
1 11/05/24Apple Confidential

Topics in
CoreFoundation

Christopher Kane
Mac OS X Application Frameworks

Apple, Inc.

2 11/05/24Apple Confidential

Introduction

• CoreFoundation (CF) in brief
– How does it fit in Mac OS X?

– What does it provide?

• Deep Diving
– Custom CFAllocators

– Fast CFString access

– Using CFRunLoop

3 11/05/24Apple Confidential

CoreFoundation

4 11/05/24Apple Confidential

CoreFoundation

• Non-graphical substrate library for
Carbon, Cocoa, and Classic

• Provides common data types and
services

• C API and implementation
• Available on Mac OS X

• Subset in Mac OS 9 via CarbonLib
• Subset in Darwin

5 11/05/24Apple Confidential

Mac OS X layering

ClassicClassic CocoaCocoaCarbonCarbon

DarwinDarwin

Core ServicesCore Services

Quartz OpenGL QuickTimeQuartz OpenGL QuickTime
Application ServicesApplication Services

6 11/05/24Apple Confidential

Low-level CarbonLow-level Carbon

Within CoreServices

CoreFoundationCoreFoundation

Open TransportOpen Transport
Other stuffOther stuff

Other stuffOther stuff

7 11/05/24Apple Confidential

What does CF provide?

• Basic data type abstractions
• String, array, dictionary...
• Property lists

• Non-graphical app services needed
by all stacks

• Localization support
• User preferences

8 11/05/24Apple Confidential

Using CoreFoundation

• You don’t have to use CF
• Carbon & Cocoa are complete without it

• In some cases you will want to use it, for
the new functionality

• Some new Carbon functions take CF type
arguments

• Bundles, Plug-ins

• Preferences

9 11/05/24Apple Confidential

General philosophy

• High performance
• Minimal, powerful C API
• No safety net

• Debug library to catch common errors

1
0

11/05/24Apple Confidential

Object-orientation

• Each type is opaque and acts as a pseudo-
class
CF<class>Ref

• Related functions act as methods
CF<class><action>

• Related constants
kCF<class><description>

• Example: CFStrings
CFStringRef
CFStringAppend()
kCFStringEncodingASCII

11 11/05/24Apple Confidential

Polymorphic functions

• A small number of functions can be used
with any CFType

• Equality/hashing
CFEqual(), CFHash()

• Introspection
CFGetTypeID(), CFCopyDescription()

• Memory management
CFRetain(), CFRelease(), CFGetRetainCount(),

CFGetAllocator()

1
2

11/05/24Apple Confidential

Memory management

• All CFTypes are reference counted
• CFRetain() to take a reference;

CFRelease() to release it
• If a function returns a CFType, who

has the reference?

1
3

11/05/24Apple Confidential

Memory management

• Functions with Get do not give the caller a
reference

• Retain if you wish to keep the object

• Functions with Copy do
• Release when you are finished with it

• Functions with Create return new
instances

• Release when you are finished with it

1
4

11/05/24Apple Confidential

Memory management

• Copy functions might not perform
any memory copies

• Create functions might not perform
any allocation

• CF is just being more efficient; this
shouldn’t matter to the caller

1
5

11/05/24Apple Confidential

CoreFoundation types

• Collections
• Strings
• Wrapper types
• Property lists
• Application services

1
6

11/05/24Apple Confidential

Collections

• Containers for pointer-sized values
• Configured via sets of callback

functions
• Specified when the collection is created
• Determine how values are compared,

added, removed, etc.

1
7

11/05/24Apple Confidential

Collections

• CFArray (ordered list of values)
• CFDictionary (key-value pairs)
• Others

• CFSet, CFBag, CFBitVector, CFTree

1
8

11/05/24Apple Confidential

Mutability

• Three kinds of mutability
• Immutable: Contents fixed, size fixed
• Fixed-size: Contents changeable,

maximum size is fixed
• Mutable: Contents changeable, size is

dynamic

1
9

11/05/24Apple Confidential

Mutability

CFArrayCreate(kCFAllocatorDefault, someStrings,
numStrings, &kCFTypeArrayCallBacks)

• An immutable array
CFDictionaryCreateMutable(kCFAllocatorDefault, 10,

&kCFTypeDictionaryKeyCallBacks,
&kCFTypeDictionaryValueCallBacks)

