
Inside SpriteWorld 2 by Tony Myles,

Karl Bunker

and Vern Jensen

version 2.0

General Introduction

SpriteWorld is a collection of routines that you can use to implement smooth animation in your applications.
SpriteWorld was designed with an eye towards the style of animation seen in arcade games in particular. You can
use SpriteWorld to…

• perform smooth multi-layered animation

• perform collision detection

• create animations from color icon or pict resources

• use custom bit blitting routines for off screen and/or on screen drawing

• synchronize animation with millisecond accuracy

• perform simple about box animations or write full blown arcade games

History

SpriteWorld 1.0 was written by Tony Myles; his most recent version appeared in April, 1994. Unfortunately, Tony
has been unable to support SpriteWorld since then, and hence has not addressed several bugs and limitations
that have been reported. In late 1994, I (Karl Bunker) started modifying SpriteWorld in order to use it in a game I
was developing. After this first round of revamping, I began collaborating with Vern Jensen, and between us we
developed a version of SpriteWorld that we felt was worthy of being released as an update or alternative to
Myles’ original. We have made some rather extensive changes to Myles’ code, but SpriteWorld should still be
considered Tony Myles’s creation. The wonderfully elegant structure of SpriteWorld, with its
World/Layer/Sprite/Frame hierarchy is Tony’s, and the most crucial sections of the code are still largely his. Our
contribution has been to fix things up, add some things, and to update the documentation. For a more detailed
comparison of this version of SpriteWorld with Myles’, see the “What’s New” file included as part of the
documentation package. This version of SpriteWorld is distributed with Tony Myles’ permission.

Tony Myles’ Acknowledgments

SpriteWorld would not have come to exist if it were not for the work of many people in the Macintosh game
development community. Most notably John Calhoun, and the late Duane Blehm. Thanks to Apple’s Developer
Support Center for tech notes and sample code. Thanks to Ed Harp for our friendship, and our late night
explorations into animation techniques. Thanks to David F. Johnson for just being who you are. Thanks to Ben
Sharpe for some great blitter code. Thanks to all the people at Pharos for their support and help.

Karl & Vern’s Acknowledgments

Our main indebtedness, of course, is to Tony Myles. Our work has been to redecorate and shore up the
foundations of the house he built. It is important to note that any bugs you find in this version of SpriteWorld must
not be considered Tony Myles’ responsibility.

A terrific contribution to SpriteWorld 2 was made by Christofer Åkersten (chris@basesoft.se). He wrote the
BlitPixieAllBit routines, providing a depth-independent 68K blitter that will be especially useful to those working
with screen depths less than 8 bits.

We are also immensely indebted and grateful to Greg Galanos and Metrowerks, for the donation of 2 copies of
CodeWarrior 8.

And we’re downright stupendously grateful to Cary Farrier of Apple, and Apple, Inc. in general for their assistance
with this project.

Somewhat less hysterical, but still earnest and profound, thanks to Tim Carroll of Apple DTS for his help with the
PPC 8 bit blitter.

Support:

To report bugs in this version of SpriteWorld, or to offer comments or make suggestions, please contact Karl
Bunker at:

KarlBunker@aol.com

or Vern Jensen at:

Vern_Jensen@lamg.com

The “official” source for the latest versions of SpriteWorld 2, its documentation and demos is the Web page:

http://users.aol.com/SpriteWld2/

and its corresponding ftp site:

ftp://users.aol.com/SpriteWld2/

If you think you have found a bug in SpriteWorld, try to modify one of the simple demo programs so that it
reproduces the bug, and then send that code to one of us. Remember that in order to achieve speed, there is
little or no error checking in SpriteWorld’s animation routines. (There is more error checking in the initialization
routines.) Therefore, by feeding incorrect parameters to a SpriteWorld routine, you can easily to make it do Bad
Things. Don’t be too quick to assume that such misbehavior is the result of a bug in SpriteWorld.

Important:

SpriteWorld is intended for programmers. It is not a “game construction kit” that non-programmers can use to
create games. If you encounter problems in your efforts to use SpriteWorld, you should do either or both of two
things: 1) Solve the problem(s) yourself. 2) Ask for help in a Mac programmer conference or Usenet newsgroup;
comp.sys.mac.programmer.games is recommended. Vern and I can’t guarantee that we’ll be able to answer any
and all questions sent to us, especially vague and general questions like “my Sprites don’t draw”. To use
SpriteWorld in your own project, start with on of the smaller demo programs provided as part of the SpriteWorld
package. Slowly add in your own code and your own sprite graphics. Refer to the other demo programs for more
information and sample code. If your project breaks, go back a few steps to isolate the problem.

Distribution:

Tony Myles originally released SpriteWorld as freeware, and naturally that policy is continued with this version.
Programs created using SpriteWorld may be distributed as freeware, shareware, or commercially. You aren’t
required to give notice that you used SpriteWorld in the credits to your program, though you’re certainly welcome
to do so. Beyond that, Vern and I would very much appreciate being informed about any SpriteWorld-using
releases.

The SpriteWorld package itself may be distributed by any means, provided that it is distributed and presented as
freeware.

Disclaimer:

The package is provided “as is”. None of its authors can be held responsible any for damage or loss of any kind
that may occur from using it.

Contribute!

Obviously, SpriteWorld is already a collaborative endeavor. You can contribute too, and help to make it even
better. Some things that would enhance SpriteWorld are:
• More custom blitters. A wider range of PPC blitters, particularly for 16 bit depth. A blitter that could scale would

be useful, too.
• Alternate formats for the sprites. For example, an option to directly read and blit the RLE PixMap data in PICT

resources. Or maybe a way to save the raw data from a sprite’s GWorld to a resource, which would speed up
loading time and save memory.

• Better demos. Put together something that’s fun and shows off SpriteWorld’s capabilities, and maybe we’ll
include in the package.

• We’re interested in anything that would make SpriteWorld better, but it should fit into the existing structure and
focus of SpriteWorld. We don’t want to add more general routines to the package, because we have to keep its
size and scope manageable.

Introduction to Sprites
“Sprite” is a technical term meaning an animated object that appears on the computer’s screen and may move
around or exhibit other interesting behavior. A good example is an arcade game in which you pilot a space ship
against hordes of alien invaders. In this case the ship and the invaders can be considered Sprites.

In terms of SpriteWorld’s implementation, a sprite is basically a data structure that contains a series of the
graphic images or Frames of the sprite, a rectangle that specifies where on the screen the sprite is to be drawn,
and various other parameters that specify how far it should move and in what direction, as well as when it should
move and be drawn. SpriteWorld provides a suite of routines you can use to create Sprites, and specify all of
their animation characteristics.

Sprites can have one or more Frames. The current Frame of a Sprite is the image that will be drawn when the
animation is rendered on the screen. If a Sprite has multiple Frames, its screen image can be animated by
advancing the current Frame in sequence. At the same time the screen position at which the Sprite’s current
Frame will be drawn can be adjusted, thus giving the illusion of movement.

Sprites also support the notion of collisions. As a Sprite moves around on the screen, it may come in contact with
another Sprite. This is called a collision. SpriteWorld provides routines to detect collisions and act upon them. By
default nothing will happen; the Sprites will harmlessly pass through each other. On the screen the Sprite images
will smoothly overlap one another.

SpriteWorld uses Sprites to drive the animation. Each frame of the animation is built by processing the Sprites
and then drawing them. When the Sprites are processed, their new positions are calculated based on their
installed movement procedures, and their current Frame is changed based on their Frame advance parameters.
In general the Sprites are used as a mechanism to shield you from all the gory details of the animation.

Introduction to SpriteWorld
Unlike the Amiga and other game machines, the Macintosh has no sprite animation hardware built-in. Sprite
animation must therefore be implemented in software. SpriteWorld is an

attempt to implement a sprite-based animation architecture on the Macintosh.

SpriteWorld achieves its smooth animation using a frame differential technique. This means that for each frame
of the animation, only the areas of the screen that have changed are actually drawn. This technique uses a
double buffering scheme, meaning that two offscreen areas, one to keep a fresh copy of the background and the
other to serve as a work area, are used to render the animation before it is drawn on screen. This calls for a
three step process to building a frame of the animation.

• A section of the background corresponding to the Sprite’s old location is copied from the background
frame to the offscreen work frame. This step erases the Sprite from its old position in the work frame, preparing it
for the Sprite’s new location.

• The current Frame of the Sprite is then drawn in the Sprite’s current position in the offscreen work area.

(Note the various uses of the word “frame”: A “Frame” (capitalized) refers to a single graphic image of a Sprite;
each Sprite may have several Frames, each one representing a different stage in the Sprite’s appearance. A
“frame” of animation refers to a single iteration of the entire screen image, comparable to a frame of a movie.
And just to make things more confusing, the two main offscreen areas are sometimes referred to as the
“background frame” and the “work frame”.)

• The union of the Sprite’s last position and its current position is then copied from the work area to the
corresponding position on the screen, effectively erasing the Sprite from its old position on screen, and drawing
the Sprite in its new position simultaneously.

This simple animation technique is commonly used by games and animation applications on the Macintosh.
SpriteWorld’s implementation of this technique employs several improvements and optimizations for smooth
overlapping of Sprites, skipping inactive Sprites, etc.

When creating animations using SpriteWorld you will deal primarily with four data structures: SpriteWorlds,
SpriteLayers, Sprites, and Frames. These four structures have a containment relationship in that SpriteWorlds
contain any number of SpriteLayers, which contain any number of Sprites, which contain one or more Frames.

SpriteWorlds

SpriteWorlds provide a context for the animation to take place. The context provided by a SpriteWorld is
essentially the graphics environment for the animation both on and off screen. Everything in the animation
happens under the domain of a SpriteWorld. Your program can create any number of SpriteWorlds.

A SpriteWorld contains a frame for the offscreen background area, the offscreen work area, and the screen itself.
The frames for the background and the work area are offscreen GWorlds whose size you determine when you
create the SpriteWorld. The screen frame is just a data structure for accessing the screen’s GWorld or its video
RAM. A SpriteWorld also maintains a list of the SpriteLayers that are taking part in the animation. There are
routines for adding and removing Layers from a world. There can be any number of Layers in a given
SpriteWorld.

In terms of the actual drawing, the SpriteWorld is responsible for erasing and redrawing the Sprite offscreen and
updating the Sprite onscreen. You can install custom routines to handle these functions by writing a custom pixel
blitter. By default SpriteWorld uses QuickDraw’s CopyBits routine for all drawing operations. Built into
SpriteWorld are a set of high speed pixel blitters called BlitPixie, and an option for compiled Sprites.

SpriteLayers

SpriteLayers are used to maintain groups of related Sprites. Using SpriteLayers you can animate sets of Sprites
in separate overlapping planes, creating the illusion that the Sprites are passing in front of and/or behind other
Sprites. When drawing occurs, each Sprite in each Layer, and each Layer in the world, is drawn consecutively,
one overlapping the other.

The first Layer is drawn first, the last drawn last, so that the Sprites in each Layer overlap each other in a
consistent order.

Aside from the animation, this layering facility is also used by the collision detection mechanism. If you arrange
your Sprites in logical layers, e.g. the good guys in one layer and the bad guys in another, then detecting
collisions is simply a matter of checking one layer of Sprites against another. You can also detect collisions
between Sprites residing within a single layer.

Sprites

Sprites are the star of the show. Any animation you create will consist of one or more Sprites. These Sprites
move about the screen and do interesting things according to parameters you can specify using the routines
provided. You can specify the timing, direction, and distance a Sprites moves at any one time. By installing a
move routine, your Sprites can exhibit extremely complex behavior such as simulated gravitational forces.

A Sprite contains one or more Frames. As a Sprite moves it may change which Frame is to be currently drawn,
producing the illusion of animation. You can specify the timing of these Frame changes, and by installing a
Frame routine, you can perform more sophisticated frame animation such as rotating a space ship when certain
key is pressed.

Sprite movement and Sprite Frame changes can also easily be linked together. For example, in an animation of
a walking figure the position of the Sprite on the screen can be controlled by which Frame image is current, thus
avoiding the “sliding feet” syndrome so common in animations of walking.

When one Sprite overlaps another, a collision has occurred. By installing a collision routine the Sprite can take
action when a collision is detected, such as playing an explosion sound.

Frames

Frames are used to maintain the individual graphic images of a Sprite. Each Frame consists of a data structure,
an offscreen GWorld in which the actual image is stored, and a mask.

The SpriteWorld Libraries and Source Code

In order to use SpriteWorld in your programming project, you must include one or more SpriteWorld Libraries, or
the SpriteWorld source code in your project.

The 68K version of the SpriteWorld libraries is in the form of two library files: SpriteWorld Lib 1 68K and
SpriteWorld Lib 2 68K. There are two libraries because the whole of the SpriteWorld code would exceed the 32K
limit imposed on 68K code segments. SpriteWorld Lib 1 contains the bulk of the SpriteWorld routines, and is
required for all 68K SpriteWorld projects. SpriteWorld Lib 2 contains the SpriteWorld scrolling background
routines, and the BlitPixieAllBit blitter. If your project does not use either of these sets of routines, you can leave
SpriteWorld Lib 2 out of your project. For Power PC native projects, the single library file is SpriteWorld Lib PPC.

The 68K libraries are provided in Think/Symantec format and CodeWarrior format, but the Power PC library is
only in CodeWarrior format. If you want to create a Power PC native application using the Symantec
environment, you’ll have to compile the SpriteWorld 2 source code yourself.

The SpriteWorld 2 source code is made freely available as part of the package. You may want to study this to
gain a better understanding of some SpriteWorld functions, or to copy and modify some functions for use in your
own code. Studying the source code will also enable you to make more advanced uses of SpriteWorld; for
example, implementing “procedural” Sprites in which the Sprite image is modified in response to user interaction.

Using SpriteWorld
Getting Started

Performing animation using SpriteWorld involves 4 core steps (in bold), and 2 initialization or housekeeping
steps:

• Initialize the SpriteWorld package.

• Create the various pieces: the SpriteWorld, the SpriteLayers, the Sprites, and the Frames.

• Assemble the various pieces: add the Frames to the Sprites, add the Sprites to the SpriteLayers, add
the SpriteLayers to the SpriteWorld.

• Set the various movement and Frame advance parameters that define a Sprite’s behavior.

• Drive the animation using SWProcessSpriteWorld and SWAnimateSpriteWorld in a tight loop.
Collision detection may optionally be performed here.

• The last step is to ask the SpriteWorld package to clean up. This disposes of all the SpriteLayers, Sprites,
and Frames that were created earlier.

While the animation is running you may add or remove individual Sprites or entire SpriteLayers, change a
Sprite’s movement and Frame advance characteristics, switch the order of SpriteLayers in the SpriteWorld, and
perform any number of other manipulations. Thus an animation can be a simple “set up and forget” proposition,
or an intensely dynamic, complex and user-interactive programming endeavor.

Creating an animation

Before SpriteWorld can be used it must first be initialized with a call to SWEnterSpriteWorld.
SWEnterSpriteWorld performs some checks to see if SpriteWorld can run, and then sets up some internal data
structures. You must call SWEnterSpriteWorld before calling any other SpriteWorld routine.

err = SWEnterSpriteWorld();

Once the SpriteWorld package is initialized you can start creating the pieces that will make up your animation.
The central piece to any animation is the SpriteWorld. If your application has a window in which you would like to
display the animation you can easily create a SpriteWorld by calling SWCreateSpriteWorldFromWindow.

err = SWCreateSpriteWorldFromWindow(&spriteWorldP,

gameWindowP,

&worldRect,

&backRect);

For even the simplest animation you must create at least one SpriteLayer. This is accomplished by calling the
SWCreateSpriteLayer function. There is no limit to the number of SpriteLayers that you might use in an
animation.

err = SWCreateSpriteLayer(&spriteLayerP);

An easy way to create a Sprite with a set of Frames is by calling SWCreateSpriteFromCicnResource.

err = SWCreateSpriteFromCicnResource(spriteWorldP,

&newSpriteP,

NULL,

kCIconResourceID,

kNumberOfFrames,

kFatMask);

Assembling The Pieces

Before an animation can be run the pieces that you have created must be assembled. This is accomplished by
adding the Sprites to the SpriteLayers, and adding the SpriteLayers to the SpriteWorld.

