Writing an OS Shell in Java

Building a Facade
Andrew S. Downs (andrew@nola.template.com)

This paper describes the design and implementation of a Finder-like shell written in Java.
Several custom classes (and their methods) areexamined: these classes provide a subset of the Macin-
tosh Finder’s functionality. The example code presents some low-level Java programming
techniques, including tracking mouse events, displaying images, and menu and folder display and
handling. It also discusses several high-level issues, such as serialization and JAR files.

Introduction

Java provides platform-dependent GUI
functionality in the Abstract Windowing
Tookit (AWT) package, and platform-inde-
pendent look and feel in the new Java
Foundation Classes (Swing) API. In order
to faithfully model the appearance and
behavior of one specific platform on an-
other, it is necessary to use a combination of
existing and custom Java classes. Certain
classes can inherit from the Java API
classes, while overriding their appearance
and functionality. This paper presents
techniques used to create a Java application
(Facade) that provides some of the Macin-
tosh Finder’s capabilities and appearance.
As a Java application, it can theoretically
run on any platform supporting the Java 1.1
and JFC APIs. Figure 1 provides an over-
view of the Facade desktop and its
functionality. Figure 2 shows a portion of
the underlying object model. It contains a
mixture of existing Java classes (such as
Component and Window) and numerous
custom classes. In the diagram, the user
interface classes are separated from the
support classes for clarity.

a File Fdil Speecial

| C

o] é -
BOOTLOG PR

A

oo sys

-

-

BOOTLCE THT

|

ALTOEKEC. BAT

o8l

il

Irash

Figure 1. Facade on Windows 95

The object model

Facade's object model utilizes the core
Java packages and classes where possible.
However, in order to provide the appropri-
ate appearance and speed, custom versions
of several standard Java classes were
added. For instance, the Deskt opFr anme
class is used to display folder contents. Its
functionality is similar to the
j ava. awmt . Fr ane class. However, addi-
tional behavior (i.e. window-shade) and
appearance requirements dictated the
creation of a "knockoff" class.

One advantage of using custom classes
can be improved speed. This holds true for

GU classes
Catnp oriet

-

D esktopC ot ponent

Wiridow

o

o

Desktoplmage Dresktophd eru Creskto piin dowe D esktop
I |
Dresktoplmagehd enu Desktop Framew D esktopDialog
Support classes
Finder EvertiObject EventLiztener

- z

Gl obal Tirner

TirnerEvent TitnerEvertLizten e

Figure 2. Facade object model (partial)
Only the inheritance structure is shown; relational attributes are not shown.

classes inheriting from

j ava. amt . Conponent : such classes do
not require the creation of platform-specific
"peer"” objects at runtime. Less baggage
results in a faster response. For example,
the Facade menu display and handling
classes respond very quickly.

In the custom classes, most drawing
uses primitive functions to draw text, fill
rectangles, etc. Layout and display
customization is assisted through the use of
global constant values which typically
signify offsets from a particular location (as
opposed to hardcoded coordinates).

Several of the classes depicted in the

object model will be discussed in this paper.

Appearance and

functionality

Facade relies on several graphical user
interface classes in order to provide a

Finder-like interface. These classes fall into
the following categories:

- GUI

- Desktop

- Menus

- lcons

- Folders

= Support

- Startup

- Timing

- Constants

Facade provides a subset of the follow-

ing operations:

- Menu and menu item selection

- Displaying volume/folder contents

- Dragging icons

- Opening and closing windows

- Managing the trash

- Saving the desktop state at shutdown

(exit)

- Restoring the desktop state at startup

- Launching applications

- Dialog display

- Cut/Copy/Paste

- Changing the cursor

- Emulating the desktop database

Several of these operations (and the

classes which implement them) will be
discussed in the following sections.

The desktop

The Deskt op class is a direct descend-
ant of the j ava. awt . W ndowclass, which
provides a container with no predefined
border (unlike thej ava. awt . Fr ane
class). This approach allows the drawing
and positioning of elements within the
Desktop area, without needing to hide the
platform-specific scrollbars, title bar, etc.

