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Abstract 
Despite the widespread availability of Altivec enabled processors, proven 
performance advantages and high end user demand for Altivec accelerated 
applications, most PowerPC software contains little or no Altivec code.  The 
largest single barrier to widespread adoption seems to be developer awareness 
of programming tools, techniques and proven software design paradigms 
required to become successful with SIMD. This paper discusses key hardware 
features that affect Altivec performance, presents software architecture principles 
based on these that work well with Altivec, and concludes with a discussion of a 
practical strategy for incorporating Altivec into your existing application.  
 

Introduction 
The PowerPC's Altivec unit (a.k.a. 
Velocity Engine or vector unit) is a 
Single Instruction Multiple Data (SIMD) 
unit separate from the existing integer 
and floating point units (scalar units). 
The most significant difference between 
the Altivec unit and the scalar units is 
that the Altivec register is 128 bits wide 
and can hold many data at once: 128 
bits, 16 chars, 8 shorts, 8 sixteen bit 
pixels, 4 longs, 4 32-bit pixels or 4 floats. 

4 longs, floats
   or pixel32s

8 shorts or
   pixel16s

16 chars

128 bits

 
Figure 1. An Altivec register may be divided 

into four 32-bit types, eight 16-bit types, 
sixteen 8-bit types or 128 bits. 

Each Altivec instruction will 
simultaneously operate in parallel on all 
of the data at once in about the same 
amount of time it takes to do the same 
operation on a single piece of data in the 

scalar units. For example, a simple 
addition operation might look like this: 

1 2 3 4 6 8 10 12 14 165 7 9 11 13 15

1 1 1 1 1 1 1 1 0 41 1 1 1 0 0

+

2 3 4 5 7 9 11 13 14 206 8 10 12 13 15

=

 
Figure 2. Altivec does single operations on 

multiple data in parallel. 

...and the execution phase takes one 
cycle, just like ordinary integer addition. 

The Altivec instruction set is fully 
equipped for any mathematical task 
with instructions for subtraction, 
multiplication, division, square roots, 
exponentials.  In addition, it has Boolean 
operations, comparators, and type 
conversion functions, which have been 
the subject of a number of introductory 
articles on Altivec: [Bettag98], 
[Rosenberg99], [Motorola99a], 
[Motorola99b], [Clarke00], [Ollmann01], 
[Apple00]. 
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Because of its inherent parallelism, 
Altivec code can in principle be 4, 8 or 
16 times greater throughput than the 
traditional integer unit for integer math 
and four times greater throughput than 
the scalar floating point unit for floating 
point math. In addition, the Altivec 
instruction set adds a number of 
instructions for advanced data cache 
manipulation. This means that in some 
cases, performance increases can be 
even greater!  

Speed-Critical  Hardware Features 
Sadly, new Altivec programmers are 
frequently disappointed to discover that 
their Altivec code is not much faster 
than their pre-existing scalar code. In 
some cases it may even be slower! 
Unfortunately, a number of time tested 
classical programming techniques have 
been found to be spectacularly 
unsuccessful when applied to Altivec. 
Many programmers find that they need 
to learn some new programming 
paradigms to make the most of the 
vector unit. First, however, a good 
understanding of processor hardware 
features is required to understand why 
Altivec code designs succeed and fail. 

The Instruction Cache  
When you enter a function, the 
instructions that make up that function 
have to be loaded in from memory 
before they can be executed. It is 
impossible for the whole program to fit 
in the instruction cache unless it is a 
trivially small program.  Thus, it is not 
unusual that a function may have to be 
loaded in from main memory, which 
can be very, very slow.  This means that 
often the first loop in any function may 
be executed considerably more slowly 
than the successive iterations.  This will 
show up in Sim_G4, a processor 
simulator and code profiler highly 
useful for code optimization, as large 

gaps when no instructions are 
operating. Typically these stalls can be 
from 35-40 cycles per set of eight 
instructions. (Eight PPC instructions fill 
up one cache block.) 

Knowing this, it may be worthwhile to 
position blocks of code that are 
frequently called near one another close 
to one another in memory.  In addition, 
knowing that you are likely to lose some 
time the first time through a function, it 
may be a good idea to start any 
streaming data pre-fetch operations as 
soon as possible in the function. This 
will allow more data to be pre-loaded 
by the time the function starts operating 
at peak efficiency.  Sometimes 
prefetching larger blocks at the start 
may help as well. 

In addition, it doesn’t much matter how 
you write rarely called code as long as 
the instruction count is low.  You have 
an average load time of four or five 
cycles per instruction. Most instructions 
only take one cycle to execute. Few take 
more than five. Thus, the largest speed 
determinant for uncached code is very 
likely to be the size of the code itself. 
This is one more reason to only optimize 
the small part of the program that 
consumes 80% of the CPU’s attention. 
Optimized code tends to be larger. 

The Data Cache  
The processor also has several caches for 
storing frequently used data. When a 
piece of data is needed, first the 
processor checks the L1 cache to see if it 
is there. If it is not, the aligned 32 byte 
block (a.k.a. cacheline) that contains that 
piece of data is loaded into the L1 cache.  

The L1 cache is extremely fast.  Most 
reads from it take only 2 cycles (3 on 
PPC 7450). By comparison, getting a 
cacheline from main RAM to the L1 
cache so it can be used can take up to 
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250 cycles, though 30-80 is a more 
common number. Thus, proper use of 
the L1 is extremely important. Sim_G4 
will quickly reveal any memory-related 
stalls that may be occurring due to poor 
use of the caches. You will see long 
stalls in lvx and lvxl. 

Cachelines stored in the L1 cache are 
organized into 128 sets, each containing 
eight cachelines. Cachelines belonging 
to the same set all share the same 
address when masked with 0x0FE0. In 
other words, cachelines 4096 bytes apart 
map to the same set. When a new 
cacheline is loaded, the oldest cacheline 
in its set is flushed out of the L1 to make 
room, following a pseudo Least 
Recently Used algorithm.  

When data is displaced out of the L1, it 
ends up in the L2 cache. This is the only 
way for data to end up in the L2 cache.  
The L2 is called a ‘victim cache’ for this 
reason.  The L2 cache is much larger 
than the L1, but is only 2 way set 
associative (8 way on the PPC 7450) — 
two cachelines per set.  If you have a 
particularly large set of data that you 
would like to stay in the L2, then you 
need consider using the Altivec 
transient cache instructions or the 
Altivec LRU load and store functions. 
These prevent data displaced from the 
L1 cache from being written to the L2, 
preserving data that is already there. 
Data access times to the L2 are still quite 
quick. They are 9 cycles on the 7450 and 
10-15 cycles on the 7400 and 7410. 

Set associative caches have a weakness. 
If you skip through memory with a 
stride of 4096 bytes you will end up 
only using a single cacheline set in the 
L1 cache.  That is less than 1% of the 
cache. Linear memory access is best. 

Another facet of memory management 
that can cause occasional problems is 

the TLB (translation lookaside buffer). 
Where memory is actually living in 
hardware is fairly complicated. Thus 
even though you have an address for it 
(e.g. 0xAC7E3500), actually locating it in 
hardware is a bit of work. Most memory 
is grouped together into pages, which 
are typically about 4 kB in size. These 
can be stored in any of a number of 
places (RAM, disk, device, etc.) The 
translation lookaside buffer caches 128 
of these translated addresses (2 way set 
associative on 7400). If you need a piece 
of data from a page that is not in the 
TLB, then a rather expensive process of 
looking it up in a page table ensues. This 
can be as expensive or more expensive 
than a cache miss. Based on 4096 bytes 
per page and 128 entries in the TLB, 
only about 512 kB  of data can be 
referenced by the TLB. 

Thus to make a long story short, for a 
number of reasons it is a very good idea 
to place data that is used together near 
one another in memory. That way they 
chance that they will share the same 
page or even the same cacheline are 
very high, and your code will not 
encounter many long memory 
associated stalls.  

Alignment and Data Layout  
AltiVec does not include hardware 
support for loading and storing 
unaligned vectors.  A review of what is 
required to align vectors in software 
should quickly convince you that 
dealing with misaligned vectors is very 
slow. (Code showing how to handle 
misaligned memory loads and stores 
appears in [Motorola99a].) Unaligned 
vector store operations (vec_st and 
vec_stl) are especially slow.  If you 
must decide between unaligned loads 
and unaligned stores, pick unaligned 
loads. This is because unaligned stores 
may overwrite data adjacent to the 
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target.  Extra overhead is required to 
avoid this problem.  

The best possible solution is to simply 
align your data properly. MacOS heap 
blocks returned to you using NewPtr(), 
OTAllocMem() or  malloc() are 
already 16 byte aligned.  Blocks 
allocated with MPAllocateAligned() 
can be aligned to suit your taste.  
Likewise, global and static storage starts 
16 byte aligned at the start of every 
compilation block.  Thus, all you have to 
do is make sure that your data and 
structs are properly arranged to 
preserve the 16 byte alignment that you 
are given.  Vector types placed on the 
stack are automatically 16 byte aligned.  
A detailed description of alignment 
associated slowdowns can be found 
here: [Rentzsch01] 

In the special case where you wish to 
align non-vector types to 16 bytes on the 
stack, you may do so by using a union: 

//A union that allows memberwise access 
to a vector float 
typedef union 
{  
 float   f[4]; 
 vector float  v; 
}Float4; 

Individual stack frames may only be 8 
byte aligned, so don’t depend on the 
alignment of the start of the stack frame 
to correctly align non-vector types to 16 
byte bounds. Stack frame conventions 
are detailed in [Motorla99b] Chapter 3.3. 

Pipelining  
The number of cycles each instruction 
takes is listed in [Motorola99c (Chapter 
6, page 46), also Motorola01a–b].  For 
the most part, they take from 1-5 cycles 
each, depending on the vector subunit 
that they execute in. Most things take 
one cycle, except for operations in the 
Vector Complex Integer Unit (VCIU) 
and the Vector Floating Point Unit 

(VFPU). The vector permute unit (VPU) 
takes one cycle on PPC 7400 and 7410 
but two cycles on the PPC 7450. The 
VCIU has three stages (four on PPC 
7450) and the VFPU has four or five 
stages depending on whether or not 
Java mode is turned on. (Though the 
word Java is used here, this mode has 
almost nothing to do with the Java 
development platform. It is so named 
because it shares some numerical 
standards with Java.)   

