
Using and Creating Cryptographic-Quality Random Numbers
Jon Callas, jon@worldbenders.com

3 June 1996

There’s an old mathematician’s joke that few decades ago,
statisticians were concerned about the random number
tables they had to use. They were difficult, ungainly, and
just a pain. So a number of people got together and
decided that if they could find out what the most random
number is, they could just use that and lose all those thick
books of random numbers. After much work, they found
out that the random number is 17. I won’t bore you with
the proof — much. The proof shows that The Random
Number cannot be larger than 17, and then shows that it
cannot be less than 17. Therefore it must be 17. The flaw
in this proof is, of course, obvious.

Most of us know what random numbers are traditionally
used for: games, simulations, testing, numerical analysis,
etc. However, a number of us are now starting to work
with privacy software, and privacy software needs to use
random numbers for generating public / private key pairs,
producing session keys, creating some digital signatures
and message authentication codes, and many other uses.
But we can’t just use 17, and we can’t even use the
functions that come with our favorite development
system. Creating good random numbers is a hard
problem, so hard that there isn’t a library we can just use.

In this paper, I will talk about randomness, what it means,
how you get it, how you use it, and how to misuse it. This
is a hard problem. Most of the mistakes I’ll talk about I’ve
made myself. Given the nature of the study, there’s likely
at least one comment in this paper that I’ll regret in five
years. The good news is that with a little bit of study,
humility, and cleverness a good hacker can do some good
work.

What does it mean to be random?

This is a good question. In fact, it’s the crux of the issue.
Random numbers, at some sense can be thought to be
arbitrary, unknowable, unpredictable. Because we’re
working on computers, we can think of random numbers
as being random bits, or streams of random bits, which we
group together, form modulos on, use in massaged forms.

The canonical mathematical definition is that a string is
random if there is no shorter way to state the string than to
state the string itself. In plain English, it's random if you
can't compress it. Note that this means that compression is
a randomizing function.

Statistics tells us a few things about random bits. Zeros
ought to occur as often as ones. A pair of zeros should

occur half as often as single zero, and as often as a pair of
ones. A triplet ought to occur half as often as a pair, a
quarter as often as a single bit. If you take samples in
pairs, a graph shouldn’t show clumps. There are other
statistical tests such as the chi-squared test you can
perform on a stream of numbers to show how random (or
how much they stray from random) they are. The degree
to which a stream of bits follows this statistical form is
the degree to which it is said to be entropic. This is the
strict mathematical definition. Please note that there is no
well-defined term for something that is entropic and
unknowable. Many people (including me) casually use the
term "entropic" to mean statistically random and
unknowable.

These are good enough for traditional purposes (although
some traditional random number generators have some
amusing flaws — most implementations

of rand() show clumps if you plot pairs on an x-y graph),
but not in privacy and cryptography. The notion that a
random number is unknowable is central to cryptographic
work. If you construct a zillion digit prime number, and
then post it on your web page, you might as well just use
17. It’s no less safe, and you can probably remember it.

Cryptographers use the notion of “The Adversary” to help
them focus their thought. The adversary is a hypothetical
person who is trying to break the system. Depending on
what you are trying to do, the adversary has certain
abilities. The adversary can always disassemble your code
and understand it. The adversary can always use brute
force. The adversary can’t read your mind. For us on
Macintoshes, it’s safe to assume our user can (sometimes)
use the system without the adversary watching. For our
purposes, a perfectly random number is one that the
adversary has to guess, that is that there is no strategy for
determining it that is better than brute force. Note that this
is equivalent to the mathematical definition. If there were
a shorter way to state the string, then this would form the
basis of some way to guess it that's more efficient than
brute force. Strong cyphers are also randomizing
functions; the cyphertext output of a function is random,
and ideally perfectly random. It follows all the statistical
tests, and in effect looks like noise. Much of cryptanalysis
centers around breaking codes by discovering and
exploiting imperfections in a function’s ability to
randomize.

Random numbers may be strong or weak (perfectly
random numbers are the strongest), and also knowable or
unknowable. Knowable random numbers are also called
pseudo-random numbers. Pseudo-random numbers are
knowable because they come from a mathematical
function. For example, the number produced by summing
the digits of your date of birth is completely pseudo-
random and knowable because it’s a fixed formula, but it
may be secret. Flipping a coin is truly random, assuming
the right coin, but pretty easy for the adversary to guess. A
lopsided coin may be statistically skewed, and thus
weakly random, but also truly random.

