
The PalmOSnomicon, page 1

The PalmOSnomicon ••••
Rainer Brockerhoff

<rainer@brockerhoff.net>
http://www.brockerhoff.net/

Abstract : A shadowy client hires Our Hero to write a Palm Application; the mad scrib-
blings of a deranged programmer surface; Our Hero goes "by the docs" into the nether
regions and narrowly avoids doom; the eldritch denizens of the Palm OS appear menac-
ingly; St. Bjarne appears in a fever dream and mutters "pure virtual functions"; the ulti-
mate doom is beaten back in the last moments by the power of Object-Oriented
Programming and Our Hero survives to write another paper.

• Or "The Virtual Call of Cthulhu", or "Up Palm Crick Without a Stylus", or "12 Easy Steps to the
Forms of Madness", or "Programming for the Palm OS With One Cerebral Hemisphere Tied Be-
hind Your Back". Pick your favorite title!

A Shadowy Client

It was a dark and stormy night1, and the
acoustic effects in the gloomy meeting
room were definitely unsettling. I
squinted at the shadowy figure across
the large table but no appreciable reso-
lution enhancement ensued. I cleared
my throat with some impatience. “Some
fancy headgear you have there”, I com-
mented. “First time I’ve ever seen a ten-
tacled propeller beanie.”

“Beanie…?” he said in a puzzled tone.
The thing on his head (or was it his
head?) seemed to squirm unpleasantly.
“But never mind. I hear you know
something about Palm programming?”
he asked.

“I’ve got loads of experience with em-
bedded 68K processors; and I’ve got a
copy of CodeWarrior for the Palm Pilot

stashed away somewhere,” I said. “Not
that I’ve had much time to look at it,
though.” A roll of thunder was an-
swered by a chittering noise behind me.

He went on, “We need this application
done ASAP, and the fellow we origi-
nally had on the project met with —
well, let’s call it a little trouble.” With
that, he slid a battered-looking Palm
across the table.

I’d never seen this model before. I
poked at it with a finger. “Say, doesn’t
this green goo on the touchscreen void
the warranty? And what sort of trouble
do you mean, anyway?”

The chittering behind me seemed to
swell, and a flock of vaguely bat-like
creatures flew from under the table to
perch on the guy’s shoulders. He hissed
at them in annoyance. “He delivered a

The PalmOSnomicon, page 2

beta version, but failed to get the shog-
goths2 out in time,” he rumbled.

Figure 1 3

 “Shoggoths… you mean bugs, I sup-
pose? I want the original specs and the
beta source code, then. You know my
rates for a rush job?” His answer was
drowned out by another roll of thunder,
and some more goo splattered down
from the ceiling. A rustling noise came
from under the table. He drummed his
fingers impatiently on the table, waiting
for things to settle down. “Come on,” he
finally growled, “let’s reset to the stan-
dard appearance. This is getting quite
annoying.”

“Oh well,” I conceded, and fumbling the
remote out of my pocket, pressed the
‘default’ button. The room brightened
and the shadowy figure morphed into a
rather large man in a business suit, the
tentacles fading into somewhat unruly
graying hair. The chittering was

drowned by the hum of an air condi-
tioner. “I suppose H.P. Lovecraft’s es-
tate wouldn’t be too happy about this,
anyway — and the readers probably
won’t like source listings in Pnakotic
script. So what were you saying?”

He handed me a large folder with some
relief. “Here are the specs, and the other
guy’s source code. He started out well
enough but then couldn’t handle it
when we asked for revisions.”

“I’ll do my best,” I promised.

The Dreaded Spaghetti Code

The next day, I looked at the existing
code. When the original Palm Pilot came
out I’d bought one in a package deal
with a bundled copy of CodeWarrior4.
Although I’ve never quite gotten around
to doing something useful with either
one, I had installed the updates and
downloaded SDK version 3.5 from
Palm’s site5.

(From here on, I’ll assume that you have
the latest6 CodeWarrior and Palm OS
SDK installed, as well as some experi-
ence with C/C++ and the Palm OS.)

Checking the other guy’s code with the
Palm OS documentation, as well as with
the example apps in the SDK, I could
see that something strange was going
on. Where the example apps had several
forms using standard user interface ob-
jects, his application had a single empty
form and he inserted all UI objects dy-
namically whenever he needed to. The
object’s positions were hard-coded, and
an example database was set up from an
array of structures with a couple of
pages of initialization text.

