Straighten Up and Fly Right

Aligning Your Data for Speed and Correctness

Copyright © 2001 Red Shed Software. All rights reserved.
Written by Jonathan 'Wolf' Rentzsch (jon at redshed dot net)

Abstract

Data alignment is an important issue for all programmers who directly use
memory. Data alignment affects how well your software performs, and even if
your software runs at all. By understanding the causes behind alignment, we also
can explain some of the "weird" behaviors of some processors.

Introduction

Straighten up and fly right
Straighten up and do right
Straighten up and fly right

Cool down papa, don't you blow your top!

If you program in C, C++, Objective C
or Pascal, then you've been trained to
think of memory as an array of bytes.
Everything's size is measured in bytes.
APtr istypedefedasachar*,a
Handl e as a char **.

However, your computer's processor
does not read from and write to
memory in only byte-sized chunks.
Instead, it accesses it in two-, four-,
eight- sixteen- or even 32-byte chunks.
We'll call the size in which a processor
accesses memory its memory access
granularity.

The difference between how high level
programmers think of memory and how
modern processors actually work with
memory raises interesting issues that are
explored in this paper.

If you don't understand and address
alignment issues in your software, the
following scenarios, in increasing order
of severity, are all possible:

e Your software will run slower.
* Your application will lock-up.

* Your operating system will
crash.

Straighten Up and Fly Right, page 1

* Your software will silently fail,
yielding incorrect results.

Alignment Fundamentals

To illustrate the principles behind
alignment, let's examine a constant task,
and how it's affected by a processor's
memory access granularity. The task is
simple: first we read four bytes from
address 0 into the processor's register.
Then we read four bytes from address 1
into the same register.

First let's examine what would happen
on a processor with a one-byte memory
access granularity:

Single Byte Memory Access

Read 4 bytes at Address O Read 4 bytes at Address 1

Memor . Register Memory R
- - Register
—- —-
—- -
—-

Tt L. BT O E TS]
E Gl S o 0D~ OB R = O

This fits in with the naive programmer's
model of how memory works: it takes
the same four memory accesses to read
from address 0 as it does from address
1. Now let's see what would happen on
a processor with two-byte granularity,
like the original 68000:

Double Byte Memory Access

Read 4 bytes at Address O Read 4 bytes at Address 1

Hemrg - Regisier Memrg - ! R egrster _____
—- —-

—-

DRI oD @I B = O
DEG SO O mU AN = O

When reading from address 0, a
processor with two-byte granularity
takes half the number of memory
accesses as a processor with one-byte
granularity. Because each memory
access entails a fixed amount overhead,
minimizing the number of accesses can
really help performance.

However, notice what happens when
reading from address 1. Because the
address doesn't fall evenly on the
processor's memory access boundary,
the processor has extra work to do. Such
an address is known as an unaligned
address.

Because address 1 is unaligned, a
processor with two-byte granularity
must perform an extra memory access,
slowing down the operation.

Finally, let's examine what would
happen on a processor with four-byte
memory access granularity, like the
68030 or 601:

Quad Byte Memory Access

Read 4 bytes at Address O Read 4 bytes at Address 1
Memory » Register Memory » Register

B oD @~ U B = O
DB SO0 0= RN = O

A processor with four-byte granularity
can slurp up four bytes from an aligned
address with one read. Also note that
reading from an unaligned address
doubles the access count.

Now that you understand the
fundamentals behind aligned data
access, we can explore some of the
issues related to alignment.

Straighten Up and Fly Right, page 2

Lazy Processors

A processor has to perform some tricks
when instructed to access an unaligned
address. Going back to our example of
reading four bytes from address 1 on a
processor with four-byte granularity, we
can work out exactly what needs to be
done:

How Processors Handle Unaligned Memory Access

Read 4 bytes at Address 1
(4 byte memory access granularity)

Load High 3 Byles Shift One Byie Up

Memory Cmi{we inte
0 - Register
] ¥ ~
3 Load Low Byde Shift 3 Byles Down
g A g
7 —-

The processor needs to read the first
chunk of the unaligned address and
shift out the "unwanted" bytes from the
first chunk. Then it needs to read the
second chunk of the unaligned address
and shift out some of its information.
Finally, the two are merged together for
placement in the register. It's a lot of
work.

Some processors just aren't willing to do
all of that work for you.

The original 68000 was a processor with
two-byte granularity and lacked the
circuitry to cope with unaligned
addresses. When presented with such
an address, the processor would throw
an exception. The Mac OS didn't take
very kindly to this exception and would
usually demand the user restart the
machine. Ouch.

