
BootX: The Mac OS X Bootloader

Louis Gerbarg

The Macintosh has used a more or less unchanged boot mechanism for over a decade. Even
with initial introduction of OpenFirmware, little changed. The advent of the iMac, and later Mac OS
X, has altered the boot sequence significantly. This paper contains a cursory look at OpenFirmware,
the booting mechanisms used by various operating systems that run on the Power Macintosh (such
as Linux, NetBSD and OpenBSD), as well as the different booting mechanics of several generations
of Macintosh hardware. Particular emphasis will be paid to the boot process of Mac OS X (from the
firmware up to early kernel initialization) and its bootloader, BootX.

Introduction

Bootloaders load operating systems and pro-
vide early boot services such as boot time op-
erating system selection. This paper is an in-
troduction to the bootstrapping environment
for PowerPC based Macintoshes focusing on
Mac OS X, and its bootloader, BootX. All code
examples in this document are covered by
the Apple Public Source License (APSL) ver-
sion 1.2. Text of the APSL can be found at
http://www.opensource.apple.com/apsl/.

What is a Bootloader?

A bootloader is a program that is run when a
computer is started that is responsible for loading
an operating system. The loader may perform a
number of actions, but its fundamental responsi-
bility is to place the computer in a state that the
operating system can start in.

Why is a bootloader necessary?

Even on systems with advanced firmwares,
such as OpenFirmware1 and Sun’s OpenBoot2
it may be desirable to provide functionality not
available in the firmware. It also makes is pos-
sible to overcome deficiencies that may exist in
particular firmwares.

Who needs to know about BootX?

BootX is useful to developers who intend to
use configurations that differ from the default
boot settings. This might include those who want
to network boot, load operating systems besides
Mac OS X, or run BootX on non-Macintosh hard-
ware.

Organization

This paper discusses seven major, interlated
topics. The first is an historical view of Macin-

1OpenFirmware is referred to extensively throughout this manual. The draft version of the the OpenFirmware speci-
fication may be found at ftp://playground.sun.com/pub/p1275/coredoc/

2OpenBoot is an OpenFirmware compliant boot prom found in Sun Microsystems computers

BootX: The Mac OS X Bootloader
Page 1

tosh bootstrapping. The second is a summary of
the boot sequence of various machines. The third
is an overview of alternative operating systems
for Macintosh hardware, and a brief overview of
their bootloaders. The fourth is an overview of
OpenFirmware. The fifth section is an over of the
the Mac OS X bootloader, BootX. The sixth sec-
tion is an introduction to the internal structure of
BootX. The final section discusses extending and
debugging BootX

Macintosh Bootstrapping

The Macintosh has been through a number of
significant revisions since its inception. Its boot-
strap mechanics and firmware have changed in
many significant ways. Within this section we
will look at the basic booting mechanics of vari-
ous revisions of Macintosh hardware.

68k

Though discussing the entirety of the 68k line
of Macintoshes is beyond the scope of this paper,
understanding how they worked at a basic level
is useful. Nubus cards that were used in the
boot process would have a ROM with a driver
on them. When the machine powered up the
Mac OS ROM would read the device ROMs on
the cards, and use those to traverse any bootable
devices to look for a System Folder.

It is important to note that drivers on those
cards were in 68k machine code, and expected
certain machine characteristics. This meant that
when new machines were released sometimes
cards that were bootable on older hardware
would require a ROM upgrade to work with a
newer machine (which was costly, since most
cards did not have Flash ROMs).

Nubus Power Macintoshes

Nubus Power Macintoshes were in many
ways 68k Macintosh motherboards modified to
work with PowerPC processors. There is a Pow-
erPC ROM that starts up various parts of the sys-
tem, and brings up the system nanokernel. The
nanokernel then starts the 68k emulator, which
executes a largely unchanged 68k Mac OS ROM.
Overall it tended to work in manner very similar
to the 68k machines.