Tossing the listing away with some dis-
taste, I decided to go “by the book” and

The PalmOSnomicon, page 3

redo the application completely, starting
from the skeleton C application gener-
ated by the CodeWarrior stationery.
Why C and not C++? Well, I instinc-
tively shied away from imposing object
and exception overhead upon a hand-
held application — also, all non-trivial
examples I found were in C. A mistake,
as we’ll learn later on.

The general structure of the C skeleton
is quite simple. We have a main() rou-
tine, an AppHandleEvent() routine, and an
AppEventLoop() routine, as well as some
others. I’ll refrain from going into the
details here, as they’re quite well ex-
plained in the Palm OS documentation.

Everything looked quite reasonable to
me, but as I’d never actually pro-
grammed for the Palm OS I decided to
go the “gradual top-down” route. That
is, I defined an initial form, set up the
event handler stubs with a debugger
break point, and verified that events
were being received at the proper
points. I then gradually wrote more
complex actions into the stubs, asymp-
totically approaching whatever the pro-
gram was supposed to do.

A Saintly Apparition

Without boring you with unnecessary
details, I spent about two weeks design-
ing forms and writing code. It all
seemed quite straightforward, and
while there were several tricky points
handling the Palm’s way of doing data-
bases, or coping with the limited
amount of dynamic memory available,
everything seemed to be going well.

Nevertheless, as I slowly hacked away
at the product specification, things be-
gan to slow down. Nearly every form
seemed to be a list of something or
other, but there were subtle differences

between each list. I implemented those
using table objects. Most of the lists had
more lines than could fit on the screen,
so I had to consider scroll bars and
switch the table data around according
to what was visible. The table API is
very complex and many calls have to be
made, declaring item handlers, marking
rows and columns as visible, and so
forth.

This was especially aggravating since
my table had only one column, a vari-
able number of rows, and the standard
text item format did not look like I
wanted it to. For instance, my main
form initialization routine at this point
looked as follows:

void MainFormInit
(FormPtr frmP) {
Int32 i;
theTable = GetObjectPtr

(MainNumberTable,frmP);
rows = TblGetNumberOfRows(theTable);
TblGetBounds(theTable,&bounds);
for (i=0;i<rows;i++) {

TblSetRowUsable(theTable,i,false);
TblSetItemStyle

(theTable,i,0,customTableItem);
TblSetCustomDrawProcedure

(theTable,0,&DrawNumberItem);
TblSetRowStaticHeight

(theTable,i,true);
TblSetRowHeight(theTable,i,24);
TblSetItemStyle

(theTable,i,1,labelTableItem);
}
TblSetColumnUsable(theTable,0,true);
TblHasScrollBar(theTable,true);
CheckAndRedrawMainForm();

}

Of course, I had to write a custom table
item draw handler (DrawNumberItem() (),
and rather complicated scrolling and
updating routines.

As things progressed — or, rather, failed
to progress satisfactorily — I found my-
self battling the same bugs over and
over again, in slightly different varia-
tions. Finally, after a particularly un-
productive weekend, I was ready to
throw in the towel. Working over the
code while tossing and turning in bed —

The PalmOSnomicon, page 4

something which endears me no end to
Vitamin C manufacturers, but not to my
wife — I sank into an uneasy sleep. If
dreams only had Internet access capabil-
ity…

When I woke in the morning, I had a
vague memory of St. Bjarne Stroustrup
appearing to me and muttering some-
thing Scandinavian; the only phrase I
could remember was “pure virtual func-
tions”. Hmmm… perhaps I had been
barking up the wrong tree with my in-
sistence on C?

I rushed to the computer, hooked up a
caffeine IV drip, and set the “Activate
C++” and “C++ Exceptions” flag in my
project preferences. Fortunately I tend to
code C in a style which avoids most
things not understood by a C++ com-
piler, so after a few minutes of editing
everything compiled and ran OK.
Sprinkling some throw/catch pairs
around the initialization code didn’t
seem to increase object code size appre-
ciably.