Both the VCIU and the VFPU are 
pipelined. This means that you can have 
multiple instructions executing at once 
in each.  Each cycle, one new instruction 
can be added to the pipeline and 
another one can exit out the other end 
and be retired. This allows for a 
throughput of one instruction per cycle, 
even though it may take several cycles 
to process each instruction. 

In order to make full use of the pipeline, 
you have to make sure that you have 
enough independent data available. 
Otherwise you will find that 
instructions will be prevented from 
starting down the pipeline in a timely 
fashion because they are waiting on the 
result of another calculation. As an 
example, suppose you are doing a 
vector dot product on a pair of very 
long vectors. A simple version might 
look like this: 

//Simple dot product function for long 
vectors 
float SlowDotProduct(  

vector float *v1,  
vector float *v2,  
int length ) 

{ 
vector float temp, temp2; 
float result; 
temp = (vector float) vec_splat_s8(0); 

//Loop over the length of the vectors 
multiplying like terms and summing 
for( int i = 0; i < length; i++) 
temp = vec_madd( v1[i], v2[i], temp); 
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//Add across the vector 
temp2 = vec_sld( temp, temp, 4 ); 
temp = vec_add( temp, temp2); 
temp2 = vec_sld( temp, temp, 8 ); 
temp = vec_add( temp, temp2);  
 
//Store the result on the stack so it 
can be loaded into the FPU and then 
return it 
vec_ste( temp, 0, &result ); 
return result; 

} 

The problem with this function is that 
each call to vec_madd depends on the 
result of the last one, so we don’t 
actually get any pipelining here. We 
only do one vec_madd every four or five 
cycles.  A faster method would be to 
load 64 bytes from each vector each loop 
iteration.  This would allow you to stuff 
the pipeline: 

//Do v1 dot v2 faster. In this one we 
make sure the pipeline is full 
float FasterDotProduct( vector float *v1,  

vector float *v2,  
int length ) 

{ 
vector float t, t2, t3, t4;  
float result;   

t = (vector float) vec_splat_s8(0); 
t2 = t3 = t4 = t; 

//Loop over the length of the 
vectors, this time doing 4 vectors 
in parallel to stuff the pipeline. 
This is the only part that is 
substantially different. We have 
unrolled the loop to allow multiple 
vec_madds to pipeline with one 
another. This is now possible 
because the result from one 
vec_madd is not used in the next 
one.  
for( int i = 0; i < length; i += 4) 
{ 
t  = vec_madd( v1[i],   v2[i],   t ); 
t2 = vec_madd( v1[i+1], v2[i+1], t2); 
t3 = vec_madd( v1[i+2], y2[i+2], t3); 
t4 = vec_madd( v1[i+3], v2[i+3], t4); 

} 

//Sum our temp vectors 
t = vec_add( t, t2 ); 
t3 = vec_add( t3, t4 ); 
t = vec_add( t, t3 ); 

//Add across the vector 
t2 = vec_sld( t, t, 4 ); 
t = vec_add( t, t2); 
t2 = vec_sld( t, t, 8 ); 
t = vec_add( t, t2);  

//Copy the result to the stack so we 
can return it via the FPU 
vec_ste( t, 0, &result ); 
return result; 

} 

Clearly more can be done with this 
function, such as correctly handling the 
case when the vectors are not an even 
multiple of 64 bytes long.  Also, some 
streaming cache instructions would 
really speed it up, since it is likely that a 
bigger bottleneck is memory overhead. 
However, it should benchmark a bit 
faster.  

Processor Resource Scarcity  
Rename Registers and the Completion 
Queue quite often surprise new AltiVec 
programmers trying their hand at 
aggressive scheduling of instructions. 
The problem is that the PPC 7400 and 
7410 are starved for both vector rename 
registers and entries in the completion 
queue. Lack of available rename 
registers or slots in the completion 
queue can keep instructions that 
otherwise are ready to go from entering 
the execution stage. They will typically 
stall waiting in the instruction buffer for 
as long as is required until enough 
resources become available. 

Rename Registers 
Vector rename registers are temporary 
buffers used to store results from 
instructions that have finished execution 
but have not completed and been 
retired. There are six vector rename 
registers, six integer rename registers 
and six FPU rename registers. For an 
instruction to be successfully dispatched 
and to start executing, a rename register 
must be available for each destination 
operand specified by the instruction. 
Once the instruction is done executing, 
the result is written to the rename 
register. During the writeback stage of 
the instruction, the data is copied from 
the rename register to the destination 
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register.  If a subsequent instruction 
needs the result as a source operand, it 
is made available simultaneously to the 
appropriate execution unit, which 
allows a data-dependent instruction to 
be decoded and dispatched without 
waiting to read the data from the 
register file.  

In some cases, it is possible that there 
are more than six instructions in a given 
unit scheduled to be in flight at a time.  
In such cases the seventh and later 
instuctions will stall and wait for one of 
the other six to complete before it will 
start. In principle, you can dispatch one 
complex vector operation and one 
permute operation to the vector unit per 
cycle. As VFPU operations can take five 
cycles to complete, they can consume 
most of the vector rename registers. If 
VPU operations dispatched 
simultaneously with them, you will run 
out of rename registers in three cycles. 
To understand why, one must consider 
the instruction completion queue. 

Instruction Completion Queue 
On the PowerPC 7400 and 7410 up to 
eight instructions can be “in flight” at 
any given time.  The 7450 can have 16.  
When an instruction enters the 
execution phase it is placed on the 
completion queue. The instructions 
occupying the completion queue are not 
limited to just vector operations, they 
include all other types of PPC 
instructions, most significantly 
load/store operations, due to their long 
execution times.  The completion queue 
is a queue in the true sense of the word. 
The completion unit only retires an 
instruction when all instructions ahead 
of it have been completed, the 
instruction has finished execution, and 
no exceptions are pending.  This helps 
guarantee that instructions finish in the 
order that they were started. 

Only two instructions many be retired 
per cycle on PPC 7400 and 7410. The 
7450 can issue and retire three 
instructions per cycle. For this reason, 
there is generally very little acceleration 
to be gained from simultaneously doing 
calculations in the VFPU and the FPU at 
the same time. Between load and store 
operations and VFPU ops and FPU ops, 
the completion queue can fill up rapidly 
because more instructions are 
dispatched than can be completed per 
cycle.  

Even though an instruction may only take 
one cycle to execute, it can sit in the queue 
for tens or hundreds of cycles waiting to 
retire if the instructions ahead of it take a 
long time to finish executing. This will cause 
the queue to rapidly fill up, preventing new 
instructions from entering execution and 
preventing the release of rename registers 
for use by other instructions.  This is in part 
why memory stalls are so bad. When a load 
stalls, only 7 (15 on 7450) more instructions 
can enter execution. They will not complete 
until the load completes and it will take up 
to four additional cycles to empty out the 
queue. Thus, even though the data to be 
loaded is not needed for many many cycles, 
stalled loads will cause other instructions to 
stall long before then. The remaining 
intervening instructions  then add to the 
execution time of the function with unusual 
repercussions as I will show  later in 
"Software Architecture Principles: Memory 
Speed!"   

Vector Unit Overlap  
One limitation of the PowerPC 7400, the 
first generation of G4 processors that 
entered the market, is that only one of 
the vector complex integer unit (VCIU), 
vector simple integer unit (VSIU) and 
vector floating point unit (VFPU) can 
accept a new instruction in any given 
processor cycle. The vector permute unit 
(VPU) is independent however. This 
means that if you mix instructions 
intended for these subunits in the same 
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instruction stream, you won't get quite 
the amount of parallelism you were 
hoping for. Most functions do not 
contain both VFPU and VCIU/VSIU 
code in the same function. However, 
functions that do integer operations will 
frequently mix VCIU and VSIU 
operations. This limitation will prevent 
instructions from being issued to the 
VCIU and VSIU in the same cycle. This 
limitation was removed on the latest 
generation of G4, the PowerPC 7450. 

Branching  
Branching can be a bit of a problem in 
AltiVec and elsewhere.  An example of a 
branch might be an if statement: 

if( test )  
value++; 

Often, when the processor encounters a 
branch, it may not have enough time to 
finish evaluating the test before it is time 
to decide whether to branch or not. As a 
result, all the processor can do is guess. 
If it guesses incorrectly, it has to 
dismantle all operations currently in 
progress, and restart in the correct place. 
This is costly. 

There are predictable rules about which 
way the processor will guess.  If the 
branch jumps forward (the else part of 
an if-else statement) then it is assumed 
not to be taken.  If the branch jumps 
backward (a loop) then it is assumed to 
be taken — loops tend to loop more 
than once.  So if you have to add an 
if…else statement to your code, it is best 
to place the rarely used case after the 
else, and the most common case after 
the if.  

If … else ... statements usually concern 
only a single data stream. (Exception: 
the vec_all_* and vec_any_* 
instructions.) This makes it impossible 
to write code that can be pipelined or 

that operates in parallel. As a result, 
code with a lot of branching in it will 
operate many times more slowly in the 
vector unit than branchless code that 
does the same thing. 

The best thing to do about this problem 
is to find a way to get rid of the 
branches and write algorithms that 
work for all possible inputs without 
special cases.  Even if this means that 
the amount of code triples, it may still 
be faster.   

This is the scalar version of some code 
that converts a audio mixing buffer (an 
array of 32 bit signed ints) into an array 
of 16 bit signed ints with clipping. The 
simple version of the function might 
look like this: 

//Clip an array of 32 bit ints down to an 
array of 16 bit ints. 
void Convert( SInt32 *src, Sint16 *dest, 
UInt32 sampleCount ) 
{ 
SInt32 value; 
while( sampleCount-- ) 
{ 
value = src[0]; 

if( value > SHRT_MAX ) 
value = SHRT_MAX; 

else 
if( value < SHRT_MIN ) 
value = SHRT_MIN; 

dest[0] = value; 
src++; 
dest++; 

} 
} 

There is a fine tradeoff between 
branching and branchless algorithms. 
The branchless variety are often longer, 
which can make for slower code. On the 
other hand, branches mispredict, 
causing the CPU to backtrack.  

