
Practical Altivec Strategies, page 1

Practical Altivec Strategies
The Why, How and When of Optimization Success and Failure

Using Altivec

Ian Ollmann, Ph.D.
iano@cco.caltech.edu

Abstract
Despite the widespread availability of Altivec enabled processors, proven
performance advantages and high end user demand for Altivec accelerated
applications, most PowerPC software contains little or no Altivec code. The
largest single barrier to widespread adoption seems to be developer awareness
of programming tools, techniques and proven software design paradigms
required to become successful with SIMD. This paper discusses key hardware
features that affect Altivec performance, presents software architecture principles
based on these that work well with Altivec, and concludes with a discussion of a
practical strategy for incorporating Altivec into your existing application.

Introduction
The PowerPC's Altivec unit (a.k.a.
Velocity Engine or vector unit) is a
Single Instruction Multiple Data (SIMD)
unit separate from the existing integer
and floating point units (scalar units).
The most significant difference between
the Altivec unit and the scalar units is
that the Altivec register is 128 bits wide
and can hold many data at once: 128
bits, 16 chars, 8 shorts, 8 sixteen bit
pixels, 4 longs, 4 32-bit pixels or 4 floats.

4 longs, floats
 or pixel32s

8 shorts or
 pixel16s

16 chars

128 bits

Figure 1. An Altivec register may be divided

into four 32-bit types, eight 16-bit types,
sixteen 8-bit types or 128 bits.

Each Altivec instruction will
simultaneously operate in parallel on all
of the data at once in about the same
amount of time it takes to do the same
operation on a single piece of data in the

scalar units. For example, a simple
addition operation might look like this:

1 2 3 4 6 8 10 12 14 165 7 9 11 13 15

1 1 1 1 1 1 1 1 0 41 1 1 1 0 0

+

2 3 4 5 7 9 11 13 14 206 8 10 12 13 15

=

Figure 2. Altivec does single operations on

multiple data in parallel.

...and the execution phase takes one
cycle, just like ordinary integer addition.

The Altivec instruction set is fully
equipped for any mathematical task
with instructions for subtraction,
multiplication, division, square roots,
exponentials. In addition, it has Boolean
operations, comparators, and type
conversion functions, which have been
the subject of a number of introductory
articles on Altivec: [Bettag98],
[Rosenberg99], [Motorola99a],
[Motorola99b], [Clarke00], [Ollmann01],
[Apple00].

Practical Altivec Strategies, page 2

Because of its inherent parallelism,
Altivec code can in principle be 4, 8 or
16 times greater throughput than the
traditional integer unit for integer math
and four times greater throughput than
the scalar floating point unit for floating
point math. In addition, the Altivec
instruction set adds a number of
instructions for advanced data cache
manipulation. This means that in some
cases, performance increases can be
even greater!

Speed-Critical Hardware Features
Sadly, new Altivec programmers are
frequently disappointed to discover that
their Altivec code is not much faster
than their pre-existing scalar code. In
some cases it may even be slower!
Unfortunately, a number of time tested
classical programming techniques have
been found to be spectacularly
unsuccessful when applied to Altivec.
Many programmers find that they need
to learn some new programming
paradigms to make the most of the
vector unit. First, however, a good
understanding of processor hardware
features is required to understand why
Altivec code designs succeed and fail.

The Instruction Cache
When you enter a function, the
instructions that make up that function
have to be loaded in from memory
before they can be executed. It is
impossible for the whole program to fit
in the instruction cache unless it is a
trivially small program. Thus, it is not
unusual that a function may have to be
loaded in from main memory, which
can be very, very slow. This means that
often the first loop in any function may
be executed considerably more slowly
than the successive iterations. This will
show up in Sim_G4, a processor
simulator and code profiler highly
useful for code optimization, as large

gaps when no instructions are
operating. Typically these stalls can be
from 35-40 cycles per set of eight
instructions. (Eight PPC instructions fill
up one cache block.)

Knowing this, it may be worthwhile to
position blocks of code that are
frequently called near one another close
to one another in memory. In addition,
knowing that you are likely to lose some
time the first time through a function, it
may be a good idea to start any
streaming data pre-fetch operations as
soon as possible in the function. This
will allow more data to be pre-loaded
by the time the function starts operating
at peak efficiency. Sometimes
prefetching larger blocks at the start
may help as well.

In addition, it doesn’t much matter how
you write rarely called code as long as
the instruction count is low. You have
an average load time of four or five
cycles per instruction. Most instructions
only take one cycle to execute. Few take
more than five. Thus, the largest speed
determinant for uncached code is very
likely to be the size of the code itself.
This is one more reason to only optimize
the small part of the program that
consumes 80% of the CPU’s attention.
Optimized code tends to be larger.

The Data Cache
The processor also has several caches for
storing frequently used data. When a
piece of data is needed, first the
processor checks the L1 cache to see if it
is there. If it is not, the aligned 32 byte
block (a.k.a. cacheline) that contains that
piece of data is loaded into the L1 cache.

The L1 cache is extremely fast. Most
reads from it take only 2 cycles (3 on
PPC 7450). By comparison, getting a
cacheline from main RAM to the L1
cache so it can be used can take up to

Practical Altivec Strategies, page 3

250 cycles, though 30-80 is a more
common number. Thus, proper use of
the L1 is extremely important. Sim_G4
will quickly reveal any memory-related
stalls that may be occurring due to poor
use of the caches. You will see long
stalls in lvx and lvxl.

Cachelines stored in the L1 cache are
organized into 128 sets, each containing
eight cachelines. Cachelines belonging
to the same set all share the same
address when masked with 0x0FE0. In
other words, cachelines 4096 bytes apart
map to the same set. When a new
cacheline is loaded, the oldest cacheline
in its set is flushed out of the L1 to make
room, following a pseudo Least
Recently Used algorithm.

When data is displaced out of the L1, it
ends up in the L2 cache. This is the only
way for data to end up in the L2 cache.
The L2 is called a ‘victim cache’ for this
reason. The L2 cache is much larger
than the L1, but is only 2 way set
associative (8 way on the PPC 7450) —
two cachelines per set. If you have a
particularly large set of data that you
would like to stay in the L2, then you
need consider using the Altivec
transient cache instructions or the
Altivec LRU load and store functions.
These prevent data displaced from the
L1 cache from being written to the L2,
preserving data that is already there.
Data access times to the L2 are still quite
quick. They are 9 cycles on the 7450 and
10-15 cycles on the 7400 and 7410.

Set associative caches have a weakness.
If you skip through memory with a
stride of 4096 bytes you will end up
only using a single cacheline set in the
L1 cache. That is less than 1% of the
cache. Linear memory access is best.

Another facet of memory management
that can cause occasional problems is

the TLB (translation lookaside buffer).
Where memory is actually living in
hardware is fairly complicated. Thus
even though you have an address for it
(e.g. 0xAC7E3500), actually locating it in
hardware is a bit of work. Most memory
is grouped together into pages, which
are typically about 4 kB in size. These
can be stored in any of a number of
places (RAM, disk, device, etc.) The
translation lookaside buffer caches 128
of these translated addresses (2 way set
associative on 7400). If you need a piece
of data from a page that is not in the
TLB, then a rather expensive process of
looking it up in a page table ensues. This
can be as expensive or more expensive
than a cache miss. Based on 4096 bytes
per page and 128 entries in the TLB,
only about 512 kB of data can be
referenced by the TLB.

Thus to make a long story short, for a
number of reasons it is a very good idea
to place data that is used together near
one another in memory. That way they
chance that they will share the same
page or even the same cacheline are
very high, and your code will not
encounter many long memory
associated stalls.

Alignment and Data Layout
AltiVec does not include hardware
support for loading and storing
unaligned vectors. A review of what is
required to align vectors in software
should quickly convince you that
dealing with misaligned vectors is very
slow. (Code showing how to handle
misaligned memory loads and stores
appears in [Motorola99a].) Unaligned
vector store operations (vec_st and
vec_stl) are especially slow. If you
must decide between unaligned loads
and unaligned stores, pick unaligned
loads. This is because unaligned stores
may overwrite data adjacent to the

Practical Altivec Strategies, page 4

target. Extra overhead is required to
avoid this problem.

The best possible solution is to simply
align your data properly. MacOS heap
blocks returned to you using NewPtr(),
OTAllocMem() or malloc() are
already 16 byte aligned. Blocks
allocated with MPAllocateAligned()
can be aligned to suit your taste.
Likewise, global and static storage starts
16 byte aligned at the start of every
compilation block. Thus, all you have to
do is make sure that your data and
structs are properly arranged to
preserve the 16 byte alignment that you
are given. Vector types placed on the
stack are automatically 16 byte aligned.
A detailed description of alignment
associated slowdowns can be found
here: [Rentzsch01]

In the special case where you wish to
align non-vector types to 16 bytes on the
stack, you may do so by using a union:

//A union that allows memberwise access
to a vector float
typedef union
{
 float f[4];
 vector float v;
}Float4;

Individual stack frames may only be 8
byte aligned, so don’t depend on the
alignment of the start of the stack frame
to correctly align non-vector types to 16
byte bounds. Stack frame conventions
are detailed in [Motorla99b] Chapter 3.3.

Pipelining
The number of cycles each instruction
takes is listed in [Motorola99c (Chapter
6, page 46), also Motorola01a–b]. For
the most part, they take from 1-5 cycles
each, depending on the vector subunit
that they execute in. Most things take
one cycle, except for operations in the
Vector Complex Integer Unit (VCIU)
and the Vector Floating Point Unit

(VFPU). The vector permute unit (VPU)
takes one cycle on PPC 7400 and 7410
but two cycles on the PPC 7450. The
VCIU has three stages (four on PPC
7450) and the VFPU has four or five
stages depending on whether or not
Java mode is turned on. (Though the
word Java is used here, this mode has
almost nothing to do with the Java
development platform. It is so named
because it shares some numerical
standards with Java.)

