Msg <= WM_MOUSELAST) then
 if Dragging then { handle dragging
specially }
 DragMouseMsg(TWMMouse(Message))
 else
 ... { handle others
normally }
 end;
... { otherwise process
normally }
end;

 DevGuide: Component writer's guide

Creating new message handlers
Topic groups

Because Delphi provides handlers for most common messages, the time you will most likely need to create new
message handlers is when you define your own messages. Working with user-defined messages has two aspects:

Defining your own messages
Declaring a new message-handling method

CLX components do not handle Windows messages but you can create message handlers for your own messages.
Note that you cannot create message handlers for Qt events because they are objects not message IDs.

 DevGuide: Component writer's guide

Defining your own messages
A number of the standard components define messages for internal use. The most common reasons for defining
messages are broadcasting information not covered by standard messages and notification of state changes. You
can define your own messages in both VCL and CLX.

Defining a message is a two-step process. The steps are
1 Declaring a message identifier.
2 Declaring a message-record type.

 DevGuide: Component writer's guide

Declaring a message identifier
Topic groups Example

A message identifier is an integer-sized constant. Windows reserves the messages below 1,024 for its own use, so
when you declare your own messages you should start above that level.

The constant WM_APP represents the starting number for user-defined messages. When defining message
identifiers, you should base them on WM_APP.

Be aware that some standard Windows controls use messages in the user-defined range. These include list boxes,
combo boxes, edit boxes, and command buttons. If you derive a component from one of these and want to define a
new message for it, be sure to check the Messages unit to see which messages Windows already defines for that
control.

 DevGuide: Component writer's guide

Example: User-defined messages
The following code shows two user-defined messages.

const
 WM_MYFIRSTMESSAGE = WM_APP + 400;
 WM_MYSECONDMESSAGE = WM_APP + 401;

 DevGuide: Component writer's guide

Declaring a message-structure type
Topic groups Example

If you want to give useful names to the parameters of your message, you need to declare a message-record type
for that message. The message-record is the type of the parameter passed to the message-handling method. If you
do not use the message’s parameters, or if you want to use the old-style parameter notation (wParam, lParam, and
so on), you can use the default message-record, TMessage.

To declare a message-record type, follow these conventions:
1 Name the record type after the message, preceded by a T.
2 Call the first field in the record Msg, of type TMsgParam.
3 Define the next two bytes to correspond to the Word parameter, and the next two bytes as unused.

Or
Define the next four bytes to correspond to the Longint parameter.

4 Add a final field called Result, of type Longint.

 DevGuide: Component writer's guide

Example: Message structure
For example, here is the message record for all mouse messages, TWMMouse, which uses a variant record to
define two sets of names for the same parameters.

type
 TWMMouse = record
 Msg: TMsgParam; (first is the message ID)
 Keys: Word; (this is the wParam)
 case Integer of (two ways to look at the lParam)
 0: {
 XPos: Integer; (either as x- and y-coordinates...)
 YPos: Integer);
 1: {
 Pos: TPoint; (... or as a single point)
 Result: Longint); (and finally, the result field)
end;

 DevGuide: Component writer's guide

Declaring a new message-handling method
Topic groups Example

There are two sets of circumstances that require you to declare new message-handling methods:
Your component needs to handle a Windows message that is not already handled by the standard

components.
You have defined your own message for use by your components.

To declare a message-handling method, do the following:
1 Declare the method in a protected part of the component’s class declaration.
2 Make the method a procedure.
3 Name the method after the message it handles, but without any underline characters.
4 Pass a single var parameter called Message, of the type of the message record.
5 Within the message method implementation, write code for any handling specific to the component.
6 Call the inherited message handler.

 DevGuide: Component writer's guide

Example: Message handler
Here is the declaration of a message handler for a user-defined message called CM_CHANGECOLOR.

const
 CM_CHANGECOLOR = WM_APP + 400;
type
 TMyComponent = class(TControl)
 ...
protected
 procedure CMChangeColor(var Message: TMessage); message CM_CHANGECOLOR;
end;
procedure TMyComponent.CMChangeColor(var Message: TMessage);
begin
 Color := Message.lParam;
 inherited;
end;

 DevGuide: Component writer's guide

Making components available at design time
Topic groups

Making your components available at design time requires several steps:
Registering components
Adding palette bitmaps
Providing Help for your component
Adding property editors
Adding component editors
Compiling components into packages

Not all these steps apply to every component. For example, if you don’t define any new properties or events, you
don’t need to provide Help for them. The only steps that are always necessary are registration and compilation.

Once your components have been registered and compiled into packages, they can be distributed to other
developers and installed in the IDE. For information on installing packages in the IDE, see Installing component
packages.

 DevGuide: Component writer's guide

Registering components
Topic groups

Registration works on a compilation unit basis, so if you create several components in a single compilation unit, you
can register them all at once.

To register a component, add a Register procedure to the unit. Within the Register procedure, you register the
components and determine where to install them on the Component palette.

Note: If you create your component by choosing Component|New Component in the IDE, the code required to
register your component is added automatically.

The steps for manually registering a component are:
Declaring the Register procedure
Writing the Register procedure

 DevGuide: Component writer's guide

Declaring the register procedure
Topic groups

Registration involves writing a single procedure in the unit, which must have the name Register. The Register
procedure must appear in the interface part of the unit, and (unlike the rest of Object Pascal) its name is case-
sensitive.

The following code shows the outline of a simple unit that creates and registers new components:

unit MyBtns;
interface
type
 ... { declare your component types
here }
procedure Register; { this must appear in the interface
section }
implementation
 ... { component implementation goes
here }
procedure Register;
begin
 ... { register the
components }
end;
end.

Within the Register procedure, call RegisterComponents for each component you want to add to the Component
palette. If the unit contains several components, you can register them all in one step.

 DevGuide: Component writer's guide

Writing the Register function
Topic groups

Inside the Register procedure of a unit containing components, you must register each component you want to add
to the Component palette. If the unit contains several components, you can register them at the same time.

To register a component, call the RegisterComponents procedure once for each page of the Component palette to
which you want to add components. RegisterComponents involves three important things:
1 Specifying the components
2 Specifying the palette page
3 Using the RegisterComponents function

 DevGuide: Component writer's guide

Specifying the components
Topic groups

Within the Register procedure, pass the component names in an open array, which you can construct inside the call
to RegisterComponents.

RegisterComponents('Miscellaneous', [TMyComponent]);

You could also register several components on the same page at once, or register components on different pages,
as shown in the following code:

procedure Register;
begin
 RegisterComponents('Miscellaneous', [TFirst, TSecond]); { two on this
page... }
 RegisterComponents('Assorted', [TThird]); { ...one on
another... }
 RegisterComponents(LoadStr(srStandard), [TFourth]); { ...and one on the
Standard page }
end;

 DevGuide: Component writer's guide

Specifying the palette page
Topic groups

The palette-page name is a string. If the name you give for the palette page does not already exist, Delphi creates a
new page with that name. Delphi stores the names of the standard pages in string-list resources so that
international versions of the product can name the pages in their native languages. If you want to install a
component on one of the standard pages, you should obtain the string for the page name by calling the LoadStr
function, passing the constant representing the string resource for that page, such as srSystem for the System
page.

 DevGuide: Component writer's guide

Using the RegisterComponents function
Topic groups

Within the Register procedure, call RegisterComponents to register the components in the classes array.
RegisterComponents is a function that takes two parameters: the name of a Component palette page and the array
of component classes.

Set the Page parameter to the name of the page on the component palette where the components should appear. If
the named page already exists, the components are added to that page. If the named page does not exist, Delphi
creates a new palette page with that name.

Call RegisterComponents from the implementation of the Register procedure in one of the units that defines the
custom components. The units that define the components must then be compiled into a package and the package
must be installed before the custom components are added to the component palette.

procedure Register;
begin
 RegisterComponents('System', [TSystem1, TSystem2]); {add to
system page}
 RegisterComponents('MyCustomPage',[TCustom1, TCustom2]);
{ new page}
end;

 DevGuide: Component writer's guide

Adding palette bitmaps
Topic groups

Every component needs a bitmap to represent the component on the Component palette. If you don’t specify your
own bitmap, Delphi uses a default bitmap.

Because the palette bitmaps are needed only at design time, you don’t compile them into the component’s
compilation unit. Instead, you supply them in a Windows resource file with the same name as the unit, but with the
extension .DCR (dynamic component resource). You can create this resource file using the Image editor in Delphi.
Each bitmap should be 24 pixels square.

For each component you want to install, supply a palette bitmap file, and within each palette bitmap file, supply a
bitmap for each component you register. The bitmap image has the same name as the component. Keep the palette
bitmap file in the same directory with the compiled files, so Delphi can find the bitmaps when it installs the
components on the Component palette.

For example, if you create a component named TMyControl in a unit named ToolBox, you need to create a resource
file called TOOLBOX.DCR that contains a bitmap called TMYCONTROL. The resource names are not case-
sensitive, but by convention they are usually in uppercase letters.

 DevGuide: Component writer's guide

Providing Help for your component
Topic groups

When you select a standard component on a form, or a property or event in the Object Inspector, you can press F1
to get Help on that item. You can provide developers with the same kind of documentation for your components if
you create the appropriate Help files.

You can provide a small Help file to describe your components, and your help file becomes part of the user’s overall
Delphi Help system.

See the section Creating the Help file for information on how to compose the help file for use with a component.

 DevGuide: Component writer's guide

Creating the help file
Topic groups

You can use any tool you want to create the source file for a Windows Help file (in .rtf format). Delphi includes the
Microsoft Help Workshop, which compiles your Help files and provides an online help authoring guide. You can find
complete information about creating Help files in the online guide for Help Workshop.

Composing help files for components consists of the steps:
Creating the entries
Making component help context-sensitive
Adding component help files

 DevGuide: Component writer's guide

Creating the entries
Topic groups

To make your component’s Help integrate seamlessly with the Help for the rest of the components in the library,
observe the following conventions:
1 Each component should have a help topic.

The component topic should show which unit the component is declared in and briefly describe the component.
The component topic should link to secondary windows that describe the component’s position in the object
hierarchy and list all of its properties, events, and methods. Application developers access this topic by selecting
the component on a form and pressing F1. For an example of a component topic, place any component on a
form and press F1.
The component topic must have a # footnote with a value unique to the topic. The # footnote uniquely identifies
each topic by the Help system.
The component topic should have a K footnote for keyword searching in the help system Index that includes the
name of the component class. For example, the keyword footnote for the TMemo component is “TMemo.”
The component topic should also have a $ footnote that provides the title of the topic. The title appears in the
Topics Found dialog box, the Bookmark dialog box, and the History window.

2 Each component should include the following secondary navigational topics:
A hierarchy topic with links to every ancestor of the component in the component hierarchy.
A list of all properties available in the component, with links to entries describing those properties.
A list of all events available in the component, with links to entries describing those events.
A list of methods available in the component, with links to entries describing those methods.

