
Lab 8: Creating ActiveX Controls
For background information on this lab, click each of these topics:

Objectives
In this lab, you will build and test an ActiveX control.

After completing this lab, you will be able to:

 Create a basic ActiveX control with Visual Basic.

 Add properties and methods to the control.

 Save and load control properties.

 Raise an event from the control.

 Create a property page for the control.

 Create a data-bound control.

Prerequisites
Before working on this lab, you should be familiar with the following concepts:

 Creating ActiveX code components

 The contents of this chapter

Lab Setup
To complete this lab, you need the following setup:

 Visual Basic version 5.0 or later

To see a demonstration of the completed lab solution, click this icon.

Estimated time to complete this lab: 90 minutes

Note There are project and solution files associated with each lab. If you installed the labs
during Setup, these files are in the folder <Install Folder>\Labs on your hard disk. If you did not
install the labs during Setup, you can find them in the \Labs folder of the Mastering Microsoft
Visual Basic 5 CD-ROM.

Exercises
The following exercises provide practice working with the concepts and techniques covered in
Chapter 8.

Exercise 1: Creating a Control

In this exercise, you will create a simple ActiveX control and test that control from a Standard
EXE project.

Exercise 2: Adding Properties and Methods

In this exercise, you will create properties and a method and add them to the Stock ActiveX
control created in the previous exercise.

Exercise 3: Saving and Loading Properties

In this exercise, you will add code to save and restore the UserControl object property values.

Exercise 4: Raising an Event

In this exercise, you will add code to raise the TickerKeyPress event from the Stock control.

Exercise 5: Creating a Property Page

In this exercise, you will create a property page for the Stock ActiveX control.

Exercise 6: (Optional) Creating a Data-Bound Control

In this exercise, you will create an ActiveX control that can be bound to a data source.

Exercise 1: Creating a Control
In this exercise, you will create a simple ActiveX control and test the control from a Standard
EXE project. The ActiveX control will simulate returning stock price information.

 Create the ActiveX control

1. Create a new ActiveX Control project.

2. Name the project Stock.

3. Name the UserControl object StockControl.

4. Save the UserControl object and project files as Stock.ctl and Stock.vbp, respectively.

5. Add two Label controls, two TextBox controls, and one Timer control to the UserControl
object, as shown in the following illustration.

6. Set the Timer control's Interval property to 1000.

7. In the Timer control's Timer event, add the following code:

If txtStockTicker = "MSFT" Then
 'Return simulated stock price.
 txtStockPrice.TEXT = Rnd() * 200
Else 'unknown ticker
 txtStockPrice.TEXT = 0
End If

Your text boxes may be named differently, so you should adjust your code accordingly.

8. Save the project.

 Test the ActiveX control

1. Add a new Standard EXE project to the project group.

2. Save the new form and project as Contain.frm and Contain.vbp, respectively.

3. Add a StockControl to the form.

If the Toolbox icon for the StockControl is disabled, make sure all of the windows
associated with the Stock project are closed.

Notice that when the control is placed on the form, and the form is running, the number zero
should appear in the Stock Price text box.

4. Run the .exe project.

5. In the Stock Ticker text box, enter MSFT (all caps).

You should see new random values every two seconds in the Stock Price text box.

Exercise 2: Adding Properties and Methods
In this exercise, you will create properties and a method, and add them to the Stock ActiveX
control created in the previous exercise.

 Create properties and a method for a control

1. Using property procedures, add the property Active to the UserControl object. Set the
property type to Boolean.

2. In the Active Property Get procedure, return the value of the Timer control's Enabled
property.

3. In the Active Property Let procedure, set the Enabled property of the Timer control to the
value passed to the Active property.

This will let you control the Stock control's refresh behavior.

4. Using property procedures, add the property Font to the UserControl object. Set the
property type to Font.

Because this is an object property, use a Property Set procedure instead of a Property Let
procedure. This property will be used to set the Font object for all of the TextBox and Label
controls on the UserControl object.

5. In the Font Property Get procedure, return the Font object of the Stock Price text box.

When returning the Font object, be sure to use a Set statement to set Font is an object.