Both the VCIU and the VFPU are
pipelined. This means that you can have
multiple instructions executing at once
in each. Each cycle, one new instruction
can be added to the pipeline and
another one can exit out the other end
and be retired. This allows for a
throughput of one instruction per cycle,
even though it may take several cycles
to process each instruction.

In order to make full use of the pipeline,
you have to make sure that you have
enough independent data available.
Otherwise you will find that
instructions will be prevented from
starting down the pipeline in a timely
fashion because they are waiting on the
result of another calculation. As an
example, suppose you are doing a
vector dot product on a pair of very
long vectors. A simple version might
look like this:

//Simple dot product function for long
vectors
float SlowDotProduct(

vector float *v1,
vector float *v2,
int length)

{
vector float temp, temp2;
float result;
temp = (vector float) vec_splat_s8(0);

//Loop over the length of the vectors
multiplying like terms and summing
for(int i = 0; i < length; i++)
temp = vec_madd(v1[i], v2[i], temp);

Practical Altivec Strategies, page 5

//Add across the vector
temp2 = vec_sld(temp, temp, 4);
temp = vec_add(temp, temp2);
temp2 = vec_sld(temp, temp, 8);
temp = vec_add(temp, temp2);

//Store the result on the stack so it
can be loaded into the FPU and then
return it
vec_ste(temp, 0, &result);
return result;

}

The problem with this function is that
each call to vec_madd depends on the
result of the last one, so we don’t
actually get any pipelining here. We
only do one vec_madd every four or five
cycles. A faster method would be to
load 64 bytes from each vector each loop
iteration. This would allow you to stuff
the pipeline:

//Do v1 dot v2 faster. In this one we
make sure the pipeline is full
float FasterDotProduct(vector float *v1,

vector float *v2,
int length)

{
vector float t, t2, t3, t4;
float result;

t = (vector float) vec_splat_s8(0);
t2 = t3 = t4 = t;

//Loop over the length of the
vectors, this time doing 4 vectors
in parallel to stuff the pipeline.
This is the only part that is
substantially different. We have
unrolled the loop to allow multiple
vec_madds to pipeline with one
another. This is now possible
because the result from one
vec_madd is not used in the next
one.
for(int i = 0; i < length; i += 4)
{
t = vec_madd(v1[i], v2[i], t);
t2 = vec_madd(v1[i+1], v2[i+1], t2);
t3 = vec_madd(v1[i+2], y2[i+2], t3);
t4 = vec_madd(v1[i+3], v2[i+3], t4);

}

//Sum our temp vectors
t = vec_add(t, t2);
t3 = vec_add(t3, t4);
t = vec_add(t, t3);

//Add across the vector
t2 = vec_sld(t, t, 4);
t = vec_add(t, t2);
t2 = vec_sld(t, t, 8);
t = vec_add(t, t2);

//Copy the result to the stack so we
can return it via the FPU
vec_ste(t, 0, &result);
return result;

}

Clearly more can be done with this
function, such as correctly handling the
case when the vectors are not an even
multiple of 64 bytes long. Also, some
streaming cache instructions would
really speed it up, since it is likely that a
bigger bottleneck is memory overhead.
However, it should benchmark a bit
faster.

Processor Resource Scarcity
Rename Registers and the Completion
Queue quite often surprise new AltiVec
programmers trying their hand at
aggressive scheduling of instructions.
The problem is that the PPC 7400 and
7410 are starved for both vector rename
registers and entries in the completion
queue. Lack of available rename
registers or slots in the completion
queue can keep instructions that
otherwise are ready to go from entering
the execution stage. They will typically
stall waiting in the instruction buffer for
as long as is required until enough
resources become available.

Rename Registers
Vector rename registers are temporary
buffers used to store results from
instructions that have finished execution
but have not completed and been
retired. There are six vector rename
registers, six integer rename registers
and six FPU rename registers. For an
instruction to be successfully dispatched
and to start executing, a rename register
must be available for each destination
operand specified by the instruction.
Once the instruction is done executing,
the result is written to the rename
register. During the writeback stage of
the instruction, the data is copied from
the rename register to the destination

Practical Altivec Strategies, page 6

register. If a subsequent instruction
needs the result as a source operand, it
is made available simultaneously to the
appropriate execution unit, which
allows a data-dependent instruction to
be decoded and dispatched without
waiting to read the data from the
register file.

In some cases, it is possible that there
are more than six instructions in a given
unit scheduled to be in flight at a time.
In such cases the seventh and later
instuctions will stall and wait for one of
the other six to complete before it will
start. In principle, you can dispatch one
complex vector operation and one
permute operation to the vector unit per
cycle. As VFPU operations can take five
cycles to complete, they can consume
most of the vector rename registers. If
VPU operations dispatched
simultaneously with them, you will run
out of rename registers in three cycles.
To understand why, one must consider
the instruction completion queue.

Instruction Completion Queue
On the PowerPC 7400 and 7410 up to
eight instructions can be “in flight” at
any given time. The 7450 can have 16.
When an instruction enters the
execution phase it is placed on the
completion queue. The instructions
occupying the completion queue are not
limited to just vector operations, they
include all other types of PPC
instructions, most significantly
load/store operations, due to their long
execution times. The completion queue
is a queue in the true sense of the word.
The completion unit only retires an
instruction when all instructions ahead
of it have been completed, the
instruction has finished execution, and
no exceptions are pending. This helps
guarantee that instructions finish in the
order that they were started.

Only two instructions many be retired
per cycle on PPC 7400 and 7410. The
7450 can issue and retire three
instructions per cycle. For this reason,
there is generally very little acceleration
to be gained from simultaneously doing
calculations in the VFPU and the FPU at
the same time. Between load and store
operations and VFPU ops and FPU ops,
the completion queue can fill up rapidly
because more instructions are
dispatched than can be completed per
cycle.

Even though an instruction may only take
one cycle to execute, it can sit in the queue
for tens or hundreds of cycles waiting to
retire if the instructions ahead of it take a
long time to finish executing. This will cause
the queue to rapidly fill up, preventing new
instructions from entering execution and
preventing the release of rename registers
for use by other instructions. This is in part
why memory stalls are so bad. When a load
stalls, only 7 (15 on 7450) more instructions
can enter execution. They will not complete
until the load completes and it will take up
to four additional cycles to empty out the
queue. Thus, even though the data to be
loaded is not needed for many many cycles,
stalled loads will cause other instructions to
stall long before then. The remaining
intervening instructions then add to the
execution time of the function with unusual
repercussions as I will show later in
"Software Architecture Principles: Memory
Speed!"

Vector Unit Overlap
One limitation of the PowerPC 7400, the
first generation of G4 processors that
entered the market, is that only one of
the vector complex integer unit (VCIU),
vector simple integer unit (VSIU) and
vector floating point unit (VFPU) can
accept a new instruction in any given
processor cycle. The vector permute unit
(VPU) is independent however. This
means that if you mix instructions
intended for these subunits in the same

Practical Altivec Strategies, page 7

instruction stream, you won't get quite
the amount of parallelism you were
hoping for. Most functions do not
contain both VFPU and VCIU/VSIU
code in the same function. However,
functions that do integer operations will
frequently mix VCIU and VSIU
operations. This limitation will prevent
instructions from being issued to the
VCIU and VSIU in the same cycle. This
limitation was removed on the latest
generation of G4, the PowerPC 7450.

Branching
Branching can be a bit of a problem in
AltiVec and elsewhere. An example of a
branch might be an if statement:

if(test)
value++;

Often, when the processor encounters a
branch, it may not have enough time to
finish evaluating the test before it is time
to decide whether to branch or not. As a
result, all the processor can do is guess.
If it guesses incorrectly, it has to
dismantle all operations currently in
progress, and restart in the correct place.
This is costly.

There are predictable rules about which
way the processor will guess. If the
branch jumps forward (the else part of
an if-else statement) then it is assumed
not to be taken. If the branch jumps
backward (a loop) then it is assumed to
be taken — loops tend to loop more
than once. So if you have to add an
if…else statement to your code, it is best
to place the rarely used case after the
else, and the most common case after
the if.

If … else ... statements usually concern
only a single data stream. (Exception:
the vec_all_* and vec_any_*
instructions.) This makes it impossible
to write code that can be pipelined or

that operates in parallel. As a result,
code with a lot of branching in it will
operate many times more slowly in the
vector unit than branchless code that
does the same thing.

The best thing to do about this problem
is to find a way to get rid of the
branches and write algorithms that
work for all possible inputs without
special cases. Even if this means that
the amount of code triples, it may still
be faster.

This is the scalar version of some code
that converts a audio mixing buffer (an
array of 32 bit signed ints) into an array
of 16 bit signed ints with clipping. The
simple version of the function might
look like this:

//Clip an array of 32 bit ints down to an
array of 16 bit ints.
void Convert(SInt32 *src, Sint16 *dest,
UInt32 sampleCount)
{
SInt32 value;
while(sampleCount--)
{
value = src[0];

if(value > SHRT_MAX)
value = SHRT_MAX;

else
if(value < SHRT_MIN)
value = SHRT_MIN;

dest[0] = value;
src++;
dest++;

}
}

There is a fine tradeoff between
branching and branchless algorithms.
The branchless variety are often longer,
which can make for slower code. On the
other hand, branches mispredict,
causing the CPU to backtrack.

Real world solutions require testing. In
this case, several ways of doing the clip
were considered for the integer unit.
The simple version looks like this:

Practical Altivec Strategies, page 8

#define Clip16(value) \
if(value > SHRT_MAX) \
value = SHRT_MAX; \

else \
if(value < SHRT_MIN) \
value = SHRT_MIN

A branchless version looks like this:

#define Clip16_2(value) \
sign = value >> 31; \
value ^= sign; \
value = (value | ((32767-value) \

>> 31)) & 32767; \
value ^= sign

A version with limited branching and a
very short execution path looks like this:

#define Clip16_3(value) \
if(value != SInt16(value)) \
{ \
value >>= 31; \
value ^= 0x7FFF; \

}

(Some of these fail to give correct results
in a very limited set of circumstances for
values around MAX_LONG and
MIN_LONG, but this is not a problem
for a audio mixing buffer.)

