MacOS Instrumentation
Programmer’s Guide

Copyright © 1996-1997, Apple Computer, Inc.

Table of Contents

Introduction

About the Instrumentation System
Instrumentation Classes
The Instrumentation Tree
Trace Event Records
Types of Statistics

Using the Instrumentation System
Creating Instrumentation Classes
Logging Trace Information
Logging to a Summary Trace Class
Recording Statistics Information
Enabling and Disabling Instrumentation Classes

Instrumentation Reference

Constants

I nstrumentation Routines
Initidization and Termination
Creating and Destroying Instrumentation Classes
Creating and Destroying Data Descriptors
Logging Trace Events
Updating Statistics Classes
Enabling and Disabling Instrumentation Classes

Summary of the Instrumentation System

Constants
I nstrumentation Routines

Instrumentation Programmer’s Guide — 1.0.5 3/6/97

A OWowN

© O N o

11
11
12
12
13
19
21
24
27

28
28
28

Introduction

The instrumentation system provides services that alow you to record information about
running software. This can be used to expose system behavior, and is particularly useful
for investigating runtime performance.

This guide describes the instrumentation services, how they are organized, and how they
may be used to record instrumentation information from within your programs.

It isintended for anyone who wants to be able to produce runtime information from within
their code, and later analyze that information in order to understand how the codeis
operating.

In order to use the instrumentation system, you should be generally familiar with building
and running Macintosh programs. Y ou should also be familiar with theprintf ()
formatted output mechanism, described in Appendix B of The C Programming Language,
Second Edition, by Kernighan & Ritchie.

This guide begins by describing instrumentation points in general and the various typesin

particular. It then discusses how to create these points and write instrumentation data to
them. Finally, it documents the programming interface to the instrumentation system.

About the Instrumentation System

This section describes the types of instrumentation provided, instrumentation classes, the
Instrumentation Tree, and the various forms that instrumentation data can take.

Generally speaking, there are two types of instrumentation data that you can record: trace
events, and statistics. Trace events, also called traces, are used to indicate that a particular
event occurred at a particular time. Every time your software logs atrace event, atrace
event record is created and will be written out to permanent storage.

Traces are typically used to track the program flow of control — such as function entry and
exit — and to determine the breakdown of execution time among various components.

Statistics represent the various values or totals that your software can measure over time.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 2

Statistics require much less overhead than traces, because rather than having to record
every call, the instrumentation system must only keep track of the current values for each
statistic. These values are periodically sampled and written to permanent storage.

The trade-off is that there is no record of when a particular statistic value was set by your
software; its timestamp refers to when it was sampled by the instrumentation system.

Y our code may produce both types of instrumentation data— and call most instrumentation

routines— at any interrupt level. Exceptions are noted in the “Instrumentation Reference”
section.

Instrumentation Classes

In order to record traces for a particular event or to define a particular statistic, you must
create an instrumentation class. An instrumentation classis a uniquely-named container for
instrumentation data. WWhen you create an instrumentation class, you define its name and its
type. Y ou may also provide type-specific information, such as the range and resolution of a
histogram statistic.

Y ou use the instrumentation class reference that is returned from the creation call to specify
the destination of the instrumentation data that you wish to record. An instrumentation class
iseither enabled or disabled; when it is disabled, none of itsinformation is collected or
written to permanent storage.

The Instrumentation Tree

Instrumentation classes are organized in atree structure. Every instrumentation class has a
parent node in the Instrumentation Tree; the root node of the tree is specified by the
constant ki nst Root O assRef . Trace and statistics classes must be leaf nodes; only a
special type of instrumentation node, the Path Instrumentation Class, can have children.

Because every instrumentation classis amember of the instrumentation tree, they are
sometimes referred to as instrumentation nodes.

Organizing your instrumentation classesinto atree alows you to avoid name conflicts

among different classes. By creating subtrees for each of your software components, any
component may use generic class names without interfering with the others.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 3

Trace Event Records

Every time you log atrace event, the instrumentation system records a trace event record.
This record includes the trace instrumentation class reference and a timestamp indicating
when the trace was logged.

A pair of trace events belonging to the same class may be marked as a“ start event” and an
“end event.” This allows analysis software to recognize that they represent asingle “event
range,” and to display them appropriately. These traces are normally logged at the
beginning and end of asingle routine or interesting operation.

A trace event between a start event and an end event may be marked as a“middle event.”
Such an event record will be displayed by the analysis software as part of the event range; it
isuseful for segmenting a procedure into several identifiable parts.

An event that includes a start, an end, and zero or more middle event recordsis caled a
multi-part event.

Trace event records may also include user-defined data. This datais formatted into strings
using | nst Dat aDescr i pt or Ref ’s, which are similar to print f () format descriptor
strings.

In the current implementation, trace event records are stored in acircular buffer in memory
and periodically transferred from the buffer to an instrumentation datafile. It is possible to
fill the circular buffer by logging trace events faster than the system can transfer them out of
the buffer. If this happens, older trace records are lost as they are overwritten by newer
ones.

The current implementation includes a mechanism to increase the buffer sizein order to
avoid this problem. See the Instrumentation System User’s Guide for details.

It isalso possible to create a special type of trace instrumentation class, called atrace
summary class. Individual trace event records are not produced when atrace islogged to
such aclass; instead the class just keeps track of how many traces were logged and how
much time was spent between its start and end traces.

Types of Statistics

A statistics instrumentation classis a container that holds a particular set of values; they are

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 4

updated over time by your software. The instrumentation system defines a variety of
different statistics, each oneis best-suited to keeping track of a particular type of
information.

