
  

Pilot2 , page 1 

Pilot 2 
Flight simulation on Palm OS  

Andrew S. Downs 
andrew@downs.ws 

 
Abstract 
Flight simulation on a Palm device requires attention to the purpose of such a program, 
followed by selective inclusion of essential features. Performance considerations 
encourage some calculations ahead of time. Graphics also pose a challenge due to bitmap 
constraints in older OS versions and lack of polygon support.
Introduction 
In this paper I discuss the design and 
implementation of a special-purpose flight 
simulator for Palm OS. It does not depict all 
aspects of flight, but rather is meant to help 
aspiring pilots learn to balance the 
relationships between flight and engine 
instruments and controls. 
 
One reasonable question is: “Why would you 
attempt this at all, on such a small device?” I 
just wanted something fun to play wherever I 
happened to take my Palm. There is not any 
interactive flight software available for Palm 
OS that falls under the “fun” category, 
although some pilot companion programs exist 
for flight planning and logging. 

 
Program structure 
The application goes through a very simple 
cycle each second: first, the flight characteristics 
(control data) is calculated. Then the display is 
updated. 
 
This application is written in C, although C++ 
could easily work as well. Java? Maybe, it 
depends on the current state of the available 
Virtual Machine(s), in particular how quickly 
they draw to the screen. 

 
Modeling aircraft performance 
This program gives up a certain amount of 
realism in return for better performance on the 
Palm. Real aircraft are designed by a cadre of 
qualified engineers. Every aspect of the aircraft 

is thoroughly wrung-out before production 
begins. Since I’ve only flown aircraft, not 
designed them, complicated formulas are out of 
the question. 
 
The approach I use is to create a pseudo 
“power curve” over a reasonable range of input 
values. The values are stored in a set of static 
arrays and can be quickly accessed rather than 
calculated. 
 
Here is an example: to determine whether the 
aircraft is climbing, descending, or staying 
level, you can simply check the difference 
between the amount of horsepower being 
produced at a given throttle (power) setting 
and the amount required to remain level at the 
current airspeed: 
 
  excess power = available - required 
 
If the excess is positive, the aircraft will climb, 
and if negative, the aircraft will descend. If 
zero, the aircraft remains level. 
 
These values can be represented in structures: 
 
struct PowerData { 
 int rpm; // Power setting. 
 int bhp; // Horsepower available. 
} ; 
 
struct PowerCurveData { 
 int kias; // Current airpseed. 
 int bhpReqd; // Horsepower req’d  
                   // to remain level. 
} ; 
 



  

Pilot2 , page 2 

If the aircraft is turning (banked), less lift is 
produced and the amount of power required to 
maintain level flight increases: 
 
struct BankData { 
 int angle; // Angle of bank. 
 int bhpReqd; // Horsepower req’d  
                   // to remain level. 
 float multiplier; // Used in 
                   // turn rate calc. 
} ; 
 
int CalcPowerCurve( void ) { 
  int retval = 0; 
  int i = 0, j = 0; 
 
  // Airpseed determines how much brake  
  //   horsepower is required to stay  
  //   aloft. 
  for ( i = 0; i < 17; i++ ) { 
    if ( gFlightData.airspeed <=  
      gPowerCurveData[ i ].kias ) { 
      break; 
    } 
  } 
 
  // Power setting determines how much   
  //   brake horsepower is available. 
  for ( j = 0; j < 18; j++ ) { 
    if ( gFlightData.rpm <=  
      gPowerData[ j ].rpm ) { 
      break; 
    } 
  } 
 
  // Any bank adds to required power. 
  int bank = gFlightData.bank; 
   
  if ( bank < 0 ) 
    bank = -bank; 
     
  // Return the difference between the 
  //   amount available and the amount 
  //   required. Use a rough estimate 
  //   for the bank angle effect. 
  if ( i < 17 && j < 18 ) 
    retval = gPowerData[ j ].bhp -  
      ( gPowerCurveData[ i ].bhpReqd +  
      ( bank / 2 ) ); 
 
  return retval; 
} 
 

Since the determination of the current 
performance is handled in two functions, more 
complicated but accurate calculations can easily 
be substituted at a later time. 

 
Palm OS issues 
Obviously, display size is a serious issue. This 
was true even for the non-HUD original 
version. I briefly prototyped standard analog 
instrument faces, but it was impossible to 
squeeze the necessary dials onto one screen and 
still have the values readable. 
 
Processor speed is another issue. The current 
crop of Palm devices run in the 16-20 MHz 
range, which is more than adequate for the 
relatively few calculations that occur each 
second. 
 

