
1 11/05/24Apple Confidential

Cocoa For Hackers
or

Don’t Try This At Home

Chris Kane & Mike Ferris

2 11/05/24Apple Confidential

Introduction

• Cocoa is a great environment for
hacking
– An open and extremely dynamic language

(Objective C)
– Frameworks that have been designed

from the start to provide powerful
abstractions that are customizable and
extensible

– Emphasis on “primitive” methods

3 11/05/24Apple Confidential

What You’ll Learn

• What mechanisms exist for
customizing and extending built-in
behaviors

• How to get your code loaded into all
Cocoa applications

• How to do truly scary things with the
Objective-C runtime environment

4 11/05/24Apple Confidential

What You’ll Promise

• I will not use private API or make
undocumented assumptions in
applications that I expect to work
tomorrow

• I will not use gross hacks to do things that
can be done in supported ways

• I will not destabilize Mac OS X by
distributing buggy code in Input Manager
bundles

5 11/05/24Apple Confidential

Topics

• Interesting methods to override
• Notifications
• Categories and Posing
• Input Manager bundles
• Objective-C Runtime
• Being as safe as possible

6 11/05/24Apple Confidential

Interesting Overrides

• There are lots of methods in the Cocoa
frameworks

• For hacking purposes the interesting ones for
overriding are sometimes methods that you would
not usually need to override in a normal
application

• Often these end up being general funnel methods
that are involved in large general areas of
functionality

7 11/05/24Apple Confidential

Event Handling

• -[NSApplication sendEvent:]
• -[NSWindow sendEvent:]
• -[NSApplication

nextEventMatchingMask: untilDate:
inMode: dequeue:]

• -[NSApplication updateWindows]
• -[NSWindow update]

8 11/05/24Apple Confidential

Target/Action & Field
Editors

• -[NSApplication sendAction: to:
from:]

• -[NSApplication targetForAction: to:
from:]

• -[NSWindow fieldEditor: forObject:]

9 11/05/24Apple Confidential

General View Stuff

• -[NSView hitTest:]
• -[NSView becomeFirstResponder]
• -[NSView resignFirstResponder]
• -[NSView viewWillMoveToWindow:]
• -[NSView

viewWillMoveToSuperview:]

1
0

11/05/24Apple Confidential

Text System

• -[NSTextView insertText:]
• -[NSTextView doCommandBySelector:]
• -[NSTextView setSelectedRange:

affinity: stillSelecting:]
• -[NSTextView

selectionRangeForProposedRange:
granularity:]

11 11/05/24Apple Confidential

More Text System

• -[NSTextView shouldChangeTextInRange:
replacementString:]

• -[NSTextView didChangeText]

• -[NSTextView rangeForUserTextChange]

• -[NSTextView
rangeForUserCharacterAttributeChange]

• -[NSTextView
rangeForUserParagraphAttributeChange]

1
2

11/05/24Apple Confidential

Notifications

• Notifications are broadcast messages that can be
received by many independent observers

• Cocoa classes define many notifications that are
sent when important things happen or are about
to happen

• Because observers are independent, a new
observer can be added at any time and will not
affect the proper functioning of other existing
observer

1
3

11/05/24Apple Confidential

Application Notifications

• NSApplicationDidFinishLaunchingNotifica
tion

• NSApplicationDidBecomeActiveNotificatio
n

• NSApplicationDidResignActiveNotification
• NSApplicationDidUpdateNotification
• NSApplicationWillTerminateNotification
• NSApplicationDidChangeScreenParametersNotificati

on

1
4

11/05/24Apple Confidential

Window Notifications

• NSWindowDidBecomeKeyNotification
• NSWindowDidResignKeyNotification
• NSWindowDidMoveNotification
• NSWindowDidResizeNotification
• NSWindowDidUpdateNotification
• NSWindowWillCloseNotification