Later processors in the 680x0 series,
such as the 68020, lifted this restriction
and performed the necessary work for
you. This explains why some software
that works on the 68020 crashes on the
68000. It also explains why, to this day,
some old Mac coders stuff uninitialized
pointers with an odd addresses. On the
original Mac, if the pointer was accessed
without being reassigned to a valid
address, the Mac would immediately
drop into the debugger. Often you could

then examine the calling chain stack and
figure out where your mistake was.

All processors have a finite number of
transistors to get work done. Adding
unaligned address access support cuts
into this "transistor budget". These
transistors could otherwise be used to
make other portions of the processor
work faster, or add new functionality
altogether.

An example of a processor that sacrifices
unaligned address access support in the
name of speed is MIPS. MIPS is a great
example of a processor that does away
with almost all frivolity in the name of
getting real work done faster.

The PowerPC takes a hybrid approach.
Every PowerPC processor to date has
hardware support for unaligned 32-bit
integer access. While you still pay a
performance penalty for unaligned
access, it tends to be small.

On the other hand, modern PowerPC
processors lack hardware support for
unaligned 64-bit floating-point access.
When asked to load an unaligned
floating-point number from memory,
modern PowerPC processors will throw
an exception and have the operating
system perform the alignment chores in
software. Performing alignment in
software is much slower than
performing it in hardware.

Speed

To illustrate the performance penalties
of unaligned memory access, let's write
some tests. The test is simple: we read,
negate and write back the numbers in a
ten-megabyte buffer. These tests have
two variables:

1. The size, in bytes, in which we
process the buffer.

First we'll process the buffer one
byte at a time. Then we'll move
onto two-, four- and eight-bytes
at a time.

2. The alignment of the buffer.

Straighten Up and Fly Right, page 3

We'll stagger the alignment of
the buffer by incrementing the
pointer to the buffer and running
each test again.

These tests were performed on a 400
MHz PowerBook G3. To help normalize
performance fluctuations from interrupt
processing, each test was run ten times,
keeping the average of the runs. First up
is the test that operates on a single byte
at atime:

voi d

Munge8(
voi d *dat a,
unt32 size)

unt8 *data8 = (U nt8*) data;
u nt8 *dat aBEnd = data8 + si ze;

whil e(data8 != data8End) {
*dat a8++ = -*dat a8;

}

It takes an average of 162,445
microseconds to execute this function.
Let's modify it to work on two bytes at a
time instead of one byte at a time --
which will halve the number of memory
accesses:

voi d
Mungel6(
voi d *dat a,

Unt32 size)

Untlé *datalé = (U ntl16*) data;

Untlé *datal6End = datal6 + (size >>
1); /* Divide size by 2. */

unt8 *data8 = (U nt8*) datal6End;

unt8 *dat a8End = data8 + (size &
0x00000001); /* Strip upper 31 bits. */

whi | e(datal6 != datal6End) {
*dat al6++ = -*dat ale6;

}
whil e(data8 != data8End) {

*dat a8++ = -*dat a8;

} }

} whil e(data8 != data8End) {
This function takes 100,102 “datag++ = -*datag;
microseconds to process the same ten- }
megabyte buffer -- 38% faster than }
Munge8. However, that buffer was)) .
aligned. If the buffer is unaligned, the This function processes an aligned
time required increases to 118,819 buffer in 72,208 microseconds and an
microseconds -- about a 19% speed unaligned buffer in 92,453 _
penalty. The following chart illustrates microseconds, respectively. While both
the performance pattern of aligned times are faster than processing the
memory accesses versus unaligned buffer two bytes at a time, the speed
2CCesses: penalty for four-byte unaligned memory
accesses rises to 28%:
Single Byte Access versus Double Byte Access
Single— versus Double- versus Quad-Byte Access
170000 |+MungeS —m—Munge 16 —k—Munge32
160000 170000
150000 150000
g 140000 , 140000
E 120000 2 130000
5 : 120000
£ 120000 S ooy A A A A A AT
o AL S WA VARVAVARVARVARVARYARY/
100000
e A \/ \/ \/ \/
o1 2 =2 4 5 6 7 8 9 101112 12 14 15 16 17 0000 AKI
Alignment D123456?89101112131415161?