However, this approach means that
special care and feeding is required to
make the menubar work properly. In the
current implementation, menubar (and
menu) drawing is done directly in the
Deskt op class, using values obtained from
those respective classes. In other words,
menus don't draw themselves, Deskt op
does it for them.

Menu creation

The following code snippet (Listing 1),
taken from the Deskt op constructor, cre-
ates the Apple menu, and populates it with
one item. The menu is an instance of the
Deskt opl mage class. The Apple icon
(i mgAppl e) was loaded further up in this
method. A similar sequence creates and
populates the File menu.

/1 ----
/1 « Desktop constructor
/1 -

Desktop () |
// <snip>

// Create the menus and their menu items

DesktopImageMenu dim;
Vector vectorMenultems;
DesktopMenulItem dmi;

// Calculate the y-coordinate of the menus (constant).
int newY = this.getY() +
this.getMenuBarHeight () -
(this.getMenuBarHeight() / 3);

// Calculate the x-coordinate of the menus (variable).
int newX = this.getX();

// Create the Apple menu.

dim = new DesktopImageMenu () ;
dim.setImage(imgApple.getImage());
dim.setX(imgApple.getX());
dim.setY(imgApple.getY())

// Create menu item "About.."

dmi = new DesktopMenuIltem(
Global.menultemAboutMac);

dmi.setEnabled (true);

// Add the menu item to the Vector for this particular menu
dim.getVector().addElement (dmi);

// ..then tell the menu to calculate the item position(s).
// Note that the Desktop's FontMetrics object gets used here
dim.setItemLocations(
this.getGraphics().getFontMetrics());

// Add the Apple menu to the menubar's Vector.
// The menubar was instantiated further up in this method.
dmb.getVector().addElement (dim);

// For the next menu, calculate its x-coordinate.
newX = imgApple.getX();
newX += (2 * Global.defaultMenuHSep);
newX += ((DesktopImageMenu)
dmb.getVector().elementAt(0)
) .getImage () .getWidth(this);
// Line wrap.

DesktopMenu dm;

// Create the File menu...

dm = new DesktopMenu() ;
dm.setLabel(Global.menuFile);
dm.setX(newX);

dm.setY(newY);

// ..and all its menu items.

dmi = new DesktopMenuItem(
Global.menultemNew) ;

dmi.setEnabled (true);

dm.getVector () .addElement(dmi) ;

dmi = new DesktopMenuItem(
Global.menultemOpen) ;

dmi.setEnabled(false);

dm.getVector () .addElement(dmi) ;

dmi = new DesktopMenuItem(

Global.menultemClose) ;
dmi.setEnabled(false);
dm.getVector () .addElement(dmi) ;

// Tell the menu to calculate the item position(s).
dm.setItemLocations(
this.getGraphics().getFontMetrics());

// Add the File menu to the menubar's Vector.
dmb.getVector().addElement (dm) ;

newX += (2 * Global.defaultMenuHSep);
newX += theFontMetrics.stringWidth(
dm.getLabel ()):
/] <etc.>
}

Listing 1: Creating menus in the
Desktop constructor.

Here, the variable di mis an instance of
the class DesktopImageMenu. This special-
ized menu class simply adds an instance
variable that contains an | mage (in this
case, the Apple) to the Deskt opMenu class.
Its behavior is the same as other menus,
except that instead of a St r i ng it displays
its | mage. The x and y coordinates of this
menu are determined by the same values
assigned to the image when it was loaded.

This object contains one menu item, the
"About" item. That item is enabled, and
added to the Vect or for the menu. This
Vect or contains all the menu items for that
menu. This approach provides an easy way
to manage and iterate over the menu items.

Once the Vect or has been setup, its
contents are given their x-y coordinates for
drawing and selection purposes through
the setItemLocations() method. Although
this calculation can be done when the menu
is selected, the code runs faster if those
numbers are calculated and assigned at
startup time.

