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Introduction

• Cocoa is a great environment for 
hacking
– An open and extremely dynamic language 

(Objective C)
–  Frameworks that have been designed 

from the start to provide powerful 
abstractions that are customizable and 
extensible

– Emphasis on “primitive” methods
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What You’ll Learn

• What mechanisms exist for 
customizing and extending built-in 
behaviors

• How to get your code loaded into all 
Cocoa applications

• How to do truly scary things with the 
Objective-C runtime environment
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What You’ll Promise

• I will not use private API or make 
undocumented assumptions in 
applications that I expect to work 
tomorrow

• I will not use gross hacks to do things that 
can be done in supported ways

• I will not destabilize Mac OS X by 
distributing buggy code in Input Manager 
bundles
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Topics

• Interesting methods to override
• Notifications
• Categories and Posing
• Input Manager bundles
• Objective-C Runtime
• Being as safe as possible
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Interesting Overrides

• There are lots of methods in the Cocoa 
frameworks

• For hacking purposes the interesting ones for 
overriding are sometimes methods that you would 
not usually need to override in a normal 
application

• Often these end up being general funnel methods 
that are involved in large general areas of 
functionality
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Event Handling

• -[NSApplication sendEvent:]
• -[NSWindow sendEvent:]
• -[NSApplication 

nextEventMatchingMask: untilDate: 
inMode: dequeue:]

• -[NSApplication updateWindows]
• -[NSWindow update]
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Target/Action & Field 
Editors

• -[NSApplication sendAction: to: 
from:]

• -[NSApplication targetForAction: to: 
from:]

• -[NSWindow fieldEditor: forObject:]
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General View Stuff

• -[NSView hitTest:]
• -[NSView becomeFirstResponder]
• -[NSView resignFirstResponder]
• -[NSView viewWillMoveToWindow:]
• -[NSView 

viewWillMoveToSuperview:]



1
0

11/05/24Apple Confidential

Text System

• -[NSTextView insertText:]
• -[NSTextView doCommandBySelector:]
• -[NSTextView setSelectedRange: 

affinity: stillSelecting:]
• -[NSTextView 

selectionRangeForProposedRange: 
granularity:]
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More Text System

• -[NSTextView shouldChangeTextInRange: 
replacementString:]

• -[NSTextView didChangeText]

• -[NSTextView rangeForUserTextChange]

• -[NSTextView 
rangeForUserCharacterAttributeChange]

• -[NSTextView 
rangeForUserParagraphAttributeChange]
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Notifications

• Notifications are broadcast messages that can be 
received by many independent observers

• Cocoa classes define many notifications that are 
sent when important things happen or are about 
to happen

• Because observers are independent, a new 
observer can be added at any time and will not 
affect the proper functioning of other existing 
observer
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Application Notifications

• NSApplicationDidFinishLaunchingNotifica
tion

• NSApplicationDidBecomeActiveNotificatio
n

• NSApplicationDidResignActiveNotification
• NSApplicationDidUpdateNotification
• NSApplicationWillTerminateNotification
• NSApplicationDidChangeScreenParametersNotificati

on
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Window Notifications

• NSWindowDidBecomeKeyNotification
• NSWindowDidResignKeyNotification
• NSWindowDidMoveNotification
• NSWindowDidResizeNotification
• NSWindowDidUpdateNotification
• NSWindowWillCloseNotification



1
5

11/05/24Apple Confidential

View Notifications

• NSViewFrameDidChangeNotification
• NSViewBoundsDidChangeNotificatio

n
• NSViewFocusDidChangeNotification
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Text Notifications

• NSTextDidBeginEditingNotification

• NSTextDidEndEditingNotification

• NSTextDidChangeNotification
– Editable NSControls have variants of these too 

• NSTextViewDidChangeSelectionNotification

• NSTextStorageWillProcessEditingNotification

• NSTextStorageDidProcessEditingNotification
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Other AppKit Notifications

• Menus: items added, removed, actions 
sent

• PopUps: menu will pop

• Drawers: opening, closing

• Split Views: resizing subviews

• Tables/Outlines: selection changes, column 
manipulation, expanding/collapsing
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Foundation Notifications

• NSBundleDidLoadNotification
• NSUserDefaultsDidChangeNotificatio

n
• NSWillBecomeMultiThreadedNotifica

tion
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Categories

• Objective-C categories add methods to an 
existing class

• Categories can be used to 
– Extend a class, adding new capabilities
– Help maintain a layered design while still 

allowing methods to be on the natrual type of 
receiver

– Patch a buggy method in a class you do not 
have the code for
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Extending Functionality 
with Categories

• Does some class you’re using need a new 
method to make your job easier?