Links to object classes, properties, methods, or events in the Delphi help system can be made using Alinks.
When linking to an object class, the Alink uses the class name of the object, followed by an underscore and the
string “object”. For example, to link to the TCustomPanel object, use the following:

!AL(tcustompanel_object,1,TopicNotFound,main)

When linking to a property, method, or event, precede the name of the property, method, or event by the name
of the object that implements it and an underscore. For example, to link to the Text property which is
implemented by TControl, use the following:

!AL(tcontrol_text,1,TopicNotFound,main)

To see an example of the secondary navigation topics, display the help for any component and click on the links
labeled hierarchy, properties, methods, or events.

3 Each property, method, and event that is declared within the component should have a topic.

A property, event, or method topic should show the declaration of the item and describe its use. Application
developers see these topics either by highlighting the item in the Object Inspector and pressing F1 or by placing
the cursor in the Code editor on the name of the item and pressing F1. To see an example of a property topic,
select any item in the Object Inspector and press F1.
The property, event, and method topics should include a K footnote that lists the name of the property, method,
or event, and its name in combination with the name of the component. Thus, the Text property of TControl has
the following K footnote:

Text,TControl;TControl,Text;Text,

The property, method, and event topics should also include a $ footnote that indicates the title of the topic, such
as TControl.Text.

All of these topics should have a topic ID that is unique to the topic, entered as a # footnote.

 DevGuide: Component writer's guide

Making component help context-sensitive
Topic groups

Each component, property, method, and event topic must have an A footnote. The A footnote is used to display the
topic when the user selects a component and presses F1, or when a property or event is selected in the Object
Inspector and the user presses F1. The A footnotes must follow certain naming conventions:

If the Help topic is for a component, the A footnote consists of two entries separated by a semicolon using this
syntax:

ComponentClass_Object;ComponentClass

where ComponentClass is the name of the component class.

If the Help topic is for a property or event, the A footnote consists of three entries separated by semicolons using
this syntax:

ComponentClass_Element;Element_Type;Element

where ComponentClass is the name of the component class, Element is the name of the property, method, or
event, and Type is the either Property, Method, or Event

For example, for a property named BackgroundColor of a component named TMyGrid, the A footnote is

TMyGrid_BackgroundColor;BackgroundColor_Property;BackgroundColor

 DevGuide: Component writer's guide

Adding component help files
Topic groups

To add your Help file to Delphi, use the OpenHelp utility (called oh.exe) located in the bin directory or accessed
using Help|Customize in the IDE.

You will find information about using OpenHelp in the OpenHelp.hlp file, including adding your Help file to the Help
system.

 DevGuide: Component writer's guide

Adding property editors
Topic groups

The Object Inspector provides default editing for all types of properties. You can, however, provide an alternate
editor for specific properties by writing and registering property editors. You can register property editors that apply
only to the properties in the components you write, but you can also create editors that apply to all properties of a
certain type.

At the simplest level, a property editor can operate in either or both of two ways: displaying and allowing the user to
edit the current value as a text string, and displaying a dialog box that permits some other kind of editing.
Depending on the property being edited, you might find it useful to provide either or both kinds.

Writing a property editor requires these five steps:
1 Deriving a property-editor class
2 Editing the property as text
3 Editing the property as a whole
4 Specifying editor attributes
5 Registering the property editor

 DevGuide: Component writer's guide

Deriving a property-editor class
Topic groups Example

Both CLX and the VCL define several kinds of property editors, all of which descend from TPropertyEditor. When
you create a property editor, your property-editor class can either descend directly from TPropertyEditor or indirectly
through one of the property-editor classes described in the table below. The classes in the DesignEditors unit can
be used for both VCL and CLX applications. Some of the property-editor classes, however, supply specialized
dialogs and so are specialized to either VCL or CLX. These can be found in the WinEditors and CLXEditors units,
respectively.

Note: All that is absolutely necessary for a property editor is that it descend from TBasePropertyEditor and that it
support the IProperty interface. TPropertyEditor, however, provides a default implementation of the
IProperty interface.

The list in the table below is not complete. The WinEditors and CLXEditors units also define some very specialized
property editors used by unique properties such as the component name. The listed property editors are the ones
that are the most useful for user-defined properties.

Type Properties edited

TOrdinalProperty All ordinal-property editors (those for integer, character, and enumerated
properties) descend from TOrdinalProperty.

TIntegerProperty All integer types, including predefined and user-defined subranges.
TCharProperty Char-type and subranges of Char, such as ‘A’..’Z’.
TEnumProperty Any enumerated type.
TFloatProperty All floating-point numbers.
TStringProperty Strings.
TSetElementProperty Individual elements in sets, shown as Boolean values
TSetProperty All sets. Sets are not directly editable, but can expand into a list of set-element

properties.
TClassProperty Classes. Displays the name of the class and allows expansion of the class’s

properties.
TMethodProperty Method pointers, most notably events.
TComponentProperty Components in the same form. The user cannot edit the component’s

properties, but can point to a specific component of a compatible type.
TColorProperty Component colors. Shows color constants if applicable, otherwise displays

hexadecimal value. Drop-down list contains the color constants. Double-click
opens the color-selection dialog box.

TFontNameProperty Font names. The drop-down list displays all currently installed fonts.
TFontProperty Fonts. Allows expansion of individual font properties as well as access to the

font dialog box.

 DevGuide: Component writer's guide

Example: Property editor class
The following example shows the declaration of a simple property editor named TMyPropertyEditor:

type
 TFloatProperty = class(TPropertyEditor)
 public
 function AllEqual: Boolean; override;
 function GetValue: string; override;
 procedure SetValue(const Value: string); override;
 end;

 DevGuide: Component writer's guide

Editing the property as text
All properties need to provide a string representation of their values for the Object Inspector to display. Most
properties also allow the user to type in a new value for the property. Property-editor classes provide virtual
methods you can override to convert between the text representation and the actual value.

The methods you override are called GetValue and SetValue. Your property editor also inherits a set of methods
used for assigning and reading different sorts of values, as shown in the following table.

Property type Get method Set method

Floating point GetFloatValue SetFloatValue
 Method pointer (event) GetMethodValue SetMethodValue
Ordinal type GetOrdValue SetOrdValue
String GetStrValue SetStrValue

When you override a GetValue method, you will call one of the Get methods, and when you override SetValue, you
will call one of the Set methods.

 DevGuide: Component writer's guide

Setting the property value
Topic groups Example

The property editor’s SetValue method takes a string typed by the user in the Object Inspector, converts it into the
appropriate type, and sets the value of the property. If the string does not represent a proper value for the property,
SetValue should throw an exception and not use the improper value.

To read string values into properties, override the property editor’s SetValue method.

SetValue should convert the string and validate the value before calling one of the Set methods.

 DevGuide: Component writer's guide

Example: Editing properties as text
Here are the GetValue and SetValue methods for TIntegerProperty. Integer is an ordinal type, so GetValue calls
GetOrdValue and converts the result to a string. SetValue converts the string to an integer, performs some range
checking, and calls SetOrdValue.

function TIntegerProperty.GetValue: string;
begin
 with GetTypeData(GetPropType)^ do
 if OrdType = otULong then // unsigned
 Result := IntToStr(Cardinal(GetOrdValue))
 else
 Result := IntToStr(GetOrdValue);
end;
procedure TIntegerProperty.SetValue(const Value: string);
 procedure Error(const Args: array of const);
 begin
 raise EPropertyError.CreateResFmt(@SOutOfRange, Args);
 end;
var
 L: Int64;
begin
 L := StrToInt64(Value);
 with GetTypeData(GetPropType)^ do
 if OrdType = otULong then
 begin // unsigned compare and reporting needed
 if (L < Cardinal(MinValue)) or (L > Cardinal(MaxValue)) then
 // bump up to Int64 to get past the %d in the format string
 Error([Int64(Cardinal(MinValue)), Int64(Cardinal(MaxValue))]);
 end
 else if (L < MinValue) or (L > MaxValue) then
 Error([MinValue, MaxValue]);
 SetOrdValue(L);
end;

The specifics of the particular examples here are less important than the principle: GetValue converts the value to a
string; SetValue converts the string and validates the value before calling one of the “Set” methods.

 DevGuide: Component writer's guide

Editing the property as a whole
Topic groups Example

You can optionally provide a dialog box in which the user can visually edit a property. The most common use of
property editors is for properties that are themselves classes. An example is the Font property, for which the user
can open a font dialog box to choose all the attributes of the font at once.

To provide a whole-property editor dialog box, override the property-editor class’s Edit method.

Edit methods use the same Get and Set methods used in writing GetValue and SetValue methods. In fact, an Edit
method calls both a Get method and a Set method. Because the editor is type-specific, there is usually no need to
convert the property values to strings. The editor generally deals with the value “as retrieved.”

When the user clicks the ‘...’ button next to the property or double-clicks the value column, the Object Inspector calls
the property editor’s Edit method.

Within your implementation of the Edit method, follow these steps:
1 Construct the editor you are using for the property.
2 Read the current value and assign it to the property using a Get method.
3 When the user selects a new value, assign that value to the property using a Set method.
4 Destroy the editor.

 DevGuide: Component writer's guide

Example: Editing a property as a whole
The Color properties found in most components use the standard Windows color dialog box as a property editor.
Here is the Edit method from TColorProperty, which invokes the dialog box and uses the result:

procedure TColorProperty.Edit;
var
 ColorDialog: TColorDialog;
begin
 ColorDialog := TColorDialog.Create(Application); { construct the
editor }
 try
 ColorDialog.Color := GetOrdValue; { use the existing
value }
 if ColorDialog.Execute then { if the user OKs the
dialog... }
 SetOrdValue(ColorDialog.Color); { ...use the result to set
value }
 finally
 ColorDialog.Free; { destroy the
editor }
 end;
end;

 DevGuide: Component writer's guide

Specifying editor attributes
Topic groups Example

The property editor must provide information that the Object Inspector can use to determine what tools to display.
For example, the Object Inspector needs to know whether the property has subproperties or can display a list of
possible values.

To specify editor attributes, override the property editor’s GetAttributes method.

GetAttributes is a method that returns a set of values of type TPropertyAttributes that can include any or all of the
following values:

Flag Related method Meaning if included

paValueList GetValues The editor can give a list of enumerated values.
paSubProperties GetProperties The property has subproperties that can display.
paDialog Edit The editor can display a dialog box for editing the entire

property.
paMultiSelect N/A The property should display when the user selects more

than one component.
paAutoUpdate SetValue Updates the component after every change instead of

waiting for approval of the value.
paSortList N/A The Object Inspector should sort the value list.
paReadOnly N/A Users cannot modify the property value.
paRevertable N/A Enables the Revert to Inherited menu item on the Object

Inspector’s context menu. The menu item tells the
property editor to discard the current property value and
return to some previously established default or standard
value.

paFullWidthName N/A The value does not need to be displayed. The Object
Inspector uses its full width for the property name
instead.

paVolatileSubProperties GetProperties The Object Inspector refetches the values of all
subproperties any time the property value changes.

paReference GetComponentValue The value is a reference to something else. When used
in conjunction with paSubProperties the referenced
object should be displayed as sub properties to this
property.