Old World PCI Power Macintoshes

Starting with PCI machines an entirely new
ROM was used. Based on work previously done
by Sun, these machines use a ROM specification
known as OpenFirmware. Old World is a term
that Apple coined to refer to their OpenFirmware
1.x and 2.x implementations.

OpenFirmware was not used to its fullest on
these machines. The OpenFirmware ROM was
used to load another section of the physical ROM,
which was very similar to the previous Mac OS
ROM. The new Mac OS ROM walked through
the PCI devices and ran machine specific Pow-
erPC machine language drivers it found on the
cards.

The fact that OpenFirmware was only used
to load a fixed ROM meant it was not gen-
erally tested, and number of limitations are
present when using it that are not present booting
through the fixed Mac OS ROM.

New World PCI

Starting with the iMac, Apple released its 3.0
implementation of OpenFirmware, referred to as
New World. New World machines removed the
fixed Mac OS ROM. Instead their OpenFirmware
loaded a file named "Mac OS Rom" from the boot
device’s System Folder.

BootX: The Mac OS X Bootloader
Page 2

This change facilitated a number of improve-
ments. Runtime ROM patches were no longer
necessary, since Apple could simply update the
"Mac OS Rom" file. Additionally since Open-
Firmware was used to load "Mac OS Rom" from
a device, OpenFirmware was enhanced to over-
come the deficiencies in earlier implementations.

This change was not without its share of prob-
lems. A number of PCI devices did not have
OpenFirmware FCode Drivers, which meant
they required ROM replacements to become
bootable on New World machines.

Boot Processes

The PowerPC Nubus Mac OS Boot Process

This is a summary of the classic Mac OS boot
process for PowerPC Nubus machines.

1. Machine starts nanokernel

2. Nanokernel starts 68k emulator

3. 68k Mac OS ROM is started

4. 68k Mac OS ROM searches for potential de-
vices

5. 68k Mac OS ROM uses Macintosh specific
drivers it finds in device ROMs.

6. 68k Mac OS ROM scans all potential de-
vices for a System Folder (preferably using
the default disk stored in PRAM

7. Mac OS ROM starts Mac OS

The Old World Mac OS Boot Process

This is a summary of the classic Mac OS boot
process for Old World machines.

1. Machine runs lowlevel initialization

2. OpenFirmware is started

3. OpenFirmware looks for a boot-device (a
default value of /AAPL,ROM is stored in
the firmware variable boot-device)

4. Mac OS ROM is started (from
/AAPL,ROM)

5. Mac OS ROM searches for potential devices

6. Mac OS ROM uses Macintosh PowerPC
specific drivers it finds in device ROMs.

7. Mac OS ROM scans all potential devices
for a System Folder (preferably using the
default disk stored in PRAM

8. Mac OS ROM starts Mac OS

The New World Mac OS World Boot Process

This is a summary of the classic Mac OS boot
process for Old World machines.

1. Machine runs lowlevel initialization

2. OpenFirmware is started

3. OpenFirmware looks for a "boot-device" (a
default is stored in the firmware)

4. OpenFirmware loads a file of type ’tbxi’
("Mac OS Rom") from the partition

5. Mac OS Rom is started

6. Mac OS Rom starts Mac OS

The Mac OS X Boot Process

This is a summary of the standard Mac OS X
boot process.

1. Machine runs lowlevel initialization

2. OpenFirmware is started

BootX: The Mac OS X Bootloader
Page 3

3. OpenFirmware looks for a boot-device (a
default is stored in the firmware variable
boot-device)

4. OpenFirmware loads a file of type ’tbxi’
(BootX) from the partition

5. OpenFirmware executes BootX

6. BootX reads root partition out of nvram

7. BootX loads mach kernel from the device

8. BootX copies Mac OS X device drivers from
partition into memory

9. BootX disables all address trnaslations

10. BootX starts Mac OS X mach kernel

11. mach kernel begins its boot process

12. mach kernel may use an integrated linker
to link Mac OS X device drivers into itself
if it is necessary to complete booting

13. mach kernel unlinks the integrated linker
to save memory

Other Operating Systems on Macintosh hard-
ware

A number of alternative operating systems
have been ported to Macintosh hardware, in-
cluding, but not limited to, Mklinux, Linux, and
NetBSD. This section take a brief look at what
hardware each of these runs on, and how they
are booted.