Real world solutions require testing.  In 
this case, several ways of doing the clip 
were considered for the integer unit. 
The simple version looks like this: 
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#define Clip16( value )  \ 
if( value > SHRT_MAX )  \ 
value = SHRT_MAX;   \ 

else     \ 
if( value < SHRT_MIN )  \ 
value = SHRT_MIN 

A branchless version looks like this: 

#define Clip16_2( value )  \ 
sign = value >> 31;    \ 
value ^= sign;         \ 
value = (value | ((32767-value)  \ 

>> 31)) & 32767;   \ 
value ^= sign        

A version with limited branching and a 
very short execution path looks like this: 

#define Clip16_3( value )  \ 
if( value != SInt16(value ) ) \ 
{     \ 
value >>= 31;   \ 
value ^= 0x7FFF;   \ 

} 

(Some of these fail to give correct results 
in a very limited set of circumstances for 
values around MAX_LONG and 
MIN_LONG, but this is not a problem 
for a audio mixing buffer.) 

In the end, the version without 
branching (Clip16_2) proved to be 4% 
faster in worst case scenarios in which 
most of the data needed to be clipped.  
However in best case scenarios in which 
less than half needed to be clipped, the 
short limited branching version 
(Clip16_3) was up to 50% faster.  Which 
version to choose is a bit difficult to 
decide. While it is often said that it is 
best to optimize for the worst case, 4% is 
not a very large difference.  In addition, 
Clip16_3 has many fewer instructions 
and so should execute much faster when 
the instructions themselves are not in 
the cache. Since this particular function 
is only called once every 11 milliseconds 
at the most, uncached performance 
must be considered. When the first pass 
through the benchmark loop was 
examined (when the instructions were 
not in the cache), the shorter version 
was found to be 20-30% faster.  

For test code with source, please see 
[Ollmann01]. 

Software Architecture Principles 
A number of general principles can be 
derived from these basic factors 
impacting code performance: 

Economies of Scale  
The net effect of Alignment and 
Pipelining is that AltiVec is rarely 
running at top efficiency unless it can 
work on 64 bytes or more of data at a 
time.  The reason for this as follows:  

With unaligned data, handling the edge 
cases is slow. You may have to load in 
some surrounding data from the 
destination buffer, merge it with your 
results and then save it back again. So 
these parts of your AltiVec code may be 
slower than the scalar version of the 
same thing. You make it back in the 
middle regions of your data set where 
alignment costs drop off to nearly zero.  
In order to be at least 50% not edge case, 
you need to have four vectors (64 bytes) 
worth of data. The exception to this rule 
is when you can pass data into your 
function by value, rather than memory 
addresses that have to be loaded. 

However, passing vectors in via register 
or correctly aligning your data does not 
in itself keep the vector unit happy and 
well fed.  In order to get proper 
pipelining, it is often necessary to have 
four independent data streams moving 
through your function simultaneously.  
The Vector Floating Point Unit (VFPU) 
has at least a four stage execution 
pipeline and the Vector Complex 
Integer Unit (VCIU) has a three stage 
execution pipeline (four on the 7450).  
Thus for optimal speed you need to be 
able to be ready to dispatch four VFPU 
instructions or three/four VCIU 
instructions at any given point that do 
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not have any dependencies on one 
another.  Better yet, for the 7450 use 
both the VFPU and VCIU at the same 
time.  Having four vector instructions in 
flight at once means you need to process 
four (or more) independent vectors at a 
time through your function.  Here again, 
we need 64 bytes worth of data to get 
good use of the vector unit.  If you write 
functions that use less data at a time, 
you should consider declaring them 
inline in the hopes that they may be able 
to schedule themselves among the 
caller’s other instructions.  

High Throughput vs. Low–Latency  
Most programmers think in terms of 
low latency algorithms — “How can I 
apply this function to that piece of data 
in the shortest period of time?”  A 
somewhat different question you could 
be asking is “How can I apply this 
function to my entire data set in the 
shortest period of time?” The latter 
approach takes into account the effect of 
pipelining, parallelization, storage and 
other factors into the overall design 
process. This is often described as the 
difference between low latency and high 
throughput algorithms. Such algorithms 
may only be efficient with large 
amounts of data, but if you have lare 
amounts of data. 

Because Altivec has comparatively long 
pipelines, operates on data in parallel, 
and is often limited by memory 
bandwidth, high throughput designs 
are usually much more successful in the 
vector unit than low latency designs.  
For example, using the vector unit to 
multiply a single floating point quantity 
by another takes four or five cycles. 
Using the vector unit to multiply four 
floating point quantities by four others 
also takes four or five cycles. Using the 
vector unit to multiply sixteen floating 
point quantities by sixteen others takes 

seven or eight cycles. Clearly there is a 
lot of advantage to handling a lot of 
data at once!  

Suppose you design your functions so 
that this fact is obvious from the 
function interface. For example: 

typedef vector float VF; 
//rN = vNa * vNb 
inline void Multiply( 
VF v1a, VF v2a, VF v3a, VF v4a,  
VF v1b, VF v2b, VF v3b, VF v4b,  
VF *r1, VF *r2, VF *r3, VF *r4 ) 

{ 
vector float neg_zero; 
neg_zero = vec_neg_zero(); 
*r1 = vec_madd( v1a, v1b, neg_zero ); 
*r2 = vec_madd( v2a, v2b, neg_zero ); 
*r3 = vec_madd( v3a, v3b, neg_zero ); 
*r4 = vec_madd( v4a, v4b, neg_zero ); 

} 

//Generate a vector full of –0.0. 
inline vector float vec_neg_zero( void ) 
{ 
vector unsigned  result; 
result = vec_splat_u32(-1); 
return (vector float )  

vec_sl( result, result ); 
} 

Anyone calling this function would 
immediately realize that it is a waste of 
time to just multiply two floating point 
vectors together with this function, and 
that he would be much better off doing 
it four at a time. This sort of design 
motif helps reinforce high throughput 
programming practices.  If this seems 
foreign or counterproductive to you, it 
may be because you are valuing too 
heavily the advantages of being able to 
work quickly on a single piece of data. 
Fundamentally, Altivec is all about 
working on lots of data. High 
throughput function designs such as 
these make the cost of low latency 
algorithms clear. 

Note that it is difficult to return more 
than one vector from a function in C. 
Some care must be taken when crafting 
functions like this so that the return 
values are passed in register rather than 
by the stack, which would kill 
performance. Using pointers or 
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references for return values in an inline 
function may allow the compiler to 
optimize away the load store overhead. 
However, you may need to disassemble 
the output to make sure the compiler 
does the right thing until you are 
satisfied with its behavior.  

Another option is to use a C 
preprocessor macro. However the 
macros are notorious for causing 
obscure bugs. They also lack rigorous 
typechecking. 

Memory Speed!  
The biggest speed impediment to 
PowerPC performance today is memory 
overhead.  This is increasingly true as 
processors move to higher and higher 
bus speed ratios between processor 
clock speed and motherboard clock 
speed.  Whereas a 68k Macintosh might 
have had its processor running at the 
same clock speed as its motherboard, 
modern PowerPC machines might be 
running four, five, six or even seven 
times as fast as their memory 
subsystems.  What this means is when 
there is a cache miss, you may have to 
wait for tens or hundreds of CPU cycles 
for the memory systems to catch up to 
you. With classical code writing styles, 
roughly every third instruction in a 
program is a memory operation. 
[Diefendorff01] 

The thing to know about the G4 is that  
the L2 (and L3) caches serve as a victim 
caches on the G4 — data only comes to 
be in the L2 or L3 caches after being cast 
out of the L1 (or L2) cache. Data has to 
be moved to the L1 cache before it can 
be loaded into register.  This means that 
every piece of data that you use has to 
be loaded in the slow way from RAM to 
the L1 cache at some point, and if you 
only touch a piece of data once or once 
in a while, it will almost always be 

loaded in the slow way. Furthermore, 
those data that are either too large to fit 
in the caches (e.g pixel buffers) or data 
not in the caches because it is accessed 
infrequently (e.g. sound data) tend to 
also be exactly the data for which 
Altivec has the most impact, so the 
problem of uncached data must be 
taken seriously.  

Loading a cacheline from RAM to L1 
takes about 35-40 cycles on my G4/400, 
provided that the page is in the TLB. 
Loading a 32 byte cacheline from L2 
takes from 10-15 cycles. If  all you do 
with the data that you paid so dearly to 
get is add two vectors together (as little 
as 1 cycle) and store the result, then 
during the other 39 cycles, your code 
will do nothing.  If the prospect of 
having your code running at 1/40th of its 
expected speed bothers you, then this 
section is for you. 

Because the speed bottlenecks in the 
processor have changed so much over 
the last few years, it stands to reason 
that some aspects of code optimization 
have to change too.  I am trying to 
introduce this idea gradually because I 
know that a lot of very experienced 
programmers are going to be very 
resistant to the idea that some of their 
favorite code optimization techniques 
rely too heavily on memory, perhaps 
slowing down the code rather than 
speeding it up.  If you are one of these 
programmers, I urge you to keep 
reading.  Some optimization paradigms 
presented here may be new to you.  I 
think you will find them useful: 

Do More with the Data 
If the speed of your function is limited 
by the speed of memory, you have 
approximately 40 cycles of time to work 
on each 32 byte chunk of uncached data. 
(This is the time it takes to load in each 
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cacheline.) If you don’t use all of that 
time, then the remaining amount is 
wasted. You will likely spend the rest of 
those 35-40 cycles stalled waiting for 
more data to appear. This is easily 
verified by profiling a memory intensive 
function using Sim_G4.  Chances are 
you will see some very long stalls in 
lvx.  

It is a common programmer instinct to 
break down complex problems into 
simple ones.  Resist that urge in AltiVec 
code that touches lots of memory.  35-40 
cycles is a very long time!  You will have 
to work quite hard to use all of it 
processing only 32 bytes of data.  
Remember that these extra cycles have 
already been spent for you, so if you 
don’t use them, they are gone.  If you 
can replace any work anywhere else in 
your program with code here, you will 
gain that much more speed because 
additional work done here is “free”. You 
save a load/store pair and perhaps an 
additional cache miss by doing the work 
now rather than later. 

