
Cocoa from a Scripting Language
or "Lua-se the Compile"

Richard Kiss
him@richardkiss.com

Abstract

The dynamism of Objective-C makes it a good candidate for binding to scripting languages with a
generalized gateway to the messaging system. We present here a discussion of issues related to
making the Objective-C runtime available to a scripting language. The particular language chosen
here is Lua, but much discussion can be generalized to the language of your choice, including gaining
insight into issues facing the Java bridge.

Introduction

Many applications can benefit from scripting.
Giving users access to a scripting language to
control an application turns that application
from a program into a platform, upon which
users can build systems far beyond the
imagination of the application author.

Nearly any application that runs unattended
can benefit from scripting. For example, you
may want to perform time-consuming
computations (such as image editors, where
users might want to perform a sequence of
filters) or to serve remote users (such as web
servers, IRC clients or file servers).

Adding scripting capabilities can be a challenge.
First, you must create or choose a language.
Although creating your own language may be an
interesting project, chances are it is a
distraction from the real problems your
application is trying to solve. Once the language
is chosen, you must then decide what objects or
functions from your application need to be
exposed to the scripting language, and you
must provide bridge methods that convert the
native types of your scripting language to the
types expected by the exposed functions.

Lua is an excellent choice to add scripting
capabilities to your application. Lua is
powerful and easy to learn, but high-level
enough to avoid the pointer problems that
plague C. It was designed as an embeddable,
extensible, dynamic language that can easily
expose data structures and objects in your
application.

If you use Objective-C, you may find the Lua
bridge to be an excellent starting point. The
bridge provides a way to call Objective-C from
Lua and vice versa, with objects being
transformed automatically as they cross the
bridge, similar to the Java bridge.

The bridge provides Lua access to all Objective-
C classes and most data types. You may find
that it meets your scripting needs with no
changes.

A Crash Course in Lua

Lua is a simple, yet remarkably powerful and
complete language. Its syntax is sparse, and
light on punctuation. The complete reserved
word list is

and break do else elseif
end for function if in
local nil not or repeat
return then until while

The following strings denote other tokens,
mostly operators:

 ~= <= >= < > == = + -
 * / () { } [] ;
 ,

Two dashes ("--") mark a comment until end of
line, similar to C++'s double slash notation
("//").

Although Lua is simple, it is too complex to

Cocoa from a Scripting Language , page 1

detail exhaustively here. We will provide some
key examples to exhibit the flavour of the
language, but for detailed information, consult
the excellent reference manual at

<http://www.tecgraf.puc-rio.br/lua/manual/>.

Variables

Variables can be global (the default) or local.
Variables are untyped: any variable can be
assigned Lua values of any type. The six Lua
types are: nil, number, string, function, table
and userdata (which are roughly like C opaque
types, in that they can only be created and
operated on by C glue code). Table and
userdata values can optionally have a "tag"
subtype.

identity = nil
age = 30
username = "Gus" -- strings are 8-bit
data, null characters allowed, any
length
data = "\5\2\255" -- decimal values
pi = 3.14159265358979323 -- all numbers
are represented as C "double"
show = print -- "print" is initialized
to point to a built-in function; now
"show" points to it too
info = { flavour = "lemon", color =
"red", size = 200 } -- a table

Function Declarations:

function printGreeting(name, age)
 print ("Hello " .. name .. ", I
understand you are " .. age .. " years
old")
 return age+1
end

Invocation:

ageNextYear = printGreeting("Tom", 20)
pg = printGreeting
ageNextYear = pg("Tom", ageNextYear)

Tables:

Tables are associative arrays, with any non-nil

Lua object as a key and any object as a value
(including functions). This allows you to write
simple object-style programming.

cousin = {
 age = 12,
 name = "Fred",
 greet = function() print "hi!" end
}

Tables can be modified at any time.

cousin.age = cousin.age + 1
-- birthday!
cousin.greet = function() print ("Well
howdy!") end

Table entries can be accessed using two distinct
syntaxes.

cousin["age"] = 15
-- equivalent to "cousin.age = 15"
index = "age"
cousin[index] = 15
-- also equivalent to "cousin.age = 15"

All variables and table entries have the value
"nil" unless otherwise set.

