
Abstract:  Accessing software from web sites is very convienent and fast, that is, un-
less the site you're retrieving from is on the other side of the world or hindered by a very
slow link.  Mirrors have been one solution, but up until now the only easy way you could
run your own mirror was to be Root on a UNIX (or OS-X) box.  This paper will describe
the problems associated with distributing software, both as a developer and as a service
provider (i.e. a web site containing commercial or shareware software).  This paper will
also offer different ideas for solutions:  making use of underutilized CPU and network
bandwidth.  Other forms of Distributed Software Distribution will be discussed, and we’ll
also propose a Software Archive Mirror application that runs on older Macintosh com-
puters.  Using data gathered from this particular package we’ll be able to answer certain
compelling academic questions such as:  Does the physical location between client and
server really matter? Or is it all about where you sit on the network?

Introduction

For over 10 years now, I have been compil-
ing and organizing a public domain and
shareware library of files accessible via the
Internet.  A number of issues that have
come up over these years that have affected
accessiblity.  This paper will attempt to
address accessibility issues and problems
solved by making use of a Distributed
Systems process (or tool) commonly re-
ferred to as a “Mirror”.

To the casual user browing on the Internet,
a Mirror is a ftp server or website (usually
relatively local to its audience) that is
essentially a proxy between the customer
and a Software Library (which we’ll also
call a “Source Site” or “Primary Download
Site”).  A Mirror contains files downloaded
from one or more Software Libraries, and
subsequently made available by the Mirror
for public download.  It’s usually reliably
and routinely updated (although between
updates there certainly could be inconsis-
tencies), and the number of users is signifi-
cantly less than the number accessing the
Primary Download Site.  For example, if a
software author released an update for a

very popular game (like Quake or Bolo), the
Primary Download Sites the author mailed
the file would duly update their files.  As
soon as the game’s fans find out about the
update, these sites could quickly be
swamped with requests to download the
file.

If the software author waits to publicize the
availability of the file about 24 hours after
the file is made available, by then Mirror
sites of the primary download site will have
picked up the file, and the software author
can include a list of maybe 27 additional
locations around the world where game
players can pick up the software update.
For the software provider and the down-
load site, this is accomplished with abso-
lutely no effort, only patience.

To set up a Mirror, one would need a ma-
chine capable of running automated Perl
scripts, access control over the FTP or web
server daemon (to keep users in directories
they’re allowed to be in), and a relatively
high network bandwith.  There have been
some new alternatives released in the recent
past and we’ll talk about them later in this
paper.

Ubiquitous Mirrors:  Turning Clients Into Servers

Michael Dautermann
myke@cs.wayne.edu

Ubiquitous Mirrors - Page 1



Why should we (Software Authors &
regular people, also known as users)
care about Mirrors?  What are typical
problems?

To distribute software, a typical software
author could choose a number of different
options:

1)  They could write “updating” code
directly into the application.  That is, the
user clicks on a “check for update” choice in
the menu and then the software goes out to
ask a single server whether or not an update
is available.  The disadvantages of this
approach are that the server could be down,
the customer might be not on the net or
behind a firewall, and then the customer
actually has to get the software on their
machine in the first place.  The work for
putting this functionality into an application
might also be problematic.

2)  The Operating System could handle the
updating.  For example, the Macintosh OS
has a nifty feature in the Control Panels
folder called “Software Update”.  Getting
ones software registered and placed into in
this Software Update listing might be
difficult to do though (as with many new
techologies Apple releases, the documenta-
tion is very complex), and then we also
have to get the software onto the machine to
begin with (Apple’s “Software Update” is
aimed at commercial distributions).

3)  A software author may choose to make
his/her files available on a single web page
that they own.  The difficulties with this are
that users will have to make do at least one
hop to get to the software, usually through a
Search Engine such as Google or through a
“fake” Software Archive Site such as
www.pure-mac.com; that is, a site that only
lists the official shareware download pages
and doesn’t store any files locally.  Custom-
ers could also “bookmark” this page in their
Browser application, which may or may not

Page 2 - Ubiquitous Mirrors

be likely depending on how lazy the user is
or how lengthy the Bookmark list is on the
customer’s machine.  Author supplied web
page URLs (e.g.
“reallygreatsoftware.html”,
“reallygreatsofwareV2.html”) are
also much more subject to change than
established download sites where one can
look up files by typing in a URL under a
well-known directory hierarchy (e.g.
http://archive.umich.edu/~mac/
util/compression).