6. In the Font Property Set procedure, assign the Font value to the Font property for all of the
TextBox and Label controls on the UserControl object.

7. Using a Public Sub procedure, add the method Refresh to the UserControl object.

8. In the Refresh method, call the Timer control's Timer event procedure.

This will update the stock price when the Refresh method is called.

 Enable a property page for the Font property

1. In the Procedure Attributes dialog box, set the Property Page attribute for the Font property
to StandardFont.

This will let you use the Standard Font dialog box to change the property.

2. In the Connect Property Page dialog box, select the StandardFont property page.

Your Font property can now be set by using the StandardFont property page.

3. Save the project.

 Test the control

1. Close all of the windows associated with the Stock project.

2. Open the Container form and select the StockPrice control.

3. In the Properties window, select the Font property and click the ellipsis (…)button.

This should display the Font property page.

4. Change the font to Bold, and then click OK.

The TextBox and Label controls should be bold.

5. Add two command buttons to the Container form, as shown in the following illustration.

6. Add code to the command buttons, as shown in the following code.

Private Sub cmdActivate_Click()
 'toggle Active property
 StockPrice1.Active = Not StockPrice1.Active
End Sub
Private Sub cmdRefresh_Click()
 StockPrice1.Refresh
End Sub

7. Run the Stock project, and type MSFT in the Stock Ticker text box.

When you run the project, notice that the Label and TextBox controls are no longer bold.
This is because the properties were not saved for the form.

8. Test each of the command buttons.

The Activate button should refresh the Stock controls on and off.

The Refresh button should refresh the stock price.

If you are having problems with your solution, click this icon to see the UserControl object
code from the lab solution.

Public Property Get Active() As Boolean
 Active = Timer1.Enabled
End Property
Public Property Let Active(ByVal New_Active As Boolean)
 Timer1.Enabled = New_Active
 PropertyChanged "Active"
End Property
Public Property Get Font() As Font
 Set Font = txtStockPrice.Font
End Property
Public Property Let Font(ByVal New_Font As Font)
 Dim objCtl As Control
 'loop through all controls
 For Each objCtl In Controls
 'if control is a label or textbox
 If (TypeOf objCtl Is Label) Or _
 (TypeOf objCtl Is TextBox) Then
 Set objCtl.Font = New_Font
 End If
 Next
 PropertyChanged "Font"
End Property

Public Sub Refresh()
 Timer1_Timer
End Sub

Exercise 3: Saving and Loading Properties
In this exercise, you will add code to save and restore the UserControl object's property values.

 Save and load property values

1. In the UserControl_WriteProperties event procedure, use the WriteProperty method to
save the property values, as shown in the following table.

Property Value Default value

Active Timer1.Enabled True

Font txtStockPrice.Font (None)

2. In the Property Let procedures for the Active and Font procedures, call the
PropertyChanged method.

This will ensure that the properties are correctly saved.

3. In the UserControl_ReadProperties procedure, use the ReadProperty method to load the
Active and Font properties.

For more information about saving and loading properties, see Storing and Retrieving
Property Values.

4. Save the project.

 Test property save and load functionality

1. Close all of the windows associated with the Stock project.

2. Open the Container form and select the StockPrice control.

3. Set the Active property to False.

4. Set the Font property to Bold.

5. Run the project.

The Active and Font properties should maintain their values.

If you are having problems with your solution, click this icon to see the UserControl object
code from the lab solution.

Private Sub UserControl_WriteProperties(PropBag As PropertyBag)
 PropBag.WriteProperty "Active", Timer1.Enabled, True
 PropBag.WriteProperty "Font", txtStockPrice.Font
End Sub
Public Property Let Active(ByVal New_Active As Boolean)
 Timer1.Enabled = New_Active
 PropertyChanged "Active"
End Property
Public Property Let Font(ByVal New_Font As Font)
 Dim objCtl As Control
 'loop through all controls
 For Each objCtl In Controls
 'if control is a label or textbox
 If (TypeOf objCtl Is Label) Or _
 (TypeOf objCtl Is TextBox) Then
 Set objCtl.Font = New_Font
 End If
 Next
 PropertyChanged "Font"

End Property
Private Sub UserControl_ReadProperties(PropBag As PropertyBag)
 Active = PropBag.ReadProperty("Active", True)
 Font = PropBag.ReadProperty("Font")
End Sub

Exercise 4: Raising an Event
In this exercise, you will add code to raise the TickerKeyPress event from the Stock control.
This event will be raised from the KeyPress event of the ticker text box to enable developers to
add code to the event.

