
MacOS Instrumentation 
System User’s Guide

Copyright © 1996-1997, Apple Computer, Inc.



Table of Contents

Introduction 2

The System Components 3
The Instrumentation Library 3
The Spoolers 3
The Spooler Packager 3
The OneShot Collector 4
The InstrumentationBackend 4
The Instrumentation Viewer 4

Installing The Instrumentation System 5

Using the Instrumentation System to collect data 6
Setting Instrumentation System Preferences 8
Using the Instrumentation Startup file 8

Using MrPlus to instrument Code Fragments 9
Installing MrPlus 9
Using MrPlus to Instrument Imports 9
Using MrPlus to Instrument Exports 10

Instrumentation System User’s Guide – 1.0.5 3/6/97 1



Introduction

The instrumentation system is designed to help you record information about running 
software. This allows you to expose its behavior and drive performance investigations. 

It provides two services to client software. The first allows a running program to define a 
named event. Whenever the program determines that the event has occurred, it informs the 
instrumentation system. The instrumentation system creates an event record, including the 
event identifier and its timestamp, and writes it out to permanent storage – usually to disk. 
These event records are called “traces.”

The second service allows a client to create a unique, named container into which it can 
drop numbers of interest. There are a variety of different types of containers, each of which 
is suitable for recording a different type of number – such as a count, a transient value, a 
value within a range, and so on. The instrumentation system will periodically sample the 
containers and write their contents out to permanent storage. This data is called “statistics.”

When executing PowerPC code, these services are accessed from a shared library that your 
software links against. When executing 68K code, your software calls a statically-linked 
68K library which calls the PowerPC implementation through the Mixed Mode Manager.

Using a program that can display instrumentation data, such as the Instrumentation Viewer, 
you can examine the trace and the statistics data – either after the program has completed its 
execution, or as it is running – to learn where it is spending its time and whether it is 
behaving as expected.

Typically, traces are used to track a program’s flow of execution. By recording traces from 
within a function, you can learn how often it is being called. By placing traces at its entry 
and exit points, and at those of the functions it calls, you can find out how long it takes to 
execute and where it is spending its time.

Statistics are good for recording user-defined counts or other measurements. They can be 
used to track buffer sizes, count cache hits and misses, and profile input parameters to 
functions. You can also use them to record your own timings by using TickCount() or 
Microseconds() to compute elapsed time and writing the result into a statistic.

This version of the instrumentation system operates under MacOS 7.x, and requires a 
PowerPC Macintosh with at least 1MB of free memory. It consists of two interface files, 
two shared libraries, one 68K library, and seven applications. 

Instrumentation System User’s Guide – 1.0.5 3/6/97 2



The System Components

The Instrumentation System must perform several operations: it must accept 
instrumentation data from client code, ensure that it is written out to disk, and provide an 
interface that allows display clients to access it.

These tasks are carried out by the following components:

The Instrumentation Library

The Instrumentation Library is a shared library that contains a public and a private interface. 
The public interface, specified by the “Instrumentation.h” file, allows client code to define 
instrumentation points and supply the data to be recorded. The Instrumentation Library 
holds this information in temporary buffers. 

The private interface is provided to the spoolers and the OneShot Collector; it allows them 
to read the information out of these buffers and write it to disk.

The Spoolers

There are three spoolers: the ClassSpooler, the TraceSpooler, and the StatSpooler. Each 
retrieves a particular type of data from the Instrumentation Library and writes it to disk. The 
ClassSpooler records the various instrumentation points as they are defined - their names, 
their types, and their position in the class tree. The TraceSpooler records trace event data, 
and the StatSpooler records statistics data.

Each spooler creates its own file(s) to hold its data. This simplifies the file formats and 
reduces the chance that a system crash will leave a file in an inconsistent state. These files 
are always created inside the folder called “Instrumentation ƒ” on the root level of your boot 
volume. Existing files with the same names are replaced.

The spoolers are faceless background applications. They rely on receiving null events at 
WaitNextEvent-time to allow them to collect their data.

The Spooler Packager

While the spoolers are running they produce separate files. When you are using the 
Instrumentation Viewer to view data “live,” the data comes from these files. However, they 
may also be combined into a single Instrumentation Data file. This is useful for saving a 

Instrumentation System User’s Guide – 1.0.5 3/6/97 3



“snapshot” of instrumentation data so that it may be analyzed or compared with another run 
at a later time.