Mklinux

Mklinux was a port of Linux to the Mach mi-
crokernel that was done jointly by the Open Soft-
ware Foundation, and Apple Computer. Parts of
the work involved with this later went into the
Apple Mac OS X Mach kernel. Mklinux initially
ran on Nubus PowerPC hardware, and later sup-
ported a subset of the PCI models. Its default

bootloader, mkboot, ran an extension to Mac OS.
Because it was run after Mac OS had already been
loaded it could boot off of any device that Mac
OS could boot off. Unfortunately, it required a
copy of Mac OS. Recently, alterations have been
made that allow mklinux to work with the Linux
BootX bootloader as well.

Linux

There is a port of Linux to the PowerPC plat-
form, and runs on PCI Power Macintoshes. Re-
cently significant progress has been made on a
port to Nubus. machines.

Since Linux was initially targeted at PCI hard-
ware it used a small OpenFirmware bootloader,
called quik, which ran on Old World machines.
Because Linux for the PPC was the first widely
available Operating System to use Old World
OpenFirmware for booting it also was the first
to publicly demonstrate many of the bugs. Re-
cently a much more featured loader for New
World OpenFirmware, named yaboot, has be-
come available.

Besides the OpenFirmware based bootload-
ers there is a Mac OS based bootloader, named
BootX (not to be confused with Mac OS X’s
BootX). BootX runs as either an application or ex-
tension to Mac OS or as an application. As such
it has basicly the same benefits and downsides as
mkboot.

Finally, there is a variant of BootX known as
miboot. miboot is uses basicly the same code as
BootX, but it sheds the Mac OS specific code.
It is installed in fake a System Folder so that
the fixed Macintosh ROM will attempt to boot
it. It then uses the ROM primitives to load a
linux kernel. This has most of the benefits of
a Mac OS based bootloader, but it does not re-
quire Mac OS, so user is not required to purchase
a Mac OS license. This particularly useful for
Nubus based machines, which cannot use Open-
Firmware based bootloaders. It is also incompat-
ible with New World ROMs, which do not have

BootX: The Mac OS X Bootloader
Page 4

a fixed Mac OS ROM.

NetBSD

NetBSD has several options for booting.
NetBSDÕs kernel may be compiled as an ELF so
that when it is stored on an HFS partition it is di-
rectly bootable by New World ROMs. They also
have a bootloader named ofwboot that can be
used by both New and Old World Macintoshes.
NetBSD does not currently run on Nubus ma-
chines.

Summary of Alternate Bootloaders

A number of other bootloaders are available
for Power Macintosh, though none of them are
compatible with nearly as many machines as
BootX. Table 1 describes various bootloaders and
the hardware they support. The Mac OS column
indicates whether the bootloader runs from with
a booted Mac OS environment. The Mac OS Rom
column indicates if it requires a machine with a
fixed Mac OS ROM (Old style Power Macintosh
PCI machines).

OpenFirmware

OpenFirmware is the ROM used by current
Power Macintoshes. It has a number of features
that make one of the most flexible firmwares
available.

OpenFirmware has many convenient aspects.
It supports the use of machine independent
drivers. This means that the same PCI card will
work as a bootable device in both Sun Ultra-
Sparcs and Power Macintoshes. Additionally, it
provides an interface for user configuration, and
an interface for programs to access its services.

