
IAA-L-0504P

1

ON-BOARD SOFTWARE FOR THE MARS PATHFINDER MICROROVER
Jack C. Morrison
Tam T. Nguyen

Jet Propulsion Laboratory
California Institute of Technology

4800 Oak Grove Drive
Pasadena, CA 91109

ABSTRACT

The Pathfinder Micro-rover Flight experiment will perform engineering and science experiments on
the Martian surface to pave the way for future Mars missions. The rover is controlled by a 1970's
era microprocessor. Its on-board software, while in some ways a typical embedded-system design,
has to deal with some unusual constraints.

The rover will be operating in a harsh and mostly unknown environment, with limited electrical
and processing power, accessible only via a limited-bandwidth communication link with long time
delays. The software design is driven by these factors to provide reliability in the face of hardware,
software, and operational failures, flexibility to allow adaptation and reconfiguration, simplicity,
predictability, and visibility into its internal state and the external environment.

This paper describes the overall software structure, and details some of the more interesting
features of the design, including error handling, power control logic, and navigation with hazard
avoidance. The development environment is also described, including the use of world-wide-web-
style hypertext to provide quick access to the collection of documents that accumulate in a software
project.

IAA-L-0504P

2

MISSION TO MARS

The Mars Pathfinder Microrover, a 10-
kilogram robotic vehicle, will perform
engineering and science experiments on the
Martian surface, and pave the way for future
Mars exploration. Due to the communication
time delays between Earth and Mars, and the
unpredictability of the surface environment,
the rover must operate semi-autonomously
based on traverse waypoints and high-level
commands from a human operator.

Research robots like the Pathfinder rover's
predecessors often sport state-of-the-art
processors, but a flight project requires
proven, radiation-hardened components and
imposes a severe power and weight budget.
With the limited financial budget of a low-
cost flight project on top of that, the result is
a spacecraft with a difficult mission, a short
development schedule, and a
"computationally-challenged" central
processing unit.

The rover's software architecture is motivated
by several ideals intended to meet the mission
goals while addressing all of these
limitations:

• Reliability: handling failures of non-
essential hardware components and
unexpected environmental conditions.
Time-critical anomalies (such as power
drains and obstacle contact) must be
handled without operator intervention.
Software failures must be protected
against occurring, and recovered from if
they do occur.

• Flexibility: adapting to changes in the
rover's hardware and environment.
Modifications to behavior should be
autonomous or easily commandable.
Where possible, the rover is self-
calibrating.

• Simplicity: in general, the simplest
acceptable approach to each requirement
or design problem is chosen. Besides
being more reliable and flexible, simpler
solutions are easier to test and have more

predictable behavior. Not to mention
taking less time to develop.

• Visibility: concisely but completely
reporting the current hardware and
software state, in particular unexpected
conditions.

GENERAL SOFTWARE ARCHITECTURE

The rover is so constrained by electrical and
processing power that it literally cannot "walk
and talk" (run drive motors and communicate
over its radio modem) at the same time. A
multitasking executive would reduce
performance without adding much capability.
So instead, the software is organized as a
single control loop, with interrupt handling
for a few asynchronous "reflex" events (such
as bumper contact) to which the rover must
react quickly. This loop dispatches periodic
functions (e.g. thermal management,
automatic vehicle health checks, and
command upload requests) as indicated by
software timers, and invokes command
handlers as directed by the uploaded
command sequence.

Command handlers follow a common format:

• extract and validate any command
parameters

• verify that the command is allowed based
on the current rover state (e.g. mission
phase and power availability)

• set a timeout limit for completion of the
command

• perform the command

• format and send results telemetry

• return a completion status

NAVIGATION AND HAZARD
AVOIDANCE

Perhaps the most unique component of the
on-board software, for a spacecraft, is the
waypoint navigation and autonomous hazard
avoidance logic. Since the rover is normally
directed along an operator-specified path
based on 3D stereo images from the
Pathfinder lander, it doesn't need to be a

IAA-L-0504P

3

robust maze-solver - but it does need to
watch for and deal with unexpected problems
while moving.

The basic procedure for traversing to a
waypoint is to drive forward in short
segments, stopping for proximity scanning
between each segment. In the absence of
hazards, the rover arcs (at one of a small
number of fixed-radius turns) toward the goal
position. Inertial sensors and wheel encoders
are used to dead reckon the vehicle's
location.