Surprisingly, doing more work on a set 
of data, even if it is totally gratuitous 
work, can speed up the function. What?!  
This is a rather peculiar side effect of the 
extra penalty you incur when you stall.  
It is common wisdom that the 
performance of a function looks 
something like shown in Figure 3a: 
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Figure 3a. The execution time of a function 
is dependent on how much work it has to do, 
unless some other factor (e.g. memory speed) 

becomes the bottleneck.  

Actually, the line shape is more like 
Figure 3b.  Being memory bound causes 
stalls, and stalls cause the eight or 
sixteen item instruction completion 
queue to quickly become full, stopping 
the whole instruction pipeline. As a 
result, loads and data processing start to 
happen serially relative to each other, 
rather than in parallel, causing a 
slowdown with more instructions in 
what should be a flat area.  
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Figure 3b. Instruction completion queue 

stalls make the problem worse. 

However, when you add more work per 
datum, such that the memory speed is 
no longer the dominant rate limiting 
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factor, memory stalls disappear. 
Provided that cache hints are used, this 
means that the memory unit and the rest 
of the processor can operate in parallel 
rather than in series.  The function runs 
faster in this case, because the time 
required to load the data is removed 
from the execution time of the function.  
This leads to the performance curve as 
shown in Figure 3b, which has 
maximum performance at the point 
where data load latencies and 
instruction completion latencies are 
roughly the same.  Notice the curious 
result that over some regions of the function 
you actually run faster with increasing 
amounts of work!  

Just in case there are a few doubters out 
there who refuse to believe that a 
function that does extra work can run 
faster than one that does not, I have 
written a program to prove it. This 
program loads data, does set amount of 
work on it, stores it and then loads the 
next data. Figure 4 shows the execution 
time of the function plotted against the 
amount of work done. Multiple data 
sets were acquired for various sizes of 
cache prefetch streams to make sure that 
data prefetching didn't bias the results.  

The actual speed difference between the 
case at 35 add ops (1.5 MTicks) and the 
slower case at 25 add-ops (1.8 MTicks) 
that does less work represents about a 
20% speed difference.  

The red line represents what happens if 
you do not use cache instructions.  
Because there is no prefetch, loads and 
data processing have to happen serially. 
Because we can’t do much in parallel, 
memory overehead and data processing 
times are additive and there is no 
flattening off effect. 

The blue and black lines represent the 
best and worst case when using 

vec_dst() to prefetch data in blocks 
sized between 32 and 512 bytes. (I ran 16 
such cases. They all fall between these 
two lines.) In all such cases, the function 
is moving at its fastest when 35 cycles of 
processing time is devoted to the data, 
roughly the same amount of time it 
takes to load in the data. It is 
particularly reassuring that the part of 
the curve that corresponds to CPU rate 
limited code can be extrapolated to run 
through nearly through zero. That 
shows that memory overhead for high 
workload functions using vec_dst() is 
near zero. We also note that the version 
that does not use vec_dst()(red) and 
the versions that do (black and blue) 
have very nearly the same slope. Thus, 
it appears, the complexity of the 
function is the prime rate determining 
factor with highly complex functions. 
This is exactly what you want! 

Execution Time vs. Function 
Complexity
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Figure 4. Execution time cycles for a function 
that does a set amount of work on each piece of 
data to process a large uncached buffer of data.  
With streaming cache instructions, optimal rates 
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are found when the time to complete the work 
matches the time to load the next data. 

How does this finding shed light on 
your code? Unless they are very 
complicated functions, chances are most 
or all of your AltiVec functions do much 
less than 35 cycles worth of work per 
cacheline data.  35 cycles is a very long 
time. 35 cycles is enough time to 
calculate the dot product of two vectors 
with 112 elements in each! Since we can 
process nearly a kilobyte of memory in 
the time it takes to load 32 bytes, it 
should be apparent that it really 
requires a very complex function to be 
slower than RAM. Thus, the more real 
work you can do in your function per 
load, the better off you will be! 

Unfortunately, the exact position of the 
“sweet spot” where the function has the 
greatest throughput likely varies from 
machine to machine. This is because 
memory load times are dependent on 
how the memory systems are set up, 
particularly the bus speed ratio between 
motherboard and CPU, the nature of the 
RAM used, and other factors. Therefore, 
it is probably not a good idea to just add 
a bunch of noops to your function to 
speed it up.  

You can still take advantage of this 
effect however, provided you can find 
some real work to do to fill the extra 
time. As long as you are to the right of 
the sweet spot on the graph, your 
function is running at near 100% 
efficiency with near zero memory 
overhead. You really can’t ask for 
anything more! It should also be noted 
that code written in this fashion will 
work equally well no matter where the 
data is (except for page misses), making 
it a great example of a place to use the 
transient cache instructions and LRU 
loads and stores. Even if you can't 
manage to do that much work on your 

data, you can still take advantage of the 
fact that any extra work that you can do 
in between one load and the next can be 
done for free. 

I'm still skeptical. Why dont I just do what I 
always did and rely on the caches to speed 
memory access?  

Sure the caches are fast, but they are 
only so big and the data will only be in 
the cache the second time you use it 
within a short period of time. You will 
be paying the price of a slow trip to 
RAM at some point to get that data no 
matter what you do.  Why not do all the 
work on the data the first time you load 
it into register, and then flush it back out 
of the cache immediately making use of 
the transient/LRU instructions so that it 
doesn’t displace frequently needed 
stuff.  Save the caches for things that 
really need it. You dont need the L2/L3 
caches if you do enough work on your 
data while you have it. You are actually 
better off if that data stays in RAM in 
such cases. 

No really. I can fit all of my data in the L2 
cache! 

Great! However, loading data from the 
L2 cache into the L1 still takes 10-15 
cycles — only 2.5 to 4 times faster than 
RAM. The same strategies still apply. 
The more work you do on your data at 
once, the more likely you are to be able 
to spend your time doing work instead 
of stalling waiting for memory. In 
addition, keep in mind that you have to 
share the L2 and L3 caches with cached 
instructions in addition to data. Also 
you always run the risk of an interrupt 
firing or a thread context switch 
occurring, tossing your data out of the 
cache. No data in the L2/L3 caches are 
safe. 
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The Fastest Algorithms Are Often 
the Ones That Use Less Data 
If based on the above evidence you 
accept that memory overhead is the rate 
limiting factor for your AltiVec code 
most of the time, then it almost goes 
without saying that the fastest 
algorithms are the ones that use less 
data. However, did you consider the 
implications of this statement?  What 
your mother told you about writing fast 
code is quite possibly no longer true!   
For example… 

Lookup Tables Are Not Fast 
Lookup tables, especially large ones, are 
not fast for a number of reasons. Most 
obviously, if you incur one cache miss 
accessing your lookup table, you can 
lose 40-250 cycles waiting for the data to 
load. That is a HUGE amount of time!  
Think of what you could have done 
with it. 

Consider also that if you are using a 
lookup table, you are hopefully using it 
to do lookups on a lot of data. (A rarely 
used lookup table is almost guaranteed 
to not be in the cache, meaning abysmal 
performance because of lots of cache 
misses.) Functions that use a lot of data 
have high memory throughput needs. 
This means that you are probably 
already memory rate limited just 
loading in all the data that you want to 
use to index the looup table. In such 
cases, your lookup table only manages 
to further tax the memory systems. 
Recall that the execution time data 
shown above showed that memory 
bound code has about 35 cycles of dead 
time to fill with calculations.  You could 
use that time to do the brute force 
calculation instead of the lookup and 
avoid further taxing the memory 
systems reading data from your table. 

It is also hard to look up data in parallel 
in the vector unit. Often you have to do 
it one item at a time. Why not do a brute 
force calculation for 4, 8 or 16 items at a 
time? 

Finally, every time you load part of the 
lookup table in, you displace something 
else from the cache. Whatever that is, 
chances are it will have to be loaded 
back in later.  Doing a brute force 
calculation will preserve that data in 
place meaning that code elsewhere in 
your application will run more quickly. 
Brute force calculations can be fast, free, 
and more accurate. Your data caches 
will thank you. 

The only lookup tables likely to do you 
any good relative to brute force methods 
are the ones that save a LOT of 
calculation (e.g. CRC-32), and those 
lookup tables that are so small you can 
preload them into register or a very 
small part of the L1 cache and then 
process a lot of data. (These approaches 
are not useful for low latency function 
designs because they add a significant 
degree of setup overhead.)  

You can do a nice small fast register 
based lookup table with vec_perm(), 
but this approach seems to limit you to 
tables of perhaps 32-64 entries and extra 
work is required if the table cells are not 
8 bits in size.   

If you are still doubtful lookup tables 
are slow, I suggest you run some 
experiments. It would be helpful to do it 
on a bottleneck function in place in the 
app so that the full effect of displacing 
other needed data from the caches 
impacts the performance of your app 
and is measurable.  
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Larger Functions Are Slower 
Data is not the only thing that needs to 
be loaded into the cache before it can be 
used. Instructions need to be loaded too. 
The instructions are loaded eight at a 
time, and the speed penalty for each 
such load is once again usually around 
35-40 cycles. Thus, each uncached 
instruction that your function has to 
load has an average memory overhead 
of around four to five cycles. Since most 
instructions only take one cycle to 
execute and few take more than five, 
more often than not, the fastest 
uncached code is the shortest code.  
Thus, for rarely used code paths, there 
is a very good reason NOT to attempt 
to optimize them, since optimized code 
is often longer.  When executing rarely 
used code, there is a lot of extra time 
spent standing around, which could be 
used for other things.  If you habitually 
code funny math “shortcuts” using 
many short instructions to avoid single 
multi-cycle instructions like integer 
multiplication or division, you may be 
better off not doing so.  Likewise, using 
large switch statements just to avoid a 
few cycles worth of work are likely to be 
counterproductive. Unoptimized, your 
code will be easier to read and shorter.  
In addition, keeping your code small 
means that it displaces less other code 
from the instruction caches.  