Alignment

First thing we notice is that accessing

memory one byte at a time is uniformly Now for the horror story: processing the
slow. The second item of interest is that buffer eight bytes at a time.

when accessing memory two bytes at a voi d

time, whenever the address is not Minge64(

evenly divisible by two, that 19% speed

. id *data,
penalty rears its ugly head. Vol ata

Unt32 size)
Now let's up the ante and process the

buffer four bytes at a time:
doubl e *data64 = (doubl e*) data;

voi d
doubl e *data64End = data64 + (size >>
Minge32(3); /* Divide size by 8. */
void *dat a, Unt8 *data8 = (U nt8*) data64End;
unt32 size) Unt8 *data8End = data8 + (size &

0x00000007); /* Strip upper 29 bits. */

Unt32 *data32 = (U nt32*) data;

i | =
U nt32 *data32End = data32 + (size >> while(dataé4 != data6agnd) {

2); /* Divide size by 4. */ *dat a64++ = - *dat a64;
U nt8 *data8 = (U nt8*) data32End; }
unt8 *dat a8End = data8 + (size & whil e(data8 != data8End) {

0x00000003); /* Strip upper 30 bits. */ *dat aB++ = - *dat a8:

whi | e(data32 != data32End) {
*dat a32++ = -*dat a32;

Straighten Up and Fly Right, page 4

Munge64 processes an aligned buffer in
68,780 microseconds -- about 5% faster
than processing the buffer four bytes at
a time. However, processing an
unaligned buffer takes an amazing
1,700,243 microseconds -- two orders of
magnitude slower than aligned access,
an outstanding 2,372% performance
penalty!

What happened? Because the G3 lacks
hardware support for unaligned
floating-point access, the processor
throws an exception for each unaligned
access. The operating system catches this
exception and performs the alignment
in software. Here's a chart illustrating
the penalty, and when it occurs:

Multiple Byte Access Comparison

[—#—"unge58 —m—runge 16 —&—Munge32 —¢—PMunge6d |

1870000

1670000

1470000

1270000

1070000

270000

Hicroseconds

£70000

470000

270000

FOOO0 -

Alignment

The penalties for one-, two- and four-
byte unaligned access are dwarfed by
the horrendous unaligned eight-byte
penalty. Maybe this chart, removing the
tremendous gulf between the two
numbers, will be clearer:

Multiple Byte Access Comparison 2

|+Mung98 —B—Munge1 & —k—Munge32 ——Mungetd |

OO0 i A
SRR

1140000 r \

Hicroseconds

170000

L

L 3
-
-
-
L 3
-
-
-
-
L 3
-
L 3

120000
'/-

Foooo0

L L LA S et s B s pey |
o1 2 3 4 3 6 7 8 910111213 14 1531617

Alignment

Straighten Up and Fly Right, page 5

Atomicity

The 68K and PowerPC, like most
modern processors, offer atomic
instructions. These special instructions
are crucial for synchronizing two or
more concurrent tasks. As the name
implies, atomic instructions must be
indivisible -- that's why they're so handy
for synchronization: they can't be
preempted.

It turns out that in order for atomic
instructions to perform correctly, the
addresses you pass them must be at
least four-byte aligned. This is because
of a subtle interaction between atomic
instructions and virtual memory.

If an address is unaligned, it requires at
least two memory accesses. But what
happens if the desired data spans two
pages of virtual memory? This could
lead to a situation where the first page is
resident while the last page is not. Upon
access, in the middle of the instruction, a
page fault would be generated,
executing the virtual memory
management swap-in code, destroying
the atomicity of the instruction. To keep
things simple and correct, both the 68K
and PowerPC require that atomically
manipulated addresses always be at
least four-byte aligned.

Unfortunately, the PowerPC does not
throw an exception when atomically
storing to an unaligned address.
Instead, the store simply always fails.
This is bad because most atomic
functions are written to retry upon a
failed store, under the assumption they
were preempted. These two
circumstances combine to where your
program will go into an infinite loop if
you attempt to atomically store to an
unaligned address. Oops.

Altivec/Velocity Engine

Altivec is all about speed. Unaligned
memory access slows down the
processor and costs precious transistors.
Thus, the Altivec engineers took a page
from the MIPS playbook and simply

don't support unaligned memory access.
Because Altivec works with sixteen byte
chunks at a time, all addresses passed to
Altivec must be sixteen-byte aligned.
What's scary is what happens if your
address is not aligned.

Altivec won't throw an exception to
warn you about the unaligned address.
Instead, Altivec simply ignores the
lower four bits of the address and
charges ahead, operating on the wrong
address. This means your program may
silently corrupt memory or return
incorrect results if you don't explicitly
make sure all your data is aligned.

There is an advantage to Altivec's bit-
stripping ways. Because you don't need
to explicitly truncate (align-down) an
address, this behavior can save you an
instruction or two when handing
addresses to the processor.

This is not to say Altivec can't process
unaligned memory. You can find
detailed instructions how to do so on
the Altivec Programming Environments
Manual. It requires more work, but
because memory is so slow compared to
the processor, the overhead for such
shenanigans is surprisingly low.

