

Updating Adaptive, Decentralized
Peer to Peer Networks

Gordon Worley

redbird@rbisland.cx

Abstract
Peer to peer networks make it possible for individuals to share files without the need of
servers. While such networks offer many benefits and are excellent at file sharing, they are
currently useless for many other tasks, such as hosting a collection of hyperlinked
documents. Adaptive, decentralized peer to peer networks like Freenet are capable of
changing this, but such networks lack a means of updating files. This paper outlines a
proposal for updating such a network. It discusses the security issues surrounding
updating and deals effectively with them. Also, it looks at the possible consequences of
updatable peer to peer networks and why and where it would be most beneficial.

Introduction

How can an adaptive, distributed peer to peer
network be updated? Before this question can
be answered, some background on past means
of updating information on networks,
particularly the Internet, is needed. In the
beginning, information was (and still is) stored
in a central location and served to clients by
having them connect to the server and
download the desired information. Updating
such a client-server system is simple, since the
same files are accessed by all clients and simply
replacing them with new files updates the data
that clients access. [4] Until 1999, this was the
primary method of distribution for most
information over the Internet (excepting
personal communications, newsletters, and
other activities which lend themselves to e-
mail). [4], [6]

Then, in 1999, a university student created
Napster to help him find mpeg 1 level 3 (mp3, a
music format) files Online. Napster is a
centralized peer to peer network, meaning that
users on the network share files with each other
(taking on the roles of both server and client),
but must connect through central servers to
find out who is on the network to share files
with. [6] The next theoretical advancement

came in the form of decentralized peer to peer
networks, where each user asks other users it
knows if it has a certain file, and if those users
do not, they in turn ask users they know, and
so forth until the file is found or the request
dies from not being answered (preventing
messages searching for non existent files from
crashing the network). Finally, by 2000, Ian
Clarke had started Freenet, an adaptive,
decentralized peer to peer network, where
information moves itself around to different
nodes depending on how much it is requested
(so that information will have to travel less,
increasing the speed of the network over time).
[2]

All peer to peer networks have a flaw: there is
no inherent way for information to be updated
in them. Actually, centralized and
decentralized (but not adaptive) peer to peer
networks do make the client-server file
replacement method possible, but are not
usually employed since these types of networks
are used for sharing commodity files, with
many users having copies available for
download of the same information. [6]
Adaptive, decentralized peer to peer networks
offer enough advantages in speed and in the
facilitation of free speech to make them
potentially better suited for general use than

Updating Adaptive, Decentralized Peer to Peer Networks, page 2

client-server networks (like the World Wide
Web), but lack any way to update information
once it is inserted. [0] By implementing this
paper's solution, adaptive, decentralized peer
to peer networks can be made updatable,
allowing them to be used for the general
accessing of information.

Essential Theories and Practices

Adaptive, Decentralized Peer to Peer
Networks

Foundation

An adaptive, decentralized peer to peer
network consists of nodes that pass messages
amongst each other, requesting and
transferring data, moving information to nodes
where it is commonly requested, yet with each
node knowing about a few others to send
messages to. [2] A sample topology is shown in
Figure 0.

This topology is in contrast to that of traditional
client-server networks, whose topology is
centralized, as seen in Figure 1. In both figures,
the spatial positioning of objects is intended to
imply physical separations, but is not to scale.

Purpose

Ian Clarke, the inventor of adaptive,
decentralized peer to peer networks, wanted to
create an environment where information
could be shared and completely free speech
would be protected. To accomplish this goal,
information would need to be completely
anonymous, so that it would be impossible to
tell who posted what, who requested what, and
who has what. [1] In addition, Clarke realized
that a fundamental problem with the Internet
as it exists is that it pays no concern to
geography, so that when certain information is
requested, messages are sent through tens or
even hundreds of computers over thousands of
physical miles, with each exchange consuming
precious milliseconds. The adaptive part of his

network topology is to move information
physically closer to where it is most often
requested, reducing the latency of the transfer
thereof. [0]

Nodes

Each node on the network knows only that its
neighbors exist, as does its neighbors, and so
on, so that all nodes are connected through
each other without knowing about the
existence of more than a few. This makes it
impossible to tell which node has what
information, since every message makes it look
as though it originated from a neighbor, though
that is usually not the case. In addition, nodes
are black boxes, in that how one functions
internally is of no concern to the network, so
long as a standard set of messaging protocols is
adhered to. [0] Finally, nodes do not have any
knowledge of what information they have
stored on them (or at least they should not),
since that protects node owners from being
liable for the information stored on their node
(this usually means having the computer
internally encrypt the information to keep it
secret). [3]

Hashes

Hash tables are one way to store information in
a node and the means referenced to in this
paper because of their simplicity. Other, more
efficient and secure methods exist, but are not
referenced to here for the sake of space.
Modifying the solution should not require
significant work, only a different program in
the node to implement the updating process.

