

Memory Strategy inMemory Strategy in
Macintosh ProgramsMacintosh Programs

Darin AdlerDarin Adler
Bent Spoon SoftwareBent Spoon Software

MacHack, June 1999MacHack, June 1999

Memory questions.Memory questions.

• Speed of allocation.Speed of allocation.

• Memory exhaustion.Memory exhaustion.

• Memory leaks.Memory leaks.

• Locality of reference.Locality of reference.

I’ll be covering memory I’ll be covering memory
exhaustion today.exhaustion today.

• You’ll see that there’s enough in that You’ll see that there’s enough in that
single topic for a long talk and we single topic for a long talk and we
won’t even cover enough of that topic.won’t even cover enough of that topic.

• I’ll focus on C++ techniques. Many are I’ll focus on C++ techniques. Many are
applicable to other languages.applicable to other languages.

What do we want to happen What do we want to happen
when out of memory?when out of memory?

• Program terminates?Program terminates?

• Report that the operation failed?Report that the operation failed?

• Tell the user to close documents?Tell the user to close documents?

What happens if we ignore What happens if we ignore
the issue?the issue?

• With C’s malloc, we get a pointer that With C’s malloc, we get a pointer that
points to address 0.points to address 0.

• With NewPtr, we get a pointer that With NewPtr, we get a pointer that
points to address 0.points to address 0.

• With NewHandle, we get a handle that With NewHandle, we get a handle that
points to address 0.points to address 0.

What happens if we ignore What happens if we ignore
the issue?the issue?

• With modern C++’s new, the program With modern C++’s new, the program
terminates with an uncaught terminates with an uncaught
exception.exception.

• With some Macintosh toolbox With some Macintosh toolbox
routines, we get unpredictable routines, we get unpredictable
behavior.behavior.

Why can programmers get Why can programmers get
away with wishful thinking?away with wishful thinking?

• On platforms other than Macintosh, On platforms other than Macintosh,
they may be able to ignore the issue they may be able to ignore the issue
because of how virtual memory works.because of how virtual memory works.

• Perhaps because the machine is Perhaps because the machine is
guaranteed to get slower as you guaranteed to get slower as you
allocate more memory.allocate more memory.

Like trying to travel at the Like trying to travel at the
speed of light.speed of light.

• The closer you get to running out, the The closer you get to running out, the
slower the computer gets.slower the computer gets.

• Can never run out just like you can’t Can never run out just like you can’t
travel at c.travel at c.

• Perhaps we need a new slogan.Perhaps we need a new slogan.

Our new slogan.Our new slogan.

• We are Macintosh programmers:We are Macintosh programmers:
We can travel at the speed of light!We can travel at the speed of light!

(I guess it’s not really a good thing.)(I guess it’s not really a good thing.)

Worst cases.Worst cases.

• On UNIX, termination is usually OK.On UNIX, termination is usually OK.

• C programs often terminate with a C programs often terminate with a
core dump trying to access address 0.core dump trying to access address 0.

• C++ programs often terminate with an C++ programs often terminate with an
uncaught exception.uncaught exception.

Survey of techniques.Survey of techniques.

• Detecting memory exhaustion.Detecting memory exhaustion.

• Handling memory exhaustion.Handling memory exhaustion.

• Reporting to the user.Reporting to the user.

• Strategies.Strategies.

Detecting memory Detecting memory
exhaustion.exhaustion.

• Consider the interface of each Consider the interface of each
operation that can consume memory.operation that can consume memory.

• Choose between:Choose between:

– Error code returned by the call.Error code returned by the call.

– Signal value to indicate the call failed.Signal value to indicate the call failed.

– Exception thrown by the call.Exception thrown by the call.

A bigger problem.A bigger problem.

• Many Macintosh toolbox routines will Many Macintosh toolbox routines will
malfunction if there isn’t enough malfunction if there isn’t enough
memory.memory.

• Some kind of protection is necessary.Some kind of protection is necessary.

Handling memory Handling memory
exhaustion.exhaustion.

• Everybody reports memory exhaustion, Everybody reports memory exhaustion,
but no one wants to do anything about but no one wants to do anything about
it.it.

• It’s common to ignore error codes, It’s common to ignore error codes,
signal values, and exceptions.signal values, and exceptions.

• The language doesn’t help; it’s hard to The language doesn’t help; it’s hard to
document the error behavior.document the error behavior.

Error behavior definition.Error behavior definition.

• Document which errors can arise.Document which errors can arise.

• Distinguish errors that can happen at Distinguish errors that can happen at
runtime unpredictably and those that can runtime unpredictably and those that can
only happen because of a programming only happen because of a programming
mistake.mistake.

• If an error occurs, does the routine undo If an error occurs, does the routine undo
any partial operation?any partial operation?

Notice memory exhaustion Notice memory exhaustion
before it’s too late.before it’s too late.

• A common technique for this is the A common technique for this is the
memory reserve.memory reserve.

• Another technique is preflighting.Another technique is preflighting.

Memory reserve.Memory reserve.

