
Integumentary Customization , page 1

Integumentary Customization
Implementing “Skins” in your Application

Toby W. Rush
toby@tobyrush.com

Abstract
One of the concepts which has helped make the Macintosh revolutionary is its
ability to be customized to match the user's preferences. Several programs that
have appeared in the last few years use the idea of “skins”—customizable
interfaces—to extend this capability further. The most effective skins not only
allow the user to change colors, background patterns and window styles, but also
to determine the placement and presence of controls. While implementing skins
in your program does require you to design the program from the ground up with
this in mind, the actual implementation is not difficult. This paper discusses the
advantages of using skins, how to reconcile skins with established interface
design principles, and walks through the process of designing a “skinnable”
application.

Control/display panels aboard the USS
Enterprise are software-defined surfaces that
are continually updated and reconfigured
for maximum operator efficiency and ease of
use.…Cruise mode operating rules allow
each crew member to define a customized
operating configuration for his/her work
station. 1

Since software programming began, the
primary goal of interface design has
always been to improve ease of use. The
creation of the Macintosh OS in the
early eighties was a defining event in
interface design because it provided
programmers with the capability,
through the Toolbox, to quickly create
easy-to-use interfaces. In fact, it was
easier to use the predefined, familiar
and well-designed interface elements
than it was to create one’s own. This
scheme enforced consistency across all
applications; a checkbox control in one
application looked and behaved like a
checkbox control in any other. This

1 Rick Sternbach and Michael Okuda: Star
Trek: The Next Generation Technical Manual.
New York: Pocket Books, 1991: 33.

allowed the user to learn new
applications more quickly.

In the past five years, processor speed
has been rapidly increasing and
interface designers have had the
computing power to pursue a secondary
goal: flexibility. Many of the recent
advances in interface design have been
efforts to allow more user customization
of the interface.

The current culmination of this design
strategy is the popular concept of
“skins”: sets of instructions for
displaying the interface of a program.
These instructions can exist as a
removable part of the application
program (a resource, for example), but
more often they are separate documents
that the program can read and use.
Users can change the interface of a
program by installing a different skin,
and new interfaces can be developed
without rewriting the program. Because
each program is different and requires a
different method of implementing skins,
skin files are generally specific to a

Integumentary Customization , page 2

particular program and cannot be used
in other programs. As a result, skin file
formats are not standardized.2

Unfortunately, by giving users the
power to create their own interface, the
consistency and predictability of pre-
skin interface design is no longer
ensured. Skin designers can create their
own interface elements that, while
perhaps fitting well with the rest of the
skin, do not match interface elements in
other programs. This paper discusses
the process of reconciling the skin
concept with fundamentals of good
interface design, as well as what the
programmer can do to make the skin
development process approachable for
designers. The process of designing a
skinnable application will be outlined,
as well as examples of implementing
such a design.

In this paper, I use the following terms
in ways that haven’t quite made it into
Webster’s: a skinnable application is one
that makes use of skin technology; to
skin an application is to change the
interface by applying a skin. Note that
skinning an application and designing a
skinnable application are two different
things; the former is usually done by the
user, and the latter by the developer.3

2 This begs the question: “Could a standardized
skin file format work?” The format would need
to be extremely flexible, but the concept is
within the realm of possibility. A single file
could contain appearance information for
standard design elements, much like a
Kaleidoscope or Appearance Manager theme,
but the file could also contain specific layout
information for various skinnable programs.
Since each different program would require a
planned skin, however, the benefits of such a
standard are debatable.
3 This terminology is admittedly a little
confusing since skinning an application involves
putting “skin” on something, while skinning a
cat involves taking skin off something. (Sources

Why Make an Application
Skinnable?

Let's first address the various strengths
of skinning.