 DevGuide: Component writer's guide

Example: Specifying editor attributes
Color properties are more versatile than most, in that they allow several ways for users to choose them in the
Object Inspector: typing, selection from a list, and customized editor. TColorProperty’s GetAttributes method,
therefore, includes several attributes in its return value:

function TColorProperty.GetAttributes: TPropertyAttributes;
begin
 Result := [paMultiSelect, paDialog, paValueList, paRevertable];
end;

 DevGuide: Component writer's guide

Registering the property editor
Topic groups Example

Once you create a property editor, you need to register it with Delphi. Registering a property editor associates a
type of property with a specific property editor. You can register the editor with all properties of a given type or just
with a particular property of a particular type of component.

To register a property editor, call the RegisterPropertyEditor procedure.

RegisterPropertyEditor takes four parameters:
A type-information pointer for the type of property to edit.

This is always a call to the built-in function TypeInfo, such as TypeInfo(TMyComponent).
The type of the component to which this editor applies. If this parameter is nil, the editor applies to all

properties of the given type.
The name of the property. This parameter only has meaning if the previous parameter specifies a particular

type of component. In that case, you can specify the name of a particular property in that component type to which
this editor applies.

The type of property editor to use for editing the specified property.

 DevGuide: Component writer's guide

Example: Registering a property editor
Here is an excerpt from the procedure that registers the editors for the standard components on the Component
palette:

procedure Register;
begin
 RegisterPropertyEditor(TypeInfo(TComponent), nil, '', TComponentProperty);
 RegisterPropertyEditor(TypeInfo(TComponentName), TComponent, 'Name',
TComponentNameProperty);
 RegisterPropertyEditor(TypeInfo(TMenuItem), TMenu, '', TMenuItemProperty);
end;

The three statements in this procedure cover the different uses of RegisterPropertyEditor:
The first statement is the most typical. It registers the property editor TComponentProperty for all properties

of type TComponent (or descendants of TComponent that do not have their own editors registered). In general, when
you register a property editor, you have created an editor for a particular type, and you want to use it for all properties
of that type, so the second and third parameters are nil and an empty string, respectively.

The second statement is the most specific kind of registration. It registers an editor for a specific property in
a specific type of component. In this case, the editor is for the Name property (of type TComponentName) of all
components.

The third statement is more specific than the first, but not as limited as the second. It registers an editor for
all properties of type TMenuItem in components of type TMenu.

 DevGuide: Component writer's guide

Property categories
Topic groups

In the IDE, the Object Inspector lets you selectively hide and display properties based on property categories. The
properties of new custom components can be fit into this scheme by registering properties in categories. Do this at
the same time you register the component by calling RegisterPropertyInCategory or RegisterPropertiesInCategory.
Use RegisterPropertyInCategory to register a single property. Use RegisterPropertiesInCategory to register multiple
properties in a single function call. These functions are defined in the unit DesignIntf.

Note that it is not mandatory that you register properties or that you register all of the properties of a custom
component when some are registered. Any property not explicitly associated with a category is included in the
TMiscellaneousCategory category. Such properties are displayed or hidden in the Object Inspector based on that
default categorization.

In addition to these two functions for registering properties, there is an IsPropertyInCategory function. This function
is useful for creating localization utilities, in which you must determine whether a property is registered in a given
property category.

Registering one property at a time
Registering multiple properties at once
Specifying property categories
Using the IsPropertyInCategory function

 DevGuide: Component writer's guide

Registering one property at a time
Topic groups

Register one property at a time and associate it with a property category using the RegisterPropertyInCategory
function. RegisterPropertyInCategory comes in four overloaded variations, each providing a different set of criteria
for identifying the property in the custom component to be associated with the property category.

The first variation lets you identify the property by the property’s name. The line below registers a property related to
visual display of the component, identifying the property by its name, “AutoSize”.

RegisterPropertyInCategory('Visual', 'AutoSize');

The second variation is much like the first, except that it limits the category to only those properties of the given
name that appear on components of a given type. The example below registers (into the ‘Help and Hints’ category)
a property named “HelpContext” of a component of the custom class TMyButton.

RegisterPropertyInCategory('Help and Hints', TMyButton, 'HelpContext');

The third variation identifies the property using its type rather than its name. The example below registers a property
based on its type, Integer.

RegisterPropertyInCategory('Visual', TypeInfo(Integer));

The final variation uses both the property’s type and its name to identify the property. The example below registers a
property based on a combination of its type, TBitmap, and its name, ”Pattern”.

RegisterPropertyInCategory('Visual', TypeInfo(TBitmap), 'Pattern');

See the section Specifying property categories for a list of the available property categories and a brief description
of their uses.

 DevGuide: Component writer's guide

Registering multiple properties at once
Topic groups

Register multiple properties at one time and associate them with a property category using the
RegisterPropertiesInCategory function. RegisterPropertiesInCategory comes in three overloaded variations, each
providing a different set of criteria for identifying the property in the custom component to be associated with
property categories.

The first variation lets you identify properties based on property name or type. The list is passed as an array of
constants. In the example below, any property that either has the name “Text” or belongs to a class of type TEdit is
registered in the category ‘Localizable’.

RegisterPropertiesInCategory('Localizable', ['Text', TEdit]);

The second variation lets you limit the registered properties to those that belong to a specific component. The list of
properties to register include only names, not types. For example, the following code registers a number of
properties into the ‘Help and Hints’ category for all components:

RegisterPropertiesInCategory('Help and Hints', TComponent, ['HelpContext', 'Hint',
'ParentShowHint', 'ShowHint']);

The third variation lets you limit the registered properties to those that have a specific type. As with the second
variation, the list of properties to register can include only names:

RegisterPropertiesInCategory('Localizable', TypeInfo(String), ['Text', 'Caption']);

See the section Specifying property categories for a list of the available property categories and a brief description
of their uses.

 DevGuide: Component writer's guide

Specifying property categories
Topic groups

When you register properties in a category, you can use any string you want as the name of the category. If you use
a string that has not been used before, the Object Inspector generates a new property category class with that
name. You can also, however, register properties into one of the categories that are built-in. The built-in property
categories are described in the following table.:

Category Purpose

Action Properties related to runtime actions; the Enabled and Hint properties of TEdit are in
this category.

Database Properties related to database operations; the DatabaseName and SQL properties of
TQuery are in this category.

Drag, Drop, and Docking Properties related to drag-n-drop and docking operations; the DragCursor and
DragKind properties of TImage are in this category.

Help and Hints Properties related to using online help or hints; the HelpContext and Hint properties of
TMemo are in this category.

Layout Properties related to the visual display of a control at design-time; the Top and Left
properties of TDBEdit are in this category.

Legacy Properties related to obsolete operations; the Ctl3D and ParentCtl3D properties of
TComboBox are in this category.

Linkage Properties related to associating or linking one component to another; the DataSet
property of TDataSource is in this category.

Locale Properties related to international locales; the BiDiMode and ParentBiDiMode
properties of TMainMenu are in this category.

Localizable Properties that may require modification in localized versions of an application. Many
string properties (such as Caption) are in this category, as are properties that
determine the size and position of controls.

Visual Properties related to the visual display of a control at runtime; the Align and Visible
properties of TScrollBox are in this category.

Input Properties related to the input of data (need not be related to database operations);
the Enabled and ReadOnly properties of TEdit are in this category.

Miscellaneous Properties that do not fit a category or do not need to be categorized (and properties
not explicitly registered to a specific category); the AllowAllUp and Name properties of
TSpeedButton are in this category.

 DevGuide: Component writer's guide

Using the IsPropertyInCategory function
Topic groups

An application can query the existing registered properties to determine whether a given property is already
registered in a specified category. This can be especially useful in situations like a localization utility that checks the
categorization of properties preparatory to performing its localization operations. Two overloaded variations of the
IsPropertyInCategory function are available, allowing for different criteria in determining whether a property is in a
category.

The first variation lets you base the comparison criteria on a combination of the class type of the owning component
and the property’s name. In the command line below, for IsPropertyInCategory to return True, the property must
belong to a TCustomEdit descendant, have the name “Text”, and be in the property category 'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', TCustomEdit, 'Text');

The second variation lets you base the comparison criteria on a combination of the class name of the owning
component and the property’s name. In the command line below, for IsPropertyInCategory to return True, the
property must be a TCustomEdit descendant, have the name “Text”, and be in the property category
'Localizable'.

IsItThere := IsPropertyInCategory('Localizable', 'TCustomEdit', 'Text');

 DevGuide: Component writer's guide

Adding component editors
Topic groups

Component editors determine what happens when the component is double-clicked in the designer and add
commands to the context menu that appears when the component is right-clicked. They can also copy your
component to the Windows clipboard in custom formats.

If you do not give your components a component editor, Delphi uses the default component editor. The default
component editor is implemented by the class TDefaultEditor. TDefaultEditor does not add any new items to a
component’s context menu. When the component is double-clicked, TDefaultEditor searches the properties of the
component and generates (or navigates to) the first event handler it finds.

To add items to the context menu, change the behavior when the component is double-clicked, or add new
clipboard formats, derive a new class from TComponentEditor and register its use with your component. In your
overridden methods, you can use the Component property of TComponentEditor to access the component that is
being edited.

Adding a custom component editor consists of the steps:
Adding items to the context menu
Changing the double-click behavior
Adding clipboard formats
Registering the component editor

 DevGuide: Component writer's guide

Adding items to the context menu
Topic groups

When the user right-clicks the component, the GetVerbCount and GetVerb methods of the component editor are
called to build context menu. You can override these methods to add commands (verbs) to the context menu.

Adding items to the context menu requires the steps:
Specifying menu items
Implementing commands

 DevGuide: Component writer's guide

Specifying menu items
Topic groups

Override the GetVerbCount method to return the number of commands you are adding to the context menu.
Override the GetVerb method to return the strings that should be added for each of these commands. When
overriding GetVerb, add an ampersand (&) to a string to cause the following character to appear underlined in the
context menu and act as a shortcut key for selecting the menu item. Be sure to add an ellipsis (...) to the end of a
command if it brings up a dialog. GetVerb has a single parameter that indicates the index of the command.

The following code overrides the GetVerbCount and GetVerb methods to add two commands to the context menu.

function TMyEditor.GetVerbCount: Integer;
begin
 Result := 2;
end;
function TMyEditor.GetVerb(Index: Integer): String;
begin
 case Index of
 0: Result := '&DoThis ...';
 1: Result := 'Do&That';
 end;
end;

Note: Be sure that your GetVerb method returns a value for every possible index indicated by GetVerbCount.

 DevGuide: Component writer's guide

Implementing commands
Topic groups

When the command provided by GetVerb is selected in the designer, the ExecuteVerb method is called. For every
command you provide in the GetVerb method, implement an action in the ExecuteVerb method. You can access the
component that is being edited using the Component property of the editor.

For example, the following ExecuteVerb method implements the commands for the GetVerb method in the previous
example.

procedure TMyEditor.ExecuteVerb(Index: Integer);
var
 MySpecialDialog: TMyDialog;
begin
 case Index of
 0: begin
 MyDialog := TMySpecialDialog.Create(Application); { instantiate the
editor }
 if MySpecialDialog.Execute then; { if the user OKs the
dialog... }
 MyComponent.FThisProperty := MySpecialDialog.ReturnValue; { ...use the
value }
 MySpecialDialog.Free; { destroy the
editor }
 end;
 1: That; { call the That
method }
 end;
end;

 DevGuide: Component writer's guide

Changing the double-click behavior
Topic groups

When the component is double-clicked, the Edit method of the component editor is called. By default, the Edit
method executes the first command added to the context menu. Thus, in the previous example, double-clicking the
component executes the DoThis command.