4)  To reach a maximum amount of users
effectively, experienced authors of
shareware & freeware release their files to
well known sites such as Info-Mac or
download.com.  The easiest way to do this
is to e-mail one copy of the file to an estab-
lished distribution address (such as
“macgifts@info-mac.org”), which redistrib-
utes the software to a number of locations
that have volunteered to be Primary Down-
load Sites.

Lastly, while the paragraphs in this section
were addressed to authors and users of
shareware, freeware & public domain
software, some of issues may also apply to
the commercial sphere (although for the

Figure 1.  The web server your popular software
can be found on may be under siege (or

swamped)



majority of commercial software, distribu-
tion is usually carried out through shrink-
wrapped boxes in stores and mail-order
catalogs, secure & paid download sites and
much more generous and aggressive mar-
keting which guides customers to the
location that would generate the most
revenue).

Why should a Software Provider care
about Mirrors?  What are typical prob-
lems?

Shareware and freeware archive locations
are typically operations that run on a shoe-
string (or non-existent) budget, typically on
not so state-of-the-art machines.  Con-
versely, the Software Libraries might be
commercial operations (such as
“download.com” or “tucows.com”) which
are loaded down with ads and aren’t easy to
navigate.  Either way, once a Software
Library is established and popular, the
operators of the site will have a number of
problems to worry about.

1)  As illustrated in Figure 1, the library’s
point of entry could be on a single machine
that could be attacked, could crash, or most
likely, be swamped.

2)  The WWW server (or servers) point to
files kept on a single file server.  If the web
server or the file server goes down, accessi-
bility is interrupted.

3)  Even if a Software Library is kept on
multiple webservers on a single network (or
multiple networks), traffic generated can
swamp local networks these servers are
located on.

These problems were solved with the
solution we introduced on the first page.
Enthusiasts and fans of a popular library
site create “Mirrors” distributed across the
Internet.  While these sites certainly help to
distribute the load, when it comes to retriev-
ing updated versions and lists of library

Ubiquitous Mirrors - Page 3

files, mirrors were subject to the same
accessibility problems (if the file server was
down, if the network was swamped) as
regular users.

Why are Mirrors an excellent solution?

Provided you have the right environment to
start with, Mirrors should be very easy to
set up and benefit from (as shown in Figure
2).   Instructions on how to retrieve and
install the Public Domain version of the Perl
scripts that allow Mirroring can be found at
http://www.nottingham.ac.uk/pub/
soar/setting-up-mirror.html.  While
this package is an established tradition, we
now turns our attention to a solution we
would like to offer.  Here are two solutions
we’ll propose:

1)  Writing a public domain, open source
application that can be run on older model
Macintosh computers.  This will allow for
exceptionally easy Mirror creation (i.e. just
install the software, do a quick configura-
tion of the app, and let it go).  It will also be
politically easy (most academic and corpo-
rate departments have old computers lying
around, it’ll also be easier for enthusiasts to
set up these mirrors anywhere they want...
on campus, over DSL lines at home, in
server closets, etc.).  The way we’ll architect

the master site

mirrors

Figure 2.  Mirrors distribute the load



this software will also allow similar pack-
ages to be written for the Windows OS, or
under Java; the idea being that enthusiasts
and users without Root access (e.g. at home)
may want to provide Mirror services.

2)  We would like to glean performance data
from these Mirrors.  Using Browser Cookies
and Traceroute data from selected down-
loads, we’ll attempt to answer these ques-
tions:  How much does Physical Location
matter in relation to file transfers?  How
much does Network Location matter?  This
data will be handy not only to the research
that is being done at the Master Archive
location, but the person running the Mirror
application will be able to view and easily
interpret the throughput logs generated.

How about alternatives to Mirrors?

There are a number of options to be consid-
ered here.

One alternative to mirrors might be to
incorporate “push” technology.  The Master
server would maintain a list of which
updates are maintained on slave mirrors.
This implies that the administration of the
mirrors is either centralized (and corporate),
or whoever owns the Mirror machines
would have very little control or say in how
often files are updated.  This might not be
so much of an issue if files aren’t updated
too often.

Another approach could be to “cache” files
on Distributed Mirror sites, with TTL (time-
to-live) expiration dates on files.  A problem
with this would be that files rarely updated
on the Master file server would be routinely
re-downloaded onto the Mirrors, and then
once a file does get updated, it might take
up to TTL time (a certain number of days)
for the file to become fully propogated out
to all the mirrors.

One viable new project called “FreeNet”
(http://freenet.sourceforge.net)

Page 4 - Ubiquitous Mirrors

has a philosophy much like the World Wide
Web, but with more of a Gnutella-like
anonymous servers & clients sense.  While
Freenet offers huge availability potential,
the drawbacks are that should a site that
offers software choose to remain anony-
mous, the software author won’t be able to
make a contact in order to ask about updat-
ing or deleting old versions of their code (or
worse, tracking down or removing cracked
versions of the shareware).