Finally, the menu is added to the Vec-
t or for the menubar. The menubar uses a
Vect or to iterate over its menus, in the
same way the menus iterate over their
menu items. This will become apparent
when examining the mouse-event handling
code for the Deskt op class.

The same approach is shown for the
File menu, except that File contains a

St ri ng instead of an | mage, as well as
several menu items.

Menu and menu item
selection

& FHie Edn

Empty Trash..
Restart

Shutdown

Figure 3. Menu item selection

The code in Listing 2 handles
mouseDown events in the menubar. The
first two lines reset the instance variables
used to track the currently active menu and
menu item. Since the user has pressed the
mouse, the old values do not apply. Next,
the G aphi cs and corresponding
Font Met ri cs objects for the Deskt op
instance are retrieved. They will be used in
drawing and determining what selection
the user has made.

Next, test to see whether the event
occured within the bounding rectangle of
the menubar. This line uses the
j ava. amt . Conponent . cont ai ns()
method. If the x-y coordinates of the mouse
event are inside the menubar, then deter-
mine which menu (if any) the user selected.

Determining the menu selection uses
the menubar's Vector of menus. Iterate over
the Vector elements, casting each retrieved
element to a DesktopMenu obiject.
(Vector.elementAt() returns Object instances
by default, which won't work here.) The
menu has its own bounding rectangle,
which is compared to the event x-y coordi-
nates. In addition, in order to duplicate the
Finder, a fixed pixel amount is subtracted
from the left-side of the bounding rectangle,
and added to the right-side. This allows the
user to select near, but not necessarily di-
rectly on, the menu name (or image). Notice
also in the (big and nasty) if conditional
that the DesktopMenu retrieved from the

Vector is checked for an Image (this handles
the Apple menu). If it has one, the image
width is used instead of the String width.

Once the user's menu selection has
been found, it is redrawn with a blue back-
ground. Then, the menu items belonging to
that menu are drawn inside a bounding
rectangle (black text on white background).
The menu item coordinates, and the corre-
sponding bounding rectangle coordinates,
were calculated when the menu was cre-
ated, saving some CPU cycles here.

1 -——- -
// *+ mousePressed
// -—- -

public void mousePressed(MouseEvent e) {

// New click means no previous selection.
this.activeMenu = -1;
this.activeMenultem = -1;

Graphics g = this.getGraphics();
FontMetrics theFontMetrics =
g.getFontMetrics () ;

if (dmb.contains(e.getX(), e.getY()))
{
// Handle menu selection.
for (int i = 0;
i < dmb.getVector().size();
i++) {

// Get menu object.
DesktopMenu d = (DesktopMenu)
dmb.getVector().elementAt(i);

// Determine if we're inside this menu.
// This could be done with one or more Rectangles.
// Note the (buried) conditional operator: it accounts
// for both text and image (e.g. the Apple) menus.
if ((e.getX() >= d.getX() -
Global.defaultMenuHSep)
&& (e.getX() <= (d.getX() +
(d.getLabel() == null ?
((DesktopImageMenu)
d) .getImage().getWidth(this)
theFontMetrics.stringWidth (
d.getLabel())) +
Global.defaultMenuHSep))
&& (e.getY() >= this.getY())
&& (e.getY() <=
this.getMenuBarHeight ()))

// Draw menubar highlighting...
g.setColor(Color.blue);

// Save the current Rectangle surrounding the menu.
// This will speed up painting on the following line,
// and when the user leaves this menu.
activeMenuRect = new
Rectangle(d.getX() -
Global.defaultMenuHSep,
this.getY(),
(d.getLabel() == null ?
((DesktopImageMenu)d
) .getImage() .getWidth (this)
theFontMetrics.stringWidth (
d.getLabel())) + (2 *
Global.defaultMenuHSep),
getMenuBarHeight ());

g.fillRect(activeMenuRect.x,
activeMenuRect.y,
activeMenuRect.width,
activeMenuRect.height);

// Draw menu String or Image.
g.setColor(Color.black);
if (d.getLabel() != null)
g.drawString(d.getLabel(),
d.getX(), d.getY());
else
g.drawImage (
((DesktopImageMenu)d
) .getImage (),
d.getX(), d.getY(), this);

// Get menu item vector.
Vector v = d.getVector () ;

/1 If the Trash is full, enable the menu item.
// This code can easily be moved,; it is included
// here for illustration.