 
 

Figure 1. Integrated display view. Aircraft is in a 
wings-level climb. 



  

Pilot2 , page 3 

 
User input 
Originally this program used image buttons 
depicting up and down arrows to handle 
increasing and decreasing input values. The 
result was functional, but boring. 
 
One suggestion was to use the Palm device 
hardware buttons to handle user input, a la the 
SubHunt game that ships with the Palm. This 
works much better than tapping an onscreen 
button. There are just enough buttons (ignoring 
the sleep button) for this scheme to work on 
existing Palm devices. The left application 
buttons (keyBitHard1 and keyBitHard2 in the 
API) control roll, the right two buttons 
(keyBitHard3/4) power or throttle, and the 
up-down scroll arrows (keyBitPageUp/Down) 
control pitch. 
 
Here is an example, closely following the 
SubHunt sample code (included with 
CodeWarrior for Palm OS): 
 
static void AppEventLoop( void ) { 
  EventType event; 
  DWord keyState; 
   
  // Mask the game action keys:  
  //   here, the four hardware buttons. 
  DWord keysAllowedMask =  
    keyBitHard1 | keyBitHard2 |  
    keyBitHard3 | keyBitHard4 |  
    keyBitPageUp | keyBitPageDown; 
 
  do { 
    EvtGetEvent( &event,  
      gEventTimeout ); 
 
    if ( event.eType == keyDownEvent )  
    { 
      // Get current key. 
      keyState = KeyCurrentState() &  
        keysAllowedMask; 
 
      // Check against our action keys. 
      // Also check boundary values  
      //   before processing. 
      if ( ( keyState & keyBitHard4 )  
        && gFlightData.rpm <  

          gFlightDataLimits.rpmMax ) { 
         
        // Do useful stuff here. 
        gFlightData.rpm +=  
          gRpmIncrement; 
      } 
    } 
     
    // Eat the event if we've handled  
    //   it. 
    // Either copy the code directly 
    //   from SubHunt, or insert your 
    //   own "event-handled" boolean 
    //   check. 
 
    // Then, insert standard Palm event  
    //  loop code here. 
           
  } while ( event.eType !=  
      appStopEvent ); 
} 

 
Data display 
The panel on this program began life as a series 
of labels and text fields. Values for the various 
instruments were updated each second and the 
value displayed in the appropriate text field. 
This was great for debugging the flight 
dynamics. The one luxury that I provided was a 
graphical “Attitude Indicator”, which depicts 
the pitch angle (relationship between the 
aircraft nose and horizon) and also the degree 
of bank. 
 
Most flight simulators have enough screen real 
estate to work with so that the instrument 
display sits comfortably below the “outside 
world” display, which usually depicts the 
horizon as a visual reference. 
 
This issue in particular started me thinking 
about better ways to present the same 
information in a smaller space. The HUD 
(head-up display) found on modern vehicles 
(aircraft, automobiles, etc.) overlays important 
information onto the view out the front 
window. 
 



  

Pilot2 , page 4 

The HUD representation used in this 
implementation is a bit crowded, and some of 
the graphic (analog) items could be 
downgraded to simple numeric fields. But one 
advantage of analog gauges is they allow your 
brain to register trends and relationships easier 
than if you were viewing only discrete values. 
 
For example, I may make a mental note that the 
power and airpseed markers maintain a 
particular constant offset from each other once 
the proper pitch angle for a full-power climb is 
attained. This “managing of relationships” 
allows an experienced pilot to quickly 
determine whether the aircraft is in a stable or 
unstable state (which is particularly important 
when you venture into clouds and cannot see 
outside!) 
 
Many of the instruments work over a fixed, 
relatively small range of values. These scales 
are drawn in the display and the current value 
pointer overlaid at the appropriate location. 
The power setting (RPM) and Vertical Speed 
fall into this category. 
 
Altitude, however, requires more detail 
because it is a critical component of most flight 
maneuvers, including straght-and-level flight. I 
implemented a “moving tape” display that 
brackets the current altitude between two 
boundary values (which are separated by 2000 
feet). To provide more detail, the current 
altitude is drawn as text in an inverted 
rectangle, and a pointer to the tape value is 
appended to the side of this inverted rect. 
 
In the current implementation, the minimum 
altitude is 0 and the maximum is 14,400. This 
was an arbitrary decision, particularly the 
minimum, which does not allow for below sea 
level values. 
 
Figure 2 illustrates the altitude display. The 
column labeled “Alt” has, at the top and 
bottom of the column, the current bracketing 
values, and in the center is an intermediate 

reference value. The current altitude is in the 
black block near the bottom of the screen. 
 