One clear exception to the rule is any 
code in a loop. Loops get very good 
code reuse and have great temporal 
locality. The first time you  read through 
a loop, it will execute as uncached code 
(if it is uncached) but after that it will be 
running at full speed. So if you are 
going to make gratuitous optimizations 
to rarely executed code, save it for 
loops. 

Be Careful of Constants and Globals 
Most programmers new to AltiVec 
make copious use of variables that have 
to be loaded in from memory each time 
the function is called. These may be 
globals or static constants defined like 
this: 
 
vector float c = (vector float) (23.0); 

These can be quite slow. 

Perhaps you have a global used in a 
tight loop.  Normally one might think 
that the compiler will do the smart thing 
and load the global into register and 
then use the copy in the loop, but it 
can’t. The reason is that some other 
thread or interrupt level task might 
change the global, and so it has to be 
loaded in every time. Always explicitly 
load in globals, constants and other 
items that have to be loaded from 
memory into a variable local to the 
function, and use the local variable in 
your function. This will enable the 
compiler to avoid any excess memory 
overhead associated with redundantly 
loading in data over and over again. 

Almost All AltiVec Code Is A Blitter 
When it comes right down to it, most 
functions that can be accelerated for 
AltiVec move large quantities of data 
from A to B, possibly changing it along 
the way.  Since the time it takes to load 
and store the data is usually the rate-
limiting factor for these operations, such 
functions are to most standards simply 
blitters — functions for rapidly copying 
data from place to place. For that reason 
a lot of them look like blitters. They 
typically have this general high-
throughput form: 
 
/*src and dest are 16 byte aligned. 
Sizeinbytes is a multiple of 16.*/ 

void DoStuff(  vector float *src,  
vector float *dest,  
int sizeinbytes ) 

{ 
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int count, loopcount; 
vector float v1, v2, v3, v4; 
/*Initiate a prefetch right away so 
that while we wait for the 
instructions to load on uncached 
code, the data can be loading too. */ 

vec_dst( src, 0x10010100, 0); 

/*Now do any one time setup that is 
required before the loop */ 

count = sizeinbytes /  sizeof( v1 ); 
loopcount = count / 4; 

/*Enter the loop */ 
while( loopcount-- ) 
{ 
/*Prefetch the data in multiple 
overlapping segments — 256 bytes 
here. The optimal size will vary */ 

vec_dst( src, 0x10010100, 0); 

/*The loop is unrolled to bite off 64 
bytes at a time for proper 
pipelining in our work segment*/ 

v1 = src[0]; 
v2 = src[1]; 
v3 = src[2]; 
v4 = src[3]; 
src += 4; 

/* Insert work on the data here */ 
... 

/*write the result back out */ 
dest[0] = v1; 
dest[1] = v2; 
dest[2] = v3; 
dest[3] = v4; 
dest += 4; 

} 

/*Deal with any stragglers */ 
if( count & 2 ) 
{ 
v1 = src[0]; 
v2 = src[1]; 
src += 2; 

/* Insert work on v1 and v2 here */ 
... 

/*write the result back out */ 
dest[0] = v1; 
dest[1] = v2; 
dest += 2; 

} 

/*Deal with any remaining stragglers */ 
if( count & 1 ) 
{ 
v1 = src[0]; 

/* Insert work on just v1 here */ 
... 

/*write the result back out */ 
dest[0] = v1; 

} 

/*Dont forget to stop the prefetch! */ 
vec_dss( 0 ); 

} 

Small Altivec functions may also appear 
in a low latency form that passes data in 
and out by register. If possible these 
should be declared inline, since 
ultimately it is likely they will be called 
from functions like the high-throughput 
example above. Inlining such Altivec 
functions saves a lot of stack overhead 
for setting up the VRSAVE special 
purpose register, and allows the 
compiler to pipeline your code against 
other tasks ongoing in the caller. 

//Copy the alpha, red, green and blue 
channels from four 32 bit pixels into 
four vector floats. 
inline void Pixel32ToFloat(  
vector unsigned char pixels, 
vector float &alpha, 
vector float &red, 
vector float &green 
vector float &blue ) 

{ 
  
} 

Data Organization 
It should be clear that in order to take 
advantage of this sort of high 
throughput code architecture, your data 
should be all in one place and accessible 
as an array. If you are jumping around 
in memory, especially if you can't even 
load data as whole vectors, performance 
will be poor. To make matters worse, 
the translation lookaside buffer (TLB, 
part of the unit that maps memory 
addresses to hardware locations) is up 
to 256 times less likely to cause a 150+ 
cycle stall with linear memory reads 
than for random memory reads. 

It should be noted that the scalar unit 
can benefit from keeping data together 
as well, so even if you are not sure you 
will use AltiVec for a function, it doesn’t 
hurt to plan ahead. In some cases, large 
arrays present a problem for object 
oriented code. In these cases you have to 
evaluate your opportunities for 
parallelism within OO code. Often there 
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is none so there is not much loss really. 
Large segments of OO code only need to 
operate on a single data thread, so 
wouldn’t benefit from SIMD much 
anyway. Only when you can operate on 
multiple data in parallel is Altivec worth 
the effort. 

Alignment 
Because data is aligned in software not 
hardware, there is a pronounced 
disadvantage to using unaligned data. If 
possible, attempt to ensure that every 
vector is 16 byte aligned at least. Even if 
you are not sure you are going to use 
AltiVec, it is often a good idea to align 
your data anyway. It is harder to retrofit 
the changes into your application later, 
and good alignment almost never hurts 
scalar code. 

Uniform vs. Non-uniform Vectors  
Uniform vectors are those vectors 
whose elements all represent the same 
kind of quantity. An example would be 
a vector full of x coordinates for a data 
set on a graph. A non-uniform vector is 
one that holds different types of data in 
the same vector. An example might be a 
vector that holds {x, y, z, w} for a 3D 
graph. A vector full of 32 bit pixels is 
simultaneously uniform and non-
uniform. If the pixels are treated as 32 
bit pixels, you simply have four pixels 
there — a uniform vector. If you treat it 
as 4 sets of 4 different color channels, 
then you have 4 alpha channels, 4 red 
channels, 4 green channels and 4 blue 
channels all mixed up in the same 
vector — non-uniform. 
 
Avoid non-uniform vectors!  
 
If the elements in your vector represent 
different types of quantities, then 
typically you will find your function 
growing very complicated with a lot of 
permute operations, data shuffling on 

the stack, redundant calculations and 
lost opportunity for parallelism. 
Permute operations are inefficient 
because to a certain degree they can be 
said to do no real work. All they do is 
swap data around. You may only get a 
factor of two or three speed gain with 
your data organized this way, whereas a 
uniform vector based approach is likely 
to get the full factor of 4, 8 or 16. 

Functions that use uniform vectors are 
typically easier to read and write 
because they look just like the scalar 
code. They usually take better 
advantage of pipelining within the 
processor. They rarely require the use of 
the permute unit at all. The constants 
that they use tend to be simpler and 
more easily generated without resorting 
to loading them from global storage. 
You almost never do redundant work. 

Using uniform vectors in your code 
often means taking a hammer to your 
scalar code base. Chances are that for 
reasons unclear to man or compiler, you 
previously organized your data into 
nice neat structs with all sorts of 
different kinds of data interleaved with 
each other. C++ objects are almost 
always this way. Even some classical 
procedural constructs such as the lowly 
pixel have this architecture. It's a 
problem. Look for new ways to flatten 
out the data so that it is interleaved on 
the level of a whole vector or whole 
cacheline.  

Unfortunately, it is quite common to 
have to significantly reorganize 
preexisting code and data to see large 
speed gains from Altivec. This is a fact 
that you will have to accept. The good 
news is that rarely are the changes so 
pervasive that they make the process 
impossible or impractical. Do not expect 
however that Altivec can always simply 
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be clipped in in place of scalar code 
without advance planning. 

Optimization - A practical Example 
When adding AltiVec to a pre-existing 
program, you find that you need to 
vectorize preexisting functions.  As an 
example, this is a function that 
calculates a third order polynomial of x: 

// result = c0 + c1 * x + c2 * x
2 + c3 * x

3 
float PolyNomial3( float c0, float c1,  

float c2, float c3, float x ) 
{ 
    return c0 + c1 * x + c2 * x * x  

+ c3 * x * x * x; 
} 

Before we continue, I should mention 
that I have made no attempt to optimize 
the scalar version above beyond what 
the compiler already does. At the very 
least, this could be optimized using 
“Horner's scheme”: 

// result = c0 + c1 * x + c2 * x
2 + c3 * x

3 
but faster 

float PolyNomial3( float c0, float c1,  
       float c2, float c3, float x ) 
{ 
   return c0 + x * (c1 + x *  

(c2 + c3 * x )); 
} 

…which is faster in principle because it 
compiles to three fmadds rather than 
three fmuls and three fmadds.   

I have failed to make this optimization 
in both the scalar code and the vector 
code that you will see in a moment.  It 
would benefit both roughly equally. 
One might guess based on instruction 
count alone that we would nearly 
double performance this way. (I 
received a letter claiming that it would.) 
I will return to the subject of the Horner 
scheme optimization at the end of the 
optimization process to see how much a 
simple code optimization like that really 
helps.  In the mean time, take this as an 
early lesson to make sure that you are 
using the right algorithm before 

investing heavily into AltiVec. It's no 
fun to go back and rewrite everything.  