User Interface

Users can access the OpenFirmware User In-
terface by turning on the computer while holding
cmd-opt-O-F. At this point the user can manip-
ulate various aspects of the firmware. Several
useful commands are:

• boot - executes the "boot-command"

• dev - moves to a device node

• dev / - moves to the root node

• go - returns execution to the previous (non-
OpenFirmware) environment

• ls - lists all the items in a node

• printenv - displays environment variables

• setenv - sets an environment variable

• see - shows the code for a command

• words - lists all the commands that can be
run on a specific node

Additionally there are a number of environ-
ment variables that alter the firmwares behavior

• auto-boot? - a boolean value which tell
the firmware whether to show its user in-
terface or automaticly execute the "boot-
command"

• boot-command - The command to execute
when the user enters "boot"

• boot-device - a path to the "boot-device"

• boot-file - a path to a kernel image that
BootX will use instead of its defaults

• nvramrc - stores patches that are executed
on the firmware

• use-nvramrc? - a boolean value which de-
termines whether or not the firmware will
execute a patch (stored in "nvramrc") on it-
self before executing the "boot-command"

BootX: The Mac OS X Bootloader
Page 5

• security-mode - Used to determine the
firmwares security settings. See the Secu-
rity section for more on this

• security-password - A hashed form of the
firmware password. printenv has been
coded specificly not to display this value.

Besides these function, there are a number
of other commands specifically for configuring
hardware, as well as all of the standard Forth
commands. The interface should be able to run
arbitrary Forth commands.

Device Interface

Since OpenFirmware has a Forth interpreter,
it is sensible that OpenFirmware drivers are writ-
ten in Forth. Because OpenFirmware uses a Forth
interpreter to run the drivers, the driver can be
used on any processor architecture. Additionally
to save space in the ROM the drivers are encoded
in a byte code representation of Forth, known as
FCode.

Device Tree

OpenFirmware devices are mapped into a hi-
erarchal tree, known as the device tree. This is
used to navigate to particular devices, and serves
as a basis for the IORegistry within Mac OS X. A
user can navigate the device tree using the "dev"
command within the OpenFirmware User Inter-
face. When a user moves into a particular node
they may use commands specific to that device.

Client Interface

OpenFirmware provides an interface for pro-
grams it loads to use its resources. This is known
as the Client Interface. BootX is dependent on
the Client Interface to load Mac OS X. There are
a large number of calls available. The Client In-
terface is not accessible outside of the bootloader

under Mac OS X, and is not stable on a large
number of Macintoshes. For more information
look at the ci.tproj subproject of the BootX source
code. The Client Interface becomes unavailable
after the "quiesce" command is used, which hap-
pens immediately before BootX transfers control
to the kernel.

Binary Loading

OpenFirmware is capable of loading a binary
from any device it can access. While New World
supports loading ELF binaries as well as XCOFF,
Old World only supports XCOFF. Additionally
some versions of OpenFirmware can load a for-
mat known as bootinfo, which is basicly any type
of binary OpenFirmware understands with an
XML header. Neither firmware can directly boot
the Mac OS X kernel, which is in the Mach-o for-
mat.

Security

Enabling Firmware Security

With the newest firmware updates for the
PowerMac G4, iBook, iMac (slot-loading), and
Powerbook (firewire), apple has made their
firmware compliant with the security portions
of IEEE1275. To enable Firmware security, boot
into the OpenFirmware User Interface. Use the
"password" Forth word, which will prompt the
user to set your password. Once this is complete
the user may use setenv to set security-mode to
one of three values "none", "command", or "full".

Differences between the security-modes

The firmware’s default mode is "none". In
this mode it acts just as it has always acted. Once
the user sets the security-mode to something else
things are very different.

In "command" mode the system will only

BootX: The Mac OS X Bootloader
Page 6

boot off the default boot-device (on Macintoshes
this generally the one selected in the Startup Disk
control panel). It will no longer boot off of CD
or Network by holding C or N respectively. In
order to execute any OF command besides "boot"
or "go" the user will need to enter the firmware
password. The user will be unable to zap PRAM.
If the user holds down the option key at boot they
will prompted for a password before they can use
the boot chooser. This mode is intended for lab
scenarios, to prevent use from hacking systems
by booting of off CDs, and increase overall main-
tainability.

In "full" mode all the restrictions of command
mode remain in effect. In addition the machine
will act as the OF variable "auto-boot?" is set to
false, forcing the user into the OF user interface.
Executing the boot command now requires the
firmware password. This mode is intended for
situations in which a machine that is forced to
shutdown should not be restartable until a proper
admin is available.