A Magnitude is simply asigned 32-bit number. As amagnitude class is updated with new
values, the instrumentation system keeps track of the maximum magnitude supplied, the
minimum, the current value, the cumulative total, and the number of times it was updated.

Magnitudes are often used to record ssmple varying vaues, such as the amount of free
memory at agiven time.

A Growth value is an unsigned 64-bit counter that is updated with 32-bit incremental
values. Like amagnitude class, growth classes keep track of the current update increment,
the maximum increment encountered, the minimum increment, the current total, and the
number of times the class was updated.

However, since growth values can only increase, they are generally used for counting
events such as cache hits and misses. Analysis software may display the information inside
growth statistics as arate, such as the number of cache hits per second.

A Histogram is specified by arange and a bucket width. The Histogram class maintains a
set of buckets of the specified width distributed evenly over the range. Each bucket holds
the number of values supplied to the histogram that fell inside that bucket’ srange. The
class also maintains an overflow count, which holds the number of valuesthat fell outside
the entire range.

Histograms are good for profiling things like parameter values, which tend to vary
unpredictably over a certain range. For instance, you could create a histogram of the block
Size parameter of amemory alocation routine to profile allocation sizes.

The Split Histogram is avariant of the histogram; init, the range is divided into two parts
with different bucket widths for each part. A Split Histogram can be used in place of a
regular histogram to cover one part of arange in greater — or lesser — detail.

The Tadly statistic is smilar to ahistogram, in that it keepstrack of aset of counts. Itis
created with afixed number of buckets, which are initially undefined. Y ou update atally
with a bucket identifier and an increment. If there is a bucket associated with that identifier,
its count isincremented accordingly. If not, and there are still buckets left undefined, oneis
defined for the identifier and itsinitial count is set to the increment. If al buckets have been
defined, the overflow count isincremented instead.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 5

Tallies are often used to create profiles of operations whose profiled parameter does not
vary over afixed range, or whose range istoo large to make a histogram practical. For
instance, you could use atally to count how many files of various types your application
was asked to open, using the file type as the bucket identifier.

Using the Instrumentation System

This section describes how to create, enable, and disable instrumentation classes, how to
log trace information, and how to record statistics information.

Creating Instrumentation Classes

The instrumentation system provides routines that allow you to create each type of
instrumentation class. For example, calling | nst Cr eat eHi st ogr anC ass will create a
Histogram statistic class.

Each creation routine returns areference to the new instrumentation class. Thisreferenceis
used for subsequent operationsinvolving that class.

The position of the class within the instrumentation tree is determined by the parent node
reference and the class name string that is supplied to the creation routine. The parent node
reference must be either ki nst Root O assRef , or an instrumentation class created by a
previous cal to | nst Cr eat ePat hC ass. The class name string may be a simple class
name, or acolon-delimited “ partial pathname” relative to the parent node reference.

For example, the code in in figure 1-1 will create a growth instrumentation class called
“Page Faults’ asachild of aparent node called “Totals,” which itself isa child of the root

of the tree.

Listing 1-1 Sample code: creating a class

0SSt at us Creat ePageFaul tsStat(I nstGow hC assRef *pNewCl assRef)

{
err = InstCreateG owt hC ass(kI nst Root Cl assRef,

"Total s: Page Faults", klnstEnabl eCl assMask, pNewCl assRef);
return err;

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 6

The classis created enabled, so it will be éigible to accept and record dataimmediately.

Specifying apartia path in the class name parameter of a creation routine will create
intervening path nodes if they do not already exist. For example, calling

| nst Cr eat eMagni t uded ass with the class name “Graphics: Testing:LineBlits” when the
instrumentation tree is empty will create three nodes: a magnitude node called “LineBlits,”
and two path nodes called “ Graphics’ and “Testing.”

Instrumentation class references are global to the system. If you attempt to create the same
instrumentation node twice, the original class reference is returned by the second creation
call, with no error. If you attempt to create a node of a different type with the same name as
an existing node, at the same position in the instrumentation tree, then an error will be
returned.

Oncel nst Di sposed ass has been called on an instrumentation class, it is unusable by any
of itsclients.

Logging Trace Information

In order to log trace information, you must create a trace instrumentation class to hold the
event records. Thel nst Cr eat eTraced ass function will return a trace instrumentation
classreference.

Normally, traces are logged using the | nst LogTr aceEvent function.

I nst LogTraceEvent (traceCl assRef, klnstNoEventTag, kN | Options);

This creates asimple trace event record belonging to the trace class represented by
traceCd assRef , stamped with the current time.

Y ou can create amulti-part event by calling | nst LogTr aceEvent more than once,
specifying kil nst St art Event , kI nst M ddl eEvent, or kI nst EndEvent inthe

| nst Event Opt i ons field. Each multi-part event must have one start event record and one
end event record.

The start, middle, and end events of a multi-part event must have the same | nst Event Tag;

this alows the instrumentation system to recognize them as being part of the same event.
The event tag that you choose should be locally unique among other traces of that class; for

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 7

example, afunction which is called recursively that logs a start trace on entry and an end
trace at exit should ensure that it does not create several start events with the same event

tag.

Similar precautions should be taken when the creation of a start/end pair may be interrupted
by the same trace being logged at a higher interrupt level.

You can use thel nst Or eat eEvent Tag function to generate event tags that are guaranteed
to be unigque across the system.