Aesthetics. The most common use of
skins in currently available software is
to provide the user with different
appearances for any given application.
While this aspect of interface is of little
functional importance, it fits well with
the Macintosh design philosophy. Using
skins, users may make the application
harmonize with their desktop pattern or
picture, their hardware, or even their
mood.4

Adaptation to User Workflow. The Human
Interface Guidelines published by Apple
are meant to ensure consistency based
on average user expectation. A skin
implementation, however, allows the
application to address specific user
expectation. For example, a sound
synthesis program might have skins that
mimic the control layout of different
rack-mounted synthesizers, so users of a
specific synthesizer could use a skin that
is familiar to them.

Ability to Serve Various Needs. Skins can
be particularly useful for programs that
combine several functions, since skins
allow the user to choose only the
functions needed for a particular task
and combine them into a single console.
An all-purpose audio utility like Apple’s

indicate there is more than one way to do the
latter.)
4 A related concept in this vein is the ability to
create branded versions of the application. This
level of commercialism will often make the true
developer shudder, but if creating an Eddie
Bauer edition of one’s FTP client brings the
programmer a little more income, it may be
worth considering!

Integumentary Customization , page 3

iTunes would be an excellent candidate
for a skin implementation: one skin can
present the basic playback controls, and
another skin can provide a large
window for database manipulation.
Elements of each of these can be
combined according to the user’s
preference.

Localization. While most localization
needs can be met through the use of
resources, skins take the idea further.
With a skin, language-based text and
culturally specific images are still stored
separately from the program code, but
the need for having separate downloads
for different versions of the application
is eliminated. Instead, a single
executable can be provided, with skins
that contain localized information for
each country or market.

Accessibility. Just as software localization
is made simpler with skins, a skin
implementation can ensure access to an
application by users who have
disabilities or special needs. Users may
make modifications such as increasing
text size, increasing contrast, changing
colors, replacing elements that cannot be
rendered by a speech synthesizer, and
so on. Again, if a skin implementation is
included with the program, skins can be
created without needing to recompile
the program. This reduces development
time but increases the user base.

Skinning vs. Good Interface
Design

Many of the skins available for currently
popular programs are decidedly un-
Macintosh. They contain obvious
inconsistencies, such as customized
replacements for standard controls like
buttons, edit fields and popup menus as
well as non-standard window shapes
and color usage. But some of the more

problematic difference are subtleties:
controls that activate on mouseDown
instead of mouseUp, changes to the
enabled/disabled paradigm for
windows and controls, and inconsistent
methods of dragging and resizing
windows. This has larger problems than
just being an affront to obsessive
interface designers; it steals from the
inter-application consistency that makes
the Macintosh interface great.

However, the benefits of making an
application skinnable cannot be denied.
How, then, can the developer provide a
method to skin an application while still
maintaining a well-designed interface?
To answer that, we should take a look at
the different degrees of skin
implementation. These categories are, of
course, mine, but I have tried to make
them as non-arbitrary as I can by basing
them on real-world usage. A higher
level number indicates greater degree of
flexibility.

Level I Implementation. A level I
implementation of skin capability
allows the skin to make changes to only
characteristics of the window and the
superficial aspects of the controls inside
it. Controls may be neither redesigned,
moved, replaced, added nor removed.
Applications with a level I
implementation generally allow
customization of the window color (or
placement of an image as the
background), the text font, size, style
and color in controls, and other
superficial changes. Programs with this
implementation may also technically
allow customization of the window
style (i.e., the procID), but in practice
this is relatively rare.

Level II Implementation. The second level
of skin implementation allows the same
functionality as Level I, but adds the

Integumentary Customization , page 4

capability of redesigning controls.
Application windows which use this
implementation have the same layout of
controls regardless of the skin used, but
allow for complete customization within
the layout. Controls are generally
constrained to a maximum size to avoid
overlapping.

Figure 1. In a Level I skin implementation,
colors, fonts, and other superficial properties
can be changed, but fundamental aspects of
the interface such as layout or control type
cannot be altered.

Figure 2. Level II skin implementations allow
the redesigning of controls, but not a change
in layout. Because controls can be
redesigned, toolbox controls are generally
not used.

