
CVS Client/Server

This do
ument des
ribes the
lient/server proto
ol used by CVS. It does not des
ribe

how to use or administer
lient/server CVS; see the regular CVS manual for that. This is

version 1.11 of the proto
ol spe
i�
ation|See Chapter 1 [Introdu
tion℄, page 2, for more

on what this version number means.

1 Introdu
tion

CVS is a version
ontrol system (with some additional
on�guration management fun
-

tionality). It maintains a
entral repository whi
h stores �les (often sour
e
ode), in
luding

past versions, information about who modi�ed them and when, and so on. People who

wish to look at or modify those �les, known as developers, use CVS to
he
k out a working

dire
tory from the repository, to
he
k in new versions of �les to the repository, and other

operations su
h as viewing the modi�
ation history of a �le. If developers are
onne
ted to

the repository by a network, parti
ularly a slow or
aky one, the most eÆ
ient way to use

the network is with the CVS-spe
i�
 proto
ol des
ribed in this do
ument.

Developers, using the ma
hine on whi
h they store their working dire
tory, run the CVS

lient program. To perform operations whi
h
annot be done lo
ally, it
onne
ts to the CVS

server program, whi
h maintains the repository. For more information on how to
onne
t

see Chapter 3 [Conne
tion and Authenti
ation℄, page 4.

This do
ument des
ribes the CVS proto
ol. Unfortunately, it does not yet
ompletely

do
ument one aspe
t of the proto
ol|the detailed operation of ea
h CVS
ommand and

option|and one must look at the CVS user do
umentation, `
vs.texinfo', for that infor-

mation. The proto
ol is non-proprietary (anyone who wants to is en
ouraged to implement

it) and an implementation, known as CVS, is available under the GNU Publi
 Li
ense.

The CVS distribution,
ontaining this implementation, `
vs.texinfo', and a
opy (possibly

more or less up to date than what you are reading now) of this do
ument, `
vs
lient.texi',

an be found at the usual GNU FTP sites, with a �lename su
h as `
vs-version.tar.gz'.

This is version 1.11 of the proto
ol spe
i�
ation. This version number is intended only

to aid in distinguishing di�erent versions of this spe
i�
ation. Although the spe
i�
ation

is
urrently maintained in
onjun
tion with the CVS implementation, and
arries the same

version number, it also intends to do
ument what is involved with interoperating with other

implementations (su
h as other versions of CVS); see Se
tion 5.14 [Requirements℄, page 31.

This version number should not be used by
lients or servers to determine what variant of

the proto
ol to speak; they should instead use the valid-requests and Valid-responses

me
hanism (see Chapter 5 [Proto
ol℄, page 7), whi
h is more
exible.

2 Goals

� Do not assume any a

ess to the repository other than via this proto
ol. It does not

depend on NFS, rdist, et
.

� Providing a reliable transport is outside this proto
ol. The proto
ol expe
ts a reliable

transport that is transparent (that is, there is no translation of
hara
ters, in
luding

hara
ters su
h as su
h as linefeeds or
arriage returns), and
an transmit all 256 o
tets

(for example for proper handling of binary �les,
ompression, and en
ryption). The

en
oding of
hara
ters spe
i�ed by the proto
ol (the names of requests and so on) is

the invariant ISO 646
hara
ter set (a subset of most popular
hara
ter sets in
luding

ASCII and others). For more details on running the proto
ol over the TCP reliable

transport, see Chapter 3 [Conne
tion and Authenti
ation℄, page 4.

� Se
urity and authenti
ation are handled outside this proto
ol (but see below about

`
vs kserver' and `
vs pserver').

� The proto
ol makes it possible for updates to be atomi
 with respe
t to
he
kins; that

is if someone
ommits
hanges to several �les in one
vs
ommand, then an update by

someone else would either get all the
hanges, or none of them. The
urrent
vs server

an't do this, but that isn't the proto
ol's fault.

� The proto
ol is, with a few ex
eptions, transa
tion-based. That is, the
lient sends all

its requests (without waiting for server responses), and then waits for the server to send

ba
k all responses (without waiting for further
lient requests). This has the advantage

of minimizing network turnarounds and the disadvantage of sometimes transferring

more data than would be ne
essary if there were a ri
her intera
tion. Another, more

subtle, advantage is that there is no need for the proto
ol to provide lo
king for features

su
h as making
he
kins atomi
 with respe
t to updates. Any su
h lo
king
an be

handled entirely by the server. A good server implementation (su
h as the
urrent

vs server) will make sure that it does not have any su
h lo
ks in pla
e whenever it is

waiting for
ommuni
ation with the
lient; this prevents one
lient on a slow or
aky

network from interfering with the work of others.

� It is a general design goal to provide only one way to do a given operation (where

possible). For example, implementations have no
hoi
e about whether to terminate

lines with linefeeds or some other
hara
ter(s), and request and response names are

ase-sensitive. This is to enhan
e interoperability. If a proto
ol allows more than one

way to do something, it is all too easy for some implementations to support only some

of them (perhaps a

identally).

3 How to Conne
t to and Authenti
ate Oneself to

the CVS server

Conne
tion and authenti
ation o

urs before the CVS proto
ol itself is started. There

are several ways to
onne
t.

server If the
lient has a way to exe
ute
ommands on the server, and provide input

to the
ommands and output from them, then it
an
onne
t that way. This

ould be the usual rsh (port 514) proto
ol, Kerberos rsh, SSH, or any similar

me
hanism. The
lient may allow the user to spe
ify the name of the server

program; the default is
vs. It is invoked with one argument, server. On
e it

invokes the server, the
lient pro
eeds to start the
vs proto
ol.

kserver The kerberized server listens on a port (in the
urrent implementation, by

having inetd
all "
vs kserver") whi
h defaults to 1999. The
lient
onne
ts,

sends the usual kerberos authenti
ation information, and then starts the
vs

proto
ol. Note: port 1999 is oÆ
ially registered for another use, and in any

event one
annot register more than one port for CVS, so GSS-API (see below)

is re
ommended instead of kserver as a way to support kerberos.

pserver The name pserver is somewhat
onfusing. It refers to both a generi
 framework

whi
h allows the CVS proto
ol to support several authenti
ation me
hanisms,

and a name for a spe
i�
 me
hanism whi
h transfers a username and a
lear-

text password. Servers need not support all me
hanisms, and in fa
t servers

will typi
ally want to support only those me
hanisms whi
h meet the relevant

se
urity needs.

The pserver server listens on a port (in the
urrent implementation, by having

inetd
all "
vs pserver") whi
h defaults to 2401 (this port is oÆ
ially registered).

The
lient
onne
ts, and sends the following:

� the string `BEGIN AUTH REQUEST', a linefeed,

� the
vs root, a linefeed,

� the username, a linefeed,

� the password trivially en
oded (see Chapter 4 [Password s
rambling℄,

page 6), a linefeed,

� the string `END AUTH REQUEST', and a linefeed.

The
lient must send the identi
al string for
vs root both here and later in

the Root request of the
vs proto
ol itself. Servers are en
ouraged to enfor
e

this restri
tion. The possible server responses (ea
h of whi
h is followed by

a linefeed) are the following. Note that although there is a small similarity

between this authenti
ation proto
ol and the
vs proto
ol, they are separate.

I LOVE YOU

The authenti
ation is su

essful. The
lient pro
eeds with the
vs

proto
ol itself.

I HATE YOU

The authenti
ation fails. After sending this response, the server

may
lose the
onne
tion. It is up to the server to de
ide whether

to give this response, whi
h is generi
, or a more spe
i�
 response

using `E' and/or `error'.

E text Provide a message for the user. After this reponse, the authenti
a-

tion proto
ol
ontinues with another response. Typi
ally the server

will provide a series of `E' responses followed by `error'. Compat-

ibility note:
vs 1.9.10 and older
lients will print unre
ognized

auth response and text, and then exit, upon re
eiving this re-

sponse.

error
ode text

The authenti
ation fails. After sending this response, the server

may
lose the
onne
tion. The
ode is a
ode des
ribing why it

failed, intended for
omputer
onsumption. The only
ode
urrently

de�ned is `0' whi
h is nonspe
i�
, but
lients must silently treat any

unre
ognized
odes as nonspe
i�
. The text should be supplied to

the user. Compatibility note:
vs 1.9.10 and older
lients will

print unre
ognized auth response and text, and then exit, upon

re
eiving this response. Note that text for this response, or the

text in an E response, is not designed for ma
hine parsing. More

vigorous use of
ode, or future extensions, will be needed to prove

a
leaner ma
hine-parseable indi
ation of what the error was.

If the
lient wishes to merely authenti
ate without starting the
vs proto
ol,

the pro
edure is the same, ex
ept BEGIN AUTH REQUEST is repla
ed with

BEGIN VERIFICATION REQUEST, END AUTH REQUEST is repla
ed with

END VERIFICATION REQUEST, and upon re
eipt of I LOVE YOU the
on-

ne
tion is
losed rather than
ontinuing.