DesktopMenultem dmi =

(DesktopMenultem)

v.elementAt(0);

if (dmi.getLabel () .equals(
Global.menultemEmptyTrash))

{

DesktopImage di = (
(DesktopImage)
this.vectorImages.elementAt (
1))

String path = di.getPath();

File f = new File(path,
Global.trashDisplayString) ;

if (f.exists()) |
String array[] = f.1list();

if (array == null |
array.length == 0)
dmi.setEnabled(false);
else
dmi.setEnabled(true);
1
}

// Draw menu background.

g.setColor(dmb.getBackground());

g.fillRect (

d.getItemBounds ()
d.getItemBounds ()

.getBounds () .x,
.getBounds () .y,

d.getItemBounds ()

() .width,

d.getItemBounds ()

() .height);

// Draw menu items.

for (

int j = 0;

j++) |
g.setColor(Color.black);

if

g.setColor(Color.lightGray);

2

}

1
v.elementAt (j
) .getEnabled ()

.drawString ((

)
)

.getBounds

.getBounds

j < v.size();

(DesktopMenultem)

(DesktopMenultem)

.elementAt (j
.getLabel (), (

.elementAt(j

.elementAt (j

N N N]

)

)

)

DesktopMenultem)

.getDrawPoint () .x,
(DesktopMenultem)

.getDrawPoint () .y);

g.setColor(Color.black);

// Outline the menu item list bounding rectangle.
g.drawRect (

d.

— O~ QA — A —

X,
.getItemBounds ()
.Y,
.getItemBounds ()
.width,
.getItemBounds ()
.height);

// Add horizontal drop shadow.
g.fillRect (

d

— A~ O~ A —

.getItemBounds ()
x + 2,
.getItemBounds ()
.y t
.getItemBounds ()
.height,
.getItemBounds ()
.width, 2);

// Add vertical drop shadow.
g.fillRect (

d

— O — QL —

.getItemBounds ()
.x +
.getItemBounds ()
.width,
.getItemBounds ()
.y t 2, 2,

getItemBounds () .getBounds (

.getBounds (

.getBounds (

.getBounds (

.getBounds (

.getBounds (

.getBounds (

.getBounds (

.getBounds (

.getBounds (

.getBounds (

d.getItemBounds () .getBounds (
) .height);

// Set current menu.
this.activeMenu = 1i;

// Once found, we're done.
break;
}

}

Listing 2. The mousePressed method handles
menu selections.

The nouseDr agged() method (not
shown) is responsible for the highlighting
and unhilighting of menus and menu items:
that is where menu items get redrawn with
white text on a blue background, as de-
picted in Figure 3.

Displaying folder contents

Folders in Facade use a combination of
core Java classes and Swing classes. The
container itself descends from
j ava. amt . W ndow, and the pai nt ()
method performs the low-level drawing
calls (drawing the title bar, close box, etc.).
The content is displayed inside a
JScr ol | Pane.

Once the Macintosh look-and-feel is
activated, the scrollbars take the appear-
ance shown in Figure 4. The icons within
the scrollpane are added to a grid layout.
This approach works well, except that the
tendency of the scrollpane is to take up the
entire display area (ignoring the title bar,
etc.). So, on resize of the container, the
scrollpane is also resized. A
j ava. awm . | nset s object is used to make
this as painless as possible: the | nset s
values are used as the buffer area around
the scrollpane.