Often the implementation of this type of
skin involves the use of custom controls
whose mouseDown, mouseUp and
mouseOver appearances are specified
by graphics in the skin file, so that
changing these graphics has the
appearance of changing the control
itself. As a result, these implementations
do not use standard toolbox controls,
since they would need to be replaced by
the custom control.

Level III Implementation. This degree of
implementation embraces the
functionality of both Level II and III, but
also allows the controls to be moved,
resized or hidden. In this situation, a
specific number of controls are defined
for the window in question, but all
characteristics of the controls may be
changed by the skin.

Level IV Implementation. The highest
degree of skin implementation allows
for the creation of controls as directed
by the skin. In this implementation, the
number of controls created by the skin
file is limited only by memory (and
practicality). A set of available controls
is defined, and a skin file may use any
or all of them to construct the window.
This provides the most flexibility but is
also the most complex from a design
standpoint. The steps in realizing this
implementation are described later in
this paper.

Integumentary Customization , page 5

Figure 3. In a Level III implementation, controls may be moved, resized or hidden, but new ones
may not be created. The window to the right displays all the controls for this program, whereas
the window below shows only a static text item and a slider.

Given these levels of implementation—
and the understanding that a program
of this type necessarily involves
handing some control of interface
design to the skin designer—we can see
that different types of implementations
have different ways of reconciling the
“skinning vs. good interface design”
issue. A level I implementation is fairly
static, and while the skin designer can

impact the aesthetics of the program, the
remainder of the interface (spacing,
layout, type of controls) are unchanged.
The other three levels are far more
dangerous from an interface design
perspective, since the skin designer is
given free rein to replace well-designed
controls with those that may be more
aesthetically pleasing but less efficient
or predictable for the user.

Integumentary Customization , page 6

Figure 4. A Level IV combines the capabilities of the other three levels with the ability to
dynamically create controls. The window on the left displays all possible controls for the program.
The window on the right contains four instances of the same control, each set to control a
different physical device.

The flexibility of a level IV
implementation seems like it would be
the most problematic in this regard, but
in fact it has an interesting benefit. Since
the skin designer may choose from a
number of controls to construct the
interface, the programmer can provide
instances of the standard toolbox
controls as well as custom controls that
accomplish the same task but provide
more design flexibility. If the standard
toolbox controls are present as options,
the undiscriminating skin designer will
use these since they require less effort to
implement. Should the designer wish to
take the time to design a custom control,
the capability to do so is provided.

Careful designing of these custom
controls can also enforce good interface
design. If one of the options for the skin

designer is a custom button which
allows for different mouseDown,
mouseUp and mouseOver pictures, the
control template can be designed to
enforce the “action on mouseUp”
paradigm which pervades the
Macintosh interface. Interface
consistency is thus built in for the skin
designer, as it is for the programmer
who chooses toolbox controls over
custom solutions.

Making your Implementation
Approachable for Skin Designers

When implementing skins in an
application, a programmer must decide
on what level of programming or design
will be required to design skins for the

Integumentary Customization , page 7

program.5 Generally, a low level of
required expertise is best, as it allows
more people to create skins and
increases the number of skins available
for users who do not design skins.
Unfortunately, a simple method of
creating skins is not always possible,
especially for higher-numbered levels of
implementation. In this case, the
programmer must strike a balance
between simplicity and flexibility: an
overly simplistic method will not
provide for flexibility, but a method that
requires high-level programming
concepts will not be accessible to most
people.

The programmer can reduce the
complexity of the skin design process by
requiring only the essential information
of interface design be included in the
file, and by allowing it to be presented
in a simple way. It is best to avoid
knowledge or concepts that are foreign
to non-programmers. Additionally, a
good design strategy for this process is
to ignore how the program itself is
structured and determine how the user
perceives it to be structured. For
instance, a complex network chat
program might make use of several
different concurrent connections to
coordinate a single chat session. If the
user perceives the session as one
continuous connection, any
customizable interface elements should
maintain this illusion.