// repeat this call for each Sprite

SWAddSprite(spriteLayerP, newSpriteP);

// repeat this call for each SpriteLayer

SWAddSpriteLayer(spriteWorldP, spriteLayerP)

Defining Sprite Behavior

Before and possibly during the animation you will want to define the movement behavior of your Sprites. The
following code snippet covers most of the basic behavioral parameters you will be dealing with.

// set the Sprite’s initial location (horiz, vert)

SWSetSpriteLocation(newSpriteP, 100, 100);

// set how often a Sprite moves in milliseconds

SWSetSpriteMoveTime(newSpriteP, 30);

// set the Sprite’s movement direction/distance in pixels

SWSetSpriteMoveDelta(newSpriteP, 10, 5);

// set the Sprite’s moveProc to define its motion behavior

SWSetSpriteMoveProc(newSpriteP, myBounceSpriteMoveProc);

// set how often the Frame changes in milliseconds

SWSetSpriteFrameTime(newSpriteP, 1000/30);

// set the range of Frames to be cycled through

SWSetSpriteFrameRange(newSpriteP, 0, 10);

Driving The Animation

Once everything is in place the animation is driven by repeated calls to SWProcessSpriteWorld and
SWAnimateSpriteWorld. SWProcessSpriteWorld runs through each Sprite installed in each SpriteLayer in the
SpriteWorld and advances the position of the Sprite’s destination rectangle according to each Sprite’s movement
characteristics. SWAnimateSpriteWorld draws each Sprite that needs to be drawn on the screen. Rigorous
checking is done on each Sprite to determine if it really needs to be drawn since a considerable time savings is
gained by skipping even one small Sprite.

// core animation loop

while (animationIsRunning)

{

// move the Sprites to their new positions

SWProcessSpriteWorld(spriteWorldP);

// render a frame of the animation

SWAnimateSpriteWorld(spriteWorldP);

}

Movement routines

In order for a Sprite to move, it must have a movement routine, or moveProc. This is a user-defined routine
which is called by SpriteWorld when it is time for a Sprite to be moved. The moveProc you define can make use
of such SpriteWorld routines as SWOffsetSprite or SWMoveSprite. SWBounceSprite and SWWrapSprite can
also be used in a moveProc to produce a bouncing or wrap-around sprite motion. A moveProc is installed with
SWSetSpriteMoveProc:

SWSetSpriteMoveProc(mySpriteP, MyMoveProc);

The moveProc, in turn, has this form:

void MyMoveProc(SpritePtr srcSpritePtr)

Frame routines

Frame routines, or frameProcs, are analogous to moveProcs. If a frameProc routine is installed for a Sprite, then
that routine will be called by SpriteWorld when it is time for the Sprite to change its Frame. However, although a
Sprite can’t move without a moveProc, it can change Frames without a frameProc. By setting a Sprite’s Frame
range with SWSetSpriteFrameRange, the Sprite can be set to automatically cycle through the specified set of
Frames. A frameProc will be used for allow more complex forms of Frame-changing, or to trigger some other
action when a Sprite’s Frame changes. A frameProc is installed with SWSetSpriteFrameProc:

SWSetSpriteFrameProc(mySpriteP, MyFrameProc);

The frameProc, in turn, has this form:

void MyFrameProc(SpritePtr srcSpriteP,

FramePtr curFrameP,

long *frameIndex);

Detecting Collisions

Since collision detection is such an application specific problem, SpriteWorld employs a collision detection
mechanism that is very versatile, but simple and easy to use.

The SWCollideSpriteLayer function is used to check the Sprites in the source SpriteLayer against the Sprites in
the destination SpriteLayer for collisions. In order to check for collisions between the Sprites of a single
SpriteLayer, you must pass the same SpriteLayer as the source and the destination.

// see if our ship has collided with any enemies

SWCollideSpriteLayer(mySpriteWorldP, shipSpriteLayerP,

enemySpriteLayerP);

// we may want to see if any of the enemies

// have collided with each other

SWCollideSpriteLayer(mySpriteWorldP, enemySpriteLayerP,

enemySpriteLayerP);

When a collision is detected the collision routine, if any, of the source Sprite is called. For anything useful to
happen you must install a collision routine, or collideProc, in the Sprites you expect to be involved in collisions. A
collideProc is installed with SWSetSpriteCollideProc:

SWSetSpriteCollideProc(shipSpriteP, myCollideProc);

The collideProc has this form:

void MyCollideProc(SpritePtr srcSpriteP,

SpritePtr dstSpriteP,

Rect* sectRect);

A collision is defined as the condition that occurs when the rectangle that defines the current screen location of a
Sprite intersects the corresponding rectangle of another Sprite. This may or may not mean that the actual images
of the Sprites as they appear on screen overlap. Therefore it is up to the collision routine you provide to
determine a more precise definition of a collision for your Sprites if necessary. The SpriteWorld routines
SWRadiusCollision, SWPixelCollision and SWRegionCollision can help with this.

Sprite Masks and Self-Masking

Programmers preparing to use SpriteWorld will probably be familiar with the concept of masks. A mask is a black
and white image in which the black pixels indicate which parts of the Sprite image should actually be drawn—
which parts are not background, in other words. Masks are included as part of cicn resources; Sprites created
from PICT resources may or may not require an additional PICT for the mask. When creating a sprite with
SWCreateSpriteFromPictResource, SWCreateSpriteFromSinglePict, or SWCreateSpriteFromSinglePictXY, if you
pass the same resource ID for both the Sprite PICT and the mask PICT, then SpriteWorld will create a mask from
the Sprite’s own image. This is called self-masking. When this is done, any pixels in the Sprite image that are not

pure white will become part of the mask. Therefore, if any part of the Sprite itself is pure white, you should not
use this method, but should “manually” create a black and white mask PICT.

As is described in the documentation to SpriteWorld’s Sprite-creation routines, SpriteWorld allows two types of
mask to be created: a region mask and a pixel mask. There is also a “fat” mask, in which both types are created.
It should be noted that the initialization of a Sprite will be considerably (as much as 50%) slower if a fat mask is
requested, as compared to only a pixel mask. If only a pixel mask is made, then you must use a custom blitter
such as BlitPixie to draw the sprite, rather than CopyBits (unless your sprite is rectangular and has no mask at
all). Also, if only a pixel mask is created, you can’t use any functions that require a QuickDraw region, such as
SWRegionCollision.

SpriteWorld DrawProcs

The business of animation is primarily one of copying images, and SpriteWorld provides you with a variety of
different methods of copying (or “drawing”; the terms can be used interchangeably here) to fit different situations.
Some of these methods are discussed in more detail later in this file. Each drawing procedure is in the form of a
“drawProc”. The routine SWSetSpriteDrawProc installs a drawProc for a particular Sprite. Likewise,
SWSetSpriteWorldOffscreenDrawProc sets the drawProc SpriteWorld uses for copying between the offscreen
work frame and the offscreen background frame. SWSetSpriteWorldScreenDrawProc sets the drawProc used for
drawing to the screen. Here is a list of the drawProcs available in SpriteWorld:

SWStdSpriteDrawProc CopyBits; the default drawProc for Sprites.

SWStdWorldDrawProc CopyBits; the default offscreen and screen drawProc.

BlitPixieAllBitMaskDrawProc Depth-independent BlitPixie with a mask.

BlitPixie8BitMaskDrawProc BlitPixie with a mask; optimized for 8 bit graphics.

BlitPixieAllBitPartialMaskDrawProc

BlitPixie8BitPartialMaskDrawProc BlitPixie with a “partial” mask.

BlitPixieAllBitRectDrawProc

BlitPixie8BitRectDrawProc BlitPixie with no mask (draws rectangular areas only).

BPAllBitInterlacedMaskDrawProc

BP8BitInterlacedMaskDrawProc Interlaced BlitPixie with a mask. Only every other horizontal line is
drawn.

BPAllBitInterlacedPartialMaskDrawProc

BP8BitInterlacedPartialMaskDrawProc Interlaced BlitPixie with a partial mask.

BPAllBitInterlacedRectDrawProc

BP8BitInterlacedRectDrawProc Interlaced BlitPixie with no mask.

CompiledSpriteDrawProc For Compiled Sprites.

Note that only SWStdWorldDrawProc and the “RectDrawProcs” can be used as the screenDrawProc and
offscreenDrawProc. The RectDrawProcs can also be used for drawing Sprites, but only if the Sprite is
rectangular. The MaskDrawProcs and CompiledSpriteDrawProc are used for Sprites with irregular shapes. When
creating a

Sprite, the appropriate maskType must be defined for the type of drawProc you intend to use with that Sprite.
See SWSetSpriteDrawProc for more information.

The various “BlitPixie” drawProcs make use of custom blitters included in SpriteWorld. These BlitPixie routines
are generally much faster than CopyBits. The BlitPixie8Bit routines are optimized for 8 bit graphics, and exist in
two versions: one written in 68K assembly language and one in C specifically optimized for PPC-native
compiling. The C version is used in the PPC SpriteWorld Library, and the 68K version is used in the 68K
Libraries. Another set of BlitPixie routines are also available; these are the BlitPixieAllBit routines, and they are
available only in the 68K SpriteWorld Libraries. The BlitPixieAllBit routines are depth-independent, meaning they
will work for all bit depths, from 1 through 32. If your animation is only going to appear at 8 bits depth, then the
BlitPixie8Bit routines should be used, as these are somewhat faster than BlitPixieAllBit. A couple of points should
also be noted about using BlitPixieAllBit at 16 and 32 bits depth: First, although BlitPixieAllBit will be faster than
CopyBits when running on a 68K machine, CopyBits will be faster on a Power Mac running in emulation. (Not too
surprising, since Power Macs switch to native mode for the actual CopyBits blitting.) Second, if you install
BlitPixieAllBitMaskDrawProc for a Sprite, the drawProc that will actually be used is
BlitPixieAllBitPartialMaskDrawProc. This is because due to the bit-wise nature of 16 and 32 bit pixels,
BlitPixieAllBitPartialMaskDrawProc is required. (The PartialMask drawProcs are discussed below.)

The BPInterlaced drawProcs are versions of BlitPixie in which every other horizontal line of an image is skipped,
and left black. This provides much better speed than standard BlitPixie, at the cost of a darker, coarser-looking
image. This can be used to allow your animation to run acceptably on lower-end machines that normally wouldn’t
be fast enough. To achieve the best speed when interlacing, all of the drawProcs: the offscreenDrawProc,
screenDrawProc, and the drawProcs of all Sprites should be one of the BPInterlaced drawProcs.

The PartialMask drawProcs are primarily intended for drawing masked tiles (see the file “SpriteWorld - Tiling”),
but they can be used for Sprites as well. These drawProcs are significantly slower than the BlitPixieMask
drawProcs, however. The standard BlitPixieMask drawProcs require that the background of a Sprite—the part
that doesn’t correspond to the mask image—be white. The PartialMask drawProcs don’t have this constraint.
Thus they can be used when the mask of a Sprite (or tile)—and the part you want drawn—corresponds to only a
part (hence the “Partial”) of the whole Sprite image.

BlitPixie and Drawing Directly to the Screen

As noted above, SpriteWorld allows you to optionally use custom blitters called BlitPixie for copying images,
rather than the standard CopyBits. BlitPixie can be used to move images from one offscreen GWorld to another,
and also to draw images to the screen. BlitPixie is considerably faster than CopyBits, and setting up your
SpriteWorld to use it will greatly improve the speed of the animation. BlitPixie’s core routines are written in 68K
assembly language for the 68K version of SpriteWorld, and in C for the PPC native version.

As discussed above, the SpriteWorld call:

SWSetSpriteDrawProc(mySpriteP, BlitPixie8BitMaskDrawProc);

will cause that Sprite to be copied from the Sprite’s Frame image to the offscreen work frame using BlitPixie
rather than the default CopyBits.

Likewise, the SpriteWorld call:

SWSetSpriteWorldOffscreenDrawProc(mySpriteWorldP,

BlitPixie8BitRectDrawProc);

will cause SpriteWorld to use BlitPixie when transferring sections of the background image from the background
frame to the work frame.

Both of these involve image transfers from one offscreen GWorld to another, and using BlitPixie for these should
be no more “dangerous” than using CopyBits.

For one more speed boost, you can use the SpriteWorld call:

SWSetSpriteWorldScreenDrawProc(mySpriteWorldP,

BlitPixie8BitRectDrawProc);

SpriteWorld will then use BlitPixie for the final step of rendering the animation: copying the Sprite’s image from
the work frame to the screen. When this is done, image information is placed directly into the video RAM,
bypassing the usual toolbox calls for drawing on the screen. This can provide faster animation, but it should be
used with some caution.

For a long time Apple, Inc.’s official position was that drawing directly to the screen in this way is not officially
supported, and is not guaranteed to work with future hardware or system software. More recently, Apple has
stated that direct-to-screen drawing will continue to be supported by the next generation of system software
(System 8), providing certain guidelines are followed. SpriteWorld 2 follows those guidelines that are its
responsibility; other guidelines are the responsibility of the programmer (you), and are described below.

In general, the major problem with direct-to-screen drawing is simply that it’s difficult to guarantee that it has
been done correctly and will work for all end users. Drawing to the screen is much more sensitive to differences
in user’s hardware and system setups than most code, so it’s harder to test.

Guidelines for drawing directly to the screen:

• Ideally, if you use direct-to-screen animation in your application, the user should be able to turn it off and use
CopyBits for screen drawing if problems occur.

• You should hide the mouse cursor for as long as your direct-to-screen animation is running, or not allow it to be
shown in the field where the animation is happening. Otherwise, graphical “artifacts” will appear around the
cursor if it is placed over a Sprite. It is recommended that you use ShieldCursor to hide the cursor; certain third
party video drivers watch for this call and use it to maintain compatibility with direct-to-screen drawing.

• Be sure that the animation stops (or switches to CopyBits for screen drawing) when your application is in the
background. Otherwise your animation may be drawn over the contents of other application’s windows.

• The window that SpriteWorld is using for its animation must not be movable.

• Make sure that the window SpriteWorld is using fits on the screen. BlitPixie only clips its drawing to the window,
not to the screen, so if your window is hanging off the edge of the screen BlitPixie will likely write to random
memory, causing a crash.

Compiled Sprites

For the greatest possible speed on 68K Macs at 8 bits depth, SpriteWorld can “compile” Sprites. After a Sprite
has been created (using one of the SWCreateSprite... calls), it can be compiled using

SWCompileSprite(mySpriteP);

Once this has been done, you can set the Sprite’s drawing procedure with

SWSetSpriteDrawProc(mySpriteP, CompiledSpriteDrawProc);

This will cause the Sprite to be drawn to the offscreen work frame using code compiled specifically for that
Sprite. Animation using compiled Sprites can be as much as about 40% faster than with BlitPixie.

Some technical notes about compiled Sprites:

• When a Sprite is compiled, the mask image of the Sprite is used to create a series of 68K

machine language instructions. This package of instructions is then attached to the Frame data structure of each
Frame of the Sprite. When the Sprite is drawn using CompiledSpriteDrawProc, these instructions are executed,
accessing the Frame’s image and quickly blitting only the masked, or non-transparent, parts of the image to the
destination work frame. This process is more correctly called “mask compiling”, but using that term would
probably cause confusion, even if technically correct.

• Because the code used in compiled Sprites is 68K machine language, BlitPixie would be faster than compiled
Sprites in the Power PC native version of SpriteWorld, so compiled Sprites are not implemented in the PPC
native version. You can still call SWCompileSprite in a PPC native SpriteWorld, but it will do nothing, and setting
a Sprite’s drawProc to CompiledSpriteDrawProc will actually set it to BlitPixie8BitMaskDrawProc.

• If you are going to clone a Sprite, you can compile the Sprite either before or after cloning it. Either way, you
only need to compile one Sprite in the clone “family”; the compiled data will be available for all the clones.

• Compiling takes a little time and may add slightly to the initialization time of your program (assuming you
compile the Sprites at initialization time), depending on the number of Sprites and Frames being compiled, their
size, the complexity of the mask, and the speed of the platform. Compiling also requires some additional
memory.