A hash consists of three key-field pairs: name,
information, and TTL. (see Time to Live, page
3).

Messages

There are four kinds of messages in an
adaptive, decentralized peer to peer network.
The first is an insert message, which puts new

Updating Adaptive, Decentralized Peer to Peer Networks, page 3

information into the network. The next is a
request message, which ask for some
information by name. A request reply sends
the information asked for by a request message.
Finally, a request failure message is returned if
the TTL (see Time to Live, page 3) of a request
message runs out. These messages are the only
way nodes can communicate with each other
and are designed to make node implementation
as independent as possible. [0]

Date Storage

The adaptive part of these networks comes
from the way that data is stored. After data is
inserted at a node, it will move around to the
modes where it is requested most often. For
example, if a particular hash is located on a
node in Europe but a lot of request for it are
coming from a node in Nippon, the hash will
be copied to the node in Nippon to make access
faster. Similarly, if hardly anyone is requesting
it in Europe, eventually it will be deleted on
that node.

Time To Live

All messages have a Time To Live (TTL). This
states how many times a message can be resent
to other nodes before returning an error
message. Each time a node resends a message,
the message's TTL is decremented by one, until
it reaches zero and the message fails. TTLs
keep the network from overflowing with
messages pointing to null hashes and insure
that messages will not loop forever between a
set of nodes. [0]

Cryptography - Public Key

Cryptography has been around as long as
certain people have had an interest in keeping
information away from others for a certain
amount of time. As early as 500 BC, the
Hebrews were using various methods of
substituting letters for one another,
decipherable only with the proper 'key', to keep
messages secret. [5] In this century,

cryptography has made major advances thanks
to the processing power of computers. This
century has also seen the rise of public key
encryption, where two keys are used in sending
encrypted messages: one to encrypt, the other
to decrypt. The private key used for decrypting
is kept secret, but the public key for encrypting
is shared freely, since the private key cannot be
determined from the public key. In addition,
the private key can encrypt text that is said to
be signed, in that the originator of the text can
be verified with the public key (assuming the
private key has not been compromised). [7]
Public key encryption offers the advantage of
avoiding flimsy protection through obscurity
and a more secure method of encrypting plain
text.

The Difficulty with Updating Peer to Peer
Networks

Unlike in the client-server model, peer to peer
networks offer no way to control directly the
information that is on them. For centralized
and decentralized peer to peer networks, it is
not even really desirable, since their purpose is
for individual users to share their personal files
with each other in a swap meet, where each
user shares and shares alike. [6] On adaptive
networks, information is had through keys
stored on unknown computers. Rather than
trying to get the information that others have,
the user wants to find certain information.
Unfortunately for the updater, the distributed
nature makes updating difficult, since it must
be done not just once, but dozens, hundreds, or
even thousands of time over on different nodes.
[0]

Another problem with making hashes
updatable is that they may then have
identifying marks on them (see section 3.4).
Thus, updating comes at the cost of anonymity.
One of the main goals of Ian Clarke is to make a
network where all information is as free as
possible, and for him that means that it must be
anonymous so that there is no threat of
retaliation, which might prevent some

Updating Adaptive, Decentralized Peer to Peer Networks, page 4

information from ever being seen. [1]
Therefore, any updating solution must allow
for information to remain anonymous if so
desired by the inserter, though he will not be
able to update it.

Also, it takes time for updates to be distributed,
so it may take minutes or even hours before
information is changed. Most of the time, this
is fine, since the majority of Web sites, for
example, are only updated once a week or less.
Those sites that update all of the time, like
news and discussion sites, would not fare well
with such a lag. News sites would post stories,
only to have readers learn of their existence
once the stories are already hours old,
preventing truly timely information from being
shared. Discussions would become disjointed
due to the lag and progress slowly, as
participants waited for their nearby copy of the
information to be updated.

