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Introduction

• CoreFoundation (CF) in brief
– How does it fit in Mac OS X?

– What does it provide?

• Deep Diving
– Custom CFAllocators

– Fast CFString access

– Using CFRunLoop
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CoreFoundation
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CoreFoundation

• Non-graphical substrate library for 
Carbon, Cocoa, and Classic

• Provides common data types and 
services

• C API and implementation
• Available on Mac OS X

• Subset in Mac OS 9 via CarbonLib
• Subset in Darwin
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Mac OS X layering

ClassicClassic CocoaCocoaCarbonCarbon

DarwinDarwin

Core ServicesCore Services

Quartz                      OpenGL                   QuickTimeQuartz                      OpenGL                   QuickTime
Application ServicesApplication Services
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Low-level CarbonLow-level Carbon

Within CoreServices

CoreFoundationCoreFoundation

Open TransportOpen Transport
Other stuffOther stuff

Other stuffOther stuff
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What does CF provide?

• Basic data type abstractions
• String, array, dictionary...
• Property lists 

• Non-graphical app services needed 
by all stacks

• Localization support
• User preferences
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Using CoreFoundation

• You don’t have to use CF
• Carbon & Cocoa are complete without it

• In some cases you will want to use it, for 
the new functionality

• Some new Carbon functions take CF type 
arguments

• Bundles, Plug-ins

• Preferences
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General philosophy

• High performance
• Minimal, powerful C API
• No safety net

• Debug library to catch common errors
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Object-orientation

• Each type is opaque and acts as a pseudo-
class
CF<class>Ref

• Related functions act as methods
CF<class><action>

• Related constants 
kCF<class><description>

• Example: CFStrings
CFStringRef 
CFStringAppend()
kCFStringEncodingASCII
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Polymorphic functions

• A small number of functions can be used 
with any CFType

• Equality/hashing
CFEqual(), CFHash()

• Introspection
CFGetTypeID(), CFCopyDescription()

• Memory management
CFRetain(), CFRelease(), CFGetRetainCount(), 

CFGetAllocator()
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Memory management

• All CFTypes are reference counted
• CFRetain() to take a reference; 

CFRelease() to release it
• If a function returns a CFType, who 

has the reference?
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Memory management

• Functions with Get do not give the caller a 
reference

• Retain if you wish to keep the object

• Functions with Copy do
• Release when you are finished with it

• Functions with Create return new 
instances

• Release when you are finished with it
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Memory management

• Copy functions might not perform 
any memory copies

• Create functions might not perform 
any allocation

• CF is just being more efficient; this 
shouldn’t matter to the caller
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CoreFoundation types

• Collections
• Strings
• Wrapper types
• Property lists
• Application services
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Collections

• Containers for pointer-sized values
• Configured via sets of callback 

functions
• Specified when the collection is created
• Determine how values are compared, 

added, removed, etc. 
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Collections

• CFArray (ordered list of values)
• CFDictionary (key-value pairs)
• Others

• CFSet, CFBag, CFBitVector, CFTree
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Mutability

• Three kinds of mutability
• Immutable: Contents fixed, size fixed
• Fixed-size: Contents changeable, 

maximum size is fixed
• Mutable: Contents changeable, size is 

dynamic
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Mutability

CFArrayCreate(kCFAllocatorDefault, someStrings, 
numStrings, &kCFTypeArrayCallBacks)

• An immutable array
CFDictionaryCreateMutable(kCFAllocatorDefault, 10, 

&kCFTypeDictionaryKeyCallBacks, 
&kCFTypeDictionaryValueCallBacks)

• A mutable dictionary that can never exceed 10 
key-value pairs

CFStringCreateMutable(kCFAllocatorDefault, 0)

• A mutable string of unlimited length
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CFString

• Conceptually an array of Unicode 
characters

• Goals
• Elevate strings to a new level of abstraction
• Make internationalization easy
• Assure high performance
• Become the way to communicate strings in 

APIs
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CFString

• Rich functionality
• Many creation functions

• Encoding conversion

• Comparison, find

• Explode, combine

• Format, parse

• Storage optimizations
• Does not necessarily store Unicode
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Other types

• Wrapper types
• CFData (chunk of bytes)
• CFNumber (numbers)
• CFDate (dates)

• CFURL
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Property lists

• Any tree built entirely from:
• CFStrings, CFDatas, CFArrays, 

CFDictionarys, CFDates, CFNumbers, and 
CFBooleans

• Dictionary keys must be strings

• Have a flattened XML representation
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Application services

• CFBundle

• CFPlugIn

• CFXMLParser

• CFPreferences

• CFRunLoop and related

• Pasteboard
• Private service to Carbon & Cocoa
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Custom CFAllocators
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Allocators

• Allocators determine how memory is 
allocated and freed

• Create functions take CFAllocators 
as first argument

• Normally, pass kCFAllocatorDefault to use 
the current default allocator
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Custom allocators

• Custom allocators are used to define 
custom allocation behaviors

• However, overuse will tend to cause 
an app to use more memory and 
swap more
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Custom allocators