• For the optimum combination of speed and safety (in a 68K project with 8 bit graphics), use
CompiledSpriteDrawProc for the Sprites’ drawing procedure, BlitPixie8BitRectDrawProc as the offscreen draw
procedure, and SWStdWorldDrawProc (i.e., CopyBits) as the screen draw procedure. For maximum speed, use
CompiledSpriteDrawProc for Sprites, and BlitPixie8BitRectDrawProc for both the offscreen and screen draw
procedure.

SpriteWorld Reference
The following section serves as a reference to the routines SpriteWorld provides. This documentation is divided
into five parts; the first four correspond to the four core data structures of SpriteWorld: SpriteWorlds,
SpriteLayers, Sprites, and Frames. The final part lists SpriteWorld utility functions and Sprite Compiler functions.
Within each section, the routines are listed in alphabetical order.

Note:

• The routines are categorized according to which structure is modified. For example, SWAddFrame is
considered a Sprite routine, because a Sprite is being changed by having a Frame added to it.

• There are many routines in the SpriteWorld code that aren’t documented here. For the most part, these should
be considered “internal” and used with caution, if at all.

SpriteWorld Routines

SWAddSpriteLayer

This function will add a SpriteLayer to a SpriteWorld.

void SWAddSpriteLayer(SpriteWorldPtr spriteWorldP,

SpriteLayerPtr spriteLayerP);

spriteWorldP A SpriteWorld to which the Layer will be added.

spriteLayerP A SpriteLayer to add.

DESCRIPTION

The SWAddSpriteLayer function is used to add a previously created SpriteLayer to a SpriteWorld. A world can
contain any number of Layers. Once a Layer is added to a world, it becomes an active part of the animation. Any
Sprites in the Layer will be processed and drawn when the next Frame of the animation is rendered.

SWAnimateSpriteWorld

This function will render a frame of the animation using the frame differential technique.

void SWAnimateSpriteWorld(SpriteWorldPtr spriteWorldP);

spriteWorldP A SpriteWorld to be animated.

DESCRIPTION

The SWAnimateSpriteWorld function is used to render a frame of the animation by drawing all the Sprites in the
specified SpriteWorld in their new positions. You will typically call this function right after SWProcessSpriteWorld
in your main animation loop. This function marks all the Sprites as no longer in need of drawing, so that next time
around if the Sprite has not been moved or otherwise changed in any way, it will not be drawn again
unnecessarily.

SEE ALSO

SWProcessSpriteWorld

SWCopyBackgroundToWorkArea

This function copies SpriteWorld’s background frame to its work frame.

void SWCopyBackgroundToWorkArea(SpriteWorldPtr spriteWorldP);

spriteWorldP The SpriteWorld owning the background frame and work frame.

DESCRIPTION

A SpriteWorld’s background frame holds a clean copy of the background for the animation. The work frame is
where the background and Sprites are mixed before copying to the screen. SWCopyBackgroundToWorkArea
copies the entire background frame to the work frame. By calling SWCopyBackgroundToWorkArea and then
SWUpdateWindow (which copies the work frame to the window), you can update the worldRect of the
SpriteWorld without drawing any Sprites. You might want to do this for the opening display of a game, for
example.

SEE ALSO

SWUpdateWindow

SWUpdateSpriteWorld

SWSetPortToBackground

SWCreateSpriteWorldFromWindow

This function will create a SpriteWorld automatically for an existing window.

OSErr SWCreateSpriteWorldFromWindow(SpriteWorldPtr* spriteWorldP,

CWindowPtr srcWindowP,

Rect* worldRect,

Rect* backRect);

spriteWorldP A newly created SpriteWorld is returned in this parameter.

srcWindowP A window in which the new SpriteWorld will exist.

worldRect The dimensions of the SpriteWorld.

backRect The dimensions of the offscreen areas.

DESCRIPTION

The SWCreateSpriteWorldFromWindow function is used to create a new SpriteWorld for an existing window.
Given an existing window, this function will create a new SpriteWorld in the window, using the dimensions you
specify in coordinates local to the window. If you specify NULL instead of a worldRect parameter, the full
dimensions of the window will be used. The backRect parameter is provided so you can make the offscreen area
larger than the worldRect. You would only need to do this if you were using the scrolling routines; otherwise, pass
NULL to use a backRect the same size as the worldRect.

The coordinates you use for functions such as SWMoveSprite are local to the worldRect of the SpriteWorld.
Thus, if worldRect is the same as the window’s dimensions, coordinates for Sprites will be the same as local
coordinates in that window. To conserve memory, you should define a worldRect no larger that what is needed
for the animated portion of your window. SWCreateSpriteWorldFromWindow will return an error if any memory
allocation fails, or if srcWindowP is a WindowPtr rather than a CWindowPtr.

SWDisposeSpriteWorld

This will dispose of an existing SpriteWorld and its contents, releasing the memory it occupies.

void SWDisposeSpriteWorld(SpriteWorldPtr spriteWorldP);

spriteWorldP A SpriteWorld to be disposed.

DESCRIPTION

The SWDisposeSpriteWorld function is used to dispose of a SpriteWorld previously created using
SWCreateSpriteWorld or SWCreateSpriteWorldFromWindow. The memory occupied by

the SpriteWorld, as well as the background and work frames, and all contained SpriteLayers, Sprites and Frames
will be released. Note that only Layers that have been added to the SpriteWorld, and only Sprites that have been
added to one of those Layers will be disposed of. Thus, any Sprites that have been removed from their Layer
with SWRemoveSprite, or that have never been added to a Layer, will not be disposed of.

SEE ALSO:

SWDisposeLayer

SWDisposeSprite

SWEnterSpriteWorld

This function initializes the SpriteWorld package .

OSErr SWEnterSpriteWorld(void);

DESCRIPTION

The SWEnterSpriteWorld function is used to initialize the SpriteWorld package. SWEnterSpriteWorld
performs some checks to see is SpriteWorld can run, and then sets up some internal data structures. You must
call SWEnterSpriteWorld before calling any other SpriteWorld routine.

SWEnterSpriteWorld returns an error code if initialization fails, other wise it returns noErr.

SWExitSpriteWorld

This function shuts down the SpriteWorld package.

void SWExitSpriteWorld(void);

DESCRIPTION

The SWExitSpriteWorld function is used to shut down the SpriteWorld package. It should be called when
the application is finished using SpriteWorld to balance the original call to SWEnterSpriteWorld. At this
point no further calls should be made to any SpriteWorld routines until SWEnterSpriteWorld is called
again.

SWGetNextSpriteLayer

This function will return the next SpriteLayer from a SpriteWorld.

SpriteLayerPtr SWGetNextSpriteLayer(SpriteWorldPtr spriteWorldP,

SpriteLayerPtr curSpriteLayerP);

spriteWorldP A SpriteWorld from which to get the SpriteLayer.

curSpriteLayerP A SpriteLayer previously returned from this function, pass NULL to

get the first SpriteLayer.

DESCRIPTION

The SWGetNextSpriteLayer function is used to iterate through the Layers in world. The Layer following the
current one you specify is returned. When the are no more Layers in the world, NULL is returned.

SWGetSpriteWorldVersion

This function returns the version number of SpriteWorld.

unsigned long SWGetSpriteWorldVersion(void);

DESCRIPTION

SWGetSpriteWorldVersion returns a an unsigned long value in binary coded decimal indicating the current
version number of SpriteWorld. The high word indicates the major version number of SpriteWorld, and the low
word indicates any beta number attached to the version. For example, 0x02010000 = SpriteWorld version 2.0.1.

If a beta number is returned, then that version of SpriteWorld should not be considered intended for general
release. Contact Karl or Vern for a current version.

SWLockSpriteWorld

This function locks a SpriteWorld in preparation for animation.

void SWLockSpriteWorld(SpriteWorldPtr spriteWorldP);

spriteWorldP A SpriteWorld to be locked.

DESCRIPTION

The SWLockSpriteWorld function is used to lock the SpriteWorld including all the SpriteLayers, Sprites, and
Frames contained within. Before a SpriteWorld can be animated, and before anything is drawn to the
background frame, the SpriteWorld must first be locked.

SPECIAL CONSIDERATIONS

Note that if you add a new Sprite or Frame to a running animation, it must be locked before it is animated. Any
Frames, Sprites or Layers that were not attached to the SpriteWorld when SWLockSpriteWorld is called will not
be locked. Thus, as a rule, calling SWLockSpriteWorld should be done only after assembling all the elements of
your animation with SWAddSprite and SWAddSpriteLayer.

∆ WARNING ∆

Drawing a picture or pattern to the background frame must be done after the SpriteWorld is locked.

SEE ALSO:

SWLockSpriteLayer

SWLockSprite

SWProcessSpriteWorld

This function processes all the Sprites in a SpriteWorld, updating their positions, resetting their timers, calling
their custom move and Frame procs, etc.

void SWProcessSpriteWorld(SpriteWorldPtr spriteWorldP);

spriteWorldP A SpriteWorld to be processed.

DESCRIPTION

The SWProcessSpriteWorld function is used to perform all the automatic processing to every Sprite in the
SpriteWorld. This includes updating the Sprite’s positions, resetting their movement and Frame change timers,
and calling their custom move and Frame routines if any. This function, in conjunction with
SWAnimateSpriteWorld, drives the animation.

This function does no drawing, it simply processes a Sprite in terms of its movement and Frame changing
characteristics using the parameters you specify when setting up the Sprite.

SEE ALSO

SWAnimateSpriteWorld

SWRemoveSpriteLayer

This function will remove a SpriteLayer from a SpriteWorld.

void SWRemoveSpriteLayer(SpriteWorldPtr spriteWorldP,

SpriteLayerPtr spriteLayerP);

spriteWorldP A SpriteWorld from which the SpriteLayer is to be removed.

spriteLayerP A SpriteLayer to remove.

DESCRIPTION

The SWRemoveSpriteLayer function is used to remove a SpriteLayer from a SpriteWorld. This is done when you
want to remove an entire Layer of Sprites from the animation. The Sprites in the Layer that is removed will not be
processed or drawn when the next frame of the animation is rendered.

SPECIAL CONSIDERATIONS

Removing the Layer will not erase the Sprites where they are on the screen. If you wish the Sprites in the Layer
to disappear and the animation to continue, you must first set the

Sprite’s visibility to FALSE, render a frame of the animation, and then remove the Layer from the world.
Alternatively, you could call SWUpdateSpriteWorld after removing the Layer.

SEE ALSO

SWSetSpriteVisible

SWSetPortToBackground

This function will set the current port to the GWorld of SpriteWorld’s background frame.

void SWSetPortToBackground(SpriteWorldPtr spriteWorldP);

spriteWorldP The SpriteWorld owning the background frame.

DESCRIPTION

SWSetPortToBackground sets the current port to the background frame. You will want to do this to draw the
background image for SpriteWorld’s use. You can easily get the rect of the background frame with:

spriteWorldP->backRect

SPECIAL CONSIDERATIONS

SWSetPortToBackground will only perform its function if the SpriteWorld has been locked. The GWorld of the
background frame will not be locked if the SpriteWorld is not locked.

SWSetPortToWindow

This function will set the current port to the “parent” window of the SpriteWorld.

void SWSetPortToWindow(SpriteWorldPtr spriteWorldP);

spriteWorldP The SpriteWorld using the window.

DESCRIPTION

SWSetPortToWindow sets current port to the window the SpriteWorld is using. You will want to use this if you are
doing any drawing to the window that isn’t handled by SpriteWorld.

SWSetPortToWorkArea

This function will set the current port to the GWorld of SpriteWorld’s work frame.

void SWSetPortToWorkArea(SpriteWorldPtr spriteWorldP);

spriteWorldP The SpriteWorld owning the work frame.

DESCRIPTION

SWSetPortToWorkArea sets the current port to the offscreen work frame. The work frame is where the
background and Sprites are mixed before copying to the screen. Normally you won't need to call
SWSetPortToWorkArea, since SpriteWorld does all the necessary drawing in the work area for you, but if you
need to do additional drawing in this area for some reason, then this function can be used.

SPECIAL CONSIDERATIONS

SWSetPortToWorkArea will only perform its function if the SpriteWorld has been locked. The GWorld of the work
frame will not be locked if the SpriteWorld is not locked.

SWSetSpriteWorldMaxFPS

This function controls how often the SpriteWorld is processed and its animation rendered on the screen.

void SWSetSpriteWorldMaxFPS(SpriteWorldPtr spriteWorldP,

short framesPerSec);

spriteWorldP A SpriteWorld.

framesPerSec The rate at which the animation will be processed and rendered. A framesPerSec value
of zero or less tells SpriteWorld to place no limit on the frame rate, allowing the
animation to run at maximum speed.

DESCRIPTION

Normally, you will want to limit how fast your animation runs, so that it won’t go too fast on faster Macs. You could
do this using SWSetSpriteMoveTime and SWSetSpriteFrameTime for each Sprite you create, but
SWSetSpriteWorldMaxFPS provides an alternate approach.

SWSetSpriteWorldMaxFPS controls how often SWProcessSpriteWorld actually scans through the Sprites in the
SpriteWorld looking for Sprites that are due for updating. One advantage of this over setting each Sprite’s
moveTime and frameTime separately is that SpriteWorld will spend less time scanning through its list of Layers
and Sprites. This will leave more CPU time available for other tasks.

SpriteWorld keeps track of time in milliseconds, so framesPerSec values between 1 and 1000 are meaningful, if
not necessarily achievable on your hardware. Values for framesPerSec of zero or less are special values for
SWSetSpriteWorldMaxFPS, and tell SpriteWorld to place no limit on the frame rate, so that the animation will run
at the fastest speed possible. By default, SpriteWorld places no limit on animation speed.

SPECIAL CONSIDERATIONS

SWSetSpriteMoveTime and SWSetSpriteFrameTime are codependent upon SWSetSpriteWorldMaxFPS. A
Sprite can’t be moved, or its Frame changed, any more frequently than the SWSetSpriteWorldMaxFPS setting
allows, regardless of the SWSetSpriteMoveTime or SWSetSpriteFrameTime settings. As a rule, the best way to
control the speed of Sprites is to set a “base” speed with SWSetSpriteWorldMaxFPS. Then, if you want a
particular Sprite to move more slowly than the base speed use SWSetSpriteMoveTime. To make a Sprite move
faster, increase the distance it travels each time it is moved.

SWSyncSpriteWorldToVBL will also affect the frame rate if it is turned on; in that case the maximum frame rate
will be equal to the refresh rate of the monitor.

Keep in mind that regardless of how quickly and frequently SWProcessSpriteWorld processes the SpriteWorld
and advances the positions (and/or Frames) of Sprites, the changes can’t actually appear on the screen any
faster than the refresh rate of the monitor. This is typically 60-75 Hz, depending on the model of monitor.

Naturally, there is no guarantee that any given Mac will be able to run your animation at the framesPerSec value
you specify. SWSetSpriteWorldMaxFPS only sets an upper limit to the animation speed.

To make sure that your animation doesn’t run too fast on hardware faster than yours, you can follow this
procedure: Once you have the animation looking the way you want it on your machine, start running it with
successively lower framesPerSec values. If the animation starts running slower, you will know that the frame rate
is being controlled by SpriteWorld, rather than limited by the speed of your Mac.

When SWSetSpriteWorldMaxFPS is used, SpriteWorld sets a flag:
spriteWorldP->frameHasOccured to true whenever SWProcessSpriteWorld is called and it updates the positions
of the Sprites. If SWProcessSpriteWorld is called and it isn’t time to update the positions of the Sprites (i.e., it
isn’t time for a frame), then SWProcessSpriteWorld will set the flag to false and exit. If you want some action
performed once and only once for each frame of animation, you can use this flag as follows:

SWProcessSpriteWorld(mySpriteWorldP);

SWAnimateSpriteWorld(mySpriteWorldP);

if (mySpriteWorldP->frameHasOccured)

{

UpdateScore();

}

SEE ALSO

SWSetSpriteMoveTime

SWSetSpriteFrameTime

SWProcessSpriteWorld

SWSyncSpriteWorldToVBL

SWSetSpriteWorldOffscreenDrawProc

This function will set a SpriteWorld’s offscreen drawing routine to the one you specify.