If you are not creating multi-part events, you may use thel nst Event Tag parameter to
record an arbitrary 32-bit value in the trace event record.

In order to record user-defined data along with the standard trace event information, you
must create a DataDescriptor that defines how the data can be formatted into an ASCI|
string. Y ou create a DataDescriptor by calling | nst Cr eat eDat aDescr i pt or ; you can
create more than one by calling | nst Cr eat eDat aDescri pt or s. The format strings you
specify follow the rules for the standard pri nt f () format descriptor strings.

Thel nst LogTr aceEvent Wt hDat a function takes a reference to a DataDescriptor and an
arbitrary number of parameters containing the data. It creates atrace event record containing
astring representation of the the data.

Listing 1-2 Sample code: logging an event with data

| nst Creat eDat aDescriptor("%l: %l: %", &aDataDesc);
I nst LogTraceEvent Wt hDat a(traceCl assRef, kInstNoEventTag, kN | Options,
aDat aDesc, hours, mnutes, seconds);

Thel nst LogTraceEvent Wt hDat aSt r uct ur e function does the same job as the

| nst LogTraceEvent Wt hDat a function; it is provided for development environments that
do not support functions with avariable number of arguments. Instead, it accepts a pointer
to a structure that contains the argument list.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 8

Listing 1-3 Sample code: calling InstLogTraceEventWithDataStructure

struct MWTi me
{
Ul nt 32 hours, m nutes, seconds;:
};
My Ti me t ={ 12, 0, 0 };

I nst LogTraceEvent Wt hDat aStructure(traceC assRef, klnstNoEvent Tag,
kNi | Options, aDataDesc, (Byte*) &t, sizeof t);

Members of the structure must be four-byte aligned.

When you no longer need the DataDescriptor, you may release its storage by calling
| nst Di sposeDat aDescri ptor.

Logging to a Summary Trace Class

Under some circumstances, you may not wish to have an individual trace event record
produced every time you log atrace event. Usually thisis because the event occurs very
frequently and generates alarge amount of trace data.

As an alternative, you can set the kI nst Sunmar yTr aceC assMask option bit when you call
thel nst Creat eTr aced ass function to create the trace instrumentation class. Thiswill

produce a summary trace class. Trace events are logged to a summary trace class using the
same routines as with regular trace classes, but the results appear as a growth statistic.

The dtatistics data has the following interpretation: the number of times the class was
updated corresponds to the number of trace events that were logged. The total growth value
corresponds to the number of microseconds spent between each start and end event logged.
The the minimum and maximum increments correspond to the minimum and maximum
start/end microsecond durations.

Recording Statistics Information

In order to record statistics information, you must create a statistics instrumentation class of
the appropriate type to hold the data. The | nst Cr eat eG owt hd ass,

I nst Cr eat eMagni t udeCl ass, | nst Cr eat eHi st ogr anCl ass,

I nst CreateSplitH stogranC ass, and | nst CreateTal | yd ass functions all return an

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 9

instrumentation class reference.

When aclassis created its values are zero; tally classes are empty. Y ou put datainto a class
by calling the appropriate update function: | nst Updat eG owt h for growth statistics,

| nst Updat eMagni t udeAbsol ut e or | nst Updat eMagni t udeDel t a for magnitudes,

| nst Updat eHi st ogr amfor histograms and split histograms, and | nst Updat eTal | y for
tallies.

When aclassis updated, it records the fact in its update count and modifies its data based
on the update.

Instrumentation classes are global to the system, so al updates to the same statistics class
reference will end up in the same container.

In the current implementation, individual statistic updates are not recorded; instead,

“snapshots’ are taken of the current values of each enabled statistic at various times. See
the Instrumentation System User’s Guide for more details.

Enabling and Disabling Instrumentation Classes

An instrumentation classis either enabled or disabled. When atrace classis enabled,
logging atrace event to it will place atrace event record into the circular buffer, which will
get copied to permanent storage. When it is disabled, logging atrace has no effect.

When a statistics classis enabled, calling its update routine will increment the update count
and modify the current value based on the update. When the instrumentation system
samples statistics, the current value will be written to permanent storage. When a statistics
classisdisabled, caling its update routine has no effect; disabled statistics are not sampled
by the instrumentation system.

Y ou enable and disable instrumentation classes by caling the | nst Enabl ed ass and
| nst Di sabl ed ass functions. Disabling a path instrumentation class — including
kinstRootClassRef —will disable the entire subtree; enabling it will re-enable those
members of the subtree that were previously enabled.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 10

Instrumentation Reference

Constants

This section describes the constants defined by the instrumentation interface. Y ou use these
constants to specify the root of the instrumentation tree, instrumentation class options, and
trace event options.

When you are creating an instrumentation class, you must specify its parent node. Use the
constant kI nst Root O assRef to specify the root of the instrumentation tree.

#define kI nstRoot Cl assRef ((InstdassRef) -1)

Y ou may specify that an instrumentation classesisinitially enabled or disabled. Pass
kl nst Enabl ed assMask in the InstClassOptions parameter to enableit, or
kl nst Di sabl eCl assMask to disable it.