Another me
hanism is GSSAPI authenti
ation. GSSAPI is a generi
 interfa
e

to se
urity servi
es su
h as kerberos. GSSAPI is spe
i�ed in RFC2078 (GSSAPI

version 2) and RFC1508 (GSSAPI version 1); we are not aware of di�eren
es

between the two whi
h a�e
t the proto
ol in in
ompatible ways, so we make

no attempt to spe
ify one version or the other. The pro
edure here is to start

with `BEGIN GSSAPI REQUEST'. GSSAPI authenti
ation information is then ex-

hanged between the
lient and the server. Ea
h pa
ket of information
onsists

of a two byte big endian length, followed by that many bytes of data. After

the GSSAPI authenti
ation is
omplete, the server
ontinues with the responses

des
ribed above (`I LOVE YOU', et
.).

future possibilities

There are a nearly unlimited number of ways to
onne
t and authenti
ate. One

might want to allow a

ess based on IP address (similar to the usual rsh proto
ol

but with di�erent/no restri
tions on ports < 1024), to adopt me
hanisms su
h

as Pluggable Authenti
ation Modules (PAM), to allow users to run their own

servers under their own usernames without root a

ess, or any number of other

possibilities. The way to add future me
hanisms, for the most part, should be

to
ontinue to use port 2401, but to use di�erent strings in pla
e of `BEGIN AUTH

REQUEST'.

4 Password s
rambling algorithm

The pserver authenti
ation proto
ol, as des
ribed in Chapter 3 [Conne
tion and Au-

thenti
ation℄, page 4, trivially en
odes the passwords. This is only to prevent inadvertent

ompromise; it provides no prote
tion against even a relatively unsophisti
ated atta
ker.

For
omparison, HTTP Basi
 Authenti
ation (as des
ribed in RFC2068) uses BASE64 for

a similar purpose. CVS uses its own algorithm, des
ribed here.

The s
rambled password starts with `A', whi
h serves to identify the s
rambling algorithm

in use. After that follows a single o
tet for ea
h
hara
ter in the password, a

ording to a

�xed en
oding. The values are shown here, with the en
oded values in de
imal. Control

hara
ters, spa
e, and
hara
ters outside the invariant ISO 646
hara
ter set are not shown;

su
h
hara
ters are not re
ommended for use in passwords. There is a long dis
ussion of

hara
ter set issues in Chapter 6 [Proto
ol Notes℄, page 32.

0 111 P 125 p 58

! 120 1 52 A 57 Q 55 a 121 q 113

" 53 2 75 B 83 R 54 b 117 r 32

3 119 C 43 S 66
 104 s 90

4 49 D 46 T 124 d 101 t 44

% 109 5 34 E 102 U 126 e 100 u 98

& 72 6 82 F 40 V 59 f 69 v 60

' 108 7 81 G 89 W 47 g 73 w 51

(70 8 95 H 38 X 92 h 99 x 33

) 64 9 65 I 103 Y 71 i 63 y 97

* 76 : 112 J 45 Z 115 j 94 z 62

+ 67 ; 86 K 50 k 93

, 116 < 118 L 42 l 39

- 74 = 110 M 123 m 37

. 68 > 122 N 91 n 61

/ 87 ? 105 O 35 _ 56 o 48

5 The CVS
lient/server proto
ol

In the following, `\n' refers to a linefeed and `\t' refers to a horizontal tab; requests are

what the
lient sends and responses are what the server sends. In general, the
onne
tion is

governed by the
lient|the server does not send responses without �rst re
eiving requests

to do so; see Se
tion 5.9 [Response intro℄, page 22 for more details of this
onvention.

It is typi
al, early in the
onne
tion, for the
lient to transmit a Valid-responses

request,
ontaining all the responses it supports, followed by a valid-requests request,

whi
h eli
its from the server a Valid-requests response
ontaining all the requests it

understands. In this way, the
lient and server ea
h �nd out what the other supports before

ex
hanging large amounts of data (su
h as �le
ontents).

5.1 Entries Lines

Entries lines are transmitted as:

/ name / version /
on
i
t / options / tag or date

tag or date is either `T' tag or `D' date or empty. If it is followed by a slash, anything

after the slash shall be silently ignored.

version
an be empty, or start with `0' or `-', for no user �le, new user �le, or user �le

to be removed, respe
tively.

on
i
t, if it starts with `+', indi
ates that the �le had
on
i
ts in it. The rest of
on
i
t

is `=' if the timestamp mat
hes the �le, or anything else if it doesn't. If
on
i
t does not

start with a `+', it is silently ignored.

options signi�es the keyword expansion options (for example `-ko'). In an Entry request,

this indi
ates the options that were spe
i�ed with the �le from the previous �le updating

response (see Se
tion 5.9 [Response intro℄, page 22, for a list of �le updating responses); if

the
lient is spe
ifying the `-k' or `-A' option to update, then it is the server whi
h �gures

out what overrides what.

5.2 File Modes

A mode is any number of repetitions of

mode-type = data

separated by `,'.

mode-type is an identi�er
omposed of alphanumeri

hara
ters. Currently spe
i�ed: `u'

for user, `g' for group, `o' for other (see below for dis
ussion of whether these have their

POSIX meaning or are more loose). Unre
ognized values of mode-type are silently ignored.

data
onsists of any data not
ontaining `,', `\0' or `\n'. For `u', `g', and `o' mode types,

data
onsists of alphanumeri

hara
ters, where `r' means read, `w' means write, `x' means

exe
ute, and unre
ognized letters are silently ignored.

The two most obvious ways in whi
h the mode matters are: (1) is it writeable? This

is used by the developer
ommuni
ation features, and is implemented even on OS/2 (and

ould be implemented on DOS), whose notion of mode is limited to a readonly bit. (2) is it

exe
utable? Unix CVS users need CVS to store this setting (for shell s
ripts and the like).

The
urrent CVS implementation on unix does a little bit more than just maintain these

two settings, but it doesn't really have a ni
e general fa
ility to store or version
ontrol the

mode, even on unix, mu
h less a
ross operating systems with diverse prote
tion features. So

all the ins and outs of what the mode means a
ross operating systems haven't really been

worked out (e.g. should the VMS port use ACLs to get POSIX semanti
s for groups?).

5.3 Conventions regarding transmission of �le names

In most
ontexts, `/' is used to separate dire
tory and �le names in �lenames, and any

use of other
onventions (for example, that the user might type on the
ommand line) is

onverted to that form. The only ex
eptions might be a few
ases in whi
h the server

provides a magi

ookie whi
h the
lient then repeats verbatim, but as the server has not

yet been ported beyond unix, the two rules provide the same answer (and what to do if

future server ports are operating on a repository like e:/foo or CVS ROOT:[FOO.BAR℄ has

not been
arefully thought out).

Chara
ters outside the invariant ISO 646
hara
ter set should be avoided in �lenames.

This restri
tion may need to be relaxed to allow for
hara
ters su
h as `[' and `℄' (see above

about non-unix servers); this has not been
arefully
onsidered (and
urrently implementa-

tions probably use whatever
hara
ter sets that the operating systems they are running on

allow, and/or that users spe
ify). Of
ourse the most portable pra
ti
e is to restri
t oneself

further, to the POSIX portable �lename
hara
ter set as spe
i�ed in POSIX.1.

5.4 File transmissions

File
ontents (noted below as �le transmission)
an be sent in one of two forms. The

simpler form is a number of bytes, followed by a linefeed, followed by the spe
i�ed number

of bytes of �le
ontents. These are the entire
ontents of the spe
i�ed �le. Se
ond, if both

lient and server support `gzip-file-
ontents', a `z' may pre
ede the length, and the

`�le
ontents' sent are a
tually
ompressed with `gzip' (RFC1952/1951)
ompression. The

length spe
i�ed is that of the
ompressed version of the �le.

In neither
ase are the �le
ontent followed by any additional data. The transmission of

a �le will end with a linefeed i� that �le (or its
ompressed form) ends with a linefeed.

The en
oding of �le
ontents depends on the value for the `-k' option. If the �le is binary

(as spe
i�ed by the `-kb' option in the appropriate pla
e), then it is just a
ertain number

of o
tets, and the proto
ol
ontributes nothing towards determining the en
oding (using

the �le name is one widespread, if not universally popular, me
hanism). If the �le is text

(not binary), then the �le is sent as a series of lines, separated by linefeeds. If the keyword

expansion is set to something other than `-ko', then it is expe
ted that the �le
onform to

the RCS expe
tations regarding keyword expansion|in parti
ular, that it is in a
hara
ter

set su
h as ASCII in whi
h 0x24 is a dollar sign (`$').

5.5 Strings

In various
ontexts, for example the Argument request and the M response, one transmits

what is essentially an arbitrary string. Often this will have been supplied by the user (for

example, the `-m' option to the
i request). The proto
ol has no me
hanism to spe
ify the

hara
ter set of su
h strings; it would be fairly safe to sti
k to the invariant ISO 646
hara
ter

set but the existing pra
ti
e is probably to just transmit whatever the user spe
i�es, and

hope that everyone involved agrees whi
h
hara
ter set is in use, or sti
ks to a
ommon

subset.

5.6 Dates

The proto
ol
ontains times and dates in various pla
es.

For the `-D' option to the annotate,
o, diff, export, history, rdiff, rtag, tag, and

update requests, the server should support two formats:

26 May 1997 13:01:40 -0000 ; RFC 822 as modi�ed by RFC 1123

5/26/1997 13:01:40 GMT ; traditional

The former format is preferred; the latter however is sent by the CVS
ommand line

lient (versions 1.5 through at least 1.9).

For the `-d' option to the log request, servers should at least support RFC 822/1123

format. Clients are en
ouraged to use this format too (the
ommand line CVS
lient, version

1.10 and older, just passed along the date format spe
i�ed by the user, however).

The Mod-time response and Che
kin-time request use RFC 822/1123 format (see the

des
riptions of that response and request for details).

For Notify, see the des
ription of that request.

5.7 Request intro

By
onvention, requests whi
h begin with a
apital letter do not eli
it a response from

the server, while all others do { save one. The ex
eption is `gzip-file-
ontents'. Unre
-

ognized requests will always eli
it a response from the server, even if that request begins

with a
apital letter.