While moving, other sensors (such as
inclination and motor currents) are sampled
for hazard detection and telemetry. Several
conditions are monitored:

• reaching an operator-specified timeout
limit

• sensor reading outside safe limits, from a
table based on a risk-level parameter

• being too close to, and heading toward,
the lander

• physical contact sensing

While stopped in between segments, various
low-rate operations are performed when due,
including a lander communication check
"heartbeat" and transmission of buffered
telemetry data. The rover then uses its optical
proximity scanning system to look for
obstacles (such as tall rocks or dropoffs).
The scanner consists of infrared lasers and
CCD imagers, which are used to build a
sparse and approximate map of terrain height
in front of the rover.

The map is searched for the following hazard
conditions:

• missing data (inside the minimum
required detection range; indicating a
possible drop-off)

• height difference between any two
adjacent detections above a (risk-level-
dependent) threshold (indicating a rock or
hole)

• height difference between lowest and
highest detections above a higher
threshold (indicating a steep slope)

If any proximity hazards are found in the
map, the rover turns in place about its center
as needed to avoid them. It first turns in
whichever direction has the smaller required
avoidance turn, or toward the goal if there's
no preference. On any subsequent turns
(after re-scanning) at the same location, it
continues to turn in the same direction, to
avoid bouncing back and forth between two
hazards. Non-proximity hazards, such as
contact and sensor readings outside safety
limits, result in aborting the traverse - unless
the operator has given the rover permission to
deal with these itself. In that case, it backs
up, turns, and tries again. Any time it has
turned away from a hazard, the rover drives
straight for a few segments before arcing
back toward the goal.

Normally, the rover tries to keep far enough
away from any hazards to allow it to turn
around if it should get into trouble. The
software has an option, however, to
"squeeze" through narrower paths for a
limited distance. If it runs into obstacles or
fails to reach a clear region beyond this
distance, it backs straight out and turns away
from the narrow path looking for another
alternative.

"Rock finding" is a modified driving mode,
in which map data indicating a prominent
rock triggers a behavior to center the rover
heading between the edges of the rock using
proximity sensing. If the destination
waypoint is reached first, the rover performs
a spiral search for a rock. The operator can
then command the rover to turn 180 degrees
and back its spectrometer onto the rock
surface.

STATE INFORMATION

Nearly all of the global data is allocated in
one of two structures - the volatile state area
and the persistent state area. The volatile
state data is initialized at each wakeup, and
includes latest sensor readings and navigation
control states.

IAA-L-0504P

4

The persistent state data is the rover's "long-
term memory." It is loaded from EEPROM
(electrically-eraseable programmable read-
only memory) at wakeup, and the EEPROM
image is updated regularly as the state
changes. This data includes mission phase,
vehicle location, odometry, and long-term
time limits.

Persistent state data is the only part of the
EEPROM that needs to be rewritten enough
times to be in danger of exceeding the
guaranteed lifetime of the memory during
development and the mission. Enough space
is therefore reserved for several copies of the
state data, and the active copy is accessed
indirectly through a pointer stored separately
in EEPROM (this pointer is itself updated
infrequently, so it can stay in a fixed
location). A count of the number of rewrites
is updated and stored with the persistent state;
if this count reaches 95% of the guaranteed
EEPROM lifetime (which is 1/10th the
nominal lifetime), the state data is
automatically relocated to the next allocated
space. The pointer is updated accordingly,
and the write count reset to one.

POWER CONTROL AND DEVICE
MONITORING

Each controllable device, and each input
sensor, is associated with a device status
value indicating the health of that device. The
value is automatically adjusted if anomalous
behavior (such as an out-of-range input) is
seen from that device, typically during
periodic health checks, and adjusted back if
normal operation is observed. With several
steps between "normal" and "failed" states,
the rover can autonomously disregard
suspicious sensor data but recover from
transient failures. At cold start, the status for
failed devices is adjusted to that they have
one chance to show that they are now
working properly.

If a sensor reaches a "failed" state, the rover
avoids using that sensor to influence its
behavior. If possible, it uses an alternate
source of information as a fallback. For
example, it one temperature sensor fails, it
may use a nearby temperature sensor instead.

If a potentiometer indicating motor position
fails, the rover can fall back to time-delay-
based actuator control. However, actual
sensor readings are always returned in
telemetry - regardless of whether the rover
trusts that data.

If an actuator devices reaches a "failed" state,
the rover rejects operator commands that
depend on that device functioning. The
device status values are reported with health
check telemetry, and can be modified directly
by operator command. Special values allow
the operator to force a device into a "good" or
"failed" state which the software won't
autonomously alter.

Whenever a device is turned on, the rover
monitors the electrical current drawn by that
device (after a short delay to allow for
transients). If this current exceeds a device-
specific limit, the rover sets the device's
status to an additional special "failed" state
that prevents that device from being turned
back on. It can even mark a device with this
"keep off" state if powering the device causes
a system reset or trips the brown out-
protection power monitor circuit. This logic
reduces the chances of running down
batteries or damaging electronics should a
device short-circuit. The "keep off" state can
be cleared (or set) by operator command.