The Magic of Objects

Looking again at my several screen
forms, I first decided to implement a
general List class with subclasses han-
dling each special case. To get maxi-
mum flexibility I would use a Gadget
form object to represent the whole list
on the form, instead of using tables.
Since all lists were single-column lists, I
would implement a pure virtual
DrawItem() function which every subclass
would implement to draw that specific
subtype of list item.

With some abridgements, my first try at
the List class declaration looked like
this:

class List {

public:
List(
FormPtr frmP,
UInt16 gadgetID,
Int16 maxItems);

virtual ~List();
virtual Int16 SetCurrent(

Int16 theItem);
Int16 GetCurrent() const;
Boolean Draw();

protected:
static Boolean ListGadgetHandler(

FormGadgetType *gP,
UInt16 cmd,
void *paramP);

virtual void DrawItem(
Int16 theItem,
RectangleType& rect,
Boolean selected)=0;

Int16 mMaxItems;
Int16 mCurrentItem;

}

In the public part, there’s a constructor
which gets the form pointer, the ID of
the gadget form object, and the maxi-
mum number of items in the list. There
are accessor functions to set and get the
currently selected list item, and a Draw()
function which redraws the list when-
ever needed.

In the private part there’s a static event
handler for the gadget, which just calls
the current list’s Draw() function, and the
pure virtual DrawItem() function.

Having written this, I proceeded to
write the appropriate List subclasses
for each form. I won’t go into details;
there was some backing, filling, tweak-
ing, and hacking, mainly to handle list
scrolling, but all in all everything
seemed to be working out fine this
time…

…until, at our weekly meeting, my cli-
ent suddenly said: “How about a pop-
up menu right here…?” I squinted to see
what he was pointing at. “What, right
on my secondary auxiliary infra-sub-
detail list??” I yelped. “Absolutely no
way, or rather, that would entail a sub-
stantial delay, not to speak of the budget
overrun!”

The PalmOSnomicon, page 5

He looked annoyed. “Shouldn’t that be
just an easy afternoon’s work with those
marvelous virtual object thingies you
were so enthusiastic about? And it
would be much easier to use, you know;
you’ll get fewer support calls.”

“Give me a day to think about it, then,”
I conceded reluctantly.

Objectively Doing Generic Objects

Back at my computer, I considered how
to cope with this newest spec change.
After some fiddling around with the
standard Palm popup objects, I realized
that a redesign of my basic object hierar-
chy would be more productive — and
coincidentally would also simplify my
interface to scroll bars.

In the new scheme of things, I wrote a
generic Object class to encapsulate a ge-
neric Palm user interface object. My
former List class would become a sub-
class of Object, and other subclasses
would encapsulate scroll bars and
popup menus. After a sleepless night,
my base class looked like this:

enum objRes {
objNotHandled,
objHandled,
objBreak

};

class Object {
public:

Object
(FormPtr frmP,
UInt16 objectID,
Boolean show=true);
Object
(RectangleType* rect);

virtual ~Object();
virtual void SetBounds

(RectangleType* bounds);
virtual void GetBounds

(RectangleType* bounds)
const;

virtual Boolean Draw();
virtual void Show();
virtual void Hide();
Int16 GetFormObjectIndex()

const;
virtual objRes HandleEvent

(EventPtr eventP,
Object*& object);

Object* GetObject();
static Boolean HandleObjectChain

(EventPtr eventP);
static Object* GetDoubleTap();
static void SetLastDown

(Object* object);
Boolean DoubleTap();

protected:
RectangleType mRect;
FormPtr mForm;
void* mObject;
Int16 mObjectIndex;

private:
Boolean PtInRect

(Coord x,Coord y);
Object* GetNextObject()

const;
Object* mNext;
Object* mPrevious;
static UInt32 sLastMove;
static Object* sObjectChain;
static Object* sLastDown;
static Object* sDoubleTap;

};

(And yes, I promise this is the actual lat-
est working version!) Let’s look at each
part of this in turn. The objRes enumera-
tion is used to define the return type of
the event handlers; more about this later
on. There are two Object constructors:
one for encapsulating a Palm user inter-
face object, and one for simply defining
a rectangular part of the display as a
custom interface object. The first con-
structor is as follows:

Object::Object
(FormPtr frmP,
UInt16 objectID,
Boolean show) {
mForm = frmP;
mObjectIndex = FrmGetObjectIndex