Collecting, Cooking, and Feeding Entropy

Collecting truly random numbers is hard. Collecting
perfect random numbers is hard. Collecting perfect, truly
random numbers is non-trivial. The best way to do it is to
treat each problem separately. Figure out how to get
entropy, or randomness, or what I’ve called how truly
random the number is, and then use that entropy to
produce something that is statistically (ideally perfectly)
random. In short, we want to get some entropic numbers,
and then use them to seed a pseudo-random number
generator. Better still, set up a process whereby we
continually sample entropic numbers and continually and

cumulatively seed a pseudo-random number generator.

It’s a good idea to collect as much entropy as possible
before using a system. If you are creating a key pair, it’s a
good idea to have a tenth to a fifth as much entropy as the
length of the key (if you’re generating a 1024-bit key, it’s
a good idea to have 100 to 200 bits of entropy). More is of
course always better. Also note that by one bit of entropy I
mean that it’s as random as a coin flip. A coin marked
with 17 on one side and 23 on the other side has one bit of
entropy, but anyone foolish enough to assume it’s the low
bit is going to be in for a rude surprise. This is, in fact, a
common mistake! Don’t assume that the low bit of a
random sample is the random bit! In fact, the entropy may
(as in the coin above) be smeared across the whole of the
sample, or aggregated across multiple samples.

There are many ways to get truly random numbers. Some
outré methods include making hardware devices that
generate noise, observing cosmic ray flux, and observing
light emissions from trapped

mercury atoms. They’re great in theory — and in some
sorts of practice, as there are some very high-quality
random generator chips out there — but we have to work
with existing equipment. Here is a list of ways to get
entropic numbers, and my biased opinions on their pros
and cons:

Use your user. Users are among the most entropic things
there are. The obvious drawbacks are that it takes time to
get entropic responses from the user, and if you have no
user (if you’re a server), this doesn’t help. Nonetheless, if
you do have one, you should use user inputs, as these are
the hardest for the adversary to acquire or spoof. You can:

Look at the keyboard. Timings between keystrokes aren’t
bad. People tend to type rather regularly, except when
they don’t. Ticks between keystrokes are probably good
for one bit per stroke. If you use the value of the
keystroke itself there are two dangers. One is that you
might leak information about the person’s typing, which
can be bad, and could ruin the whole game if it’s the
passphrase for their key that you leak. The other is that
English text contains only about an average of 1.3 bits of
entropy per character (or so say Cover and King from an
IEEE paper). My paranoia meter tells me to avoid using
keystroke content because I fear leaking valuable
information, unless I use a good distiller (which I’ll
discuss below) and am careful to use other streams of
entropy too.

Look at the mouse. Timings between clicks are probably
better than timings between keystrokes, but they happen
less often. There’s easily a bit there. The position of the
mouse is also a good one, but there is obvious skew. Mice
spend a lot of time in the menu bar. There’s a lot of white
space in the menu bar, and menus aren’t used evenly.
Dialog boxes tend to go in the same places, and lay out
their components regularly. If you measure the mouse
position in an event, it’s a mediocre sample. My gut feel
is that there’s a bit of entropy in the whole mouse
position. If you sample it in a VBL, null event, or some
other free-running time, I feel confident at guessing that
it’s got two bits of entropy, when moving.

If you have no user, you have to use your hardware for a
stream of entropy. This is annoying, but not impossible.
Here are some methods you might use:

Look at the clock. Simply looking at the clock provides
some, but not a lot of entropy. If you use the time()
function in the C library or the GetDateTime() function
from the toolbox, it’s pretty easy for the adversary to
search outward from now, and home in on your value.
Finer resolution clocks are better, but the same principle
holds. If you seeded a PRNG with TickCount() and
nothing else, a search will find it quickly. There are only
31.5 million ticks in a year. However, a stream of

observations that look at the clock at the primary interrupt
time (and use the microsecond clock) can get a lot of
entropy quickly. Of course, there are other considerations,
such as the fact that there is at least one regular interrupt
on the system, and it’s possible for the adversary to do
things to generate interrupts (like ping you).

Use the disk. At the Crypto ‘94 conference, Davis, Ihaka,
and Fenstermach showed that air turbulence inside a disk
drive creates enough randomness to make cryptographic-
strength random numbers. Obviously, there are a number
of ways to do this badly, but with a good enough clock,
and properly flushing (or disabling) the caches, this will
work. A unix implementation of this scheme has
generated over 100 bits per minute.