When you create a trace instrumentation class, you may add
kl nst Summar yTr aceCl assMask to the | nst Event Opt i ons parameter to create atrace
summary class.

enum { kl nst Di sabl eCl assMask = 0x00,
kl nst Enabl eCl assMask = 0x01
kl nst Summar yTr aceC assMask = 0x20

};

When you log atrace event, you may specify that the event marks the beginning of a multi-
part event, a point in the middle, or the end. Passkl nst St art Event , kl nst M ddl eEvent ,
or kl nst EndEvent inthel nst Event Qpt i ons parameter of the routine you use to log trace

events.

enum { kl nst St art Event =1,
kl nst EndEvent = 2,
kl nst M ddl eEvent =3

};

If you log amulti-part event, you must specify the same| nst Event Tag in the start, middle
and end events. This allows the analysis software to recognize them as a set.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 11

If you are not logging a multi-part event, you may specify ki nst NoEvent Tag to indicate
that you are not using the | nst Event Tag.

enum { kl nst NoEvent Tag = 0 i

Instrumentation Routines

This section describes the routines provided by the instrumentation system. Y ou can use
these routines to initialize and terminate the 68K instrumentation library, create and destroy
instrumentation classes and data descriptors, provide data to instrumentation classes, and
enable or disable instrumentation classes.

Except where noted, each of these routines may be called from any interrupt level.

Initialization and Termination

Y ou can use these routines to initialize and terminate the 68K instrumentation library.
PowerPC clients do not have to cal initialization or termination routines; the operating
system initializes and terminates shared libraries when necessary.

Instlnitialize68K

Youcal Instlnitialize68Koncefrom 68K codeto initialize the statically-linked 68K
instrumentation library.

pascal OSStat us Instinitialize68K(void);

DESCRIPTION
The Instinitialize68K function opens a connection to the PowerPC instrumentation
implementation and sets up the Mixed Mode tables necessary to cal it from a 68K
environment. It does not require external support from an A5- or A4-world.

SPECIAL CONSIDERATIONS
ThelnstInitialize68K function should not be called from interrupt time.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 12

InstTerminate68K

You can cal | nst Ter mi nat e68K to release storage allocated by calling
Instlnitialize68K.

pascal OSStat us I nst Ter m nat e68K(void);

DESCRIPTION
Thel nst Ter m nat e68K function closes the connection to the PowerPC instrumentation
implementation and deall ocates any global storage.

SPECIAL CONSIDERATIONS
Thel nst Ter m nat e68K function should not be called from interrupt time. Y ou do not
haveto call it at al if your process calls ExitToShell.

Creating and Destroying Instrumentation Classes

Y ou can use these routines to create and destroy instrumentation classes.

InstCreatePathClass

You can cal | nst Cr eat ePat hd ass to place a new path instrumentation class node into
the instrumentation tree.

pascal OSStatus InstCreatePathC ass(InstPathC assRef parentC ass,
const char *classNanme, |nstC assOptions options,
I nst Pat hCl assRef *returnPat hC ass);

parent Cl ass
The parent class node of the classto be created

classNane The zero-terminated name of the classto be created. It may be a colon-
delimited partial path, relative to par ent 0 ass.

returnPat hC ass
On exit, the instrumentation class reference of the new class.

DESCRIPTION
The InstCreatePathClass function creates a new path instrumentation class node in the
instrumentation tree. Path classes are analogous to foldersin afile system; you can use the

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 13

classreference that is returned asthe par ent 0 ass in subsequent creation calls.

InstCreateTraceClass

You can cal I nst O eat eTraced ass to place anew trace instrumentation class node into
the instrumentation tree.

pascal OSStatus InstCreateTraceC ass(InstPathCl assRef parentd ass,
const char *className, OSType conponent, InstC assOptions options,
I nst TraceC assRef *returnTraced ass);

parent Cl ass The parent class node of the classto be created

classNane The zero-terminated name of the classto be created. It may be a colon-
delimited partial path, relative to par ent 0 ass.

component A four-character code used to identify the software component that produces
the trace events.

options Either kI nst Enabl eCl assMask or ki nst Di sabl eCl assMask.

returnTraceC ass
On exit, the instrumentation class reference of the new class.

DESCRIPTION
Thel nst O eat eTraced ass function creates a container for the trace event records that
are produced by calling I nst LogTraceEvent, I nst LogTraceEvent Wt hDat a, or
I nst LogTraceEvent Wt hDat aSt ruct ur e. A trace event classis usually associated with a
particular client routine or operation.

Passkl nst Summar yTr aceC assMask in the opt i ons parameter to create a summary trace
class.

The component codeis put into all trace event records, but it is not currently used by the
instrumentation system.

InstCreateHistogramClass

You cancal | nst Creat eH st ogranC ass to place a new histogram instrumentation class
node into the instrumentation tree.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 14

pascal OSStatus |nstCreateH stogranmC ass(|nstPathC assRef parentC ass,
const char *classNanme, SlInt32 |owerBounds, SlInt32 upperBounds,
U nt 32 bucket Wdth, InstC assOptions options,
I nst Hi st ogranCl assRef *returnH stogranCl ass);

parent Cl ass The parent class node of the classto be created

className The zero-terminated name of the classto be created. It may be acolon-
delimited partial path, relative to par ent d ass.

| ower Bounds The lower limit of the histogram range.

upper Bounds The upper limit of the histogram range.

bucket W dt h The portion of the range that each bucket will cover.

options Either kI nst Enabl eCl assMask or ki nst Di sabl eCl assMasKk.

returnHi st ogranCl ass
On exit, the instrumentation class reference of the new class.

DESCRIPTION
Thel nst O eat eH st ogr anCl ass function creates a container for the histogram data that
is produced by calling | nst Updat eHi st ogr am The number of buckets the histogram will
maintain is determined implicitly by dividing the histogram range by the bucket width.

