Making Peace With Windows

Allen Prescott <allen@clanprescott.com>
10665 Baxter Avenue Los Altos, CA 94024

I am still trying to decide which was more difficult for me. Leaving my first wife or deciding to
start programming Windows. However, it is a good idea in today’s market to develop as many mar-
ketable skills as possible so I finally decided to take the plunge. It was, and continues to be, a difficult
thing. When you are ready to take the plunge you will have to confront some disturbing realities.
The worst of which is that you are no longer master of the universe. | started programming the Mac
when it came with 512K of RAM. Many years later | felt like there was no situation that I could not
handle. I knew all the right tools for each job. I was fluent in 68K and PPC assembler. | knew what to
expect from the system software. | knew all the little tricks that made my life as a programmer sim-
ple. It is not that all of those years of programming did not help me in Windows land. On the
contrary they helped me a lot. However, I had a whole new world to conquer and at first it seemed
very large and unfriendly. It did get better as I learned more. The unfortunate thing is that you
cannot simply sit down for a month, read everything that there is to read, and come away knowing
everything that you need to know. You’ve simply got to dive in and do it for awhile. Eventually it all

starts to work for you.

Picking Hardware

First you have to equip yourself. Pick-
ing out hardware is pretty easy in Mac land.
Just get the biggest, baddest machine avail-
able at the time and hope that it does not
become obsolete before your first project is
done. In Windows land there are many
more issues. First you have to decide what
OS you are planning to target. Windows NT
is the future but Windows 95 is the present.
If you are planning on writing consumer
applications then Windows 95 will be really
important to you. If you want to focus on
server applications then you will want to
skip Windows 95 and go straight to NT.
Either way you will probably want to run
both at one time or another. This means that
you will need a dual boot setup. This can be
a problem. None of the major vendors that |
spoke with when | did my first system
would certify a dual boot system (in fact
some would not even certify an NT sys-
tem). You should ask your vendor
specifically about a dual boot configuration.
I have found that the best thing to do is to
get an NT system and set up the dual boot

yourself. The thing to make sure of here is
that there are both Windows NT and Win-
dows 95 drivers available for your devices,
particularly your CD-ROM drive. Drivers
readily available on the web are a big plus.
Ask the vendor and verify for yourself.

Once the new hardware is on your
desk make a boot floppy that has CD driv-
ers on it so that you can boot from this
floppy and read your CD. This will be a
lifesaver in the future. | found it easier to
install Windows 95 then install Windows
NT on top of it. NT installs nicely on top of
95 but installing 95 on top of NT is much
more trouble. So | recommend that you buy
a Windows NT setup, reformat your drive,
install Windows 95, and then install Win-
dows NT on top of it. You should find a
contact that has the appropriate Windows
hardware battle scars and pick a day when
your contact is available. Then plan on
spending the entire day wrestling with
your configuration. There is an off chance
that you will install everything and it will
just work, but that has been very unusual in
my experience.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

Hardware requirements are another
issue. Windows NT and a development
environment will run marginally in 64MB
of RAM but do yourself a favor and get
128MB up front. That will improve per-
formance a lot. You should also get a
minimum of 4GB of disk space, but | rec-
ommend at least 6GB. Dual boot systems
and development tools will eat up a whole
lot of disk space (not to mention if you
decide to install a video game or two). In
the matter of disk space and memory more
is always better. Sound card and monitor
choices will depend on your target applica-
tion. For the sound card make sure that you
get one that has readily available drivers for
both NT and 95. If you have the money, an
extra processor is a nice touch; a dual-
processor box is generally much more
responsive and performs better. | am not
sure that it is really worth the extra money
for a user box but it is nice. If you are plan-
ning to do multi-threaded programming,
then a dual processor system is a higher
priority.

Don't try to "save money" by buying
cheap parts unless you are really familiar
with hardware and drivers. The time that
you lose wrestling with drivers and
incompatibilities will far outweigh the few
dollars that you save. Along with the lost
time will come frustration and mistrust. A
developer has enough worries without
having to constantly wonder if a problem is
in the code being developed or the configu-
ration.

Picking Software

So now you have wrestled with ven-
dors, anguished over hardware choices, and
wasted a weekend getting your new box all
set up. Assuming that you did not damage
it permanently in a fit of rage over configu-
ration issues, you will now need developer
tools. No matter where you are going from
here you will probably want to join the
Microsoft Developer Network (MSDN).