OSErr SWSetSpriteWorldOffscreenDrawProc(SpriteWorldPtr spriteWorldP,

WorldDrawProcPtr offscreenProc);

spriteWorldP A SpriteWorld whose offscreen drawing routine will be set.

offscreenProc A new offscreen drawing routine.

DESCRIPTION

The SWSetSpriteWorldOffscreenDrawProc function is used to specify a new offscreen drawing routine for the
given SpriteWorld. This routine is used to erase a Sprite in the

offscreen work area by copying the appropriate rectangle from the background frame. The default offscreen
drawing routine calls CopyBits.

The options for offscreenProc currently available are:

SWStdWorldDrawProc CopyBits

BlitPixieAllBitRectDrawProc

BlitPixie8BitRectDrawProc BlitPixie

BPAllBitInterlacedRectDrawProc

BP8BitInterlacedRectDrawProc Interlaced BlitPixie

An error code is returned if a BlitPixie drawProc is specified and the depth of the offscreen work area is not
correct for the drawProc.

SEE ALSO

SWSetSpriteWorldScreenDrawProc

SWSetSpriteWorldScreenDrawProc

This function will set a SpriteWorld’s screen drawing routine to the one you specify.

OSErr SWSetSpriteWorldScreenDrawProc(SpriteWorldPtr spriteWorldP,

WorldDrawProcPtr screenDrawProc);

spriteWorldP A SpriteWorld whose screen drawing routine will be set.

screenDrawProc A new screen drawing routine.

DESCRIPTION

The SWSetSpriteWorldScreenDrawProc function is used to specify a new screen drawing routine for the given
SpriteWorld. This routine is used to put the updated Sprite image onto the screen. The standard screen draw
routine calls CopyBits.

The options for screenDrawProc currently available are:

SWStdWorldDrawProc CopyBits

BlitPixieAllBitRectDrawProc

BlitPixie8BitRectDrawProc BlitPixie

BPAllBitInterlacedRectDrawProc

BP8BitInterlacedRectDrawProc Interlaced BlitPixie

An error code is returned if a BlitPixie drawProc is specified and the depth of the offscreen work area is not
correct for the drawProc.

SEE ALSO

SWSetSpriteWorldOffscreenDrawProc

SWSwapSpriteLayer

This function will swap two SpriteLayers in a SpriteWorld.

void SWSwapSpriteLayer(SpriteWorldPtr spriteWorldP,

SpriteLayerPtr srcSpriteLayerP,

SpriteLayerPtr dstSpriteLayerP);

spriteWorldP A SpriteWorld.

srcSpriteLayerP The Layers to swap.

dstSpriteLayerP

DESCRIPTION

SWSwapSpriteLayer swaps the position of two SpriteLayers, so that the one whose Sprites were formerly drawn
behind the other’s is now in front.

SWSyncSpriteWorldToVBL

This function causes SpriteWorld to wait for the monitor’s vertical retrace before drawing to the screen.

OSErr SWSyncSpriteWorldToVBL(SpriteWorldPtr spriteWorldP,

Boolean vblSyncOn);

spriteWorldP A SpriteWorld.

vblSyncOn If true, a VBL task interrupt is installed, and SpriteWorld will wait for the vertical retrace
before drawing to the screen. If false, and a VBL task has previously been installed, it is
removed.

DESCRIPTION

In some cases, you can achieve better looking animation by synchronizing the screen-drawing to the monitor’s
vertical retrace. When Sprites have a lot of horizontal motion, they may appear “torn”—divided horizontally into
an upper and lower section that are offset from one another. This is caused by the monitor’s refresh occurring
midway through the drawing of the sprite, so the Sprite’s old position is mixed with the new one.

The cure for “tearing” is to synchronize with the monitor’s refresh, and this is done by installing a vertical retrace
interrupt task. The vertical retrace, or VBL (for Vertical BLanking) task is called when the monitor’s electron gun
jumps from the lower right to the upper left of the screen to begin another refresh. If animation is drawn to the
screen quickly after this occurs, it will be finished before the refresh reaches the Sprites’ positions.

If SWSyncSpriteWorldToVBL is called with the vblSyncOn parameter set to true, a VBL task will be installed, and
SWAnimateSpriteWorld will be set to wait for this task to “fire” before it draws the Sprites to the screen.
SWSyncSpriteWorldToVBL only needs to be called once, while you are setting up your SpriteWorld. By default,
SpriteWorld does not perform VBL synchronization. An error is returned by SWSyncSpriteWorldToVBL if the
SlotVInstall or SlotVRemove calls fail.

SPECIAL CONSIDERATIONS

As noted, VBL synchronizing can improve the appearance of some animations, but there are a number of special
considerations to be considered before using this routine.

Once a VBL task has been installed, it must be removed before the application quits, or the system will crash.
SpriteWorld will remove the VBL task when you call

SWDisposeSpriteWorld, and you can remove it yourself at any time by calling SWSyncSpriteWorldToVBL with a
vblSyncOn parameter of false. The problem and danger lies with abnormal exits from your application, such as
command-option-escape forced quits. For this reason, you may want to leave out VBL synchronizing for most of
the development period of your application. More advanced programmers may want to patch the ExitToShell trap
so that it calls SWSyncSpriteWorldToVBL.

When an animation is pushing the limits of a Mac (i.e., with slower Macs), VBL synchronizing may provide little or
no improvement, since the screen drawing will be too slow to stay ahead of electron gun. By the same token, you
may find that with VBL synchronizing on, you still get a tearing effect on Sprites when they are near the top of the
screen (where they have the least time to finish drawing before the electron gun overtakes them).

When VBL synchronizing is active, SpriteWorld will spend a certain percentage of time in an empty loop, waiting
for the VBL task to fire. This may be a liability if there are other CPU-intensive tasks that need attention in your
main loop.

With VBL synchronizing active, SWProcessSpriteWorld will not be called any more frequently than the refresh
rate of the monitor, regardless of any SWSetSpriteWorldMaxFPS, SWSetSpriteMoveTime or
SWSetSpriteFrameTime settings. Monitors generally have a refresh rate between 60 and 75 cycles per second.

Because the VBL task is specific to a particular monitor, you should not allow an animation’s window to be
dragged to a new monitor on a multi-monitor system.

SEE ALSO

SWProcessSpriteWorld

SWSetSpriteWorldMaxFPS

SWUnlockSpriteWorld

This function will unlock a SpriteWorld.

void SWUnlockSpriteWorld(SpriteWorldPtr spriteWorldP);

spriteWorldP A SpriteWorld to be unlocked.

DESCRIPTION

The SWUnlockSpriteWorld function is used to unlock the SpriteWorld, including all the SpriteLayers, Sprites, and
Frames contained within. After animation has completed you may want to unlock the SpriteWorld. This
SpriteWorld must not be used for animation while in this unlocked state. If you wish to animate the SpriteWorld
again, you must first call SWLockSpriteWorld.

SWUpdateSpriteWorld

The function will draw the current frame of the animation, completely redrawing the on-screen worldRect.

void SWUpdateSpriteWorld(SpriteWorldPtr spriteWorldP,

Boolean updateWindow);

spriteWorldP A SpriteWorld to be updated.

updateWindow If true, the updated SpriteWorld will be drawn to the screen; if false, the SpriteWorld will
be updated to the offscreen workFrame, but not to the window.

DESCRIPTION

The SWUpdateSpriteWorld function is used to build the current frame in the offscreen workFrame, and copy the
entire frame to the window. You will typically call this function when the window in which your animation is
running receives an update event, or before starting the animation, or whenever the background image has been
changed. If you have a huge number of active sprites, nearly filling the worldRect, you may find that you get
better animation by calling SWUpdateSpriteWorld in place of SWAnimateSpriteWorld.

The updateWindow parameter allows you to control whether the updated SpriteWorld is drawn to the screen. By
setting this to false, you can perform the actual updating of the window yourself (by copying spriteWorldP-
>workFrameP to spriteWorldP->windowFrameP), perhaps with a special effect, such as a screen-wipe.

SWUpdateWindow

This function copies SpriteWorld’s work frame to its window frame.

void SWUpdateWindow(SpriteWorldPtr spriteWorldP);

spriteWorldP The SpriteWorld owning the work frame and window frame.

DESCRIPTION

A SpriteWorld’s work frame is where the background and Sprites are mixed before copying to the screen.
Normally in animation, only those parts of the work frame that contain changed or moved Sprites are copied to
the window. SWUpdateWindow copies the entire work frame to the window. However, unlike
SWUpdateSpriteWorld, SWUpdateWindow does not process a frame of animation beforehand. Thus it
can serve as a quick way to respond to an update event.

SEE ALSO

SWUpdateSpriteWorld

Layer Routines

SWAddSprite

This function will add an existing Sprite to a SpriteLayer.

void SWAddSprite(SpriteLayerPtr spriteLayerP,

SpritePtr newSpriteP);

spriteLayerP An existing SpriteLayer.

newSpriteP A Sprite to be added to the specified SpriteLayer.

DESCRIPTION

The SWAddSprite function is used to add an existing Sprite to a SpriteLayer.

SWCollideSpriteLayer

This function will check for collisions between two SpriteLayers.

void SWCollideSpriteLayer(SpriteWorldPtr spriteWorldP,

SpriteLayerPtr srcSpriteLayerP,

SpriteLayerPtr dstSpriteLayerP);

spriteWorldP The SpriteWorld containing the SpriteLayers.

srcSpriteLayerP A SpriteLayer containing one or more Sprites.

dstSpriteLayerP Another SpriteLayer containing one or more Sprites.

DESCRIPTION

The SWCollideSpriteLayer function is used to check the Sprites in the source SpriteLayer against the Sprites in
the destination SpriteLayer for collisions. In order to check for collisions between the Sprites of a single
SpriteLayer, you must pass the same SpriteLayer as the source and the destination. SWCollideSpriteLayer will
generally be called in the event loop of your program, after SWProcessSpriteWorld and SWAnimateSpriteWorld.

When a collision is detected the collision routine, if any, of the source Sprite is called. For anything useful to
happen you must install a collision routine in the Sprites you expect to be involved in collisions.

A collision is defined as the condition that occurs when the rectangle that defines the current screen location of a
Sprite intersects the corresponding rectangle of another Sprite. This may or may not mean that the actual images
of the Sprites as they appear on the screen overlap. Therefore it is up to the collision routine you provide to
determine a more precise definition of a collision for your Sprites if necessary. SWRadiusCollision,
SWPixelCollision and SWRegionCollision can help with this.

If you have set an overall frame rate for the SpriteWorld with SWSetSpriteWorldMaxFPS, then
SWCollideSpriteLayer will only check for collisions if SWProcessSpriteWorld has actually updated the Sprites’
positions. That is, even if you call SWCollideSpriteLayer in the event loop of your program, actual collision
checking will only happen once per frame of animation. This can be helpful in preventing the same collision from
being detected multiple times in spite of the fact that your collision routine sets up a condition that should “turn
off” the collision (such as removing one of the colliding Sprites with SWRemoveSpriteFromAnimation).

SEE ALSO

SWSetSpriteCollideProc

SWRadiusCollision

SWRegionCollision

SWPixelCollision

SWSetSpriteWorldMaxFPS

SWCreateSpriteLayer

This function will create a new SpriteLayer.

OSErr SWCreateSpriteLayer(SpriteLayerPtr *spriteLayerP);

spriteLayerP A newly created SpriteLayer.

DESCRIPTION

The SWCreateSpriteLayer function is used to create a new SpriteLayer. This function allocates memory for a
new SpriteLayer and returns a pointer to the new Layer in the spriteLayerP parameter.

SWDisposeSpriteLayer

This function will dispose of an existing SpriteLayer, releasing the memory it occupies.

void SWDisposeSpriteLayer(SpriteLayerPtr spriteLayerP);

spriteLayerP A SpriteLayer to be disposed.

DESCRIPTION

The SWDisposeSpriteLayer function is used to dispose of a SpriteLayer previously created using
SWCreateSpriteLayer. This function releases the memory occupied by the SpriteLayer.

∆ WARNING ∆

If you wish the animation in which your SpriteLayer is taking part to continue, you must first remove the
SpriteLayer from the SpriteWorld by calling SWRemoveSpriteLayer. Disposing of a SpriteLayer that is part of an
active animation will most likely result in a crash when the next frame of the animation is rendered.

SWFindSpriteByPoint

This function returns the SpritePtr of the Sprite (if any) whose Frame rectangle contains the supplied point.

SpritePtr SWFindSpriteByPoint(SpriteLayerPtr spriteLayerP,

SpritePtr startSpriteP,

Point testPoint);

spriteLayerP The SpriteLayer to search.

startSpriteP The Sprite from which to start the reverse-order search. NULL to search from the last
Sprite.

testPoint The point to test.

DESCRIPTION

The SWFindSpriteByPoint function searches the given SpriteLayer for the Sprite last-most in the SpriteLayer
(and thus top-most in drawing order) which contains testPoint. NULL is returned if no Sprite contains testPoint.

SPECIAL CONSIDERATIONS

Note that the coordinates of the Sprite are local to the worldRect of the SpriteWorld; you will have to take this into
account if the worldRect is different from the window’s portRect, and testPoint is in coordinates local to the
window.

SWGetNextSprite

This function will return the next Sprite from a SpriteLayer .

SpritePtr SWGetNextSprite(SpriteLayerPtr spriteLayerP,

SpritePtr curSpriteP);

spriteLayerP An existing SpriteLayer.

curSpriteP A Sprite previously returned from this function, pass NULL to get the first Sprite.

DESCRIPTION

The SWGetNextSprite function is used to iterate through the Sprites in a SpriteLayer. The Sprite following the
current one you specify is returned. When there are no more Sprites in the SpriteLayer, NULL is returned.

SWInsertSpriteAfterSprite

This functions inserts a new Sprite in a Layer immediately after an existing Sprite.

void SWInsertSpriteAfterSprite(SpriteLayerPtr spriteLayerP,

SpritePtr newSpriteP,

SpritePtr dstSpriteP);

spriteLayerP The SpriteLayer containing the Sprites.

newSpriteP The Sprite being inserted into the Layer.

dstSpriteP The previously-existing Sprite.

DESCRIPTION

SWInsertSpriteAfterSprite can be used to add a Sprite to a Layer at a specific point in the Layer’s list of Sprites.
Specifically, this routine adds the new Sprite directly after a given Sprite that is already in the Layer. The order of
Sprites in a Layer can be important, because it determines the order in which the Sprites are drawn, and this in
turn determines which Sprite will be drawn on top of the other when two Sprites overlap. The first Sprite in a
Layer is drawn first, and appears bottom-most in an overlap situation, and the last Sprite is top-most. If “spriteA”
is currently being drawn underneath “spriteB”, and you want to it to be drawn on top, you can do this:

SWRemoveSprite(mySpriteLayer, spriteA);

SWInsertSpriteAfterSprite(mySpriteLayer, spriteA, spriteB);

SEE ALSO

SWInsertSpriteBeforeSprite

SWInsertSpriteBeforeSprite

This functions inserts a new Sprite in a Layer immediately before an existing Sprite.

void SWInsertSpriteBeforeSprite(SpriteLayerPtr spriteLayerP,

SpritePtr newSpriteP,

SpritePtr dstSpriteP);

spriteLayerP The SpriteLayer containing the Sprites.

newSpriteP The Sprite being inserted into the Layer.

dstSpriteP The previously-existing Sprite.

DESCRIPTION

SWInsertSpriteBeforeSprite can be used to add a Sprite to a Layer at a specific point in the Layer’s list of
Sprites. Specifically, this routine adds the new Sprite directly before a given Sprite that is already in the Layer.
The order of Sprites in a Layer can be important, because it determines the order in which the Sprites are drawn,
and this in turn determines which Sprite will be drawn on top of the other when two Sprites overlap. The first
Sprite in a Layer is drawn first, and appears bottom-most in an overlap situation, and the last Sprite is top-most.
If “spriteA” is currently being drawn over “spriteB”, and you want to it to be drawn underneath, you can do this:

SWRemoveSprite(mySpriteLayer, spriteA);

SWInsertSpriteBeforeSprite(mySpriteLayer, spriteA, spriteB);

SEE ALSO

SWInsertSpriteAfterSprite

SWLockSpriteLayer

This functions locks a SpriteLayer in preparation for animation.

void SWLockSpriteLayer(SpriteLayerPtr spriteLayerP);

spriteLayerP A SpriteLayer to be locked.