SPECIAL CONSIDERATIONS
In the current implementation, each histogram data point consists of one 32-bit value for
each bucket in the histogram; adata point is recorded every sample period. Thus, creating
histograms with many buckets will result in large instrumentation data files.

InstCreateSplitHistogramClass

You cancall | nst Creat eSpl it H stogranC ass to place anew split histogram
instrumentation class node into the instrumentation tree.

pascal OSStatus InstCreateSplitHi stogranC ass(
| nst Pat hCl assRef parent C ass, const char *classNang,
SInt 32 hi stogramlLower Bounds, Ul nt32 histogranilBucket W dt h,
SInt32 knee, SInt32 histogranmUpper Bounds,
Ul nt 32 histogran2Bucket Wdth, InstC assOptions options,
I nst SplitHi stogranCl assRef *returnSplitHi stogranC ass);

parent Cl ass The parent class node of the class to be created

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 15

className The zero-terminated name of the classto be created. It may be acolon-
delimited partial path, relative to par ent d ass.

hi st ogr amlLower Bounds
The lower limit of the histogram range.

hi st ogr amlBucket W dt h
The portion of thefirst part of the histogram range that each bucket of the
first set will cover.

knee Where thefirst part of the histogram range ends and the second begins.

hi st ogr anmBucket W dt h
The portion of the second part of the histogram range that each bucket of the
second set will cover.

hi st ogr an2Upper Bounds

The upper limit of the histogram range.
options Either kI nst Enabl eCl assMask or ki nst Di sabl eCl assMask.
returnSplitH stogranCl ass

On exit, the instrumentation class reference of the new class.

DESCRIPTION
Thel nst Creat eSplitH stogranC ass function creates a container for the histogram data
that is produced by calling | nst Updat eH st ogr am The number of buckets the split

histogram will maintain is determined implicitly by dividing the first and second parts of the
histogram range by the first and second bucket widths, respectively.

SPECIAL CONSIDERATIONS
In the current implementation, each histogram data point consists of one 32-bit value for
each bucket in the histogram; adata point is recorded every sample period. Thus, creating
histograms with many buckets will result in large instrumentation data files.

InstCreateM agnitudeClass

You can call I nst Cr eat eMagni t uded ass to place a new magnitude instrumentation class
node into the instrumentation tree.

pascal OSStatus |nstCreateMgnitudeCd ass(|nstPathC assRef parentC ass,
const char *className, InstC assOptions options,

| nst Magni t udeC assRef *returnMagnitudeCl ass);

parent Cl ass The parent class node of the classto be created

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 16

className The zero-terminated name of the classto be created. It may be acolon-
delimited partial path, relative to par ent d ass.
options Either kI nst Enabl eCl assMask or ki nst Di sabl eCl assMasKk.
returnMagni t udeCl ass
On exit, the instrumentation class reference of the new class.

DESCRIPTION
Thel nst O eat eMagni t uded ass function creates a container for the magnitude data that
is produced by calling I nst Updat eMagni t udeAbsol ut e or
| nst Updat eMagni t udeDel t a.

InstCreateGrowthClass

You can call I nst Creat eG owt hCl ass to place a new growth instrumentation class node
into the instrumentation tree.

pascal OSStatus InstCreateG owt hC ass(InstPathC assRef parentd ass,
const char *classNane, InstC assOptions options,
I nst G owt hCl assRef *returnG owt hC ass);

parent Cl ass The parent class node of the classto be created

classNane The zero-terminated name of the classto be created. It may be a colon-
delimited partial path, relative to par ent 0 ass.

options Either kI nst Enabl eCl assMask or ki nst Di sabl eCl assMask.

returnG ow hCl ass
On exit, the instrumentation class reference of the new class.

DESCRIPTION
Thel nst Creat eG owt hd ass function creates a container for the growth datathat is
produced by calling | nst Updat eG owt h.

InstCreateTallyClass

Youcancal I nst O eateTal | yd ass to place anew tally instrumentation class node into
the instrumentation tree.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 17

pascal OSStatus InstCreateTallyC ass(InstPathC assRef parentd ass,
const char *className, Ul nt16 maxNunber O Val ues,
InstCl assOptions options, InstTallyC assRef *returnTallyd ass);

parent Cl ass The parent class node of the classto be created
cl assName The zero-terminated name of the classto be created. It may be a colon-
delimited partial path, relativeto parent 0 ass.
maxNumber O Val ues
The maximum number of buckets to create.
options Either kI nst Enabl eCl assMask or ki nst Di sabl eCl assMasKk.
returnTal | yCl ass
On exit, the instrumentation class reference of the new class.

DESCRIPTION
Thel nst Creat eTal | yd ass function creates a container for the tally datathat is produced
by calling | nst Updat eTal | y. Initially, no buckets are created; buckets are allocated as
| nst Updat eTal | y is called with new bucket identifiers.

SPECIAL CONSIDERATIONS
In the current implementation, each tally data point consists of two 32-bit values for each
bucket allocated by thetally; a data point is recorded every sample period. Thus, creating
tallies with many buckets will result in large instrumentation datafiles.

InstDisposeClass

You can cal | nst Di sposed ass to prevent any more data from being added to an
instrumentation class.

pascal void InstDisposeC ass(InstC assRef theCd ass);

theC ass The instrumentation class you wish to dispose of.

DESCRIPTION
Thel nst D sposed ass function marks an instrumentation class as unusable; it can no
longer be enabled or disabled, and further operations on it will have no effect.

Calling I nst Di sposed ass on a path instrumentation class implicitly disposes of its
children.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 18

SPECIAL CONSIDERATIONS
Calling this function does not free any significant system resources. It is normally not
necessary to dispose of an instrumentation class onceit is created.