Structure Alignment

Examine the following structure:
typedef struct {

char a;

| ong b;

char [oH
} Struct;

What is the size of this structure in
bytes? Many programmers will answer
"6 bytes". It makes sense: one byte for a,
four bytes for b and another byte forc. 1
+ 4 + 1 equals 6. Here's how it would
layout in memory:

Straighten Up and Fly Right, page 6

Field Type |Field Name |Field Size|Field End
char a 1 1
| ong b 4 5
char c 1 6
Total Size in Bytes: 6

However, if you were to ask
CodeWarrior to si zeof (Struct),
chances are the answer you'd get back is
8, not 6. The reason dates back to the
original 68000. Remember the 68000
would throw an exception upon
encountering an odd address. If you
were to read from or write to field b,
you'd attempt to access an odd address.
If a debugger weren't installed, the Mac
OS would throw up a System Error
dialog box with one button: Restart.

Yikes!

So, instead of laying out your fields just
the way you wrote them, the compiler
padded the structure so that b and ¢
would reside at even addresses:

Field Type |Field Name [Field Size|Field End
char a 1 1
Padding 1 2
| ong b 4 6
char c 1 7
Padding 1 8
Total Size in Bytes: 8

Padding is the act of adding otherwise
unused space to a structure to make
fields line up in a desired way. Now,
when the 68020 came out with built-in
hardware support for unaligned
memory access, this padding was
unnecessary. However, it didn't hurt
anything, and even helped a little in
performance.

Nowadays, on PowerPC machines, two-
byte alignment is nice, but four-byte or
eight-byte is better. But, in a noble quest
to maintain backwards compatibility
with in-memory binary structures,
CodeWarrior still pads structures the
way its ancestors did. You can inform
CodeWarrior it's okay to break with the
past by using a pr agma to turn on
PowerPC-style alignment:

#pragma options al i gn=power

typedef struct {

char a;

| ong b;

char [oH
} St ruct PPC;

#pragma options align=reset

This code creates a structure with a
layout like this:

Field Type |Field Name |Field Size|Field End
char a 1 1
padding 3 4
| ong b 4 8
char c 1 9
padding 3 12
Total Size in Bytes: 12

Incidentally, Project Builder/gcc doesn't
require you explicitly turn on PowerPC-
style alignment -- it operates that way
by default.

Alignment and the Mac OS

The Mac OS was written in an era where
memory was very limited. To minimize
memory waste, many of the Mac OS
Toolbox structures are one- or two-byte
aligned, making atomic access much
more difficult, if not impossible.

IBM's POWER -- the PowerPC's

architectural ancestor -- required the
stack always be sixteen-byte aligned.
For some reason, Apple reduced this
alignment requirement to eight-byte

Straighten Up and Fly Right, page 7

alignment, but IBM still requires it for
their PowerPC-based operating systems.

Finally, beginning with 68040, the Mac
OS allocates pointers and handles to
sixteen-byte boundaries. Originally this
was done so Bl ockMoveDat a() could
take advantage of the 68040's new
MOVEL1S6 instruction, which efficiently
copies data sixteen bytes at a time.
When the PowerMacs eventually came
along, they found a land where all
dynamically allocated memory meshed
perfectly with its alignment
requirements.

Summary

If you don't understand and explicitly
code for data alignment:

* Your software may hit
performance-killing unaligned
memory access exceptions,
which invoke very expensive
alignment exception handlers.

* Your application may attempt to
atomically store to an unaligned
address, causing your
application to lock-up.

* Your application may attempt to
access an odd address on an old
Mac, resulting in a system crash.

* Your application may attempt to
pass an unaligned address to
Altivec, resulting in Altivec
reading from and/or writing to
the wrong part of memory,
silently corrupting data or
yielding incorrect results.

Credits

I'd like to thank Alex Rosenberg for
reading over a draft of this paper and
informing me that pointers and handles
allocated by the Mac Toolbox have been
sixteen-byte aligned since the 68040
rode into town with its MOVE16
instruction.

Thanks to Matt Slot for his public
domain FastTimes library. FastTimes
provides a simple interface to the

complex heuristics required to discover
and use the best timing service on a
given Macintosh.

Kudos to lan Ollmann for his

submissions to various mailing lists and
for reviewing this paper.

Finally, thanks to Duane Hayes for
running my tests on his 604-equipped
PowerMac 7500. | had a 601, 603e, G3
and G4 in my personal collection, and
Duane filled my processor testing gap
with his bevy of processor
daughtercards.

Straighten Up and Fly Right, page 8

