
SpriteWorld — Scrolling by    Vern Jensen

What are the scrolling routines?

The scrolling routines enable you to write games with a scrolling background, such as Power
Pete, Tubular Worlds, or nearly any Nintendo type game. Much care has been taken to make
these routines as fast and efficient as possible, while also keeping them easy to use. Through the
combination of being easy to use, fast, and free, it is my hope that they will spawn a new breed of
cool scrolling games for the Mac.

How do they work?

Game developers usually use one of two techniques when creating a scrolling game: A) Make an
offscreen area as large as the “virtual world” that they will scroll around in (the method used by
Pac-In-Time), or B) Use an offscreen area slightly larger than the area visible on the screen, and
scroll and redraw the background whenever the screen scrolls. The first method can take up a lot
of memory and limit the size of the scrolling area considerably, while the second method can be
quite slow, because of all the drawing that must be done offscreen each frame. There are other
methods too, but they each have their limitations.

SpriteWorld uses none of the methods described above, but rather a new “wrapping” technique.
Here’s how it works: an offscreen area either the same size as the window or slightly larger is
used for the background and work frames. To scroll the screen, we simply change the location of
the rectangle that is copied from the offscreen area to the screen each frame. If part of this
rectangle goes past the border of the offscreen area, it is clipped and “wrapped” to the other side
of the offscreen area. So if the rectangle extends past the right and bottom side of the offscreen
area, then four sections will be copied to the screen that frame: the main section after it is clipped,
the right side which is wrapped to the left, the bottom side which is wrapped to the top, and the
bottom-right corner, which is wrapped to the top-left corner. You can run the program “Wrapping
Illustration” to see what happens offscreen during a scrolling animation.

Because SpriteWorld uses this technique, it doesn’t need a huge offscreen area as large as the
scrolling world, and it doesn’t have to do any drawing offscreen between frames, other than
update the tiny portion that scrolls into view. Because the offscreen area is sometimes copied to
the screen in several pieces, you may notice “seams” where one piece was copied to the screen
before another. However, these seams are barely noticeable on the faster Macs (such as 68040’s
and higher), if noticeable at all. However, you should understand how the scrolling routines work,
in case a user asks you why there are “cracks” in the animation of your game.

The good news is that SpriteWorld does all the dirty work for you; you don’t have to worry about
how to “wrap” things yourself. You just create a SpriteWorld, set the boundaries of your scrolling
world, and set up your sprites, and SpriteWorld takes care of everything for you. As far as you are
concerned, it is just as if you had a huge offscreen area the size of your scrolling world, but
without the memory it would take up!

The scrolling and tiling routines were meant to go hand-in-hand. Because of the complex method
of scrolling that SpriteWorld uses, it would be quite difficult for the user to create their own
routines to update the background as the SpriteWorld scrolls, because the routines would have to
be able to “wrap” from one side of the offscreen area to the other. Fortunately, the tiling routines
do this wrapping for you, automatically. So if you want to make a scrolling game that uses tiles,
SpriteWorld is for you! If you don’t want to use tiles, then you still have the option of making the

offscreen areas as large as the scrolling world so you can draw the entire background in it before
the animation starts, and then don’t have to worry about updating it while the animation is
running. However, most scrolling games use tiling, so most people shouldn’t have to worry about
this.

A note about idle sprites: I have bent over backwards to continue SpriteWorld’s tradition of not
redrawing idle sprites each frame. However, I’m not sure this is such a good idea for scrolling
animations, and I may change this in the future, so that all sprites are redrawn each frame,
whether idle or not. One of the reasons for this is that unlike normal SpriteWorlds, not all idle
sprites will be visible on the screen all of the time, but SpriteWorld still has to cycle through each
Sprite anyway to check to see if it is visible and needs to be drawn. Adding a lot of idle sprites to
an animation could slow SpriteWorld down simply because it has to cycle through so many
sprites each frame. And now with the addition of the tiling routines, you can often use tiles where
you would otherwise use idle sprites, if their purpose is only to create a more interesting
background. SpriteWorld also has to do a lot more checking when scrolling to see if the idle
sprites need redrawing than it does during a non-scrolling animation. So SpriteWorld may be
wasting more time by trying to avoid redrawing idle sprites that it is saving. And unless I’m
overlooking something, most scrolling games would have hardly any idle sprites, if any at all.
What do you think?

Why am I doing this?