The Simple Approach 
Usually the first approach taken by most 
programmers when rewriting scalar 
code for AltiVec is to attempt to make 
the new AltiVec function fit into the 
mold of the old scalar version, using the 
same name and argument types and the 
same return value.  This makes sense. 
The calling code won’t have to change. 
The data can stay organized the same 
way.  So, let’s do that for this function to 
see how well that works out: 

//We will use this union type to move 
data from the FPU to vector unit 
typedef union 
{ 
        vector float    vec; 
        float           elements[4]; 
}Float4; 

//Our first attempt to vectorize 
PolyNomial3. 
float PolyNomial3( float c0, float c1, 
float c2, float c3, float x ) 
{ 
Float4  constants; 
Float4  the_Xs; 
float   returnVal; 
vector float result; 

//Load some values into the vectors 
constants.elements[0] = c0; 
constants.elements[1] = c1; 
constants.elements[2] = c2; 
constants.elements[3] = c3; 
the_Xs.elements[0] = 1.0; 
the_Xs.elements[1] = x; 
the_Xs.elements[2] = x * x; 
the_Xs.elements[3] = x * x * x; 

//Now do constants • the_Xs  (Dot 
product) 
result = vec_madd( constants.vec, 

the_Xs.vec, ZERO ); 
result = vec_add( result, vec_sld( 

result, result, 8 ) ); 
result = vec_add( result, vec_sld( 

result, result, 4 ) ); 

/*All the elements of result now contain 
the same value, our result. Write it to 
returnVal so we can return it as a 
floating point quantity */ 
vec_ste( &returnVal, 0, result ); 
 
return returnVal; 

} 

Ok, lets benchmark this function and see 
how we did.  Calling the floating point 
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version 10,000 times takes 16733 time 
units. Calling our new vectorized 
version 10,000 times takes 46215 time 
units.  Our AltiVec version is three 
times slower! Obviously we have done 
something wrong. But what could it be?  

The problem with our approach is that 
the interface of the function itself is 
inherently scalar. This forces us to do so 
much data organization to set up the 
data for use by the vector unit that not 
only is the AltiVec speed advantage lost, 
we are actually three times slower than 
the simple FPU code.   

With a quick inspection, it should be 
apparent that almost all of it is stack 
overhead — getting variables arranged 
where they need to be. Also, the 
vec_add() lines are doing a lot of 
redundant work, so even when we 
finally reach the stage that we are 
supposed to be operating efficiently in 
the vector unit, we aren't.  There is no 
opportunity for pipelining here like 
there is in the scalar code. Notice the 
presence of non-uniform vectors. 

The Vectorized Approach  
The solution is usually to redesign the 
function interface to be a vector 
interface and go back and tweak the 
caller a little.  It isn't too hard, but it 
makes a huge speed difference! Here is 
a fully vectorized polynomial function: 

// constants = { c0, c1, c2, c3 }; 
// x = four different x's that we 
evaluate at the same time 
vector float Polynomial3(  

vector float constants,  
vector float x ) 

{ 
vector float c0, c1, c2, c3, x2, x3; 
vector float result; 

//Expand out our constants  
c0 = vec_splat( constants, 0 ); 
c1 = vec_splat( constants, 1 ); 
c2 = vec_splat( constants, 2 ); 
c3 = vec_splat( constants, 3 ); 

//calculate x2 and x3 

x2 = vec_madd( x, x, ZERO ); 

x3 = vec_madd( x, x2, ZERO ); and  

//result = c0 + c1*x[4] 
result = vec_madd( c1, x, c0 ); 

//result += c2 * x
2[4] 

result = vec_madd( c2, x2, result ); 

//return result + c3 * x
3[4]; 

return  vec_madd( c3, x3, result ); 
} 

How did this new version do? On my 
machine, it evaluates 10,000 floats in 
6410 time units. That is over twice as 
fast as the scalar code and nearly seven 
times faster than our first attempt at 
vectorizing this function!  

So, what is the difference? First of all, 
we have completely gotten rid of all of 
the load/store instructions ...in this 
function, anyway.  That was a huge 
overhead. Also, in roughly the same 
number of instructions or fewer as our 
previous example, we are evaluating the 
polynomial for four different X's at the 
same time!  Finally, the code itself is 
straightforward, matching to a high 
degree the standard FPU code, making 
it much easier to read and debug.   

Also, notice the difference between how 
we handled the data in this version 
compared to the last one. In the last 
version, each element in the X vector 
stood for something different: {1.0, x, x2, 
x3} — a non-uniform vector.  In this 
version, each element in every vector 
stands for the same thing as the other 
elements in that vector — uniform 
vectors.  (We ignore the non-uniform 
constants vector for the moment. Notice 
it is the only vector with lots of 
permutes associated with it.) Working 
with uniform vectors means that all the 
elements of the vector can be handled in 
the same way, which is exactly what we 
want for a SIMD architecture.  In our 
earlier approach, because our vectors 
did not contain similar elements, we 
ended up spending a lot of time shifting 



Practical Altivec Strategies, page 20 

elements around maneuver them into 
the right place. Calculating in parallel 
works fastest when the 4, 8 or 16 
streams are always in the right place 
and independent of each other. 

However, don’t mistake these results to 
indicate there is a hard and fast rule 
about how to handle data. There are a 
number of times when you don’t have 
to use uniform vectors. For some tasks 
(e.g. inverting a matrix), where there is 
quite a bit of symmetry built into the 
operation, you can get reasonably good 
performance without having to resort to 
something like inverting four matrices 
at a time in parallel.  

Adding Pipelining 
OK, how do we improve this further? 
Well, we still need to work on 
scheduling. The vec_madd() function 
takes either 4 or 5 cycles to execute.  We 
have three of them in a row, each of 
which depends on the result of the last 
one.  For this reason, the three take 12-15 
cycles to finish, instead of 6-7. The 
pipeline is hardly full.  Thus, we are 
only completing one vec_madd every 4 
to 5 cycles, when we could be finishing 
one vec_madd per cycle.  

We can fill the VFPU pipeline by 
evaluating four vectors in parallel.  This 
is easily done by “unrolling the loop”, a 
common trick for writing blitters, an 
example of which appears in the section 
above entitled "Almost All AltiVec Code Is 
A Blitter".  Once again, we have had to 
go back and edit the caller, this time to 
make it pass us a pointer to all of the 
data, instead of small bits of it at a time.  

Another approach I could have taken 
instead is to declare the function inline 
and hope that the compiler was able to 
schedule the instructions in with 
whatever else the caller is doing. This 
can be particularly beneficial because 

AltiVec stack overhead tends to be 
large. When an inline function is called 
within the confines of a loop, the 
compiler may automatically unroll the 
loop allowing the function to be 
interleaved with itself many times over, 
achieving the same effect that I worked 
hard to produce by hand.  

Unfortunately, the compiler can be 
picky about what to inline, so it doesn’t 
always work.  The function generally 
must be small.  In addition, for the 
purposes of a paper, I wanted to show 
the explicit unrolling of the loop so you 
get to see what it looks like. Loop 
unrolling makes for very large code, so 
please forgive this next code segment.  

// A fully vectorized version optimized 
for better scheduling and cache usage 

// constants = { c0, c1, c2, c3 }; 
// x = four different x's that we 

evaluate at the same time 

void Polynomial3( vector float constants,  
vector float *input,  
vector float *output,  
UInt32 vectorCount ) 

{ 
//Set up all the constants  
vector float k0, k1, k2, k3, zero; 
vector float a, b, c, d; 
vector float a2,b2, c2,d2; 
vector float a3,b3, c3,d3; 
vector float atemp,btemp,ctemp,dtemp; 
UInt32 loopCount; 

k0 = vec_splat( constants, 0 ); 
k1 = vec_splat( constants, 1 ); 
k2 = vec_splat( constants, 2 ); 
k3 = vec_splat( constants, 3 ); 
zero = (vector float) vec_splat_u8(0); 

//Manually unroll the loop four times. 
This allows for better scheduling. 
loopCount = vectorCount / 4; 
while( loopCount-- )  
{ 
//Load 64 bytes of data 
a = vec_ld( 0, input ); 
b = vec_ld( 1 * sizeof( b), input ); 
c = vec_ld( 2 * sizeof( c), input ); 
d = vec_ld( 3 * sizeof( d), input ); 
input += 4; 

//Calculate x2 for each data set     
a2 = vec_madd( a, a, zero ); 
b2 = vec_madd( b, b, zero ); 
c2 = vec_madd( c, c, zero ); 
d2 = vec_madd( d, d, zero ); 
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//Calculate x3 for each data set     
a3 = vec_madd( a, a2, zero ); 
b3 = vec_madd( b, b2, zero ); 
c3 = vec_madd( c, c2, zero ); 
d3 = vec_madd( d, d2, zero ); 

//Calculate c0 + c1 * x for each  
atemp = vec_madd( k1, a, k0 ); 
btemp = vec_madd( k1, b, k0 ); 
ctemp = vec_madd( k1, c, k0 ); 
dtemp = vec_madd( k1, d, k0 ); 

//add c2 * x
2 for each  

atemp = vec_madd( k2, a2, atemp ); 
btemp = vec_madd( k2, b2, btemp ); 
ctemp = vec_madd( k2, c2, ctemp ); 
dtemp = vec_madd( k2, d2, dtemp ); 

//add c3 * x
3 for each  

atemp = vec_madd( k3, a3, atemp ); 
btemp = vec_madd( k3, b3, btemp ); 
ctemp = vec_madd( k3, c3, ctemp ); 
dtemp = vec_madd( k3, d3, dtemp ); 

//store the result 
vec_st( atemp, 0, output ); 
vec_st( btemp, 16, output ); 
vec_st( ctemp, 32, output ); 
vec_st( dtemp, 48, output ); 
output += 4; 

} 

//At this point we may have 0, 1, 2 or 
3 vectors left to process 

//If 2 or 3, process two of them now 
if( vectorCount & 2 ) 
{   
a = vec_ld( 0, input ); 
b = vec_ld( 1 * sizeof( b), input ); 

input += 2; 

a2 = vec_madd( a, a, zero ); 
b2 = vec_madd( b, b, zero ); 
a3 = vec_madd( a, a2, zero ); 
b3 = vec_madd( b, b2, zero ); 

atemp = vec_madd( k1, a, k0 ); 
btemp = vec_madd( k1, b, k0 ); 
atemp = vec_madd( k2, a2, atemp ); 
btemp = vec_madd( k2, b2, btemp ); 
atemp = vec_madd( k3, a3, atemp ); 
btemp = vec_madd( k3, b3, btemp ); 

vec_st( atemp, 0, output ); 
vec_st( btemp, 16, output ); 
output += 2; 

} 

//If we have one vector left, process 
it now 
if( vectorCount & 2 ) 
{   
a = vec_ld( 0, input ); 
a2 = vec_madd( a, a, zero ); 
a3 = vec_madd( a, a2, zero ); 
atemp = vec_madd( k1, a, k0 ); 
atemp = vec_madd( k2, a2, atemp ); 
atemp = vec_madd( k3, a3, atemp ); 
vec_st( atemp, 0, output ); 

} 
} 

How well does evaluating four vectors 
in parallel enhance performance? We 
can now evaluate 10,000 polynomials in 
2400 time units! That is over seven times 
as fast as the scalar code. 