When you run the Spooler Packager, it looks in the folder it is running from for the 
spoolers’ files. Any that it finds are merged into a single new file, called “Instrumentation 
Data.” If no one else is using the original files, they are deleted. You can run the Spooler 
Packager at any time; a valid file will be produced even if the original files are still in use by 
the spoolers.

The OneShot Collector

Like the spoolers, the OneShot Collector is used to record instrumentation data. Rather than 
reading it from the Instrumentation Library periodically, however, it collects all the 
available information in a single pass and then quits immediately. It produces the 
Instrumentation Data file directly: the file contains information about all the classes that 
were enabled when the collector was run, all the trace event records that were waiting in the 
Instrumentation Library’s buffer, and a single sample of the enabled statistics classes.

Note that the buffers maintained by the Instrumentation Library are released once all 
programs that link against it have quit. If you run and then quit an application that produces 
instrumentation data, running the OneShot Collector will create an empty data file unless 
another client of the Instrumentation Library – such as the Instrumentation Viewer – is still 
running to keep the library active. 

The InstrumentationBackend

The InstrumentationBackend is a shared library that provides a display client with an 
interface to instrumentation data. The InstrumentationBackend that is provided with this 
version of the Instrumentation System can be used to read data “live” from the spooler files 
as it appears there, or from an instrumentation data file.

(Using a separate shared library to read the instrumentation data allows display clients to 
remain independent of the instrumentation system’s data file format.)

The Instrumentation Viewer

The Instrumentation Viewer is the primary mechanism for displaying instrumentation data. 
It uses the InstrumentationBackend library to gain access to the data files, and to “live” data 
as it is produced by the Spoolers. It displays this data inside viewer documents configured 
with plug-in viewers, and can also export the data as text.

Instrumentation System User’s Guide – 1.0.5 3/6/97 4



Detailed documentation of the Instrumentation Viewer and its features may be found in the 
Instrumentation Viewer User’s Guide.

Installing the Instrumentation 
System

The first step is to ensure that any existing instrumentation in your system is inactive. Quit 
any active spoolers using the “Quit Spoolers” application, shut down any software that is 
generating instrumentation data, and quit the Instrumentation Viewer if it is running. If you 
have never installed the instrumentation system before, you may skip this step.

Next, place the InstrumentationLib located in the folder “Contents -> Extensions” into the 
Extensions folder. This ensures that both the target application and the various spoolers 
will be able to find and link against it when they start up. The Instrumentation Viewer will 
also link against it to provide a user interface for enabling and disabling instrumentation 
points.

You should put the InstrumentationLib stub library , located in the “Interfaces & 
Libraries:Shared Libraries” folder, where it may be easily included in your code’s project 
or makefile.

Drag the “Instrumentation ƒ” folder from the SDK distribution folder to the root level of 
your boot volume. It contains the spoolers, the Spooler Packager, Quit Spoolers, and the 
OneShot Collector. It is also where the instrumentation data files that are produced by the 
spoolers are created.

If you wish, you can place aliases of the spoolers in the Startup Items folder of your 
System Folder. This will ensure that the spoolers are run whenever you reboot your 
Macintosh.

Finally, drag the “Viewer” folder to any convenient place on a local volume. It contains the 
Instrumentation Viewer application and the InstrumentationBackend.

(It is not necessary to reboot the the system after installing instrumentation. However, Quit 
Spoolers requires AppleScript in order to operate. You may wish to install AppleScript if 
you have not already done so.)

Instrumentation System User’s Guide – 1.0.5 3/6/97 5



If you intend to use MrPlus to automatically instrument Code Fragments, you will have to 
install it as well. See the section on “Using MrPlus to instrument Code Fragments,” below.

The SDK also includes documentation and sample code in the “Documentation” folder. A 
demonstration application that produces instrumentation is located in the “Test Target” 
folder.

Using the Instrumentation System to 
collect data

Once the instrumentation system has been installed, you can begin collecting and examining 
instrumentation data.