How does a Library need to be setup in
order to be Mirrored?

It doesn’t really matter where the Master
copy of the library lives.  There is a library
on the M.I.T. campus, the library can live on
the Wayne State campus, the one I’m think-
ing of lives at U-M in Ann Arbor.

It also doesn’t matter what is in the library.
It needs to have compelling content (so as to
attract customers from which we can com-
pile good data).  The library I have in mind
(The Software Archives found at
www.umich.edu/~ archive) contains
public domain & shareware software for
Macintosh, for Microsoft Windows, for X/
Motif Windows, etc.

anonymous ftp
access

web access
via Apache

perl scripts  
via crontab

different processes

Figure 3.  Mirrors are traditionally a collection
of cooperating processes on a UNIX machine



To be mirrored most efficiently, the mini-
mum thing that should be done is for a
primary download site (the site the Mirror is
retrieving files from) to regulary generate a
recursive list of available files with
timestamps.  This can be easily done by
putting a script with the command “ls -lR”
into a crontab file.

When a Mirror machine connects to the
server it’s mirroring from to do a regular
update, the first thing it does is retrieve the
generated filelist.  The Perl script then
compares timestamps and additions/
deletions to the filelist with what’s found on
the local filesystem.  The script is then able
to build a list of files that need to be
syncronized between the Mirror and the
remote master library.

How would our proposed Mirror package
be different?

There are a number of limitations with the
public domain “Mirror” package.  As stated
before, the currently available package
depends on a number of processes working
correctly on the server (see Figure 3).  A
person interested in administrating a Mirror
should also be an experienced System
Administrator, and they would also need to
be “root” on the machine where the Mirror
will be running from.  Another limitation is
that the mirror service usually has to be
highly available (well connected, on a rack
of machines in a server room) in order for it
to be useful.

While implementations of Perl exist for
other platforms beyond UNIX, robust FTP
and HTML servers aren’t necessarily up to
the challenge of co-existing with running
Perl processes.

One overall goal of this paper is to produce
an application architecture which will allow
the average enthusiast & computer user to
set up his or her own Mirror site using
underutilized machines (especially ones that

Ubiquitous Mirrors - Page 5

would otherwise be turned off and gather-
ing dust in a closet).  In the application, we
hope to combine the tasks of updating the
local filesystem with an object oriented
HTML (and possibly FTP) server.  The code
would be written in C++, although it would
be architected so it could also be easily
written in the more universal language of
Java.  A primary difference is that while a
public domain Mirror package is dependent
on a number of disparate processes running
correctly and working together, our new
Mirror application would be one main
process, incorporating a main loop (using
pre-MacOS X WaitNextEvent polling),
user-enabled options and schedules.  Each
customer’s file transfer would spawn off in
a new thread, thereby keeping the applica-
tion loop as uncluttered as possible.

Because this application could be run at
home or on a machine in a server closet, it
would also might be desirable to add in
access limits for certain times of the day.
For example, a machine at a Mirror
provider’s home on a DSL/cable-modem

scheduled updates

ftp server

web server

thread 1
retrieving 
Bolo maps

thread 2
retrieving Photoshop 
plugins

a customer 
requested Bolo 
maps

thread 3
retrieving 
font sets

Figure 4.  A Mirror app combines scheduling
updates, with a ftp & web server



connection could provide more access
during the day, when the owner is away at
work.  Machines at businesses may want to
provide more access at night, when the local
network isn’t so congested.  In either case, a
machine that has hit user-defined limits can
return the proper 400-series HTTP error
(“4XX - Server too busy, try back later”).  In
fact, the error page returned could refer a
user to another server that may be more
available at that time (the links on this error
page would be static, although creating a
dynamic ally updated list of links would
require programming effort and any algo-
rithm might not be efficient under a ma-
chine that has hit system or user-defined
limits).

Another benefit from our proposed package
would be the possibility of massive replica-
tion; that is, while a typical software archive
site might have a maximum of 30 or 40
machines dedicated to mirroring, our new
package will enable anyone to set up a
mirror and theoretically, we could see
hundreds of mirrors of a popular web site
using this software.  If one mirror close to a

user is down (due to a network or power
outage), chances are very good another
mirror will be nearby and available to
download the files from.

Why and how our proposed Mirror appli-
cation would use cookies?

If the Mirror provider chooses to mirror our
preferred Master file server (the Software
Archives at the University of Michigan), we
will be able to generate data that will allow
us to answer a number of useful questions.