While executing the first command is usually a good idea, you may want to change this default behavior. For
example, you can provide an alternate behavior if

you are not adding any commands to the context menu.
you want to display a dialog that combines several commands when the component is double-clicked.

Override the Edit method to specify a new behavior when the component is double-clicked. For example, the
following Edit method brings up a font dialog when the user double-clicks the component:

procedure TMyEditor.Edit;
var
 FontDlg: TFontDialog;
begin
 FontDlg := TFontDialog.Create(Application);
 try
 if FontDlg.Execute then
 MyComponent.FFont.Assign(FontDlg.Font);
 finally
 FontDlg.Free
 end;
end;

Note: If you want a double-click on the component to display the Code editor for an event handler, use
TDefaultEditor as a base class for your component editor instead of TComponentEditor. Then, instead of
overriding the Edit method, override the protected TDefaultEditor.EditProperty method instead.
EditProperty scans through the event handlers of the component, and brings up the first one it finds. You
can change this to look a particular event instead. For example:

procedure TMyEditor.EditProperty(PropertyEditor: TPropertyEditor;
 Continue, FreeEditor: Boolean)
begin
 if (PropertyEditor.ClassName = 'TMethodProperty') and
 (PropertyEditor.GetName = 'OnSpecialEvent') then
 // DefaultEditor.EditProperty(PropertyEditor, Continue, FreeEditor);
end;

 DevGuide: Component writer's guide

Adding clipboard formats
Topic groups

By default, when a user chooses Copy while a component is selected in the IDE, the component is copied in
Delphi’s internal format. It can then be pasted into another form or data module. Your component can copy
additional formats to the Clipboard by overriding the Copy method.

For example, the following Copy method allows a TImage component to copy its picture to the Clipboard. This
picture is ignored by the Delphi IDE, but can be pasted into other applications.

procedure TMyComponent.Copy;
var
 MyFormat : Word;
 AData,APalette : THandle;
begin
 TImage(Component).Picture.Bitmap.SaveToClipBoardFormat(MyFormat, AData, APalette);
 ClipBoard.SetAsHandle(MyFormat, AData);
end;

 DevGuide: Component writer's guide

Registering the component editor
Topic groups

Once the component editor is defined, it can be registered to work with a particular component class. A registered
component editor is created for each component of that class when it is selected in the form designer.

To create the association between a component editor and a component class, call RegisterComponentEditor.
RegisterComponentEditor takes the name of the component class that uses the editor, and the name of the
component editor class that you have defined. For example, the following statement registers a component editor
class named TMyEditor to work with all components of type TMyComponent:

RegisterComponentEditor(TMyComponent, TMyEditor);

Place the call to RegisterComponentEditor in the Register procedure where you register your component. For
example, if a new component named TMyComponent and its component editor TMyEditor are both implemented in
the same unit, the following code registers the component and its association with the component editor.

procedure Register;
begin
 RegisterComponents('Miscellaneous', [TMyComponent);
 RegisterComponentEditor(classes[0], TMyEditor);
end;

 DevGuide: Component writer's guide

Compiling components into packages
Topic groups

Once your components are registered, you must compile them as packages before they can be installed in the IDE.
A package can contain one or several components as well as custom property editors. For more information about
packages, see Working with packages and components.

To create and compile a package, see Creating and editing packages. Put the source-code units for your custom
components in the package’s Contains list. If your components depend on other packages, include those packages
in the Requires list.

To install your components in the IDE, see Installing component packages.

 DevGuide: Component writer's guide

Modifying an existing component
Topic groups

The easiest way to create a component is to derive it from a component that does nearly everything you want, then
make whatever changes you need. What follows is a simple example that modifies the standard memo component
to create a memo that does not wrap words by default.

The value of the memo component’s WordWrap property is initialized to True. If you frequently use non-wrapping
memos, you can create a new memo component that does not wrap words by default.

Note: To modify published properties or save specific event handlers for an existing component, it is often easier
to use a component template

Modifying an existing component takes only two steps:
Creating and registering the component
Modifying the component class

 DevGuide: Component writer's guide

Creating and registering the component
Topic groups

Creation of every component begins the same way: you create a unit, derive a component class, register it, and
install it on the Component palette. Creating a new component.

For this example, follow the general procedure for creating a component, with these specifics:
Call the component’s unit Memos.
Derive a new component type called TWrapMemo, descended from TMemo.
Register TWrapMemo on the Samples page of the Component palette.
The resulting unit should look like this:

unit Memos;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls,
 Forms, StdCtrls;
type
 TWrapMemo = class(TMemo)
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TWrapMemo]);
end;
end.

If you compile and install the new component now, it behaves exactly like its ancestor, TMemo. In the next section,
you will make a simple change to your component.

 DevGuide: Component writer's guide

Modifying the component class
Topic groups

Once you have created a new component class, you can modify it in almost any way. In this case, you will change
only the initial value of one property in the memo component. This involves two small changes to the component
class:

Overriding the constructor.
Specifying the new default property value.

The constructor actually sets the value of the property. The default tells Delphi what values to store in the form (.dfm
for VCL and .xfm for CLX) file. Delphi stores only values that differ from the default, so it is important to perform both
steps.

 DevGuide: Component writer's guide

Overriding the constructor
Topic groups

When a component is placed on a form at design time, or when an application constructs a component at runtime,
the component’s constructor sets the property values. When a component is loaded from a form file, the application
sets any properties changed at design time.

Note: When you override a constructor, the new constructor must call the inherited constructor before doing
anything else. For more information, see Overriding methods.

For this example, your new component needs to override the constructor inherited from TMemo to set the
WordWrap property to False. To achieve this, add the constructor override to the forward declaration, then write the
new constructor in the implementation part of the unit:

type
 TWrapMemo = class(TMemo)
 public { constructors are always
public }
 constructor Create(AOwner: TComponent); override; { this syntax is always the
same }
 end;
...
constructor TWrapMemo.Create(AOwner: TComponent); { this goes after
implementation }
begin
 inherited Create(AOwner); { ALWAYS do this first! }
 WordWrap := False; { set the new desired value }
end;

Now you can install the new component on the Component palette and add it to a form. Note that the WordWrap
property is now initialized to False.

If you change an initial property value, you should also designate that value as the default. If you fail to match the
value set by the constructor to the specified default value, Delphi cannot store and restore the proper value.

 DevGuide: Component writer's guide

Specifying the new default property value
Topic groups

When Delphi stores a description of a form in a form file, it stores the values only of properties that differ from their
defaults. Storing only the differing values keeps the form files small and makes loading the form faster. If you create
a property or change the default value, it is a good idea to update the property declaration to include the new
default. Form files, loading, and default values are explained in more detail in Making components available at
design time.

To change the default value of a property, redeclare the property name, followed by the directive default and the
new default value. You don’t need to redeclare the entire property, just the name and the default value.

For the word-wrapping memo component, you redeclare the WordWrap property in the published part of the object
declaration, with a default value of False:

type
 TWrapMemo = class(TMemo)
 ...
 published
 property WordWrap default False;
 end;

Specifying the default property value does not affect the workings of the component. You must still initialize the
value in the component’s constructor. Redeclaring the default ensures that Delphi knows when to write WordWrap
to the form file.

 DevGuide: Component writer's guide

Creating a graphic component
Topic groups

A graphic control is a simple kind of component. Because a purely graphic control never receives focus, it does not
have or need a window handle. Users can still manipulate the control with the mouse, but there is no keyboard
interface.

The graphic component presented in the following topics is TShape, the shape component on the Additional page of
the Component palette. Although the component created is identical to the standard shape component, you need to
call it something different to avoid duplicate identifiers. The following topics use the name TSampleShape and show
you all the steps involved in creating the shape component:

Creating and registering the component
Publishing inherited properties
Adding graphic capabilities

 DevGuide: Component writer's guide

Creating and registering the component
Topic groups

Creation of every component begins the same way: create a unit, derive a component class, register it, compile it,
and install it on the Component palette. Creating a new component.

For this example, follow the general procedure for creating a component, with these specifics:
Call the component’s unit Shapes.
Derive a new component type called TSampleShape, descended from TGraphicControl.
Register TSampleShape on the Samples page of the Component palette.

The resulting unit should look like this:

unit Shapes;
interface
uses SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type
 TSampleShape = class(TGraphicControl)
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponent('Samples', [TSampleShape]);
end;
end.

 DevGuide: Component writer's guide

Publishing inherited properties
Topic groups

Once you derive a component type, you can decide which of the properties and events declared in the protected
parts of the ancestor class you want to surface in the new component. TGraphicControl already publishes all the
properties that enable the component to function as a control, so all you need to publish is the ability to respond to
mouse events and handle drag-and-drop.

Publishing inherited properties and events is explained in Publishing inherited properties and Making events visible.
Both processes involve redeclaring just the name of the properties in the published part of the class declaration.

For the shape control, you can publish the three mouse events, the three drag-and-drop events, and the two drag-
and-drop properties:

type
 TSampleShape = class(TGraphicControl)
 published
 property DragCursor; { drag-and-drop properties }
 property DragMode;
 property OnDragDrop; { drag-and-drop events }
 property OnDragOver;
 property OnEndDrag;
 property OnMouseDown; { mouse events }
 property OnMouseMove;
 property OnMouseUp;
 end;

The sample shape control now makes mouse and drag-and-drop interactions available to its users.

 DevGuide: Component writer's guide

Adding graphic capabilities
Topic groups

Once you have declared your graphic component and published any inherited properties you want to make
available, you can add the graphic capabilities that distinguish your component. You have two tasks to perform
when creating a graphic control:
1 Determining what to draw.
2 Drawing the component image.

In addition, for the shape control example, you will add some properties that enable application developers to
customize the appearance of the shape at design time.

 DevGuide: Component writer's guide

Determining what to draw
Topic groups

A graphic control can change its appearance to reflect a dynamic condition, including user input. A graphic control
that always looks the same should probably not be a component at all. If you want a static image, you can import
the image instead of using a control.

In general, the appearance of a graphic control depends on some combination of its properties. The gauge control,
for example, has properties that determine its shape and orientation and whether it shows its progress numerically
as well as graphically. Similarly, the shape control has a property that determines what kind of shape it should draw.

To give your control a property that determines the shape it draws, add a property called Shape. This requires
1 Declaring the property type.
2 Declaring the property.
3 Writing the implementation method.

Creating properties is explained in more detail in Creating properties.

 DevGuide: Component writer's guide

Declaring the property type
Topic groups

When you declare a property of a user-defined type, you must declare the type first, before the class that includes
the property. The most common sort of user-defined type for properties is enumerated.

For the shape control, you need an enumerated type with an element for each kind of shape the control can draw.

Add the following type definition above the shape control class’s declaration.

type
 TSampleShapeType = (sstRectangle, sstSquare, sstRoundRect, sstRoundSquare,
 sstEllipse, sstCircle);
 TSampleShape = class(TGraphicControl) { this is already there }

You can now use this type to declare a new property in the class.