The first step is to place calls into your code that will call the InstrumentationLib to record 
instrumentation data. Read the Instrumentation Programmer’s Guide to learn how to 
instrument your code manually. Alternately, you can use MrPlus to instrument an existing 
code fragment. See the section on “Using MrPlus to instrument Code Fragments,” below.

You must decide how you wish to collect the instrumentation data: using the spoolers or the 
OneShot Collector. This will likely depend upon how much data you plan to generate. If 
your code will log more traces than the RAM trace buffer can hold, then the spoolers may 
be preferable because they empty the buffer at WaitNextEvent-time. The spoolers also take 
regular samples of the enabled statistics, and allow the Instrumentation Viewer to display 
“live data.”

On the other hand, the OneShot Collector does not cause disk activity while you are making 
time-critical measurements, and is easier to use. You may find yourself using the spoolers 
for one application and the OneShot Collector for another.

If you wish to use the spoolers to collect the instrumentation data, launch them now. The 
easiest way to do this is to select all three in the Finder and choose “Open.” The spoolers 
will collect any data passed to the InstrumentationLib and write it to disk.

If another application – such as the Instrumentation Viewer – still has a file open from a 
previous run of a spooler, the spooler will display an alert reporting that it could not start 
up. Quit any applications using its file and launch the spooler again.

Once the spoolers are running, they will periodically collect data from the Instrumentation 

Instrumentation System User’s Guide – 1.0.5 3/6/97 6



Library and write it to disk. The Class Spooler writes out instrumentation class node 
descriptor data whenever a new class is created enabled, and whenever a class that was 
created disabled is enabled. The Statistics Spooler will write out the current values of the 
enabled statistics nodes every sample period; the default sample period is one second. The 
Trace Spooler will write out as many traces as it can, every chance it gets. All spoolers poll 
the Instrumentation Library at WaitNextEvent-time.

At this point, you can run your instrumented code. Any calls to the Instrumentation Library 
will cause instrumentation data to appear in the spooler files. If you wish, you can run the 
Instrumentation Viewer to display this data “live” as it it is written to the spooler files. 
(There is a slight time lag due to the recording and viewing overhead.)

If the Instrumentation Viewer is viewing data live, class nodes will appear inside its 
Instrumentation Tree window as they are created. In order to display the data inside these 
nodes, you have to configure a viewer document with appropriate viewers and associate the 
nodes with the viewers. See the Instrumentation Viewer User’s Guide for details.

When you quit the applications that are generating instrumentation data, no more traces will 
be recorded. However, any active statistics nodes will continue to be sampled and written 
to disk. This is because instrumentation points are system-global; the Instrumentation 
System has no way of knowing whether they are still being updated.

As background applications, the spoolers will shut themselves down in response to a Quit 
Apple Event. You can use “Quit Spoolers” to send quit events to all three spoolers. (This 
requires that AppleScript is installed.)

Once the data you are interested in has been collected by the spoolers, you may run the 
Spooler Packager to produce the Instrumentation Data file. This file can be opened from 
within the Instrumentation Viewer.

If you wish to use the OneShot Collector to record the instrumentation data, you must 
ensure that the spoolers are not running. Run your instrumented code so that the data is 
collected in the temporary buffers of the Instrumentation Library, then run the OneShot 
Collector to transfer the data to the Instrumentation Data file.

If too many traces are logged to the Instrumentation Library before the OneShot Collector is 
run, older trace event records will be lost as they are overwritten by newer ones in the 
circular buffer. See the section on “Setting Instrumentation System Preferences,” below, to 
learn how to increase the circular buffer size.

You can determine if any traces were lost by in an instrumentation data file by opening it 

Instrumentation System User’s Guide – 1.0.5 3/6/97 7



with the Instrumentation Viewer and creating a Viewer Summary report. 

Note that the Instrumentation Viewer can only view the data “live” if the spoolers are 
running.

Setting Instrumentation System Preferences

Whenever you run the spoolers or the OneShot Collector, preferences are read from a file 
called “Instrumentation System Prefs” in the Preferences folder of your System folder. If it 
does not exist, it is created. It may be opened and reconfigured using ResEdit. 

At this time, there are three editable settings: how often the Statistics Spooler samples the 
enabled statistics nodes, how much memory will be allocated to the circular trace buffer, 
and how much memory will be allocated to the class information heap.

The sample period is expressed as a 64-bit number of nanoseconds. The default is one 
second.