 Raise a control event

1. In the UserControl object code window, declare the event TickerKeyPress to take the single
argument KeyAscii of type Integer.

2. In the KeyPress event of the ticker text box, raise the TickerKeyPress event and pass the
KeyAscii argument.

This will simulate the KeyPress event for the UserControl object.

3. Save the project.

 Test the event

1. Close all of the windows associated with the Stock project.

2. Open the Container form.

The StockPrice control should now contain the TickerKeyPress event.

3. In the TickerKeyPress event, add the following line of code:

KeyAscii = Asc(UCase(Chr(KeyAscii)))

This code will convert any character type into the uppercase value of that character.

4. Run the project.

5. Type msft (lowercase) into the ticker text box.

The text should be converted to uppercase as you type.

If you are having problems with your solution, click this icon to see the UserControl object
code from the lab solution.

Public Event TickerKepPress(KeyAscii As Integer)
Private Sub txtStockTicker_KeyPress(KeyAscii As Integer)
 RaiseEvent TickerKepPress(KeyAscii)
End Sub

Exercise 5: Creating a Property Page
In this exercise, you will create a property page for the Stock ActiveX control.

 Add a custom property page

1. Add a new property page to the Stock project.

Do not use the Property Page Wizard.

2. Set the property page Name property to Active.

3. Add a CheckBox control to the property page, as shown in the following illustration.

4. In the Click event of the CheckBox control, set the Changed property to True.

5. In the PropertyPage_SelectionChanged event procedure, set the Value property of the
CheckBox control, as shown in the following table.

If SelectedControls(0).Active = The Value property will be

True vbChecked

False vbUnchecked

This will set the state of the CheckBox control, based on the value of the Active property of
the selected control.

For information about property pages, see Coding Property Page Behavior.

6. In the PropertyPage_ApplyChanges event procedure, set the Active property of
SelectedControls(0), as shown in the following table.

If CheckBox Value property = The Active property will be

vbChecked True

vbUnchecked False

This will set the Active property of the Stock control, based on the selection made in the
Property dialog box.

7. In the Connect Property Pages dialog box of the Stock control, add the Active property
page, as shown in the following illustration.

8. In the Procedure Attributes dialog box, associate the Active property page with the Active
property.

For information about associating a property page with a property, see Establishing Property
Page Relationships.

9. Save the project.

 Test the control

1. Close all of the windows associated with the Stock project.

2. Open the Container form.

3. Right-click the StockPrice control, and then click Properties.

4. In the Property Pages dialog box, click the Active tab.

The active check box should match the value of the Active property.

5. Change the active check box, and then click OK.

The Active property should appear changed in the Properties window.

6. In the Properties window, click the ellipsis (…) button next to the Active property.

Clicking this button will also display the Property Pages dialog box. Notice, however, that
only the Active tab is displayed in the Property Pages dialog box.

Exercise 6: (Optional) Creating a Data-Bound Control
In this exercise, you will create an ActiveX control that can be bound to a data source.

 Create the control

1. Create a new ActiveX control, as shown in the following illustration.

2. Create CompanyName and Address properties for the control, and make them bindable.

3. Save the project.

 Test the control

1. Create a client project to test the control.

2. Bind the CompanyName and Address properties to the Company Name and Address fields
of the Publishers table located in the Biblio.mdb database.

The file Biblio.mdb is located in the Visual Basic install directory.

3. Test to see if the data is bound, and that it updates correctly.

	Lab 8: Creating ActiveX Controls
	Exercise 1: Creating a Control
	Exercise 2: Adding Properties and Methods
	Exercise 3: Saving and Loading Properties
	Exercise 4: Raising an Event
	Exercise 5: Creating a Property Page
	Exercise 6: (Optional) Creating a Data-Bound Control