Creating and Destroying Data Descriptors

This section describes how to create and destroy data descriptors, which are used to specify
how user-defined datais to be formatted in trace event records.

InstCreateDataDescriptor

You cancal | nst Creat eDat aDescri pt or to create a DataDescriptor from aformat string.

pascal OSStatus InstCreateDataDescriptor(const char *formatString,
| nst Dat aDescri pt or Ref *returnDescriptor);

format String
A zero-terminated printf() format string.

returnDescri ptor
On exit, areference to the new DataDescriptor.

DESCRIPTION
Thel nst O eat eDat aDescr i pt or function creates a DataDescriptor that you can use to
specify how alist of parametersisto be formatted by thel nst LogTr aceEvent W t hDat a
or | nst LogTraceEvent Wt hDat aSt r uct ur e functions. The format string should follow
thesamerulesasaprintf() format string, with one descriptor for every parameter that
you wish to record.

SPECIAL CONSIDERATIONS
This function should not be called at interrupt time.

InstCreateDataDescriptors

You can cal | nst Creat eDat aDescri pt or s to create a set of DataDescriptor’ swith a
singlecall.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 19

pascal OSStatus InstCreateDataDescriptors(const char **formatStrings,
Ul nt 32 number O Descri ptors,
| nst Dat aDescri pt or Ref *returnDescriptorlList);

format Strings

An array of zero-terminated printf() format strings.
nunber Of Descri ptors

The number of strings in the formatStrings array.
returnDescriptorlList

On exit, this pointsto an array of | nst Dat aDescr i pt or Ref’s.

DESCRIPTION
Thel nst Creat eDat aDescri pt or s function is a shortcut for creating a set of
| nst Dat aDescr i pt or Ref 'sfrom an array of format strings. Each element of the
returnDescriptorList array corresponds to the same element of the f or mat St ri ngs

array.
See the description of the |l nst Cr eat eDat aDescr i pt or function, above, for more details.

SPECIAL CONSIDERATIONS
This function should not be called at interrupt time.

InstDisposeDataDescriptor

You can call I nst Di sposeDat aDescri pt or to release the storage used by a
DataDescriptor.

pascal void InstDi sposeDataDescriptor(
| nst Dat aDescri ptor Ref theDescriptor);

t heDescri ptor
The reference to a DataDescriptor that you no longer need.

DESCRIPTION
Thel nst Di sposeDat aDescr i pt or function rel eases the storage used by a DataDescriptor.
Y ou should not use the | nst Dat aDescr i pt or Ref after calling this function.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 20

SPECIAL CONSIDERATIONS
This function should not be called at interrupt time.

InstDisposeDataDescriptors

You can call I nst Di sposeDat aDescri pt or s to release the storage used by an array of
DataDescriptor’s.

pascal void InstDi sposeDataDescriptors(
| nst Dat aDescri pt or Ref *theDescri ptorLi st,
Ul nt 32 nunber Of Descriptors);

t heDescri ptor Li st

A pointer to an array of | nst Dat aDescri pt or Ref’s.
nunber Of Descri ptors

The number of DataDescriptor’sin the array.

DESCRIPTION
Thel nst Di sposeDat aDescri pt or s function releases the storage used by the
DataDescriptor’sint heDescri pt or Li st. You should not use any of these
| nst Dat aDescr i pt or Ref 's after calling this function.

SPECIAL CONSIDERATIONS
This function should not be called at interrupt time.

Logging Trace Events

This section describes the routines you use to log trace events.

InstLogTraceEvent

You cancal | nst LogTraceEvent to add atrace event record to atrace instrumentation
class.

pascal void InstLogTraceEvent(InstTraceC assRef theTraced ass,
I nst Event Tag event Tag, |nstEventOptions options);

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 21

theTraceCl ass

The trace instrumentation class that you wish to log an event against.
event Tag A tag that is used to link multi-part trace events.
options A value used to specify that that thisis amulti-part event.

DESCRIPTION
Thel nst LogTraceEvent function will time-stamp an event record for the specified trace
class, which will be recorded by the instrumentation system. The options parameter can be
used to indicate that the trace record is part of amulti-part event (kl nst St art Event,
kl nst M ddl eEvent, or kIl nst EndEvent). The eventTag parameter is used to link the
members of amulti-part event.

If you are not creating multi-part events, you can use the event Tag parameter to store an
arbitrary 32-bit value in the event record.

InstLogTraceEventWithData

You cancall | nst LogTraceEvent Wt hDat a to add a trace event record that includes user-
defined data to atrace instrumentation class.

pascal void InstLogTraceEventWthData(InstTraceC assRef theTraceC ass,
I nst Event Tag event Tag, |nstEvent Options options,
| nst Dat aDescri ptor Ref theDescriptor, ...);

theTraceCl ass

The trace instrumentation class that you wish to log an event against.
event Tag A tag that is used to link multi-part trace events.
options A value used to specify that that thisisamulti-part event.
t heDescri ptor

A data descriptor that will be used to format the datainto astring.
(...) An arbitrary number of parameters describing the data.

DESCRIPTION

Thel nst LogTraceEvent Wt hDat a function works similarly to the | nst LogTr aceEvent
function, described above, but includes user-defined datain the trace event record.

SPECIAL CONSIDERATIONS
In the current implementation, | nst LogTr aceEvent Wt hDat a is significantly more

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 22

expensive to call than | nst LogTraceEvent .
This function cannot be called from 68K code.