You should first visit Microsoft on the web
at http://www.microsoft.com. You can
then navigate your way to the MSDN site
and see the available options. The Universal
MSDN subscription comes with Visual
C++, Visual Basic, Visual J++, Windows NT
Server, the Office Suite, SQL Server, all of
the SDKs and device driver kits as well as
various other tools. See the MSDN site for a
full listing. If you need all of this, then the
Universal Subscription is a good deal. If
you are planning to use a single compiler or
already have the BackOffice products, then
one of the lower-cost services will do just
fine. Most of the stuff on the CDs is also
available on Microsoft’s web site some-
where, but it can be nice to have the CDs,
particularly if you do not have a high speed
Internet connection. If you go for the
MSDN subscription, be prepared for a lot of
CDs. You will get multiple boxes with piles
and piles of CDs. Finding what you are
after in this pile of CDs can be very chal-
lenging. They will come with a printed
index of what products live on which CDs.
Do yourself a big favor and keep this index
handy. If you use the index and keep the
CDs in the proper boxes and in the proper
order, you will save yourself quite a lot of
time and frustration digging information
out of the pile.

You will have some choices in compil-
ers. The MetroWerks offering is very nice
and will be a friendly place for you if you
were using that environment on the Macin-
tosh. My experience with them is that they
make very good tools. | have not used the
Windows version extensively but a friend
with some experience claims that the Win-
dows version has a few slings and arrows.

The most prolific compilers are the
Visual family from Microsoft. If you are
looking for the latest and greatest of tech-
nology then you will probably want to go
with Visual. Microsoft tends to deliver
bleeding edge things integrated into this
environment. | found it very full featured

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

and easy to use. The integrated debugger/
editor/compiler is very nice. You can cus-
tomize pretty much everything. Overall, it
is a good environment, though they did
seem to go with the 80/20 rule in quality
control. You will find plenty of bugs. For
example, when you try to compile the
following code:

for (int inx
for (int inx

0; inx < 3; inx++) {}
0; inx < 3; inx++) {}

you will discover that it does not com-
pile because inx is multiply defined. This
will let you know that the compiler does
not conform to the latest C++ specification.
This is a polish thing that is easy enough to
work around. | am just used to the folks at
MetroWerks dotting those i’s and crossing
those t’s. Overall you will find it more than
adequate for most application-level devel-
opment.

The Visual environment includes a
resource editor and debugger that will do
very nicely for all but the most demanding
of situations. If you are planning on sophis-
ticated icon design or other artistic work,
you might want to consider a special-pur-
pose program. | have no experience with
any of those programs so | will leave you
on your own there.

The object browser included is full-
featured but buggy beyond use in my
opinion. You might want a copy of a prod-
uct such as Object Master from Altura
Software (http://www.altura.com) to sup-
plement the environment.

The editor is nice and full featured. |
am perfectly happy with it, but a lot of
people that | know prefer to use
CodeWright from Premia (http://
www.premia.com). This seems particularly
true of old-time Windows folks.

The debugger is nice. You can do
source or assembler debugging in your own
code. You can set break points and condi-
tional break points. There is an expression
evaluator and a raw memory viewer. It is

fairly weak in expression coercion but you
can get by with the memory window. It is
also pretty good about attaching to DLLs
and other code resources to allow source
level debugging. If you want to do lower-
level debugging into other people's code,
then you might want to get Softice from
NuMega (http://www.numega.com). Itis a
little pricey, and | have never used it per-
sonally, but | have heard a lot about it and
there have been several occasions where |
really wished that | had a lower-level
debugger.

These are by no means the only prod-
ucts available or even necessarily the best.
These are just the ones that | have been
exposed to and like. You should take a trip
to your local software store and see for
yourself.