1
5

11/05/24Apple Confidential

View Notifications

• NSViewFrameDidChangeNotification
• NSViewBoundsDidChangeNotificatio

n
• NSViewFocusDidChangeNotification

1
6

11/05/24Apple Confidential

Text Notifications

• NSTextDidBeginEditingNotification

• NSTextDidEndEditingNotification

• NSTextDidChangeNotification
– Editable NSControls have variants of these too

• NSTextViewDidChangeSelectionNotification

• NSTextStorageWillProcessEditingNotification

• NSTextStorageDidProcessEditingNotification

1
7

11/05/24Apple Confidential

Other AppKit Notifications

• Menus: items added, removed, actions
sent

• PopUps: menu will pop

• Drawers: opening, closing

• Split Views: resizing subviews

• Tables/Outlines: selection changes, column
manipulation, expanding/collapsing

1
8

11/05/24Apple Confidential

Foundation Notifications

• NSBundleDidLoadNotification
• NSUserDefaultsDidChangeNotificatio

n
• NSWillBecomeMultiThreadedNotifica

tion

1
9

11/05/24Apple Confidential

Categories

• Objective-C categories add methods to an
existing class

• Categories can be used to
– Extend a class, adding new capabilities
– Help maintain a layered design while still

allowing methods to be on the natrual type of
receiver

– Patch a buggy method in a class you do not
have the code for

2
0

11/05/24Apple Confidential

Extending Functionality
with Categories

• Does some class you’re using need a new
method to make your job easier?

• You can add it
– -[NSString stringByEscapingHTML]

– -[NSMutableArray
removeAllOccurrencesOfObject:]

– -[NSObject valueForKey:], -[NSObject
takeValue:forKey:]

2
1

11/05/24Apple Confidential

Adding NSTextView Key
Binding Methods

• NSTextView has a key binding mechanism
that maps key sequences to method
invocations

• You can add new methods to NSTextView
with a category and then create key bindings
that invoke them

• Key-binding methods are like actions: they
take a single “sender” argument which is
almost always ignored

2
2

11/05/24Apple Confidential

Layered Design with
Categories

• NSString is a Foundation class and
Foundation cannot draw

• AppKit defines how to draw
• Applications often want to draw NSStrings
• So AppKit adds drawing methods to

NSString
– -[NSString sizeWithAttributes:]
– -[NSString drawInRect:withAttributes:]

2
3

11/05/24Apple Confidential

Patching Existing Methods
with Categories

• Replacing methods can be dangerous

• Only guarantee is that category method overrides
base class method

• If multiple categories define same method,
behavior is undefined

• Cannot (easily) call the implementation you are
replacing

• But, sometimes this can save your butt

2
4

11/05/24Apple Confidential

Posing

• Posing allows a class to “become” its
superclass
– [MyButton poseAsClass:[NSButton class]]

• Any use of the superclass will actually use the
posing class

• Other subclasses of the superclass “become”
subclasses of the posing class

• Posing is incredibly dangerous and almost
always unnecessary

2
5

11/05/24Apple Confidential

How Posing Works

NSButton

MyButton

BarButton

OtherButton

FooButton

Before

2
6

11/05/24Apple Confidential

How Posing Works

NSButton

MyButton

BarButton

OtherButton

FooButton

%NSButton

NSButton

BarButton

OtherButton

FooButton

MyButton

Before After

2
7

11/05/24Apple Confidential

Inflicting Your Hacks on
Unsuspecting Applications

• Cocoa applications will load Input
Manager bundles when they launch

• Input Managers are intended to provide
support for complex text input
requirements of languages like
Japanese

• But, in fact, they can contain any code
you want

2
8

11/05/24Apple Confidential

Installing Input Managers

• Input Managers are bundles that live in
standard locations
– ~/Library/InputManagers,

/Network/Library/InputManagers, ...

• Each Input Manager bundle lives in its own
folder in one of these locations and, in addition
to the bundle, each of these folders has an
“Info” file that describes certain attributes of the
bundle.