The term
ommand means a request whi
h expe
ts a response (ex
ept valid-requests).

The general model is that the
lient transmits a great number of requests, but nothing

happens until the very end when the
lient transmits a
ommand. Although the intention

is that transmitting several
ommands in one
onne
tion should be legal, existing servers

probably have some bugs with some
ombinations of more than one
ommand, and so
lients

may �nd it ne
essary to make several
onne
tions in some
ases. This should be thought of

as a workaround rather than a desired attribute of the proto
ol.

5.8 Requests

Here are the requests:

Root pathname \n

Response expe
ted: no. Tell the server whi
h CVSROOT to use. Note that path-

name is a lo
al dire
tory and not a fully quali�ed CVSROOT variable. pathname

must already exist; if
reating a new root, use the init request, not Root. path-

name does not in
lude the hostname of the server, how to a

ess the server,

et
.; by the time the CVS proto
ol is in use,
onne
tion, authenti
ation, et
.,

are already taken
are of.

The Root request must be sent only on
e, and it must be sent before any

requests other than Valid-responses, valid-requests, UseUn
hanged, Set,

Global_option, init, noop, or version.

Valid-responses request-list \n

Response expe
ted: no. Tell the server what responses the
lient will a

ept.

request-list is a spa
e separated list of tokens. The Root request need not have

been previously sent.

valid-requests \n

Response expe
ted: yes. Ask the server to send ba
k a Valid-requests re-

sponse. The Root request need not have been previously sent.

Dire
tory lo
al-dire
tory \n

Additional data: repository \n. Response expe
ted: no. Tell the server what

dire
tory to use. The repository should be a dire
tory name from a previous

server response. Note that this both gives a default for Entry and Modified

and also for
i and the other
ommands; normal usage is to send Dire
tory

for ea
h dire
tory in whi
h there will be an Entry or Modified, and then a �nal

Dire
tory for the original dire
tory, then the
ommand. The lo
al-dire
tory

is relative to the top level at whi
h the
ommand is o

urring (i.e. the last

Dire
tory whi
h is sent before the
ommand); to indi
ate that top level, `.'

should be sent for lo
al-dire
tory.

Here is an example of where a
lient gets repository and lo
al-dire
tory. Sup-

pose that there is a module de�ned by

moddir 1dir

That is, one
an
he
k out moddir and it will take 1dir in the repository and

he
k it out to moddir in the working dire
tory. Then an initial
he
k out
ould

pro
eed like this:

C: Root /home/kingdon/zwork/
vsroot

. . .

C: Argument moddir

C: Dire
tory .

C: /home/kingdon/zwork/
vsroot

C:
o

S: Clear-sti
ky moddir/

S: /home/kingdon/zwork/
vsroot/1dir/

. . .

S: ok

In this example the response shown is Clear-sti
ky, but it
ould be another

response instead. Note that it returns two pathnames. The �rst one, `moddir/',

indi
ates the working dire
tory to
he
k out into. The se
ond one, ending in

`1dir/', indi
ates the dire
tory to pass ba
k to the server in a subsequent

Dire
tory request. For example, a subsequent update request might look like:

C: Dire
tory moddir

C: /home/kingdon/zwork/
vsroot/1dir

. . .

C: update

For a given lo
al-dire
tory, the repository will be the same for ea
h of the

responses, so one
an use the repository from whi
hever response is most
on-

venient. Typi
ally a
lient will store the repository along with the sour
es for

ea
h lo
al-dire
tory, use that same setting whenever operating on that lo
al-

dire
tory, and not update the setting as long as the lo
al-dire
tory exists.

A
lient is free to rename a lo
al-dire
tory at any time (for example, in response

to an expli
it user request). While it is true that the server supplies a lo
al-

dire
tory to the
lient, as noted above, this is only the default pla
e to put the

dire
tory. Of
ourse, the various Dire
tory requests for a single
ommand (for

example, update or
i request) should name a parti
ular dire
tory with the

same lo
al-dire
tory.

Ea
h Dire
tory request spe
i�es a brand-new lo
al-dire
tory and repository ;

that is, lo
al-dire
tory and repository are never relative to paths spe
i�ed in

any previous Dire
tory request.

Here's a more
omplex example, in whi
h we request an update of a working

dire
tory whi
h has been
he
ked out from multiple pla
es in the repository.

C: Argument dir1

C: Dire
tory dir1

C: /home/foo/repos/mod1

. . .

C: Argument dir2

C: Dire
tory dir2

C: /home/foo/repos/mod2

. . .

C: Argument dir3

C: Dire
tory dir3/subdir3

C: /home/foo/repos/mod3

. . .

C: update

While dire
tories dir1 and dir2 will be handled in similar fashion to the other

examples given above, dir3 is slightly di�erent from the server's standpoint.

Noti
e that module mod3 is a
tually
he
ked out into dir3/subdir3, meaning

that dire
tory dir3 is either empty or does not
ontain data
he
ked out from

this repository.

The above example will work
orre
tly in
vs 1.10.1 and later. The server will

des
end the tree starting from all dire
tories mentioned in Argument requests

and update those dire
tories spe
i�
ally mentioned in Dire
tory requests.

Previous versions of
vs (1.10 and earlier) do not behave the same way. While

the des
ent of the tree begins at all dire
tories mentioned in Argument requests,

des
ent into subdire
tories only o

urs if a dire
tory has been mentioned in a

Dire
tory request. Therefore, the above example would su

eed in updating

dir1 and dir2, but would skip dir3 be
ause that dire
tory was not spe
i�
ally

mentioned in a Dire
tory request. A fun
tional version of the above that

would run on a 1.10 or earlier server is as follows:

C: Argument dir1

C: Dire
tory dir1

C: /home/foo/repos/mod1

. . .

C: Argument dir2

C: Dire
tory dir2

C: /home/foo/repos/mod2

. . .

C: Argument dir3

C: Dire
tory dir3

C: /home/foo/repos/.

. . .

C: Dire
tory dir3/subdir3

C: /home/foo/repos/mod3

. . .

C: update

Note the extra Dire
tory dir3 request. It might be better to use Emptydir as

the repository for the dir3 dire
tory, but the above will
ertainly work.

One more pe
uliarity of the 1.10 and earlier proto
ol is the ordering of

Dire
tory arguments. In order for a subdire
tory to be registered
orre
tly

for des
ent by the re
ursion pro
essor, its parent must be sent �rst. For

example, the following would not work to update dir3/subdir3:

. . .

C: Argument dir3

C: Dire
tory dir3/subdir3

C: /home/foo/repos/mod3

. . .

C: Dire
tory dir3

C: /home/foo/repos/.

. . .

C: update

The implementation of the server in 1.10 and earlier writes the administration

�les for a given dire
tory at the time of the Dire
tory request. It also tries

to register the dire
tory with its parent to mark it for re
ursion. In the above

example, at the time dir3/subdir3 is
reated, the physi
al dire
tory for dir3

will be
reated on disk, but the administration �les will not have been
reated.

Therefore, when the server tries to register dir3/subdir3 for re
ursion, the

operation will silently fail be
ause the administration �les do not yet exist for

dir3.

Max-dotdot level \n

Response expe
ted: no. Tell the server that level levels of dire
tories above the

dire
tory whi
h Dire
tory requests are relative to will be needed. For example,

if the
lient is planning to use a Dire
tory request for `../../foo', it must

send a Max-dotdot request with a level of at least 2. Max-dotdot must be sent

before the �rst Dire
tory request.

Stati
-dire
tory \n

Response expe
ted: no. Tell the server that the dire
tory most re
ently spe
i�ed

with Dire
tory should not have additional �les
he
ked out unless expli
itly

requested. The
lient sends this if the Entries.Stati

ag is set, whi
h is

ontrolled by the Set-stati
-dire
tory and Clear-stati
-dire
tory re-

sponses.

Sti
ky tagspe
 \n

Response expe
ted: no. Tell the server that the dire
tory most re
ently spe
i�ed

with Dire
tory has a sti
ky tag or date tagspe
. The �rst
hara
ter of tagspe

is `T' for a tag, `D' for a date, or some other
hara
ter supplied by a Set-

sti
ky response from a previous request to the server. The remainder of tagspe

ontains the a
tual tag or date, again as supplied by Set-sti
ky.

The server should remember Stati
-dire
tory and Sti
ky requests for a par-

ti
ular dire
tory; the
lient need not resend them ea
h time it sends a Dire
tory

request for a given dire
tory. However, the server is not obliged to remember

them beyond the
ontext of a single
ommand.

Che
kin-prog program \n

Response expe
ted: no. Tell the server that the dire
tory most re
ently spe
i�ed

with Dire
tory has a
he
kin program program. Su
h a program would have

been previously set with the Set-
he
kin-prog response.

Update-prog program \n

Response expe
ted: no. Tell the server that the dire
tory most re
ently spe
i�ed

with Dire
tory has an update program program. Su
h a program would have

been previously set with the Set-update-prog response.

Entry entry-line \n

Response expe
ted: no. Tell the server what version of a �le is on the lo
al

ma
hine. The name in entry-line is a name relative to the dire
tory most

re
ently spe
i�ed with Dire
tory. If the user is operating on only some �les

in a dire
tory, Entry requests for only those �les need be in
luded. If an Entry

request is sent without Modified, Is-modified, or Un
hanged, it means the

�le is lost (does not exist in the working dire
tory). If both Entry and one of

Modified, Is-modified, or Un
hanged are sent for the same �le, Entrymust be

sent �rst. For a given �le, one
an send Modified, Is-modified, or Un
hanged,

but not more than one of these three.