I made these routines simply because no one else did. Many people have wanted to make a
scrolling game with SpriteWorld but haven’t been able to, because SpriteWorld didn’t have
support for scrolling. I am interested in making scrolling games myself, which is why I wrote these
routines. But it would be selfish for me to want to keep them all to myself, so I’m making them
freely available to everyone. Of course, this means more work for me, since I have to document
and support the routines, but it will be worth it if some good games are made as a result.
Hopefully you will take the time to make a good, polished game that would make me proud of
these routines.

How to contact me

If you have any comments, questions, suggestion, or bug reports, you can contact me at
Vern_Jensen@lamg.com. If you think that you have run into a bug, please do not e-mail me
immediately. Take the time to try to isolate the problem as best as you can. If possible, build a
little demo that shows the bug and send that to me. As a general rule, you should experiment with
something for a few days before assuming that it is a bug in SpriteWorld, unless you are
absolutely sure you know what the problem is.

Also, please let me know if you make a game, however great or small, that uses the scrolling or
tiling routines, as I would be very interested in seeing it! (Hopefully you can provide a free copy.
After all, it’s just a small way of saying “Thanks!”)

Getting Started
How to set up a Scrolling SpriteWorld

In order to use the scrolling routines, you must include the file “Scrolling.c” in your project. This
file is the only SpriteWorld source file that is optional. If you do not use scrolling, then you do not
need to include this file with your project. If you are using the SpriteWorld libraries instead of
including individual source files in your project, then you need to include both libraries. The only
file in the second library is “Scrolling.c”. SpriteWorld was split up into two segments because if all

the source files were included in one segment, it would be larger than the 32k limit for 68k
segments.

Setting up a scrolling SpriteWorld is very straightforward. You create the SpriteWorld, Layers, and
Sprites, and put them together the way you normally would. You have to make only a few extra
function calls for a scrolling SpriteWorld.

The first thing you need to do is to determine the size of the offscreen areas, which might need to
be larger than the area that is visible on the screen. If you use the tiling routines, you will need to
make sure that the width and height of the offscreen area is evenly divisible by the width and
height of the tiles that you are going to use, so that the tiles fit perfectly in the offscreen area
without any of them being clipped. This might make your offscreen areas slightly larger than the
area on the screen. If you use the tiling routines, then you do not need to make the offscreen area
as large as your “virtual scrolling world”, since with the wrapping technique described above,
SpriteWorld can use that small area to build the frame that is copied to the screen.

However, if you don’t use the tiling routines, then you will need to create an offscreen area as
large as your scrolling world (the area that you will be scrolling around in). Use the last parameter
to SWCreateSpriteWorld to set the size of the offscreen areas. See the Scrolling Demo for some
example code that demonstrates how to make sure tiles fit evenly in the offscreen area. Also, the
Large Background Scrolling demo shows how to create offscreen areas that are as large as your
scrolling world.

Other functions you might want to call while preparing for the animation would be
SWSetScrollingWorldMoveBounds to set the boundaries of the scrolling, SWMoveVisScrollRect
to tell SpriteWorld where the animation is going to start, and SWSetScrollingWorldMoveProc to
tell SpriteWorld what routine to use to control the scrolling. You would then call
SWUpdateScrollingSpriteWorld to set things up, and then use SWProcessScrollingSpriteWorld
and SWAnimateScrollingSpriteWorld to drive the animation. That’s it!

After everything is in place, all you need to do to control the scrolling is to move around
spriteWorldP->visScrollRect. The visScrollRect is a Rect structure that is part of the
SpriteWorldRec that defines what part of the virtual scrolling world is currently visible on the
screen. I refer to it as a “virtual” scrolling world because the world may be much larger than the
offscreen area, thanks to the wrapping routines. (It can be up to 32767 pixels high and long!) But
since SpriteWorld handles all the details for you, you can move the visScrollRect anywhere in
your virtual world, and everything will appear properly on the screen just as if your offscreen area
were really as large as your virtual world. There are three routines provided for you to move the
visScrollRect: SWMoveVisScrollRect, SWOffsetVisScrollRect, and
SWSetScrollingWorldMoveProc. Although you may use the first two functions every now and
then, the most common way of moving the visScrollRect will be with the ScrollingWorldMoveProc.
Here you can write your own function that controls the scrolling in whatever way you wish.

To assist you in moving the visScrollRect, SpriteWorld provides another variable which is also
part of the SpriteWorldRec: scrollDelta. The values in ScrollDelta.h and ScrollDelta.v are
automatically added to the visScrollRect after the ScrollingWorldMoveProc has been called. This
allows your ScrollingWorldMoveProc to change the values in scrollDelta and have them reflected
in the very next frame of the animation. You can change the scrollDelta either from your
ScrollingWorldMoveProc, or by calling SWSetSpriteWorldScrollDelta.