DESCRIPTION

The SWLockSpriteLayer function is used to lock a SpriteLayer including all the Sprites and Frames contained
within. Before a SpriteLayer can be animated it must first be locked.

SPECIAL CONSIDERATIONS

You must be careful when adding a Layer to an animation that is already running. The new Layer must be locked
before it can be animated.

SWRemoveAllSpritesFromLayer

This function will remove all Sprites from an existing SpriteLayer.

void SWRemoveAllSpritesFromLayer(SpriteLayerPtr srcSpriteLayerP);

srcSpriteLayerP An existing SpriteLayer.

SWRemoveSprite

This function will remove a Sprite from a Layer.

void SWRemoveSprite(SpriteLayerPtr spriteLayerP,

SpritePtr oldSpriteP);

spriteLayerP An existing SpriteLayer.

oldSpriteP A Sprite to be removed from the specified SpriteLayer.

DESCRIPTION

The SWRemoveSprite function is used to remove a Sprite from a SpriteLayer . This is done when you want to
remove the Sprite from the animation. The Sprite that is removed will not be processed or drawn when the next
frame of the animation is rendered.

SPECIAL CONSIDERATIONS

Removing a Sprite from a Layer will not erase the Sprite where it is on the screen. If you want the Sprite to
disappear and the animation to continue, you must first set the Sprite’s visibility to FALSE, render a frame of the
animation, and then remove the Sprite from the Layer. SWRemoveSpriteFromAnimation provides an easier way
to remove Sprites from a running animation.

As a rule, SWRemoveSprite should not be used from within a moveProc, frameProc, or collisionProc, except to
remove the source Sprite of that routine. SWRemoveSpriteFromAnimation can safely be used to remove any
Sprite from within these routines. For most purposes, SWRemoveSpriteFromAnimation is also more convenient
to use than SWRemoveSprite .

SEE ALSO

SWRemoveSpriteFromAnimation

SWSwapSprite

This function will swap two Sprites in a SpriteLayer.

void SWSwapSpriteLayer(SpriteWorldPtr spriteWorldP,

SpriteLayerPtr srcSpriteLayerP,

SpriteLayerPtr dstSpriteLayerP);

spriteLayerP The SpriteLayer containing the Sprites.

srcSpriteP The Sprites to swap.

dstSpriteP

DESCRIPTION

SWSwapSprite swaps the position of two Sprites in a Layer, so that the Sprite which was formerly drawn behind
the other is now in front.

SWUnlockSpriteLayer

This function will unlock a SpriteLayer .

void SWUnlockSpriteLayer(SpriteLayerPtr spriteLayerP);

spriteLayerP A SpriteLayer to be unlocked.

DESCRIPTION

The SWUnlockSpriteLayer function is used to unlock a SpriteLayer , including all the Sprites and Frames
contained within. This SpriteLayer must not be used for animation while in this unlocked state. If you wish to
animate the SpriteLayer again, you must first call SWLockSpriteLayer.

Sprite Routines

SWAddFrame

This function will add a Frame to an existing Sprite.

void SWAddFrame(SpritePtr srcSpriteP,

FramePtr newFrameP);

srcSpriteP An existing Sprite.

newFrameP A new Frame to be added to the Sprite.

DESCRIPTION

The SWAddFrame function will add a new Frame to an existing Sprite. This Frame may also be added to other
Sprites so that they may share Frames, thus saving memory.

SWBounceSprite

This function can be used as part of a Sprite’s movement routine to make the Sprite bounce around the screen.

void SWBounceSprite(SpritePtr srcSpriteP);

srcSpriteP A Sprite being moved.

DESCRIPTION

This function will check to see if a sprite has gone outside its moveBoundsRect, and if so, will “bounce” it back
inside that rectangle. It also changes the sprite’s delta, so if the sprite hits, for example, the left side, the sprite's
horizMoveDelta will be changed from negative to positive.

This function can be used as part of a moveProc; the simplest example being:

void mySpriteMoveProc(SpritePtr spriteP)

{

SWOffsetSprite(spriteP, spriteP->horizMoveDelta,

spriteP->vertMoveDelta);

SWBounceSprite(spriteP);

}

SEE ALSO

SWSetSpriteMoveBounds

SWWrapSprite

SWCloneSprite

This function will create a duplicate of an existing Sprite.

OSErr SWCloneSprite(SpritePtr cloneSpriteP,

SpritePtr *newSpriteP,

void* spriteStorageP);

cloneSpriteP An existing Sprite to be cloned.

newSpriteP The newly created Sprite.

spriteStorageP Pointer to memory in which the sprite structure will be stored. If NULL, SpriteWorld will
allocate the needed memory.

DESCRIPTION

The SWCloneSprite function will create a duplicate of an existing Sprite. The Frame set of the Sprite is not
duplicated, instead both Sprites share the same Frame set. Naturally, this can save a lot of memory if you have
many Sprites that look the same.

SWCreateSprite

This function will create a new Sprite with no Frames.

OSErr SWCreateSprite(SpritePtr *newSpriteP,

void* spriteStorageP,

short maxFrames);

newSpriteP A newly created Sprite.

spriteStorageP Pointer to memory in which the Sprite structure will be stored. If NULL, SpriteWorld will
allocate the needed memory.

maxFrames A value that indicates the maximum number of Frames to be contained in the Sprite.

userData User defined information to be associated with the Sprite.

DESCRIPTION

The SWCreateSprite function will create and initialize a new Sprite with an empty Frame set. For the Sprite to be
of any use, you must create and add some Frames. Normally, you will create Sprites with one of the
SWCreateSprite… routines listed below. For information on “manually” creating Frames, see the SpriteWorld
source code.

SWCreateSpriteFromCicnResource

This function will create a new Sprite complete with a set of Frames created from a series of color icon (‘cicn’)
resources.

OSErr SWCreateSpriteFromCicnResource(SpriteWorldPtr destSpriteWorld

SpritePtr *newSpriteP,

void* spriteStorageP,

short cIconID,

short maxFrames,

short maskType);

destSpriteWorld The SpriteWorld that will ultimately contain the Sprite.

newSpriteP The newly created Sprite.

spriteStorageP Pointer to memory in which the Sprite structure will be stored. If NULL, SpriteWorld will
allocate the needed memory.

cIconID The resource id of a color icon (‘cicn’) resource from which the first

Frame of the Sprite will be created.

maxFrames A value that indicates the maximum number of Frames to be contained in the Sprite,
and the number of color icon resources available to create them.

maskType A value that indicates what type(s) of mask should be created for the Sprite. For a
description of these flags and their meaning see below.

DESCRIPTION

The SWCreateSpriteFromCicnResource function will create and initialize a new Sprite, and create a set of
Frames for the Sprite from color icon resources in sequence starting with the specified cIconID. The number of
Frames to be created is specified by the maxFrames parameter. The color icon resources for the Frames are
expected to have sequential id numbers. An error code is returned if any memory allocation fails, or any of the
color icon resources in the sequence cannot be found.

The destination SpriteWorld is passed as a parameter so that the SpriteWorld’s GDHandle can be used when
creating the GWorld(s) for this Sprite.

The maskType parameter can currently be one of values described here:

kNoMask A value indicating that no mask should be created for the Frames of the Sprite.

kRegionMask A value indicating that a QuickDraw region (RgnHandle) should be created for possible
use as a mask for the Frames of the Sprite.

kPixelMask A value indicating that an offscreen GWorld should be created, and used as a mask for
the Frames of the Sprite. This GWorld will be the same bit depth as the Frame image
and is suitable for use with a custom mask blitter.

kFatMask This value is equivalent to kRegionMask + kPixelMask. This results in a Frame that
contains both of the above types of masks. This is useful if your application switches
between using QuickDraw and a custom drawing routine at runtime.

SEE ALSO

SWCreateSpriteFromPictResource

SWCreateSpriteFromSinglePict

SWCreateSpriteFromSinglePictXY

SWCreateSpriteFromPictResource

This function will create a new Sprite complete with a set of Frame created from a series of picture (‘PICT’)
resources.

OSErr SWCreateSpriteFromPictResource(SpriteWorldPtr destSpriteWorld

SpritePtr *newSpriteP,

void* spriteStorageP,

short pictResID,

short maskResID,

short maxFrames,

short maskType);

destSpriteWorld The SpriteWorld that will ultimately contain the Sprite.

newSpriteP The newly created Sprite.

spriteStorageP Pointer to memory in which the Sprite structure will be stored. If NULL, SpriteWorld will
allocate the needed memory.

pictResID The resource id of a picture (‘PICT’) resource from which the first Frame of the Sprite
will be created.

maskResID The resource id of a picture (‘PICT’) resource from which the first mask of the Frames of
the Sprite will be created. This can be the same as pictResID if no part of the Sprite
image is pure white (see the section “Sprite Masks and Self-Masking”).

maxFrames A value that indicates the maximum number of Frames to be contained in the Sprite,
and the number of picture resources available to create them.

maskType A value that indicates what type(s) of mask should be created for the Sprite. For a
description of these flags and their meaning see SWCreateSpriteFromCicnResource.

DESCRIPTION

The SWCreateSpriteFromPictResource function will create and initialize a new Sprite, and create a set of
Frames for the Sprite from picture resources in sequence starting with the specified pictResID. The number
of Frames to be created is specified by the maxFrames parameter. The picture resources for the Frames are
expected to have sequential id numbers. An error code is returned if any memory allocation fails, or any of the
picture resources in the sequence cannot be found.

The destination SpriteWorld is passed as a parameter so that the SpriteWorld’s GDHandle can be used when
creating the GWorld(s) for this Sprite.

SEE ALSO

SWCreateSpriteFromCicnResource

SWCreateSpriteFromSinglePict

SWCreateSpriteFromSinglePictXY

SWCreateSpriteFromSinglePict

This function will create a new Sprite complete with a set of Frames from a single, multi-frame picture (‘PICT’)
resource.

OSErr SWCreateSpriteFromSinglePict(SpriteWorldPtr destSpriteWorld

SpritePtr *newSpriteP,

void* spriteStorageP,

short pictResID,

short maskResID,

short frameDimension,

short maskType);

destSpriteWorld The SpriteWorld that will ultimately contain the Sprite.

newSpriteP The newly created Sprite.

spriteStorageP Pointer to memory in which the Sprite structure will be stored. If NULL, SpriteWorld will
allocate the needed memory.

pictResID The resource id of a picture (‘PICT’) resource from which the Frames of the Sprite will
be created. If frameDimension is zero, this must also be the resource id of a ‘nrct’
resource (see below).

maskResID The resource id of a picture (‘PICT’) resource from which the masks of the Frames of
the Sprite will be created. This can be the same as pictResID if no part of the Sprite
image is pure white (see the section “Sprite Masks and Self-Masking”).

frameDimension If all the Frame images in the picture are the same height and width, they can be
arranged in a horizontal or vertical strip. This parameter tells SpriteWorld the width of
each Frame if the strip is horizontal, or the height if it is vertical. This parameter must be
0 if you are using a ‘nrct’ resource (see below).

maskType A value that indicates what type(s) of mask should be created for the Sprite. For a
description of these flags and their meaning see SWCreateSpriteFromCicnResource.

DESCRIPTION

The SWCreateSpriteFromSinglePict function will create and initialize a new Sprite, and create a set of Frames
for the Sprite from a picture resource with the specified pictResID. This picture resource will typically contain
several images which represent the Frames of your animated Sprite. There are two distinct ways of using this
routine. In the first described below, the images of the Frames can be placed anywhere in the picture, in any
order, and can be differing sizes. In the second method, the Frame images must all fit within Rects of the same
size, and must be arranged in order in a horizontal or vertical strip. The frameDimension parameter tells
SpriteWorld which of the two methods you want to use.

In the “any size, any order” method of using this routine, in addition to the picture resource, you must also create
a ‘nrct’ resource with the same ID number as the PICT. The nrct resource is similar to a ‘STR#’ resource, except
that the records it contains are Rect data structures rather than Pstrings. In each record of the nrct resource you
will give the coordinates of the rectangle within the picture that encloses one Frame of your Sprite. The number
of Rects you enter in the nrct resource determines the number of Frames to the Sprite. You must pass zero for
the frameDimension parameter if you are using this method.

With the “horizontal or vertical strip” method, you don’t have to create a ‘nrct’ resource. Instead, the Frame
images are arranged horizontally or vertically in the picture. All the Frame images must fit within the same size
bounding Rect. We’ll assume that the strip is horizontal for the remainder of this paragraph. In that case, the
height of the picture is used by SpriteWorld as the height of each Frame’s Rect, and the frameDimension
parameter provides the width. Within the picture, the first Frame image must start at the top left of the picture,
and each successive image must start one pixel beyond the right edge of the previous image. That is, there is a
1-pixel-wide vertical border between each Frame image in the picture. Usually, you will want to make this border
black so the boundaries between the Frames will be obvious while you work on the picture.

Arranging the images in a horizontal strip may seem the most obvious approach, but there is an advantage to the
vertical strip option. Both CopyBits and BlitPixie are optimized to work with rectangles that have a left origin that
is an even multiple of four. For the best speed, you could make sure that the width of your Frame images is a
multiple of four, minus one to allow for the 1-pixel border. If you arrange the images in a vertical strip, you don’t
have to concern yourself with this calculation, as all the Frames will have a left origin of zero. Within the vertical
strip picture, the Frame images must be separated by a 1-pixel-high horizontal border, comparable to the vertical
border in horizontal strips. SpriteWorld will determine whether the images are arranged vertically or horizontally
by

checking whether the PICT is wider than it is high.

An error code is returned by SWCreateSpriteFromSinglePict if any memory allocation fails, if either of the picture
resources cannot be found, or if the frameDimension parameter is zero and no nrct resource is found.

The destination SpriteWorld is passed as a parameter so that the SpriteWorld’s GDHandle can be used when
creating the GWorld(s) for this Sprite.

SEE ALSO

SWCreateSpriteFromCicnResource

SWCreateSpriteFromPictResource

SWCreateSpriteFromSinglePictXY

SWCreateSpriteFromSinglePictXY

This function will create a new Sprite complete with a set of Frames from a single, multi-frame picture (‘PICT’)
resource. With this routine, the Frame images can be arranged in rows and columns.

OSErr SWCreateSpriteFromSinglePictXY(SpriteWorldPtr destSpriteWorld

SpritePtr *newSpriteP,

void* spriteStorageP,

short pictResID,

short maskResID,

short frameWidth,

short frameHeight,

short horizBorderWidth,

short maxFrames,

short maskType);

destSpriteWorld The SpriteWorld that will ultimately contain the Sprite.

newSpriteP The newly created Sprite.

spriteStorageP Pointer to memory in which the Sprite structure will be stored. If NULL, SpriteWorld will
allocate the needed memory.

pictResID The resource id of a picture (‘PICT’) resource from which the Frames of the Sprite will
be created.

maskResID The resource id of a picture (‘PICT’) resource from which the masks of the Frames of
the Sprite will be created. This can be the same as pictResID if no part of the Sprite
image is pure white (see the section “Sprite Masks and Self-Masking”).

frameWidth The width of the Frame images, in pixels.

frameHeight The height of the Frame images.

horizBorderWidth The width of the horizontal separation between each Frame image in the PICT. See
below for more information.

maxFrames The total number of valid Frame images in the PICT. If zero is passed,
SWCreateSpriteFromSinglePictXY will calculate this number.

maskType A value that indicates what type(s) of mask should be created for the Sprite. For a
description of these flags and their meaning see SWCreateSpriteFromCicnResource.