This function should not be called at interrupt time.

InstLogTraceEventWithDataStructure

You can call | nst LogTr aceEvent Wt hDat a to add a trace event record that includes user-
defined data to atrace instrumentation class.

pascal void InstLogTraceEvent WthDataStructure(
I nst TraceC assRef theTraceC ass, |nstEventTag event Tag,
| nst Event Options options, InstDataDescriptorRef descriptorRef,
const Unt8 *dataStructure, ByteCount structureSize);

theTraced ass

The trace instrumentation class that you wish to log an event against.
event Tag A tag that is used to link multi-part trace events.
options A value used to specify that that thisisamulti-part event.
t heDescri ptor

A data descriptor that will be used to format the data into a string.
dataStructure

A pointer to a structure containing the argument list.
structureSize

The size of the structure pointed to by dat aSt r uct ur e.

DESCRIPTION

Thel nst LogTraceEvent W t hDat aSt r uct ur e function works similarly to the

I nst LogTr aceEvent function, described above, but includes user-defined data in the trace
event record.

Each member of the argument list structure should be 32-bit aligned.

SPECIAL CONSIDERATIONS

In the current implementation, | nst LogTr aceEvent Wt hDat aSt r uct ur e is significantly
more expensive to call than | nst LogTraceEvent .

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 23

This function should not be called at interrupt time.

InstCreateEventTag

You can call | nst Cr eat eEvent Tag to generate aunique | nst Event Tag.

pascal |nstEventTag |InstCreateEvent Tag(void);

DESCRIPTION
Thel nst Cr eat eEvent Tag function will return adifferent | nst Event Tag every time you
cal it. Clients can call it from different processes or execution levels without getting
duplicate values.

Updating Statistics Classes

This section describes the routines that you use to update statistics classes.

InstUpdateGrowth

You can cal | nst Updat eG owt h to update the value of a growth statistics class.

pascal void InstUpdateG owt h(InstG ow hC assRef theG owt hd ass,
Ul nt32 increnent);

theG owt hd ass
The growth statistics class that you wish to update.
increment Thevaluethat you wish to add to the current total .

DESCRIPTION
Thel nst Updat eG owt h function adds thei ncrenent to the current total maintained by the

growth class. It also sets the minimum increment and / or the maximum increment values as
necessary, and adds one to the update count.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 24

InstUpdateM agnitudeAbsolute

You can call | nst Updat eMagni t udeAbsol ut e to set the current value of a magnitude
statistics class.

pascal void InstUpdat eMagnit udeAbsol ut e(
| nst Magni t udeCl assRef theMagnitudeC ass, SInt32 newval ue);

t heMagni t udeCl ass
The magnitude statistics class that you wish to update.
newval ue The new magnitude value for the class.

DESCRIPTION
Thel nst Updat eMagni t udeAbsol ut e function sets the current value of the magnitude
classto the value supplied, and adds this value to the running total of all values set so far. It
also sets the minimum and / or the maximum val ues as necessary, and adds one to the
update count.

InstUpdateM agnitudeDelta

You can cal | nst Updat eMagni t udeDel t a to set the current value of a magnitude statistics
classrelative to the previous vaue.

pascal void InstUpdat eMagnitudeDel ta(
| nst Magni t udeC assRef theMagnitudeC ass, SInt32 delta);

t heMagni t udeCl ass
The magnitude statistics class that you wish to update.
delta The amount to add to the current value to get the new value.

DESCRIPTION
The nst Updat eMagni t udeDel t a function is equivalent to reading the current value of
t heMagni t uded ass, adding del t a to it, and calling the
| nst Updat eMagni t udeAbsol ut e function with the result.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 25

InstUpdateHistogram

You can call | nst Updat eHi st ogr amto add a new value to a histogram or split histogram
class.

pascal void InstUpdateH stogram
| nst Hi st ogranCl assRef theHi stogranC ass,
SInt32 value, Unt32 count);

t heH st ogranCl ass

The histogram class you wish to update.
val ue A vauethat falls within the range of the histogram.
count The weight of the value in the histogram’ s bucket.

DESCRIPTION
Thel nst Updat eH st ogr amfunction identifies which bucket in the histogram the value
falsinto and adds count to the bucket’s*hit count.” If the value falls outside the range

specified in the histogram, count is added to the overflow count instead. The histogram’s
update count isincremented.

Thel nst Updat eH st ogr amfunction is used to update both histograms and split
histograms.

Normally, the value of count is 1.

InstUpdateTally

You can call I nst Updat eTal | y to add anew valueto atally class.

pascal void InstUpdateTal ly(InstTallyC assRef theTallyd ass,
voi d *bucketID, U nt32 count);

theTal | yCl ass
Thetaly class you wish to update.
bucket I D The bucket identifier you wish to add to.

count The value you wish to add to the bucket count.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 26

DESCRIPTION
Thel nst Updat eTal | y function first triesto find a bucket within itslist that has been
registered to bucket | D. If it finds one, it adds count to the bucket’s value. If not, and the
number of bucketsis below its maximum, it creates a new one one for bucket | D and sets
itsvalueto count . If al the buckets have been created, it addscount to its overflow count
instead. Thetally’s update count is incremented.

Normally, the value of count is1.

Enabling and Disabling Instrumentation Classes

This section describes the routines that alow you to enable and disable instrumentation
classes.

InstEnableClass

You can cdl | nst Enabl ed ass to enable an instrumentation class.

pascal OSStatus I|nstEnabl eC ass(InstC assRef classRef);

cl assRef The class you wish to enable.