A Proposal for Updating Adaptive,
Decentralized Peer to Peer Networks

Overview

The process of updating requires a lot of
infrastructure and the addition of extra fields in
the hash table of each item in the network. The
following proposal is not, though, the simplest
way to update an adaptive, decentralized peer
to peer network; that would be to send out
messages that replace the old ones by using the
same key, thereby overwriting old data. Such a
system, however, would be very easy to crack
and not very trustworthy (anyone can replace
any hash).

Hash

Existing fields

The fields that already exist in the hash, the
name, the information, and the TTL, will
continue to function unchanged. The main
difference is that the hash will now contain
additional fields.

Password

To make the network updatable, first a special
field for allowing updating is needed. This
field needs to contain a password to allow for
write access to the information, thereby letting
only authorized persons make changes. To
keep the password from easily being cracked, it
should never be stored as clear text, but rather
encrypted using a strong cipher (such as
twofish) with a key known only to the node. A
public encryption key should be stored in the
update field, as well, so that it can be used to
verify the signature on the update packet
(explained in Update message, page 4).

Time

Although not necessary, a field containing the
date and time of updates is useful for
acknowledging how recent the information is.
Basically, each hash has a time field, consisting
of a two-dimentional array of time stamps. The
time stamps are paired by the time that an
update message (or the original data insert
message) was sent and when the hash was
actually updated.

Update message

Just like any message on an adaptive,
decentralized peer to peer network, an update
message contains a TTL. Next, a name is
stated, so that it can find the hashes on nodes
that it wants to update. A password is also
necessary, so that write access can be obtained
to the hashes it is trying to update. This
password is encrypted while it is in
transmission so that it cannot be cracked, but
once on the node it might not be necessary to
remain as such. Also, the message should be
signed with a private key that matches the
public key stored in the hash to validate the
update message. While the system could work
without the validation, it makes it more secure
by reducing the chance that an unauthorized
entity who has obtained the password for a

Updating Adaptive, Decentralized Peer to Peer Networks, page 5

hash could make use of it. Finally, the time at
which the message was first sent is stored.

Most importantly, the update message contains
information. This comes in one of two forms:
either a replacement or a patch. The former
completely overwrites the information in the
hash, just as if a data insert message were sent,
while the latter contains instructions on what
parts of the information to change. The
patching is accomplished using a standardized
patching method (such as the one employed by
the diff and patch programs found on most
Unixish systems) that all the nodes have to
make use of; deviations would lead to buggy
patching at the worst and no updates at the
best.

Updating

Get ready: it’s time to review the life of a hash
table in an adaptive, decentralized peer to peer
network.

The hash’s life begins when it is created with a
name and information put in it. For this
example, it will be called MacHack and
contains information about the upcoming
MacHack conference. It also has a password
and contains the MacHack public key. It
resides quietly on node A.

Then, as June approaches, many people around
node B become interested in the conference and
want to know more about it. Thus, they
request MacHack so they can learn more. Node
B doesn’t know about node A, but it does know
a node C, so it sends a message to node C,
looking for MacHack. Node C doesn’t have the
hash, but node C knows about node A, so it
asks node A for it. Well, node A has MacHack
on it, so it sends a message back to C, which
sends a message to B, containing a copy of
MacHack. Eventually, MacHack is so popular
that a copy of it is put on B to ease the load on
the network and bring the information closer to
those who want it.

The week before MacHack, it turns out that one
of the speakers is sick and won’t be able to
come, so, it’s time to update MacHack. First,
the corrections are made and a patch is created.
This patch is put in an update message and sent
out to A (the node the MacHack folks are
connected to) to all of the nodes it knows.
Well, A knows about D and E, so it goes there.
As it happens, E knows about node B, so it
sends the message there after not finding a
copy of MacHack on itself. D knows only
about A, so the update message keeps
bouncing between them until the TTL reaches
0.

Upon reaching B, a match is found. B checks
the passwords against each other first to make
sure that the message is authorized to make an
update. Then, finding that the hash is signed,
the signature in the message is verified with the
public encryption key in the hash to further
assure the message's authorization. Finally, the
time on the update message and the last time
stamp on the hash are compared, and if the
update is newer than the last one applied (this
prevents old messages still in the network from
overwriting new ones), it updates the hash and
then sends the message on. At each node, this
process is repeated. Each time an update is
applied, the message's TTL is reset. Each time
is passes through a node without updating it
will reduce its TTL by one. This way, update
messages will die when no more nodes need
updating or no more nodes contain the hash in
question.