Use a microphone. Reading the microphone that is built
into many Macs (like the PowerBook I’m writing this on),
gives a source of apparently random data. I say apparently
because this technique gives me the willies. White noise
frequently isn’t. As I listen to things in the room here with
me, there is 60Hz hum from power sources, A whine from
my disk drive, fans in the room which are

noisy but still have a regular component from their
rotation, whine from nearby monitors, and so on. If I were
mixing disk timings with sound samples, I would worry
about how the disk’s chatter would make the two
dependent on each other. Second, signal analysis is one of
the most developed disciplines there is, and that makes
me worry. Lastly, I would worry that two servers in the
same room would be too tied to each other as the
environment they are sampling is similar. I wouldn’t use
sound alone, and I wouldn’t use it and disk timings alone.
Other people I respect recommend compressing audio
information as a way of removing skew, and then using it.
As long as audio data is distilled with some suitable
distiller (as I'll discuss below), it can be a fine source of
randomness, in spite of the willies it sometimes gives me.

Use video. Reading the video memory of your computer
can give another source of randomness. A number of
people recommend reading the video buffer under the
mouse cursor, too.

Use the network. There are all sorts of things on the net
that are unpredictable. However, they are as accessible to
other people as they are to you. Packet timings could be
observed and then guessed about, so that they’d be only
weakly random. Other interesting things that seem
random may not be. Certainly it is arbitrary what the
checksum of all of yesterday’s netnews postings are, but if
the adversary used the same netnews provider, its entropy
value could be as low as zero. There are other ways a
determined adversary could observe your readings, or
even feed them to you! As long as you consider network
readings to be weakly entropic, they’re probably okay.

Use your computer’s state. These observations can be
anywhere from worthless to excellent. The number of
page faults that have happened on a VM system might
increase wildly, or sit static. Checksumming memory
might be worthless if a helpful program like Ram Doubler
is zeroing it to make it more compressible! Some values,
like your ethernet address are arbitrary, but not random
(since a good adversary already has that along with your
SSN and your mother’s maiden name).

Distilling Randomness

Once you have a big bag of random observations, or a
stream of them that you can generate over time, what do
you do with them? You want to mix them together, and
get a value that is as random as all of them together; we
want some entropy-preserving additive function.

The simplest, and one of the more useful is the XOR. It’s
cheap, it’s fast. The drawback of using XOR is that if the
random samples are in some way correlated, the
correlation will actually remove randomness from the

XORed streams.

Cryptographic functions can distill entropy. For example,
you might take the first 8 bytes of sample, and repeatedly
DES encrypt it with further samples, you’d get something
that would have up to 56 bits of randomness, to the degree
with which DES is a randomizer (differential
cryptanalysis studies show that DES is non-random to a
degree of approximately 10-8 bit per operation).
Unfortunately, this technique is quite slow.

Checksums are also excellent ways to distill entropy, so
long as you pick a good one. A checksum designed for
error recovery (examples are any CRC) is a poor function
to use. CRCs in particular are designed for the exact
opposite of what we want. We want differences in a data
stream to compound on each other, while a CRC is
specifically designed to flag differences and allow some
of them to be recovered.

If checksums are the right idea but the wrong function,
then what is the right function?

A class of functions called “message digests,”
“cryptographic checksums,” etc. have a number of useful
properties. They are designed for producing digital
signatures, integrity checks, and so on, and to do so in the
face of an adversary who wants to forge one of these.
Digesters are designed in Ron Rivest’s words to be secure
in that, “It is computationally infeasible to find two
messages that hashed to the same value. No attack is more
efficient than brute force.” Thus, if we hash a series of
random samples, it is not practical to learn what those
samples were. Note that this is the same thing as my
definition of the output’s being perfectly random, and thus
the hash preserves the entropy found in the samples. This
has the additional useful effect that many weakly entropic
samples can be combined to carry entropy equivalent to
the whole of the entropy of all the samples. Note that
while these hashes distill entropy, they cannot hold more
entropy than their size. They are bottles that you can
shake up entropy in, but a 128-bit hash cannot hold 129
bits worth of entropy.

These characteristics make them excellent functions for
our purposes. Common functions used today are MD2,
MD4, and MD5 (done by Ron Rivest), SHA (the US
government’s Secure Hash Algorithm, also known as
SHS, the Secure Hash Standard), GOST (the Russian
hasher), RIPE-MD, and RIPE-MD160 (which are
European standards for hashes).