Conditional Statements (if-then):

if a ~= b then print("a is not equal to
b") end
-- use ~= as opposed to the C !=

if age < 13 then
 print("You are not yet a teenager")
elseif age < 20 then
 print("You are a teenager")
else
 print("You are no longer a teenager")
end

Looping Constructs (repeat-while-
for):

a=0
repeat
 print(a)
 a = a + 1
until a >= 20

Cocoa from a Scripting Language , page 2

a=0
while a<20 do
 print(a)
 a = a+1
end

for index = 1,21,2 do
-- C version: "for(i=1;i<=21;i+=2)"
 print(index)
end

for index = 50,100 do print(index) end
-- default increment is 1

Use "break" to break out of repeat, while and
for loops.

a=0
while 1 do
 print(a)
 a = a + 1
 if a == 15 then break end
end

-- iterating over an array
-- arrays are just tables, with n set
-- an array's first index is 1, not 0

array = {'a', 'b', 10; n=3}
for i = 1,array.n do
 print(i .. " -> " .. array[i])
end

Here is a function to dump a table:

-- iterating over a table

function printTable(table)
 for i,v in table do
 print("t['" .. i .. "'] = " .. v)
 end
end

table = { dog = 'Sparky', cat = 'Jane'}
printTable(table)

Lua idioms:

size = size or 10
-- equiv. to
--"if (size == nil) then size = 10 end"

Lua allows vector-style lvalues for multiple
assignments.

x,y = y,x -- swap two values
a,b,c = b,c,a -- rotate three values

If the left and right side don't match counts,
"nil" values fill excess.

a,b,c,d = 10,15
-- c and d each get the value "nil"

Functions can return multiple values.

-- an efficient implementation of
-- Fibonacci using recursion
function fib(n)
 if (n<=2) then return 1,1 end
 local fnminus1, fnminus2 = fib(n-1)
 return fnminus1 + fnminus2, fnminus1
end

Lua functions can take an arbitrary number of
arguments:

function showall(...)
 local argCount = arg.n
 print("You called showall with " ..
argCount .. " arguments.")
 print("They are:")
 local index
 for index = 1, argCount do
 print(index .. " -> " ..
arg[index])
 end
end

showall("a","b",'c',100)

Functions can be return values. Functions as
return values can "fix" values, yielding a
function with fewer parameters.

function
functionThatPrintsString(string)
 return function() print(%string) end
end

The "%" means "fix this expression to a
constant equal to the current value of the
expression". So

Cocoa from a Scripting Language , page 3

h = functionThatPrintsString("hello")
print("h = ", h)
h()

yields the following output:

h = function: 0x80682a0
hello

Object-style syntax

If obj is a table, then obj:met(p1,p2) is a
shortcut for obj.met(obj,p1,p2). You can use
this to do object-oriented style programming.

obj = {
 x = 10,
 y = 20,

 -- accessors for x & y
 getX = function(self) return
self.x end,
 getY = function(self) return
self.y end,
 setX = function(self, newx)
self.x = newx end,
 setY = function(self, newy)
self.y = newy end,

 -- move the x & y position of the
object
 moveTo = function(self, newx,
newy)
 self:setX(newx)
 self:setY(newy)
 end
}

obj:moveTo(100,200)

The Lua distribution comes with many fine
examples of Lua programs ranging from the
simple to the very complex. Take a look.

Extending Lua

Lua is a remarkably tiny yet complete language.
However, it comes with only a few built-in
libraries, and even these are optional. There is
no built-in way to "break out" of Lua's little
universe into the host application or operating
system.

As an extension language, Lua has been
designed to make it easy to call back to C.
Here's an example that adds a new Lua
function "system" that calls the C standard
library system function.

#include "lauxlib.h"

void luaSystem(lua_State *L)
{
 const char *luaArg =
luaL_check_string(L,1); // get string
argument
 int returnValue;
 returnValue = system(luaArg);
 lua_pushnumber(L, returnValue);
}

void addSystem(lua_State *L)
{
 lua_register(L,"system",luaSystem);
}

Invoking "addSystem" will add the global
function "system" to the Lua universe
represented by L. Now

system("ls")

will work just as the C code would, returning
the integer value returned by the C system call
back to Lua. (Note that the Lua IO library
already has a similar function named
"execute".)