5 Users of a skinnable application can be grouped
in three categories: those who design skins for
the application, those who do not design skins
but make use of skins designed by others, and
those who ignore the skinning capabilities
altogether. Programmers should keep each of
these types of users in mind when designing and
distributing the program. The last type of user is
generally addressed by including a default skin
with the program.

Perhaps the most important limiting
factor in determining who will be able
to design skins for an application is
which tools are required for the job.
Requiring specific programming or
compiling applications will certainly
restrict skin development for the
application; it is better instead to require
only basic, freely available tools such as
resource and text editors. The best
solution is to create an easy-to-use
utility for designing skins and include it
with the application.

In all levels of skin implementation, the
skin file must contain a list of
characteristics for controls. In the first
three levels, the list of controls is
constant and can be specified in a set
order. For instance, a skin file for a basic
clock application might be a text-based
file in the following form:

<header information for file> <CR>
<characteristics for time display> <CR>
<characteristics for date display> <CR>
<characteristics for alarm button>

If this program has a Level III skin
implementation, each line might contain
data for position and size of the
individual controls, but the skin file
could be required to contain the
information in the order specified (so
the information for the date display is
always found on line 3).

With a Level IV implementation,
however, the skin file must
accommodate an unrestricted list of
controls. Since there is no guarantee
about which controls will be include in
any given window, the program cannot
depend on the order or even presence of
controls. In this case, an XML-based file
works well, since it reflects the object-
oriented nature of the skin. Below is a

Integumentary Customization , page 8

slightly more specific example for our hypothetical clock program:

<WINDOW STYLE="plainBox" WIDTH="200" HEIGHT="100">
<TIMEDISPLAY LEFT="45" TOP="13" WIDTH="150" HEIGHT="20"
FONT="Courier">
<ALARMBUTTON LEFT="45" TOP="80" WIDTH="80" HEIGHT="20"
FONT="Charcoal">

Because of the popularity of HTML and
other XML-based languages, computer-
literate users are likely to find a format
like this familiar and simple.

The XML-based file allows the skin
designer to specify characteristics of
controls, but it does not allow for media
elements such as graphics and sound.

These media types could conceivably be
encoded and placed in the data fork
alongside the XML description file, but
this is needlessly complex. The obvious
solution is to include these elements in
the resource fork. They can then be
referred to in the XML file by their
resource number or name, as shown
here:

<CUSTOMBUTTON LEFT="20" TOP="20" WIDTH="40" HEIGHT="20"

DEFAULTIMAGE="4000" MOUSEOVERIMAGE="4100" MOUSEDOWNIMAGE="4200">

The above example describes a button
whose appearance is based on graphics
included in the resource fork. The
normal image for this button is stored as
'PICT' resource ID 4000. The image
displayed when the mouse is over the
button is found as 'PICT' ID 4100, and
the image displayed when the mouse is
held down over the button is 'PICT' ID
4200. Storing the graphics in the
resource fork allows them to be edited
and replaced easily and makes initial
skin development easier, since it takes
advantage of the Mac’s innate ability to
handle media stored in files. Sounds,
video and other media can be stored in a
similar fashion.

Designing a Skinnable
Application: Concepts

The remainder of this paper discusses
the process of designing a level IV skin
implementation in a program. For this
level of implementation, it is
recommended that the program be
designed from the start with the

implementation in mind. The concept of
a skinnable application fits very well
into the structure of object-oriented
programming, so the idea of classes and
subclassing will be used in the following
sections. For an example we will
continue to use the idea of a simple
clock program.

The first step to designing this type of
implementation is to create a list of all
possible controls to make available to
the skin designer. It is often tempting to
create very vague, open-ended controls
in this step, but doing so will require
that the skin file be more complex and
difficult to design. Rather than having a
small number of generalized controls, it
may be better to create a larger number
of function-specific controls. This
decision must be made with reference to
the way the user and skin designer
perceive the structure of the application.