Here is a short discussion of a few commonly used hash
functions:

MD4 is a 128-bit hash. It was broken in late 1995. By
broken, I mean that a message like, “I promise to pay
Mary $100” has been found to have the same hash as, “I
owe Mary $10,000, please pay it to her.” It is therefore
completely unusable for producing signatures, but
probably still has some use in distilling randomness. It has
the advantage that it is very fast. If you use it, be prepared
for tongue-clucking. I stopped using it several years ago.

MD5 is an improved version of MD4. It isn’t as fast as
MD4, but was designed to improve its weaknesses. MD5
is widely used for computing digital signatures. Recently,
some cryptanalysts have found weaknesses in MD5
similar to weaknesses found in MD4 before it was broken.
This makes many people nervous about it.

Since I started writing this article, Hans Dobbertin of the
German Information Securoty Agency (and one of the
inventors of RIPE-MD160) claims to have found a new
weakness in MD5's compress stage. Without going into
details, I note that you can find a copy of his paper at
<http://www.cs.ucsd.edu/users/bsy/dobbertin.ps> or write

to him at <mailto:dobbertin@skom.rhein.de>.

SHA is another improvement on MD4, developed at the
NIST. It has all the improvements of MD5, with some
others, including those that make it a larger hash. It is a
160-bit hash, and has no known weaknesses.

RIPE-MD is another variation of MD4, also designed to
improve it. It has also been broken recently, and a 160-bit
version called RIPE-MD160 has been produced.

MD2 is another of Rivest’s hash algorithms. It is also a
128-bit hash, and no weaknesses have been found in it. Its
drawbacks are that it is slower than most other hashes
(one-tenth the speed of MD4, one-seventh the speed of
MD5 and RIPE-MD, and one-third the speed of SHA) and
that when it was originally released, it was released with a
license saying it was freely usable in privacy enhanced
mail systems only.

There are also a number of hashes that are based upon
using cyphers to mix up the hash values, including the
Russian

GOST hash, a 256-bit hash. Unfortunately, they’re all
slow — GOST runs at less than half the speed of MD2.
Speed, is of course relative. GOST can hash about 20
megabytes per second on a Quadra 950, but if you want to
set up a system that hashes something every interrupt, this
is quite slow. Also, for US software developers, while it is
legal to export a cypher that you’re only using in a hash
function, many people don’t want to take the chance. This
is what is known to the lawyers as a “chilling effect.”

Some people in the crypto world are a little worried about
the current state of hashes, as the fast, exportable ones
(which are also the basis of the approved signature
standards of both the US and the EC) all come from a
“monoculture” of MD4 variants. The 128-bit strains have
been broken or are showing signs of strain. The 160-bit
versions seem good, but people worry.

I recommend using MD5 or SHA. MD5’s weaknesses are
disturbing, but we’re not producing signatures, we’re
distilling entropy. The generator I include with this paper
uses SHA, but mostly because it is a bigger bottle.

Following is a graph of the comparative speeds of the
hash functions I have discussed here. The data come from
Bruce Schneier and Wei Dei.

Using a distiller

An advantage of using a hash function as a distiller is that
hash functions give a different answer if you hash things
in a different order. Thus, if the adversary knew that you
hashed A and B, but did not know what order you hashed
them in, at least you get one bit of entropy, while you’d
get none if you simply XORed them.

Another is that there can be an advantage to hashing
things with little or no entropy. For example, suppose you
had a VBL task that hashed the mouse position on every
interrupt. Obviously, if the mouse hasn’t moved, there is
no additional entropy gained, but since H(A,A,B) !=
H(A,A,A,B) this second strategy has the advantage of
introducing some entropy based not only on the mouse
movement position, but mouse movement timing. I and
many other people recommend hashing a lot of things

because they might be useful particularly in a generator
that continuously updates its store of randomness.

I recommend thoughtfully deciding what are good things
to hash, constructing a process by which samples are
regularly added to the distiller, and then using the distiller
output as the seed to a secondary pseudo-random number
generator (PRNG).

Pseudo Random Generators

There are a variety of functions you can use as PRNGs
that are random to cryptographic strengths. A simple one
is to use chained hashes. For example, after hashing your
seed values, produce the final hash, take one byte of the
hash as a random value and then hash the whole
checksum back into the soup. If you are continually
adding entropy to the system, this is effectively a perfect,
truly random generator.

Another scheme is to use a cypher or a cypher-variant that
is seeded by a hash function.