• A mutable dictionary that can never exceed 10
key-value pairs

CFStringCreateMutable(kCFAllocatorDefault, 0)

• A mutable string of unlimited length

2
0

11/05/24Apple Confidential

CFString

• Conceptually an array of Unicode
characters

• Goals
• Elevate strings to a new level of abstraction
• Make internationalization easy
• Assure high performance
• Become the way to communicate strings in

APIs

2
1

11/05/24Apple Confidential

CFString

• Rich functionality
• Many creation functions

• Encoding conversion

• Comparison, find

• Explode, combine

• Format, parse

• Storage optimizations
• Does not necessarily store Unicode

2
2

11/05/24Apple Confidential

Other types

• Wrapper types
• CFData (chunk of bytes)
• CFNumber (numbers)
• CFDate (dates)

• CFURL

2
3

11/05/24Apple Confidential

Property lists

• Any tree built entirely from:
• CFStrings, CFDatas, CFArrays,

CFDictionarys, CFDates, CFNumbers, and
CFBooleans

• Dictionary keys must be strings

• Have a flattened XML representation

2
4

11/05/24Apple Confidential

Application services

• CFBundle

• CFPlugIn

• CFXMLParser

• CFPreferences

• CFRunLoop and related

• Pasteboard
• Private service to Carbon & Cocoa

25 11/05/24Apple Confidential

Custom CFAllocators

2
6

11/05/24Apple Confidential

Allocators

• Allocators determine how memory is
allocated and freed

• Create functions take CFAllocators
as first argument

• Normally, pass kCFAllocatorDefault to use
the current default allocator

2
7

11/05/24Apple Confidential

Custom allocators

• Custom allocators are used to define
custom allocation behaviors

• However, overuse will tend to cause
an app to use more memory and
swap more

2
8

11/05/24Apple Confidential

Custom allocators

• Define a CFAllocatorContext
• Pointer to user-defined data, usually the allocator’s

management info

• retain, release, and copyDescription callbacks for the
user-defined info

• Define allocate, reallocate, deallocate, and
preferredSize callbacks with your own functions

• myAlloc = CFAllocatorCreate(
allocator, &context);

2
9

11/05/24Apple Confidential

Custom allocators

• Example: all callbacks NULL would be an
allocator which doesn’t allocate or
deallocate any memory

• kCFAllocatorNull

• Example: an allocator which allocated
from shared memory

• But be careful: shared regions must be at same
address

30 11/05/24Apple Confidential

Fast CFString Access

3
1

11/05/24Apple Confidential

Basic CFString API

• CFStringGetLength
• Returns number of Unicode characters in

string

• CFStringGetCharacterAtIndex
• Returns Unicode character at given (zero-

based) index

3
2

11/05/24Apple Confidential

Coding sample

len = CFStringGetLength(str);

for (i = 0; i < len; i++) {

UniChar c = CFStringGetCharacterAtIndex(str, i);

… do something with c ...

}

3
3

11/05/24Apple Confidential

Optimization #1: good

• Batch access to characters with
CFStringGetCharacters()
len = CFStringGetLength(str);
UniChar *buffer = malloc(sizeof(UniChar) * len);
CFStringGetCharacters(str, CFRangeMake(0, len), buffer);

for (i = 0; i < len; i++) {
… do something with buffer[i] ...

}

• Alteratively, use a stack buffer, and process a
subrange of the string at a time

3
4

11/05/24Apple Confidential

Optimization #2: better

• Batch access using direct pointer with
CFStringGetCharactersPtr()
UniChar *buffer = CFStringGetCharactersPtr(str);

if (NULL != buffer) {

len = CFStringGetLength(str);

for (i = 0; i < len; i++) {

… do something with buffer[i] ...

}

} else { … optimization #1 ? … }

3
5

11/05/24Apple Confidential

Optimization #3: best

• Inline buffer functions
CFStringInlineBuffer buf;

len = CFStringGetLength(str);

CFStringInitInlineBuffer(str, &buf, CFRangeMake(0, len));

for (i = 0; i < len; i++) {

UniChar c = CFStringGetCharacterFromInlineBuffer(&buf, i);

… do something with c ...