• Define a CFAllocatorContext
• Pointer to user-defined data, usually the allocator’s 

management info

• retain, release, and copyDescription callbacks for the 
user-defined info

• Define allocate, reallocate, deallocate, and 
preferredSize callbacks with your own functions

• myAlloc = CFAllocatorCreate(
allocator, &context);
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Custom allocators

• Example: all callbacks NULL would be an 
allocator which doesn’t allocate or 
deallocate any memory

• kCFAllocatorNull

• Example: an allocator which allocated 
from shared memory

• But be careful: shared regions must be at same 
address
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Fast CFString Access
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Basic CFString API

• CFStringGetLength
• Returns number of Unicode characters in 

string

• CFStringGetCharacterAtIndex
• Returns Unicode character at given (zero-

based) index
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Coding sample

len = CFStringGetLength(str);

for (i = 0; i < len; i++) {

UniChar c = CFStringGetCharacterAtIndex(str, i);

… do something with c ...

}
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Optimization #1: good

• Batch access to characters with 
CFStringGetCharacters()
len = CFStringGetLength(str);
UniChar *buffer = malloc(sizeof(UniChar) * len);
CFStringGetCharacters(str, CFRangeMake(0, len), buffer);

for (i = 0; i < len; i++) {
… do something with buffer[i] ...

}

• Alteratively, use a stack buffer, and process a 
subrange of the string at a time
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Optimization #2: better

• Batch access using direct pointer with 
CFStringGetCharactersPtr()
UniChar *buffer = CFStringGetCharactersPtr(str);

if (NULL != buffer) {

len = CFStringGetLength(str);

for (i = 0; i < len; i++) {

… do something with buffer[i] ...

}

} else { … optimization #1 ? … }
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Optimization #3: best

• Inline buffer functions
CFStringInlineBuffer buf;

len = CFStringGetLength(str);

CFStringInitInlineBuffer(str, &buf, CFRangeMake(0, len));

for (i = 0; i < len; i++) {

UniChar c = CFStringGetCharacterFromInlineBuffer(&buf, i);

… do something with c ...

}

• Combines #1 & #2
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Another possibility

• Developer-provided external backing store
CFStringCreateMutableWithExternalCharactersNoCopy(

allocator, buffer, bufLen, bufCapacity, bufAllocator)

CFStringSetExternalCharactersNoCopy(

str, buffer, bufLen, bufCapacity)

• bufAllocator is custom allocator used when CFString 
needs to grow buffer

• You access external buffer directly

• Only useful if you’re wrapping a UniChar buffer with 
a CFString
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Other CFString access

• CFStringGetCStringPtr

• CFStringGetPascalStringPtr
• Return NULL if pointer can not be immediately 

returned

• These do not allocate memory

• Characters are encoded in the system encoding

• CFStringGetBytes
• Get contents of string in any encoding
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Using CFRunLoop
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CFRunLoop

• CFRunLoop is the lowest event loop for Mac 
OS X

• An event demultiplexor or dispatcher

• Listens on many types of input sources, and 
performs callouts when they are 
ready/signaled

• Normally, use Carbon or Cocoa event 
systems
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CFRunLoop types

• CFRunLoop
• Manages sets of input sources

• CFRunLoopSource
• Abstract representation of input

• CFRunLoopTimer
• Periodic events

• CFRunLoopObserver
• Events for event loop cycle
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CFRunLoop

• Manages sets of input sources called 
modes

• Run loop must be run to have it 
monitor the input sources

• Calls the input source’s callout when 
source becomes ready
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CFRunLoop

• One run loop per thread
• Can be used reentrantly (i.e. from within 

a run loop callout)
• Causes the app to sleep when no input 

is available
• Most work of an event-driven app 

happens during a run loop callout



4
3

11/05/24Apple Confidential

CFRunLoopSources

• Specify several callbacks at creation 
time to customize a source

• Sources usually implemented as 
“classes”, and you use that API

• The “class” takes care of satisfying 
the CFRunLoopSource API
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CFRunLoopSources

• When a source becomes signaled 
the run loop will call its perform() 
callback 

• The “class” does the actual class-
specific monitoring

• Calls CFRunLoopSourceSignal(src) 
when input is ready
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CFRunLoopSources

• During the perform() callback, a 
source may re-signal itself if there’s 
yet more input to be processed

• How a “class” monitors input is up to 
it, but a separate thread is common 
(better than polling)
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CFRunLoopTimers

• Specialized form of run loop source 
to generate periodic callouts

• Create with start date and interval
• Only fired while run loop is running
• Missed fire dates are coalesced
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CFRunLoopObservers

• Allows for callouts to be performed at 
various points in the run loop cycle

• When entered, exited
• Before/after sleeping

• Sometimes useful to do something, 
for example, before the run loop 
goes to sleep
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CFRunLoop sources

• Only one specialized input source 
available so far

• CFSocket

• Another soon
• CFMessagePort

• Some higher-level subsystem may 
create their own (IOKit?)
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Getting More Info

• Documentation on-line
• http://developer.apple.com/techpubs/corefoundation
• /System/Developer/Documentation/CoreFoundation

• Example code
• /System/Developer/Examples/CoreFoundation
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Q&A

Topics in
CoreFoundation
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