 
 

Figure 2. Current altitude is 2,477 feet. Aircraft is 
slowly descending in a left bank. 

 
Here is how of some of the altitude display is 
handled. There are three scale values displayed 
at any time. The corresponding variables are 
named gAltTop, gAltCenter, and 
gAltBottom. When the current altitude gets 
within 100 feet of either the top or bottom scale 
value, the scale adjusts by 100 feet in the 
appropriate direction. The position of the 
current altitude readout then adjusts in relation 
to the top of the tape. This all happens before 
the display is drawn. 
 
The variable gFlightData refers to a structure 
containing the current aircraft data. 
 
  if ( gAltTop - gFlightData.altitude < 
       100 && gFlightData.verticalSpeed  
       > 0 )  
  { 
    gAltTop += 100; 
    gAltCenter += 100; 
    gAltBottom += 100; 
  } 
  else if ( gFlightData.altitude -  
       gAltBottom < 100 &&  
       gFlightData.verticalSpeed < 0 ) 
  { 
    gAltTop -= 100; 
    gAltCenter -= 100; 
    gAltBottom -= 100; 



  

Pilot2 , page 5 

  } 
   
  // Top of display rect is offset from 
  //   top of tape. 
 
  top = 30; 
 
  top += ( ( gAltTop -  
    gFlightData.altitude ) / 1000 )  
    * 60; 
 
  // Adjust display rectangle values to  
  // account for width of drawn string. 
 
  // Fill rectangle, then draw chars. 
  RctSetRectangle( &r, left, top,  
    width, height ); 
 
  WinInvertRectangle( &r, 0 ); 
   
  StrPrintF( altBuf, "%d",  
    ( int )gFlightData.altitude ); 
 
  WinDrawInvertedChars( altBuf,  
    StrLen( altBuf ), left + 1, top ); 
     
  // Fetch and draw pointer bitmap.   
  bitmapH = DmGet1Resource( 'Tbmp',  
    RightArrowBitmap ); 
  bitmapP = ( BitmapPtr ) 
    MemHandleLock( bitmapH ); 
   
  WinDrawBitmap( bitmapP, left - 5,  
    top - 4 ); 
   
  MemHandleUnlock( bitmapH ); 
  DmReleaseResource( bitmapH ); 
 
I used the sliding scale approach for the 
heading as well (at the top of the screen), since 
that range of values is 0-360 degrees and 
accuracy is important to a pilot. The rollover of 
the min and max values uses a smaller 
threshold than the altitude adjustment (5 vs. 
100), but the concept is the same. 

 
Bitmaps 
Palm OS provides improved bitmap and 
graphics support, including color, in OS 3.5 and 
later. However, to retain compatibility with 

older OS versions and devices, I used 3.0-
compatible calls and monochrome graphics. 
 
One problem was the overlay of multiple 
bitmaps on the screen. Since bitmaps can only 
be rectangular in shape, having separate terrain 
and instrument bitmaps did not work. The 
instrument display consists primarily of small 
sections of hash marks and numbers spread out 
over the surface of the screen. The terrain is (in 
the initial version of the app) simply a big 
rectangle containing a pattern. (The sky in the 
display consists of empty pixels.) 
 
To solve the problem, I elected to use only the 
terrain bitmap, clipping it as necessary, and to 
draw the instrument panel dynamically. Some 
items on the panel are bitmaps themselves. 
 
Also note that there is no polygon support in 
Palm OS at this time. This was a problem when 
drawing the pointers for the various 
instruments, such as the altitude display block. 
It would be nice to define a polygon and 
fill/draw within that area. Instead I filled a 
rectangle, then painted a bitmap (for the 
triangular pointer) at the correct location beside 
the rectangle. The bitmap was an irregular 
shape, and the transparency setting applied via 
the Constructor resource editor did not seem to 
work, so I juggled the order in which drawing 
occurred in order to not overwrite useful data 
with empty background pixels. 
 
The following code fragment illustrates the 
creation and filling of the offscreen terrain 
window at application launch time. 
 
static void MainFormInit(FormPtr frmP) 
{ 
  VoidHand bitmapH = 0; 
  BitmapPtr bitmapP = 0; 
  WinHandle tempWin = 0; 
   
  // Load terrain background. 
  bitmapH = DmGet1Resource( 'Tbmp',  
    TerrainBitmap ); 
 
  bitmapP = ( BitmapPtr )MemHandleLock(  



  

Pilot2 , page 6 

    bitmapH ); 
   
  if ( bitmapP != NULL ) { 
    gOffscreenTerrainWindow =  
      WinCreateOffscreenWindow( 160,  
        160, genericFormat, &err ); 
   
    if ( gOffscreenTerrainWindow !=  
      NULL ) { 
      tempWin = WinSetDrawWindow(  
        gOffscreenTerrainWindow ); 
   