For instance, a CD player application
may require buttons for many different
functions (play, pause, eject, scan

Integumentary Customization , page 9

forward/backward, etc.). The skin
implementation may also want to allow
many different type of buttons
(standard pushbutton, bevel button,
customized graphic button). In this
example, the programmer must decide
between the following:

1. Create a single control template,

allowing the skin designer to set
characteristics of button type and
function;

2. Create a control template for each

button type, allowing the skin
designer to set the function of each;

3. Create a control template for each

function, allowing the skin designer
to set the type of button of each; or

4. Create a control template for each

combination of button type and
function.

Of these options, number 1 might be the
best from the skin designer’s
perspective, followed by number 3
(which emphasizes function over
appearance). Number 2 is generally the
easiest to implement in an object-
oriented format, since it involves a
simple subclassing of the control types.
Number 4 is needlessly complex for
both skin designer and programmer.

In our simple clock example, we might
have the following list of controls be
available to the skin designer:

· A text-based time display
· A text-based date display
· A graphic-based analog time display
· A button to turn the alarm on and

off

Since both the time and date displays
are going to be text items, it might be
tempting to combine them into a generic
text item. This might be worth doing in
a more complicated program, but in this
simple example the application
structure is better portrayed by creating
separate control templates.

The next step is to determine what
characteristics each control has that can
be changed through the skin file. To
continue with our clock:

Characteristics for all controls: position

and size

Time display control: time format, text

color, font, size and style

Date display control: date format, text

color, font, size and style

Analog Time Display: hand, background

and numbers colors, presence of
second hand, type of numbers
(Arabic, roman, or none), etc.

Alarm Button: button type (checkbox or

sticky bevel), font, size, style, text
color

Note that Human Interface Guidelines
can be enforced through some
restrictions built in here. If the Alarm
Button is supposed to be a two-state
button, the skin designer should only be
able to use controls that would work in
this way: a checkbox or a bevel button in
“sticky” mode. A standard pushbutton,
which does not change state, is not
appropriate here; nor is a radio button,
since the control is not among a group.

Integumentary Customization , page 10

Figure 5. By allowing only certain controls to be used for a particular function, the Human
Interface Guidelines can be enforced in a skinnable application. In this case, a checkbox and a
"sticky" bevel button are appropriate, but a radio button, a popup menu, a pushbutton and a tab
panel (!) are not.

Each of these control templates should
then be created as control subclasses. In
designing these subclasses, the
programmer must have the goal of
making the controls completely self-
sufficient. Controls that rely on other
controls will not work in this situation,

since the presence of other controls is
entirely up to the skin designer.
Controls should handle all user
interaction with themselves, and should
be written to handle the fact that there
may be two or more identical controls in
the same window.

Integumentary Customization , page 11

Figure 6. In a Level IV implementation, controls may not modify each other directly; they must set
and read information in the application itself. The checkbox in the window on the left cannot send
a message to the graphic in the window on the right; it must instead set a flag in the application.
This flag is checked periodically by the graphic.

Because no controls can assume the
presence of other controls in the
window, controls that normally
influence the appearance or function of
other controls must be redesigned. For
example, our program may have a
control that displays a particular
graphic when the alarm is set. In a non-
skinnable application, the “set alarm”
control could be programmed to signal
the control to display its graphic. In a
skinnable application, however, there
may be no such graphic, or there may be
several such graphic controls; the set
alarm control has no way of knowing. In
this case, the set alarm control must set a
flag somewhere in the application that
the alarm is set, and the graphic control
must periodically check the status of
this flag and change its appearance
accordingly.

Once each of these subclasses have been
created, the next step is to create a
window that can construct itself,
creating instances of these subclasses,
according to a given skin file. Once the
window setup is complete, the
subclasses take care of themselves.
However, in order to ensure that the
classes are kept updated, one of the few
duties of the window is to cycle through
all the controls and send update events
to each on a periodic basis.