Variables used for scrolling

There are certain variables in the SpriteWorldRec that are used for scrolling that you should
become familiar with. You may wish to access these directly at times, or you may just want to
know what they are for so you have a better understanding of how the scrolling routines work.

This is not a list of all the variables, but only of the ones that might be useful to you. (For instance,
you might want to access the visScrollRect to see what portion of the SpriteWorld is currently
visible on the screen.)

Rect visScrollRect This holds the current position of the visible scrolling rectangle;
that is, the area of your scrolling world that the user sees on
the screen. By moving this, you can scroll to a different part of
the scrolling world.

Rect oldVisScrollRect The position of visScrollRect from the previous frame. Used
internally by SpriteWorld.

Short horizScrollDelta The horizontal scrolling delta.

Short vertScrollDelta The vertical scrolling delta.

Rect scrollRectMoveBounds Move bounds for visScrollRect. See
SWSetScrollingWorldMoveBounds.

Scrolling Function Reference
This section documents the scrolling routines. They are not in alphabetical order, but are grouped
by the type of action they perform. The following is a list of each function in the order in which
they are documented, so that you can find the function you want quickly. They are also listed with
the parameters as you would pass them to each function, so you can also look here if you forget
the order of the parameters in a particular function.

SWUpdateScrollingWindow(spriteWorldP)

SWUpdateScrollingSpriteWorld(spriteWorldP, updateWindowMode)

SWProcessScrollingSpriteWorld(spriteWorldP)

SWAnimateScrollingSpriteWorld(spriteWorldP)

SWSetScrollingWorldMoveBounds(spriteWorldP, &scrollRectMoveBounds)

SWSetScrollingWorldMoveProc(spriteWorldP, MyScrollingWorldMoveProc, followSpriteP)

SWSetSpriteWorldScrollDelta(spriteWorldP, horizDelta, vertDelta)

SWMoveVisScrollRect(spriteWorldP, horizPos, vertPos)

SWOffsetVisScrollRect(spriteWorldP, horizOffset, vertOffset)

SWUpdateScrollingWindow

This function updates the window of a scrolling SpriteWorld from its work Frame.

void SWUpdateScrollingWindow(SpriteWorldPtr spriteWorldP)

spriteWorldP A pointer to a SpriteWorld whose window needs updating.

Description:
This function will update the contents of the window of the spriteWorldP using the current position
of visScrollRect to copy from the offscreen area. No drawing is done offscreen, so whatever was
drawn last frame will be copied (as long as the visScrollRect has not been moved since the last
frame). You would typically use this function in response to an update event.

See Also:
SWUpdateScrollingSpriteWorld

SWUpdateScrollingSpriteWorld

This function will copy the background area to the work area, render the current frame of the
animation in it, and optionally copy the result to the screen.

void SWUpdateScrollingSpriteWorld(SpriteWorldPtr spriteWorldP,
Boolean updateWindow)

spriteWorldP A pointer to a SpriteWorld to be updated.
updateWindow A Boolean indicating whether to update the window or not.

Description:
This function does the same thing as SWUpdateSpriteWorld, but is for scrolling SpriteWorlds
instead. It copies the background Frame to the work Frame, builds the current frame of the
animation in the work Frame by drawing the sprites in it, and optionally copies the result to the
screen. You would usually call this at the beginning of a scrolling animation. If you want to update
the window in response to an update event, you should use SWUpdateScrollingWindow.

Use the updateWindow parameter to control whether the work frame is copied to the window. You
would usually pass true as this paramater, but may wish to pass false if you want to update the
window yourself so you can produce a special effect such as a screen wipe.

SWProcessScrollingSpriteWorld

This function will process a scrolling SpriteWorld.

void SWProcessScrollingSpriteWorld(SpriteWorldPtr spriteWorldP)

spriteWorldP A pointer to a SpriteWorld to be processed.

Description:
Use this function to drive the animation of a scrolling SpriteWorld. This function calls
SWProcessSpriteWorld to process the sprites, then calls the scrollingWorldMoveProc, and then
moves the visScrollRect according to the SpriteWorld’s scrollDelta.