• This is memory that’s kept around so This is memory that’s kept around so
that it can be released when otherwise that it can be released when otherwise
out of memory.out of memory.

• The reserve typically must be The reserve typically must be
implemented as an actual block that is implemented as an actual block that is
allocated and freed.allocated and freed.

Strategies.Strategies.

• Use exceptions, because it’s easier to Use exceptions, because it’s easier to
get them right than error codes.get them right than error codes.

• Define most routines so they do Define most routines so they do
nothing permanent if they fail.nothing permanent if they fail.

• Use memory reserves.Use memory reserves.

Can not checking be a Can not checking be a
viable strategy?viable strategy?

• Surprisingly, yes, at least for some.Surprisingly, yes, at least for some.

• This requires knowledge of the maximum This requires knowledge of the maximum
your program will need, and can be trickier your program will need, and can be trickier
than checking.than checking.

• But it does result in an smaller, apparently But it does result in an smaller, apparently
simpler program.simpler program.

• I’ll discuss the checking strategy.I’ll discuss the checking strategy.

Code bloat.Code bloat.

• Some say that adding memory checks to Some say that adding memory checks to
their routines will make their code too big.their routines will make their code too big.

• When using exceptions, it’s important to When using exceptions, it’s important to
make covers that throw the exception make covers that throw the exception
instead of constantly turning error codes instead of constantly turning error codes
into exceptions.into exceptions.

– I think PowerPlant gets this wrong.I think PowerPlant gets this wrong.

Code bloat.Code bloat.

• There is a code size increase caused There is a code size increase caused
by the additional code paths by the additional code paths
generated by code that can throw generated by code that can throw
exceptions.exceptions.

• The source code can bloat up if you The source code can bloat up if you
have a lot of try/catch code.have a lot of try/catch code.

A cover routine.A cover routine.

• Here’s an example of a cover routine.Here’s an example of a cover routine.

 Handle newHandle(Size size)Handle newHandle(Size size)
 { {
 Handle result(NewHandle(size)); Handle result(NewHandle(size));
 if (result == NULL) if (result == NULL)
 throw std::bad_alloc(); throw std::bad_alloc();
 return result; return result;
 } }

Getting exceptions right.Getting exceptions right.

• It may be easier than error codes, but It may be easier than error codes, but
it’s still tough.it’s still tough.

• The main issue is cleanup at all the The main issue is cleanup at all the
possible points where an exception possible points where an exception
might be raised.might be raised.

Avoid catch(...) for cleanup.Avoid catch(...) for cleanup.

• Destructors work much better.Destructors work much better.

• With catch(...), it’s easy to get it wrong With catch(...), it’s easy to get it wrong
and think it’s right.and think it’s right.

• Create your own simple classes so Create your own simple classes so
destructors can clean up, or start with destructors can clean up, or start with
the ones from PowerPlant.the ones from PowerPlant.

Use an object with a Use an object with a
destructor.destructor.

• Examples.Examples.

– Changing CurResFile().Changing CurResFile().

– Allocating memory.Allocating memory.

– Creating a file.Creating a file.

– Opening a file.Opening a file.

• Once you get started, it’s fun.Once you get started, it’s fun.

How to deallocate memory How to deallocate memory
automatically.automatically.

• Use vector<char>.Use vector<char>.

 std::vector<char> v(count); std::vector<char> v(count);
 ReadData(&v[0], count); ReadData(&v[0], count);

• Difficult to do this with auto_ptr.Difficult to do this with auto_ptr.

• Or use PowerPlant’s StPointerBlock.Or use PowerPlant’s StPointerBlock.

Write destructors carefully.Write destructors carefully.

• Destructors should not throw Destructors should not throw
exceptions.exceptions.

• An exception thrown during exception An exception thrown during exception
handling causes the program to handling causes the program to
terminate.terminate.

Use reserves to handle the Use reserves to handle the
three big problems.three big problems.

• Guarantee to run the user interface Guarantee to run the user interface
when otherwise out of memory.when otherwise out of memory.

• Avoid exercising worst-case memory Avoid exercising worst-case memory
handling in your program in the field.handling in your program in the field.

• Protect toolbox routines so they aren’t Protect toolbox routines so they aren’t
called with insufficient memory.called with insufficient memory.

User interface reserve.User interface reserve.

• Use this so when you are out of Use this so when you are out of
memory, the user can free some.memory, the user can free some.

• When this reserve is gone, do not When this reserve is gone, do not
allow high-level user actions that allow high-level user actions that
result in more allocation.result in more allocation.

Naughty calls reserve.Naughty calls reserve.

• Use this so you won’t call the toolbox Use this so you won’t call the toolbox
with insufficient memory.with insufficient memory.

• Before calling each “suspect” Before calling each “suspect”
function, check the reserve.function, check the reserve.

• If the reserve is not available, fail as if If the reserve is not available, fail as if
you had exhausted memory.you had exhausted memory.

Soft failures reserve.Soft failures reserve.

• Use this so that actual exercise of Use this so that actual exercise of
memory exhaustion code is reduced.memory exhaustion code is reduced.