Like most of the Facade classes,

Deskt opFol der implements the

MouselLi st ener and

MouseMbt i onLi st ener interfaces so it
can receive mouse events. Within the meth-
ods required for those interfaces, the x-y

coordinates are checked to determine if a
close, zoom, shade, grow, or drag operation
is taking place, and the container gets re-
shaped appropriately.

& File Fdil Speecial

|Os=

e 1a[=]

[l | IniEind =— I E
QOdadel gir
Fiindea jar

3

Linditled copy
L]] »

Figure 4. Displaying folder contents

1/ e
// » addFileTree
// T e

public void addFileTree(String s) |

// Instantiate the instance variables for this object's content.

// The Mac L&F requires both scrollbars.

pane = new JScrollPane();

pane.setHorizontalScrollBarPolicy(

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS) ;

pane.setVerticalScrollBarPolicy(
JScrollPane.VERTICAL_SCROLLBAR_ALWAYS) ;

// Make sure the argument passed in is a valid directory.
String defaultVolume = s;

if (defaultVolume == null)
return;

File theDir = new File(defaultVolume);

if (!theDir.isDirectory())
return;

// Retrieve the contents of this folder/directory.
contents = theDir.list();
int tempLength = 0;

if (contents != null) |
tempLength = contents.length;

// Use a Swing panel inside the Swing scrollpane.
// Default to a grid layout simply because it looks the best.

JPanel p = new JPanel();
p.setLayout (
new GridLayout(5, 3, 5, 5));

/1 If the contents contain full path specifications, there

/1 will be some extraneous characters that we don't want

// to display.

char pathSeparatorChar =
theDir.pathSeparatorChar;

char separatorChar =
theDir.separatorChar;

Vector v = new Vector();

v.addElement (Global.spaceSep);

int loc = 0;

int k = 0;

for (int j = 0; j < tempLength; j++)
{

// For each item, separator chars should become
/1 spaces for display purposes.
File tempFile =

new File(theDir, contents[j]);

contents[j] = new String(
contents[j].replace(
pathSeparatorChar, ' '));
contents[j] =
new String(contents[j].replace(
separatorChar, ' '));

for (int 1 = 0; 1 < v.gize(); 1++)
{
// Parse root volume name.
// Remove leading '%20' character.
loc = contents[j].indexOf(
(String)v.elementAt(1));

if (loc == 0)
contents|[j] = new String(
contents[j].substring((
(String)v.elementAt(1)
).length()));

// Volume name includes first '%20".
// Rework this for MacOS.
loc = contents[j].indexOf(
(String)v.elementAt(1));

// Build the final display String from substrings.
while ((loc > 0) &&
(loc < contents[j].length()
+1))

String sl = new String(
contents[j].substring(O,
loc))

String s2 = new String(
contents[j].substring(loc
+ ((String)v.elementAt(1)
) .length()));
contents[j] = new String/(
ST+ " "+ g2)

loc = contents[j].indexOf(
(String)v.elementAt(1));

}

// Now build the appropriate icon.
Image thelmage;
int tempWidth = 0;
DesktopFrameltem d;

Imagelcon ii = new Imagelcon();

// Files obviously look different than folders.
/1 Set the appropriate Image.
// This version does not handle mouse clicks on
// documents.
if (tempFile.isFile()) |
d = new DesktopDoc();
ii = new ImageIcon((
(DesktopDoc)d).getImage());
}

else {
d = new DesktopFolder();
ii = new ImageIcon((

(DesktopFolder)d).getImage());
d.addMouseListener (
(DesktopFolder)d);
)

// Set the display Strings.
d.setLabel(contents[j]);
d.setText(contents[j]);

/1 Set the path for the item. It is built from the parent folder
// path and filename.
d.setPath(this.getPath() +
System.getProperty(
"file.separator") + contents[j]);