If the window itself is a subclass, it is
then easy to allow multiple windows to
exist at once, each one created from a
different skin file.

Designing a Skinnable
Application: Implementation

Integumentary Customization , page 12

To illustrate the concepts above, I use
the REALbasic development
environment; however, the concepts can
be easily ported to another object-
oriented environment, such as C++. The
use of REALbasic in this paper is
primarily based on my familiarity with
the environment, but also stands as
proof that creating a skinnable
application does not require low-level
programming.

Having devised a list of controls we
want to make available to the skin
designer, the first step is to implement
these as subclasses. For example, the
time display control described above
would be a subclass of a staticText
object. Create a new class, set the super
to staticText, and name it
timeDisplayClass. Since this object
inherits the properties of staticText, we
do not need to add properties for text
color, font, size or style; they are already
built in to the control. We do need to

add a timeFormat property, however.
To keep the example simple, we will
allow the skin designer to choose
between a short time format (6:10 PM)
or a long time format (6:10:34 PM). To
do this, create a new property for the
subclass and define it as “useLongTime
as boolean.” A value of true in this
property indicates that the control
should display the long time; otherwise
the control will display the short time.

We could leave the creation of the
control to the window, but object-
oriented programming techniques
dictate that we have the control
responsible for its own creation. By
setting up a constructor method that
takes a line of XML as a parameter, we
can do just that. Create a new method,
name it “construct,” and enter
“dataLine as string” as the parameter.
Enter the following code into this newly
created method:

Sub construct(data as string)
 // this method sets the characteristics of the control
 // according to the XML tag passed in data
 me.left=val(getXMLParameter(data,"LEFT"))
 me.top=val(getXMLParameter(data,"TOP"))
 me.width=val(getXMLParameter(data,"WIDTH"))
 me.height=val(getXMLParameter(data,"HEIGHT"))
 me.textFont=getXMLParameter(data,"FONT")
 me.textSize=val(getXMLParameter(data,"SIZE"))
 me.bold=(instr(getXMLParameter(data,"STYLE"),"BOLD")<>0)
 me.italic=(instr(getXMLParameter(data,"STYLE"),"ITALIC")<>0)
 me.underline=(instr(getXMLParameter(data,"STYLE"),"UNDERLINE")<>0)
 me.textColor=decodeColor(getXMLParameter(data,"COLOR"))
 me.useLongTime=(getXMLParameter(dataLine,"LONGTIME")="TRUE")
End Sub

This bit of code requires the following
support methods, which can be placed

in a separate module in the project
(perhaps titled “Utilities”):

Function getXMLParameter(XMLTag as string, parameter as string) as
string
 // Given an XML tag, this function returns the value
 // for a named parameter in that tag.

 dim newXMLTag,returnString as string
 dim i as integer

Integumentary Customization , page 13

 // if it's an XML tag, it will be surrounded by angle brackets
 if left(XMLTag,1)="<" and right(XMLTag,1)=">" then
 newXMLTag=mid(XMLTag,2,len(XMLTag)-2) // remove the brackets

 // go through the tag and find the parameter;
 // then assign that parameter's value to returnString
 for i=1 to countFields(newXMLTag," ")
 if nthField(nthField(newXMLTag," ",i),"=",1)=parameter then
 returnString=nthField(nthField(newXMLTag," ",i),"=",2)
 end
 next

 // if the value had quotes around it, strip the quotes
 if left(returnString,1)=chr(34) then
 returnString=right(returnString,len(returnString)-1)
 end
 if right(returnString,1)=chr(34) then
 returnString=left(returnString,len(returnString)-1)
 end

 // this tag requires that the following characters be encoded
 // as entities, so that parsing can be made easier.
 // here we decode the entities

 returnString=replaceAll(returnString,"&sp;"," ")
 returnString=replaceAll(returnString,"&","&")
 returnString=replaceAll(returnString,"&cr;",chr(13))
 return returnString
 else // if it's not an XML tag (not surrounded by angle brackets)
 return ""
 end