In the end, the version without
branching (Clip16_2) proved to be 4%
faster in worst case scenarios in which
most of the data needed to be clipped.
However in best case scenarios in which
less than half needed to be clipped, the
short limited branching version
(Clip16_3) was up to 50% faster. Which
version to choose is a bit difficult to
decide. While it is often said that it is
best to optimize for the worst case, 4% is
not a very large difference. In addition,
Clip16_3 has many fewer instructions
and so should execute much faster when
the instructions themselves are not in
the cache. Since this particular function
is only called once every 11 milliseconds
at the most, uncached performance
must be considered. When the first pass
through the benchmark loop was
examined (when the instructions were
not in the cache), the shorter version
was found to be 20-30% faster.

For test code with source, please see
[Ollmann01].

Software Architecture Principles
A number of general principles can be
derived from these basic factors
impacting code performance:

Economies of Scale
The net effect of Alignment and
Pipelining is that AltiVec is rarely
running at top efficiency unless it can
work on 64 bytes or more of data at a
time. The reason for this as follows:

With unaligned data, handling the edge
cases is slow. You may have to load in
some surrounding data from the
destination buffer, merge it with your
results and then save it back again. So
these parts of your AltiVec code may be
slower than the scalar version of the
same thing. You make it back in the
middle regions of your data set where
alignment costs drop off to nearly zero.
In order to be at least 50% not edge case,
you need to have four vectors (64 bytes)
worth of data. The exception to this rule
is when you can pass data into your
function by value, rather than memory
addresses that have to be loaded.

However, passing vectors in via register
or correctly aligning your data does not
in itself keep the vector unit happy and
well fed. In order to get proper
pipelining, it is often necessary to have
four independent data streams moving
through your function simultaneously.
The Vector Floating Point Unit (VFPU)
has at least a four stage execution
pipeline and the Vector Complex
Integer Unit (VCIU) has a three stage
execution pipeline (four on the 7450).
Thus for optimal speed you need to be
able to be ready to dispatch four VFPU
instructions or three/four VCIU
instructions at any given point that do

Practical Altivec Strategies, page 9

not have any dependencies on one
another. Better yet, for the 7450 use
both the VFPU and VCIU at the same
time. Having four vector instructions in
flight at once means you need to process
four (or more) independent vectors at a
time through your function. Here again,
we need 64 bytes worth of data to get
good use of the vector unit. If you write
functions that use less data at a time,
you should consider declaring them
inline in the hopes that they may be able
to schedule themselves among the
caller’s other instructions.

High Throughput vs. Low–Latency
Most programmers think in terms of
low latency algorithms — “How can I
apply this function to that piece of data
in the shortest period of time?” A
somewhat different question you could
be asking is “How can I apply this
function to my entire data set in the
shortest period of time?” The latter
approach takes into account the effect of
pipelining, parallelization, storage and
other factors into the overall design
process. This is often described as the
difference between low latency and high
throughput algorithms. Such algorithms
may only be efficient with large
amounts of data, but if you have lare
amounts of data.

Because Altivec has comparatively long
pipelines, operates on data in parallel,
and is often limited by memory
bandwidth, high throughput designs
are usually much more successful in the
vector unit than low latency designs.
For example, using the vector unit to
multiply a single floating point quantity
by another takes four or five cycles.
Using the vector unit to multiply four
floating point quantities by four others
also takes four or five cycles. Using the
vector unit to multiply sixteen floating
point quantities by sixteen others takes

seven or eight cycles. Clearly there is a
lot of advantage to handling a lot of
data at once!

Suppose you design your functions so
that this fact is obvious from the
function interface. For example:

typedef vector float VF;
//rN = vNa * vNb
inline void Multiply(
VF v1a, VF v2a, VF v3a, VF v4a,
VF v1b, VF v2b, VF v3b, VF v4b,
VF *r1, VF *r2, VF *r3, VF *r4)

{
vector float neg_zero;
neg_zero = vec_neg_zero();
*r1 = vec_madd(v1a, v1b, neg_zero);
*r2 = vec_madd(v2a, v2b, neg_zero);
*r3 = vec_madd(v3a, v3b, neg_zero);
*r4 = vec_madd(v4a, v4b, neg_zero);

}

//Generate a vector full of –0.0.
inline vector float vec_neg_zero(void)
{
vector unsigned result;
result = vec_splat_u32(-1);
return (vector float)

vec_sl(result, result);
}

Anyone calling this function would
immediately realize that it is a waste of
time to just multiply two floating point
vectors together with this function, and
that he would be much better off doing
it four at a time. This sort of design
motif helps reinforce high throughput
programming practices. If this seems
foreign or counterproductive to you, it
may be because you are valuing too
heavily the advantages of being able to
work quickly on a single piece of data.
Fundamentally, Altivec is all about
working on lots of data. High
throughput function designs such as
these make the cost of low latency
algorithms clear.

Note that it is difficult to return more
than one vector from a function in C.
Some care must be taken when crafting
functions like this so that the return
values are passed in register rather than
by the stack, which would kill
performance. Using pointers or

Practical Altivec Strategies, page 10

references for return values in an inline
function may allow the compiler to
optimize away the load store overhead.
However, you may need to disassemble
the output to make sure the compiler
does the right thing until you are
satisfied with its behavior.

Another option is to use a C
preprocessor macro. However the
macros are notorious for causing
obscure bugs. They also lack rigorous
typechecking.

Memory Speed!
The biggest speed impediment to
PowerPC performance today is memory
overhead. This is increasingly true as
processors move to higher and higher
bus speed ratios between processor
clock speed and motherboard clock
speed. Whereas a 68k Macintosh might
have had its processor running at the
same clock speed as its motherboard,
modern PowerPC machines might be
running four, five, six or even seven
times as fast as their memory
subsystems. What this means is when
there is a cache miss, you may have to
wait for tens or hundreds of CPU cycles
for the memory systems to catch up to
you. With classical code writing styles,
roughly every third instruction in a
program is a memory operation.
[Diefendorff01]

The thing to know about the G4 is that
the L2 (and L3) caches serve as a victim
caches on the G4 — data only comes to
be in the L2 or L3 caches after being cast
out of the L1 (or L2) cache. Data has to
be moved to the L1 cache before it can
be loaded into register. This means that
every piece of data that you use has to
be loaded in the slow way from RAM to
the L1 cache at some point, and if you
only touch a piece of data once or once
in a while, it will almost always be

loaded in the slow way. Furthermore,
those data that are either too large to fit
in the caches (e.g pixel buffers) or data
not in the caches because it is accessed
infrequently (e.g. sound data) tend to
also be exactly the data for which
Altivec has the most impact, so the
problem of uncached data must be
taken seriously.

Loading a cacheline from RAM to L1
takes about 35-40 cycles on my G4/400,
provided that the page is in the TLB.
Loading a 32 byte cacheline from L2
takes from 10-15 cycles. If all you do
with the data that you paid so dearly to
get is add two vectors together (as little
as 1 cycle) and store the result, then
during the other 39 cycles, your code
will do nothing. If the prospect of
having your code running at 1/40th of its
expected speed bothers you, then this
section is for you.

Because the speed bottlenecks in the
processor have changed so much over
the last few years, it stands to reason
that some aspects of code optimization
have to change too. I am trying to
introduce this idea gradually because I
know that a lot of very experienced
programmers are going to be very
resistant to the idea that some of their
favorite code optimization techniques
rely too heavily on memory, perhaps
slowing down the code rather than
speeding it up. If you are one of these
programmers, I urge you to keep
reading. Some optimization paradigms
presented here may be new to you. I
think you will find them useful:

Do More with the Data
If the speed of your function is limited
by the speed of memory, you have
approximately 40 cycles of time to work
on each 32 byte chunk of uncached data.
(This is the time it takes to load in each

Practical Altivec Strategies, page 11

cacheline.) If you don’t use all of that
time, then the remaining amount is
wasted. You will likely spend the rest of
those 35-40 cycles stalled waiting for
more data to appear. This is easily
verified by profiling a memory intensive
function using Sim_G4. Chances are
you will see some very long stalls in
lvx.

It is a common programmer instinct to
break down complex problems into
simple ones. Resist that urge in AltiVec
code that touches lots of memory. 35-40
cycles is a very long time! You will have
to work quite hard to use all of it
processing only 32 bytes of data.
Remember that these extra cycles have
already been spent for you, so if you
don’t use them, they are gone. If you
can replace any work anywhere else in
your program with code here, you will
gain that much more speed because
additional work done here is “free”. You
save a load/store pair and perhaps an
additional cache miss by doing the work
now rather than later.

Surprisingly, doing more work on a set
of data, even if it is totally gratuitous
work, can speed up the function. What?!
This is a rather peculiar side effect of the
extra penalty you incur when you stall.
It is common wisdom that the
performance of a function looks
something like shown in Figure 3a:

More work per Load

E
xe

cu
tio

n
T

im
e

Exe
cu

tio
n

Rat
e

Lim
ite

d

Memory
Rate

Limited

Figure 3a. The execution time of a function
is dependent on how much work it has to do,
unless some other factor (e.g. memory speed)

becomes the bottleneck.

Actually, the line shape is more like
Figure 3b. Being memory bound causes
stalls, and stalls cause the eight or
sixteen item instruction completion
queue to quickly become full, stopping
the whole instruction pipeline. As a
result, loads and data processing start to
happen serially relative to each other,
rather than in parallel, causing a
slowdown with more instructions in
what should be a flat area.

More work per Load

E
xe

cu
tio

n
T

im
e

Exe
cu

tio
n

Rat
e

Lim
ite

d

Memory
Rate

Limited

Figure 3b. Instruction completion queue

stalls make the problem worse.