Kopt option \n

This indi
ates to the server whi
h keyword expansion options to use for the �le

spe
i�ed by the next Modified or Is-modified request (for example `-kb' for

a binary �le). This is similar to Entry, but is used for a �le for whi
h there is

no entries line. Typi
ally this will be a �le being added via an add or import

request. The
lient may not send both Kopt and Entry for the same �le.

Che
kin-time time \n

For the �le spe
i�ed by the next Modified request, use time as the time of

the
he
kin. The time is in the format spe
i�ed by RFC822 as modi�ed by

RFC1123. The
lient may spe
ify any timezone it
hooses; servers will want to

onvert that to their own timezone as appropriate. An example of this format

is:

26 May 1997 13:01:40 -0400

There is no requirement that the
lient and server
lo
ks be syn
hronized. The

lient just sends its re
ommendation for a timestamp (based on �le timestamps

or whatever), and the server should just believe it (this means that the time

might be in the future, for example).

Note that this is not a general-purpose way to tell the server about the times-

tamp of a �le; that would be a separate request (if there are servers whi
h
an

maintain timestamp and time of
he
kin separately).

This request should a�e
t the import request, and may optionally a�e
t the
i

request or other relevant requests if any.

Modified �lename \n

Response expe
ted: no. Additional data: mode, \n, �le transmission. Send

the server a
opy of one lo
ally modi�ed �le. �lename is a �le within the most

re
ent dire
tory sent with Dire
tory; it must not
ontain `/'. If the user is

operating on only some �les in a dire
tory, only those �les need to be in
luded.

This
an also be sent without Entry, if there is no entry for the �le.

Is-modified �lename \n

Response expe
ted: no. Additional data: none. Like Modified, but used if the

server only needs to know whether the �le is modi�ed, not the
ontents.

The
ommands whi
h
an take Is-modified instead of Modified with no

known
hange in behavior are: admin, diff (if and only if two `-r' or `-D'

options are spe
i�ed), wat
h-on, wat
h-off, wat
h-add, wat
h-remove,

wat
hers, editors, log, and annotate.

For the status
ommand, one
an send Is-modified but if the
lient is using

imperfe
t me
hanisms su
h as timestamps to determine whether to
onsider a

�le modi�ed, then the behavior will be di�erent. That is, if one sends Modified,

then the server will a
tually
ompare the
ontents of the �le sent and the one

it derives from to determine whether the �le is genuinely modi�ed. But if one

sends Is-modified, then the server takes the
lient's word for it. A similar

situation exists for tag, if the `-
' option is spe
i�ed.

Commands for whi
h Modified is ne
essary are
o,
i, update, and import.

Commands whi
h do not need to inform the server about a working dire
tory,

and thus should not be sending either Modified or Is-modified: rdiff, rtag,

history, init, and release.

Commands for whi
h further investigation is warranted are: remove, add, and

export. Pending su
h investigation, the more
onservative
ourse of a
tion is

to sti
k to Modified.

Un
hanged �lename \n

Response expe
ted: no. Tell the server that �lename has not been modi�ed in

the
he
ked out dire
tory. The �lename is a �le within the most re
ent dire
tory

sent with Dire
tory; it must not
ontain `/'.

UseUn
hanged \n

Response expe
ted: no. To spe
ify the version of the proto
ol des
ribed in this

do
ument, servers must support this request (although it need not do anything)

and
lients must issue it. The Root request need not have been previously sent.

Notify �lename \n

Response expe
ted: no. Tell the server that an edit or unedit
ommand has

taken pla
e. The server needs to send a Notified response, but su
h response is

deferred until the next time that the server is sending responses. The �lename

is a �le within the most re
ent dire
tory sent with Dire
tory; it must not

ontain `/'. Additional data:

noti�
ation-type \t time \t
lienthost \t

working-dir \t wat
hes \n

where noti�
ation-type is `E' for edit, `U' for unedit, unde�ned behavior if `C',

and all other letters should be silently ignored for future expansion. time is

the time at whi
h the edit or unedit took pla
e, in a user-readable format of

the
lient's
hoi
e (the server should treat the time as an opaque string rather

than interpreting it).
lienthost is the name of the host on whi
h the edit or

unedit took pla
e, and working-dir is the pathname of the working dire
tory

where the edit or unedit took pla
e. wat
hes are the temporary wat
hes, zero

or more of the following
hara
ters in the following order: `E' for edit, `U' for

unedit, `C' for
ommit, and all other letters should be silently ignored for future

expansion. If noti�
ation-type is `E' the temporary wat
hes are set; if it is `U'

they are
leared. If wat
hes is followed by \t then the \t and the rest of the

line should be ignored, for future expansion.

The time,
lienthost, and working-dir �elds may not
ontain the
hara
ters `+',

`,', `>', `;', or `='.

Note that a
lient may be
apable of performing an edit or unedit operation

without
onne
ting to the server at that time, and instead
onne
ting to the

server when it is
onvenient (for example, when a laptop is on the net again) to

send the Notify requests. Even if a
lient is
apable of deferring noti�
ations,

it should attempt to send them immediately (one
an send Notify requests

together with a noop request, for example), unless perhaps if it
an know that

a
onne
tion would be impossible.

Questionable �lename \n

Response expe
ted: no. Additional data: no. Tell the server to
he
k whether

�lename should be ignored, and if not, next time the server sends responses,

send (in a M response) `?' followed by the dire
tory and �lename. �lename must

not
ontain `/'; it needs to be a �le in the dire
tory named by the most re
ent

Dire
tory request.

Case \n Response expe
ted: no. Tell the server that �lenames should be mat
hed in

a
ase-insensitive fashion. Note that this is not the primary me
hanism for

a
hieving
ase-insensitivity; for the most part the
lient keeps tra
k of the
ase

whi
h the server wants to use and takes
are to always use that
ase regardless of

what the user spe
i�es. For example the �lenames given in Entry and Modified

requests for the same �le must mat
h in
ase regardless of whether the Case

request is sent. The latter me
hanism is more general (it
ould also be used for

8.3 �lenames, VMS �lenames with more than one `.', and any other situation in

whi
h there is a predi
table mapping between �lenames in the working dire
tory

and �lenames in the proto
ol), but there are some situations it
annot handle

(ignore patterns, or situations where the user spe
i�es a �lename and the
lient

does not know about that �le).

Argument text \n

Response expe
ted: no. Save argument for use in a subsequent
ommand.

Arguments a

umulate until an argument-using
ommand is given, at whi
h

point they are forgotten.

Argumentx text \n

Response expe
ted: no. Append \n followed by text to the
urrent argument

being saved.

Global_option option \n

Response expe
ted: no. Transmit one of the global options `-q', `-Q', `-l',

`-t', `-r', or `-n'. option must be one of those strings, no variations (su
h as

ombining of options) are allowed. For gra
eful handling of valid-requests,

it is probably better to make new global options separate requests, rather than

trying to add them to this request. The Root request need not have been

previously sent.

Gzip-stream level \n

Response expe
ted: no. Use zlib (RFC 1950/1951)
ompression to
ompress all

further
ommuni
ation between the
lient and the server. After this request is

sent, all further
ommuni
ation must be
ompressed. All further data re
eived

from the server will also be
ompressed. The level argument suggests to the

server the level of
ompression that it should apply; it should be an integer

between 1 and 9, in
lusive, where a higher number indi
ates more
ompression.

Kerberos-en
rypt \n

Response expe
ted: no. Use Kerberos en
ryption to en
rypt all further
ommu-

ni
ation between the
lient and the server. This will only work if the
onne
tion

was made over Kerberos in the �rst pla
e. If both the Gzip-stream and the

Kerberos-en
rypt requests are used, the Kerberos-en
rypt request should be

used �rst. This will make the
lient and server en
rypt the
ompressed data,

as opposed to
ompressing the en
rypted data. En
rypted data is generally

in
ompressible.

Note that this request does not fully prevent an atta
ker from hija
king the
on-

ne
tion, in the sense that it does not prevent hija
king the
onne
tion between

the initial authenti
ation and the Kerberos-en
rypt request.

Gssapi-en
rypt \n

Response expe
ted: no. Use GSSAPI en
ryption to en
rypt all further
ommu-

ni
ation between the
lient and the server. This will only work if the
onne
tion

was made over GSSAPI in the �rst pla
e. See Kerberos-en
rypt, above, for

the relation between Gssapi-en
rypt and Gzip-stream.

Note that this request does not fully prevent an atta
ker from hija
king the
on-

ne
tion, in the sense that it does not prevent hija
king the
onne
tion between

the initial authenti
ation and the Gssapi-en
rypt request.

Gssapi-authenti
ate \n

Response expe
ted: no. Use GSSAPI authenti
ation to authenti
ate all fur-

ther
ommuni
ation between the
lient and the server. This will only work if

the
onne
tion was made over GSSAPI in the �rst pla
e. En
rypted data is

automati
ally authenti
ated, so using both Gssapi-authenti
ate and Gssapi-

en
rypt has no e�e
t beyond that of Gssapi-en
rypt. Unlike en
rypted data,

it is reasonable to
ompress authenti
ated data.

Note that this request does not fully prevent an atta
ker from hija
king the
on-

ne
tion, in the sense that it does not prevent hija
king the
onne
tion between

the initial authenti
ation and the Gssapi-authenti
ate request.