End Function

Function decodeColor(data as string) as color
 // Given a color description string (I use the RGB hexadecimal
 // color triplet found in HTML), this function returns a REALbasic

// color object.

 dim newString as string
 if left(data,1)="#" then
 newString=right(data,len(data)-1)
 else
 newString=data
 end

 return

 RGB(val("&h"+left(newString,2)),val("&h"+mid(newString,3,2)),¬
 val("&h"+right(newString,2)))

End Function6

6 In the last line of this example, I use the logical not character (“¬”) as AppleScript does to show line
continuation. Note that REALbasic does not support this notation, and this line must be entered without a
line break.

The control is now capable of
constructing and positioning itself,
given a description in XML. Our
window setup method will need only to
instantiate the object and send it the
XML tag from the skin file. If this

control were designed to respond to
user interaction, we would define this in
the subclass as well; for instance, the
alarmButtonClass would need code in
the Action event to handle turning the
alarm on and off.

Integumentary Customization , page 14

The only other issue we need to address
for the subclass is the capability to keep
the control updated. In our example of
the timeDisplayClass, we obviously
need the control to constantly show the

correct time. Writing a perpetually
cycling loop into the class is a
possibility, but it would be horribly
processor-intensive and inefficient.
Instead, we should add an update event:

Sub update()

 dim d as date

 // set the text of me to the current time
 d=new date
 if useLongTime then
 me.text=d.longTime
else
 me.text=d.shortTime
end

End Sub

When this method is called, the control
will automatically display the correct
time.7 We will worry about how to
periodically call this method in a
moment.

Once a subclass is created for each
different type of control, the next step is
to create the window subclass. Every
window in REALbasic is automatically a
subclass of the window object anyway,
and REALbasic places a window
subclass (Window1) in every new
project automatically. We’ll use this one
for our skin implementation.

7 Due to the way that REALbasic handles screen
refreshes for staticText controls, this method will
actually cause flickering to occur. It is better to
use a canvas and rely on the drawString method
instead, but this is outside the scope of our
simple example.

Figure 7. The completed console window,
with one of each type of control. Since these
template controls are hidden, they can be
placed anywhere in the window; the skin will
clone them and place the cloned controls
according to the skin file.

Since REALbasic can only instantiate
new controls when they already exist in
the window, we must place one of each
type of control in the window. So that
these control templates do not appear,
set their “visible” property to false. To
be able to create new instances of these
controls, we must also set the index of
each one to “0.” Name each of these
something easy to work with, like
“timeDisplayTemplate” and
“alarmButtonTemplate.”

Integumentary Customization , page 15

In this example, we should rename the
window we’ve created from
“Window1” to “consoleWindow,” since
we’ll need to refer to it that way later.
We could even create several versions of
this template window, each with a
different procID, so our skin designers
would have access to different styles of
windows and different combinations of
window controls.

Windows have something of a
constructor method, the Open event, but
it does not allow parameters to be
passed to it; therefore, we will create our
own constructor method and call it after
the window is instantiated. Create a
new method, “construct,” and give it a
parameter of “data as string” so that we
can send the XML file as a parameter.
Enter the following code:

Sub construct(data as string)

 dim i,numTags as integer
 dim tag as string
 dim cTimeDisplay as timeDisplayClass
 dim cDateDisplay as dateDisplayClass
 dim cAnalogTimeDisplay as analogTimeDisplayClass
 dim cAlarmButton as alarmButtonClass

 numTags=getNumberOfXMLTags(data) // number of tags in the file
 for i=1 to numTags // for each tag,
 tag=getIndexedXMLTag(data,i) // get the title
 select case getXMLTagName(tag) // create the appropriate control
 case "TIMEDISPLAY"
 cTimeDisplay=new timeDisplayTemplate
 cTimeDisplay.construct(tag)
 case "DATEDISPLAY"
 cDateDisplay=new dateDisplayTemplate
 cDateDisplay.construct(tag)
 case "ANALOGTIMEDISPLAY"
 cAnalogTimeDisplay=new analogTimeDisplayTemplate
 cAnalogTimeDisplay.construct(tag)
 case "ALARMBUTTON"
 cAlarmButton=new alarmButtonTemplate
 cAlarmButton.construct(tag)
 end
 next