(mForm,objectID);
if (mObjectIndex<0) {

throw(appErrorClass);
}
mObject = FrmGetObjectPtr

(mForm,mObjectIndex);
if (mObject==NULL) {

throw(appErrorClass);
}
mNext = sObjectChain;
mPrevious = NULL;
if (sObjectChain) {

sObjectChain->mPrevious = this;
}
sObjectChain = this;
FrmGetObjectBounds

(mForm,mObjectIndex,&mRect);
if (show) {

Show();
}

}

The PalmOSnomicon, page 6

This is very straightforward. The ob-
ject’s index and pointer are obtained
and stored; the new Object is inserted
into the chain of objects pointed to by
sObjectChain; the object’s bounds are ob-
tained, and the object is drawn if neces-
sary. Let’s now look at the other
constructor:

Object::Object
(RectangleType* rect) {
mForm = NULL;
mRect = *rect;
mObjectIndex = -1;
mObject = NULL;
mNext = sObjectChain;
mPrevious = NULL;
if (sObjectChain) {

sObjectChain->mPrevious = this;
}
sObjectChain = this;

}

This is even simpler, handling only the
object chain, and setting other fields to
null values. Other details are left to the
derived classes’ constructor. The Object
destructor is:
Object::~Object() {

Hide();
if (sLastDown==this) {

sLastDown = NULL;
}
if (sDoubleTap==this) {

sDoubleTap = NULL;
}
if (mPrevious) {

mPrevious->mNext = mNext;
} else {

sObjectChain = mNext;
}
if (mNext) {

mNext->mPrevious = mPrevious;
}

}

The destructor hides the object from
view and unchains it from the object
chain. Next, let’s look at a whole bunch
of shorter routines:

Object* Object::GetNextObject() const {
return mNext;

}

Boolean Object::Draw() {
if (mObjectIndex>=0) {

FrmShowObject(mForm,mObjectIndex);
return true;

}
return false;

}

void Object::Show() {
if (mObjectIndex>=0) {

FrmShowObject(mForm,mObjectIndex);
}

}

void Object::Hide() {
if (mObjectIndex>=0) {

FrmHideObject(mForm,mObjectIndex);
}

}

Object* Object::GetDoubleTap() {
return sDoubleTap;

}

void Object::SetLastDown
(Object* object) {
sLastDown = object;

}

Boolean Object::DoubleTap() {
return this==GetDoubleTap();

}

void Object::SetBounds
(RectangleType* bounds) {
mRect = *bounds;
if (mObjectIndex>=0) {

FrmSetObjectBounds
(mForm,mObjectIndex,&mRect);

}
}

void Object::GetBounds
(RectangleType* bounds) const {
*bounds = mRect;

}

Int16 Object::GetFormObjectIndex()
const {
return mObjectIndex;

}

Object* Object::GetObject() {
return this;

}

Boolean Object::PtInRect
(Coord x,Coord y) {
return RctPtInRectangle(x,y,&mRect);

}

objRes Object::HandleEvent
(EventPtr eventP,Object*& object) {
return objNotHandled;

}

These are practically self-explanatory (I
hope). The HandleEvent routine will
nearly always be overridden by a de-
rived class, of course. Finally, we’ll look
at the routine that makes everything
work together: the event handler. This is

The PalmOSnomicon, page 7

critical, so I’ll interpolate the explana-
tions into the code, for a change.

Boolean Object::HandleObjectChain
(EventPtr eventP) {
Object* object=sLastDown;
Object* next=NULL;
UInt32 now=TimGetTicks();
eventsEnum t=eventP->eType;
switch (t) {
case penMoveEvent:

if ((now-sLastMove)<25) {
return false;

}
sLastMove = now;
// fall into next case

penMoveEvents are restricted to 4 per sec-
ond, which will slow down things when
the user drags the pen around.

case penUpEvent:
if (sLastDown&&

(sLastDown->HandleEvent
(eventP,object)==objHandled)) {

sDoubleTap = NULL;
return true;

}
sDoubleTap = NULL;
return false;

Both penMoveEvents and penUpEvents are
handled only if the same object received
a penDownEvent before — as you’ll see, the
sLastDown variable always points at the
last object which actually handled that
event.