// And set the icon.
d.setIcon(ii);
/1 Swing methods for positioning the icon and label.
d.setHorizontalAlignment (
JLabel.CENTER) ;
d.setHorizontalTextPosition/(
JLabel.CENTER) ;
d.setVerticalTextPosition(
JLabel .BOTTOM) ;

ii.setImageObserver(d);

// Add the completed item to the panel.
p.add(d);
}

// Set the panel characteristics, then add it to the scrollpane.
p.setVisible(true);

pane.getViewport().add(p, "Center");

pane.setVisible(true);

/1 A container within a container within a container...it works.
panel = new JPanel();

panel.setLayout(new BorderLayout());
panel.add(pane, "Center");
this.add(panel);

// Use the Insets object for this window to set the viewing
// size of the panels and scrollpane.
panel.reshape(this.getInsets().left,

this.getInsets().top,
this.getBounds () .width -
this.getInsets().right -
this.getInsets().left,
this.getBounds () .height -
this.getInsets().top -
this.getInsets().bottom);

// Ready for display.
panel.setVisible(true);
this.pack();
this.validate();

Listing 3: Building a folder's display area.

The trash

The trash is simply a directory located
at the root of the volume (for example,
c: \ Trash). Items can be dragged onto the
trash can icon, the mouse button released,
and the item (and its contents, if itis a
folder) are moved to the trash directory. If
the item has an open window, that window
is destroyed. Emptying is accomplished
through the "Empty Trash..." menu item in
the Special menu. Figure 4 shows a folder
being dragged to the trash. The cursor did
not get captured in the image, but it is
positioned over the trash icon, ready to
release the folder.

& FHie Edit Special

—

G.

J

Lintilled copy 1

Trash

Figure 5. Dragging a folder to the Trash

The code in Listing 4 handles the
"Empty Trash..." menu item. If a match is
found between the selected item and the
constant assigned as the Trash label, the
path to the Trash is retrieved. Once the code
determines the "Trash" is indeed an existing
directory, the enpt yDi r () method is
called. Once enpt yDi r () returns, the icon
is changed from full to empty. Note that the
trash icon is always present in the
vect or | mages object. This Vect or con-
tains the known images (icons) for items on
the desktop. The trash is always at position
0, the first position. The root volume is at
position 1. This allows quick, though
hardcoded, access to the images when
repainting occurs, or an image needs swap-

ping.
I

// * handleMenultem
// - - -

public boolean handleMenultem() |
boolean returnValue = false;

// Handle active menu item.
if ((this.activeMenu != -1) &&
(this.activeMenuItem != -1)) {

// Get menu object.
DesktopMenu dm = (DesktopMenu)
dmb.getVector().elementAt (
this.activeMenu) ;

// Get menu item.
String s = ((DesktopMenultem)
dm.getVector () .elementAt (
this.activeMenultem)).getLabel();

/1 <snip>
if (s.equals(
Global .menultemEmptyTrash)) {

// The path to the trash is assumed to be of the form:
/l <root vol>/Trash
DesktopImage di = ((Desktoplmage)
this.vectorImages.elementAt(1));
String path = di.getPath();
File £ = new File(path,
Global.trashDisplayString);

// Once we have the object that references the Trash dir...
if (f.exists() && f.isDirectory())
{

// Call the method which empties it.
boolean b = this.emptyDir(£);

/1 1f successful, change the icon back to empty.
if (b) |

// Save the current bounds. We really want the x-y.
Rectangle r = ((DesktopImage)
this.vectorImages.elementAt (0)

) .getBounds () ;

// Change the icon. imgTrash and imgTrashFull are two
// instance variables, each referencing the appropriate
// icon.
this.vectorImages.setElementAt(
this.imgTrash, 0);
((DesktopImage)
this.vectorImages.elementAt(O
)).setBounds(r);

// Show the change.
this.repaint();
}

Listing 4: Handling the "Empty Trash..."
menu item.