Device status was a convenient capability
during testing, because at any one time, some
part of the vehicle was often missing. By
setting the corresponding devices as "failed",
the software could operate while ignoring
invalid data from missing sensors.

CONTROL PARAMETERS

Numeric "constants" in the rover software are
implemented in three forms. Those that are
sure to remain fixed are coded as compile-
time constants ("#define" preprocessor
symbols or "enum" compiler constants).

"Constants" that will probably remain fixed,
but could conceivably need to be altered to
deal with unexpected conditions, are coded as
"const" values, resulting in runtime constants
stored in non-volatile memory with the code.
Since the values exist at a single location that

IAA-L-0504P

5

is identified in the linker map, these can be
readily patched before or during the mission.
A common use of patchable constants are the
time delays needed between various control
steps.

Finally, for a limited set of parameters that
the operator might need to alter during the
course of the mission to alter vehicle
behavior, run-time variables or "control
parameters" are provided. A dedicated
operator command allows these parameters,
which are part of the persistent state data
maintained in EEPROM, to be easily
changed. This "set parameter" command
contains a table of valid limits for each
control parameter to prevent acceptance of
improper values. Some examples are
navigation algorithm options, temperature
thresholds for heating logic, and periodic
processing rates. In addition to "behavior
modification"-type parameters, some control
parameters are used to store calibration data,
such as zero offsets for position sensors, that
can be updated late in the integration test
phase based on experimental calibration
measurements using the final flight hardware.

ERROR HANDLING

Two mechanisms handle error situations: an
error reporting capability, and error state
flags. The reporting function is invoked
whenever a new anomaly is detected. An
error ID unique to the source code location (8
bits indicating the module and 8 bits
indicating an error call within that module),
along with a severity level and a few words
of optional associated information, are passed
to the error reporter. If the severity level
passes the current reporting threshold, this
data is time-tagged and stored in a telemetry
packet that is sent at the completion of the
current command (or periodically, if no
commands are executing). The error packet
has a limited size; if it becomes full,
additional error reports are counted but the
associated data discarded. The severity
threshold and overflow treatment prevent
flooding of the telemetry channel with useless
data in the event of a severe problem.

A utility program can quickly locate the
program source corresponding to a specific

error code, explaining the reason for and
context of the error, and indicating the
interpretation of the associated data.
Pinpointing the error call directly in the
source code eliminates the danger of an out-
of-date or incomplete error code definition
document, not to mention the work of
maintaining one.

In addition to the error event reporting, eight
error state flags track specific classes of error
conditions, such as device failure, invalid
command, and command execution timeout.
They are set when corresponding problems
are detected, and allow a limited form of
conditional command execution, since most
commands are skipped if error states are
active. All flags, or a selected set, can be
cleared by operator command. A group of
interdependent commands within an upload
sequence are typically sent starting with this
"clear error" command so that they can
proceed regardless of an irrelevant earlier
anomaly; any failures seen during execution
of the group causes the rest of that group - up
to the next "clear error" command - to be
skipped. The operator also has the option of
masking out specific error state flags, to
prevent a particular type of error from
affecting command execution.

ROVER LITE

The rover computer has 160K bytes of non-
volatile EEPROM memory, used to store the
software, persistent state data, contingency
command sequences (in the event of
communication loss), and telemetry that can't
be immediately sent to Earth via the
Pathfinder lander (e.g. at night, when the
lander may not be operating its modem).
This EEPROM is particularly convenient
during development, since software updates
are easily downloaded, but remain resident
across power downs. It will also allow
patches to the rover software to be sent after
launch.

However, there is some concern about the
radiation tolerance and reliability of these
devices. The first 16K bytes of the memory
space is therefore populated by (expensive)
radiation-hard non-erasable PROMs. This
area contains the boot code first executed

IAA-L-0504P

6

when the rover wakes up. (Being primarily
solar powered, the rover normally shuts itself
off every night.). The boot code computes
and validates checksums on the EEPROM
contents. If the EEPROM looks okay,
control is passed to the normal EEPROM-
resident software. Otherwise, a stripped-
down rover control program contained
entirely in the high-reliability PROM takes
over.

This scaled-back program, known as "Rover
Lite", can accomplish a subset of the mission
objectives without depending on non-volatile
storage. It includes the full communication
protocol, some diagnostic and memory
patching capability, and low-level device
control. About half of the normal rover
commands are supported in some form,
along with a special "drive" command - in
place of high-level navigation - allowing a
sequence of vehicle motions to be
programmed, something like a remote-
controlled toy.