Emergency password recovery

There is an emergency mechanism to reset
the firmware password if the user forgets it. If
the machine detects it has a different amount of
RAM installed then it did the last time it booted,
it will allow the user to zap PRAM, regardless
of the current setting in "security-mode". This
will cause both "security-mode" and "security-
password" to be reset. Once appropriate settings
have been restored the machine can be shut down
and the memory returned to its original configu-
ration. This is acceptable, since machines that are
intended to be secure most have physical security
preventing access to their internals.

BootX

Goals

The boot mechanism for Mac OS X had a
number of goals. BootX, along with firmware
upgrades and nvram patches, fulfills these goals.
It provides a robust booting solution for Mac OS
X for all of Apple’s supported hardware. It sup-
ports booting from both of Apple’s filesystems,
HFS+ and UFS, as well as network booting via
tftp. It also understands how to load the Mach-o
mach kernel. Additionally, Apple added a num-
ber of features that were not directly necessary
for Mac OS X, but which might be useful to other
Operating Systems wishing to take advantage of
the reliable boot strapping infrastructure it pro-
vides. These features include support for the ext2
filesystem, and ELF binary loading to BootX.

It is important to note that alterations to both
BootX and other operating system kernels may
be necessary in order to make them interoperate.
For instance, in addition to the ext2 and ELF sup-
port, the Linux kernel will require a new entry
point and altered initialization code in order to
use BootX.

Requirements

BootX requires a PCI based Power Mac-
intosh, and with some modifications it may
work on an OpenFirmware compliant CHRP
system. Because many of the OpenFirmware
releases are buggy, certain machines will re-
quire nvram patches for BootX to function prop-
erly. Though they are not technically part of
BootX, they may be necessary. Though there
has been some preliminary work on necessary
patches to overcome bugs in the Power Macin-
tosh 5400/6400/5500/6500 class machines, they
are incomplete. Some clones may require patches
as well.

BootX: The Mac OS X Bootloader
Page 7

Features

BootX contains a number of features avail-
able in other bootloaders, and a number that are
unique. This section describes its various fea-
tures.

Binary Formats

Different operating systems use different bi-
nary formats. These formats have a number of
differences that prevent easy mixing. BootX is ca-
pable of loading kernels in both the Mach-o and
ELF formats. This allows it to load kernels or sec-
ond stage loaders for Mac OS X, Linux, OpenBSD,
NetBSD, and FreeBSD. In general it can only load
staticly linked binaries. Most of these operating
systems may require modified kernels with new
entry points in order to support BootX.

Volume Formats

BootX understands a diverse series of filesys-
tems. It supports HFS+ (the preferred filesystem
of Mac OS), 4.4BSD Big Endian UFS (Mac OS X
only, slight incompatible with the other BSDs),
ext2 (the preferred filesystem of Linux) as well as
loading kernels over any OpenFirmware via tftp.

Security

BootX allows for secure booting by disallow-
ing boot time option selection (such as verbose
and single-user modes) if the security-mode vari-
able is set. This variable is used by the firmware
to prevent alterations to the machines nonvolatile
settings.

Alternate Bootloaders

Table 2 is a listing of various bootloaders and
what volume and binary formats they support.

Booting Options

The Mac OS X Bootloader

Verbose

A user can tell the operating system to boot
in verbose mode by holding down the command
and V keys. Under Mac OS X this replaces the
graphical boot logo with a text screen filled with
traditional Unix boot messages.

Single-User

A user can tell the operating system to boot in
single-user mode by holding down the command
and S keys. What this means varies between dif-
ferent operating systems.

Alternate Kernel Location

BootX will boot off an alternate kernel if it
finds a device path to a kernel in the Open-
Firmware boot-file variable. To find out how to
specify such a path please refer to the IEEE1275
OpenFirmware specification.

Other kernel arguments

BootX will pass other arguments to the ker-
nel, such as an alternate root-device. These ad-
ditional arguments should be part of the "boot-
args" variable.