2
9

11/05/24Apple Confidential

HackMac Skeletal Input
Manager

• If you want to start playing with Input
Manager bundles, ask me

• I have a project that builds a skeletal
Input Manager called HackMac for
your hacking pleasure

30 11/05/24Apple Confidential

DEMO
TextExtras Input

Manager

3
1

11/05/24Apple Confidential

Scary Objective-C Runtime
Tricks

• Objective C headers are “public”
• But, still undocumented after 14

years
• To the astute coder, this should send

a signal

3
2

11/05/24Apple Confidential

Manipulating classes

• Getting all the known classes
• int objc_getClassList(Class *buffer, int

bufferLen)
• Having a Class, you can walk up the

class hierarchy through the super class
pointers

• Adding classes to the runtime
• Initialize an objc_class structure
• objc_addClass(Class cls)

3
3

11/05/24Apple Confidential

Method lists

• Walking the method lists of a class
• Struct objc_method_list
• Triplets of selector, encoded method param

types, and pointer to method code
• Add/remove methods from classes

• Initialize an objc_method_list structure
• Void class_addMethods(Class,

objc_method_list *)
• Void class_removeMethods(Class,

objc_method_list *)

3
4

11/05/24Apple Confidential

Instance variables

• Walking the ivars for an object
• Get the struct objc_ivar_list from object’s class
• Triplet of name, encoded type, and offset into

object

• Get/set ivars directly
• objc_setInstanceVariable(object, name,

&value)
• objc_getInstanceVariable(object, name, &value)

3
5

11/05/24Apple Confidential

Allocation strategy

• Can be changed by setting global
function pointers

• id (*_alloc)(Class, size)
• id (*_copy)(id, size)
• id (*_realloc)(id, size) [unuseful]
• id (*_dealloc)(id)

3
6

11/05/24Apple Confidential

Other goodies

• Registering new selectors
• sel_registerName(char *)

• Send messages directly
• objc_msgSend(id, selector, parameters…)

• objc_msgSend_stret(void *, id, selector, parameters…)

• objc_msgSendv
– For “varargs”, but really, not useful

– Marg_list format is undocumented, and different for each
platform and architecture

3
7

11/05/24Apple Confidential

DEMO
Isa & Class Swizzling

3
8

11/05/24Apple Confidential

Being Safe

• Although we have discussed some
dangerous (but powerful) features,
there are things you can do to use
them as safely as possible

• This is just minimizing the risk,
though, not removing it

3
9

11/05/24Apple Confidential

Safely Using Private API

• Use -respondsToSelector: to protect
against private API disappearing and be
prepared to do something intelligent if the
method is not there

• Use NSClassFromString() instead of
mentioning private class names directly,
and if it returns nil, be prepared to do
something else

4
0

11/05/24Apple Confidential

Safe Categories

• Prefix your method names if you are
adding methods to existing classes,
especially common ones

• Prefix your category names
• Do not override methods with a

category

4
1

11/05/24Apple Confidential

Using Undocumented
Features

• You cannot create a robust high-quality
product by using undocumented features
– Unknown side effects can make for fragile

applications

– Your app is more likely to break when the
system is updated

• Much of what we have talked about today
is undocumented

42 11/05/24Apple Confidential

Q&A

Hack Different

	Cocoa For Hackers or Don’t Try This At Home
	Introduction
	What You’ll Learn
	What You’ll Promise
	Topics
	Interesting Overrides
	Event Handling
	Target/Action & Field Editors
	General View Stuff
	Text System
	More Text System
	Notifications
	Application Notifications
	Window Notifications
	View Notifications
	Text Notifications
	Other AppKit Notifications
	Foundation Notifications
	Categories
	Extending Functionality with Categories
	Adding NSTextView Key Binding Methods
	Layered Design with Categories
	Patching Existing Methods with Categories
	Posing
	How Posing Works
	Slide 26
	Inflicting Your Hacks on Unsuspecting Applications
	Installing Input Managers
	HackMac Skeletal Input Manager
	DEMO TextExtras Input Manager
	Scary Objective-C Runtime Tricks
	Manipulating classes
	Method lists
	Instance variables
	Allocation strategy
	Other goodies
	DEMO Isa & Class Swizzling
	Being Safe
	Safely Using Private API
	Safe Categories
	Using Undocumented Features
	Q&A
	Slide 43