The transaction process of a Mirror file
transfer is illustrated in Figure 5.  The first
step in this process (step 1 in the figure)
begins when an Archive user goes to the
Software Archives main website in Michi-
gan.  While the user will have the ability to
download software directly from the Master
site, the site should offer up a list of mirrors
that might be closer and faster (this would
be step 2 in the figure).  At the same time,
the Master site will detect whether or not
the user has been to the website before (by
the existence of a cookie); if the cookie
doesn’t exist, the website will redirect the
user to a page where the user will be asked
for geographical location data.  Users will
also be given the option to opt-out, as well.
All cookies will expire at the end of the
research period (presently scheduled for
December 1st, 2001).

If the user agrees to typing in geographic
data, the cookie would probably only need
two or three fields, and could be kept as a
text type (so it could be easily viewed and
verified from by the user).  For example, a
cookie on my machine would say:

MirrorUserCountry = US
MirrorUserCityState =

Farmington Hills, MI
MirrorUserZip = 48336

Because of Security considerations by
Browser developers, cookies can only be

Page 6 - Ubiquitous Mirrors

master archive

mirrors

clients

1 2

3
4

5 6

Figure 5.  The order of events



read by the domains they’re intended to be
used by.  For example, when a cookie is
created, we must specify a domain of
“cs.wayne.edu” when we want the cookie
parameters to be sent back to a web server
in the cs.wayne.edu domain.  To create
cookies for the Mirrors, the Software
Archive will need to have a list of mirrors
(which we’ll generate manually, because no
matter how optimistic and enthusiastic a
Mirror administrator could be, a human
would have to evaluate the Mirror site’s
availability; sometimes Mirrors are simply
not reachable or reliable over the intercon-
nected networks).

For each “blessed” (i.e.verified & approved)
mirror application that we know is running
our package, we will create a cookie that
contains the parameters that we want to
send back to that specific Mirror applica-
tion.

When the customer accesses files through a
mirror (steps 3 and 4 in Figure 5), our
Mirror application would detect whether
cookies are being sent back by a user.  With
these cookies, we’ll be able to do two very
useful things:  log the data throughput for
the file transfers, and do the equivalent of a
network traceroute to determine the num-
ber of hops the data has to make to get to
the user’s location.  While we can easily log
the throughput of data on each file transfer,
doing traceroutes over the network is
somewhat more CPU intensive and the
application should only do it on a random
or proportional basis.

Each time the Mirror logs into the Software
Archives to update and retrieve new files
(listed as step 6 in the figure; on first use,
this would obviously be step 1), it can
deposit the log files into a “research results
archive” and zero out its internal database
& counters (listed as step 5 in the figure).
With the data that is gathered by the distrib-
uted Mirrors, we’ll be able to measure how
efficiently a user was able to retrieve files

Ubiquitous Mirrors - Page 7

from the distributed application.

For example, one can easily assume that a
customer in Iowa can retrieve files faster
from a Mirror also located in Iowa; but does
the type of network the customer uses
matter?  Or is the transfer between the Iowa
Mirror and the Iowa customer dependent
and throttled by a link in another, remote
state (such as New York)?  As an example,
Figure 6 shows an actual traceroute between
a website in Michigan to another client in
Michigan.  The person downloading from
Michigan probably would have gotten a
faster download had s/he connected to a
mirror in New York City.

terminator-myke:; traceroute 166.90.254.107
traceroute to 166.90.254.107 (166.90.254.107),

30 hops max, 40 byte packets

 1  v-umce-rsug.c-arb4.umnet.umich.edu
 2  pc-arbrlks2.c-arb2.umnet.umich.edu
 3  atm3-0x8.michnet8.mich.net
 4  63-149-0-185.cust.qwest.net
 5  chi-core-01.inet.qwest.net
 6  jfk-core-02.inet.qwest.net
 7  jfk-brdr-01.inet.qwest.net
 8  pos1-1.core1.NewYork1.Level3.net
 9  so-4-0-0.mp1.NewYork1.level3.net
10  so-0-2-0.mp2.Detroit1.level3.net
11  gig9-1.hsa1.Detroit1.level3.net
12  166.90.248.22
13  es2-nrp7-atm0-0-0-s1.sfldmi.bullseyetelecom.net

14  ip166-90-254-107.sfldmi.bullseyetelecom.net

Figure 6.  A Traceroute between
a web server and a client

Many U.S. websites already point European
users to European mirrors and vice versa.
Doing random traceroutes like this may
help us to programatically determine and
suggest to a user that a Mirror in New York
state would be faster to an Iowa customer
than a mirror physically located in Iowa.
These are examples of questions that would
be interesting (and useful) to answer.