End Sub

This code works through an XML file
and instantiates a control for each
control-defining tag. The code relies on

a few other XML-related methods that
must be included:

Function getNumberOfXMLTags(XMLdata as string) as integer

 // Given an XML file, this method returns the
 // number of tags in that file.
 return countFields(XMLdata,">")-1

End Function

Function getIndexedXMLTag(data as string, n as integer) as string

Integumentary Customization , page 16

 // This method returns the nth tag in a given XML file.
 return nthField(data,">",n)+">"

End Function

Function getXMLTagName(tagData as string) as string
 // This method returns the name of the given tag
 // (so returns "A").
 return right(nthField(command," ",1),len(nthField(command," ",1))-1)
End Function

The window can now instantiate all of
its controls according to the XML file,
and the controls will then initialize
themselves. The only other duty we’ve
outlined for the window is to

periodically update the controls, and we
can do this with a timer. Create a timer
in the window and set it’s action event
like so:

Sub Action()

 dim i as integer

 i=1

 // we use while/wend here instead of for/next because
 // there is no easy way to determine the number of controls
 // in the window... so we cycle through the control array
 // until we run out

 while self.control(i)<>nil
 if self.control(i).index<>0 then // if it’s not a template

 // we need to determine the class of the object
 // before we can update it, because the control
 // parent object doesn’t have an "update" method

 if self.control(i) isA timeDisplayClass then
 timeDisplayClass(self.control(i)).update
 elseif self.control(i) isA dateDisplayClass then
 dateDisplayClass(self.control(i)).update
 elseif self.control(i) isA analogTimeDisplayClass then
 analogTimeDisplayClass(self.control(i)).update
 elseif self.control(i) isA alarmButtonClass then
 alarmButtonClass(self.control(i)).update
 end
 end
 i=i+1
 wend

End Sub

Integumentary Customization , page 17

This code cycles through all the controls present in the window, checks to make sure
they aren’t the control templates we have hidden, and, if so, calls their “update”
handler. The timer’s period should be set to a time period that keeps the controls
updated without bogging down the CPU; two or three times a second should work fine
for this program.

The last step is to determine a method for loading the skin files (scanning a “Skins”
folder on start-up seems to work pretty well) and instantiate one window per skin file.
Since this code should occur when the program starts (but before any windows open),
we should create a new class, set it’s parent to “Application” and name it “App.” This
class now represents the application itself. In the Open event of this newly created class,
we can place the following code:

Sub Open()

 dim skinsFolder as folderItem
 dim i as integer
 dim XMLdata as string
 dim t as textInputStream
 dim w as consoleWindow

 // first we find the folder named "skins", located in
 // the same directory as our application
 skinsFolder=getFolderItem("").child("skins")
 if skinsFolder<>nil then // if the skins folder exists...
 for i=1 to skinsFolder.count // open each file inside it

 // read the file into the XMLdata variable
 t=skinsFolder.item(i).openAsTextFile
 XMLdata=t.readAll
 t.close

 // create a new consoleWindow and run it's constructor method
 // with the XMLdata we got from the file
 w=new consoleWindow
 w.open
 w.construct XMLdata

 next
 end

End Sub

Final Thoughts

The example shown above is very
simple, but the concept should work
with a wide variety of programs. With
more complex programs, programmers
may of course run into situations not
covered here that necessitate individual
variation.

Most users consider skin technology a
way to aesthetically customize their
workspace, but the customization can be
functional as well. A well-designed skin
implementation can even simplify
software localization and allow for
disability access. While there are
certainly types of programs that cannot
implement skins for various reasons, the
capability can add function and value to
many more programs than currently
take advantage of it.