DESCRIPTION

The SWCreateSpriteFromSinglePictXY function will create and initialize a new Sprite, and create a set of Frames
for the Sprite from a picture resource with the specified pictResID. This picture resource will typically contain
several images which represent the Frames of your animated Sprite. This routine is similar to
SWCreateSpriteFromSinglePict; the major difference being that with this routine, the Frame images in the PICT
can be arranged in rows and columns. The following requirements apply to the arrangement of the Frame
images in the PICT:

• The Frame images can be laid out in any number of rows and columns. The images will be read from left to
right and top to bottom. The first image must begin at the top-left of the PICT.

• The horizontal rows of images must be separated by a one-pixel-high border.

• The Frame images in a row must be separated by a border whose width you specify in the horizBorderWidth
parameter. This value is user-defined to allow optimum alignment of the Frame images. Both CopyBits and
BlitPixie are fastest when the left side of the source rect is an even multiple of four. When assembling a graphic
of Frame images, you can adjust the horizontal separation of the Frame images to achieve this alignment, and
then set the horizBorderWidth parameter accordingly.

• If you pass zero as the maxFrames parameter, SWCreateSpriteFromSinglePictXY will calculate the number of
Frames as follows:

maxFrames = (PICTwidth/frameWidth) * (PICTheight/frameHeight);

This calculation will be incorrect if the valid Frame images end before the bottom-right of the PICT, or if the
accumulated horizontal or vertical border spaces adds up to more than the width or height, respectively, of a
Frame image.

An error code is returned by SWCreateSpriteFromSinglePictXY if any memory allocation fails, if either of the
picture resources cannot be found, or if the bottom-right of the PICT is reached before the requested number of
Frame images have been read.

The destination SpriteWorld is passed as a parameter so that the SpriteWorld’s GDHandle can be used when
creating the GWorld(s) for this Sprite.

SEE ALSO

SWCreateSpriteFromCicnResource

SWCreateSpriteFromPictResource

SWCreateSpriteFromSinglePict

SWDisposeSprite

This function will dispose of an existing Sprite, releasing the memory it occupies.

void SWDisposeSprite(SpritePtr deadSpriteP);

deadSpriteP A Sprite to be disposed.

DESCRIPTION

The SWDisposeSprite function will dispose of a Sprite. It will also dispose of the Sprite’s Frames, unless those
Frames are shared by undisposed clone Sprites.

∆ WARNING ∆

You must not call SWDisposeSprite on a Sprite that is part of a running animation, or SpriteWorld will crash when
it tries to process a Spite that no longer exists. SWRemoveSpriteFromAnimation will remove the Sprite from its
Layer, and then optionally dispose of it.

SEE ALSO

SWDisposeFrame

SWRemoveSprite

SWRemoveSpriteFromAnimation

SWIsPointInSprite

This functions determines whether a given point is within a given Sprite.

Boolean SWIsPointInSprite(SpritePtr srcSpriteP,

Point testPoint);

srcSpriteP The Sprite to test.

testPoint The point to test.

DESCRIPTION

The SWIsPointInSprite returns TRUE if the point is within the Sprite’s Frame rectangle, and FALSE otherwise.

SPECIAL CONSIDERATIONS

Note that the coordinates of the Sprite are local to the worldRect of the SpriteWorld; you will have to take this into
account if the worldRect is different from the window’s portRect, and testPoint is in coordinates local to the
window.

SWIsSpriteInRect

This functions determines whether a given Sprite is within a given rectangle.

Boolean SWIsSpriteInRect(SpritePtr srcSpriteP,

Rect* testRect);

srcSpriteP The Sprite to test.

testRect The rectangle to test.

DESCRIPTION

The SWIsSpriteInRect returns TRUE if any part of the Sprite is within the rectangle, and FALSE otherwise.

SPECIAL CONSIDERATIONS

Note that the coordinates of the Sprite are local to the worldRect of the SpriteWorld; you will have to take this into
account if the worldRect is different from the window’s portRect, and testRect is in coordinates local to the
window.

SWIsSpriteFullyInRect

This functions determines whether a given Sprite is entirely within a given rectangle.

Boolean SWIsSpriteFullyInRect(SpritePtr srcSpriteP,

Rect* testRect);

srcSpriteP The Sprite to test.

testRect The rectangle to test.

DESCRIPTION

The SWIsSpriteFullyInRect returns TRUE if a Sprite’s destRect is entirely enclosed within the rectangle, and
FALSE otherwise.

SPECIAL CONSIDERATIONS

Note that the coordinates of the Sprite are local to the worldRect of the SpriteWorld; you will have to take this into
account if the worldRect is different from the window’s portRect, and testRect is in coordinates local to the
window.

SWLockSprite

This functions locks a Sprite in preparation for animation.

void SWLockSprite(SpritePtr srcSpriteP);

srcSpriteP A Sprite to be locked.

DESCRIPTION

The SWLockSprite function will lock the Sprite including all the Frames contained within. Before a Sprite can be
animated it must first be locked.

SPECIAL CONSIDERATIONS

You must be careful when adding a Sprite to an animation that is already running. The new Sprite must be locked
before it can be animated.

SWMoveSprite

This function will move a Sprite’s current position to an absolute horizontal, and vertical coordinate.

void SWMoveSprite(SpritePtr srcSpriteP,

short horizLoc,

short vertLoc);

srcSpriteP A Sprite to be moved.

horizLoc A value indicating the absolute horizontal coordinate to which the Sprite will be moved.

vertLoc A value indicating the absolute vertical coordinate to which the Sprite will be moved.

DESCRIPTION

The SWMoveSprite function is used to move a Sprite’s current position to an absolute horizontal, and vertical
coordinate. The Sprite’s last position is remembered so that when the animation is rendered the Sprite will be
properly erased from its last known position.

If the Sprite has a movement routine installed, it will not be called by this function.

SPECIAL CONSIDERATIONS

Note that the horizLoc and vertLoc coordinates of the Sprite are local to the worldRect of the SpriteWorld, not the
portRect of the “parent” window.

SWOffsetSprite

This function will offset the Sprite’s current position to a relative horizontal, and vertical coordinate.

void SWOffsetSprite(SpritePtr srcSpriteP,

short horizDelta,

short vertDelta);

srcSpriteP A Sprite to be moved.

horizDelta A value indicating the relative horizontal coordinate by which the Sprite will be offset.

vertDelta A value indicating the relative vertical coordinate by which the Sprite will be offset.

DESCRIPTION

The SWOffsetSprite function is used to offset a Sprite’s current position to a relative horizontal, and vertical
coordinate. The Sprite’s last position is remembered so that when the animation is rendered the Sprite will be
properly erased from its last known position.

If the Sprite has a movement routine installed, it will not be called by this function.

SWPixelCollision

This function tests whether the pixel masks of two Sprites are intersecting, and returns TRUE if any part of the
Sprites overlap.

Boolean SWPixelCollision(SpritePtr srcSpriteP, dstSpriteP);

srcSpriteP

dstSpriteP The two Sprites to be tested

DESCRIPTION

SWPixelCollision can be called as part of a Sprite’s collideProc to determine if the actual images of the two
Sprites are overlapping. The collideProc will be called whenever the destination rects of the Sprites overlap;
SWPixelCollision can be used as a secondary test. Because it uses the Sprites’ pixel masks, this function will be
valid for any Sprites, however convoluted their shape. In order for this function to work, the Sprites must have
been created using kPixelMask or kFatMask, and the SpriteWorld must be 8-bit depth. SWPixelCollision is
somewhat faster than SWRegionCollision (though slower than SWRadiusCollision), and doesn’t require that the
Sprite have a region mask.

∆ WARNING ∆

The Sprites must be 8-bit Sprites with pixel masks if SWPixelCollision is used. SpriteWorld will most likely crash
otherwise. For the sake of speed, no checking of these requirements is done by SWPixelCollision.

SEE ALSO

SWCollideSpriteLayer

SWSetSpriteCollideProc

SWRadiusCollision

SWRegionCollision

SWRadiusCollision

This function tests whether the outlines of two circular Sprites are intersecting, returning TRUE if they are.

Boolean SWRadiusCollision(SpritePtr srcSpriteP, dstSpriteP);

srcSpriteP

dstSpriteP The two Sprites to be tested

DESCRIPTION

SWRadiusCollision can be called as part of a Sprite’s collideProc to determine if the (presumed) circular outlines
of the two Sprites are overlapping. The collideProc will be called whenever the destination rects of the Sprites
overlap; SWRadiusCollision can be used as a secondary test. Because it uses a radius calculated from the width
of the Sprite’s destination rects, this routine is intended for circular Sprites that fill the Frame’s rect. This routine is
much faster than SWRegionCollision or SWPixelCollision.

SEE ALSO

SWCollideSpriteLayer

SWSetSpriteCollideProc

SWRegionCollision

SWPixelCollision

SWRegionCollision

This function tests whether the regions of two Sprites are intersecting, and returns TRUE if any part of the
Sprites overlap.

Boolean SWRegionCollision(SpritePtr srcSpriteP, dstSpriteP);

srcSpriteP

dstSpriteP The two Sprites to be tested

DESCRIPTION

SWRegionCollision can be called as part of a Sprite’s collideProc to determine if the actual images of the two
Sprites are overlapping. The collideProc will be called whenever the destination rects of the Sprites overlap;
SWRegionCollision can be used as a secondary test. Because it uses regions, this function will be valid for any
Sprites, however convoluted their shape. In order for this function to work, the Sprites must have been created
using kRegionMask or kFatMask.

SEE ALSO

SWCollideSpriteLayer

SWSetSpriteCollideProc

SWRadiusCollision

SWPixelCollision

SWRemoveFrame

This function will remove a Frame from an existing Sprite.

void SWRemoveFrame(SpritePtr srcSpriteP,

FramePtr oldFrameP);

srcSpriteP An existing Sprite.

oldFrameP A Frame to be removed from the Sprite.

DESCRIPTION

The SWRemoveFrame function will remove a Frame from an existing Sprite. You will probably never want to do
this, since you can simply dispose of a Sprite and its Frames automatically when your animation is finished.

SWRemoveSpriteFromAnimation

This function makes a Sprite invisible, removes it from its Layer, and optionally disposes of it.

void SWRemoveSpriteFromAnimation(SpriteWorldPtr spriteWorldP,

SpritePtr spriteP,

Boolean disposeOfSprite)

spriteWorldP The SpriteWorld holding the Sprite.

spriteP The Sprite to be removed.

disposeOfSprite If true, dispose of the Sprite after making it invisible and removing it from its Layer. If
false, just make the Sprite invisible and remove it from its Layer.

DESCRIPTION

SWRemoveSpriteFromAnimation provides an easy way to get rid of a Sprite that is part of an ongoing animation.
Without SWRemoveSpriteFromAnimation, you would first have to call SWSetSpriteVisible to make the Sprite
invisible, then call SWAnimateSpriteWorld so the Sprite would actually be erased from the screen, and finally call
SWRemoveSprite to remove it from its Layer. SWDisposeSprite would also have to be called if you wanted to
permanently dispose of the Sprite to free up the memory it uses. SWRemoveSpriteFromAnimation does all of
this for you.

SPECIAL CONSIDERATIONS

Note that SWRemoveSpriteFromAnimation does not remove the Sprite immediately. First another frame of
animation is rendered with the Sprite not visible, but still attached to its Layer, and then the next time
SWProcessSpriteWorld is called the Sprite is actually removed from the Layer and optionally disposed of. You
may have to take this into account in your program to avoid confusion that might be caused by calling
SWRemoveSpriteFromAnimation more than once for a Sprite. To see if SWRemoveSpriteFromAnimation has
already been called for a particular Sprite, the following code can be used:

if (spriteP->spriteRemoval == kSWDontRemoveSprite)

{

/* SWRemoveSpriteFromAnimation has not been called for */

/* this Sprite */

}

else

{

/* SWRemoveSpriteFromAnimation has been called; */

/* this Sprite will be removed */

}

SEE ALSO

SWSetSpriteVisible

SWRemoveSprite

SWDisposeSprite

SWSetCurrentFrame

This function will set a Sprite’s current Frame to the one you specify.

void SWSetCurrentFrame(SpritePtr srcSpriteP,

FramePtr newFrameP);

srcSpriteP An existing Sprite.

newFrameP A Frame previously added to the Sprite.

DESCRIPTION

The SWSetCurrentFrame function will set the Sprite’s current Frame to the one specified by the newFrameP
parameter. The current Frame will be rendered in the animation at the Sprite’s current location.

SEE ALSO

SWSetCurrentFrameIndex

SWSetCurrentFrameIndex

This function will set a Sprite’s current Frame using the specified index into the Sprite’s Frame list.

void SWSetCurrentFrameIndex(SpritePtr srcSpriteP,

short frameIndex);

srcSpriteP An existing Sprite.

frameIndex An index into the Sprite’s Frame list.

DESCRIPTION

The SWSetCurrentFrameIndex function will set a Sprite’s current Frame using the specified index into the
Sprite’s Frame list. The current Frame will be rendered in the animation at the Sprite’s current location.

SEE ALSO

SWSetCurrentFrame

SWSetSpriteCollideProc

This function sets a Sprite’s collision routine, to be called when the Sprite is involved in a collision with another.

void SWSetSpriteCollideProc(SpritePtr srcSpriteP,

CollideProcPtr collideProc);

srcSpriteP An existing Sprite.

collideProc A new collision routine.

DESCRIPTION

The SWSetSpriteCollideProc function is used to specify a collision routine, to be called when the Sprite is
involved in a collision with another. This routine may do some further processing to determine if the Sprites have
actually collided, and if so perform some action

such as playing an explosion sound.

A collideProc routine has the form:

void MyCollideProc(SpritePtr srcSpriteP,

SpritePtr dstSpriteP,

Rect* sectRect);

srcSpriteP A Sprite from the source SpriteLayer.

srcSpriteP A Sprite from the destination SpriteLayer.

sectRect A rectangle defining the area of overlap between the two Sprites.

SEE ALSO

SWCollideSpriteLayer

SWSetSpriteDrawProc

The function will set a Sprite’s drawing routine to the one you specify.

OSErr SWSetSpriteDrawProc(SpritePtr srcSpriteP,

DrawProcPtr drawProc);

srcSpriteP An existing Sprite.

drawProc A new drawing routine for the Sprite.

DESCRIPTION

The SWSetSpriteDrawProc function will set the drawing routine the Sprite uses to render itself in the offscreen
work area of the SpriteWorld. The Sprite’s default drawing routine uses CopyBits.

The options for drawProc currently available are:

SWStdSpriteDrawProc CopyBits (use kRegionMask or kFatMask when creating the
Sprite).

BlitPixieAllBitMaskDrawProc

BlitPixie8BitMaskDrawProc BlitPixie with a mask (use kPixelMask or kFatMask when creating
the Sprite).

BlitPixieAllBitPartialMaskDrawProc

BlitPixie8BitPartialMaskDrawProc BlitPixie with a mask when the un-masked background of the sprite
is not white. (use kPixelMask or kFatMask when creating the
Sprite).

BlitPixieAllBitRectDrawProc

BlitPixie8BitRectDrawProc BlitPixie with no mask needed (use this for rectangular Sprites
only).

BPAllBitInterlacedMaskDrawProc

BP8BitInterlacedMaskDrawProc Interlaced BlitPixie with a mask. Only for use when the
offscreenDrawProc and the screenDrawProc are
BPInterlacedDrawProc.

BPAllBitInterlacedPartialMaskDrawProc

BP8BitInterlacedPartialMaskDrawProc Interlaced BlitPixie with a partial mask.

BPAllBitInterlacedRectDrawProc

BP8BitInterlacedRectDrawProc Interlaced BlitPixie with no mask needed (use this for rectangular
Sprites only).

CompiledSpriteDrawProc Compiled Sprites (use kPixelMask or kFatMask when creating the
Sprite).

An error code is returned if BlitPixie or CompiledSpriteDrawProc is specified and the bit depth of the SpriteWorld
is not 8 bits, if the mask of the Sprite is inappropriate for the requested drawProc, or if CompiledSpriteDrawProc
is requested and the Sprite has not been compiled.

SWSetSpriteFrameAdvance

This function will set the value by which the current Frame index of the Sprite will be automatically incremented.

void SWSetSpriteFrameAdvance(SpritePtr srcSpriteP,

short frameAdvance);

srcSpriteP An existing Sprite.

frameAdvance The value by which the current Frame index will be automatically incremented.