Reference Materials

When | first conceived of this notion |
thought that | would surely need to recom-
mend books that you can read that will
help get you started. The problem was that
I never read any of the books myself. You
can go down to your local bookstore and
find hundreds of books on programming
Windows that | am sure are fine volumes
full of useful information. However, there is
a lot of documentation and sample code
that comes with the MSDN subscription
and more on the Microsoft web site. So |
just picked a starting project, surrounded
myself with online references, and dove in.
Thinking that | was surely alone in this
tactic, | composed an email asking several
professional programmers that | know to
recommend books that they had read and
found useful. To my surprise | did not get a
single recommendation back. It seems that
all of them got started pretty much the
same way that | did. This at least proves
that it can be done. It may ease your burden
to spend some time reading books to get
familiar before you get started, but it isn't
essential.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

The one book that a lot of people know,
but no one seems to have read a lot of, is
Charles Petzold’s Programming Windows 95
(Microsoft Press, ISBN: 1556156766). | have
a copy of his Programming Windows 3.1
book but I have never read it. If you are
going to be doing Win32 applications with
lots of Ul you may want to check this one
out.

COM, OLE, and ActiveX

COM, OLE, and ActiveX are terms that
are frequently used interchangeably. In
reality COM is the underlying object tech-
nology layer and OLE/ActiveX is the
higher level layer on top of that technology.
It all started out as an OpenDoc-type docu-
ment object system called OLE. The goal
was to integrate applications more easily by
providing black-box code sharing. As time
went on, and the Internet became more
popular, the goal evolved and the name
was changed to ActiveX. It is now targeted
more at distributed web objects.

If you need to imbed a component into
someone else's application, such as Excel,
then ActiveX is the technology for you. This
technology is based upon COM (Compo-
nent Object Model). COM is an
object-broker type technology. It lacks some
of the more sophisticated features of other
object-broker technologies, but is adequate
for most applications. It provides location
transparency, named lookups, parameter
marshaling, and primitive life-cycle man-
agement. If you want to expose features in
your application to outside code, it is fairly
easy to make functions available to the
world via COM. This opens the door for
scripting as well as other kinds of code
sharing opportunities. COM also makes it
easy to mix and match code from different
languages such as C++ and Java. With
DCOM (Distributed COM), it is also easy to
mix and match components from different
machines over a network.

COM life-cycle management is primi-
tive. It is basically just a reference count
variable. You are responsible for keeping
the reference count correct and disposing of
an object when the count reaches zero. Do
not underestimate the importance of life-
cycle management. It can be a real pain to
keep those reference counts accurate, but
the penalty for not doing so can be very
severe. ATL (Active Template Library) is a
set of foundation classes provided with
Visual C++ that provides really nice wrap-
pers around COM objects for C++
programmers. If you are planning to get
serious about COM, I strongly recommend
it. It will ease a lot of the problems of life-
cycle management and method invocation.

COM provides good opportunities to
hang the system. If you are planning to use
COM, you would be well advised to read
up on it and understand the requirements
imposed by the apartment models before
writing any code. This is particularly true of
the single-threaded apartment model where
invisible windows are created on your
behalf that may not always do everything
that is required of them. If you are planning
to do multi-threaded programming, then
you should avoid the single-threaded apart-
ment model. In either case, my experience
has been that you should stick with one
model or the other. Mixing models in the
same address space leads to unpredictable
behaviors.

When using COM, | suggest you look
for reference books. COM is very complex,
particularly if you have not done a lot of
component-level programming before. |
have been doing object-oriented program-
ming for a long time and thought that
surely that would make a nice entry into
COM. It helps, but is far from enough. The
COM documentation available online is not
terribly helpful. It tends to be terse and
widely dispersed. The definitive source is
Inside OLE by Kraig Brockschmidt
(Microsoft Press, ISBN: 1556158432). This is

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

available online with your MSDN subscrip-
tion. The one that | own and really like is
Inside COM by Dale Rogerson (Microsoft
Press, ISBN: 1572313498). It is very readable
and has a lot of good information. It was
written by a Microsoft programmer and
contains one of my favorite Microsoft
quotes: "At Microsoft, we always feel we
can improve on a standard." Pretty much
says it all doesn’t it?

Microsoft has adopted COM very
widely in their own programming efforts.
The Internet Explorer browser has a very
sophisticated set of COM interfaces. Other
parts of the system are evolving COM
interfaces as well. They are truly eating
their own dog food in this regard. That
makes one believe in the technology.