Depending on your tastes, either scheme works. Repeated
hashing is less well-studied than a hash-seeded cypher
(breaking such a PRNG is equivalent to

breaking the cypher using a hash-derived session key),
but hashes are designed to be non-reversible. On the other
hand, people have had more luck breaking hashes than
cyphers recently. On the third hand, repeated hashing is
significantly faster than most cyphers. On the fourth hand,
if you picked a fast cypher with few problems known, you
could get the best of both worlds.

In fact, the generator I have selected for this paper
combines a SHA distiller with a “grinder” that is designed
along the same lines as high-performance stream cyphers.

The goals of this generator are that it be high-quality,
allow for continuous update, and be reasonably fast. To
achieve this, I've created it with two stages. The first stage
is a distiller. I chose SHA as my distilling function, but
you can easily replace this with some other function. My
intent is that some background process will continuously
update it with new observations. Also, there is a rating
scheme for the observations. Whenever you enter an
observation, you can rate the entropy value of the
observation in tenths of bits. I picked this so you can
easily add in many weakly entropic observations, and
even observations that are arbitrary, but not at all entropic
(like the ethernet address of the machine you're running
on).

Every time the first stage gets enough observations to fill
its entropic pool, it overflows into the second stage. The
second stage of the generator is a stream generator,
similar to an algorithm compatible with the stream cypher
RC4. This algorithm differs from RC4 in that its list of
bytes vary from 255 to 0 instead of 0 to 255, and by
starting its stream from the 0th element of the array, rather
than the first. Each time the first stage overflows into the
second stage, I use a process similar to the key
preparation for a stream cypher except that I generate 256
random bytes and discard them, so as to further mix up
the pool.

This has a number of useful features. Using a distiller
makes it easy and desirable to continuously update an
entropy pool with a variety of observations of varying
strength. By using unrelated functions in both stages, the
generator capitalizes on the strengths of each stage. The
second stage holds a vast amount of randomness when it
is iteratively updated; the byte array can be in a total of
256! * 256 * 256 states (this is roughly 2^1700 states —
note that this is somewhat smaller than the obvious guess,
that of 2^2048 total bits of entropy, but certainly an
excellent pool). It is also extremely non-linear, and
resistant to linear and differential analysis. Lastly, this
technique has advantage that new observations update the
whole pool, rather than restarting it, and that using the
random number generator interacts with the updates in a
way that actually adds to the total entropy of the system.

Could We Do Better?

On the one hand, it's certainly arrogant to think that we
couldn't. On the other hand, if I had a better generator
lying around, I would have featured it in this article.

If I wanted to do better, I might look at the Blum, Blum,
Shub (named for its inventors) generator. Glossing over
its features, it has a number of useful properties, not the
least of which are that it is provably as strong as factoring.
On the other hand, it requires generating two large prime
numbers, it is slow, and factoring is only conjectured to be
difficult. Also, because it is based upon knowing prime
numbers, it can't be the final step of a system like this one
that collects large amounts of entropy. I could imagine an
extension to this system that used a Blum, Blum, Shub
generator along with others.

Conclusions

Generating good random numbers is difficult, but not
overly so. If you use a

distilling function, make many observations of entropy,
and make a habit of guessing low about their valued
entropy, you can quickly acquire enough entropy to run a
good generator.

If you use a generator designed for cumulative update and
actually update it, then you can get further good results.

If you want to read more about cryptographic systems,
randomness, entropy, and pseudo-random generators, here
are some sources:

Internet RFC 1750, by Eastlake, Crocker, and Shiller.
Available from fine web sites everywhere. This includes
discussions of randomness, other distilling functions that I
didn’t discuss, and some other security considerations. It
also contains a good bibliography.

There is also a draft appendix to RFC1750 written by Carl
Ellison (of Cybercash) and Burt Kaliski (of RSADSI).
This draft contains a lot of good information about
physical ways to acquire randomness for those who like
building hardware. It also contains a good discussion of
places not to get randomness from. Carl also has a good
bit of source code for playing with and measuring random

numbers.
<http://www.clark.net/pub/cme/P1363/ranno.html>

Applied Cryptography, Second Edition, by Bruce
Schneier. Published by John Wiley and Sons, ISBN 0-
471-11709-9. If you only have one book on cryptography
and privacy, it should be this book. It is simple enough for
an intelligent layperson to read, contains enough meat to
let you see some of the innards of systems, and an
extensive bibliography.