• You can add it
– -[NSString stringByEscapingHTML]

– -[NSMutableArray 
removeAllOccurrencesOfObject:]

– -[NSObject valueForKey:], -[NSObject 
takeValue:forKey:]
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Adding NSTextView Key 
Binding Methods

• NSTextView has a key binding mechanism 
that maps key sequences to method 
invocations

• You can add new methods to NSTextView 
with a category and then create key bindings 
that invoke them

• Key-binding methods are like actions:  they 
take a single “sender” argument which is 
almost always ignored 
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Layered Design with 
Categories

• NSString is a Foundation class and 
Foundation cannot draw

• AppKit defines how to draw
• Applications often want to draw NSStrings
• So AppKit adds drawing methods to 

NSString
– -[NSString sizeWithAttributes:]
– -[NSString drawInRect:withAttributes:]
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Patching Existing Methods 
with Categories

• Replacing methods can be dangerous

• Only guarantee is that category method overrides 
base class method

• If multiple categories define same method, 
behavior is undefined

• Cannot (easily) call the implementation you are 
replacing

• But, sometimes this can save your butt
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Posing

• Posing allows a class to “become” its 
superclass
– [MyButton poseAsClass:[NSButton class]]

• Any use of the superclass will actually use the 
posing class

• Other subclasses of the superclass “become” 
subclasses of the posing class

• Posing is incredibly dangerous and almost 
always unnecessary
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How Posing Works

NSButton

MyButton
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OtherButton

FooButton

Before
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How Posing Works

NSButton

MyButton

BarButton

OtherButton

FooButton

%NSButton

NSButton

BarButton

OtherButton

FooButton

MyButton

Before After



2
7

11/05/24Apple Confidential

Inflicting Your Hacks on 
Unsuspecting Applications

• Cocoa applications will load Input 
Manager bundles when they launch

• Input Managers are intended to provide 
support for complex text input 
requirements of languages like 
Japanese

• But, in fact, they can contain any code 
you want
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Installing Input Managers

• Input Managers are bundles that live in 
standard locations
– ~/Library/InputManagers, 

/Network/Library/InputManagers, ...

• Each Input Manager bundle lives in its own 
folder in one of these locations and, in addition 
to the bundle, each of these folders has an 
“Info” file that describes certain attributes of the 
bundle.
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HackMac Skeletal Input 
Manager

• If you want to start playing with Input 
Manager bundles, ask me

• I have a project that builds a skeletal 
Input Manager called HackMac for 
your hacking pleasure
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DEMO
TextExtras Input 

Manager
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Scary Objective-C Runtime 
Tricks

• Objective C headers are “public”
• But, still undocumented after 14 

years
• To the astute coder, this should send 

a signal
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Manipulating classes

• Getting all the known classes
• int objc_getClassList(Class *buffer, int 

bufferLen)
• Having a Class, you can walk up the 

class hierarchy through the super class 
pointers

• Adding classes to the runtime
• Initialize an objc_class structure
• objc_addClass(Class cls)
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Method lists

• Walking the method lists of a class
• Struct objc_method_list
• Triplets of selector, encoded method param 

types, and pointer to method code
• Add/remove methods from classes

• Initialize an objc_method_list structure
• Void class_addMethods(Class, 

objc_method_list *)
• Void class_removeMethods(Class, 

objc_method_list *)
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Instance variables

• Walking the ivars for an object
• Get the struct objc_ivar_list from object’s class
• Triplet of name, encoded type, and offset into 

object

• Get/set ivars directly
• objc_setInstanceVariable(object, name,  

&value)
• objc_getInstanceVariable(object, name, &value)
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Allocation strategy

• Can be changed by setting global 
function pointers

• id (*_alloc)(Class, size)
• id (*_copy)(id, size)
• id (*_realloc)(id, size) [unuseful]
• id (*_dealloc)(id)
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Other goodies

• Registering new selectors
• sel_registerName(char *)

• Send messages directly
• objc_msgSend(id, selector, parameters…)

• objc_msgSend_stret(void *, id, selector, parameters…)

• objc_msgSendv
– For “varargs”, but really, not useful

– Marg_list format is undocumented, and different for each 
platform and architecture
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DEMO
Isa & Class Swizzling
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Being Safe

• Although we have discussed some 
dangerous (but powerful) features, 
there are things you can do to use 
them as safely as possible

• This is just minimizing the risk, 
though, not removing it
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Safely Using Private API

• Use -respondsToSelector: to protect 
against private API disappearing and be 
prepared to do something intelligent if the 
method is not there

• Use NSClassFromString() instead of 
mentioning private class names directly, 
and if it returns nil, be prepared to do 
something else
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Safe Categories

• Prefix your method names if you are 
adding methods to existing classes, 
especially common ones

• Prefix your category names
• Do not override methods with a 

category
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Using Undocumented 
Features

• You cannot create a robust high-quality 
product by using undocumented features
– Unknown side effects can make for fragile 

applications

– Your app is more likely to break when the 
system is updated

• Much of what we have talked about today 
is undocumented
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Q&A
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