 DevGuide: Component writer's guide

Declaring the property
Topic groups

When you declare a property, you usually need to declare a private field to store the data for the property, then
specify methods for reading and writing the property value. Often, you don’t need to use a method to read the value,
but can just point to the stored data instead.

For the shape control, you will declare a field that holds the current shape, then declare a property that reads that
field and writes to it through a method call.

Add the following declarations to TSampleShape:

type
 TSampleShape = class(TGraphicControl)
 private
 FShape: TSampleShapeType; { field to hold property value }
 procedure SetShape(Value: TSampleShapeType);
 published
 property Shape: TSampleShapeType read FShape write SetShape;
 end;

Now all that remains is to add the implementation of SetShape.

 DevGuide: Component writer's guide

Writing the implementation method
Topic groups

When the read or write part of a property definition uses a method instead of directly accessing the stored property
data, you need to implement the method.

Add the implementation of the SetShape method to the implementation part of the unit:

procedure TSampleShape.SetShape(Value: TSampleShapeType);
begin
 if FShape <> Value then { ignore if this isn't a
change }
 begin
 FShape := Value; { store the new value }
 Invalidate; { force a repaint with the new
shape }
 end;
end;

 DevGuide: Component writer's guide

Overriding the constructor and destructor
Topic groups

To change default property values and initialize owned classes for your component, you must override the inherited
constructor and destructor. In both cases, remember always to call the inherited method in your new constructor or
destructor.

Changing default property values

The default size of a graphic control is fairly small, so you can change the width and height in the constructor.
Changing default property values is explained in more detail in Modifying an existing component.

In this example, the shape control sets its size to a square 65 pixels on each side.

Add the overridden constructor to the declaration of the component class:

type
 TSampleShape = class(TGraphicControl)
 public { constructors are always
public }
 constructor Create(AOwner: TComponent); override { remember override
directive }
 end;

1 Redeclare the Height and Width properties with their new default values:

type
 TSampleShape = class(TGraphicControl)
 ...
 published
 property Height default 65;
 property Width default 65;
 end;

2 Write the new constructor in the implementation part of the unit:

constructor TSampleShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited constructor }
 Width := 65;
 Height := 65;
end;

 DevGuide: Component writer's guide

Publishing the pen and brush
Topic groups

By default, a canvas has a thin black pen and a solid white brush. To let developers change the pen and brush, you
must provide classes for them to manipulate at design time, then copy the classes into the canvas during painting.
Classes such as an auxiliary pen or brush are called owned classes because the component owns them and is
responsible for creating and destroying them.

Managing owned classes requires
1 Declaring the class fields.
2 Declaring the access properties.
3 Initializing owned classes.
4 Setting owned classes’ properties.

 DevGuide: Component writer's guide

Declaring the class fields
Topic groups

Each class a component owns must have a class field declared for it in the component. The class field ensures that
the component always has a pointer to the owned object so that it can destroy the class before destroying itself. In
general, a component initializes owned objects in its constructor and destroys them in its destructor.

Fields for owned objects are nearly always declared as private. If applications (or other components) need access
to the owned objects, you can declare published or public properties for this purpose.

Add fields for a pen and brush to the shape control:

type
 TSampleShape = class(TGraphicControl)
 private { fields are nearly always private }
 FPen: TPen; { a field for the pen object }
 FBrush: TBrush; { a field for the brush object }
 ...
 end;

 DevGuide: Component writer's guide

Declaring the access properties
Topic groups

You can provide access to the owned objects of a component by declaring properties of the type of the objects. That
gives developers a way to access the objects at design time or runtime. Usually, the read part of the property just
references the class field, but the write part calls a method that enables the component to react to changes in the
owned object.

To the shape control, add properties that provide access to the pen and brush fields. You will also declare methods
for reacting to changes to the pen or brush.

type
 TSampleShape = class(TGraphicControl)
 ...
 private { these methods should be
private }
 procedure SetBrush(Value: TBrush);
 procedure SetPen(Value: TPen);
 published { make these available at design
time }
 property Brush: TBrush read FBrush write SetBrush;
 property Pen: TPen read FPen write SetPen;
 end;

Then, write the SetBrush and SetPen methods in the implementation part of the unit:

procedure TSampleShape.SetBrush(Value: TBrush);
begin
 FBrush.Assign(Value); { replace existing brush with
parameter }
end;
procedure TSampleShape.SetPen(Value: TPen);
begin
 FPen.Assign(Value); { replace existing pen with
parameter }
end;

To directly assign the contents of Value to FBrush...

 FBrush := Value;

...would overwrite the internal pointer for FBrush, lose memory, and create a number of ownership problems.

 DevGuide: Component writer's guide

Initializing owned classes
Topic groups

If you add classes to your component, the component’s constructor must initialize them so that the user can interact
with the objects at runtime. Similarly, the component’s destructor must also destroy the owned objects before
destroying the component itself.

Because you have added a pen and a brush to the shape control, you need to initialize them in the shape control’s
constructor and destroy them in the control’s destructor:
1 Construct the pen and brush in the shape control constructor:

constructor TSampleShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited
constructor }
 Width := 65;
 Height := 65;
 FPen := TPen.Create; { construct the
pen }
 FBrush := TBrush.Create; { construct the
brush }
end;

2 Add the overridden destructor to the declaration of the component class:

type
 TSampleShape = class(TGraphicControl)
 public { destructors are always
public}
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override; { remember override
directive }
 end;

3 Write the new destructor in the implementation part of the unit:

destructor TSampleShape.Destroy;
begin
 FPen.Free; { destroy the pen
object }
 FBrush.Free; { destroy the brush
object }
 inherited Destroy; { always call the inherited destructor,
too }
end;

 DevGuide: Component writer's guide

Setting owned classes’ properties
Topic groups

As the final step in handling the pen and brush classes, you need to make sure that changes in the pen and brush
cause the shape control to repaint itself. Both pen and brush classes have OnChange events, so you can create a
method in the shape control and point both OnChange events to it.

Add the following method to the shape control, and update the component’s constructor to set the pen and brush
events to the new method:

type
 TSampleShape = class(TGraphicControl)
 published
 procedure StyleChanged(Sender: TObject);
 end;
...
implementation
...
constructor TSampleShape.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { always call the inherited
constructor }
 Width := 65;
 Height := 65;
 FPen := TPen.Create; { construct the
pen }
 FPen.OnChange := StyleChanged; { assign method to OnChange
event }
 FBrush := TBrush.Create; { construct the
brush }
 FBrush.OnChange := StyleChanged; { assign method to OnChange
event }
end;
procedure TSampleShape.StyleChanged(Sender: TObject);
begin
 Invalidate; { erase and repaint the component }
end;

With these changes, the component redraws to reflect changes to either the pen or the brush.

 DevGuide: Component writer's guide

Drawing the component image
Topic groups

The essential element of a graphic control is the way it paints its image on the screen. The abstract type
TGraphicControl defines a method called Paint that you override to paint the image you want on your control.

The Paint method for the shape control needs to do several things:
Use the pen and brush selected by the user.
Use the selected shape.
Adjust coordinates so that squares and circles use the same width and height.

Overriding the Paint method requires two steps:
1 Add Paint to the component’s declaration.
2 Write the Paint method in the implementation part of the unit.

For the shape control, add the following declaration to the class declaration:

type
 TSampleShape = class(TGraphicControl)
 ...
 protected
 procedure Paint; override;
 ...
 end;

Then write the method in the implementation part of the unit:

procedure TSampleShape.Paint;
begin
 with Canvas do
 begin
 Pen := FPen; { copy the component's
pen }
 Brush := FBrush; { copy the component's
brush }
 case FShape of
 sstRectangle, sstSquare:
 Rectangle(0, 0, Width, Height); { draw rectangles and
squares }
 sstRoundRect, sstRoundSquare:
 RoundRect(0, 0, Width, Height, Width div 4, Height div 4); { draw rounded
shapes }
 sstCircle, sstEllipse:
 Ellipse(0, 0, Width, Height); { draw round
shapes }
 end;
 end;
end;

Paint is called whenever the control needs to update its image. Controls are painted when they first appear or when
a window in front of them goes away. In addition, you can force repainting by calling Invalidate, as the
StyleChanged method does.

 DevGuide: Component writer's guide

Refining the shape drawing
Topic groups

The standard shape control does one more thing that your sample shape control does not yet do: it handles
squares and circles as well as rectangles and ellipses. To do that, you need to write code that finds the shortest side
and centers the image.

Here is a refined Paint method that adjusts for squares and ellipses:

procedure TSampleShape.Paint;
var
 X, Y, W, H, S: Integer;
begin
 with Canvas do
 begin
 Pen := FPen; { copy the component's
pen }
 Brush := FBrush; { copy the component's
brush }
 W := Width; { use the component
width }
 H := Height; { use the component
height }
 if W < H then S := W else S := H; { save smallest for
circles/squares }
 case FShape of { adjust height, width and
position }
 sstRectangle, sstRoundRect, sstEllipse:
 begin
 X := 0; { origin is top-left for these
shapes }
 Y := 0;
 end;
 sstSquare, sstRoundSquare, sstCircle:
 begin
 X := (W - S) div 2; { center these
horizontally... }
 Y := (H - S) div 2; { ...and
vertically }
 W := S; { use shortest dimension for
width... }
 H := S; { ...and for
height }
 end;
 end;
 case FShape of
 sstRectangle, sstSquare:
 Rectangle(X, Y, X + W, Y + H); { draw rectangles and
squares }
 sstRoundRect, sstRoundSquare:
 RoundRect(X, Y, X + W, Y + H, S div 4, S div 4); { draw rounded
shapes }
 sstCircle, sstEllipse:
 Ellipse(X, Y, X + W, Y + H); { draw round
shapes }
 end;
 end;
end;

 DevGuide: Component writer's guide

Customizing a grid
Topic groups

Delphi provides abstract components you can use as the basis for customized components. The most important of
these are grids and list boxes. The following topics describe how to create a small one-month calendar from the
basic grid component, TCustomGrid:

Creating and registering the component
Publishing inherited properties
Changing initial values
Resizing the cells
Filling in the cells
Navigating months and years
Navigating days

The resulting component is similar to the TCalendar component on the Samples page of the Component palette.

 DevGuide: Component writer's guide

Creating and registering the component
Topic groups

Creation of every component begins the same way: create a unit, derive a component class, register it, compile it,
and install it on the Component palette. Creating a new component.

For this example, follow the general procedure for creating a component, with these specifics:
Call the component’s unit CalSamp.
Derive a new component type called TSampleCalendar, descended from TCustomGrid.
Register TSampleCalendar on the Samples page of the Component palette.

The resulting unit descending from TCustomGrid in the VCL should look like this:

unit CalSamp;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms, Dialogs, Grids;
type
 TSampleCalendar = class(TCustomGrid)
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TSampleCalendar]);
end;
end.

If descending from the CLX version of TCustomGrid, only the uses clause would differ showing CLX units instead.