BootX Source Overview

The bootx source is divided primarily into
three subprojects. bootx.tproj/ci.subproj/ im-
plements the OpenFirmware Client Interface
BootX uses. bootx.tproj/fs.subproj/ has the code
necessary for reading supported filesystems. Fi-

BootX: The Mac OS X Bootloader
Page 8

nally bootx.tproj/sl.subproj includes the main
the source code for bootx, as well as miscella-
neous bits that were not large enough to breakout
into their own subprojects.

Below are three functions from BootX. The
first function, Start(), is the actual function that
is called by OpenFirmware (sometimes referred
to as an entry point). The second is the Main()
function of BootX, which provides an overview
of what BootX does. Though the all of the details
of the various actions are not present, it serves as
a good overview of what is going on. The last
function CallKernel(), is last action of BootX.

Note that the in Figure 1 the Start() function
does very little. It performs some bit of pointer
manipulation to setup a stack that is compatible
with gcc’s calling conventions, and then enters
the main function. This is basically just a small
bit of glue to deal with the fact that the envi-
ronment for the compiled code has not been set
up. Normally these sorts of actions would be
preformed by an underlying OS, or be done in
something like crt0.s (the usual name of the glue
file C compilers stick at the front of each binary).

Figure 2 shows the Main() function, which
is the heart of BootX. InitEverything() sets up
all of the global values, reads some values from
the firmware, and prepares the environment that
is required for the rest of BootX to work. Get-
BootPaths() figures out where the kernel should
be. DrawSplashScreen() places the OS X Happy
Mac on the screen. LoadFile() copies the ker-
nel into memory. DecodeKernel() sets it up to
be run. LoadDrivers() loads kexts that might be
needed by the kernel at boot, such as video and
disk drivers. SetupBootArgs() formats param-
eters that are passed to the kernel, such as the
root device, single-user mode, or verbose boot.
Finally CallKernel() starts the kernel, and if all
goes well does not return.

When CallKernel(), shown in Figure 3 is en-
tered BootX’s work is almost complete. Every-
thing has been setup, and the kernel is ready to
go. It first calls Quiesce(), which is a shim around

the OpenFirmware "quiesce" command. This
command tells OpenFirmware shutdown certain
functions that would conflict with an Operating
System, such as timers and DMA transactions.
After Quiesce() portions of OpenFirmware are
disabled. A little bit of house keeping is pre-
formed, and the kernel, located at gKernelEntry-
Point is entered. The first argument to the kernel,
which ends up on the R4 register, is a pointer to a
structure containing a large amount of informa-
tion, including the entire device-tree, the systems
RAM and video configurations, and any flags to
be passed to the kernel. The second argument
is a signature, the value "MOSX". An operating
system can determine it was loaded by BootX by
testing the R5 register. If it equals "MOSX" the
OS can alter its behavior accordingly.

Extending BootX

BootX is currently considered feature com-
plete for Mac OS X. There are a number of features
that could be added to it that might be useful.
This section looks at its internal interfaces, and
how common extensions would interface with it

Environmental Limitations

Before writing code that will run in the kernel,
developers are told they should consider whether
it is necessary to place it in the kernel. Likewise,
extending the bootloader should only be down if
the alterations cannot be achieved in other man-
ners. The boot environment as limited RAM,
limited runtime status capabilities, and debug-
ging facilities that are significantly different from
other debugging environments.

Adding New Filesystem and Binary Format
Support

While BootX must be in a particular binary
format, and stored in a particular way, it allows
the user to load several different binary format

BootX: The Mac OS X Bootloader
Page 9

kernels from several different filesystems. A typ-
ical extension to BootX would be to add support
for booting off either a new filesystem, or loading
a new format kernel.

Adding Binary Formats

Two binary formats are currently supported,
elf and Mach-o (though elf is not thoroughly
tested). The method for adding a new binary
format loader is simple. A single function needs
to implement. An example would be loading an
a.out kernel is show in Figure 4.