Set variable=value \n

Response expe
ted: no. Set a user variable variable to value. The Root request

need not have been previously sent.

expand-modules \n

Response expe
ted: yes. Expand the modules whi
h are spe
i�ed in the argu-

ments. Returns the data in Module-expansion responses. Note that the server

an assume that this is
he
kout or export, not rtag or rdi�; the latter do not

a

ess the working dire
tory and thus have no need to expand modules on the

lient side.

Expand may not be the best word for what this request does. It does not

ne
essarily tell you all the �les
ontained in a module, for example. Basi
ally

it is a way of telling you whi
h working dire
tories the server needs to know

about in order to handle a
he
kout of the spe
i�ed modules.

For example, suppose that the server has a module de�ned by

aliasmodule -a 1dir

That is, one
an
he
k out aliasmodule and it will take 1dir in the repository

and
he
k it out to 1dir in the working dire
tory. Now suppose the
lient

already has this module
he
ked out and is planning on using the
o request

to update it. Without using expand-modules, the
lient would have two bad

hoi
es: it
ould either send information about all working dire
tories under

the
urrent dire
tory, whi
h
ould be unne
essarily slow, or it
ould be ignorant

of the fa
t that aliasmodule stands for 1dir, and negle
t to send information

for 1dir, whi
h would lead to in
orre
t operation.

With expand-modules, the
lient would �rst ask for the module to be expanded:

C: Root /home/kingdon/zwork/
vsroot

. . .

C: Argument aliasmodule

C: Dire
tory .

C: /home/kingdon/zwork/
vsroot

C: expand-modules

S: Module-expansion 1dir

S: ok

and then it knows to
he
k the `1dir' dire
tory and send requests su
h as Entry

and Modified for the �les in that dire
tory.

i \n

diff \n

tag \n

status \n

admin \n

history \n

wat
hers \n

editors \n

annotate \n

Response expe
ted: yes. A
tually do a
vs
ommand. This uses any previous

Argument, Dire
tory, Entry, or Modified requests, if they have been sent.

The last Dire
tory sent spe
i�es the working dire
tory at the time of the

operation. No provision is made for any input from the user. This means that

i must use a -m argument if it wants to spe
ify a log message.

log \n Response expe
ted: yes. Show information for past revisions. This uses any

previous Dire
tory, Entry, or Modified requests, if they have been sent. The

last Dire
tory sent spe
i�es the working dire
tory at the time of the operation.

Also uses previous Argument's of whi
h the
anoni
al forms are the following

(
vs 1.10 and older
lients sent what the user spe
i�ed, but
lients are en
our-

aged to use the
anoni
al forms and other forms are depre
ated):

-b, -h, -l, -N, -R, -t

These options go by themselves, one option per Argument request.

-d date1<date2

Sele
t revisions between date1 and date2. Either date may be omit-

ted in whi
h
ase there is no date limit at that end of the range

(
lients may spe
ify dates su
h as 1 Jan 1970 or 1 Jan 2038 for

similar purposes but this is problemati
 as it makes assumptions

about what dates the server supports). Dates are in RFC822/1123

format. The `-d' is one Argument request and the date range is a

se
ond one.

-d date1<=date2

Likewise but
ompare dates for equality.

-d singledate

Sele
t the single, latest revision dated singledate or earlier.

To in
lude several date ranges and/or singledates, repeat the `-d'

option as many times as ne
essary.

-rrev1:rev2

-rbran
h

-rbran
h.

-r Spe
ify revisions (note that rev1 or rev2
an be omitted, or
an

refer to bran
hes). Send both the `-r' and the revision information

in a single Argument request. To in
lude several revision sele
tions,

repeat the `-r' option.

-s state

-w

-wlogin Sele
t on states or users. To in
lude more than one state or user,

repeat the option. Send the `-s' option as a separate argument

from the state being sele
ted. Send the `-w' option as part of the

same argument as the user being sele
ted.

o \n Response expe
ted: yes. Get �les from the repository. This uses any previous

Argument, Dire
tory, Entry, or Modified requests, if they have been sent.

Arguments to this
ommand are module names; the
lient
annot know what

dire
tories they
orrespond to ex
ept by (1) just sending the
o request, and

then seeing what dire
tory names the server sends ba
k in its responses, and

(2) the expand-modules request.

export \n Response expe
ted: yes. Get �les from the repository. This uses any previous

Argument, Dire
tory, Entry, or Modified requests, if they have been sent.

Arguments to this
ommand are module names, as des
ribed for the
o request.

The intention behind this
ommand is that a
lient
an get sour
es from a server

without storing CVS information about those sour
es. That is, a
lient probably

should not
ount on being able to take the entries line returned in the Created

response from an export request and send it in a future Entry request. Note

that the entries line in the Created response must indi
ate whether the �le is

binary or text, so the
lient
an
reate it
orre
tly.

rdiff \n

rtag \n Response expe
ted: yes. A
tually do a
vs
ommand. This uses any previ-

ous Argument requests, if they have been sent. The
lient should not send

Dire
tory, Entry, or Modified requests for this
ommand; they are not used.

Arguments to these
ommands are module names, as des
ribed for
o.

init root-name \n

Response expe
ted: yes. If it doesn't already exist,
reate a
vs repository

root-name. Note that root-name is a lo
al dire
tory and not a fully quali�ed

CVSROOT variable. The Root request need not have been previously sent.

update \n Response expe
ted: yes. A
tually do a
vs update
ommand. This uses any

previous Argument, Dire
tory, Entry, or Modified requests, if they have been

sent. The last Dire
tory sent spe
i�es the working dire
tory at the time of the

operation. The -I option is not used{�les whi
h the
lient
an de
ide whether

to ignore are not mentioned and the
lient sends the Questionable request for

others.

import \n Response expe
ted: yes. A
tually do a
vs import
ommand. This uses any

previous Argument, Dire
tory, Entry, or Modified requests, if they have been

sent. The last Dire
tory sent spe
i�es the working dire
tory at the time of

the operation - unlike most
ommands, the repository �eld of ea
h Dire
tory

request is ignored (it merely must point somewhere within the root). The �les to

be imported are sent in Modified requests (�les whi
h the
lient knows should

be ignored are not sent; the server must still pro
ess the CVSROOT/
vsignore

�le unless -I ! is sent). A log message must have been spe
i�ed with a -m

argument.

add \n Response expe
ted: yes. Add a �le or dire
tory. This uses any previous

Argument, Dire
tory, Entry, or Modified requests, if they have been sent.

The last Dire
tory sent spe
i�es the working dire
tory at the time of the op-

eration.

To add a dire
tory, send the dire
tory to be added using Dire
tory and

Argument requests. For example:

C: Root /u/
vsroot

. . .

C: Argument nsdir

C: Dire
tory nsdir

C: /u/
vsroot/1dir/nsdir

C: Dire
tory .

C: /u/
vsroot/1dir

C: add

S: M Dire
tory /u/
vsroot/1dir/nsdir added to the repository

S: ok

You will noti
e that the server does not signal to the
lient in any parti
ular way

that the dire
tory has been su

essfully added. The
lient is supposed to just

assume that the dire
tory has been added and update its re
ords a

ordingly.

Note also that adding a dire
tory is immediate; it does not wait until a
i

request as �les do.

To add a �le, send the �le to be added using a Modified request. For example:

C: Argument nfile

C: Dire
tory .

C: /u/
vsroot/1dir

C: Modified nfile

C: u=rw,g=r,o=r

C: 6

C: hello

C: add

S: E
vs server: s
heduling file `nfile' for addition

S: Mode u=rw,g=r,o=r

S: Che
ked-in ./

S: /u/
vsroot/1dir/nfile

S: /nfile/0///

S: E
vs server: use '
vs
ommit' to add this file permanently

S: ok

Note that the �le has not been added to the repository; the only e�e
t of a

su

essful add request, for a �le, is to supply the
lient with a new entries

line
ontaining `0' to indi
ate an added �le. In fa
t, the
lient probably
ould

perform this operation without
onta
ting the server, although using add does

ause the server to perform a few more
he
ks.

The
lient sends a subsequent
i to a
tually add the �le to the repository.

Another quirk of the add request is that with CVS 1.9 and older, a pathname

spe
i�ed in an Argument request
annot
ontain `/'. There is no good reason

for this restri
tion, and in fa
t more re
ent CVS servers don't have it. But

the way to interoperate with the older servers is to ensure that all Dire
tory

requests for add (ex
ept those used to add dire
tories, as des
ribed above), use

`.' for lo
al-dire
tory. Spe
ifying another string for lo
al-dire
tory may not

get an error, but it will get you strange Che
ked-in responses from the buggy

servers.

remove \n Response expe
ted: yes. Remove a �le. This uses any previous Argument,

Dire
tory, Entry, or Modified requests, if they have been sent. The last

Dire
tory sent spe
i�es the working dire
tory at the time of the operation.

Note that this request does not a
tually do anything to the repository; the only

e�e
t of a su

essful remove request is to supply the
lient with a new entries

line
ontaining `-' to indi
ate a removed �le. In fa
t, the
lient probably
ould

perform this operation without
onta
ting the server, although using remove

may
ause the server to perform a few more
he
ks.