Emptying the trash

enpt yDi r () isdisplayed in Listing 5.
This method will empty the specified direc-
tory recursively. As it finds each item in the
directory, appropriate action is taken. If the
item is a file it is immediately deleted. If it
is a directory, enpt yDi r () is called again,

with the subdirectory name as its argument.

Eventually, all of the files in the
subdirectory are deleted, and then the
subdirectory itself is removed.

1/l -
/< emptyDir
/1 -

public boolean emptyDir(File dir) {
// Recursive method to remove a directory's contents,
// then delete the directory.

boolean b = false;

// Get the directory contents.
String array[] = dir.list();

// If the path is screwed up, this will catch it.
if (array != null) {

// Iterate over the directory contents...

for (int count = 0;
count < array.length; count ++) {
String temp = array[count];

// Create a new File object using path + filename.
File f1 = new File(dir, temp);

// Delete files immediately.
// Call this method again for subdirectories.
if (fl.isFile()) {
b = fl.delete();
}
else if (fl.isDirectory())
b = this.emptyDir(f1);
b = fl.delete();

}

return b;

Listing 5: Emptying a directory.

Saving and restoring state

Facade uses a variant on the standard
Java serialization mechanism for saving the
Deskt op state. The code in Listing 6 illus-
trates the saving and restoring of open
folder windows. Both of these methods are
in the Deskt op class. Note that rather than
flatten entire Deskt opFr ane objects, this
code saves only specific attributes from
each object. The primary reason for this
approach is that it avoids any exceptions

// -
// * saveState

thrown when attempting to serialize the
Swing components and Images (which are

not serializable by default) within each
Deskt opFr anme. Another reason is the
relative ease with which this approach may
be implemented. Plus, it reduces the

amount of data written to disk. One disad-
vantage is that the current scroll position of
any open window is lost.

e — -

private void saveState() f

// The Desktop data will be stored in a file at the root level.

DesktopImage di = ((Desktoplmage)
this.vectorImages.elementAt(1));

String s = new String(di.getPath() +
"Desktop.ser");

try |
FileOutputStream fos =
new FileOutputStream(s);
ObjectOutputStream outStream =
new ObjectOutputStream(fos);

// Use a temporary Vector to hold the open DesktopFrames.
// This should not be necessary when shutting down, but it
//'is a good habit to follow.

Vector v = new Vector();

v = (Vector)

this.vectorWindows.clone () ;

// Use another temporary Vector to hold the attributes
// to save.
Vector temp = new Vector();
for (int i = 0; 1 < v.size(); i++t) {
// For each DesktopFrame, we'll save its path, display
// string, and its bounding Rectangle. If window-shading is
// in effect on an object, restore the full height before
// saving.
DesktopFrame df = (DesktopFrame)
v.elementAt(i);
temp.addElement (df.getPath());
temp.addElement (df.getLabel());

if (df.getShade()) |
df.restoreHeight ();
}

temp.addElement (df.getBounds());
)

// Write the Vector contents to the .ser file.
outStream.writeObject(temp);
outStream.flush() ;

outStream.close() ;

}

catch (IOException e) |
System.out.println(

"Couldn't save state.");
System.out.println("s = " + s);
e.printStackTrace () ;

}

}

// -—-
/l * restoreState
// -—-

private void restoreState()

// The Desktop data is stored in a file at the root level.

// This step occurs near the end of the Desktop constructor,

// and so can use the root volume to build the path.

DesktopImage di = ((Desktoplmage)
this.vectorImages.elementAt(1));

String s = new String("\\Desktop.ser");

try |

// Open the file, and read the contents. In this version
// we know it's just one Vector.
FileInputStream fis =
new FileInputStream(s);
ObjectInputStream inStream =
new ObjectInputStream(fis);
Vector v = new Vector();
v = (Vector)inStream.readObject();

inStream.close();

Rectangle r = new Rectangle();

it+) |

for (int i 0; i < v.size();
// lterate over the Vector contents. We know the save
// format:

// each field corresponds to a specific attribute of a
// DesktopFrame.