DESCRIPTION

The SWSetSpriteFrameAdvance function allows you to specify the value by which the current Frame index of the
Sprite will be automatically incremented. This will usually be one or zero. The Sprite’s current Frame index will be
automatically incremented when the Sprite is processed by the SWProcessSpriteWorld function. The Frame
index is a number referring to the Frame images that belong to a Sprite; the first Frame corresponds to an index
value of 0. When a Sprite is created, the frameAdvance is set to 1 by default.

SEE ALSO

SWSetSpriteFrameRange

SWSetSpriteFrameProc

This function set the routine to be called when the Sprite’s current Frame is advanced.

void SWSetSpriteFrameProc(SpritePtr srcSpriteP,

FrameProcPtr frameProc);

srcSpriteP An existing Sprite.

frameProc A routine to be called when the current Frame is advanced.

DESCRIPTION

The SWSetSpriteFrameProc function is used to specify a routine to be called when the current Frame of the
Sprite is to be advanced. This routine could do some additional processing in order to determine which Frame of
the Sprite should be made current.

A frameProc routine has the form:

void (*FrameProcPtr)(SpritePtr srcSpriteP,

FramePtr curFrameP,

long *frameIndex);

srcSpriteP A Sprite being processed by SWProcessSpriteWorld.

curFrameP The current Frame of the Sprite.

frameIndex A value indicating the index of the current Frame. Your function may change this value
indicating a different Frame to be made current.

SWSetSpriteFrameRange

This function specifies the range of Frame indexes within which the current Frame of the Sprite will be advanced.

void SWSetSpriteFrameRange(SpritePtr srcSpriteP,

short firstFrameIndex,

short lastFrameIndex);

srcSpriteP An existing Sprite.

firstFrameIndex A value indicating the index of the first Frame in the range.

lastFrameIndex A value indicating the index of the last Frame in the range.

DESCRIPTION

The SWSetSpriteFrameRange function is used to specify the range of Frame indexes within which the current
Frame of the Sprite will be advanced. The Frame index is a number referring to the Frame images that belong to
a Sprite; the first Frame corresponds to an index value of 0. This function allows you use a subset of a Sprite’s
Frames to be animated. The current Frame of the Sprite will be automatically advanced when the Sprite is
processed by SWProcessSpriteWorld. When a Sprite is created, firstFrameIndex is set to 0 and lastFrameIndex
is set to maxFrames-1, so by default the Sprite will cycle through its full set of Frames.

SEE ALSO

SWSetSpriteFrameAdvance

SWSetSpriteFrameTime

This function sets the time interval between automatic advances of the Sprite’s current Frame.

void SWSetSpriteFrameTime(SpritePtr srcSpriteP,

long timeInterval);

srcSpriteP An existing Sprite.

timeInterval A value indicating the millisecond time interval between Frame advances. A value of 0
indicates the Frame advance should happen as often as possible. A value of -1
indicates the Frame advance should never happen.

DESCRIPTION

The SWSetSpriteFrameTime function is used to set the time interval between automatic advances of the Sprite’s
current Frame. To advance the current Frame as quickly as possible pass zero into the timeInterval parameter.
The current Frame of the Sprite will be automatically advanced when the Sprite is processed by
SWProcessSpriteWorld after the specified time interval has passed. When a Sprite is created, the time interval is
set to -1 by default. In order for the Sprite to change Frames, you must set the time interval with
SWSetSpriteFrameTime, or install a frameChangeProc with SWSetSpriteFrameProc.

SPECIAL CONSIDERATIONS

Note that SWSetSpriteWorldMaxFPS places a limit on how often the animation will actually be rendered, and
thus places a lower limit on the time interval between Frame changes. To give SWSetSpriteFrame complete
control over Sprite’s Frame changes, do not use SWSetSpriteWorldMaxFPS to set the speed of the animation.

SEE ALSO

SWSetSpriteFrameProc

SWSetSpriteFrameAdvance

SWSetSpriteWorldMaxFPS

SWSetSpriteLocation

This function will set a Sprite’s current and last known position to an absolute horizontal, and vertical coordinate.

void SWSetSpriteLocation(SpritePtr srcSpriteP,

short horizLoc,

short vertLoc);

srcSpriteP A Sprite to be moved.

horizLoc A value indicating the absolute horizontal coordinate to which the Sprite’s current and
last known position will be set.

vertLoc A value indicating the absolute vertical coordinate to which the Sprite’s current and last
known position will be set.

DESCRIPTION

The SWSetSpriteLocation function is used to set a Sprite’s current and last known position to an absolute
horizontal, and vertical coordinate. Since the Sprite’s last known position is set as well, the Sprite will not be
erased from wherever it was before this function was called. You will typically use this function before the
animation starts or when introducing a new Sprite into the animation, to set the Sprite initial position.

If the Sprite has a movement routine installed, it will not be called by this function.

SPECIAL CONSIDERATIONS

Note that the horizLoc and vertLoc coordinates of the Sprite are local to the worldRect of the SpriteWorld, not the
portRect of the “parent” window.

SWSetSpriteMoveBounds

This function will set a Sprite’s movement boundary rectangle.

void SWSetSpriteMoveBounds(SpritePtr srcSpriteP,

Rect *moveBoundsRect);

srcSpriteP An existing Sprite.

moveBoundsRect A rectangle describing the Sprite’s movement boundary.

DESCRIPTION

The SWSetSpriteMoveBounds function is used to specify a movement boundary rectangle for a Sprite.
Enforcement of this movement boundary if left to the Sprite’s movement routine provided by you. You may want
to use this rectangle as an area around which the Sprite might bounce, or wrap, or some other movement
behavior.

SWSetSpriteMoveDelta

This function sets the values by which the Sprite’s current position should be offset.

void SWSetSpriteMoveDelta(SpritePtr srcSpriteP,

short horizDelta,

short vertDelta);

srcSpriteP An existing Sprite.

horizDelta A value by which the current horizontal position should be offset.

vertDelta A value by which the current vertical position should be offset.

DESCRIPTION

The SWSetSpriteMoveDelta function is used to specify the values by which the Sprite’s current position should
be offset. The horizontal and vertical deltas indicate the direction and distance the Sprite should be moved
when the Sprite’s moveProc is called by SWProcessSpriteWorld. It is the responsibility of the moveProc to
actually add the values in srcSpriteP->horizMoveDelta and srcSpriteP->vertMoveDelta to the Sprite’s position.
If there is no moveProc (installed with SWSetSpriteMoveProc), the Sprite will not move.

SEE ALSO

SWSetSpriteMoveProc

SWSetSpriteMoveProc

This function sets a Sprite’s movement routine to be called when the Sprite is automatically moved.

void SWSetSpriteMoveProc(SpritePtr srcSpriteP,

MoveProcPtr moveProc);

srcSpriteP An existing Sprite.

moveProc A movement routine to be called when the Sprite is moved.

DESCRIPTION

The SWSetSpriteMoveProc function is used to specify a routine to be called when the Sprite is automatically
moved. The Sprite will be automatically moved when it is processed by the SWProcessSpriteWorld function.

A moveProc routine has the form:

void MyMoveProc(SpritePtr srcSpritePtr)

In your moveProc, you can change the position of the Sprite by calling such routines as SWMoveSprite or
SWOffsetSprite. You can also directly change the Rect: srcSpriteP—>destFrameRect; this would be faster,
though only very slightly. For example, in order to add a Sprite’s deltas to its position, you could use this code:

srcSpriteP->destFrameRect.right += srcSpriteP->horizMoveDelta;

srcSpriteP->destFrameRect.bottom += srcSpriteP->vertMoveDelta;

srcSpriteP->destFrameRect.left += srcSpriteP->horizMoveDelta;

srcSpriteP->destFrameRect.top += srcSpriteP->vertMoveDelta;

srcSpriteP->needsToBeDrawn = true;

Note the last line of this code. If you use your own code to move a Sprite, you must set the needsToBeDrawn
flag yourself. If you use any of SpriteWorld’s internal routines to move a Sprite, such as SWMoveSprite,
SWOffsetSprite or SWSetSpriteLocation, this flag is set automatically by SpriteWorld.

The sprites are moved starting with the first sprite in the first layer, proceeding to the last sprite in the last layer.
Since the first layer is the one that is also drawn first, the sprites that appear at the “bottom” of the animation
(underneath all the other sprites) are the ones that will be moved first. Usually, the order in which the sprites are
moved won’t matter to your application. However, if it is important that certain sprites are moved before others,
you may want to make your own routine to move them all; this routine can then be called either immediately
before or after SWProcessSpriteWorld. If you do use such a routine for moving all the sprites, then you will not
want to install moveProcs for any of them.

SWSetSpriteMoveTime

This function sets the time interval between movements of the Sprite.

void SWSetSpriteMoveTime(SpritePtr srcSpriteP,

long timeInterval);

srcSpriteP An existing Sprite.

timeInterval A value indicating the millisecond time interval between movements of the Sprite.

DESCRIPTION

The SWSetSpriteMoveTime function is used to specify a millisecond time interval between movements of the
Sprite. The Sprite will be automatically moved when it is processed by the SWProcessSpriteWorld function after
the specified time interval has passed.

SPECIAL CONSIDERATIONS

Note that SWSetSpriteWorldMaxFPS places a limit on how often the animation will actually be rendered, and
thus places a lower limit on the time interval between movements of the Sprite. To give SWSetSpriteMoveTime
complete control over a Sprite’s movement, do not set the animation speed with SWSetSpriteWorldMaxFPS.

SEE ALSO

SWSetSpriteWorldMaxFPS

SWSetSpriteVisible

This function sets the visibility of a Sprite.

void SWSetSpriteVisible(SpritePtr srcSpriteP,

Boolean isVisible);

srcSpriteP An existing Sprite.

isVisible A Boolean value specifying the visible state of the Sprite.

DESCRIPTION

The SWSetSpriteVisible function is used to specify whether a Sprite that taking part in the animation should
actually by drawn. This result of calling this function is reflected when the animation is rendered using
SWAnimateSpriteWorld.

SWUnlockSprite

This function will unlock a Sprite .

void SWUnlockSprite(SpritePtr srcSpriteP);

srcSpriteP A Sprite to be unlocked.

DESCRIPTION

The SWUnlockSprite function will unlock a Sprite , including all the Frames contained within. The Sprite must not
be used for animation while in this unlocked state. If you wish to animate the Sprite again, you must first call
SWLockSprite.

∆ WARNING ∆

This routine can be dangerous, as the Sprite will be unlock regardless of whether its Frames are used by more
than one Sprite (as they will be if the Sprite is a clone).

SWUpdateSpriteFromPictResource

The function will redraw the internal graphic image of a Sprite, using a PICT resource.

OSErr SWUpdateSpriteFromPictResource(SpritePtr theSpriteP,

short pictResID);

theSpriteP An existing Sprite to be updated.

pictResID The resource id of a picture (‘PICT’) resource from which the first Frame of the Sprite
was created, or the ID of a single, multi-frame picture.

DESCRIPTION

The SWUpdateSpriteFromPictResource function redraws the pict or picts of a Sprite’s Frames to the Sprite’s
GWorld(s). While a SpriteWorld is being initialized and multiple Sprites are being created, you may want your
application to display a “splash” graphic. If this graphic uses a different palette from the one used by the Sprites,
The color of the Sprites will be mapped incorrectly, because the screen GDHandle and its clut are also used by
SpriteWorld’s GWorlds. Once the initialization is done and the application’s palette is correctly set for the Sprites’
graphics, you can quickly redraw the Sprites’ picts to their GWorlds with SWUpdateSpriteFromPictResource.
This routine might also be used to restore Sprites to their original appearance after they have been modified by
drawing directly to the Sprite’s GWorlds.

SWWrapSprite

This function can be used as part of a Sprite’s movement routine to make the Sprite wrap from one side of the
screen to the other.

void SWWrapSprite(SpritePtr srcSpriteP);

srcSpriteP A Sprite being moved.

DESCRIPTION

This function will check to see if a sprite has gone entirely outside of its moveBoundsRect, and if so, it will wrap it
to the other side. When the sprite is wrapped, the old position of the sprite is not erased, so it is important that
when the sprite moves outside its moveBoundsRect that it is not visible on the screen.

This function can be used as part of a moveProc; the simplest example being:

void mySpriteMoveProc(SpritePtr spriteP)

{

SWOffsetSprite(spriteP, spriteP->horizMoveDelta,

spriteP->vertMoveDelta);

SWWrapSprite(spriteP);

}

SEE ALSO

SWSetSpriteMoveBounds

SWBounceSprite

Frame Routines

SWDisposeFrame

This function will dispose of an existing Sprite’s Frame, releasing the memory it occupies.

void SWDisposeFrame(FramePtr deadFrameP);

deadFrameP A Frame to be disposed.

DESCRIPTION

The SWDisposeSprite function will dispose of a Sprite’s Frame.

SEE ALSO

SWDisposeSprite

SWLockFrame

This functions locks a Frame in preparation for animation.

void SWLockFrame(FramePtr srcFrameP);

srcFrameP A Frame to be locked.

SPECIAL CONSIDERATIONS

Few programmers will have reason to use this routine. You can lock all of a Sprite’s Frames with SWLockSprite,
or all the Layers, Sprites and Frames in a SpriteWorld with SWLockSpriteWorld.

SWUnlockFrame

This functions unlocks a Frame.

void SWLockFrame(FramePtr srcFrameP);

srcFrameP A Frame to be unlocked.

DESCRIPTION

This function unlocks a Frame; the various Handles in the Frame data structure, including the GWorld
pixMapHandle are unlocked. The Frame must not be used for animation while in this unlocked state. If you wish
to animate the Sprite using the Frame again, you must first call SWLockFrame or SWLockSprite.

SPECIAL CONSIDERATIONS

Few programmers will have reason to use this routine, as there is rarely any reason to unlock a single Frame.

∆ WARNING ∆

This routine can be dangerous, as the Frame will be unlocked regardless of whether it is used by more than one
Sprite (as it will be if the Sprite is a clone), or whether the Frame’s GWorld is used by more than one Frame (as it
will be if the Sprite was created with SWCreateSpriteFromSinglePict).

Utility, Sprite Compiler and Miscellaneous Routines

SWAnimate8BitStarField

This function will erase the stars from their old positions on the screen and draw them in their new positions.

void SWAnimate8BitStarField(SpriteWorldPtr spriteWorldP,

StarArray *starArray,

short numStars,

short backColor)

spriteWorldP The SpriteWorld in which the stars should be drawn.

starArray The array containing the star data.

numStars The number of stars in the starArray.

backColor The color index of the background (usually black).

DESCRIPTION

This function provides a fast and easy way to add a moving star field background to your animation, such as
those used in games like Space Junkie, Solarian II, and Swoop. This function is quite fast since the stars are
drawn only once, directly to the screen.

This function avoids drawing stars on top of any sprites in the SpriteWorld, so the sprites will appear to be in front
of the star field. To accomplish this, the routine checks to make sure that the pixel below each star is the same as
backColor before the star is drawn. This ensures that the star is not drawn on top of a sprite. This also means
that the stars will not be drawn over anything that is not the background color, whether a sprite or not.

The StarArray is a structure that is defined in BlitPixie.h:

typedef struct StarArray
{
short horizLoc; // Current horizontal position of the star
short vertLoc; // Current vertical position of the star
short oldHorizLoc; // Horizontal position of star the previous frame
short oldVertLoc; // Vertical position of star the previous frame
short horizSpeed; // To be used by the user to move the star
short vertSpeed; // To be used by the user to move the star
short color; // Current color of the star
Boolean needsToBeErased; // If drawn last frame, then it needs to be erased.
short userData // Reserved for user
}StarArray;

You should define your StarArray like this:

StarArray myStarArray[kNumStars];

You need to set up all of the variables in the StarArray before the animation starts (to set each star’s starting
position, color, speed, etc.). Then you can animate the stars by putting a statement like this in the main loop of
your animation:

SWAnimate8BitStarField(spriteWorldP, myStarArray, kNumStars, kBackColor);

It is up to you to move each star by changing its horizLoc and vertLoc. However, before you move each star, you
must save its old position like so:

myStarArray[starNumber].oldHorizLoc = myStarArray[starNumber].horizLoc;

myStarArray[starNumber].oldVertLoc = myStarArray[starNumber].vertLoc;

It is important to do this, because SWAnimate8BitStarField erases each star from its oldHorizLoc and oldVertLoc
before it draws it in its new horizLoc and vertLoc.