SOFTWARE TOOLS

The only software purchased explicitly for
the rover project was a PC-hosted C
compiler/assembler/linker/debugger package
for the 8085 target architecture, and a PC
emulator allowing that software to be run
from UNIX workstations. The remaining
development environment is based on
common facilities - such as MAKE, RCS,
AWK, and text editors - that are either freely
available or part of the standard UNIX
environment. Where appropriate,
components of the target software itself were
acquired from free Internet sources. These
included the 8085 debug monitor, and CRC-
16 and Reed/Solomon Error Detection and
Correction algorithms.

ONLINE DOCUMENTATION

A new technique that has proven to be very
useful is the collection of the assorted
development documents that every project
accumulates into web pages using a
Hypertext Markup Language (HTML) index.
These documents include such things as
memory layouts, "how-to" notes for startup,
shutdown, calibration, and other procedures,

descriptions of utilities and development
tools, coding standards, and delivery release
notes. Both informal notes and official
documents are accessible as web pages.
Many are left as plain text files, but some
have been formatted with HTML commands
to allow instant access to sections of a large
document or access to related documents
through hypertext links. The HTML format
also allows inclusion of images such as
diagrams and drawings.

Having these documents available on-line in a
standard format makes them readily available
to the developers themselves as well as others
on the project, whether they are using Unix
workstations, Macs, or Windows PC's. The
files can be kept up-to-date much more easily
than paper documents, and there is no danger
of someone working with an obsolete version
of, say, an interface specification. They can
be called up when needed during testing at
any location that has Internet access, saving
time and guesswork. It is at least hoped that
this will save paper as well.

DATA GENERATORS

The rover software employs several related
data tables and identifier lists to work with
devices, sensors, and operator commands.
In order to reduce the effort of changing these
tables, and to eliminate the risk of tables
being out of synchronization, scripts using
the UNIX "AWK" program were built to
generate the tables and identifiers from
description files. For example, one file
describes all of the analog sensors -
multiplexor addresses, input gain settings,
minimum and maximum expected values, etc.
- and is processed into a list of sensor
identifier codes, encoded tables used by the
sensor input functions to setup and sample
the sensor data, limit tables used by health
check functions to validate sensor operation,
and so on. Several times during
development, there have been hardware
changes that were quickly incorporated into
the software by simple updates to the tables
or the generator functions, without worrying
about missing some corresponding change in
a forgotten source file.

IAA-L-0504P

7

TEST UTILITIES

Development risk was reduced by
implementing temporary software to stand in
for external interfaces, eliminating
dependence on other subsystems. Especially
useful is the "simulator" for the lander
spacecraft, which communicates with the
rover by radio modem. Besides supporting
tests of the modem communication protocol
itself, this program accepts operator
commands in text form (typed in or read from
a command file) or in the official sequence
file format (as generated by the Rover
Control Workstation) and sends them to the
rover. It also receives telemetry data from the
rover, storing it on disk and optionally
relaying it through a socket connection to
other test software. This lander simulator can
be run either in a window on a UNIX
workstation, or on a PC (such as a laptop
used for remote testing).

Another utility program can extract data from
telemetry packets, and thus stands in for the
ground data system, providing real-time
(when connected to the lander simulator
telemetry socket) and after-the-fact (when fed
stored data files) viewing of telemetry.
Related programs allow conversion of
extracted image data, both normal and
compressed, into a standard format for
viewing and analysis.

These facilities have allowed end-to-end
testing of the rover before the actual control
workstation, lander, or ground data system
were ready for integration. When such
integration did take place, the rover team
could was confident that its side of the
interfaces had already been verified.

A simple downloadable menu-driven
diagnostic program also proved to be worth
far more than its development cost. This
utility provides a thorough but easy-to-run
regression test after hardware changes and
environmental testing, a convenient facility
for direct control of rover devices, and a
"second opinion" on sensor or control
anomalies observed by the operational rover
software.

THE PATH AHEAD

The Pathfinder spacecraft is scheduled to
launch in December 1996, arriving at Mars in
July 1997. During integration testing so far,
the microrover software has performed well,
often demonstrating its flexibility and
reliability when faced with changes in plans
and hardware failures. Perhaps the biggest
complaint is that it sometimes thinks too
much, overriding our commands when we
forget to tell it not to worry about some
component that was temporarily removed.
Fortunately, by the time the rover rolls out
onto the surface of the red planet, we will be
well-practiced in the art of cooperating with a
semi-autonomous rover, and ready to explore
together.

ACKNOWLEDGMENT

The research described in this publication
was carried out by the Jet Propulsion
Laboratory, California Institute of
Technology, under contract with the National
Aeronautics and Space Administration.