However, when you add more work per
datum, such that the memory speed is
no longer the dominant rate limiting

Practical Altivec Strategies, page 12

factor, memory stalls disappear.
Provided that cache hints are used, this
means that the memory unit and the rest
of the processor can operate in parallel
rather than in series. The function runs
faster in this case, because the time
required to load the data is removed
from the execution time of the function.
This leads to the performance curve as
shown in Figure 3b, which has
maximum performance at the point
where data load latencies and
instruction completion latencies are
roughly the same. Notice the curious
result that over some regions of the function
you actually run faster with increasing
amounts of work!

Just in case there are a few doubters out
there who refuse to believe that a
function that does extra work can run
faster than one that does not, I have
written a program to prove it. This
program loads data, does set amount of
work on it, stores it and then loads the
next data. Figure 4 shows the execution
time of the function plotted against the
amount of work done. Multiple data
sets were acquired for various sizes of
cache prefetch streams to make sure that
data prefetching didn't bias the results.

The actual speed difference between the
case at 35 add ops (1.5 MTicks) and the
slower case at 25 add-ops (1.8 MTicks)
that does less work represents about a
20% speed difference.

The red line represents what happens if
you do not use cache instructions.
Because there is no prefetch, loads and
data processing have to happen serially.
Because we can’t do much in parallel,
memory overehead and data processing
times are additive and there is no
flattening off effect.

The blue and black lines represent the
best and worst case when using

vec_dst() to prefetch data in blocks
sized between 32 and 512 bytes. (I ran 16
such cases. They all fall between these
two lines.) In all such cases, the function
is moving at its fastest when 35 cycles of
processing time is devoted to the data,
roughly the same amount of time it
takes to load in the data. It is
particularly reassuring that the part of
the curve that corresponds to CPU rate
limited code can be extrapolated to run
through nearly through zero. That
shows that memory overhead for high
workload functions using vec_dst() is
near zero. We also note that the version
that does not use vec_dst()(red) and
the versions that do (black and blue)
have very nearly the same slope. Thus,
it appears, the complexity of the
function is the prime rate determining
factor with highly complex functions.
This is exactly what you want!

Execution Time vs. Function
Complexity

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0 10 20 30 40 50 60 70 80 90 100

Function Complexity
(Cycles of work done per cacheline)

Function Rate Maximum

No Cache Hints

With Cache Hints:
(Best / Worst case)

Figure 4. Execution time cycles for a function
that does a set amount of work on each piece of
data to process a large uncached buffer of data.
With streaming cache instructions, optimal rates

Practical Altivec Strategies, page 13

are found when the time to complete the work
matches the time to load the next data.

How does this finding shed light on
your code? Unless they are very
complicated functions, chances are most
or all of your AltiVec functions do much
less than 35 cycles worth of work per
cacheline data. 35 cycles is a very long
time. 35 cycles is enough time to
calculate the dot product of two vectors
with 112 elements in each! Since we can
process nearly a kilobyte of memory in
the time it takes to load 32 bytes, it
should be apparent that it really
requires a very complex function to be
slower than RAM. Thus, the more real
work you can do in your function per
load, the better off you will be!

Unfortunately, the exact position of the
“sweet spot” where the function has the
greatest throughput likely varies from
machine to machine. This is because
memory load times are dependent on
how the memory systems are set up,
particularly the bus speed ratio between
motherboard and CPU, the nature of the
RAM used, and other factors. Therefore,
it is probably not a good idea to just add
a bunch of noops to your function to
speed it up.

You can still take advantage of this
effect however, provided you can find
some real work to do to fill the extra
time. As long as you are to the right of
the sweet spot on the graph, your
function is running at near 100%
efficiency with near zero memory
overhead. You really can’t ask for
anything more! It should also be noted
that code written in this fashion will
work equally well no matter where the
data is (except for page misses), making
it a great example of a place to use the
transient cache instructions and LRU
loads and stores. Even if you can't
manage to do that much work on your

data, you can still take advantage of the
fact that any extra work that you can do
in between one load and the next can be
done for free.

I'm still skeptical. Why dont I just do what I
always did and rely on the caches to speed
memory access?

Sure the caches are fast, but they are
only so big and the data will only be in
the cache the second time you use it
within a short period of time. You will
be paying the price of a slow trip to
RAM at some point to get that data no
matter what you do. Why not do all the
work on the data the first time you load
it into register, and then flush it back out
of the cache immediately making use of
the transient/LRU instructions so that it
doesn’t displace frequently needed
stuff. Save the caches for things that
really need it. You dont need the L2/L3
caches if you do enough work on your
data while you have it. You are actually
better off if that data stays in RAM in
such cases.

No really. I can fit all of my data in the L2
cache!

Great! However, loading data from the
L2 cache into the L1 still takes 10-15
cycles — only 2.5 to 4 times faster than
RAM. The same strategies still apply.
The more work you do on your data at
once, the more likely you are to be able
to spend your time doing work instead
of stalling waiting for memory. In
addition, keep in mind that you have to
share the L2 and L3 caches with cached
instructions in addition to data. Also
you always run the risk of an interrupt
firing or a thread context switch
occurring, tossing your data out of the
cache. No data in the L2/L3 caches are
safe.

Practical Altivec Strategies, page 14

The Fastest Algorithms Are Often
the Ones That Use Less Data
If based on the above evidence you
accept that memory overhead is the rate
limiting factor for your AltiVec code
most of the time, then it almost goes
without saying that the fastest
algorithms are the ones that use less
data. However, did you consider the
implications of this statement? What
your mother told you about writing fast
code is quite possibly no longer true!
For example…

Lookup Tables Are Not Fast
Lookup tables, especially large ones, are
not fast for a number of reasons. Most
obviously, if you incur one cache miss
accessing your lookup table, you can
lose 40-250 cycles waiting for the data to
load. That is a HUGE amount of time!
Think of what you could have done
with it.

Consider also that if you are using a
lookup table, you are hopefully using it
to do lookups on a lot of data. (A rarely
used lookup table is almost guaranteed
to not be in the cache, meaning abysmal
performance because of lots of cache
misses.) Functions that use a lot of data
have high memory throughput needs.
This means that you are probably
already memory rate limited just
loading in all the data that you want to
use to index the looup table. In such
cases, your lookup table only manages
to further tax the memory systems.
Recall that the execution time data
shown above showed that memory
bound code has about 35 cycles of dead
time to fill with calculations. You could
use that time to do the brute force
calculation instead of the lookup and
avoid further taxing the memory
systems reading data from your table.

It is also hard to look up data in parallel
in the vector unit. Often you have to do
it one item at a time. Why not do a brute
force calculation for 4, 8 or 16 items at a
time?

Finally, every time you load part of the
lookup table in, you displace something
else from the cache. Whatever that is,
chances are it will have to be loaded
back in later. Doing a brute force
calculation will preserve that data in
place meaning that code elsewhere in
your application will run more quickly.
Brute force calculations can be fast, free,
and more accurate. Your data caches
will thank you.

The only lookup tables likely to do you
any good relative to brute force methods
are the ones that save a LOT of
calculation (e.g. CRC-32), and those
lookup tables that are so small you can
preload them into register or a very
small part of the L1 cache and then
process a lot of data. (These approaches
are not useful for low latency function
designs because they add a significant
degree of setup overhead.)

You can do a nice small fast register
based lookup table with vec_perm(),
but this approach seems to limit you to
tables of perhaps 32-64 entries and extra
work is required if the table cells are not
8 bits in size.

If you are still doubtful lookup tables
are slow, I suggest you run some
experiments. It would be helpful to do it
on a bottleneck function in place in the
app so that the full effect of displacing
other needed data from the caches
impacts the performance of your app
and is measurable.

Practical Altivec Strategies, page 15

Larger Functions Are Slower
Data is not the only thing that needs to
be loaded into the cache before it can be
used. Instructions need to be loaded too.
The instructions are loaded eight at a
time, and the speed penalty for each
such load is once again usually around
35-40 cycles. Thus, each uncached
instruction that your function has to
load has an average memory overhead
of around four to five cycles. Since most
instructions only take one cycle to
execute and few take more than five,
more often than not, the fastest
uncached code is the shortest code.
Thus, for rarely used code paths, there
is a very good reason NOT to attempt
to optimize them, since optimized code
is often longer. When executing rarely
used code, there is a lot of extra time
spent standing around, which could be
used for other things. If you habitually
code funny math “shortcuts” using
many short instructions to avoid single
multi-cycle instructions like integer
multiplication or division, you may be
better off not doing so. Likewise, using
large switch statements just to avoid a
few cycles worth of work are likely to be
counterproductive. Unoptimized, your
code will be easier to read and shorter.
In addition, keeping your code small
means that it displaces less other code
from the instruction caches.

One clear exception to the rule is any
code in a loop. Loops get very good
code reuse and have great temporal
locality. The first time you read through
a loop, it will execute as uncached code
(if it is uncached) but after that it will be
running at full speed. So if you are
going to make gratuitous optimizations
to rarely executed code, save it for
loops.

Be Careful of Constants and Globals
Most programmers new to AltiVec
make copious use of variables that have
to be loaded in from memory each time
the function is called. These may be
globals or static constants defined like
this:

vector float c = (vector float) (23.0);

These can be quite slow.

Perhaps you have a global used in a
tight loop. Normally one might think
that the compiler will do the smart thing
and load the global into register and
then use the copy in the loop, but it
can’t. The reason is that some other
thread or interrupt level task might
change the global, and so it has to be
loaded in every time. Always explicitly
load in globals, constants and other
items that have to be loaded from
memory into a variable local to the
function, and use the local variable in
your function. This will enable the
compiler to avoid any excess memory
overhead associated with redundantly
loading in data over and over again.