If you install the calendar component now, you will find that it appears on the Samples page. The only properties
available are the most basic control properties. The next step is to make some of the more specialized properties
available to users of the calendar.

Note: While you can install the sample calendar component you have just compiled, do not try to place it on a
form yet. The TCustomGrid component has an abstract DrawCell method that must be redeclared before
instance objects can be created. Overriding the DrawCell method is described in “Filling in the cells” below.

 DevGuide: Component writer's guide

Publishing inherited properties
Topic groups

The abstract grid component, TCustomGrid, provides a large number of protected properties. You can choose
which of those properties you want to make available to users of the calendar control.

To make inherited protected properties available to users of your components, redeclare the properties in the
published part of your component’s declaration.

For the calendar control, publish the following properties and events, as shown here:

type
 TSampleCalendar = class(TCustomGrid)
 published
 property Align; { publish properties }
 property BorderStyle;
 property Color;
 property Font;
 property GridLineWidth;
 property ParentColor;
 property ParentFont;
 property OnClick; { publish events }
 property OnDblClick;
 property OnDragDrop;
 property OnDragOver;
 property OnEndDrag;
 property OnKeyDown;
 property OnKeyPress;
 property OnKeyUp;
 end;

There are a number of other properties you could also publish, but which do not apply to a calendar, such as the
Options property that would enable the user to choose which grid lines to draw.

If you install the modified calendar component to the Component palette and use it in an application, you will find
many more properties and events available in the calendar, all fully functional. You can now start adding new
capabilities of your own design.

 DevGuide: Component writer's guide

Changing initial values
Topic groups

A calendar is essentially a grid with a fixed number of rows and columns, although not all the rows always contain
dates. For this reason, you have not published the grid properties ColCount and RowCount, because it is highly
unlikely that users of the calendar will want to display anything other than seven days per week. You still must set
the initial values of those properties so that the week always has seven days, however.

To change the initial values of the component’s properties, override the constructor to set the desired values. The
constructor must be virtual.

Remember that you need to add the constructor to the public part of the component’s object declaration, then write
the new constructor in the implementation part of the component’s unit. The first statement in the new constructor
should always be a call to the inherited constructor.

type
 TSampleCalendar = class(TCustomGrid
 public
 constructor Create(AOwner: TComponent); override;
 ...
 end;
...
constructor TSampleCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { call inherited
constructor }
 ColCount := 7; { always seven
days/week }
 RowCount := 7; { always six weeks plus the
headings }
 FixedCols := 0; { no row
labels }
 FixedRows := 1; { one row for day
names }
 ScrollBars := ssNone; { no need to
scroll }
 Options := Options - [goRangeSelect] + [goDrawFocusSelected]; {disable range
selection}
end;

The calendar now has seven columns and seven rows, with the top row fixed, or nonscrolling.

 DevGuide: Component writer's guide

Resizing the cells
Topic groups

When a user or application changes the size of a window or control, Windows sends a message called WM_SIZE to
the affected window or control so it can adjust any settings needed to later paint its image in the new size. Your VCL
component can respond to that message by altering the size of the cells so they all fit inside the boundaries of the
control. To respond to the WM_SIZE message, you will add a message-handling method to the component.

Creating a message-handling method is described in detail in the section Creating new message handlers.

In this case, the calendar control needs a response to WM_SIZE, so add a protected method called WMSize to the
control indexed to the WM_SIZE message, then write the method so that it calculates the proper cell size to allow
all cells to be visible in the new size:

type
 TSampleCalendar = class(TCustomGrid)
 protected
 procedure WMSize(var Message: TWMSize); message WM_SIZE;
 ...
 end;
...
procedure TSampleCalendar.WMSize(var Message: TWMSize);
var
 GridLines: Integer; { temporary local
variable }
begin
 GridLines := 6 * GridLineWidth; { calculate combined size of all
lines }
 DefaultColWidth := (Message.Width - GridLines) div 7; { set new default cell
width }
 DefaultRowHeight := (Message.Height - GridLines) div 7; { and cell
height }
end;

Now when the calendar is resized, it displays all the cells in the largest size that will fit in the control.

CLX: In CLX, changes to the size of a window or control are automatically notified by a call to the
protected BoundsChanged method. Your CLX component can respond to this notification by altering
the size of the cells so they all fit inside the boundaries of the control.

In this case, the calendar control needs to override BoundsChanged so that it calculates the proper cell size to allow
all cells to be visible in the new size:

type
 TSampleCalendar = class(TCustomGrid)
 protected
 procedure BoundsChanged; override;
 ...
 end;
...
procedure TSampleCalendar.BoundsChanged;
var
 GridLines: Integer; { temporary local
variable }
begin
 GridLines := 6 * GridLineWidth; { calculate combined size of all
lines }
 DefaultColWidth := (Width - GridLines) div 7; { set new default cell width }
 DefaultRowHeight := (Height - GridLines) div 7; { and cell height }
 inherited; {now call the inherited method }
end;

 DevGuide: Component writer's guide

Filling in the cells
Topic groups

A grid control fills in its contents cell-by-cell. In the case of the calendar, that means calculating which date, if any,
belongs in each cell. The default drawing for grid cells takes place in a virtual method called DrawCell.

To fill in the contents of grid cells, override the DrawCell method.

The easiest part to fill in is the heading cells in the fixed row. The runtime library contains an array with short day
names, so for the calendar, use the appropriate one for each column:

type
 TSampleCalendar = class(TCustomGrid)
 protected
 procedure DrawCell(ACol, ARow: Longint; ARect: TRect; AState: TGridDrawState);
 override;
 end;
...
procedure TSampleCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect;
 AState: TGridDrawState);
begin
 if ARow = 0 then
 Canvas.TextOut(ARect.Left, ARect.Top, ShortDayNames[ACol + 1]); { use RTL
strings }
end;

 DevGuide: Component writer's guide

Tracking the date
Topic groups

For the calendar control to be useful, users and applications must have a mechanism for setting the day, month,
and year. Delphi stores dates and times in variables of type TDateTime. TDateTime is an encoded numeric
representation of the date and time, which is useful for programmatic manipulation, but not convenient for human
use.

You can therefore store the date in encoded form, providing runtime access to that value, but also provide Day,
Month, and Year properties that users of the calendar component can set at design time.

Tracking the date in the calendar consists of the processes:
Storing the internal date
Accessing the day, month, and year
Generating the day numbers
Selecting the current day

 DevGuide: Component writer's guide

Storing the internal date
Topic groups

To store the date for the calendar, you need a private field to hold the date and a runtime-only property that provides
access to that date.

Adding the internal date to the calendar requires three steps:
1 Declare a private field to hold the date:

type
 TSampleCalendar = class(TCustomGrid)
 private
 FDate: TDateTime;
 ...

2 Initialize the date field in the constructor:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { this is already here }
 ... { other initializations here }
 FDate := Date; { get current date from RTL }
end;

3 Declare a runtime property to allow access to the encoded date.

You’ll need a method for setting the date, because setting the date requires updating the onscreen image of the
control:

type
 TSampleCalendar = class(TCustomGrid)
 private
 procedure SetCalendarDate(Value: TDateTime);
 public
 property CalendarDate: TDateTime read FDate write SetCalendarDate;
 ...
procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin
 FDate := Value; { set new date value }
 Refresh; { update the onscreen image }
end;

 DevGuide: Component writer's guide

Accessing the day, month, and year
Topic groups

An encoded numeric date is fine for applications, but humans prefer to work with days, months, and years. You can
provide alternate access to those elements of the stored, encoded date by creating properties.

Because each element of the date (day, month, and year) is an integer, and because setting each requires
encoding the date when set, you can avoid duplicating the code each time by sharing the implementation methods
for all three properties. That is, you can write two methods, one to read an element and one to write one, and use
those methods to get and set all three properties.

To provide design-time access to the day, month, and year, you do the following:
1 Declare the three properties, assigning each a unique index number:

type
 TSampleCalendar = class(TCustomGrid)
 public
 property Day: Integer index 3 read GetDateElement write SetDateElement;
 property Month: Integer index 2 read GetDateElement write SetDateElement;
 property Year: Integer index 1 read GetDateElement write SetDateElement;
 ...

2 Declare and write the implementation methods, setting different elements for each index value:

type
 TSampleCalendar = class(TCustomGrid)
 private
 function GetDateElement(Index: Integer): Integer; { note the Index
parameter }
 procedure SetDateElement(Index: Integer; Value: Integer);
 ...
function TSampleCalendar.GetDateElement(Index: Integer): Integer;
var
 AYear, AMonth, ADay: Word;
begin
 DecodeDate(FDate, AYear, AMonth, ADay); { break encoded date into
elements }
 case Index of
 1: Result := AYear;
 2: Result := AMonth;
 3: Result := ADay;
 else Result := -1;
 end;
end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
var
 AYear, AMonth, ADay: Word;
begin
 if Value > 0 then { all elements must be
positive }
 begin
 DecodeDate(FDate, AYear, AMonth, ADay); { get current date
elements }
 case Index of { set new element depending on
Index }
 1: AYear := Value;
 2: AMonth := Value;
 3: ADay := Value;
 else Exit;
 end;
 FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified
date }
 Refresh; { update the visible
calendar }
 end;

end;

Now you can set the calendar’s day, month, and year at design time using the Object Inspector or at runtime using
code. Of course, you have not yet added the code to paint the dates into the cells, but now you have the needed
data.

 DevGuide: Component writer's guide

Generating the day numbers
Topic groups

Putting numbers into the calendar involves several considerations. The number of days in the month depends on
which month it is, and whether the given year is a leap year. In addition, months start on different days of the week,
dependent on the month and year. Use the IsLeapYear function to determine whether the year is a leap year. Use
the MonthDays array in the SysUtils unit to get the number of days in the month.

Once you have the information on leap years and days per month, you can calculate where in the grid the individual
dates go. The calculation is based on the day of the week the month starts on.

Because you will need the month-offset number for each cell you fill in, the best practice is to calculate it once when
you change the month or year, then refer to it each time. You can store the value in a class field, then update that
field each time the date changes.