DecodeKernel() will also need to be modified
to call DecodeAOUT(). The DecodeELF func-
tion in bootx.tproj/sl.subproj/elf.c is a simple ex-
ample, though it is not tested, and may not be
entirely correct. DecodeMacho() is much more
complex.

It would seem reasonable to break the Decode
functions out into a seperate subproject (like the
filesystems) if any more are added.

Adding Filesystems

All of the supported filesystems are contained
with bootx.tproj/fs.subproj/. To add a new
filesystem three functions have to be written. An
example would be adding the capability to load
a kernel from a FAT32 (msdos) partition is shown
in Figure 5.

Strictly speaking, FAT32GetDirEntry() is not
necessary if the machine booting using an
mkext (a compressed file containing all of the
boot time kernel extensions). In that case
FAT32GetDirEntry() simply returns an error.
This is how tftp works. Once the functions are
written bootx.tproj/fs.subproj/fs.c must be mod-
ified to call the new functions.

Internal APIs

This section lists various internal functions:

• CICell Open(char *devSpec);

• void Close(CICell ihandle);

• CICell Read(CICell ihandle, long addr, long
length);

• CICell Write(CICell ihandle, long addr,
long length);

• CICell Seek(CICell ihandle, long long posi-
tion);

• void CacheInit(CICell ih, long blockSize);

• extern long CacheRead(CICell ih, char
*buffer, long long offset, long length, long
cache);

The first five functions are primitives that
wrap OF routines. The CICell returned by Open()
is a device handle, which is used by all the other
functions. The value of addr is a pointer to a
buffer, and the value of length is the length to
be copied to or from the buffer. Seek() jumps to
a specific location in the open device. Finally,
Read() and Write() return the actual lengths of
the operations, or -1 for failure.

The Cache functions should be used for read-
ing metadata from the filesystem.There are sev-
eral examples in the fs.subproj.

Debugging BootX

Debugging BootX cannot be done using con-
ventional debuggers, or even the using the ker-
nel debugger, since it runs before anything else
is loaded. OpenFirmware provides invaluable
resources for debugging. These resources are far
more advanced than most other firmwares (such
as Intel), and can greatly reduce the amount of
time necessary to debug changes to BootX.

BootX: The Mac OS X Bootloader
Page 10

It is preferable to use a two machine debug-
ging setup with BootX. On older machines the
OpenFirmware console is exported on a serial
port, and can be viewed through a terminal em-
ulator on another machine. On newer machines
OpenFirmware will export its console over tel-
net. Apple Technote 2004 describes how to do
this.

There are few other useful debugging tech-
niques. Setting "auto-boot?" to false will cause
the system to enter the OpenFirmware User In-
terface by default. Changing kFailToBoot to 0 in
include.tproj/sl.h will alter BootX’s default be-
havior on error, so that it will return to Open-
Firmware. Finally, calling Enter(), will cause
BootX to drop back into the OpenFirmware User

Interface. This can be used as a break point. The
"dumpl" word will dump some memory, by en-
tering the address, then the length, then "dumpl".
By calling printf in BootX immediately before En-
ter(), the address can be easily determined, and
the variable can then be examined and altered
from OpenFirmware. Finally typing the "go"
command will resume BootX’s execution.

Acknowledgements

I would just like to thank everyone at Apple
who made OS X, and gave me a topic to write
about. I would particularly like to thank Josh de
Cesare, for his excellent work on BootX, as well
as putting up with my incessant prattling.

BootX: The Mac OS X Bootloader
Page 11

Name Nubus Old PCI New PCI Clone Mac OS Mac OS Rom
BootX No Yes Yes Yes No No
BootX (Linux) Yes Yes No Yes Yes Yes
miboot Yes Yes No Yes No Yes
yaboot No Yes Yes Yes No No
ofwboot No Yes Yes Yes No No

Table 1: Supported Hardware

Name Mach-o ELF HFS+ UFS ext2 tftp
BootX Yes Yes Yes Yes Yes Yes
Boot(Linux) No Yes No No Yes No
miboot No Yes No No Yes No
yaboot No Yes No No Yes No
ofwboot No Yes No Yes No No