Almost All AltiVec Code Is A Blitter
When it comes right down to it, most
functions that can be accelerated for
AltiVec move large quantities of data
from A to B, possibly changing it along
the way. Since the time it takes to load
and store the data is usually the rate-
limiting factor for these operations, such
functions are to most standards simply
blitters — functions for rapidly copying
data from place to place. For that reason
a lot of them look like blitters. They
typically have this general high-
throughput form:

/*src and dest are 16 byte aligned.
Sizeinbytes is a multiple of 16.*/

void DoStuff(vector float *src,
vector float *dest,
int sizeinbytes)

{

Practical Altivec Strategies, page 16

int count, loopcount;
vector float v1, v2, v3, v4;
/*Initiate a prefetch right away so
that while we wait for the
instructions to load on uncached
code, the data can be loading too. */

vec_dst(src, 0x10010100, 0);

/*Now do any one time setup that is
required before the loop */

count = sizeinbytes / sizeof(v1);
loopcount = count / 4;

/*Enter the loop */
while(loopcount--)
{
/*Prefetch the data in multiple
overlapping segments — 256 bytes
here. The optimal size will vary */

vec_dst(src, 0x10010100, 0);

/*The loop is unrolled to bite off 64
bytes at a time for proper
pipelining in our work segment*/

v1 = src[0];
v2 = src[1];
v3 = src[2];
v4 = src[3];
src += 4;

/* Insert work on the data here */
...

/*write the result back out */
dest[0] = v1;
dest[1] = v2;
dest[2] = v3;
dest[3] = v4;
dest += 4;

}

/*Deal with any stragglers */
if(count & 2)
{
v1 = src[0];
v2 = src[1];
src += 2;

/* Insert work on v1 and v2 here */
...

/*write the result back out */
dest[0] = v1;
dest[1] = v2;
dest += 2;

}

/*Deal with any remaining stragglers */
if(count & 1)
{
v1 = src[0];

/* Insert work on just v1 here */
...

/*write the result back out */
dest[0] = v1;

}

/*Dont forget to stop the prefetch! */
vec_dss(0);

}

Small Altivec functions may also appear
in a low latency form that passes data in
and out by register. If possible these
should be declared inline, since
ultimately it is likely they will be called
from functions like the high-throughput
example above. Inlining such Altivec
functions saves a lot of stack overhead
for setting up the VRSAVE special
purpose register, and allows the
compiler to pipeline your code against
other tasks ongoing in the caller.

//Copy the alpha, red, green and blue
channels from four 32 bit pixels into
four vector floats.
inline void Pixel32ToFloat(
vector unsigned char pixels,
vector float &alpha,
vector float &red,
vector float &green
vector float &blue)

{

}

Data Organization
It should be clear that in order to take
advantage of this sort of high
throughput code architecture, your data
should be all in one place and accessible
as an array. If you are jumping around
in memory, especially if you can't even
load data as whole vectors, performance
will be poor. To make matters worse,
the translation lookaside buffer (TLB,
part of the unit that maps memory
addresses to hardware locations) is up
to 256 times less likely to cause a 150+
cycle stall with linear memory reads
than for random memory reads.

It should be noted that the scalar unit
can benefit from keeping data together
as well, so even if you are not sure you
will use AltiVec for a function, it doesn’t
hurt to plan ahead. In some cases, large
arrays present a problem for object
oriented code. In these cases you have to
evaluate your opportunities for
parallelism within OO code. Often there

Practical Altivec Strategies, page 17

is none so there is not much loss really.
Large segments of OO code only need to
operate on a single data thread, so
wouldn’t benefit from SIMD much
anyway. Only when you can operate on
multiple data in parallel is Altivec worth
the effort.

Alignment
Because data is aligned in software not
hardware, there is a pronounced
disadvantage to using unaligned data. If
possible, attempt to ensure that every
vector is 16 byte aligned at least. Even if
you are not sure you are going to use
AltiVec, it is often a good idea to align
your data anyway. It is harder to retrofit
the changes into your application later,
and good alignment almost never hurts
scalar code.

Uniform vs. Non-uniform Vectors
Uniform vectors are those vectors
whose elements all represent the same
kind of quantity. An example would be
a vector full of x coordinates for a data
set on a graph. A non-uniform vector is
one that holds different types of data in
the same vector. An example might be a
vector that holds {x, y, z, w} for a 3D
graph. A vector full of 32 bit pixels is
simultaneously uniform and non-
uniform. If the pixels are treated as 32
bit pixels, you simply have four pixels
there — a uniform vector. If you treat it
as 4 sets of 4 different color channels,
then you have 4 alpha channels, 4 red
channels, 4 green channels and 4 blue
channels all mixed up in the same
vector — non-uniform.

Avoid non-uniform vectors!

If the elements in your vector represent
different types of quantities, then
typically you will find your function
growing very complicated with a lot of
permute operations, data shuffling on

the stack, redundant calculations and
lost opportunity for parallelism.
Permute operations are inefficient
because to a certain degree they can be
said to do no real work. All they do is
swap data around. You may only get a
factor of two or three speed gain with
your data organized this way, whereas a
uniform vector based approach is likely
to get the full factor of 4, 8 or 16.

Functions that use uniform vectors are
typically easier to read and write
because they look just like the scalar
code. They usually take better
advantage of pipelining within the
processor. They rarely require the use of
the permute unit at all. The constants
that they use tend to be simpler and
more easily generated without resorting
to loading them from global storage.
You almost never do redundant work.

Using uniform vectors in your code
often means taking a hammer to your
scalar code base. Chances are that for
reasons unclear to man or compiler, you
previously organized your data into
nice neat structs with all sorts of
different kinds of data interleaved with
each other. C++ objects are almost
always this way. Even some classical
procedural constructs such as the lowly
pixel have this architecture. It's a
problem. Look for new ways to flatten
out the data so that it is interleaved on
the level of a whole vector or whole
cacheline.

Unfortunately, it is quite common to
have to significantly reorganize
preexisting code and data to see large
speed gains from Altivec. This is a fact
that you will have to accept. The good
news is that rarely are the changes so
pervasive that they make the process
impossible or impractical. Do not expect
however that Altivec can always simply

Practical Altivec Strategies, page 18

be clipped in in place of scalar code
without advance planning.

Optimization - A practical Example
When adding AltiVec to a pre-existing
program, you find that you need to
vectorize preexisting functions. As an
example, this is a function that
calculates a third order polynomial of x:

// result = c0 + c1 * x + c2 * x
2 + c3 * x

3
float PolyNomial3(float c0, float c1,

float c2, float c3, float x)
{
 return c0 + c1 * x + c2 * x * x

+ c3 * x * x * x;
}

Before we continue, I should mention
that I have made no attempt to optimize
the scalar version above beyond what
the compiler already does. At the very
least, this could be optimized using
“Horner's scheme”:

// result = c0 + c1 * x + c2 * x
2 + c3 * x

3
but faster

float PolyNomial3(float c0, float c1,
 float c2, float c3, float x)
{
 return c0 + x * (c1 + x *

(c2 + c3 * x));
}

…which is faster in principle because it
compiles to three fmadds rather than
three fmuls and three fmadds.

I have failed to make this optimization
in both the scalar code and the vector
code that you will see in a moment. It
would benefit both roughly equally.
One might guess based on instruction
count alone that we would nearly
double performance this way. (I
received a letter claiming that it would.)
I will return to the subject of the Horner
scheme optimization at the end of the
optimization process to see how much a
simple code optimization like that really
helps. In the mean time, take this as an
early lesson to make sure that you are
using the right algorithm before

investing heavily into AltiVec. It's no
fun to go back and rewrite everything.

The Simple Approach
Usually the first approach taken by most
programmers when rewriting scalar
code for AltiVec is to attempt to make
the new AltiVec function fit into the
mold of the old scalar version, using the
same name and argument types and the
same return value. This makes sense.
The calling code won’t have to change.
The data can stay organized the same
way. So, let’s do that for this function to
see how well that works out:

//We will use this union type to move
data from the FPU to vector unit
typedef union
{
 vector float vec;
 float elements[4];
}Float4;

//Our first attempt to vectorize
PolyNomial3.
float PolyNomial3(float c0, float c1,
float c2, float c3, float x)
{
Float4 constants;
Float4 the_Xs;
float returnVal;
vector float result;

//Load some values into the vectors
constants.elements[0] = c0;
constants.elements[1] = c1;
constants.elements[2] = c2;
constants.elements[3] = c3;
the_Xs.elements[0] = 1.0;
the_Xs.elements[1] = x;
the_Xs.elements[2] = x * x;
the_Xs.elements[3] = x * x * x;

//Now do constants • the_Xs (Dot
product)
result = vec_madd(constants.vec,

the_Xs.vec, ZERO);
result = vec_add(result, vec_sld(

result, result, 8));
result = vec_add(result, vec_sld(

result, result, 4));

/*All the elements of result now contain
the same value, our result. Write it to
returnVal so we can return it as a
floating point quantity */
vec_ste(&returnVal, 0, result);

return returnVal;

}

Ok, lets benchmark this function and see
how we did. Calling the floating point

Practical Altivec Strategies, page 19

version 10,000 times takes 16733 time
units. Calling our new vectorized
version 10,000 times takes 46215 time
units. Our AltiVec version is three
times slower! Obviously we have done
something wrong. But what could it be?

The problem with our approach is that
the interface of the function itself is
inherently scalar. This forces us to do so
much data organization to set up the
data for use by the vector unit that not
only is the AltiVec speed advantage lost,
we are actually three times slower than
the simple FPU code.

With a quick inspection, it should be
apparent that almost all of it is stack
overhead — getting variables arranged
where they need to be. Also, the
vec_add() lines are doing a lot of
redundant work, so even when we
finally reach the stage that we are
supposed to be operating efficiently in
the vector unit, we aren't. There is no
opportunity for pipelining here like
there is in the scalar code. Notice the
presence of non-uniform vectors.