See Also:
SWAnimateScrollingSpriteWorld
SWSetScrollingWorldMoveProc

SWAnimateScrollingSpriteWorld

This function will render a frame of a scrolling animation on the screen.

void SWAnimateScrollingSpriteWorld(SpriteWorldPtr spriteWorldP)

spriteWorldP A pointer to a SpriteWorld to be animated.

Description:
This function is similar to SWAnimateSpriteWorld, but is for scrolling SpriteWorlds. It erases each
Sprite and redraws it in its new location offscreen, and then copies the area defined by
visScrollRect to the screen. You would typically call this right after calling
SWProcessScrollingSpriteWorld.

A note about idle sprites:
In this version, idle sprites are not redrawn each frame in an effort to save time. However, doing
this in a scrolling animation is much harder than it is in a non-scrolling animation, so more testing
has to be done by SpriteWorld to determine whether the idle sprites need redrawing or not.
Because of this, I’m not sure whether this special code to avoid redrawing idle sprites actually
saves time or slows things down. I may decide to rip out this code later so idle sprites are
redrawn each frame just like active sprites.

Because of this, I would suggest that you do not make scrolling games that rely on SpriteWorld’s
ability to avoid redrawing idle sprites. You should use tiles instead whenever possible. You can
have tiles that are “above” sprites, so that the sprites appear to move underneath a tile or a part
of a tile. This would be a much better way to make your sprites move “behind” something that
does not move, such as a tree, since it is a way of adding depth to your animation without adding
lots of idle sprites which have to be processed each frame, which could slow things down. See
the tiling documentation for information on how to have tiles that are above sprites.

See Also:
SWAnimateSpriteWorld
SWProcessScrollingSpriteWorld

SWSetScrollingWorldMoveBounds

This will set the boundary of the scrolling area.

void SWSetScrollingWorldMoveBounds(SpriteWorldPtr spriteWorldP,
Rect* scrollRectMoveBounds);

spriteWorldP A pointer to a SpriteWorld

scrollRectMoveBounds The address of a rectangle specifying the moveBounds

Description:
You should call this function before the animation starts to tell SpriteWorld how big your scrolling
area is. The maximum possible size of your scrolling world is 0 for the top and left sides, and
32767 for the bottom and right sides. These are the default movement boundaries. SpriteWorld
automatically enforces the scrolling movement boundaries, so once you’ve set them, you don’t
need to worry about them any more.

If you do not use tiling, then you would generally make the offscreen areas of the SpriteWorld as
large as your scrolling world, and then call
SWSetScrollingWorldMoveBounds(spriteWorldP, &spriteWorldP->backRect) to
set the boundary to the size of the offscreen areas.

If you do use tiling (and I expect that most people will), then you will want to set the bounds to the
size of your tileMap. Scrolling past the bounds of the tileMap could cause SpriteWorld to crash,
as it would be trying to read tiles that aren’t there. If you use tiling, you might make a call like this:
SetRect(&moveBoundsRect, 0, 0,
spriteWorldP->numTileMapCols * spriteWorldP->tileWidth,
spriteWorldP->numTileMapRows * spriteWorldP->tileHeight);

SWSetScrollingWorldMoveBounds(spriteWorldP, &moveBoundsRect);

Note that this example would only work correctly if it was called after SWInitTiling was called,
since SWInitTiling sets up the numTileMapCols, numTileMapRows, tileWidth, and tileHeight
variables in the SpriteWorldRec.

See Also:
SWSetScrollingWorldMoveProc

SWSetScrollingWorldMoveProc

This will set the procedure that moves the visScrollRect, which controls what portion of the
scrolling world is currently visible on the screen.

void SWSetScrollingWorldMoveProc(SpriteWorldPtr spriteWorldP,
WorldMoveProcPtr worldMoveProcP,
SpritePtr followSpriteP)

spriteWorldP A pointer to a SpriteWorld
worldMoveProcP The worldMoveProc
followSpriteP An optional “follow Sprite”

Description:
SWSetScrollingWorldMoveProc provides a way for you to control the speed and direction of the
scrolling. Since in most games, the scrolling “follows” a particular Sprite, such as the main
character, an optional followSpriteP parameter is provided. This followSpriteP will then be passed
to the WorldMoveProc each time it is called, so you can deal with it as you wish. If you do not
need the scrolling to follow a Sprite, simply pass NULL as the followSpriteP (and a NULL will also
be passed to the WorldMoveProc as the followSpriteP).