Foundations of Cryptography (Fragments of a Book), by
Oded Goldreich. Oded Goldreich is a mathematician and
cryptographer the Weizmann Institute of Science. He is
presently visiting MIT. Several years ago, he wrote four
chapters of a planned ten-chapter book. He hasn’t made
progress on them in a while, but in late 1995, he put his
fragments on the Internet in both Postscript and HTML
forms. The work is mathematical, but contains proofs for
things I have merely asserted here concerning distillers,
hash functions, and PRNGs. If you want to see the
theorems behind the theory, this is the place. Available
from <http://theory.lcs.mit.edu/~oded/>.

Random.c:

//
// Two-Stage Cryptographic Random Number Generator
//
// Copyright © 1996, Jon Callas, Eldacur Technologies. All Rights Reserved.
//
// You have permission to use this code in any commercial or non-commercial
// programs provided you do the following:
//
// (1) Somewhere in your documentation, about box, etc. you state that you use Jon
// Callas's Two-Stage Random Number Generator and that it is copyright by him.
// (2) If you use it in a commercial product, you send me email at
// jon@worldbenders.com telling me that you're using it. I don't have any
// nefarious purposes, I'm not going to sell your name to some mailing list, I
// just want to know who is using it, so I can send updates to you and be able
// to brag about the bizillion people that use this.
// (3) If you find bugs, make substantive improvements, etc. that you make a best-
// faith effort to send them to me so I can incorporate it into the code.
//
// That's it. That's all you have to do. It's not much to ask. It's not as odious
// as a copyleft so why not do it?
//

#include "Random.h"

#ifdef COMPILE_COMMENTS

What this is:

This is a high-quality random number generator that can create large amounts of good random
numbers. When used properly, it can hold some 1700 bits of randomness, or entropy in it. This
is more than enough for any purpose you need to use it for. However, like any piece of
precision machinery, it must be used properly and handled with care.

Please take the care to read these instructions and follow them.

HOW TO USE IT
--- -- --- --

The base object type is a Randomizer. There are also objects here for the two stages, the
Distiller and the Grinder. They'll be explained below. Usually you don't ever have to use
them.

(1) Make a Randomizer. The statement:

Randomizer *r = new Randomizer();

is good enough.

(2) Find a source of random inputs. Real random inputs. Best things to use are user-driven
inputs like mouse positions, timings of keystrokes, and stuff like that. Each observation you
seed the Randomizer with should have a guess of how random it is, in decibits. Yeah,
decibits. Tenths of bits. If you think it's as good as a coin toss (like the clock time),
then it should be 10. If it's a really mediocre observation, use 1. If it's junk that you're
using because you like it (like your ethernet address, contents of files, etc.) throw it into
the mix, but
rate it 0. It all gets mixed up into the first stage, the Distiller. Hint: Always Guess Low,
Especially If You Are Writing Privacy Software! Once the Distiller is filled with enough
entropy, it will empty itself into the second stage. You can force the Distiller to empty by
using a negative number for your entropy guesss.

Add in seed values with:

r->AddSeed(sourcePtr, length, decibits);

For example, you'd add in a timing observation with:

r->AddSeed(&timer, 4, 10);

You can find out how much entropy is in the system with the call:

r->GetEntropy();

(3) You should make a habit of periodically adding stuff to the mix. Sample the mouse and put
X,Y position in. Time how long it takes you to create, write garbage into, and delete a 1MB
file. Have fun. If you are in the habit of using a variety of observations, and mixing them
in to the Randomizer, the accumulated entropy will help your system be random. And remember,
when you guess about your randomness, guess low, especially in the things you gather in the
background!

(4) Get random values with these functions:

r->Byte(); r->Word(); r->Long();

These return a random 8, 16, and 32 bit quantity respectively. The function:

r->String(char *position, long size);

will fill the memory 'size' long pointed to by 'position' with random bytes.

(5) Saving State:

If you need to save the state of the Randomizer, you can call:

r->GetState(RandomState *state);
r->SetState(RandomState *state);

to save and restore the state. You should consider the state of the randomizer to be
sensitive data! Treat it with the same respect you would treat password files, private keys,
and other sensitive data. Don't let an adversary break your privacy system by scamming your
random numbers!

HOW IT WORKS
--- -- -----

Stage 1 is the Distiller. It is a cryptographic checksum, specifically the Secure Hash
Algorithm. The implementation of SHS I use here was written by Paul Kocher, given to me by
Paul, and used with his kind permission.