When Lua calls into C code, it passes in the
current Lua state. The most important bit of
Lua state is the "Lua stack", which contains the
Lua values passed in. You can extract any of
these values and operate on them, and you can
return any number of values.

Using The Objective-C Runtime
From Lua

Objective-C binds messages to implementations
at runtime, not at compile-time or link-time. The
most important function in the Objective-C
runtime may very well be

OBJC_EXPORT id objc_msgSend(id self,

Cocoa from a Scripting Language , page 4

SEL op, ...);

defined in objc-runtime.h. (Note that the source
for the Objective-C runtime is available as part
of Darwin.) In fact, all messaging in Objective-C
uses this function or one of its variants. For
example, the Objective-C code

d = [n1 isEqualToNumber:n2];

actually internally looks more or less like the C
code

d = (int)objc_msgSend(digits,
@selector(numberWithDouble:), n2);

The Objective-C runtime also makes the
"method signatures" available, that is, the count
and type of arguments the function needs, and
the return value type. Using this information,
we can coerce the Lua arguments to the correct
Objective-C type. For example, Lua strings can
be coerced to selectors or char pointers
depending upon what is expected by Objective-
C.

Providing a Lua glue function "objc_msgSend"
opens up nearly all Objective-C runtime
functions to Lua. This glue function does the
following:

- look up the method signature for the given
selector on the given instance
- for each Lua argument, coerce Lua type to the
Objective-C type expected by the method
signature
- invoke the method
- coerce the return value to something Lua can
handle
- return to Lua

We use the Cocoa class NSInvocation which
abstracts many of the nasty details of sending
Objective-C messages and handling various
return types.

With this single gateway function, Lua can now
send nearly any message to any Objective-C
object (as long as it can properly coerce the
argument types).

But what if Lua needs to create an Objective-C
object? Class methods act as object factories,

so exposing Objective-C classes to Lua will do
the job. It turns out that Objective-C classes are
essentially singleton Objective-C objects.

Another Objective-C runtime function will
return an Objective-C class by name:

OBJC_EXPORT id objc_getClass(const char
*name);

After we expose this function to Lua, we can
then create Objective-C objects in Lua. For
example,

nowDate =
objc_msgSend(objc_getClass("NSDate"),
"date")

The objc_getClass function returns the NSDate
class, and the objc_msgSend functions sends it
a "date" message, which returns a new NSDate.
It's roughly equivalent to the Objective-C code

NSDate *nowDate = [NSDate date];

Yucky Syntax

Admittedly, the Lua syntax is pretty messy
way of doing method invocations. Fortunately,
Lua includes a powerful feature known as "tag
methods", which allow tables and userdata
objects of certain subtypes (or "tags") to
override the meaning of operators. One such
operator is the "gettable" operator, which is
invoked when a table-lookup is performed.
Therefore, if the Lua userdata object
representing NSDate has the gettable tag
overridden, we can rewrite the ugly

nowDate =
objc_msgSend(objc_getClass("NSDate"),
"date")

as

nowDate =
objc_getClass("NSDate").date()

Much more readable! Additionally, we can
override the "getglobal" tag method -- invoked
whenever a global variable is referenced -- to
immediately expose all Objective-C classes
simultaneously. This allows the following:

Cocoa from a Scripting Language , page 5

nowDate = NSDate.date()

Much nicer!

For more information on how this works,
consult the Lua reference manual, section 4.8,
"Tag Methods" and the source code for the Lua
bridge.

Selector Name Translation

Objective-C selector names include colons and
all keywords. For example, the class method of
NSString

+ (id)stringWithCString:(const char
*)cString length:(unsigned)length;

has "stringWithCString:length:" as a selector
name in the runtime.

Unfortunately, the ":" character cannot be used
as part of an identifier type in Lua. However,
"_" is permissible, so we translate "_" to ":"
before looking up selector names. For example,

s =
NSString.stringWithCString_length_("new
string", 9)

Any arbitrary string (and in fact, any Lua
object besides nil) can be an index in a table, so
the following is equivalent (although strange-
looking):

s =
NSString["stringWithCString:length:"]("
newstring", 9)

Now would be a good time to look at example
1, included with the Lua bridge. This example
includes some simple messages sent to the
Foundation framework from Lua.