default:
object = sObjectChain;
while (object) {

next = object->GetNextObject();
if ((t!=penDownEvent)

||(object->PtInRect
(eventP->screenX,
eventP->screenY))) {

Any generic event is handled by iterat-
ing down the chain of Objects, which are
in order of creation — latest first.
penDownEvents are handled only if the pen
actually was inside the Objects boundary
rectangle.

switch
(object->HandleEvent

(eventP,object)) {
case objHandled:

switch (t) {
case penDownEvent:

sDoubleTap =
(eventP->tapCount>1)

&&(sLastDown==object)
?object:NULL;

sLastDown = object;
sLastMove = now;
break;

case penUpEvent:
sLastDown = NULL;
break;

default:
break;

}
return true;

case objBreak:
sDoubleTap = NULL;
return false;

}
}
object = next;

}
break;

}
sDoubleTap = NULL;
return false;

}

If a penDownEvent event has been han-
dled, sLastDown will point at the object
until it accepts a penUpEvent. The
sDoubleTap variable will point to the ob-
ject which received the last double pen
tap; this will usually be checked by call-
ing the DoubleTap() routine.

How does all this fit into a normal ap-
plication? Here’s a typical form event
handler using a derived ListObject class:

Boolean MainFormHandleEvent
(EventPtr eventP) {
static ListObject* list=NULL;
EventType evt;
Boolean handled = false;
FormPtr frmP = FrmGetActiveForm();
switch (eventP->eType) {
case penDownEvent:
case penMoveEvent:
case penUpEvent:
case sclRepeatEvent:

handled = Object::HandleObjectChain
(eventP);

if (list->DoubleTap()) {
// handle double pen tap;

}
break;

case frmOpenEvent:
list = new ListObject(frmP);
FrmDrawForm(frmP);
handled = true;
break;

case frmCloseEvent:
delete list;
break;

}
return handled;

}

The PalmOSnomicon, page 8

The advantage of using a basic Object
class is now apparent. Derived classes
need only override HandleEvent() to han-
dle pen taps, and Draw() should they
wish to provide some custom graphical
appearance.

It Scrolls! It Slices! It Dices! With
Optional User-Installable Self-
Powering Field-o-Matic ® © ™ At-
tachment!

My former unsightly scroll handling
was now simplified by encapsulating
the scroll bars inside a ScrollObject, like
this:

class ScrollObject:public Object {
public:

ScrollObject
(FormPtr frmP,
Object* master,
UInt16 objectID,
Boolean ver,
Boolean show=true);

virtual ~ScrollObject();
void AdjustBounds

(Boolean show);
void SetScroll

(Int16 value,
Int16 minv,
Int16 maxv,
Int16 psize);

ScrollBarType* GetFormObject()
const;

protected:
virtual objRes HandleEvent

(EventPtr eventP,
Object*& object);

Object* mMaster;
Boolean mVertical;

};

ScrollObject::ScrollObject
(FormPtr frmP,
Object* master,
UInt16 objectID,
Boolean ver,
Boolean show)
:Object(frmP,objectID,false) {
if (master==NULL) {

throw(appErrorClass);
}
mVertical = ver;
mMaster = master;
SetScroll(0,0,0,0);
AdjustBounds(show);

}

ScrollObject::~ScrollObject() {
RectangleType rect={{0,0},{0,0}};
SetBounds(&rect);

}

ScrollBarType*
ScrollObject::GetFormObject()
const {
return (ScrollBarType*)mObject;

}

void ScrollObject::SetScroll
(Int16 value,
Int16 minv,
Int16 maxv,
Int16 psize) {
SclSetScrollBar(

GetFormObject(),
value,minv,maxv,psize);

}

void ScrollObject::AdjustBounds
(Boolean show) {
RectangleType rect;
mMaster->GetBounds(&rect);
if (mVertical) {

rect.topLeft.x += rect.extent.x;
rect.extent.x = 7;

} else {
rect.topLeft.y += rect.extent.y;
rect.extent.y = 7;

}
SetBounds(&rect);
if (show) {

Show();
}

}

objRes ScrollObject::HandleEvent
(EventPtr eventP,
Object*& object) {
switch (eventP->eType) {
case penDownEvent:
case penMoveEvent:
case penUpEvent:

return SclHandleEvent
(GetFormObject(),eventP)?
objHandled:objNotHandled;

break;
case sclRepeatEvent:

return mMaster->HandleEvent
(eventP,object);