A cryptographic checksum like this can be used to accumulate entropy. There is a problem when
you toss together things you think are random. The problem is that they probably aren't as
random as you think they are, and they probably aren't random in the way you think they are.
The wonderful thing about a checksum like this is that it can distill all the entropy in your
samples. It doesn't increase entropy, but it holds it up to its maximum (in the case of SHS,
160 bits). It can even be used in things that are weakly random.

An example of a weakly random source follows: Suppose you were sampling white noise from a
microphone in the lab you put your HoozieServer 2000 in. Let's also suppose that while it
just sounds like hiss to you, if we do fourier analysis on the samples we find that it's all
just a bunch of harmonics except for some small bit of noise that makes your sample be X mod
Y one time in four, and A mod B the other three times in four. Depressing, huh? It's not
hopeless, though. It does suck that you thought you were getting 16 bits of white noise on
each sample of the microphone, but there is still some value here. There's actually a half-
bit of randomness in any sample you make. Yeah, fractional bits sound weird, but they

really represent the flip of an off-kilter coin. You can still use them, so long as you don't
overestimate their value.

This is why I tell you to make many samples, and always guess low. Murphy *is* out to get
you.

Once you have accumulated enough entropy in the Distiller, we move it to the second stage of
the generator. I trust your guesses, when you tell me there's enough, I go for it. That's why
I'm being such a nag.

The second stage of the random number generator is a non-linear, arithmetic streamer. Its
guts are mathematically similar to some of the non-linear streams used in some high-
performance stream cyphers, but adapted to the needs of a random number generator, as opposed
to a stream cypher.

The combination of the two of them give you a way to hold up to 2048 bits of entropy and use
it to generate crypto-quality random numbers. If you use it properly, it will serve you well.
If you misuse it, don't come complaining to me.

If you need to know more about random numbers, what makes a good random number, why the
rand() function isn't good enough, or why things you think are random aren't, look at some of
the following sources:

Internet RFC 1750, available on a web site near you.
Bruce Schneier's "Applied Cryptography", available in fine bookstores everywhere.

#endif

//
// The Distiller object, the first stage generator
//
Distiller::Distiller()
{

Init(); // Initialize the object
}

void Distiller::Init()
{

// The only reason this routine exists, as opposed to
// keeping it in the constructor is that I thought it might be
// useful to be able to re-init an existing distiller.

SetEntropy(0);
shsInit(&shs);

}

int Distiller::AddData(void *start, long length, int decibits)
{

totalEntropy += decibits; // Update the guess
shsUpdate(&shs, (unsigned char *) start, length);

// Hash in the observation

return totalEntropy;
}

void Distiller::GetHash(unsigned char hash[HASHLEN])
{

SHS_CTX context = shs; // Make a
copy of the hash state

shsFinal(&context, hash); // Finalize the copied hash.
}

//
// This is the Grinder object, the second stage of the generator

//

Grinder::Grinder()
{

numberPlace = 0;
newPlace = 0;
InitNums();

}

Grinder::Grinder(void *theStuff, long stuffLen)
{

// We don't actually ever use this constructor, but here it is, in case
// you want to make a Grinder and give it some stuff.

numberPlace = 0;
newPlace = 0;
InitNums();
AddStuff(theStuff, stuffLen);

}

void Grinder::InitNums()
{

for (int i = 0; i < 256; i++) // put the numbers 255 to 0 into the array
numbers[i] = ~i;

}

void Grinder::AddStuff(void *theStuff, long stuffLen)
{

int i;
int j = 0;
int stuffPlace = 0;

for (i = 0; i < 256; i++)
{

j = (numbers[i] + ((unsigned char *) theStuff)[stuffPlace] + j);
j &= 0xff;

unsigned char t = numbers[i]; // Swap the
appropriate number

numbers[i] = numbers[j];
numbers[j] = t;

stuffPlace = (stuffPlace + 1) % stuffLen;
}

for (i = 0; i < 256; i++) // Turn the crank through a complete
Turn(); // revolution to thoroughly mix up the

// numbers. Studies show that this lessens
// the effect of weakly random stuff.