To fill in the days in the proper cells, you do the following:
1 Add a month-offset field to the object and a method that updates the field value:

type
 TSampleCalendar = class(TCustomGrid)
 private
 FMonthOffset: Integer; { storage for the
offset }
 ...
 protected
 procedure UpdateCalendar; virtual; { property for offset
access }
 end;
...
procedure TSampleCalendar.UpdateCalendar;
var
 AYear, AMonth, ADay: Word;
 FirstDate: TDateTime; { date of the first day of the
month }
begin
 if FDate <> 0 then { only calculate offset if date is
valid }
 begin
 DecodeDate(FDate, AYear, AMonth, ADay); { get elements of
date }
 FirstDate := EncodeDate(AYear, AMonth, 1); { date of the
first }
 FMonthOffset := 2 - DayOfWeek(FirstDate); { generate the offset into the
grid }
 end;
 Refresh; { always repaint the
control }
end;

2 Add statements to the constructor and the SetCalendarDate and SetDateElement methods that call the new
update method whenever the date changes:

constructor TSampleCalendar.Create(AOwner: TComponent);
begin
 inherited Create(AOwner); { this is already
here }
 ... { other
initializations here }
 UpdateCalendar; { set proper
offset }
end;
procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin
 FDate := Value; { this was already
here }

 UpdateCalendar; { this previously called
Refresh }
end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin
 ...
 FDate := EncodeDate(AYear, AMonth, ADay); { encode the modified
date }
 UpdateCalendar; { this previously called
Refresh }
 end;
end;

3 Add a method to the calendar that returns the day number when passed the row and column coordinates of a
cell:

function TSampleCalendar.DayNum(ACol, ARow: Integer): Integer;
begin
 Result := FMonthOffset + ACol + (ARow - 1) * 7; { calculate day for this
cell }
 if (Result < 1) or (Result > MonthDays[IsLeapYear(Year), Month]) then
 Result := -1; { return -1 if
invalid }
end;

Remember to add the declaration of DayNum to the component’s type declaration.
4 Now that you can calculate where the dates go, you can update DrawCell to fill in the dates:

procedure TCalendar.DrawCell(ACol, ARow: Longint; ARect: TRect; AState:
TGridDrawState);
var
 TheText: string;
 TempDay: Integer;
begin
 if ARow = 0 then { if this is the header
row ...}
 TheText := ShortDayNames[ACol + 1] { just use the day
name }
 else begin
 TheText := ''; { blank cell is the
default }
 TempDay := DayNum(ACol, ARow); { get number for this
cell }
 if TempDay <> -1 then TheText := IntToStr(TempDay); { use the number if
valid }
 end;
 with ARect, Canvas do
 TextRect(ARect, Left + (Right - Left - TextWidth(TheText)) div 2,
 Top + (Bottom - Top - TextHeight(TheText)) div 2, TheText);
end;

Now if you reinstall the calendar component and place one on a form, you will see the proper information for the
current month.

 DevGuide: Component writer's guide

Selecting the current day
Topic groups

Now that you have numbers in the calendar cells, it makes sense to move the selection highlighting to the cell
containing the current day. By default, the selection starts on the top left cell, so you need to set the Row and
Column properties both when constructing the calendar initially and when the date changes.

To set the selection on the current day, change the UpdateCalendar method to set Row and Column before calling
Refresh:

procedure TSampleCalendar.UpdateCalendar;
begin
 if FDate <> 0 then
 begin
 ... { existing statements to set FMonthOffset }
 Row := (ADay - FMonthOffset) div 7 + 1;
 Col := (ADay - FMonthOffset) mod 7;
 end;
 Refresh; { this is already here }
end;

Note that you are now reusing the ADay variable previously set by decoding the date.

 DevGuide: Component writer's guide

Navigating months and years
Topic groups

Properties are useful for manipulating components, especially at design time. But sometimes there are types of
manipulations that are so common or natural, often involving more than one property, that it makes sense to provide
methods to handle them. One example of such a natural manipulation is a “next month” feature for a calendar.
Handling the wrapping around of months and incrementing of years is simple, but very convenient for the developer
using the component.

The only drawback to encapsulating common manipulations into methods is that methods are only available at
runtime. However, such manipulations are generally only cumbersome when performed repeatedly, and that is fairly
rare at design time.

For the calendar, add the following four methods for next and previous month and year. Each of these methods
uses the IncMonth function in a slightly different manner to increment or decrement CalendarDate, by increments of
a month or a year. After incrementing or decrementing CalendarDate, decode the date value to fill the Year, Month,
and Day properties with corresponding new values.

procedure TCalendar.NextMonth;
begin
 DecodeDate(IncMonth(CalendarDate, 1), Year, Month, Day);
end;
procedure TCalendar.PrevMonth;
begin
 DecodeDate(IncMonth(CalendarDate, -1), Year, Month, Day);
end;
procedure TCalendar.NextYear;
begin
 DecodeDate(IncMonth(CalendarDate, 12), Year, Month, Day);
end;
procedure TCalendar.PrevYear;
begin
 DecodeDate(IncMonth(CalendarDate, -12), Year, Month, Day);
end;

Be sure to add the declarations of the new methods to the class declaration.

Now when you create an application that uses the calendar component, you can easily implement browsing through
months or years.

 DevGuide: Component writer's guide

Navigating days
Topic groups

Within a given month, there are two obvious ways to navigate among the days. The first is to use the arrow keys,
and the other is to respond to clicks of the mouse. The standard grid component handles both as if they were clicks.
That is, an arrow movement is treated like a click on an adjacent cell.

The process of navigating days consists of
Moving the selection
Providing an OnChange event
Excluding blank cells

 DevGuide: Component writer's guide

Moving the selection
Topic groups

The inherited behavior of a grid handles moving the selection in response to either arrow keys or clicks, but if you
want to change the selected day, you need to modify that default behavior.

To handle movements within the calendar, override the Click method of the grid.

When you override a method such as Click that is tied in with user interactions, you will nearly always include a call
to the inherited method, so as not to lose the standard behavior.

The following is an overridden Click method for the calendar grid. Be sure to add the declaration of Click to
TSampleCalendar, including the override directive afterward.

procedure TSampleCalendar.Click;
var
 TempDay: Integer;
begin
 inherited Click; { remember to call the inherited
method! }
 TempDay := DayNum(Col, Row); { get the day number for the clicked
cell }
 if TempDay <> -1 then Day := TempDay; { change day if
valid }
end;

 DevGuide: Component writer's guide

Providing an OnChange event
Topic groups

Now that users of the calendar can change the date within the calendar, it makes sense to allow applications to
respond to those changes.

Add an OnChange event to TSampleCalendar.
1 Declare the event, a field to store the event, and a dynamic method to call the event:

type
 TSampleCalendar = class(TCustomGrid)
 private
 FOnChange: TNotifyEvent;
 protected
 procedure Change; dynamic;
 ...
 published
 property OnChange: TNotifyEvent read FOnChange write FOnChange;
 ...

2 Write the Change method:

procedure TSampleCalendar.Change;
begin
 if Assigned(FOnChange) then FOnChange(Self);
end;

3 Add statements calling Change to the end of the SetCalendarDate and SetDateElement methods:

procedure TSampleCalendar.SetCalendarDate(Value: TDateTime);
begin
 FDate := Value;
 UpdateCalendar;
 Change; { this is the only new
statement }
end;
procedure TSampleCalendar.SetDateElement(Index: Integer; Value: Integer);
begin
 ... { many statements setting element
values }
 FDate := EncodeDate(AYear, AMonth, ADay);
 UpdateCalendar;
 Change; { this is
new }
 end;
end;

Applications using the calendar component can now respond to changes in the date of the component by attaching
handlers to the OnChange event.

 DevGuide: Component writer's guide

Excluding blank cells
Topic groups

As the calendar is written, the user can select a blank cell, but the date does not change. It makes sense, then, to
disallow selection of the blank cells.

To control whether a given cell is selectable, override the SelectCell method of the grid.

SelectCell is a function that takes a column and row as parameters, and returns a Boolean value indicating whether
the specified cell is selectable.

You can override SelectCell to return False if the cell does not contain a valid date:

function TSampleCalendar.SelectCell(ACol, ARow: Longint): Boolean;
begin
 if DayNum(ACol, ARow) = -1 then Result := False { -1 indicates invalid
date }
 else Result := inherited SelectCell(ACol, ARow); { otherwise, use inherited
value }
end;

Now if the user clicks a blank cell or tries to move to one with an arrow key, the calendar leaves the current cell
selected.

Link not found
The topic you requested is either not available or not linked to this Help system. This can occur if you
launched this Help file from a system on which Delphi has not yet been installed, or if the subject matter
you are requesting is not available in your edition of Delphi.

 DevGuide: Component writer's guide

Making a dialog box a component
Topic groups

You will find it convenient to make a frequently used dialog box into a component that you add to the Component
palette. Your dialog box components will work just like the components that represent the standard common dialog
boxes. The goal is to create a simple component that a user can add to a project and set properties for at design
time.

Making a dialog box a component requires these steps:
1 Defining the component interface
2 Creating and registering the component
3 Creating the component interface
4 Testing the component

The Delphi “wrapper” component associated with the dialog box creates and executes the dialog box at runtime,
passing along the data the user specified. The dialog-box component is therefore both reusable and customizable.

In this section, you will see how to create a wrapper component around the generic About Box form provided in the
Delphi Object Repository.

Note: Copy the files ABOUT.PAS and ABOUT.DFM into your working directory.
There are not many special considerations for designing a dialog box that will be wrapped into a component. Nearly
any form can operate as a dialog box in this context.

 DevGuide: Component writer's guide

Defining the component interface
Topic groups

Before you can create the component for your dialog box, you need to decide how you want developers to use it.
You create an interface between your dialog box and applications that use it.

For example, look at the properties for the common dialog box components. They enable the developer to set the
initial state of the dialog box, such as the caption and initial control settings, then read back any needed information
after the dialog box closes. There is no direct interaction with the individual controls in the dialog box, just with the
properties in the wrapper component.

The interface must therefore contain enough information that the dialog box form can appear in the way the
developer specifies and return any information the application needs. You can think of the properties in the wrapper
component as being persistent data for a transient dialog box.

In the case of the About box, you do not need to return any information, so the wrapper’s properties only have to
contain the information needed to display the About box properly. Because there are four separate fields in the
About box that the application might affect, you will provide four string-type properties to provide for them.

 DevGuide: Component writer's guide

Creating and registering the component
Topic groups

Creation of every component begins the same way: create a unit, derive a component class, register it, compile it,
and install it on the component palette. This process is outlined in Creating a new component.

For this example, follow the general procedure for creating a component, with these specifics:
Call the component’s unit AboutDlg.
Derive a new component type called TAboutBoxDlg, descended from TComponent.
Register TAboutBoxDlg on the Samples page of the component palette.

The resulting unit should look like this:

unit AboutDlg;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms;
type
 TAboutBoxDlg = class(TComponent)
 end;
procedure Register;
implementation
procedure Register;
begin
 RegisterComponents('Samples', [TAboutBoxDlg]);
end;
end.

The new component now has only the capabilities built into TComponent. It is the simplest nonvisual component. In
the next section, you will create the interface between the component and the dialog box.

 DevGuide: Component writer's guide

Creating the component interface
Topic groups

These are the steps to create the component interface:
1 Including the form unit
2 Adding interface properties
3 Adding the Execute method

 DevGuide: Component writer's guide

Including the form unit
Topic groups

For your wrapper component to initialize and display the wrapped dialog box, you must add the form’s unit to the
uses clause of the wrapper component’s unit.

Append About to the uses clause of the AboutDlg unit.

The uses clause now looks like this:

uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics, Controls, Forms,
 About;

The form unit always declares an instance of the form class. In the case of the About box, the form class is
TAboutBox, and the About unit includes the following declaration:

var
 AboutBox: TAboutBox;

So by adding About to the uses clause, you make AboutBox available to the wrapper component.

 DevGuide: Component writer's guide

Adding interface properties
Topic groups Example

Before proceeding, decide on the properties your wrapper needs to enable developers to use your dialog box as a
component in their applications. Then, you can add declarations for those properties to the component’s class
declaration.