}
return objNotHandled;

}

Now, part of my scrollable ListObject
constructor does the following:

ListObject::ListObject
(FormPtr frmP,
UInt16 gadgetID,
UInt16 scrollID,
Int16 maxItems,
Boolean show)
:Object(frmP,gadgetID,false) {
. . .
if (scrollID>0) {

mScroll = new ScrollObject
(frmP,this,scrollID,true,false);
mScrollIndex =

The PalmOSnomicon, page 9

mScroll->GetFormObjectIndex();
} else {

mScrollIndex = -1;
mScroll = NULL;

}
}

This attaches the ScrollObject to the
ListObject, and keeps it always at tits
right, even if the ListObject is moved
around. Other ListObject routines also
take the ScrollObject into account:

ListObject::~ListObject() {
delete mScroll;

};

void ListObject::Show() {
Object::Show();
if (mScroll) {

mScroll->Show();
}

}

void ListObject::Hide() {
Object::Hide();
if (mScroll) {

mScroll->Hide();
}

}

void List::SetBounds
(RectangleType* bounds) {
Object::SetBounds(bounds);
if (mScroll) {

mScroll->AdjustBounds(false);
}

}

and, finally, ListObject::HandleEvent()
calls mScroll->SetScroll() with the ap-
propriate parameters whenever a
sclRepeatEvent is received, to implement
live scrolling. The sclRepeatEvent handler
also should return objBreak to pass the
event to the Palm OS’ scroll bar redraw-
ing routines.

As a final example, let me show you
how an editable text field would be im-
plemented:

class EditObject:public Object {
public:

EditObject
(FormPtr frmP,
UInt16 textID,
MemHandle text);

virtual ~EditObject();
FieldType* GetFormObject()

const;
void UpdateScroll();
virtual objRes HandleEvent

(EventPtr eventP,
Object*& object);

virtual void Show();
virtual void Hide();

protected:
ScrollObject* mScroll;

};

EditObject::EditObject
(FormPtr frmP,
UInt16 textID,
MemHandle text)
:Object(frmP,textID,false) {
FldSetText(

GetFormObject(),text,4,
MemHandleSize(text));

mScroll = new ScrollObject
(frmP,this,textID,true,false);

UpdateScroll();
Show();
FrmSetFocus(frmP,mObjectIndex);

}

EditObject::~EditObject() {
Hide();
FldSetText(GetFormObject(),NULL,0,0);
delete mScroll;

}

void EditObject::Show() {
Object::Show();
if (mScroll) {

mScroll->Show();
}

}

void EditObject::Hide() {
Object::Hide();
if (mScroll) {

mScroll->Hide();
}

}

void EditObject::UpdateScroll() {
UInt16 scrollPos,

textHeight,fieldHeight,
maxValue,blkLines;

if (mScroll) {
blkLines = FldGetNumberOfBlankLines

(GetFormObject());
if (blkLines>1) {

FldScrollField
(GetFormObject(),
blkLines-1,winUp);

blkLines = FldGetNumberOfBlankLines
(GetFormObject());

}
FldGetScrollValues
(GetFormObject(),

&scrollPos,&textHeight,&fieldHeight);
if (textHeight>fieldHeight) {

maxValue =
textHeight-fieldHeight+blkLines;

} else if (scrollPos) {
maxValue = scrollPos;

} else {
maxValue = 0;

}
mScroll->SetScroll

(scrollPos,0,maxValue,
fieldHeight-1);

The PalmOSnomicon, page 10

}
}

FieldType* EditObject::GetFormObject()
const {

return (FieldType*)mObject;
}

objRes EditObject::HandleEvent
(EventPtr eventP,Object*& object) {
Int16 delta;
objRes result;
switch (eventP->eType) {
case sclRepeatEvent:

delta =
eventP->data.sclRepeat.newValue
-eventP->data.sclRepeat.value;

if (delta) {
if (delta>0) {
FldScrollField

(GetFormObject(),delta,winDown);
} else if (delta<0) {

FldScrollField
(GetFormObject(),
-delta,winUp);

}
UpdateScroll();

}
return objBreak;

case fldChangedEvent:
UpdateScroll();
return objHandled;

case penDownEvent:
case penMoveEvent:
case penUpEvent:

FldHandleEvent
(GetFormObject(),eventP);

return objHandled;
default:

result = FldHandleEvent
(GetFormObject(),eventP)
?objHandled:objNotHandled;

}
return result;

}

Nearly all of this is straight out of the
text field examples; a detailed explana-
tion should be unnecessary.