2136:addi |  7116 | .....IIIIDFFFFFFFR........................................................................ | 7128 
2137:addi |  7116 | .....IIIIIDFFFFFFFR....................................................................... | 7129 
2138:lvx |  7118 | .......IIIIDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER................................. | 7167 
2139:addi |  7119 | ........IIIIDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFR................................. | 7167 
2140:lvx |  7119 | ........IIIIIIIIDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER................... | 7181 
2141:addi |  7120 | .........IIIIIIIIDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFR................... | 7181 
2142:vmaddfp |  7121 | ..........IIIIIIIDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEFFFFFFFFFFR.................. | 7182 
2143:lvx |  7122 | ...........IIIIIIIDDDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER......... | 7191 
2144:vmaddfp |  7123 | ............IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIDEEEEFFFFFFFFFFFFFFFFFFR......... | 7191 
2145:lvx |  7124 | EEEER........IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE | 7205 
2146:vmaddfp |  7128 | FFFFR............IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIDDDDDDDDDDDDDEEEEFFFFFFFFFFFFFFF | 7205 
2147:addi |  7129 | FFFFFR............IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 7206 
2148:vmaddfp |  7129 | FFFFFR............IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIDEEEEFFFFFFFFFFFFFF | 7206 
2149:vmaddfp |  7130 | FFFFFFR............IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIDEEEEFFFFFFFFFFFFF | 7207 
2150:vmaddfp |  7169 | FFFFFFR...................................................IIIIIIIIIIIIIIIIIIIIIIIDEEEEFFFF | 7207 
2151:vmaddfp |  7169 | FFFFFFFR..................................................IIIIIIIIIIIIIIIIIIIIIIIIDEEEEFFF | 7208 
2152:vmaddfp |  7170 | IIIIIDEEEER................................................IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 7211 
2153:vmaddfp |  7170 | IIIIIIDEEEER...............................................IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 7212 
2154:vmaddfp |  7183 | IIIIIIIDEEEER...........................................................IIIIIIIIIIIIIIIIII | 7213 
2155:vmaddfp |  7184 | IIIIIIIIDEEEER...........................................................IIIIIIIIIIIIIIIII | 7214 
2156:vmaddfp |  7193 | IIIIIIIIIDDEEEER..................................................................IIIIIIII | 7216 
2157:vmaddfp |  7194 | IIIIIIIIIIIDEEEER..................................................................IIIIIII | 7217 
2158:vmaddfp |  7207 | ......IIIIIIDEEEER........................................................................ | 7218 
2159:vmaddfp |  7208 | .......IIIIIIDEEEER....................................................................... | 7219 
2160:stvx |  7209 | ........IIIIIDEEEEER...................................................................... | 7220 
2161:vmaddfp |  7210 | .........IIIIIDEEEER...................................................................... | 7220 
2162:vmaddfp |  7211 | ..........IIIIIDDEEEER.................................................................... | 7222 
2163:vmaddfp |  7213 | ............IIIIIDEEEER................................................................... | 7223 
2164:stvx |  7214 | .............IIIIDEEEEER.................................................................. | 7224 
2165:vmaddfp |  7215 | ..............IIIIDDEEEER................................................................. | 7225 
2166:stvx |  7215 | ..............IIIIDEEEEEER................................................................ | 7226 
2167:vmaddfp |  7216 | ...............IIIIIDDDDDEEEER............................................................ | 7230 
2168:stvx |  7217 | ................IIIIDDDEEEEEEER........................................................... | 7231 
2169:addi |  7219 | ..................IIIDFFFFFFFFR........................................................... | 7231 
2170:bc+ |  7219 | ..................IIIIFFFFFFFFFR.......................................................... | 7232 

Figure 5.  A Sim_G4 trace of the execution of one particular loop iteration from our vectorized 
pipelined function. Large stalls are evident on lvx, which cause the rest of the code to stall. 



Practical Altivec Strategies, page 22 

 

Optimizing Cache Usage 
Are we done yet? Well no. To see why, 
we will examime our routine with 
Sim_G4.  Let’s take a look at how well 
we are executing so far. The above trace 
(Figure 5) shows the actual amount of 
time each instruction takes inside our 
function’s main loop. (This is just a 
snapshot of one particular pass through 
the loop.) Each instruction is listed on 
the left, then the clock at which the 
instruction started, a graphical display 
of what it was doing each tick, and 
finally a number showing during which 
clock the instruction finished:  

Each instruction goes through four or 
five stages. It is fetched in the 
instruction buffer (I), Dispatched (D) to 
the appropriate execution unit, executes 
(E), and retires (R). If there is an 
instruction ahead of it in the completion 
buffer, then it will display (F) for a 
number of ticks until the item ahead of 
it in the completion buffer is retired. 
Two instructions can be retired per cycle 
on 7400/7410, three on 7450. The 
meaning of each of these stages is 
discussed in detail on Apple’s site 
[Apple00]. 

The good news is that our pipelining 
attempts largely worked. The 
vec_madd() instructions are being 
executed with a throughput of about 
one per cycle. We seem to be able to 
dispatch, execute and complete one or 
two instructions per cycle, which is 
pretty good. Well, for the most part... 

Unfortunately,  there is a big stall that 
happens each time we call lvx (the asm 
translation of vec_ld) near the 
beginning of the loop. These seem to be 
taking 40–80 cycles to complete! The 
entire rest of our function only takes 
about 35 cycles to complete, so we are 

losing over half or two-thirds of our 
speed due to this one problem.  Really 
big stalls on lvx usually happen as a 
result of a cache miss — the memory 
unit was asked to provide data and the 
data was neither in the L1 or L2 cache, 
so it had to take a long, slow trip to 
main RAM for it.  

The solution is to add in cache 
instructions to help the CPU anticipate 
what data it is going to need.  In the 
fourth example function, I’ve added a 
call to vec_dstt() to make sure our 
source buffer is loaded in time. This was 
done in the same manner as described 
above in the section entitled, "Almost 
All Altivec Code is a Blitter." (Source 
code: [Ollmann01]) 

I’ve also called dcbz (data cache block 
zero) to zero the blocks that we are 
writing to before we write to them. Why 
do that? If you zero a block, the memory 
controller simply puts a bunch of zeros 
in the cache.  No data is loaded from 
RAM. Since we are just going to 
overwrite this data anyway, this is a 
way of putting a block in the cache 
without having to load it. This can save 
us a lot of memory overhead.  

It is pretty clear when to use dcbz. Zero 
any blocks just before you overwrite 
them. Just be careful not to zero 
memory in front of your target buffer. 
The dcbz instruction rounds all 
addresses down to 32 byte bounds, so if 
you aren’t careful about alignment you 
can zero some data in advance of your 
block.  If it is a heap block, the area just 
before your data is typically heap 
information. You will corrupt the heap 
when you free the block.  Another thing 
to be cautious about with dcbz is that 
some day Motorola may decide to 
change the size of the cacheline. If that 
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happens, you may end up zeroing too 
much data causing a bug.  Apple 
provides MPBlockZero(), which may be 
used instead.  If you prefer, 
DriverServices.h provides a 
GetDataCacheLineSize() function. 

Using vec_dst or vec_dstt also 
requires some care. While you could 
attempt to stream in the entire input 
data set at once with a single call to 
vec_dst, in practice this generally 
doesn’t work very well because 
interrupt level code or other preemptive 
threads may interrupt and call vec_dst 
on the same stream, halting your stream 
and replacing it with its own.  Also the 
stream may outpace your code, 
displacing needed data with data we 
don’t need yet. 

Typically what you want to do is set up 
many small overlapping streams. In 
each loop iteration, ask for a small 
stream that reads 64, 128 or 256 bytes 
forward from your current location in 
memory. It is ok to repeatedly use the 
same stream id. Try to stay away from 
id 3. BlockMoveData() uses it 
frequently at interrupt level.  

How many bytes to read ahead usually 
must be determined experimentally. 
Generally there is a number beyond 
which no performance advantage is 
seen. If your data set sizes vary, you 
may also need to check different data 
sizes.  In this particular case, the 
optimum stream size was in the 10–16 
vector range (5-8 cache blocks). I found 
this out by doing a lot of testing:  
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Notice that I gathered a lot of data. 
There is some fluctuation in the 
numbers that you get, so usually you 
have to sample each data point a few 
times. I repeated each five times. 

The combination of cache streaming and 
zeroing cache blocks improves the 
efficiency of our memory use a bit. We 
can now do our task in 1600 time units 
— ten times faster than the FPU and 
nearly thirty times faster than our first 
vector attempt!  Here is a graphical 
representation of our different 
implementations. Longer bars are better. 
Values are given in Log format so you 
can see which steps gave the most 
improvements more easily: 
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Quick inspection of these results reveals 
that although we did see a 25% rate 
acceleration due to cache hints, we did 
not apparently get back all of those 50 
cycles wasted per loop.  If we had, the 
speed might have more than doubled. 
Unfortunately, at this point we have 
probably run into a fundamental 
weakness of the hardware. The memory 
subsystems are woefully inadequate to 
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keeping the vector unit properly fed 
when running at a full gallop.   

Sim_G4 reports that adding cache hints 
does drastically accelerate the function 
for about the first four or five loop 
iterations. However, after that point, we 
start to stall again in lvx (though in 
dispatch, rather than execution).   

What appears to be going on is that the 
first time through the loop, the code is 
running very slowly because the 
instructions themselves are being 
loaded in from RAM. This gives the 
memory unit plenty of time to pre-fetch 
some data. However, in the second or 
later iterations through the loop, the 
instructions are already loaded, so we 
are able to proceed at maximum speed. 
We quickly catch up to the data stream 
and then start to stall again.  
Fortunately, because we are still 
prefetching data, the stalling isn’t quite 
as bad as it could be, but it is quite 
significant. Often one stall will delay 
long enough that the next cacheline 
loaded from won’t miss, so we only stall 
some of the time. This explains our 
overall speedup. 