      WinDrawBitmap( bitmapP, 0, 0 ); 
   
      MemHandleUnlock( bitmapH ); 
      DmReleaseResource( bitmapH ); 
    } 
  } 
   
  if ( tempWin ) 
    WinSetDrawWindow( tempWin ); 
} 
 
When the aircraft is banked, we have a 
problem. The terrain can no longer remain 
“flat”; it must appear at an angle to give the 
illusion of turning. Since there are no polygons 
available to hold a triangle to overlay above the 
terrain, I went with a brute force approach: 
 
1. I drew pattern-filled bitmaps for each 
possible angle of bank using CodeWarrior 
Constructor. These bitmaps are only tall 
enough to hold a triangle drawn with an 
appropriate hypotenuse in relation to the 
horizon. The width of each bitmap fills the 
display (160 pixels). The bitmaps are compiled 
into the application. 
 
2. During the display updating at runtime, the 
angle of bank determines which horizon 
bitmap is retrieved. 
 
3. Determine the appropriate y-coordinate at 
which to draw the horizon based on the aircraft 
pitch angle and bitmap height. 
 
4. Draw the terrain bitmap in the lower portion 
of the display. 
 

5. Draw the horizon bitmap “above” the 
terrain. 
 
6. Draw the instrument scales, pointers and 
values. 
 
7. Transfer the offscreen image to the onscreen 
window. 
 
Figure 3 illustrates the overlay process. 
 

 



  

Pilot2 , page 7 

 
Figure 3. Bitmap overlays. 

 
During a display update, all drawing is first 
performed to an offscreen window. Once the 
terrain and panel have been drawn offscreen, 
that window is transferred onscreen. The initial 
version does not use clipping rectangles to 
reduce the amount of drawn data during the 
display phase, since with a one-second update 
cycle there appears to be plenty of time for all 
calculations and drawing to occur. I will run 
some tests to determine whether this is blind 
luck or not. As more features get added, it is 
important to know whether or not they can be 
comfortably handled during the existing 
update cycle. 

 
Sound  
The program supports a simple engine sound. 
The sound frequency changes when the engine 
power setting passes through threshold values 
at 2000 and 2500 RPM. 
 
A prefs dialog within the app allows the user to 
turn this item on or off, even if the system and 
game sound prefs (as defined in the Prefs app 
in Launcher) are disabled. 
 
In the app’s main event handler: 
 
  if ( gUserPrefs.soundOn ) { 
    SndCommandType s; 
       
    // Sound setup. 
    s.cmd = sndCmdFrqOn; // Sound on. 
    s.param2 = 2000; // Duration in ms. 
       
    if ( gFlightData.rpm < 2000 ) { 
      s.param1 = 20; // Frequency. 
      s.param3 = 1; // Amplitude. 
    } 
    else if ( gFlightData.rpm < 2500 )  
    { 
      s.param1 = 30; 
      s.param3 = 2; 
    } 
    else { 
      s.param1 = 40; 

      s.param3 = 3; 
    } 
       
    // Now play the sound. 
    SndDoCmd( NULL, &s, 0 ); 
  } 
 
When the user exits, remember to turn off the 
sound: 
 
  SndCommandType s; 
  s.cmd = sndCmdQuiet; // Sound off. 
  s.param1 = 0; 
  s.param2 = 0; 
  s.param3 = 0; 
  SndDoCmd( NULL, &s, 0 ); 

 
Conclusion  
In spite of the challenges imposed by the 
platform, the display of information in a HUD 
is possible, and is certainly more user friendly 
than a text-based approach. The same 
techniques used on other platforms for drawing 
and animation work on Palm OS, although you 
may have to do more of the work yourself. 

 
Bibliography  
[Cessna80] Cessna Aircraft Company. 
Information Manual, 1980 Model 172N. 
 
[Horne00] Horne, Thomas A. “Future Flight: 
Cockpit Cinerama”. AOPA Pilot. September 
2000, Volume 43, Number 9. 
 
[Kershner90] Kershner, William K. The 
Instrument Flight Manual. Iowa State 
University Press. Ames, IA. 1990. 
 
[McCornack95] McCornack, Jamie et al. Tricks 
of the Mac Game Programming Gurus. Hayden 
Books, Indianapolis, IN. 1995. 
 
[Sollman94] Sollman, Henry and Sherwood 
Harris. Mastering Instrument Flying. TAB 
Books, New York, NY. 1994. 
 



  

Pilot2 , page 8 

 