The Vectorized Approach
The solution is usually to redesign the
function interface to be a vector
interface and go back and tweak the
caller a little. It isn't too hard, but it
makes a huge speed difference! Here is
a fully vectorized polynomial function:

// constants = { c0, c1, c2, c3 };
// x = four different x's that we
evaluate at the same time
vector float Polynomial3(

vector float constants,
vector float x)

{
vector float c0, c1, c2, c3, x2, x3;
vector float result;

//Expand out our constants
c0 = vec_splat(constants, 0);
c1 = vec_splat(constants, 1);
c2 = vec_splat(constants, 2);
c3 = vec_splat(constants, 3);

//calculate x2 and x3

x2 = vec_madd(x, x, ZERO);

x3 = vec_madd(x, x2, ZERO); and

//result = c0 + c1*x[4]
result = vec_madd(c1, x, c0);

//result += c2 * x
2[4]

result = vec_madd(c2, x2, result);

//return result + c3 * x
3[4];

return vec_madd(c3, x3, result);
}

How did this new version do? On my
machine, it evaluates 10,000 floats in
6410 time units. That is over twice as
fast as the scalar code and nearly seven
times faster than our first attempt at
vectorizing this function!

So, what is the difference? First of all,
we have completely gotten rid of all of
the load/store instructions ...in this
function, anyway. That was a huge
overhead. Also, in roughly the same
number of instructions or fewer as our
previous example, we are evaluating the
polynomial for four different X's at the
same time! Finally, the code itself is
straightforward, matching to a high
degree the standard FPU code, making
it much easier to read and debug.

Also, notice the difference between how
we handled the data in this version
compared to the last one. In the last
version, each element in the X vector
stood for something different: {1.0, x, x2,
x3} — a non-uniform vector. In this
version, each element in every vector
stands for the same thing as the other
elements in that vector — uniform
vectors. (We ignore the non-uniform
constants vector for the moment. Notice
it is the only vector with lots of
permutes associated with it.) Working
with uniform vectors means that all the
elements of the vector can be handled in
the same way, which is exactly what we
want for a SIMD architecture. In our
earlier approach, because our vectors
did not contain similar elements, we
ended up spending a lot of time shifting

Practical Altivec Strategies, page 20

elements around maneuver them into
the right place. Calculating in parallel
works fastest when the 4, 8 or 16
streams are always in the right place
and independent of each other.

However, don’t mistake these results to
indicate there is a hard and fast rule
about how to handle data. There are a
number of times when you don’t have
to use uniform vectors. For some tasks
(e.g. inverting a matrix), where there is
quite a bit of symmetry built into the
operation, you can get reasonably good
performance without having to resort to
something like inverting four matrices
at a time in parallel.

Adding Pipelining
OK, how do we improve this further?
Well, we still need to work on
scheduling. The vec_madd() function
takes either 4 or 5 cycles to execute. We
have three of them in a row, each of
which depends on the result of the last
one. For this reason, the three take 12-15
cycles to finish, instead of 6-7. The
pipeline is hardly full. Thus, we are
only completing one vec_madd every 4
to 5 cycles, when we could be finishing
one vec_madd per cycle.

We can fill the VFPU pipeline by
evaluating four vectors in parallel. This
is easily done by “unrolling the loop”, a
common trick for writing blitters, an
example of which appears in the section
above entitled "Almost All AltiVec Code Is
A Blitter". Once again, we have had to
go back and edit the caller, this time to
make it pass us a pointer to all of the
data, instead of small bits of it at a time.

Another approach I could have taken
instead is to declare the function inline
and hope that the compiler was able to
schedule the instructions in with
whatever else the caller is doing. This
can be particularly beneficial because

AltiVec stack overhead tends to be
large. When an inline function is called
within the confines of a loop, the
compiler may automatically unroll the
loop allowing the function to be
interleaved with itself many times over,
achieving the same effect that I worked
hard to produce by hand.

Unfortunately, the compiler can be
picky about what to inline, so it doesn’t
always work. The function generally
must be small. In addition, for the
purposes of a paper, I wanted to show
the explicit unrolling of the loop so you
get to see what it looks like. Loop
unrolling makes for very large code, so
please forgive this next code segment.

// A fully vectorized version optimized
for better scheduling and cache usage

// constants = { c0, c1, c2, c3 };
// x = four different x's that we

evaluate at the same time

void Polynomial3(vector float constants,
vector float *input,
vector float *output,
UInt32 vectorCount)

{
//Set up all the constants
vector float k0, k1, k2, k3, zero;
vector float a, b, c, d;
vector float a2,b2, c2,d2;
vector float a3,b3, c3,d3;
vector float atemp,btemp,ctemp,dtemp;
UInt32 loopCount;

k0 = vec_splat(constants, 0);
k1 = vec_splat(constants, 1);
k2 = vec_splat(constants, 2);
k3 = vec_splat(constants, 3);
zero = (vector float) vec_splat_u8(0);

//Manually unroll the loop four times.
This allows for better scheduling.
loopCount = vectorCount / 4;
while(loopCount--)
{
//Load 64 bytes of data
a = vec_ld(0, input);
b = vec_ld(1 * sizeof(b), input);
c = vec_ld(2 * sizeof(c), input);
d = vec_ld(3 * sizeof(d), input);
input += 4;

//Calculate x2 for each data set
a2 = vec_madd(a, a, zero);
b2 = vec_madd(b, b, zero);
c2 = vec_madd(c, c, zero);
d2 = vec_madd(d, d, zero);

Practical Altivec Strategies, page 21

//Calculate x3 for each data set
a3 = vec_madd(a, a2, zero);
b3 = vec_madd(b, b2, zero);
c3 = vec_madd(c, c2, zero);
d3 = vec_madd(d, d2, zero);

//Calculate c0 + c1 * x for each
atemp = vec_madd(k1, a, k0);
btemp = vec_madd(k1, b, k0);
ctemp = vec_madd(k1, c, k0);
dtemp = vec_madd(k1, d, k0);

//add c2 * x
2 for each

atemp = vec_madd(k2, a2, atemp);
btemp = vec_madd(k2, b2, btemp);
ctemp = vec_madd(k2, c2, ctemp);
dtemp = vec_madd(k2, d2, dtemp);

//add c3 * x
3 for each

atemp = vec_madd(k3, a3, atemp);
btemp = vec_madd(k3, b3, btemp);
ctemp = vec_madd(k3, c3, ctemp);
dtemp = vec_madd(k3, d3, dtemp);

//store the result
vec_st(atemp, 0, output);
vec_st(btemp, 16, output);
vec_st(ctemp, 32, output);
vec_st(dtemp, 48, output);
output += 4;

}

//At this point we may have 0, 1, 2 or
3 vectors left to process

//If 2 or 3, process two of them now
if(vectorCount & 2)
{
a = vec_ld(0, input);
b = vec_ld(1 * sizeof(b), input);

input += 2;

a2 = vec_madd(a, a, zero);
b2 = vec_madd(b, b, zero);
a3 = vec_madd(a, a2, zero);
b3 = vec_madd(b, b2, zero);

atemp = vec_madd(k1, a, k0);
btemp = vec_madd(k1, b, k0);
atemp = vec_madd(k2, a2, atemp);
btemp = vec_madd(k2, b2, btemp);
atemp = vec_madd(k3, a3, atemp);
btemp = vec_madd(k3, b3, btemp);

vec_st(atemp, 0, output);
vec_st(btemp, 16, output);
output += 2;

}

//If we have one vector left, process
it now
if(vectorCount & 2)
{
a = vec_ld(0, input);
a2 = vec_madd(a, a, zero);
a3 = vec_madd(a, a2, zero);
atemp = vec_madd(k1, a, k0);
atemp = vec_madd(k2, a2, atemp);
atemp = vec_madd(k3, a3, atemp);
vec_st(atemp, 0, output);

}
}

How well does evaluating four vectors
in parallel enhance performance? We
can now evaluate 10,000 polynomials in
2400 time units! That is over seven times
as fast as the scalar code.

2136:addi | 7116 |IIIIDFFFFFFFR.. | 7128
2137:addi | 7116 |IIIIIDFFFFFFFR... | 7129
2138:lvx | 7118 |IIIIDEER................................. | 7167
2139:addi | 7119 |IIIIDFFFR................................. | 7167
2140:lvx | 7119 |IIIIIIIIDEEER................... | 7181
2141:addi | 7120 |IIIIIIIIDFFR................... | 7181
2142:vmaddfp | 7121 |IIIIIIIDDEEEEFFFFFFFFFFR.................. | 7182
2143:lvx | 7122 |IIIIIIIDDDEEER......... | 7191
2144:vmaddfp | 7123 |IIIDEEEEFFFFFFFFFFFFFFFFFFR......... | 7191
2145:lvx | 7124 | EEEER........IIDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE | 7205
2146:vmaddfp | 7128 | FFFFR............IIIDDDDDDDDDDDDDEEEEFFFFFFFFFFFFFFF | 7205
2147:addi | 7129 | FFFFFR............IIDFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF | 7206
2148:vmaddfp | 7129 | FFFFFR............IIIDEEEEFFFFFFFFFFFFFF | 7206
2149:vmaddfp | 7130 | FFFFFFR............IIIDEEEEFFFFFFFFFFFFF | 7207
2150:vmaddfp | 7169 | FFFFFFR...IIIIIIIIIIIIIIIIIIIIIIIDEEEEFFFF | 7207
2151:vmaddfp | 7169 | FFFFFFFR..IIIIIIIIIIIIIIIIIIIIIIIIDEEEEFFF | 7208
2152:vmaddfp | 7170 | IIIIIDEEEER..IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 7211
2153:vmaddfp | 7170 | IIIIIIDEEEER...IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII | 7212
2154:vmaddfp | 7183 | IIIIIIIDEEEER...IIIIIIIIIIIIIIIIII | 7213
2155:vmaddfp | 7184 | IIIIIIIIDEEEER...IIIIIIIIIIIIIIIII | 7214
2156:vmaddfp | 7193 | IIIIIIIIIDDEEEER..IIIIIIII | 7216
2157:vmaddfp | 7194 | IIIIIIIIIIIDEEEER..IIIIIII | 7217
2158:vmaddfp | 7207 |IIIIIIDEEEER.. | 7218
2159:vmaddfp | 7208 |IIIIIIDEEEER... | 7219
2160:stvx | 7209 |IIIIIDEEEEER.. | 7220
2161:vmaddfp | 7210 |IIIIIDEEEER.. | 7220
2162:vmaddfp | 7211 |IIIIIDDEEEER.. | 7222
2163:vmaddfp | 7213 |IIIIIDEEEER... | 7223
2164:stvx | 7214 |IIIIDEEEEER.. | 7224
2165:vmaddfp | 7215 |IIIIDDEEEER... | 7225
2166:stvx | 7215 |IIIIDEEEEEER.. | 7226
2167:vmaddfp | 7216 |IIIIIDDDDDEEEER.. | 7230
2168:stvx | 7217 |IIIIDDDEEEEEEER... | 7231
2169:addi | 7219 |IIIDFFFFFFFFR... | 7231
2170:bc+ | 7219 |IIIIFFFFFFFFFR.. | 7232

Figure 5. A Sim_G4 trace of the execution of one particular loop iteration from our vectorized
pipelined function. Large stalls are evident on lvx, which cause the rest of the code to stall.