DESCRIPTION

Thel nst Enabl ed ass will enable the specified class. Enabling an enabled class has no
effect.

InstDisableClass

You can call | nst Di sabl eC ass to disable an instrumentation class.

pascal OSStatus InstDisableC ass(InstC assRef classRef);
cl assRef The class you wish to disable.

DESCRIPTION

Thel nst Di sabl e ass will disable the specified class. Disabling a disabled class has no
effect.

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 27

Summary of the Instrumentation
System

Constants
#define kI nst Root Cl assRef ((InstdassRef) -1)
enum { kl nst Di sabl eCl assMask = 0x00,
kl nst Enabl eCl assMask = 0x01,
kl nst Summar yTraceC assMask = 0x20
b
enum { kl nst St art Event = 1,
kl nst EndEvent = 2,
kl nst M ddl eEvent =3
b
enum { kl nst NoEvent Tag =0 };

Instrumentation Routines

Initialization and Termination

pascal OSStatus Instlnitialize68K(void);
pascal OSStatus I nst Ter m nat e68K(void);

Creating and Destroying Instrumentation Classes

pascal OSStatus InstCreatePathd ass(InstPathC assRef parentC ass,
const char *className, |nstC assOptions options,
| nst Pat hCl assRef *returnPathC ass);

pascal OSStatus InstCreateTraceC ass(InstPathC assRef parentC ass,

const char *className, OSType conponent, InstC assOptions options,

I nst TraceC assRef *returnTraced ass);
pascal OSStatus I|nstCreateH stogranC ass(|nstPathC assRef parentd ass,

Instrumentation Programmer’s Guide — 1.0.5 3/6/97

28

const char *className, SlInt32 |owerBounds, SInt32 upperBounds,
U nt 32 bucket Wdth, InstC assOptions options,
I nst Hi st ogranCl assRef *returnHi stogranCl ass);

pascal OSStatus InstCreateSplitH stogranC ass(
| nst Pat hCl assRef parent C ass, const char *classNaneg,
S nt 32 hi stogranilLower Bounds, Ul nt32 histogramlBucket W dth,
SInt32 knee, SInt32 histogranmUpper Bounds,
Ul nt 32 histogran2Bucket Wdth, InstC assOptions options,
I nst SplitHistogranCl assRef *returnSplitHi stogranC ass);

pascal OSStatus I|nstCreateMgnitudeCd ass(|nstPathC assRef parentC ass,
const char *className, InstC assOptions options,
| nst Magni t udeC assRef *returnMagnitudeCl ass);

pascal OSStatus InstCreateG owt hC ass(InstPathC assRef parentd ass,
const char *className, InstC assOptions options,
I nst G owt hCl assRef *returnG owt hC ass);

pascal OSStatus InstCreateTal |l yCl ass(InstPathC assRef parentC ass,
const char *classNanme, Ul nt16 maxNunber Of Val ues,
InstC assOptions options, InstTallyC assRef *returnTallyd ass);

pascal void InstDisposeC ass(InstC assRef theCd ass);

Creating and Destroying Data Descriptors

pascal OSStatus InstCreateDataDescriptor(const char *formatString,
I nst Dat aDescri ptor Ref *returnDescriptor);

pascal OSStatus InstCreateDataDescriptors(const char **formatStrings,
Ul nt 32 number O Descri ptors,
| nst Dat aDescri pt or Ref *returnDescriptorlList);

pascal void InstD sposeDataDescriptor(
| nst Dat aDescri pt or Ref theDescriptor);

pascal void InstDi sposeDataDescriptors(
I nst Dat aDescri ptorRef *theDescriptorlList,

Instrumentation Programmer’s Guide — 1.0.5 3/6/97 29

Ul nt 32 nunber Of Descri ptors);

Logging Trace Events

pascal void InstLogTraceEvent(|nstTraceC assRef theTraced ass,
| nst Event Tag event Tag, |nstEventQptions options);

pascal void InstLogTraceEventWthData(InstTraceC assRef theTraceC ass,

| nst Event Tag event Tag, |nstEvent Options options,

| nst Dat aDescri ptor Ref theDescriptor, ...);

pascal void InstLogTraceEvent Wt hDat aStruct ure(
I nst TraceC assRef theTraceC ass, |nstEventTag event Tag,
| nst Event Options options, |nstDataDescriptorRef descriptorRef,
const Unt8 *dataStructure, ByteCount structureSize);

pascal InstEventTag InstCreateEvent Tag(void);

Updating Statistics Classes

pascal void InstUpdateG owt h(InstG ow hC assRef theG owt hd ass,
Ul nt32 increnent);

pascal void InstUpdat eMagnit udeAbsol ut e(
| nst Magni t udeCl assRef theMagnitudeCl ass, SInt32 newval ue);

pascal void InstUpdateMagnitudeDel ta(
I nst Magni t udeCl assRef theMagnitudeC ass, SInt32 delta);

pascal void InstUpdateH stogram
| nst Hi st ogranCl assRef theHi stogranC ass,
SInt32 value, Unt32 count);

pascal void InstUpdateTal ly(InstTallyC assRef theTallyd ass,
voi d *bucket| D, Unt32 count);

Enabling and Disabling Instrumentation Classes

pascal OSStatus InstEnableC ass(InstC assRef classRef);
pascal OSStatus InstDisableC ass(InstC assRef classRef);

Instrumentation Programmer’s Guide — 1.0.5 3/6/97

30