The
lient sends a subsequent
i request to a
tually re
ord the removal in the

repository.

wat
h-on \n

wat
h-off \n

wat
h-add \n

wat
h-remove \n

Response expe
ted: yes. A
tually do the
vs wat
h on,
vs wat
h off,
vs

wat
h add, and
vs wat
h remove
ommands, respe
tively. This uses any pre-

vious Argument, Dire
tory, Entry, or Modified requests, if they have been

sent. The last Dire
tory sent spe
i�es the working dire
tory at the time of the

operation.

release \n

Response expe
ted: yes. Note that a
vs release
ommand has taken pla
e

and update the history �le a

ordingly.

noop \n Response expe
ted: yes. This request is a null
ommand in the sense that

it doesn't do anything, but merely (as with any other requests expe
ting a

response) sends ba
k any responses pertaining to pending errors, pending

Notified responses, et
. The Root request need not have been previously

sent.

update-pat
hes \n

Response expe
ted: yes. This request does not a
tually do anything. It is used

as a signal that the server is able to generate pat
hes when given an update

request. The
lient must issue the -u argument to update in order to re
eive

pat
hes.

gzip-file-
ontents level \n

Response expe
ted: no. Note that this request does not follow the response

onvention stated above. Gzip-stream is suggested instead of gzip-file-

ontents as it gives better
ompression; the only reason to implement the

latter is to provide
ompression with
vs 1.8 and earlier. The gzip-file-

ontents request asks the server to
ompress �les it sends to the
lient using

gzip (RFC1952/1951)
ompression, using the spe
i�ed level of
ompression. If

this request is not made, the server must not
ompress �les.

This is only a hint to the server. It may still de
ide (for example, in the
ase

of very small �les, or �les that already appear to be
ompressed) not to do the

ompression. Compression is indi
ated by a `z' pre
eding the �le length.

Availability of this request in the server indi
ates to the
lient that it may

ompress �les sent to the server, regardless of whether the
lient a
tually uses

this request.

wrapper-sendme-r
sOptions \n

Response expe
ted: yes. Request that the server transmit mappings from �le-

names to keyword expansion modes in Wrapper-r
sOption responses.

version \n

Response expe
ted: yes. Request that the server transmit its version message.

The Root request need not have been previously sent.

other-request text \n

Response expe
ted: yes. Any unre
ognized request expe
ts a response, and does

not
ontain any additional data. The response will normally be something like

`error unre
ognized request', but it
ould be a di�erent error if a previous

request whi
h doesn't expe
t a response produ
ed an error.

When the
lient is done, it drops the
onne
tion.

5.9 Introdu
tion to Responses

After a
ommand whi
h expe
ts a response, the server sends however many of the follow-

ing responses are appropriate. The server should not send data at other times (the
urrent

implementation may violate this prin
iple in a few minor pla
es, where the server is printing

an error message and exiting|this should be investigated further).

Any set of responses always ends with `error' or `ok'. This indi
ates that the response

is over.

The responses Che
ked-in, New-entry, Updated, Created, Update-existing, Merged,

and Pat
hed are refered to as �le updating responses, be
ause they
hange the status of a

�le in the working dire
tory in some way. The responses Mode, Mod-time, and Che
ksum are

referred to as �le update modifying responses be
ause they modify the next �le updating

response. In no
ase shall a �le update modifying response apply to a �le updating response

other than the next one. Nor
an the same �le update modifying response o

ur twi
e for

a given �le updating response (if servers diagnose this problem, it may aid in dete
ting the

ase where
lients send an update modifying response without following it by a �le updating

response).

5.10 The "pathname" in responses

Many of the responses
ontain something
alled pathname. The name is somewhat

misleading; it a
tually indi
ates a pair of pathnames. First, a lo
al dire
tory name rel-

ative to the dire
tory in whi
h the
ommand was given (i.e. the last Dire
tory before

the
ommand). Then a linefeed and a repository name. Then a slash and the �lename

(without a `,v' ending). For example, for a �le `i386.mh' whi
h is in the lo
al dire
tory

`gas.
lean/
onfig' and for whi
h the repository is `/rel/
vsfiles/devo/gas/
onfig':

gas.
lean/
onfig/

/rel/
vsfiles/devo/gas/
onfig/i386.mh

If the server wants to tell the
lient to
reate a dire
tory, then it merely uses the dire
tory

in any response, as des
ribed above, and the
lient should
reate the dire
tory if it does not

exist. Note that this should only be done one dire
tory at a time, in order to permit the

lient to
orre
tly store the repository for ea
h dire
tory. Servers
an use requests su
h as

Clear-sti
ky, Clear-stati
-dire
tory, or any other requests, to
reate dire
tories.

Some server implementations may poorly distinguish between a dire
tory whi
h should

not exist and a dire
tory whi
h
ontains no �les; in order to refrain from
reating empty

dire
tories a
lient should both send the `-P' option to update or
o, and should also dete
t

the
ase in whi
h the server asks to
reate a dire
tory but not any �les within it (in that

ase the
lient should remove the dire
tory or refrain from
reating it in the �rst pla
e).

Note that servers
ould
lean this up greatly by only telling the
lient to
reate dire
tories

if the dire
tory in question should exist, but until servers do this,
lients will need to o�er

the `-P' behavior des
ribed above.

5.11 Responses

Here are the responses:

Valid-requests request-list \n

Indi
ate what requests the server will a

ept. request-list is a spa
e sepa-

rated list of tokens. If the server supports sending pat
hes, it will in
lude

`update-pat
hes' in this list. The `update-pat
hes' request does not a
tually

do anything.

Che
ked-in pathname \n

Additional data: New Entries line, \n. This means a �le pathname has been

su

essfully operated on (
he
ked in, added, et
.). name in the Entries line is

the same as the last
omponent of pathname.

New-entry pathname \n

Additional data: New Entries line, \n. Like Che
ked-in, but the �le is not up

to date.

Updated pathname \n

Additional data: New Entries line, \n, mode, \n, �le transmission. A new
opy

of the �le is en
losed. This is used for a new revision of an existing �le, or

for a new �le, or for any other
ase in whi
h the lo
al (
lient-side)
opy of the

�le needs to be updated, and after being updated it will be up to date. If any

dire
tory in pathname does not exist,
reate it. This response is not used if

Created and Update-existing are supported.

Created pathname \n

This is just like Updated and takes the same additional data, but is used only if

no Entry, Modified, or Un
hanged request has been sent for the �le in question.

The distin
tion between Created and Update-existing is so that the
lient

an give an error message in several
ases: (1) there is a �le in the working

dire
tory, but not one for whi
h Entry, Modified, or Un
hanged was sent (for

example, a �le whi
h was ignored, or a �le for whi
h Questionable was sent),

(2) there is a �le in the working dire
tory whose name di�ers from the one

mentioned in Created in ways that the
lient is unable to use to distinguish

�les. For example, the
lient is
ase-insensitive and the names di�er only in

ase.

Update-existing pathname \n

This is just like Updated and takes the same additional data, but is used only if

a Entry, Modified, or Un
hanged request has been sent for the �le in question.

This response, or Merged, indi
ates that the server has determined that it is

OK to overwrite the previous
ontents of the �le spe
i�ed by pathname. Pro-

vided that the
lient has
orre
tly sent Modified or Is-modified requests for

a modi�ed �le, and the �le was not modi�ed while CVS was running, the server

an ensure that a user's modi�
ations are not lost.

Merged pathname \n

This is just like Updated and takes the same additional data, with the one

di�eren
e that after the new
opy of the �le is en
losed, it will still not be up

to date. Used for the results of a merge, with or without
on
i
ts.

It is useful to preserve an
opy of what the �le looked like before the merge.

This is basi
ally handled by the server; before sending Merged it will send a

Copy-file response. For example, if the �le is `aa' and it derives from revision

1.3, the Copy-file response will tell the
lient to
opy `aa' to `.#aa.1.3'. It is

up to the
lient to de
ide how long to keep this �le around; traditionally
lients

have left it around forever, thus letting the user
lean it up as desired. But

another answer, su
h as until the next
ommit, might be preferable.

R
s-diff pathname \n

This is just like Updated and takes the same additional data, with the one

di�eren
e that instead of sending a new
opy of the �le, the server sends an

RCS
hange text. This
hange text is produ
ed by `diff -n' (the GNU di�

`-a' option may also be used). The
lient must apply this
hange text to the

existing �le. This will only be used when the
lient has an exa
t
opy of an

earlier revision of a �le. This response is only used if the update
ommand is

given the `-u' argument.

Pat
hed pathname \n

This is just like R
s-diff and takes the same additional data, ex
ept that it

sends a standard pat
h rather than an RCS
hange text. The pat
h is produ
ed

by `diff -
' for
vs 1.6 and later (see POSIX.2 for a des
ription of this format),

or `diff -u' for previous versions of
vs;
lients are en
ouraged to a

ept either

format. Like R
s-diff, this response is only used if the update
ommand is

given the `-u' argument.

The Pat
hed response is depre
ated in favor of the R
s-diff response. How-

ever, older
lients (CVS 1.9 and earlier) only support Pat
hed.

Mode mode \n

This mode applies to the next �le mentioned in Che
ked-in. Mode is a �le

update modifying response as des
ribed in Se
tion 5.9 [Response intro℄, page 22.

Mod-time time \n

Set the modi�
ation time of the next �le sent to time. Mod-time is a �le update

modifying response as des
ribed in Se
tion 5.9 [Response intro℄, page 22. The

time is in the format spe
i�ed by RFC822 as modi�ed by RFC1123. The server

may spe
ify any timezone it
hooses;
lients will want to
onvert that to their

own timezone as appropriate. An example of this format is:

26 May 1997 13:01:40 -0400

There is no requirement that the
lient and server
lo
ks be syn
hronized. The

server just sends its re
ommendation for a timestamp (based on its own
lo
k,

presumably), and the
lient should just believe it (this means that the time

might be in the future, for example).