Table 2: Supported Volume and Binary Formats

static void Start(void *unused1, void *unused2, ClientInterfacePtr ciPtr)
{

long newSP;

// Move the Stack to a chunk of the BSS
newSP = (long)gStackBaseAddr + sizeof(gStackBaseAddr) - 0x100;

asm volatile(”mr r1, %0” : : ”r” (newSP));

Main(ciPtr);
}

Figure 1: BootX Entry Point

BootX: The Mac OS X Bootloader
Page 12

static void Main(ClientInterfacePtr ciPtr)
{

long ret;

ret = InitEverything(ciPtr);
if (ret != 0) Exit();

// Get or infer the boot paths.
ret = GetBootPaths();
if (ret != 0) FailToBoot(1);

DrawSplashScreen();

while (ret == 0) {
ret = LoadFile(gBootFile);
if (ret != -1) break;

ret = GetBootPaths();
if (ret != 0) FailToBoot(2);

}

ret = DecodeKernel();
if (ret != 0) FailToBoot(4);

ret = LoadDrivers(gRootDir);
if (ret != 0) FailToBoot(5);

#if 0
ret = LoadDisplayDrivers();
if (ret != 0) FailToBoot(6);

#endif

ret = SetUpBootArgs();
if (ret != 0) FailToBoot(7);

ret = CallKernel();

FailToBoot(8);
}

Figure 2: BootX Main() Function

BootX: The Mac OS X Bootloader
Page 13

static long CallKernel(void)
{

long msr, cnt;

Quiesce();

printf(”\nCall Kernel!\n”);

msr = 0x00001000;
asm volatile(”mtmsr %0” : : ”r” (msr));
asm volatile(”isync”);

// Move the Execption Vectors
bcopy(gVectorSaveAddr, 0x0, kVectorSize);
for (cnt = 0; cnt ¡ kVectorSize; cnt += 0x20) {

asm volatile(”dcbf 0, %0” : : ”r” (cnt));
asm volatile(”icbi 0, %0” : : ”r” (cnt));

}

// Move the Image1 save area for OF 1.x / 2.x
if (gOFVersion ¡ kOFVersion3x) {

bcopy((char *)kImageAddr1Phys, (char *)kImageAddr1, kImageSize1);
for (cnt = kImageAddr1; cnt ¡ kImageSize1; cnt += 0x20) {

asm volatile(”dcbf 0, %0” : : ”r” (cnt));
asm volatile(”icbi 0, %0” : : ”r” (cnt));

}
}

// Make sure everything get sync’d up.
asm volatile(”isync”);
asm volatile(”sync”);
asm volatile(”eieio”);

(*(void (*)())gKernelEntryPoint)(gBootArgsAddr, kMacOSXSignature);

return -1;
}

Figure 3: BootX Finale

BootX: The Mac OS X Bootloader
Page 14

long DecodeAOUT(void)
{

//The file has been read from disk and stored at kLoadAddr contains
//Determine if the file is a.out, if not return -1
//Otherwise decode kernel and load in memory
//Set KernelEntryPoint to the start of the decode kernel
//return 0

}

Figure 4: BootX Binary Interface

BootX: The Mac OS X Bootloader
Page 15

long FAT32InitPartition(CICell ih)
{

//Test if the device referenced by ih is a FAT32 partition
//If not return -1
//Setup any variables (or cache) necessary
//return 0

}

long FAT32LoadFile(CICell ih, char *filePath)
{

//Read the file from filePath on device ih
//Copy into memory at kLoadAddr

}

long FAT32GetDirEntry(CICell ih, char *dirPath,
long *dirIndex, char **name,
long *flags, long *time)

{
//Return information about the nth file in directory dirPath, where n is dirIndex
//name returns the filename
// flags returns the file type (kUnknownFileType,
//kFlatFileType, kDirectoryFileType, kLinkFileType)
//time returns the modification date of the file
//Return 0

}

Figure 5: BootX Filesystem Interface

BootX: The Mac OS X Bootloader
Page 16