The trace buffer size determines how many kilobytes of memory will be allocated to hold 
traces waiting to be recorded to disk. The default is 256K. Each trace record requires 32 
bytes of memory, so the default buffer can hold about 8000 trace points before earlier trace 
points are overwritten. If more traces than this are likely to be logged before the buffer is 
emptied by the Trace Spooler or the OneShot Collector , you should raise this limit. (Users 
with a lot of RAM can set this limit to 8MB or higher to ensure that no traces are lost.)

The class information heap is used to hold instrumentation class definitions. If you are 
getting an out-of-memory error when you try to create a class, you should increase the heap 
size. The default is 64K.

Using the Instrumentation Startup file

When the InstrumentationLib is initialized, it looks inside the Preferences folder for a text 
file called Instrumentation Startup. If the file is found, it is opened and its contents are read. 
The Instrumentation Library looks for lines beginning with an “E” or a “D” followed by a 
single tab character and then a colon-delimited full path name, terminated by a carriage 
return. All other lines are ignored.

The Instrumentation Library will pre-set the enabled state of the specified paths: nodes 

Instrumentation System User’s Guide – 1.0.5 3/6/97 8



marked with an “E” are preset to enabled; those marked with a “D” are preset to disabled. If 
client software subsequently creates one of these nodes, the enabled state specified in the 
creation call is overridden by the preset state. This can be used to automatically enable or 
disable instrumentation without changing the instrumented executable. 

Using MrPlus to instrument Code 
Fragments

MrPlus is a post-link code fragment processing tool. It can read a PEF container holding a 
PowerPC Code Fragment and produce a modified version which will log trace points 
whenever it makes a cross-TOC call. It can also modify a shared library so that its exported 
functions are instrumented with trace points.These features allows you to quickly 
instrument a body of code without having to recompile it.

The modified fragment can be used in place of the original; it will behave identically to the 
original fragment. The only difference is that trace events will be written to the 
Instrumentation Library when it is invoked.

MrPlus works by placing calls to the ProfileLib shared library into the modified binary. 
The first time the routine is called, ProfileLib creates a new trace node for it, with the path 
FragmentName:RoutineName. It then logs a start trace to it, calls through to the routine, 
and logs an end trace before returning. 

This feature can be used to determine which operating system calls an application makes, 
and how much time is spent inside of them.

The “Test target” folder contains a small application called InstTest, which can run a few 
simple instrumentation tests. Its imports have been instrumented with MrPlus, so that every 
system call it makes generates trace events. 

Installing MrPlus

MrPlus is an MPW tool; it may be installed anywhere in the MPW command path. 

Software that has been instrumented with MrPlus must dynamically link to the ProfileLib 
shared library, so ProfileLib should be placed in the Extensions folder or alongside the 

Instrumentation System User’s Guide – 1.0.5 3/6/97 9



instrumented executable. ProfileLib is part of the MrPlus 1.0 release.

Using MrPlus to Instrument Imports

Suppose that you have an application called “foo” containing a code fragment whose name 
is “fooFrag”. In order to instrument every cross-TOC call that fooFrag makes, use the 
following MPW command:

MrPlus foo -instrument imports -member fooFrag

This will create a second application called “foo.prof” with trace instrumentation calls 
embedded in its cross-TOC glue code.

You can instrument specific routines by creating an “include file.” In order to instrument 
only the imported routines “bar” and “baz,” create a tab-delimited text file that contains the 
following:

fooFrag bar
fooFrag baz

If the name of this file were “foo.inc” the MrPlus syntax would be:

MrPlus foo -instrument imports -member fooFrag -include foo.inc

You can also instrument all imports except for baz and bar by using the exclude option:

MrPlus foo -instrument imports -member fooFrag -exclude foo.inc

Using MrPlus to Instrument Exports

In order to instrument the exported routines of a CFM shared library called “foo.lib” 
containing a fragment whose name is “fooFrag”, use the following MPW command:

MrPlus foo.lib -instrument exports -member fooFrag

You can instrument a subset of the routines by using include files and exclude files. The 
command syntax and file format are identical to -instrument imports.

Instrumentation System User’s Guide – 1.0.5 3/6/97 10



Instrumentation System User’s Guide – 1.0.5 3/6/97 11