Practical Altivec Strategies, page 22

Optimizing Cache Usage
Are we done yet? Well no. To see why,
we will examime our routine with
Sim_G4. Let’s take a look at how well
we are executing so far. The above trace
(Figure 5) shows the actual amount of
time each instruction takes inside our
function’s main loop. (This is just a
snapshot of one particular pass through
the loop.) Each instruction is listed on
the left, then the clock at which the
instruction started, a graphical display
of what it was doing each tick, and
finally a number showing during which
clock the instruction finished:

Each instruction goes through four or
five stages. It is fetched in the
instruction buffer (I), Dispatched (D) to
the appropriate execution unit, executes
(E), and retires (R). If there is an
instruction ahead of it in the completion
buffer, then it will display (F) for a
number of ticks until the item ahead of
it in the completion buffer is retired.
Two instructions can be retired per cycle
on 7400/7410, three on 7450. The
meaning of each of these stages is
discussed in detail on Apple’s site
[Apple00].

The good news is that our pipelining
attempts largely worked. The
vec_madd() instructions are being
executed with a throughput of about
one per cycle. We seem to be able to
dispatch, execute and complete one or
two instructions per cycle, which is
pretty good. Well, for the most part...

Unfortunately, there is a big stall that
happens each time we call lvx (the asm
translation of vec_ld) near the
beginning of the loop. These seem to be
taking 40–80 cycles to complete! The
entire rest of our function only takes
about 35 cycles to complete, so we are

losing over half or two-thirds of our
speed due to this one problem. Really
big stalls on lvx usually happen as a
result of a cache miss — the memory
unit was asked to provide data and the
data was neither in the L1 or L2 cache,
so it had to take a long, slow trip to
main RAM for it.

The solution is to add in cache
instructions to help the CPU anticipate
what data it is going to need. In the
fourth example function, I’ve added a
call to vec_dstt() to make sure our
source buffer is loaded in time. This was
done in the same manner as described
above in the section entitled, "Almost
All Altivec Code is a Blitter." (Source
code: [Ollmann01])

I’ve also called dcbz (data cache block
zero) to zero the blocks that we are
writing to before we write to them. Why
do that? If you zero a block, the memory
controller simply puts a bunch of zeros
in the cache. No data is loaded from
RAM. Since we are just going to
overwrite this data anyway, this is a
way of putting a block in the cache
without having to load it. This can save
us a lot of memory overhead.

It is pretty clear when to use dcbz. Zero
any blocks just before you overwrite
them. Just be careful not to zero
memory in front of your target buffer.
The dcbz instruction rounds all
addresses down to 32 byte bounds, so if
you aren’t careful about alignment you
can zero some data in advance of your
block. If it is a heap block, the area just
before your data is typically heap
information. You will corrupt the heap
when you free the block. Another thing
to be cautious about with dcbz is that
some day Motorola may decide to
change the size of the cacheline. If that

Practical Altivec Strategies, page 23

happens, you may end up zeroing too
much data causing a bug. Apple
provides MPBlockZero(), which may be
used instead. If you prefer,
DriverServices.h provides a
GetDataCacheLineSize() function.

Using vec_dst or vec_dstt also
requires some care. While you could
attempt to stream in the entire input
data set at once with a single call to
vec_dst, in practice this generally
doesn’t work very well because
interrupt level code or other preemptive
threads may interrupt and call vec_dst
on the same stream, halting your stream
and replacing it with its own. Also the
stream may outpace your code,
displacing needed data with data we
don’t need yet.

Typically what you want to do is set up
many small overlapping streams. In
each loop iteration, ask for a small
stream that reads 64, 128 or 256 bytes
forward from your current location in
memory. It is ok to repeatedly use the
same stream id. Try to stay away from
id 3. BlockMoveData() uses it
frequently at interrupt level.

How many bytes to read ahead usually
must be determined experimentally.
Generally there is a number beyond
which no performance advantage is
seen. If your data set sizes vary, you
may also need to check different data
sizes. In this particular case, the
optimum stream size was in the 10–16
vector range (5-8 cache blocks). I found
this out by doing a lot of testing:

1500

1600

1700

1800

1900

2000

2100

2200

0 5 10 15 20 25 30 35

Execution Time vs. Stream Size

T
im

e
to

 C
om

p
le

ti
on

Stream Size (vectors)

Notice that I gathered a lot of data.
There is some fluctuation in the
numbers that you get, so usually you
have to sample each data point a few
times. I repeated each five times.

The combination of cache streaming and
zeroing cache blocks improves the
efficiency of our memory use a bit. We
can now do our task in 1600 time units
— ten times faster than the FPU and
nearly thirty times faster than our first
vector attempt! Here is a graphical
representation of our different
implementations. Longer bars are better.
Values are given in Log format so you
can see which steps gave the most
improvements more easily:

0.01 0.1 1

Scalar Code (FPU)

Scalar-Mimetic (AltiVec)

Vectorized (AltiVec)

Pipelined(AltiVec)

Pipelined + vec_dst

Relative Speed

(Log) Speed of Different Altivec
Implementation Types

Quick inspection of these results reveals
that although we did see a 25% rate
acceleration due to cache hints, we did
not apparently get back all of those 50
cycles wasted per loop. If we had, the
speed might have more than doubled.
Unfortunately, at this point we have
probably run into a fundamental
weakness of the hardware. The memory
subsystems are woefully inadequate to

Practical Altivec Strategies, page 24

keeping the vector unit properly fed
when running at a full gallop.

Sim_G4 reports that adding cache hints
does drastically accelerate the function
for about the first four or five loop
iterations. However, after that point, we
start to stall again in lvx (though in
dispatch, rather than execution).

What appears to be going on is that the
first time through the loop, the code is
running very slowly because the
instructions themselves are being
loaded in from RAM. This gives the
memory unit plenty of time to pre-fetch
some data. However, in the second or
later iterations through the loop, the
instructions are already loaded, so we
are able to proceed at maximum speed.
We quickly catch up to the data stream
and then start to stall again.
Fortunately, because we are still
prefetching data, the stalling isn’t quite
as bad as it could be, but it is quite
significant. Often one stall will delay
long enough that the next cacheline
loaded from won’t miss, so we only stall
some of the time. This explains our
overall speedup.

How do we get more speed?

The only thing that we can do now is to
do more with each piece of data before
we store it. It looks as though our
calculation could easily be 3 times as
complex and still run at memory fill
rates. If we had something else we
wanted to do with this polynomial, such
as calculate where the points go when
we plot it out on screen, or calculate a
tenth order polynomial instead, we
could probably do that now and get the
extra math essentially for free. Sadly
that is beyond the scope of this paper. It
is something you will have to
experiment with in your own program.

What about Horner’s optimization discussed
at the beginning of this chapter? Thanks
for reminding me! It accelerated the
scalar code by 8% and the AltiVec code
by 3%. That is not quite the factor of two
that was claimed based on just counting
instructions! Actually, once you
consider execution times and the fact
that some of the fmuls can pipeline in
the original version, one estimates 9
cycles for Horner and 11 for the original
scalar version on 7400. Thus, we really
should only predict a 22% acceleration
based on the instructions themselves.
We dont even see that much.

We don’t see much speed improvement
for the AltiVec code either, even though
our work with pipelining means that
that full factor of two is theoretically
possible. We already know we are
limited by the speed of memory, so this
isn’t too surprising. Any time saved is
lost immediately to lvx stalls.

Clearly, it isn’t just what you code, it is
how you call the code, when you call it,
and where the data is! In this case,
Horner didn’t improve any of those
other things for us. Just improving the
implementation of the function itself
didn’t do us much good.

Thus, microoptimization on code alone
is only one part of the optimization
process. Paying attention to all facets of
how your program is constructed,
including how data is passed into a
function, how data is stored in memory,
pipelining, temporal locality, your use
of constants, etc. can yield far greater
rewards.

The Optimization process
Hopefully by now, you have seen that
the AltiVec optimization process is
somewhat like for other code. However
due to its speed, there are many more
bottle necks from other parts of the

Practical Altivec Strategies, page 25

system that must be taken into
consideration. The overall optimization
procedure can be summarized as
follows:

(1) Only optimize those functions that are
frequently called and are the performance
bottleneck in your application. A good
profiler is a must.

(2) Find the best algorithm. While AltiVec
might buy you a factor of ten in
performance, it surely isn’t going to get
you a factor of one hundred or one
thousand. Often you can get that by
doing something a different way.
Picking the best algorithm also benefits
your scalar version. You can still
accelerate that with AltiVec.

(3) Once you have found the best method,
arrange it for maximum parallelism. If you
find you are doing a lot of permute
operations to shift vector elements
around relative to one another, it is a
bad sign. The best implementations tend
to use uniform vectors — vectors in
which all elements in the vector stand
for the same thing and can be processed
in parallel. You may have to go back to
rewrite the caller a little bit to make sure
that the data is handed to you in a
useful format. Likewise, you might have
to change your data storage format to
make the process of loading uniform
vectors from memory a lot easier.