}

• Combines #1 & #2

3
6

11/05/24Apple Confidential

Another possibility

• Developer-provided external backing store
CFStringCreateMutableWithExternalCharactersNoCopy(

allocator, buffer, bufLen, bufCapacity, bufAllocator)

CFStringSetExternalCharactersNoCopy(

str, buffer, bufLen, bufCapacity)

• bufAllocator is custom allocator used when CFString
needs to grow buffer

• You access external buffer directly

• Only useful if you’re wrapping a UniChar buffer with
a CFString

3
7

11/05/24Apple Confidential

Other CFString access

• CFStringGetCStringPtr

• CFStringGetPascalStringPtr
• Return NULL if pointer can not be immediately

returned

• These do not allocate memory

• Characters are encoded in the system encoding

• CFStringGetBytes
• Get contents of string in any encoding

38 11/05/24Apple Confidential

Using CFRunLoop

3
9

11/05/24Apple Confidential

CFRunLoop

• CFRunLoop is the lowest event loop for Mac
OS X

• An event demultiplexor or dispatcher

• Listens on many types of input sources, and
performs callouts when they are
ready/signaled

• Normally, use Carbon or Cocoa event
systems

4
0

11/05/24Apple Confidential

CFRunLoop types

• CFRunLoop
• Manages sets of input sources

• CFRunLoopSource
• Abstract representation of input

• CFRunLoopTimer
• Periodic events

• CFRunLoopObserver
• Events for event loop cycle

4
1

11/05/24Apple Confidential

CFRunLoop

• Manages sets of input sources called
modes

• Run loop must be run to have it
monitor the input sources

• Calls the input source’s callout when
source becomes ready

4
2

11/05/24Apple Confidential

CFRunLoop

• One run loop per thread
• Can be used reentrantly (i.e. from within

a run loop callout)
• Causes the app to sleep when no input

is available
• Most work of an event-driven app

happens during a run loop callout

4
3

11/05/24Apple Confidential

CFRunLoopSources

• Specify several callbacks at creation
time to customize a source

• Sources usually implemented as
“classes”, and you use that API

• The “class” takes care of satisfying
the CFRunLoopSource API

4
4

11/05/24Apple Confidential

CFRunLoopSources

• When a source becomes signaled
the run loop will call its perform()
callback

• The “class” does the actual class-
specific monitoring

• Calls CFRunLoopSourceSignal(src)
when input is ready

4
5

11/05/24Apple Confidential

CFRunLoopSources

• During the perform() callback, a
source may re-signal itself if there’s
yet more input to be processed

• How a “class” monitors input is up to
it, but a separate thread is common
(better than polling)

4
6

11/05/24Apple Confidential

CFRunLoopTimers

• Specialized form of run loop source
to generate periodic callouts

• Create with start date and interval
• Only fired while run loop is running
• Missed fire dates are coalesced

4
7

11/05/24Apple Confidential

CFRunLoopObservers

• Allows for callouts to be performed at
various points in the run loop cycle

• When entered, exited
• Before/after sleeping

• Sometimes useful to do something,
for example, before the run loop
goes to sleep

4
8

11/05/24Apple Confidential

CFRunLoop sources

• Only one specialized input source
available so far

• CFSocket

• Another soon
• CFMessagePort

• Some higher-level subsystem may
create their own (IOKit?)

4
9

11/05/24Apple Confidential

Getting More Info

• Documentation on-line
• http://developer.apple.com/techpubs/corefoundation
• /System/Developer/Documentation/CoreFoundation

• Example code
• /System/Developer/Examples/CoreFoundation

50 11/05/24Apple Confidential

Q&A

Topics in
CoreFoundation

	Topics in CoreFoundation
	Introduction
	Slide 3
	CoreFoundation
	Mac OS X layering
	Within CoreServices
	What does CF provide?
	Using CoreFoundation
	General philosophy
	Object-orientation
	Polymorphic functions
	Memory management
	Slide 13
	Slide 14
	CoreFoundation types
	Collections
	Slide 17
	Mutability
	Slide 19
	CFString
	Slide 21
	Other types
	Property lists
	Application services
	Slide 25
	Allocators
	Custom allocators
	Slide 28
	Slide 29
	Slide 30
	Basic CFString API
	Coding sample
	Optimization #1: good
	Optimization #2: better
	Optimization #3: best
	Another possibility
	Other CFString access
	Slide 38
	CFRunLoop
	CFRunLoop types
	Slide 41
	Slide 42
	CFRunLoopSources
	Slide 44
	Slide 45
	CFRunLoopTimers
	CFRunLoopObservers
	CFRunLoop sources
	Getting More Info
	Q&A
	Slide 51