Subclassing Objective-C Classes

Objective-C allows new classes to be registered
at runtime. This is required to support loadable
bundles, but it can be used to provide a sort of
subclassing of Objective-C classes with method
implementations in languages other than

Objective-C. The WebScript scripting language
of WebObjects 4 does exactly this.

A new Objective-C subclass has several
properties, including: the superclass; new class
methods; new instance methods; the class
name; new instance variables.

The Lua bridge includes some code has been
prepared that allows Objective-C subclasses to
be created at runtime, with method
implementations in Lua. These features are best
considered experimental.

How to Use This Feature

A Lua subclass can contain new object methods
and new instance variables. Both of these are
encapsulated in a template table. Here's an
example:

template = {
 age = 15,
 gender = "unknown",
 name = "",
 getName = function(self) return
self.name end,
 getAge = function(self) return
self.age end,
 setName_ = function(self,
newName) self.name = newName.cString()
end,
 setAge_ = function(self,
newAge) self.age = newAge.doubleValue()
end,
 addYearsToAge_ = function(self,
years) self.age = self.age +
years.doubleValue() end,
 description = function(self)
return
NSString.stringWithCString("Person
object: "..name) end,
}

subclass("Person", NSObject, template)

This example adds a new Objective-C class
named "Person" to the Objective-C runtime, as
a subclass of NSObject. Besides all the methods
implemented by NSObject, it overrides

-(NSString*)description;

Cocoa from a Scripting Language , page 6

and implements these additional instance
methods:

-(id)getName;
-(id)getAge;
-(id)setName:(id)newName;
-(id)setAge:(id)newAge;
-(id)addYearsToAge:(id)years;

For existing selectors, we use the superclass to
get the method signature. For selectors not in
the superclass, we count the parameters by
counting occurrences of "_", and assume the
return value and all parameters have type "id".
That's why we must do conversions, like
"newAge.doubleValue()" before operating on the
values.

How Does it Work?

Creating a New Hybrid Subclass

The "subclass" call takes new class name, a
base class, and a template. A new Objective-C
class is created with a pointer to the Lua
template table. Each instance has an Objective-
C part and a Lua part, and each half has a
reference to the other half. This requires a single
extra instance variable to be added to the base
Objective-C class. Hybrid classes have three
methods are overridden by the Lua bridge:

-(id)init
-(void)dealloc
-(void)forwardInvocation:
(NSInvocation*)anInvocation

The first two method ensure that the Lua-side
representation of the object is created and
released. The last method is called by the
Objective-C runtime when a message is sent to
the Objective-C side of the object; it invokes the
Lua code corresponding to the method.

The "subclass" method iterates over the Lua
table. For each function, convert the name to a
selector and see if it has a signature in the
superclass. If so, use that signature; if not, use a
signature with all ids, counting the parameters
by counting "_" characters (there is no way to
know how many arguments a Lua function is
expecting). Selectors are registered with the

Objective-C runtime if necessary.

For each method in the template, a stub entry is
created to be added to the Objective-C method
table. Each entry is a triplet of selector name,
method signature, and implementation (see
struct objc_method in objc-class.h). It's set up
in such a way so that each method falls into the
-forward:: method of NSObject, which
encapsulates the parameters into an
NSInvocation object and falls into

-(void)forwardInvocation:
(NSInvocation*)anInvocation

Invoking a Lua Method From
Objective-C

Whenever the implementation of a hybrid
object's method is in Lua, the Objective-C
runtime forwards the call to the method -
forwardInvocation:. This method is
implemented in the Lua bridge.

This implementation examines the selector;
fetches the corresponding Lua table for the
instance (not the template); looks up the Lua
function to call; transforms the Objective-C
parameters into Lua types; calls the Lua
function; transforms the return value and
returns it.

Of course, there are a lot of details glossed over
here. The code provides the best documentation
for those interested.

Creating Hybrid Objects

The -init method of a hybrid object clones the
template Lua table. The clone acts as the Lua-
side representation of the hybrid object. The
self.id table entry is set to point to the
Objective-C half of the object.

Because of this, all -init... methods in Lua
MUST invoke the original -init method to
properly create the Lua-side representation.
Otherwise invocations of Lua-implemented
methods will silently fail because the instance
variable pointing to the Lua object will be nil.