• This should only be in production This should only be in production
versions of your program. Test without it versions of your program. Test without it
as much as possible.as much as possible.

• Bad luck is still an issue, but reduces the Bad luck is still an issue, but reduces the
probability of “tests” in the field.probability of “tests” in the field.

Releasing reserves.Releasing reserves.

• The user interface reserve is released The user interface reserve is released
in the main event loop if the free in the main event loop if the free
memory gets below a threshold.memory gets below a threshold.

• The soft failures reserve is released if The soft failures reserve is released if
memory is exhausted, in a new memory is exhausted, in a new
handler or grow zone function.handler or grow zone function.

Releasing reserves.Releasing reserves.

• The naughty calls reserve is released The naughty calls reserve is released
if memory is exhausted and the soft if memory is exhausted and the soft
failures reserve is already gone.failures reserve is already gone.

Behavior when reserves are Behavior when reserves are
missing.missing.

• When the user interface reserve is not When the user interface reserve is not
available, the commands in the main available, the commands in the main
event loop are reduced to a set that event loop are reduced to a set that
will not allocate additional memory.will not allocate additional memory.

– Can’t open a new document.Can’t open a new document.

– Can close an existing document.Can close an existing document.

Behavior when reserves are Behavior when reserves are
missing.missing.

• If naughty calls reserve is missing, If naughty calls reserve is missing,
code that runs before each naughty code that runs before each naughty
call will throw an exception rather call will throw an exception rather
than calling through.than calling through.

• If soft failure reserve is missing, user If soft failure reserve is missing, user
interface reserve is released since you interface reserve is released since you
are below the threshold.are below the threshold.

Reallocating reserves.Reallocating reserves.

• Each time through the event loop, we Each time through the event loop, we
reallocate the soft failure reserve.reallocate the soft failure reserve.

• If we have the soft failure reserve, If we have the soft failure reserve,
each time through the event loop we each time through the event loop we
reallocate the user interface reserve.reallocate the user interface reserve.

– Tell the user when we get that one back.Tell the user when we get that one back.

Reallocating reserves.Reallocating reserves.

• We reallocate the naughty calls We reallocate the naughty calls
reserve just as we check it, before reserve just as we check it, before
making a naughty call. If we don’t making a naughty call. If we don’t
manage to reallocate it, then the call manage to reallocate it, then the call
fails as mentioned before.fails as mentioned before.

Reserve sizes.Reserve sizes.

• User interface reserve is big enough to User interface reserve is big enough to
run the event loop and UI.run the event loop and UI.

• Naughty calls reserve is the largest Naughty calls reserve is the largest
amount of memory that is used by the amount of memory that is used by the
most memory-hungry naughty call.most memory-hungry naughty call.

• Soft memory failures reserve is bigger if Soft memory failures reserve is bigger if
you want more errors to be soft.you want more errors to be soft.

How close is PowerPlant to How close is PowerPlant to
this strategy already?this strategy already?

• PowerPlant has the user interface PowerPlant has the user interface
reserve, but doesn’t have the others.reserve, but doesn’t have the others.

• There’s no guarantee that there’s There’s no guarantee that there’s
enough memory to keep the program enough memory to keep the program
running once the reserve is gone.running once the reserve is gone.

Testing.Testing.

• There are more code paths than you There are more code paths than you
think with exceptions.think with exceptions.

• Every function that can raise an Every function that can raise an
exception creates another code path that exception creates another code path that
must be tested.must be tested.

• The only way is to simulate the error The only way is to simulate the error
condition.condition.

Not the end of the matter.Not the end of the matter.

• Use those exceptions.Use those exceptions.

• Use reserves or the equivalent to Use reserves or the equivalent to
handle the big three problems.handle the big three problems.

• Come up with a better strategy and Come up with a better strategy and
teach it to me.teach it to me.

Discussion, questions.Discussion, questions.

	Slide 1
	Memory Strategy in Macintosh Programs
	Memory questions.
	I’ll be covering memory exhaustion today.
	What do we want to happen when out of memory?
	What happens if we ignore the issue?
	Slide 7
	Why can programmers get away with wishful thinking?
	Like trying to travel at the speed of light.
	Our new slogan.
	Worst cases.
	Survey of techniques.
	Detecting memory exhaustion.
	A bigger problem.
	Handling memory exhaustion.
	Error behavior definition.
	Notice memory exhaustion before it’s too late.
	Memory reserve.
	Strategies.
	Can not checking be a viable strategy?
	Code bloat.
	Slide 22
	A cover routine.
	Getting exceptions right.
	Avoid catch(...) for cleanup.
	Use an object with a destructor.
	How to deallocate memory automatically.
	Write destructors carefully.
	Use reserves to handle the three big problems.
	User interface reserve.
	Naughty calls reserve.
	Soft failures reserve.
	Releasing reserves.
	Slide 34
	Behavior when reserves are missing.
	Slide 36
	Reallocating reserves.
	Slide 38
	Reserve sizes.
	How close is PowerPlant to this strategy already?
	Testing.
	Not the end of the matter.
	Discussion, questions.
	Slide 44