The horizSpeed and vertSpeed variables are provided for your use so that you can make different stars move
different speeds. It is up to you to add these values to the horizLoc and vertLoc of the star. However, you may not
always want to use these variables to keep track of the star’s speed. Such would be the case in a game like
Lunatic Fringe or Space Madness, where all the stars move the same speed and direction, and the speed and
direction of the stars change depending on where the ship is going.

The color variable is the color index of the star. Since SWAnimate8BitStarField is only for use in 8-bit mode, you
may use any value between 0 and 255 for the color field. Normally, 0 will be white and 255 will be black. You
would generally set the color of the star before the animation starts and then leave it that way, although you can
change the color of the star while the animation is running if you want.

The needsToBeErased field is used internally by SpriteWorld to keep track of whether the star was drawn the
previous frame, and therefore whether the star needs to be erased or not. The only time you should use this
variable is before the animation starts, when you should set it to false, since the star hasn’t been drawn yet.

The last parameter to the function, backColor, indicates the color index of the background. This color is used to
erase the stars. Also, each star will not be drawn unless the destination pixel is already the same color as the
backColor, to ensure that the stars are not drawn on top of sprites. (SpriteWorld actually checks the destination
pixel of the work area, instead of the screen, since reading directly from VRAM can slow down the next

write to VRAM on some systems. Since the work area is a mirror of what is on the screen, SpriteWorld can use it
to determine whether the star will be drawn on top of a sprite or not.) If your background is black, then you should
pass 255 as the backColor.

SWBlitPixie8BitFlipSprite

This function horizontally flips the Frames of an 8 bit Sprite.

void SWBlitPixie8BitFlipSprite(SpritePtr srcSpriteP);

srcSpriteP The Sprite to be flipped.

DESCRIPTION

SWBlitPixie8BitFlipSprite “flips” a Sprite’s Frame images horizontally, so that a right-facing character faces left,
and vice-versa. This function assumes (and does not check for) 8 bit pixels.

SPECIAL CONSIDERATIONS

• SWBlitPixie8BitFlipSprite requires that the Sprite have a pixel mask, or no mask at all. It may have a region
mask as well, and the region mask will be flipped correctly if both types of mask are present, but if there is only a
region mask, the mask will not be flipped, and the flipped Sprite will not be drawn correctly by CopyBits. If there
is only a pixel mask, or no mask, then SWBlitPixie8BitFlipSprite is reasonably fast, and can probably be used in
mid-animation without a noticeable pause. If a region mask is present, the routine will take considerably longer.

• Note that because cloned Sprites share the same Frame images, if you flip one clone Sprite, all members of the
clone “family” will also be flipped. As rule, flipping won’t be appropriate for cloned Sprites.

• Compiled Sprites must be compiled again after flipping.

• The Sprite must be locked before calling SWBlitPixie8BitFlipSprite.

SWBlitPixie8BitGetPixel

This function will return the 8 bit pixel value at a given point in a given Frame.

unsigned char SWBlitPixie8BitGetPixel(FramePtr srcFrameP,

Point thePoint);

srcFrameP The Frame to get the pixel value from.

thePoint The Point location of the pixel.

DESCRIPTION

SWBlitPixie8BitGetPixel provides a fast way to determine the color index value located at a given point in a
Frame. The Frame can be a Sprite Frame, or the SpriteWorld’s backFrame, workFrame, or windowFrame. This
function assumes (and does not check for) 8 bit pixels.

SPECIAL CONSIDERATIONS

If the Frame specified is the windowFrame (mySpriteWorldP->windowFrameP), the pixel will be read directly
from the screen. Due to caching issues, the act of reading from VRAM (the screen) can significantly slow down
the next write to VRAM on some systems.

SEE ALSO

SWBlitPixie8BitSetPixel

SWBlitPixie8BitSetPixel

This function will set a single pixel in a given Frame value to an 8 bit color index value.

void SWBlitPixie8BitGetPixel(FramePtr srcFrameP,

Point thePoint,

unsigned char theColor);

srcFrameP The Frame to draw the pixel in.

thePoint The Point location for the pixel.

theColor The 8 bit color index value.

DESCRIPTION

SWBlitPixie8BitSetPixel provides a fast way to set an individual pixel to a particular color index value. The Frame
can be a Sprite Frame, or the SpriteWorld’s backFrame, workFrame, or windowFrame. This function will check
whether thePoint is within the frame’s frameRect, and do nothing if it is not. It assumes (but does not check for) 8
bit pixels.

SEE ALSO

SWBlitPixie8BitGetPixel

SWClearStickyError

This function clears SpriteWorld’s sticky error value.

void SWClearStickyError(void);

DESCRIPTION

The SpriteWorld sticky error value holds the first non zero error result of any SpriteWorld function that has been
called since the sticky error value was cleared with SWClearStickyError. SWClearStickyError is called by
SpriteWorld when you create a SpriteWorld with SWCreateSpriteWorldFromWindow.

SEE ALSO

SWStickyError

SWCompileSprite

This function “compiles” a Sprite’s mask image, allowing the Sprite to be drawn using
CompiledSpriteDrawProc.

OSErr SWCompileSprite(SpritePtr srcSpriteP);

srcSpriteP A Sprite to be compiled.

DESCRIPTION

SWCompileSprite uses the mask image of an 8-bit Sprite to create a series of 68K machine language
instructions. This package of instructions is then attached to the Frame data structure of each Frame of the
Sprite. When the Sprite is drawn using CompiledSpriteDrawProc, these instructions are executed,
accessing the Frame’s image and quickly blitting only the masked, or non-transparent, parts of the image to the
destination work frame. Drawing Sprites with CompiledSpriteDrawProc is notably faster on 68K Macs than
BlitPixie8BitMaskDrawProc.

An error code is returned if the bit depth of the SpriteWorld is not 8 bits, if the Sprite was not created using
kPixelMask or kFatMask, or if memory allocation fails.

SEE ALSO

SWSetSpriteDrawProc

SWSetStickyIfError

This function set the contents of SpriteWorld’s sticky error value if and only if the passed value is not zero.

void SWSetStickyIfError(OSErr errNum);

errNum The error value.

DESCRIPTION

Primarily intended as an internal routine, SWSetStickIfError sets SpriteWorld’s sticky error value. If the value
passed in errNum is zero, the contents of the sticky error are not changed.

SEE ALSO

SWClearStickyError

SWStickyError

SWStickyError

This function returns the contents of SpriteWorld’s sticky error value.

OSErr SWStickyError(void);

DESCRIPTION

The sticky error value holds the first non zero error result of any SpriteWorld function that has been called since
the sticky error value was cleared with SWClearStickyError. SWStickyError will inform you if an error was
returned by any of the SpriteWorld routines you have called since the sticky error value was cleared. This allows
you to make a series of SpriteWorld calls without checking each one individually to see if it returned an error.
Whenever any SpriteWorld function results in an error, the error number will be preserved by SpriteWorld until it
is cleared by SWClearStickyError (or overwritten by some subsequent non-zero error result).

SEE ALSO

SWClearStickyError

SpriteWorld Data Structures, etc.

///--
// sprite world error constants
///--

enum
{
kSystemTooOldErr = 100,
kMaxFramesErr, // attempt to exceed maximum number of frames for a sprite
kInvalidFramesIndexErr, // frame index out of range
kNotCWindowErr, // attempt to make a SpriteWorld from non-color WindowPtr
kNilParameterErr, // nil SpritePtr, FramePtr, etc.
kWrongDepthErr, // invalid pixel size for attempted function
kWrongMaskErr, // invalid mask type for attempted function
kOutOfRangeErr, // tileID or tileMap value out of bounds
kTilingNotInitialized, // tiling hasn't been initialized
kTilingAlreadyInitialized // tiling already initialized; can't be initialized again
kNullTileMapErr // no TileMap has ever been created/loaded
};

///--
// sprite world data structure
///--

struct SpriteWorldRec
{
SpriteLayerPtr headSpriteLayerP; // head of the sprite layer linked list
SpriteLayerPtr tailSpriteLayerP; // tail of the sprite layer linked list

FramePtr backFrameP; // frame for the background
FramePtr workFrameP; // work, or "mixing" frame
FramePtr windowFrameP; // frame for drawing to the screen

DrawProcPtr offscreenDrawProc; // callback for erasing sprites offscreen
DrawProcPtr screenDrawProc; // callback for drawing sprite pieces onscreen

Rect windRect; // holds windowFrameP->frameRect for easier access
Rect backRect; // holds backFrameP->frameRect for easier access

Rect visScrollRect; // rect that is copied to screen when scrolling
Rect oldVisScrollRect; // visScrollRect from last frame
Rect offscreenScrollRect; // same as visScrollRect, but local to offscreen
short horizScrollRectOffset; // offset from offscreenScrollRect to visScrollRect

short vertScrollRectOffset; // offset from offscreenScrollRect to visScrollRect
short horizScrollDelta; // horizontal scrolling delta
short vertScrollDelta; // vertical scrolling delta
Rect scrollRectMoveBounds; // move bounds for visScrollRect

WorldMoveProcPtr worldMoveProc; // pointer to the scrolling world move procedure
SpritePtr followSpriteP; // pointer to the "follow sprite", or NULL

TileMapPtr tileMap; // two-dimensional tile map array
Boolean tilingIsInitialized; // has the tiling been initialized yet?
short numTileMapRows; // number of rows in tileMap array
short numTileMapCols; // number of cols in tileMap array
short *offscreenTileMap; // offscreen tile map array
short numOffscreenTileMapRows; // number of rows in offscreenTileMap array
short numOffscreenTileMapCols; // number of cols in offscreenTileMap array
FramePtr *tileFrameArray; // array of tile framePtrs
short *curTileImage; // array specifying the current frame of each tile
short maxNumTiles; // number of elements in tileFrameArray
short tileWidth; // width of each tile
short tileHeight; // height of each tile
Boolean tilingIsOn; // are the tiling routines turned on?
short numTilesChanged; // number of rects in updateRect array to update
Rect *changedTiles; // array of rects of tiles that changed
TileChangeProcPtr tileChangeProc; // pointer to tile frame changing procedure
DrawProcPtr tileMaskDrawProc; // drawProc for drawing masked tiles above sprites

GDHandle mainSWGDH; // GDH of SpriteWorld's window
short pixelDepth; // SpriteWorld's depth

unsigned long runningTimeCount; // running total time in milliseconds
UnsignedWide lastMicroseconds; // value of previous Microseconds() call
Boolean frameHasOccured; // Has the SpriteWorld been processed?
short fpsTimeInterval; // milliseconds per frame of animation (1000/fps)
unsigned long timeOfLastFrame; // time (from runningTimeCount) of last frame
VBLTaskRec vblTaskRec; // extended VBLTask record
Boolean usingVBL; // is the VBL task installed?

Boolean anySpritesNeedRemoving; // flag: at least one Sprite needs to be removed

long userData; // reserved for user
};

///--
// sprite layer data structure
///--

struct SpriteLayerRec
{
SpriteLayerPtr nextSpriteLayerP; // next sprite layer
SpriteLayerPtr prevSpriteLayerP; // previous sprite layer

SpritePtr headSpriteP; // head of sprite linked list
SpritePtr tailSpriteP; // tail of sprite linked list

long userData; // reserved for user
};

///--
// sprite data structure
///--

struct SpriteRec
{
SpritePtr nextSpriteP; // next sprite in that layer
SpritePtr prevSpriteP; // previous sprite in that layer
SpritePtr nextActiveSpriteP; // next active sprite in the SpriteWorld

SpritePtr nextIdleSpriteP; // next idle sprite in the SpriteWorld

// drawing fields
Boolean isVisible; // draw the sprite?
Boolean needsToBeDrawn; // sprite has changed, needs to be drawn
Boolean needsToBeErased; // sprite needs to be erased onscreen
Boolean isUnderTiles; // is the sprite behind the tiles?
Rect destFrameRect; // frame destination rectangle
Rect oldFrameRect; // last frame destination rectangle
Rect deltaFrameRect; // union of the sprite's lastRect and curRect
DrawProcPtr frameDrawProc; // callback to draw sprite

// drawing fields for scrolling routines
Rect clippedSourceRect; // source sprite frame rect after clipping
Rect destOffscreenRect; // sprite's dest rect after clipping and offset
Rect oldOffscreenRect; // the destOffscreenRect from the previous frame
Boolean destRectIsVisible; // is destOffscreenRect visible on screen?
Boolean oldRectIsVisible; // was oldOffscreenRect visible on screen?

// frame fields
FramePtr *frameArray; // array of frames
FramePtr curFrameP; // current frame
long numFrames; // number of frames
long maxFrames; // maximum number of frames
long frameTimeInterval; // time interval to advance frame
unsigned long timeOfLastFrameChange; // time (from runningTimeCount) frame last changed
long frameAdvance; // amount to adjust frame index
long curFrameIndex; // current frame index
long firstFrameIndex; // first frame to advance
long lastFrameIndex; // last frame to advance
FrameProcPtr frameChangeProc; // callback to change frames

// movement fields
long moveTimeInterval; // time interval to move sprite
unsigned long timeOfLastMove; // time (from runningTimeCount) sprite last moved
short horizMoveDelta; // horizontal movement delta
short vertMoveDelta; // vertical movement delta
Rect moveBoundsRect; // bounds of the sprite's movement
MoveProcPtr spriteMoveProc; // callback to handle movement

// collision detection
CollideProcPtr spriteCollideProc; // callback to handle collisions

// miscellaneous
GWorldPtr sharedPictGWorld; // if common GWorld used for frames, here it is
GWorldPtr sharedMaskGWorld; // same for mask
RemovalType spriteRemoval; // whether to remove sprite, and if so how

long userData; // reserved for user
};

///--
// frame data structure
///--

struct FrameRec
{

GWorldPtr framePort; // GWorld for the frame image
PixMapHandle framePixHndl; // handle to PixMap (saved for unlocking/locking)
PixMapPtr framePix; // pointer color PixMap (valid only while locked)

char* frameBaseAddr; // base address of pixels (valid only if locked)
unsigned long frameRowBytes; // number of bytes in a row of the frame
short leftAlignFactor; // used to align the rect.left to nearest long
short rightAlignFactor; // used to align the rect.right to nearest long
Boolean isFrameLocked; // has the frame been locked?

Rect frameRect; // source image rectangle
Point offsetPoint; // image offset relative to destination rectangle
RgnHandle maskRgn; // image masking region
Boolean tileMaskIsSolid; // used by SWDrawTilesAboveSprite

GWorldPtr maskPort; // GWorld for the mask image
PixMapHandle maskPixHndl; // handle to PixMap (saved for unlocking/locking)
PixMapPtr maskPix; // pointer to color PixMap (valid only while locked)

char* maskBaseAddr; // base address of mask (valid only if locked)

Boolean sharesGWorld; // shares GWorld with other frames

unsigned short useCount; // number of sprites using this frame

unsigned short numScanLines; // scan line count
short worldRectOffset; // non-whole-byte offset for AllBit blitter
unsigned long* scanLinePtrArray; // array of pointers to scan lines

PixelCodeHdl pixCodeH; // handle to compiled sprite data
BlitFuncPtr frameBlitterP; // procPtr to compiled sprite data
};

///--
// Star Array data structure
///--

typedef struct StarArray
{
short horizLoc; // Current horizontal position of the star
short vertLoc; // Current vertical position of the star
short oldHorizLoc; // Horizontal position of star the previous frame
short oldVertLoc; // Vertical position of star the previous frame
short horizSpeed; // To be used by the user to move the star
short vertSpeed; // To be used by the user to move the star
short color; // Current color of the star
Boolean needsToBeErased; // If drawn last frame, then it needs to be erased.
short userData; // Reserved for user

} StarArray;