Back to MacHack, it is updated and people
learn that the speaker in question will not be
attending. They are sad, but are also glad that
Gordon Worley has kindly agreed to fill in.

A couple days later, Gordon changes his mind,
so another update is sent out. This one follows
the same process as before.

A few days later, the first update to MacHack
makes its way back to node B. Strange. At
first, everything looks to be in order, but then B

Updating Adaptive, Decentralized Peer to Peer Networks, page 6

notices that this update is older than the lastest
one, thus it rejects it, subtracts 1 from it’s TTL,
and sends it on to eventually die out.

The day before MacHack, in an attempt at
sabotage, the folks at BillHack, a competing
conference, send out a false update claiming
that MacHack was cancled because all of it’s
employees found that Windows was easier to
use than the Mac OS. It has the same name and
a more recent time plus, through some social
engineering, even has the correct password.
Yet, they couldn’t sign it with the MacHack
private key, but they send it out anyone,
hoping for the best. When node B gets this
update message, it starts to go through it and
everything looks okay, but then it finds that the
information’s signature does not verify with
the proper key. Uh-oh. This is a bad one. The
update is rejected, it’s TTL decremented by 1
and sent on it’s way. It is not deleted out right,
though, just in case node B made a mistake.
Better luck next time, l4m3rz. ;-)

On a final note, in the event of a random error,
the message just sent on it’s way with it’s TTL
minus 1.

See Figure 2 for a flowchart of the updating
process.

Security Concerns

In designing the updating process, the greatest
concern for security has been taken. By using a
password, the network employs a basic system
that is generally sufficient to prevent cracking.
Encrypting the password in transit between
nodes, the chance of someone intercepting the
password and using it to send falsified update
messages is reduced greatly. With a private
encryption key's signature in the update
message and its verification with the public
encryption key in the corresponding hash, most
of the easy methods of sending fake messages
are eliminated. All these measures do not,
however, prevent fundamental security issues

which may exist within the design of the
network or the nodes.

One issue is the spread of virii and worms. If a
malicious update message were coded to patch
anonymous hashes to contain viral code, the
results could be devastating for users.
Someone expecting to download a copy of a
research paper or an important historical
document could instead end up with lost files
or system failures. The best ways to combat
this problem would be to scan all anonymous
hashes for virii before reading their information
and to try to download only hashes that have
been verified as authentic. Virii should not be
any more common than they are through any
other Internet protocol, but the constant
movement of information to lots of different
nodes increases the chances of infection.

Of greater concern, though, is the potential loss
of the anonymity that adaptive decentralized
peer to peer networks provide. In particular,
the verification process requires a public
encryption key which is just that: public. By
it's nature, the public key is meant for use by
any sender to secure the contents of some text
to the recipient with the private key. This is the
reason why this feature is optional and left up
to the node. It would be preferable if the nodes
verified the signature if present, but if not allow
the update to proceed anyway in the interest of
keeping hashes as up to date as possible. It just
depends on whether a particular node wants to
contain only verified hashes or anonymous
ones as well (at least in the sense that they can
be updated).

Applications

In general, adaptive, decentralized peer to peer
networks are a boon for free speech. All
information can be completely anonymous, so
that no one can track an individual user or
group of users. Under such conditions,
previously unknown opinions and facts forced
into censorship by fear of retaliation from the
government or corporations would be made

Updating Adaptive, Decentralized Peer to Peer Networks, page 7

available to the world. In such an environment,
it would be harder for people and
organizations with the legal power of force to
exploit or harm the populous which they are
supposed to serve. Such a system of checks
and balances would lead to a freer society that
does not infringe upon the natural rights of a
person.

By making this information updatable, it will
be more useful to a general audience (i.e. it can
be used for more than file swapping). For
example, if inaccurate information was
previously inserted into the network, replacing
it with an update should make the appropriate
errata, improving the value of the information
and the network as a whole. With good
information, the network would better the
world, by making accurate facts easily available
to anyone on many topics, even those that are
considered taboo or censored by different
governments around the world for various
reasons.