If the server does not send Mod-time for a given �le, the
lient should pi
k a

modi�
ation time in the usual way (usually, just let the operating system set

the modi�
ation time to the time that the CVS
ommand is running).

Che
ksum
he
ksum\n

The
he
ksum applies to the next �le sent (that is, Che
ksum is a �le update

modifying response as des
ribed in Se
tion 5.9 [Response intro℄, page 22). In

the
ase of Pat
hed, the
he
ksum applies to the �le after being pat
hed, not to

the pat
h itself. The
lient should
ompute the
he
ksum itself, after re
eiving

the �le or pat
h, and signal an error if the
he
ksums do not mat
h. The

he
ksum is the 128 bit MD5
he
ksum represented as 32 hex digits (MD5 is

des
ribed in RFC1321). This response is optional, and is only used if the
lient

supports it (as judged by the Valid-responses request).

Copy-file pathname \n

Additional data: newname \n. Copy �le pathname to newname in the same

dire
tory where it already is. This does not a�e
t CVS/Entries.

This
an optionally be implemented as a rename instead of a
opy. The only

use for it whi
h
urrently has been identi�ed is prior to a Merged response as

des
ribed under Merged. Clients
an probably assume that is how it is being

used, if they want to worry about things like how long to keep the newname

�le around.

Removed pathname \n

The �le has been removed from the repository (this is the
ase where
vs prints

`file foobar.
 is no longer pertinent').

Remove-entry pathname \n

The �le needs its entry removed from CVS/Entries, but the �le itself is already

gone (this happens in response to a
i request whi
h involves
ommitting the

removal of a �le).

Set-stati
-dire
tory pathname \n

This instru
ts the
lient to set the Entries.Stati

ag, whi
h it should then

send ba
k to the server in a Stati
-dire
tory request whenever the dire
tory

is operated on. pathname ends in a slash; its purpose is to spe
ify a dire
tory,

not a �le within a dire
tory.

Clear-stati
-dire
tory pathname \n

Like Set-stati
-dire
tory, but
lear, not set, the
ag.

Set-sti
ky pathname \n

Additional data: tagspe
 \n. Tell the
lient to set a sti
ky tag or date, whi
h

should be supplied with the Sti
ky request for future operations. pathname

ends in a slash; its purpose is to spe
ify a dire
tory, not a �le within a dire
tory.

The
lient should store tagspe
 and pass it ba
k to the server as-is, to allow for

future expansion. The �rst
hara
ter of tagspe
 is `T' for a tag, `D' for a date,

or something else for future expansion. The remainder of tagspe

ontains the

a
tual tag or date.

Clear-sti
ky pathname \n

Clear any sti
ky tag or date set by Set-sti
ky.

Template pathname \n

Additional data: �le transmission (note:
ompressed �le transmissions are not

supported). pathname ends in a slash; its purpose is to spe
ify a dire
tory,

not a �le within a dire
tory. Tell the
lient to store the �le transmission as the

template log message, and then use that template in the future when prompting

the user for a log message.

Set-
he
kin-prog dir \n

Additional data: prog \n. Tell the
lient to set a
he
kin program, whi
h should

be supplied with the Che
kin-prog request for future operations.

Set-update-prog dir \n

Additional data: prog \n. Tell the
lient to set an update program, whi
h

should be supplied with the Update-prog request for future operations.

Notified pathname \n

Indi
ate to the
lient that the noti�
ation for pathname has been done. There

should be one su
h response for every Notify request; if there are several Notify

requests for a single �le, the requests should be pro
essed in order; the �rst

Notified response pertains to the �rst Notify request, et
.

Module-expansion pathname \n

Return a �le or dire
tory whi
h is in
luded in a parti
ular module. pathname

is relative to
vsroot, unlike most pathnames in responses. pathname should

be used to look and see whether some or all of the module exists on the
lient

side; it is not ne
essarily suitable for passing as an argument to a
o request

(for example, if the modules �le
ontains the `-d' option, it will be the dire
tory

spe
i�ed with `-d', not the name of the module).

Wrapper-r
sOption pattern -k 'option' \n

Transmit to the
lient a �lename pattern whi
h implies a
ertain keyword ex-

pansion mode. The pattern is a wild
ard pattern (for example, `*.exe'. The

option is `b' for binary, and so on. Note that although the syntax happens to

resemble the syntax in
ertain CVS
on�guration �les, it is more
onstrained;

there must be exa
tly one spa
e between pattern and `-k' and exa
tly one

spa
e between `-k' and `'', and no string is permitted in pla
e of `-k' (exten-

sions should be done with new responses, not by extending this one, for gra
eful

handling of Valid-responses).

M text \n A one-line message for the user. Note that the format of text is not designed

for ma
hine parsing. Although sometimes s
ripts and
lients will have little

hoi
e, the exa
t text whi
h is output is subje
t to vary at the dis
retion of

the server and the example output given in this do
ument is just that, example

output. Servers are en
ouraged to use the `MT' response, and future versions of

this do
ument will hopefully standardize more of the `MT' tags; see Se
tion 5.12

[Text tags℄, page 28.

Mbinary \n

Additional data: �le transmission (note:
ompressed �le transmissions are not

supported). This is like `M', ex
ept the
ontents of the �le transmission are

binary and should be
opied to standard output without translation to lo
al

text �le
onventions. To transmit a text �le to standard output, servers should

use a series of `M' requests.

E text \n Same as M but send to stderr not stdout.

F \n Flush stderr. That is, make it possible for the user to see what has been written

to stderr (it is up to the implementation to de
ide exa
tly how far it should go

to ensure this).

MT tagname data \n

This response provides for tagged text. It is similar to SGML/HTML/XML in

that the data is stru
tured and a naive appli
ation
an also make some sense of

it without understanding the stru
ture. The syntax is not SGML-like, however,

in order to �t into the CVS proto
ol better and (more importantly) to make it

easier to parse, espe
ially in a language like perl or awk.

The tagname
an have several forms. If it starts with `a' to `z' or `A' to `Z',

then it represents tagged text. If the implementation re
ognizes tagname, then

it may interpret data in some parti
ular fashion. If the implementation does

not re
ognize tagname, then it should simply treat data as text to be sent to the

user (similar to an `M' response). There are two tags whi
h are general purpose.

The `text' tag is similar to an unre
ognized tag in that it provides text whi
h

will ordinarily be sent to the user. The `newline' tag is used without data and

indi
ates that a newline will ordinarily be sent to the user (there is no provision

for embedding newlines in the data of other tagged text responses).

If tagname starts with `+' it indi
ates a start tag and if it starts with `-' it

indi
ates an end tag. The remainder of tagname should be the same for mat
h-

ing start and end tags, and tags should be nested (for example one
ould have

tags in the following order +bold +itali
 text -itali
 -bold but not +bold

+itali
 text -bold -itali
). A parti
ular start and end tag may be do
u-

mented to
onstrain the tagged text responses whi
h are valid between them.

Note that if data is present there will always be exa
tly one spa
e between

tagname and data; if there is more than one spa
e, then the spa
es beyond the

�rst are part of data.

Here is an example of some tagged text responses. Note that there is a trailing

spa
e after `Che
king in' and `initial revision:' and there are two trailing

spa
es after `<--'. Su
h trailing spa
es are, of
ourse, part of data.

MT +
he
king-in

MT text Che
king in

MT fname gz.tst

MT text ;

MT newline

MT r
sfile /home/kingdon/zwork/
vsroot/foo/gz.tst,v

MT text <--

MT fname gz.tst

MT newline

MT text initial revision:

MT init-rev 1.1

MT newline

MT text done

MT newline

MT -
he
king-in

If the
lient does not support the `MT' response, the same responses might be

sent as:

M Che
king in gz.tst;

M /home/kingdon/zwork/
vsroot/foo/gz.tst,v <-- gz.tst

M initial revision: 1.1

M done

For a list of spe
i�
 tags, see Se
tion 5.12 [Text tags℄, page 28.

error errno-
ode ` ' text \n

The
ommand
ompleted with an error. errno-
ode is a symboli
 error
ode

(e.g. ENOENT); if the server doesn't support this feature, or if it's not appropriate

for this parti
ular message, it just omits the errno-
ode (in that
ase there are

two spa
es after `error'). Text is an error message su
h as that provided by

strerror(), or any other message the server wants to use. The text is like the M

response, in the sense that it is not parti
ularly intended to be ma
hine-parsed;

servers may wish to print an error message with MT responses, and then issue

a error response without text (although it should be noted that MT
urrently

has no way of
agging the output as intended for standard error, the way that

the E response does).

ok \n The
ommand
ompleted su

essfully.

5.12 Tags for the MT tagged text response

The MT response, as des
ribed in Se
tion 5.11 [Responses℄, page 23, o�ers a way for the

server to send tagged text to the
lient. This se
tion des
ribes spe
i�
 tags. The intention

is to update this se
tion as servers add new tags.

In the following des
riptions, text and newline tags are omitted. Su
h tags
ontain

information whi
h is intended for users (or to be dis
arded), and are subje
t to
hange at

the whim of the server. To avoid being vulnerable to su
h whim,
lients should look for the

tags listed here, not text, newline, or other tags.

The following tag means to indi
ate to the user that a �le has been updated. It is more

or less redundant with the Created and Update-existing responses, but we don't try to

spe
ify here whether it o

urs in exa
tly the same
ir
umstan
es as Created and Update-

existing. The name is the pathname of the �le being updated relative to the dire
tory in

whi
h the
ommand is o

urring (that is, the last Dire
tory request whi
h is sent before

the
ommand).