(4) Look to find ways to reduce memory
overhead, either by passing constants
and globals in as arguments or by
generating them on the fly. Don’t waste
too much time creating constants. At
worst you can load in a cacheline full of
constants, and splat them out if you
need to.

(5) Optimize your function for best
instruction scheduling. If you use the
VFPU or VCIU, typically this means that

you will be processing data in a loop 64
bytes at a time so that you can have 4
independent vectors to stuff the
pipelines with. If your function takes its
data passed by value, either declare the
function inline or take multiple vectors
full of data at once. If your function
reads data from memory, unroll your
loop a little to read four or more vectors
at a time. Do not unroll the loop
completely because this will mean more
instructions will have to be loaded into
the cache, which may hurt performance.

(6) Only once you have done all other
optimizations should you start looking at
cache instructions. This way your
memory access patterns are set in stone.
If your function does any memory
access, quite often it looks a bit like a
blitter.

Calculate your prefetch constant and
place a call to vec_dst() at the very
beginning of your function. This ensures
that while you are going through the
relatively slow process of loading in the
instructions for the function you can
also be prefetching the data that you
need. Also place a call to vec_dst() at
the start of the loop and call vec_dss()
for the stream at the end of the function.

There is no one correct stream block size
that fits all functions. Typically, you
have to test experimentally to find out
what the best size is going to be.
Typically block sizes in the range 64-256
bytes work best. This can be done in the
context of a test app. Make sure that
your data set resembles a real data set if
it is likely to impact performance. Take
multiple data points for each block size
— the times can be somewhat variable.
If a wide variety of sizes work, pick one
that is not too close to the poor
performance area. Hopefully this will
mean that the function is more flexible

Practical Altivec Strategies, page 26

with different bus ratios and RAM
speed.

If your destination buffer does not
overlap with your source buffer and you
are just going to overwrite the
destination buffer, call dcbz to zero the
destination buffer before writing to it.
This zeroes those blocks and places
them in the cache without actually
doing any loading of data. This can
double the speed of your function if it is
completely memory bound.

A good rule of thumb is that unless you
are eating up at least 20 cycles of CPU
time per vector load (after pipelining)
and your data has to be loaded in, you
are probably memory rate limited. This
means that you will be stalling on loads
and backing up the completion queue. If
you can find more work to do per vector
this can greatly accelerate your
application. You will not only get more
done per load/store pair, you will also
be able to do memory access in parallel
with data processing. Code running at
this level of complexity will run at the
speed of the CPU rather than the
memory bus, a very desireable thing. If
you can achieve this level of complexity
in your function, it no longer matters
whether your data starts in RAM or the
caches. For this reason, this is a very
good situation to investigate the
transient cache instructions and LRU
loads and stores with your primary data
stream. This will help leave data that
depend on the caches for fast processing
in the caches.

(7) Move the function into your app and see
if vec_ldl(), vec_stl() or vec_dstt() work
better or worse in place of vec_ld(), vec_st()
and vec_dst(). Since the transient / LRU
versions tend to speed up code around
your function at the expense of the
function itself, its performance impact is
difficult to measure correctly in a test

app where there are no surrounding
functions to benefit.

If you have lots of time to waste, go
back and repeat steps 5 and 6 to see if a
different block size works better with
the new cache instruction variants you
added in step 6. Also check performance
on different machines.

Conclusion
Programming for Altivec is a mixture of
old and new. Many old optimizations
ideas still apply. However, Altivec is so
fast that memory bandwidth rather than
CPU speed is usually the performance
bottleneck. In addition, the SIMD
architecture requires that one design for
parallelism, which impacts how data
must be organized. For this reason
many new software design principles
must be employed for use with Altivec.

Data that is frequently used together
should be stored together, preferably in
large aligned arrays. Most Altivec
functions that directly access data
should be written in a high-throughput
blitter format, designed to reduce
memory overhead as much as possible
and process a lot of data concurrently
thereby maximizing pipelining
opportunities.

Even with such functions, memory
throughput will typically remain the
performance bottleneck, not CPU cycles.
For this reason it is best to process your
data using a few large complicated
functions that do a lot of work on each
piece of data rather than a lot of little
ones that repeatedly load and store data.
Where streaming data prefetch
instructions are used, additional
expensive calculations may in many
cases be added for free, because the
additional cost is hidden by the larger
cost of memory access. If memory stalls
can be completely eliminated, functions

Practical Altivec Strategies, page 27

may actually run faster as the result of
adding more work. This may in some
cases be used to enhance the quality of
the calculation. In others, work may be
combined from several functions into
one.

Memory intensive programming
techniques such as large lookup tables,
and constants that must be read from
memory are more likely to slow down
Altivec code than speed it up. Except
where it is very, very, VERY expensive,
it us usually faster to generate constants
on the fly and use brute force
calculations instead.

The slow speed of the memory bus can
reduce the speed of uncached code by
80%. The first iteration of a loop may
run five times slower than successive
loop iterations. For that reason, begin
prefetching data as soon as possible in
functions that handle a lot of data. This
gives you more time for the data to
appear, before the loop achieves full
speed.

In addition, gratuitous optimization of
rarely executed code can make your
application slower, in cases where the
optimization makes the function longer.
Avoid large switch statements,
aggressive loop unrolling, reduction in
strength optimizations that replace
single expensive instructions with
numerous "cheap" ones, and other code
bloating optimizations with rarely
executed code. It is okay to optimize
rarely executed loops.

Avoid branching in Altivec code. Use
the Altivec comparator operations
instead. Branching and lookups are
single threaded by nature and do not
work well with parallelized code.

Use uniform vectors. Reorganize data
and algorithms so that individual

vectors contain only one kind of data
(e.g a vector full of x's instead of a
vector full of x,y,z.) This usually
enhances code readability, reduces
reliance on permute instructions,
eliminates redundant work, shortens
code, increases execution speed, and
enhances parallelism. Such
modifications can also enhance the
performance of optimized scalar code as
well, by enhancing temporal locality of
memory access and providing more
opportunities for pipelining or
superscalar execution.

Write code for maximum throughput in
preference to low latency. Any small
utility functions should be written with
vector not scalar interfaces so data can
be passed by register not on the stack.
Where reasonable, construct these
functions so that the the cost of using
them in a low latency fashion is readily
apparent from the interface.

Do not be afraid of undertaking
substantial modifications to legacy
scalar code. Most data layout or code
architecture modifications that you
make to benefit Altivec will also benefit
scalar code, because they are generally
designed to enhance memory
throughput.

Acknowledgement
I would like to thank all of the members
of the Altivec_forum@forum.altivec.org
[Altivec00] mailing list for their
collective wisdom, insight, patience and
knowledge about all things Altivec.
Special mention goes to Holger Bettag,
Jean-Manuel Prudon, Sandra Nielsen,
David Duncan, Craig Mattox, Carl
Manaster, Chuck Fleming, Anton Rang,
Steve Poole and Sam Vaughan, for their
excellent suggestions for improving the
parent document for this work. Finally,
sincere thanks to Alex Rosenberg for his

Practical Altivec Strategies, page 28

contributions to the list. Alex has an
uncanny ability to turn rampant
speculation into rampant progress with
just a sentence or two.

Bibliography

[Altivec00] The Altivec.org mailing list.
Please direct your browser to
www.altivec.org to subscribe to the list.
A mirror may be found at
altivec@groups.yahoo.com.

[Apple00] Apple Computer. Altivec
Website.
http://developer.apple.com/hardware
/ve/performance.html

[Bettag98] Bettag, Holger. "Introduction
to Altivec" Published on the web, 1998.
http://www.informatik.uni-
bremen.de/~hobold/AltiVec.html

[Clarke00] Clarke, Douglas.
"Introduction To AltiVec" Paper.
MacHack, 2000.
http://home.san.rr.com/altivec/Pages/
AltiVecEd.html

[Diefendorff01] Diefendorff, Keith. "PC
Processor Microarchitecture" Article.
Microprocessor Report, volume 13,
number 9.
http://www.chipanalyst.com/x86/mic
roarchitecture/

[Motorola99a] Motorola, Inc. "Altivec
Technology: Programming
Environments Manual." http://e-
www.motorola.com/brdata/PDFDB/M
ICROPROCESSORS/32_BIT/POWERP
C/ALTIVEC/ALTIVECPEM.pdf

[Motorola99b] Motorola, Inc. "Altivec
Technology: Programming Interface
Manual." http://e-
www.motorola.com/brdata/PDFDB/M
ICROPROCESSORS/32_BIT/POWERP
C/ALTIVEC/ALTIVECPIM.pdf

[Motorla00] Motorola, Inc. " MPC7400
RISC Microprocessor User's Manual"
http://e-
www.motorola.com/brdata/PDFDB/M
ICROPROCESSORS/32_BIT/POWERP
C/MPC7XX/MPC7400UM.pdf

[Motorla01a] Motorola, Inc. " MPC7410
RISC Microprocessor User's Manual"
http://e-
www.motorola.com/brdata/PDFDB/M
ICROPROCESSORS/32_BIT/POWERP
C/MPC7XX/MPC7410UM.pdf

[Motorla01b] Motorola, Inc. " MPC7450
RISC Microprocessor User's Manual"
http://e-
www.motorola.com/brdata/PDFDB/M
ICROPROCESSORS/32_BIT/POWERP
C/MPC7XX/MPC7450UM.pdf

[Ollmann01] Ollmann, Ian. "Altivec
Tutorial" Published on the web, March
2001.
http://www.alienorb.com/AltiVec

[Rentzsch01] Rentzsch, Jonathan Wolf
"Straighten Up and Fly Right". Paper.
Machack, 2001.
http://redshed.net/macHack/2001/str
aightenUpAndFlyRight.html

[Rosenberg99] Rosenberg, Alex.
Presentation on Altivec, MacHack, 1999.