MFC

MFC is a big part of the development
picture. It provides fairly full-featured
implementations of most technologies. Your
decision on deployment of MFC is almost
the same as your decision to deploy
PowerPlant or MacApp in MacOS land.
With MFC you get a lot of features but the
code is big and slow. | also question the
quality of it sometimes. | was debugging in
MFC once and | dropped into a section of
code that used multiple GOTO statements
for flow control. Now I’'m not one of those
elitists who claim that folks who use GOTO
are intrinsically evil. On the other hand I do
believe that, in a language such as C++ that
has a rich set of flow control and error
handling constructs, it is the tool of a lazy
designer at best and a bad designer at
worst. This was never a major issue with
PowerPlant or MacApp in my opinion.

A second important issue is distribu-
tion. To use MFC in your application you
must make sure that the user has the appro-
priate MFC DLLs on their machine. They
will frequently be present already but you
must make provisions to deliver them just
in case. For desktop applications delivered

on CDs with lots of room, this may not be
much of an issue. However, if you are
planning network delivery then the extra
megabyte or so can be a big issue for you.
There is also an option to statically link all
of the MFC code into your application,
thereby avoiding the separate distribution
issue. This is simpler, but makes it more
difficult to take advantage of MFC updates
in the future.

A good strategy is to use MFC for
rapid prototyping, and then go away from
it when you are ready to get serious about
commercial code.

Al Evans recommends that you read
Mfc Internals : Inside the Microsoft Founda-
tion Class Architecture by George Shepherd
and Scot Wingo (Addison-Wesley, ISBN:
0201407213). This is not a book for the faint
of heart, but contains lots of useful informa-
tion.

Modern OS?

Windows NT is a more modern operat-
ing system than what you are used to with
MacOS. It has protected memory, pre-
emptive multi-tasking, real virtual memory,
and all that cool stuff that modern operat-
ing systems need. It holds up well under a
lot of abuse. Included with the Win32 SDK
is a program called Kill. You can almost
always use it to kill a rogue program and
get on with your life in places where the
reset button was the only answer in MacOS
land. Abusing the system is much more
difficult as well. In MacOS land it is not
uncommon to be forced to re-install system
software while making new code. | have
never had to do that with NT. | also rarely
have to reboot because of program errors.
Problems such as overwriting arrays, dou-
ble freeing pointers, and writing into
someone else's address space are not so
serious. That is my biggest beef with the
MacOS. You are constantly rebooting be-
cause of things like that. On Windows NT

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

you just kill the application and get on with
it, which is liberating.

However, it is not a panacea. There are
still issues that land it somewhere in be-
tween MacOS and UNIX as far as reliability
goes. In UNIX land, a crash is a big event to
be investigated. On NT you just hit the reset
button and move on. It also tends to get
into a state where parts of the system are
unstable but there is the illusion of stability.
I have spent quite some time debugging
phantom crashes that would not behave
consistently and then went away after
rebooting.

There are also cases where a single
rogue application can bring the system to
its knees. A good example of this is the
Visual C++ linker. While you are doing a
long link, system performance degrades to
the point of being unusable. This is true
even on dual-processor systems. So, the
moral of this story is: Reboot often and do
not get alarmed when the system grinds to
a halt.

Possibly the most frustrating thing of
all is the overall design, or lack thereof, in
the Windows APIls. There are almost always
multiple ways to do the same thing, and it
is frequently unclear what the difference is.
There is also no Gestalt call. Discovering
things about the system and the hardware
can be challenging. As a Macintosh pro-
grammer, you may find the Windows APIs
scattered and incoherent. It takes some
getting used to.

The Tao

So, you may now ask if | think that it
was worth it. My answer would have to be
that it depends. In today’s climate it is
certainly easier to feed your family if you
can program Windows. There is definitely
something missing for me though. | began
programming the Macintosh for the fun of
it, and it soon became a passion. | was
consumed by it. | lived and breathed the
Macintosh, and it became an integral part of
who | am. | was hoping for a similar experi-
ence with Windows, but it was not to be. |
have found it generally lacking in the sex
appeal that drove me ever onward in the
Macintosh world. | do it because | am paid:
were it not for the money, | would not do it.
So, my suggestion is to move forward with
the Macintosh if that is a viable option for
you. | would be willing to bet that you will
be happier in the long run.

PRERELEASE — NOT FOR PUBLIC DISTRIBUTION — ©1998 EXPOTECH, INC.