Cocoa from a Scripting Language , page 7

Neat Side Effects

If you're still with me, you may realize that
nothing prevents the template table from being
modified even after the subclass is created. In
fact, nothing prevents the Lua table for an
instance from being modified. Adding new
functions to the table wouldn't do much (you
would have to notify the Objective-C runtime
that a new method was added), but you can
change implementations for existing methods
that are overridden. Since each hybrid object
has its own Lua-side representation, you can
change implementations on a PER-OBJECT
basis! Very strange.

Why doesn't Objective-C provide this feature?
Well, we could say that that's just the way it
works. But there are speed penalties to each
object having its own dispatch table. Objective-
C strike a balance between dynamism and
flexibility by having a class-level cache of
selectors and implementations. For example,
the first time -init is called on an NSString
object, the runtime must perform a time-
consuming look-up of selector to
implementation. However, it then caches the
implementation in the NSString selector cache,
so subsequent calls of -init on an NSString
object skip the look-up step.

Of course, another answer is that there's not
really any (easy) way to add Objective-C code
at runtime, since compilation creates a file, not
a RAM image. Technically, one could create an
object file and link to it, but that's a lot of work
(and obviously processor dependent).

See the Lua bridge for an example that
illustrates method implementations that differ
on a per-object basis.

Strategies to Add Scripting

One thing for certain: end user code must be
invoked for scripting to be useful. To do this,
simply call the C function "dobuffer" in the Lua
library on a buffer containing the user's code. It
will compile the code (if necessary) and execute
it. The question becomes, when is the user's
code executed, and what does it look like?

File-Based Strategy

With this strategy, each event that requires
scripting invocation is associated with a
separate file. When an event occurs, it scripts
the file.

Advantages: easy to document (when X
happens, the file "Y.lua" is executed). Easy for
user the change features, even while application
is running (simply change the Lua file).

Disadvantages: one file per event. No input
values (besides globals). No output values
(besides globals).

Function-Based Strategy

With this strategy, each event is associated
with a specific function name in the global name
space. For example, the Lua function
"fileDownloadRequest" could be called
whenever a file download request is received,
and you could pass in event-specific
parameters such as file path, user information,
etc. You need to invoke a file at start-up time
that defines the function names in question.

A problem is, how dynamic is this? If the user
wants to change the behaviour of an event, she
might edit the file, then be puzzled as to why
the changes aren't taking effect (since only the
assigning of function names actually affects the
change). A possibility is to cache the last
modified date of the start-up file, and re-
execute it whenever it is "new enough". The
downside to this is that all top-level code -- not
just function assignments -- will get re-executed
too.

Advantages: all events can be in one file. You
can provide reasonable default functions. Can
pass in arguments and use return values.

Disadvantages: possibly less dynamic.

Notification-Based Strategy

With this strategy, you document notifications,
and leave it up to the user to register for the
NSNotification types she is interested in. This
strategy may fit in well with your existing

Cocoa from a Scripting Language , page 8

notification model. One problem is that
notifications are reported only after an event
occurs, and the notification recipients therefore
cannot prevent the event from taking effect.

Advantages: closely tied to Objective-C runtime
and Cocoa.

Disadvantages: closely tied to Objective-C
runtime and Cocoa. Notifications cannot return
values.

The Lua bridge project has examples that
illustrate each of these strategies.

Conclusion

The dynamism of Objective-C makes it easy to
bind large portions of the Cocoa API to a
scripting language with just a few generalized
gateway functions. The dynamism of Lua
allows creation of hybrid classes created at
runtime, with method implementations written
in Lua. The combination provides a very general
framework that can meet application dynamic
scripting needs with little work on the part of
the application author.

Recommended Reading

[Lua Web Site]
<http://www.tecgraf.puc-rio.br/lua>

[Objective-C Documentation]
<http://developer.apple.com/techpubs/maco
sx/Cocoa/ObjectiveC/index.html>

[Foundation]
<http://developer.apple.com/techpubs/maco
sx/Cocoa/ObjectiveC/index.html>
In particular, NSMethodSignature and
NSInvocation.

[Darwin]
<http://www.publicsource.apple.com/>
<http://www.publicsource.apple.com/project
s/darwin/1.2/projects.html>
Source code for Objective-C runtime is in objc4
project.

[GNUStep] <http://www.gnustep.org/>
Includes source for Foundation-compatible

framework, which can provide insight into
implementations.

Cocoa from a Scripting Language , page 9