// Create a new DesktopFrame using the retrieved path.

s = (String)v.elementAt(i);

DesktopFrame df =
new DesktopFrame(s);

// Set its label using the next Vector element.
i+t
s = (String)v.elementAt(i);
df.setLabel(s);

// Set its bounding Rectangle using the next Vector
// element.
i+t
r = (Rectangle)v.elementAt(i);
df.setBounds(r);

// Prepare and display the DesktopFrame.

df.pack();
df.validate();
df.show();
df.toFront () ;
df.repaint();

// Add the object to the Desktop's Vector of open
// windows.
Desktop.addWindow(df);
}
}
catch (ClassNotFoundException e) {
System.out.println(
"ClassNotFoundException in
retrieveState().");
}
catch (IOException e) {
System.out.println(

"Couldn't retrieve state.");
System.out.println("s = " + s);
e.printStackTrace () ;

}

Listing 6: Saving and restoring open
DesktopFrames.

Packaging
(Facade in a JAR)

Facade can be run from a Java Archive
(JAR) file, or as a set of separate classes plus
images. In addition, the Macintosh look-
and-feel classes must be present (usually in
a separate JAR). The system environment
variables need to be setup properly in order
for the Java runtime to find the classes.

The JAR file for Facade was created
like this:

jar cf Facade.jar /Facade/*.class /Facade/
*.gif

Once the environment variables are set,
Facade can be invoked as follows:

java Facade

Other classes

In addition to the j ava. awm classes
already discussed, there are other packages
and classes used often in Facade.

This program relies heavily on the
java. util . Vector class for maintaining
a semblance of order among the various

objects. Several Vect or instances are used
for tracking icons and open windows.
Figure 6 illustrates the core concept of a
Vect or : itis a growable array.

I

|)
1 1 1

ne Yeckor) ackiElernent] objl) addaERment] obj2)

Figure 6. Creating and populating a Vector.
The arrow represents a pointer to the current
element at the end of the Vector.

Thej ava. i o. Fi | e class provides
most of the file system operations for dis-
play and management. Refer to the
references provided in the bibliography for
API details. One platform-specific detail
that was not discussed is the translation of a
root path to a form that is valid for a File
directory object. For example, calling the
File.list() methodonthepath"c:\"
will not return any file or folder names, but
calling the same method for the path "/ "
will return the root directory contents.

Facade also uses the Java Foundation
Classes (Swing) to provide a consistent look
and feel across platforms, primarily for
window scrolling operations. Swing runs a
bit slow right now, but as peformance
improves Swing classes can be substituted
for some of the Facade custom classes. For
example, the code that handles folder con-
tent display can be modified to show a tree
structure. This capability should be easy to
implement using the Swing classes, with
little additional low-level drawing code.

Conclusion

Writing Java classes to model operating
system functionality requires some choices,
particularly in the selection of pre-defined
GUI classes. Although many classes are
available, you will need to create others,
since performance of the pre-defined
classes may be slow, or the behavior may
not be exactly what you need. Both the
appearance and behavior for custom GUI
elements must be written.

This paper touched on several key
areas: desktop layout, menu and mouse
handling, icon display and movement, the
trash, and saving and restoring the desktop
state. All of these functional areas can be
modeled easily using the Java 1.1 classes,
supplemented by JFC and custom-built
classes.

Bibliography

[1] Englander, Robert. Developing Java Beans.
O’Reilly & Associates, Inc., Sebastopol,
CA. 1997.

[2] Flanagan, David. Java in a Nutshell.
O’Reilly & Associates, Inc., Sebastopol,
CA. 1997.

[3] Niemeyer, Patrick and Peck, Joshua.
Exploring Java. O’Reilly & Associates,
Inc., Sebastopol, CA. 1997.

[4] Weiner, Scott and Asbury, Stephen.
Programming with JFC. John Wiley &
Sons, Inc., New York, NY. 1998.