Your WorldMoveProc should be defined like this:

void MyWorldMoveProc(SpriteWorldPtr spriteWorldP,
SpritePtr followSpriteP);

The visScrollRect structure of the SpriteWorld specifies the area in your scrolling world that will
be copied to the screen. You need to move the visScrollRect in order to scroll. The standard way
of doing this is by changing the values in the horizScrollDelta and vertMoveDelta, which are
variables in the SpriteWorldRec. You can also use SWOffsetVisScrollRect and
SWMoveVisScrollRect, although these are not normally used by the WorldMoveProc.

By changing the values of spriteWorldP->horizScrollDelta and spriteWorldP->vertScrollDelta, you
can control the scrolling speed and direction. SpriteWorld will automatically offset the
visScrollRect with these variables as soon as your moveProc is finished, so any changes your
moveProc makes to these variables will be reflected in the very next frame of the animation.
When SpriteWorld moves the visScrollRect, it is automatically kept within its moveBounds (see
SWSetScrollingWorldMoveBounds).

If you want, you can access spriteWorldP->visScrollRect (a Rect structure) to see the current
position of the visScrollRect, but you shouldn’t move the visScrollRect by changing its values
directly. Instead, use either the spriteWorldP->horizScrollDelta and spriteWorldP->vertScrollDelta
variables, or the functions SWMoveVisScrollRect and SWOffsetVisScrollRect.

The WorldMoveProc is called after all the sprites in the SpriteWorld have been processed. So if
your WorldMoveProc is set up to follow a particular Sprite, it will be given the sprite’s latest
position as it will be seen in the next frame.

If you want to “turn off” a moveProc so SpriteWorld doesn’t call it anymore, you can simply call this
function with a value of NULL:

SWSetScrollingWorldMoveProc(spriteWorldP, NULL, NULL).

See Also:
SWMoveVisScrollRect
SWOffsetVisScrollRect
SWSetSpriteWorldScrollDelta

SWSetScrollingWorldMoveBounds

SWSetSpriteWorldScrollDelta

This will set the scrolling delta, which is automatically added to the visScrollRect each frame by
SWProcessScrollingSpriteWorld.

void SWSetSpriteWorldScrollDelta(SpriteWorldPtr spriteWorldP,
short horizDelta,
short vertDelta);

spriteWorldP A pointer to a SpriteWorld
horizDelta The horizontal delta
vertDelta The vertical delta

Description:

This function will set the scrolling delta of the SpriteWorld, which is used to control the speed and
direction of the scrolling. You might want to call SWSetSpriteWorldScrollDelta at the beginning or
during the animation. However, you would normally use a scrolling worldMoveProc to change the
scrollDelta by accessing it directly. (See SWSetScrollingWorldMoveProc.)

SWMoveVisScrollRect

This will set the position of the visScrollRect - the area that is copied to the screen.

void SWMoveVisScrollRect(SpriteWorldPtr spriteWorldP,
short horizPos,
short vertPos);

spriteWorldP A pointer to a SpriteWorld
horizPos The horizontal location of the left side of the visScrollRect
vertPos The vertical location of the top of the visScrollRect

Description:
This function will move the visScrollRect to the specified location, so the top of visScrollRect will

be located at vertPos and the left side of visScrollRect will be located at
horizPos. SpriteWorld automatically makes sure that the visScrollRect
stays within its bounds. If you try to move it to a location outside of its
bounds, then SpriteWorld will move it as close to the requested position
as possible, while still making sure it stays within its bounds.

You would generally call SWMoveVisScrollRect only before the animation starts, and then use the
ScrollingWorldMoveProc to control the scrolling after that, although SWMoveVisScrollRect might be
useful every now and then, such as if the Sprite the scrolling follows was suddenly transported to a
different spot in the scrolling world.

See Also:
SWOffsetVisScrollRect

SWSetScrollingWorldMoveProc

SWOffsetVisScrollRect

This will offset the visScrollRect

void SWOffsetVisScrollRect(SpriteWorldPtr spriteWorldP,
short horizOffset,
short vertOffset);

spriteWorldP A pointer to a SpriteWorld
horizOffset The horizontal offset
vertOffset The vertical offset

Description:
This function will offset the visScrollRect the distance specified by horizOffset and vertOffset. This
function automatically makes sure that the visScrollRect stays within its bounds. If you try to
offset it to a location outside of its bounds, then SpriteWorld will move it as close to the requested
position as possible, while still making sure it stays within its bounds.

You would generally use a ScrollingWorldMoveProc and the scrollDelta to control the scrolling, although
SWOffsetVisScrollRect might be handy in some situations.

See Also:
SWMoveVisScrollRect
SWSetScrollingWorldMoveProc