}

unsigned char Grinder::Turn()
{

// The actual work is done here for the second stage. This is what
// pops off random bytes. We spin this when we add more stuff to
// stir it up.

register unsigned char t;

// We're going to swap two cells of stuff and numbers. We walk around the
// array, picking the next spot. The place we're going to swap it with
// is selected with the statements below:

newPlace = newPlace + numbers[numberPlace];

newPlace &= 0xff; // mod 256

t = numbers[numberPlace]; // Swap number cells
numbers[numberPlace] = numbers[newPlace];
numbers[newPlace] = t;

t += numbers[numberPlace]; // Add in the other cell
t &= 0xff;

numberPlace = (numberPlace + 1) & 0xff; // Find the next cell to play with

return numbers[t];
}

void Grinder::GetRandom(void *thePlace, long length)
{

unsigned char *x = (unsigned char *) thePlace;

for (int i = 0; i < length; i++) // Just step out N bytes
*x++ = Turn();

}

unsigned char Randomizer::Byte()
{

return Turn();
}

unsigned short Randomizer::Word()
{

return (Turn() << 8) | Turn();
}

unsigned long Randomizer::Long()
{

return (Turn() << 24) |
(Turn() << 16) |
(Turn() << 8) |
Turn();

}

void Randomizer::AddSeed(void *seed, int seedLen, int entropyGuessInDecibits)
{

if (entropyGuessInDecibits < 0)
entropyGuessInDecibits = TOTALENTROPY;

AddData(seed, seedLen, entropyGuessInDecibits);

if (GetEntropy() > TOTALENTROPY)
{

unsigned char hash[HASHLEN];

GetHash(hash);
AddStuff(hash, HASHLEN);

SetEntropy(GetEntropy() - TOTALENTROPY);
}

}

Randomizer::Randomizer()
{

busy = 0;
}

void Randomizer::GetState(RandomState *state)
{

state->distillerEntropy = GetEntropy();
state->numberPlace = numberPlace;
state->newPlace = newPlace;
state->still = shs;

for (int i = 0; i < 256; i++)
state->numbers[i] = numbers[i];

}

void Randomizer::SetState(RandomState *state)
{

SetEntropy(state->distillerEntropy);
numberPlace = state->numberPlace;
newPlace = state->newPlace;
shs = state->still;

for (int i = 0; i < 256; i++)
numbers[i] = state->numbers[i];

}

Random.h

#ifndef RANDOM_H
#define RANDOM_H 1
//
/ Copyright © 1996, Jon Callas, Eldacur Technologies. All Rights Reserved.
//
// You have permission to use this code in any commercial or non-commercial
// programs provided you do the following:
//
// (1) Somewhere in your documentation, about box, etc. you state that you use Jon
// Callas's Two-Stage Random Number Generator and that it is copyright by him.
// (2) If you use it in a commercial product, you send me email at
// jon@worldbenders.com telling me that you're using it. I don't have any
// nefarious purposes, I'm not going to sell your name to some mailing list, I
// just want to know who is using it, so I can send updates to you and be able
// to brag about the bizillion people that use this.
// (3) If you find bugs, make substantive improvements, etc. that you make a best-
// faith effort to send them to me so I can incorporate it into the code.
//
// That's it. That's all you have to do. It's not much to ask. It's not as odious
// as a copyleft so why not do it?
//

#include "shs.h"

const int HASHLEN = 20;
const int TOTALENTROPY = (HASHLEN * 8 * 10);

typedef struct
{

long distillerEntropy;
long numberPlace;
long newPlace;
long beenFullySeeded;
SHS_CTX still;
unsigned char numbers[256];

} RandomState;

class Distiller
{
protected:

SHS_CTX shs;
long totalEntropy;

public:
Distiller();

int AddData(void *start, long length, int decibits);
void GetHash(unsigned char hash[HASHLEN]);
void Init();
void SetEntropy(long decibits) { totalEntropy = decibits; };
int GetEntropy(void) { return totalEntropy; };

};

class Grinder
{
protected:

unsigned char numbers[256];
long numberPlace;
long newPlace;

void InitNums();

public:
Grinder();
Grinder(void *theStuff, long stuffLen);

unsigned char Turn();
void AddStuff(void *theStuff, long stuffLen);

void GetRandom(void *thePlace, long length);
};

class Randomizer : public Distiller, public Grinder
{
protected:

long busy; // Not presently used -- for future expansion
void Busy() { busy = 1; };
void NotBusy() { busy = 0; };

public:
Randomizer();
Randomizer(void *seed, int seedLen);

void AddSeed(void *seed, int seedLen, int entropyGuessInDecibits);
unsigned char Byte();
unsigned short Word();
unsigned long Long();
void String(void *start, long byteLen) { GetRandom(start, byteLen); };
long isBusy() { return busy; };
void GetState(RandomState *state);
void SetState(RandomState *state);

};

#endif