MT +updated

MT fname name

MT -updated

The importmerge
md tag is used when doing an import whi
h has
on
i
ts. The
lient

an use it to report how to merge in the newly imported
hanges. The
ount is the number

of
on
i
ts. The newly imported
hanges
an be merged by running the following
ommand:

vs
he
kout -j tag1 -j tag2 repository

MT +importmerge
md

MT
onfli
ts
ount

MT mergetag1 tag1

MT mergetag2 tag2

MT repository repository

MT -importmerge
md

5.13 Example

Here is an example; lines are pre�xed by `C: ' to indi
ate the
lient sends them or `S: '

to indi
ate the server sends them.

The
lient starts by
onne
ting, sending the root, and
ompleting the proto
ol negotia-

tion. In a
tual pra
ti
e the lists of valid responses and requests would be longer.

C: Root /u/
vsroot

C: Valid-responses ok error Che
ked-in M E

C: valid-requests

S: Valid-requests Root Dire
tory Entry Modified Argument Argumentx
i
o

S: ok

C: UseUn
hanged

The
lient wants to
he
k out the supermunger module into a fresh working dire
tory.

Therefore it �rst expands the supermunger module; this step would be omitted if the
lient

was operating on a dire
tory rather than a module.

C: Argument supermunger

C: Dire
tory .

C: /u/
vsroot

C: expand-modules

The server replies that the supermunger module expands to the dire
tory supermunger

(the simplest
ase):

S: Module-expansion supermunger

S: ok

The
lient then pro
eeds to
he
k out the dire
tory. The fa
t that it sends only a single

Dire
tory request whi
h spe
i�es `.' for the working dire
tory means that there is not

already a supermunger dire
tory on the
lient.

C: Argument -N

C: Argument supermunger

C: Dire
tory .

C: /u/
vsroot

C:
o

The server replies with the requested �les. In this example, there is only one �le,

`mungeall.
'. The Clear-sti
ky and Clear-stati
-dire
tory requests are sent by the

urrent implementation but they have no e�e
t be
ause the default is for those settings to

be
lear when a dire
tory is newly
reated.

S: Clear-sti
ky supermunger/

S: /u/
vsroot/supermunger/

S: Clear-stati
-dire
tory supermunger/

S: /u/
vsroot/supermunger/

S: E
vs server: Updating supermunger

S: M U supermunger/mungeall.

S: Created supermunger/

S: /u/
vsroot/supermunger/mungeall.

S: /mungeall.
/1.1///

S: u=rw,g=r,o=r

S: 26

S: int mein () { abort (); }

S: ok

The
urrent
lient implementation would break the
onne
tion here and make a new

onne
tion for the next
ommand. However, the proto
ol allows it to keep the
onne
tion

open and
ontinue, whi
h is what we show here.

After the user modi�es the �le and instru
ts the
lient to
he
k it ba
k in. The
lient

sends arguments to spe
ify the log message and �le to
he
k in:

C: Argument -m

C: Argument Well, you see, it took me hours and hours to find

C: Argumentx this typo and I sear
hed and sear
hed and eventually

C: Argumentx had to ask John for help.

C: Argument mungeall.

It also sends information about the
ontents of the working dire
tory, in
luding the

new
ontents of the modi�ed �le. Note that the user has
hanged into the `supermunger'

dire
tory before exe
uting this
ommand; the top level dire
tory is a user-visible
on
ept

be
ause the server should print �lenames in M and E responses relative to that dire
tory.

C: Dire
tory .

C: /u/
vsroot/supermunger

C: Entry /mungeall.
/1.1///

C: Modified mungeall.

C: u=rw,g=r,o=r

C: 26

C: int main () { abort (); }

And �nally, the
lient issues the
he
kin
ommand (whi
h makes use of the data just

sent):

C:
i

And the server tells the
lient that the
he
kin su

eeded:

S: M Che
king in mungeall.
;

S: E /u/
vsroot/supermunger/mungeall.
,v <-- mungeall.

S: E new revision: 1.2; previous revision: 1.1

S: E done

S: Mode u=rw,g=r,o=r

S: Che
ked-in ./

S: /u/
vsroot/supermunger/mungeall.

S: /mungeall.
/1.2///

S: ok

5.14 Required versus optional parts of the proto
ol

The following are part of every known implementation of the CVS proto
ol (ex
ept

obsolete, pre-1.5, versions of CVS) and it is
onsidered reasonable behavior to
ompletely

fail to work if you are
onne
ted with an implementation whi
h attempts to not

support them. Requests: Root, Valid-responses, valid-requests, Dire
tory, Entry,

Modified, Un
hanged, Argument, Argumentx,
i,
o, update. Responses: ok, error,

Valid-requests, Che
ked-in, Updated, Merged, Removed, M, E.

A server need not implement Repository, but in order to interoperate with CVS 1.5

through 1.9 it must
laim to implement it (in Valid-requests). The
lient will not a
tually

send the request.

5.15 Obsolete proto
ol elements

This se
tion brie
y des
ribes proto
ol elements whi
h are obsolete. There is no attempt

to do
ument them in full detail.

There was a Repository request whi
h was like Dire
tory ex
ept it only provided

repository, and the lo
al dire
tory was assumed to be similarly named.

If the UseUn
hanged request was not sent, there was a Lost request whi
h was sent

to indi
ate that a �le did not exist in the working dire
tory, and the meaning of sending

Entries without Lost or Modified was di�erent. All
urrent
lients (CVS 1.5 and later)

will send UseUn
hanged if it is supported.

6 Notes on the Proto
ol

A number of enhan
ements are possible. Also see the �le todo in the
vs sour
e dis-

tribution, whi
h has further ideas
on
erning various aspe
ts of
vs, some of whi
h impa
t

the proto
ol. Similarly, the http://www.
vshome.org site, in parti
ular the Development

pages.

� The Modified request
ould be speeded up by sending di�s rather than entire �les.

The
lient would need some way to keep the version of the �le whi
h was originally

he
ked out; probably requiring the use of "
vs edit" in this
ase is the most sensible

ourse (the "
vs edit"
ould be handled by a pa
kage like VC for ema
s). This would

also allow lo
al operation of
vs diff without arguments.

� The fa
t that pserver requires an extra network turnaround in order to perform au-

thenti
ation would be ni
e to avoid. This relates to the issue of reporting errors;

probably the
lean solution is to defer the error until the
lient has issued a request

whi
h expe
ts a response. To some extent this might relate to the next item (in terms

of how easy it is to skip a whole bun
h of requests until we get to one that expe
ts a

response). I know that the kerberos
ode doesn't wait in this fashion, but that proba-

bly
an
ause network deadlo
ks and perhaps future problems running over a transport

whi
h is more transa
tion oriented than TCP. On the other hand I'm not sure it is wise

to make the
lient
ondu
t a lengthy upload only to �nd there is an authenti
ation

failure.

� The proto
ol uses an extra network turnaround for proto
ol negotiation (valid-

requests). It might be ni
e to avoid this by having the
lient be able to send requests

and tell the server to ignore them if they are unre
ognized (di�erent requests
ould

produ
e a fatal error if unre
ognized). To do this there should be a standard syntax

for requests. For example, perhaps all future requests should be a single line, with

me
hanisms analogous to Argumentx, or several requests working together, to provide

greater amounts of information. Or there might be a standard me
hanism for
ounted

data (analogous to that used by Modified) or
ontinuation lines (like a generalized

Argumentx). It would be useful to
ompare what HTTP is planning in this area; last

I looked they were
ontemplating something
alled Proto
ol Extension Proto
ol but

I haven't looked at the relevant IETF do
uments in any detail. Obviously, we want

something as simple as possible (but no simpler).

� The s
rambling algorithm in the CVS
lient and server a
tually support more
hara
ters

than those do
umented in Chapter 4 [Password s
rambling℄, page 6. Someday we are

going to either have to do
ument them all (but this is not as easy as it may look,

see below), or (gradually and with adequate pro
ess) phase out the support for other

hara
ters in the CVS implementation. This business of having the feature partly

undo
umented isn't a desirable state long-term.

The problem with do
umenting other
hara
ters is that unless we know what
hara
ter

set is in use, there is no way to make a password portable from one system to another.

For example, a with a
ir
le on top might have di�erent en
odings in di�erent
hara
ter

sets.

It almost works to say that the
lient pi
ks an arbitrary, unknown
hara
ter set (indeed,

having the CVS
lient know what
hara
ter set the user has in mind is a hard problem

otherwise), and s
rambles a

ording to a
ertain o
tet<->o
tet mapping. There are

two problems with this. One is that the proto
ol has no way to transmit
hara
ter 10

de
imal (linefeed), and the
urrent server and
lients have no way to handle 0 de
imal

(NUL). This may
ause problems with
ertain multibyte
hara
ter sets, in whi
h o
tets

10 and 0 will appear in the middle of other
hara
ters. The other problem, whi
h is more

minor and possibly not worth worrying about, is that someone
an type a password

on one system and then go to another system whi
h uses a di�erent en
oding for the

same
hara
ters, and have their password not work.

The restri
tion to the ISO646 invariant subset is the best approa
h for strings whi
h

are not parti
ularly signi�
ant to users. Passwords are visible enough that this is

somewhat doubtful as applied here. ISO646 does, however, have the virtue (!?) of

o�ending everyone. It is easy to say "But the $ is right on people's keyboards! Surely

we
an't forbid that". From a human fa
tors point of view, that makes quite a bit of

sense. The
ontrary argument, of
ourse, is that a with a
ir
le on top, or some of the

hara
ters poorly handled by Uni
ode, are on someone's keyboard.