Properties in wrapper components are somewhat simpler than the properties you would create if you were writing a
regular component. Remember that in this case, you are just creating some persistent data that the wrapper can
pass back and forth to the dialog box. By putting that data in the form of properties, you enable developers to set
data at design time so that the wrapper can pass it to the dialog box at runtime.

Declaring an interface property requires two additions to the component’s class declaration:
A private class field, which is a variable the wrapper uses to store the value of the property
The published property declaration itself, which specifies the name of the property and tells it which field to

use for storage
Interface properties of this sort do not need access methods. They use direct access to their stored data. By
convention, the class field that stores the property’s value has the same name as the property, but with the letter F
in front. The field and the property must be of the same type.

 DevGuide: Component writer's guide

Example: Adding interface properties
For example, to declare an integer-type interface property called Year, you would declare it as follows:

type
 TMyWrapper = class(TComponent)
 private
 FYear: Integer; { field to hold the Year-property
data }
 published
 property Year: Integer read FYear write FYear; { property matched with
storage }
 end;

For this About box, you need four string-type properties—one each for the product name, the version information,
the copyright information, and any comments.

type
 TAboutBoxDlg = class(TComponent)
 private
 FProductName, FVersion, FCopyright, FComments: string; { declare
fields }
 published
 property ProductName: string read FProductName write FProductName;
 property Version: string read FVersion write FVersion;
 property Copyright: string read FCopyright write FCopyright;
 property Comments: string read FComments write FComments;
 end;

When you install the component onto the component palette and place the component on a form, you will be able to
set the properties, and those values will automatically stay with the form. The wrapper can then use those values
when executing the wrapped dialog box.

 DevGuide: Component writer's guide

Adding the Execute method
Topic groups Example

The final part of the component interface is a way to open the dialog box and return a result when it closes. As with
the common-dialog-box components, you will use a boolean function called Execute that returns True if the user
clicks OK, or False if the user cancels the dialog box.

The declaration for the Execute method always looks like this:

type
 TMyWrapper = class(TComponent)
 public
 function Execute: Boolean;
 end;

The minimum implementation for Execute needs to construct the dialog box form, show it as a modal dialog box,
and return either True or False, depending on the return value from ShowModal.

 DevGuide: Component writer's guide

Example: Adding an Execute method
Here is the minimal Execute method for a dialog-box form of type TMyDialogBox:

function TMyWrapper.Execute: Boolean;
begin
 DialogBox := TMyDialogBox.Create(Application); { construct the
form }
 try
 Result := (DialogBox.ShowModal = IDOK); { execute; set result based on how
closed }
 finally
 DialogBox.Free; { dispose of the
form }
 end;
end;

Note the use of a try..finally block to ensure that the application disposes of the dialog box object even if an
exception occurs. In general, whenever you construct an object this way, you should use a try..finally block to
protect the block of code and make certain the application frees any resources it allocates.

In practice, there will be more code inside the try..finally block. Specifically, before calling ShowModal, the wrapper
will set some of the dialog box’s properties based on the wrapper component’s interface properties. After
ShowModal returns, the wrapper will probably set some of its interface properties based on the outcome of the
dialog box execution.

In the case of the About box, you need to use the wrapper component’s four interface properties to set the contents
of the labels in the About box form. Because the About box does not return any information to the application, there
is no need to do anything after calling ShowModal. Write the About box wrapper’s Execute method so that it looks
like this:

Within the public part of the TAboutDlg class, add the declaration for the Execute method:

type
 TAboutDlg = class(TComponent)
public
 function Execute: Boolean;
end;
function TAboutBoxDlg.Execute: Boolean;
begin
 AboutBox := TAboutBox.Create(Application); { construct
About box }
 try
 if ProductName = '' then { if product name's left
blank... }
 ProductName := Application.Title; { ...use application title
instead }
 AboutBox.ProductName.Caption := ProductName; { copy product
name }
 AboutBox.Version.Caption := Version; { copy version
info }
 AboutBox.Copyright.Caption := Copyright; { copy copyright
info }
 AboutBox.Comments.Caption := Comments; { copy
comments }
 AboutBox.Caption := 'About ' + ProductName; { set About-box
caption }
 with AboutBox do begin
 ProgramIcon.Picture.Graphic := Application.Icon; { copy
icon }
 Result := (ShowModal = IDOK); { execute and set
result }
 end;
 finally
 AboutBox.Free; { dispose of
About box }

 end;
end;

 DevGuide: Component writer's guide

Testing the component
Topic groups

Once you have installed the dialog-box component, you can use it as you would any of the common dialog boxes,
by placing one on a form and executing it. A quick way to test the About box is to add a command button to a form
and execute the dialog box when the user clicks the button.

For example, if you created an About dialog box, made it a component, and added it to the Component palette, you
can test it with the following steps:
1 Create a new project.
2 Place an About-box component on the main form.
3 Place a command button on the form.
4 Double-click the command button to create an empty click-event handler.
5 In the click-event handler, type the following line of code:

AboutBoxDlg1.Execute;
6 Run the application.

When the main form appears, click the command button. The About box appears with the default project icon and
the name Project1. Choose OK to close the dialog box.

You can further test the component by setting the various properties of the About box component and again running
the application.

Component writer's guide
· Customizing a grid

· Making a dialog box a component

· Creating events

· Using graphics in components

· Handling messages

· Creating methods

· Modifying an existing component

· Object-oriented programming for component writers

· Overview of component creation

· Property categories

· Creating properties

· Making components available at design time

· Creating a graphic component

Customizing a grid
Related topic groups
· Customizing a grid: Overview

· Creating and registering the component

· Publishing inherited properties

· Changing initial values

· Resizing the cells

· Filling in the cells

· Tracking the date

· Storing the internal date

· Accessing the day, month, and year

· Generating the day numbers

· Selecting the current day

· Navigating months and years

· Navigating days

· Moving the selection

· Providing an OnChange event

· Excluding blank cells

Making a dialog box a component
Related topic groups
· Making a dialog box a component: Overview

· Defining the component interface

· Creating and registering the component

· Creating the component interface

· Including the form unit

· Adding interface properties

· Adding the Execute method

· Testing the component

Creating events
Related topic groups
· Creating events: Overview

· What are events?

· Events are method pointers

· Calling the click-event handler

· Events are properties

· Event types are method-pointer types

· Event handler types are procedures

· Event handlers are optional

· Implementing the standard events

· Identifying standard events

· Making events visible

· Changing the standard event handling

· Defining your own events

· Triggering the event

· Two kinds of events

· Defining the handler type

· Declaring the event

· Calling the event

· Empty handlers must be valid

· Users can override default handling

Using graphics in components
Related topic groups
· Using graphics in components: Overview

· Overview of graphics

· Using the canvas

· Working with pictures

· Using a picture, graphic, or canvas

· Loading and storing graphics

· Handling palettes

· Specifying a palette for a control

· Responding to palette changes

· Offscreen bitmaps

· Creating and managing off-screen bitmaps

· Copying bitmapped images

· Responding to changes

Handling messages
Related topic groups
· Handling messages: Overview

· Understanding the message-handling system

· What's in a Windows message?

· Dispatching messages

· Changing message handling

· Overriding the handler method

· Using message parameters

· Trapping messages

· The WndProc method

· Creating new message handlers

· Declaring a message identifier

· Declaring a message-structure type

· Declaring a new message-handling method

Creating methods
Related topic groups
· Creating methods: Overview

· Avoiding interdependencies

· Naming methods

· Protecting methods

· Methods that should be public

· Methods that should be protected

· Abstract methods

· Making methods virtual

· Declaring methods

Modifying an existing component
Related topic groups
· Modifying an existing component: Overview

· Creating and registering the component

· Modifying the component object

· Overriding the constructor

· Specifying the new default property value

Object-oriented programming for component writers
Related topic groups
· Object-oriented programming for component writers: Overview

· Defining new classes

· Deriving new classes

· Changing class defaults to avoid repetition

· Adding new capabilities to a class

· Declaring a new component class

· Ancestors and descendants

· Controlling access

· Hiding implementation details

· Defining the developer's interface

· Defining the runtime interface

· Defining the design-time interface

· Dispatching methods

· Static methods

· Virtual methods

· Overriding methods

· Dynamic methods

· Abstract class members

· Classes and pointers

Overview of component creation
Related topic groups
· Overview of component creation

· The Visual Component Library

· Components and classes

· How do you create components?

· Modifying existing controls

· Creating original controls

· Creating graphic controls

· Subclassing Windows controls

· Creating nonvisual components

· What goes into a component?

· Removing dependencies

· Properties, methods, and events

· Graphics encapsulation

· Registration Overview

· Creating a new component

· Using the Component wizard

· Creating a component manually

· Creating a unit

· Deriving the component

· Registering the component

· Testing uninstalled components

· Testing installed components

Property categories
Related topic groups
· Property categories

· Registering one property at a time

· Registering multiple properties at once

· Specifying property categories

· Using the IsPropertyInCategory function

Creating properties
Related topic groups
· Creating properties: Overview

· Why create properties?

· Types of properties

· Publishing inherited properties

· Defining component properties

· The property declaration

· Internal data storage (properties)

· Direct access

· Access methods (properties)

· The read method

· The write method

· Default property values

· Specifying no default value

· Creating array properties

· Creating properties for subcomponents

· Creating properties for interfaces

· Storing and loading properties

· Using the store-and-load mechanism

· Specifying default values

· Determining what to store

· Initializing after loading

· Storing and loading unpublished properties

· Creating methods to store and load property values

· Overriding the DefineProperties method

Making components available at design time
Related topic groups
· Making components available at design time: Overview

· Registering components

· Declaring the register procedure

· Writing the Register procedure

· Specifying the components

· Specifying the palette page

· Using the RegisterComponents function

· Adding palette bitmaps

· Providing Help for your component

· Creating the help file

· Creating the entries

· Making component help context-sensitive

· Adding component help files

· Adding property editors

· Deriving a property-editor class

· Setting the property value

· Editing the property as a whole

· Specifying editor attributes

· Registering the property editor

· Property categories

· Registering one property at a time

· Registering multiple properties at once

· Specifying property categories

· Using the IsPropertyInCategory function

· Adding component editors

· Adding items to the context menu

· Specifying menu items

· Implementing commands

· Changing the double-click behavior

· Adding clipboard formats

· Registering the component editor

· Compiling components into packages

Creating a graphic component
Related topic groups
· Creating a graphic component

· Creating and registering the component

· Publishing inherited properties

· Adding graphic capabilities

· Determining what to draw

· Declaring the property type

· Declaring the property

· Writing the implementation method

· Overriding the constructor and destructor

· Publishing the pen and brush

· Declaring the class fields

· Declaring the access properties

· Initializing owned classes

· Setting owned classes' properties

· Drawing the component image

· Refining the shape drawing

Link not found
The topic you requested is either not available or not linked to this Help system. This can occur if you
launched this Help file from a system on which Delphi has not yet been installed, or if the subject matter
you are requesting is not available in your edition of Delphi.

The topic you requested is now loading. If it does not appear within a few seconds, the topic is either not
available or not linked to this Help system. This can occur if you launched this Help file from a system on
which Delphi has not yet been installed, or if the subject matter you are requesting is not available in
your edition of Delphi.