How do we get more speed? 

The only thing that we can do now is to 
do more with each piece of data before 
we store it. It looks as though our 
calculation could easily be 3 times as 
complex and still run at memory fill 
rates.  If we had something else we 
wanted to do with this polynomial, such 
as calculate where the points go when 
we plot it out on screen, or calculate a 
tenth order polynomial instead, we 
could probably do that now and get the 
extra math essentially for free. Sadly 
that is beyond the scope of this paper. It 
is something you will have to 
experiment with in your own program. 

What about Horner’s optimization discussed 
at the beginning of this chapter? Thanks 
for reminding me! It accelerated the 
scalar code by 8% and the AltiVec code 
by 3%. That is not quite the factor of two 
that was claimed based on just counting 
instructions!  Actually,  once you 
consider execution times and the fact 
that some of the fmuls can pipeline in 
the original version, one estimates 9 
cycles for Horner and 11 for the original 
scalar version on 7400. Thus, we really 
should only predict a 22% acceleration 
based on the instructions themselves.  
We dont even see that much. 

We don’t see much speed improvement 
for the AltiVec code either, even though 
our work with pipelining means that 
that full factor of two is theoretically 
possible.  We already know we are 
limited by the speed of memory, so this 
isn’t too surprising. Any time saved is 
lost immediately to lvx stalls.  

Clearly, it isn’t just what you code, it is 
how you call the code, when you call it, 
and where the data is! In this case, 
Horner didn’t improve any of those 
other things for us. Just improving the 
implementation of the function itself 
didn’t do us much good.  

Thus, microoptimization on code alone 
is only one part of the optimization 
process. Paying attention to all facets of 
how your program is constructed, 
including how data is passed into a 
function, how data is stored in memory, 
pipelining, temporal locality, your use 
of constants, etc. can yield far greater 
rewards. 

The Optimization process  
Hopefully by now, you have seen that 
the AltiVec optimization process is 
somewhat like for other code. However 
due to its speed, there are many more 
bottle necks from other parts of the 
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system that must be taken into 
consideration. The overall optimization 
procedure can be summarized as 
follows: 

(1) Only optimize those functions that are 
frequently called and are the performance 
bottleneck in your application. A good 
profiler is a must. 

(2)  Find the best algorithm. While AltiVec 
might buy you a factor of ten in 
performance, it surely isn’t going to get 
you a factor of one hundred or one 
thousand.  Often you can get that by 
doing something a different way.  
Picking the best algorithm also benefits 
your scalar version.  You can still 
accelerate that with AltiVec. 

(3) Once you have found the best method, 
arrange it for maximum parallelism. If you 
find you are doing a lot of permute 
operations to shift vector elements 
around relative to one another, it is a 
bad sign. The best implementations tend 
to use uniform vectors — vectors in 
which all elements in the vector stand 
for the same thing and can be processed 
in parallel. You may have to go back to 
rewrite the caller a little bit to make sure 
that the data is handed to you in a 
useful format. Likewise, you might have 
to change your data storage format to 
make the process of loading uniform 
vectors from memory a lot easier. 

(4) Look to find ways to reduce memory 
overhead, either by passing constants 
and globals in as arguments or by 
generating them on the fly. Don’t waste 
too much time creating constants. At 
worst you can load in a cacheline full of 
constants, and splat them out if you 
need to. 

(5) Optimize your function for best 
instruction scheduling. If you use the 
VFPU or VCIU, typically this means that 

you will be processing data in a loop 64 
bytes at a time so that you can have 4 
independent vectors to stuff the 
pipelines with. If your function takes its 
data passed by value, either declare the 
function inline or take multiple vectors 
full of data at once.  If your function 
reads data from memory, unroll your 
loop a little to read four or more vectors 
at a time.  Do not unroll the loop 
completely because this will mean more 
instructions will have to be loaded into 
the cache, which may hurt performance.  

(6) Only once you have done all other 
optimizations should you start looking at 
cache instructions. This way your 
memory access patterns are set in stone. 
If your function does any memory 
access, quite often it looks a bit like a 
blitter. 

Calculate your prefetch constant and 
place a call to vec_dst() at the very 
beginning of your function. This ensures 
that while you are going through the 
relatively slow process of loading in the 
instructions for the function you can 
also be prefetching the data that you 
need.  Also place a call to vec_dst() at 
the start of the loop and call vec_dss() 
for the stream at the end of the function. 

There is no one correct stream block size 
that fits all functions.  Typically, you 
have to test experimentally to find out 
what the best size is going to be.  
Typically block sizes in the range 64-256 
bytes work best. This can be done in the 
context of a test app.  Make sure that 
your data set resembles a real data set if 
it is likely to impact performance. Take 
multiple data points for each block size 
— the times can be somewhat variable. 
If a wide variety of sizes work, pick one 
that is not too close to the poor 
performance area. Hopefully this will 
mean that the function is more flexible 
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with different bus ratios and RAM 
speed. 

If your destination buffer does not 
overlap with your source buffer and you 
are just going to overwrite the 
destination buffer, call dcbz to zero the 
destination buffer before writing to it. 
This zeroes those blocks and places 
them in the cache without actually 
doing any loading of data.  This can 
double the speed of your function if it is 
completely memory bound. 

A good rule of thumb is that unless you 
are eating up at least 20 cycles of CPU 
time per vector load (after pipelining) 
and your data has to be loaded in, you 
are probably memory rate  limited.  This 
means that you will be stalling on loads 
and backing up the completion queue. If 
you can find more work to do per vector 
this can greatly accelerate your 
application. You will not only get more 
done per load/store pair, you will also 
be able to do memory access in parallel 
with data processing. Code running at 
this level of complexity will run at the 
speed of the CPU rather than the 
memory bus, a very desireable thing. If 
you can achieve this level of complexity 
in your function, it no longer matters 
whether your data starts in RAM or the 
caches. For this reason, this is a very 
good situation to investigate the 
transient cache instructions and LRU 
loads and stores with your primary data 
stream. This will help leave data that 
depend on the caches for fast processing 
in the caches. 

(7) Move the function into your app and see 
if vec_ldl(), vec_stl() or vec_dstt() work 
better or worse in place of vec_ld(), vec_st() 
and vec_dst(). Since the transient / LRU 
versions tend to speed up code around 
your function at the expense of the 
function itself, its performance impact is 
difficult to measure correctly in a test 

app where there are no surrounding 
functions to benefit. 

If you have lots of time to waste, go 
back and repeat steps 5 and 6 to see if a 
different block size works better with 
the new cache instruction variants you 
added in step 6. Also check performance 
on different machines. 

Conclusion 
Programming for Altivec is a mixture of 
old and new. Many old optimizations 
ideas still apply. However, Altivec is so 
fast that memory bandwidth rather than 
CPU speed is usually the performance 
bottleneck. In addition, the SIMD 
architecture requires that one design for 
parallelism, which impacts how data 
must be organized. For this reason 
many new software design principles 
must be employed for use with Altivec. 

Data that is frequently used together 
should be stored together, preferably in 
large aligned arrays.  Most Altivec 
functions that directly access data 
should be written in a high-throughput 
blitter format, designed to reduce 
memory overhead as much as possible 
and process a lot of data concurrently 
thereby maximizing pipelining 
opportunities.  

Even with such functions, memory 
throughput will typically remain the 
performance bottleneck, not CPU cycles. 
For this reason it is best to process your 
data using a few large complicated 
functions that do a lot of work on each 
piece of data rather than a lot of little 
ones that repeatedly load and store data. 
Where streaming data prefetch 
instructions are used, additional 
expensive calculations may in many 
cases be added for free, because the 
additional cost is hidden by the larger 
cost of memory access. If memory stalls 
can be completely eliminated, functions 
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may actually run faster as the result of 
adding more work. This may in some 
cases be used to enhance the quality of 
the calculation. In others, work may be 
combined from several functions into 
one.  

Memory intensive programming 
techniques such as large lookup tables, 
and constants that must be read from 
memory are more likely to slow down 
Altivec code than speed it up. Except 
where it is very, very, VERY expensive, 
it us usually faster to generate constants 
on the fly and use brute force 
calculations instead.  

The slow speed of the memory bus can 
reduce the speed of uncached code by 
80%. The first iteration of a loop may 
run five times slower than successive 
loop iterations. For that reason, begin 
prefetching data as soon as possible in 
functions that handle a lot of data. This 
gives you more time for the data to 
appear, before the loop achieves full 
speed. 

In addition, gratuitous optimization of 
rarely executed code can make your 
application slower, in cases where the 
optimization makes the function longer. 
Avoid large switch statements, 
aggressive loop unrolling, reduction in 
strength optimizations that replace 
single expensive instructions with 
numerous "cheap" ones, and other code 
bloating optimizations with rarely 
executed code. It is okay to optimize 
rarely executed loops. 

Avoid branching in Altivec code. Use 
the Altivec comparator operations 
instead. Branching and lookups are 
single threaded by nature and do not 
work well with parallelized code. 

Use uniform vectors. Reorganize data 
and algorithms so that individual 

vectors contain only one kind of data 
(e.g a vector full of x's instead of a 
vector full of x,y,z.) This usually 
enhances code readability, reduces 
reliance on permute instructions, 
eliminates redundant work, shortens 
code, increases execution speed, and 
enhances parallelism. Such 
modifications can also enhance the 
performance of optimized scalar code as 
well, by enhancing temporal locality of 
memory access and providing more 
opportunities for pipelining or 
superscalar execution. 

Write code for maximum throughput in 
preference to low latency. Any small 
utility functions should be written with 
vector not scalar interfaces so data can 
be passed by register not on the stack. 
Where reasonable, construct these 
functions so that the the cost of using 
them in a low latency fashion is readily 
apparent from the interface.  

Do not be afraid of undertaking 
substantial modifications to legacy 
scalar code. Most data layout or code 
architecture modifications that you 
make to benefit Altivec will also benefit 
scalar code, because they are generally 
designed to enhance memory 
throughput. 
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