Popup Magic

And what of my original Palm OS ap-
plication? All of the various scrolling
lists were easily rewritten as specialized
ListObject subclasses. Even the dreaded
popup menus were implemented as just
another ListObject, with an interesting
twist — my PopupMenuList constructor
ends with:

Object::SetLastDown(GetObject());

which is very convenient, in that it al-
lowed me to call new PopupMenuList()
from the main list’s penDownEvent han-
dler.

If you’ll examine the previous listings
with some care, you’ll see that the new
popup object is thereby enabled to han-
dle subsequent penMoveEvents. This in
turn allows the user to place the pen on
the main list to invoke the popup menu,
and drag to one of the menu items; the
menu’s event handler destroys the
popup when it receives the penUpEvent.
Implementing a popup with standard
Palm OS user interface controls would
require three pen taps.

I’ll spare you the sordid details about
how I, flushed by my success, pro-
ceeded to implement buttons and dia-
logs using Objects.

Let’s just say that the story had a belated
happy end: the application came out
well, if somewhat behind schedule, and
several further last-minute requests
were handled very quickly — all thanks
to the power of objects, derived classes,
and that sort of thing.

Acknowledgements

Many thanks to Andrew S. Downs,
long-suffering editor/paper chair for
MacHack 2001, for his invaluable sug-
gestions, and of course to the hundreds7
of fans who begged me to publish an-
other paper.

Further References

The Objects I’ve detailed could, and per-
haps will, in the future, be used as the
basis for a simple Palm application
framework… PalmPlant, maybe? Just
kidding, Metrowerks! I’ve searched the
Internet for frameworks (after I’d done

The PalmOSnomicon, page 11

all the work on my own — drat!) and
found only the following two:

Teenee8 is a freeware application
framework for C++ programmers that
focuses on usability and safe memory
management.

Bear River's PAF9 is an Enterprise ap-
plication framework, especially for lar-
ger applications for business and
government. It provides support for

user interface widgets, streams, TCP/IP
and scanning.

Both are much more complete, of
course, and focus only in passing on
user interface handling. They’re free
under certain conditions and should
probably be looked at by anybody wish-
ing to do a more complex application in
C++ for the Palm OS.

1 See http://www.bulwer-lytton.com/ for similar starting lines.

2 Check out the H.P. Lovecraft archive at http://www.hplovcraft.com/ for the original gooey
stuff.

3 All similarities to extant clients, octopi, palms. Palm trees or Palm™s without a satirical purpose
are purely coincidental and unintended. The Statue of Cthulhu is ©copyright by Steven Roach,
whom I was unable to contact in any way. Palm Computing, Palm OS, Graffiti, HotSync, and
Palm Modem are registered trademarks, and Palm III, Palm IIIe, Palm IIIx, Palm V, Palm Vx,
Palm VII, Palm, More connected., Simply Palm, the Palm Computing platform logo, Palm III
logo, Palm IIIx logo, Palm V logo, and HotSync logo are trademarks of Palm, Inc. or its subsidiar-
ies. All other product and brand names are or may be trademarks or registered trademarks of
their respective owners. The “Cthulhu Runes” font is ©copyright by Flat Earth, Inc, and may be
downloaded for free from http://flatearth.com/fonts/cthulhu.zip.

4 Found, of course, at http://www.metrowerks.com/.

5 The latest SDK and other indispensable developer stuff can be found at
http://www.palmos.com/dev/tech/tools/. You’ll also find the documentation: “Palm OS
Companion” and “Palm OS Reference” in PDF format.

6 Actually, both CodeWarrior and the Palm SDK were updated just after I wrote the first draft of
this; the updates may not be a 100% compatible with my code.

7 “Hundreds”, of course, referring to the binary representation of the actual number.

8 See http://www.classactionpl.com/Teenee/index.htm for details about Teenee.

9 See http://www.bearriver.com/developer/palm/ for details about Bear River’s PAF.