Updatability does have the downside of
possibly introducing a means of censorship if
the updating system is not secure enough, so
that update messages could be sent out to
eliminate existing information. Also, the
creator could censor his own work, or be forced
to do so against his will. For instance, a hacker
might post the API for a proprietary piece of
hardware that he reverse engineered (which is
legal under United States law). The company
that creates the hardware could then come to
him and force him, under threat of law suit (in
spite of the law, the hacker could not afford the
basic court costs), to overwrite his information.
He could always repost anonymously (or could
have done so to begin with), but then the
incentive to do the hack is removed, since he
will not be getting any credit for it. Similar
actions could happen to artists with
controversial works, the politically oppressed,
or any other person trying to provide
information that someone else would prefer be
kept in a tiny, locked box. Hopefully, the
network would not be used to spread

propaganda and propagate false facts, since the
majority of its users would be interested in
having a useful network, so they would put
factual information into it.

Conclusion

By implementing the solution described, an
adaptive, decentralized peer to peer network
can be updated. To do so, techniques like
public key cryptography and patching must be
employed to make the system secure and
efficient. Once updatability is achieved, free
speech and better, more accurate information
will be readily available to the Internet using
public. Such a system has never existed before,
though, so it is unknown how users will treat
their new found power to express themselves
freely, without fear of retribution. In the past,
systems like Usenet and Web logs with
message boards, like Slashdot, have been
plagued with spam and trolls, but those
systems are about discussing with other people,
not sharing information (though the former
often facilitates the latter). Until this solution is
implemented in a real world network, such as
Freenet, the answers to such questions will
remain purely hypothetical.

Bibliography

[0] Clarke, Ian. "A Distributed Decentralized
Information Storage and Retrieval System".
Freenet Project, The. 1999.
<http://freenet.sourceforge.net/freenet.pdf>.
(15 April, 2000).

[1] Clarke, Ian. "Freenet - Censorship and
Copyright". Freenet Project, The.
<http://freenet.sourceforge.net/index.phppag
e=philosophy>. (22 Aug. 2000).

[2] "Freenet - Frequently Asked Questions".
Freenet Project, The.
<http://freenet.sourceforge.net/index.phppag
e=faq>. (22 Aug. 2000).

Updating Adaptive, Decentralized Peer to Peer Networks, page 8

[3] Langley, Adam, Scott Miller. "Freenet -
Crypto Layer". Freenet Project, The.
<http://freenet.sourceforge.net/index.phppag
e=fncrypto>. (22 Aug. 2000).

[4] Segaller, Stephen. Nerds 2.0.1: A Brief
History of the Internet. New York: TV Books,
L.L.C., 1998.

[5] "SSH - Cryptography A-Z - Introduction to
Cryptography". Cryptography A-2-Z. 1999.
<http://www.ssh.fi/tech/crypto/intro.html>.
(1 Aug. 2000).

[6] Yamamoto, Mike and John Borland. "A
brave new--or old--world?". The P2P Myth. 26
Oct. 2000. <http://news.cnet.com/news/0-
1005-201-3248711-1.html>. (28 Oct. 2000).

[7] Zimmerman, Phil, et al.. Intro to Crypto.
United States: Network Associates, Inc., 1999.

Works Consulted

Elgarten, Gerald H., Alfred S. Posamentier,
Stephen E. Moresh. Using Computers in
Mathematics. Menlo Park, California:
Addison-Wesley Publishing Company, 1983.

Lutz, Mark. Programming Python.
Cambridge: O'Reilly & Associates, Inc., 1996.

Oualline, Steve. Practicle C++ Programming.
Cambridge: O'Reilly & Associates, Inc., 1995.

Stephenson, Neal. Cryptonomicon. New York:
HarperCollins Publishers, 2000.

Figure 0. Sample adaptive, decentralized peer to peer network topology. Circles are nodes and arrows
represent the direction of knowledge (i.e. in which messages are sent).

Updating Adaptive, Decentralized Peer to Peer Networks, page 10

Figure 1. Sample client-server network topology. Circles are servers, squares are nodes, and arrows indicate
direction of information requests.

Updating Adaptive, Decentralized Peer to Peer Networks, page 11

Figure 2. Flow chart of the update process within one node In the event of any errors, the process jumps to
the TTL-- block.

