
1 An Introduction to Image Processing and the Fourier Transform 1

Loss-Less Compression:

It depends upon what you know

J. Christian Russ, ADE Optical Systems, Inc.

Abstract:

Loss-less compression is exactly what it sounds like. Data is compressed and later restored to its original form – modem transmission, disk and tape
storage, and RAM compression all depend upon data being restored EXACTLY as it was before. But some forms of compression are better than others.
In the last twenty years the field of data compression has changed significantly both because of better algorithms and faster computers. This paper
surveys the current state of compression and examines some of the pitfalls.

RLE – Run Length Encoding

The first kind of compression that we all learn about is RLE or Run
Length Encoding. It is performed by replacing strings of values that
are identical (like a sequence of 0’s) with two numbers – the value and
the number of times the value appears.

For binary images, this is simplified — now there is no need to indicate
whether the value is a 1 or a 0, rather the number of 1’s is followed by
the number of 0’s, etc, until the end of the line (typically a 0, 0
combination). For some kinds of images (FAX) this works very well.

Frequency of English letters

In many cases, RLE is not good enough, especially when looking at the
English language. There just aren’t that many words that have
sequences of the same letter repeating enough times to be worthwhile.
Instead, we know some things about the frequency of the letters. (For
an example of this, watch Wheel of Fortune – all of the players know
the relative frequency of the letters and guess the most frequent letters
first.)

As you would guess, the letter E is the most frequent in the alphabet,
and the letters Q and Z are the least frequent. Because of this, if there
were a way to use fewer bits to represent the E and more bits to
represent the Q and Z, it would be worthwhile. More on this later with
Huffman coding.

Infinite number of monkeys

It has been proposed that with an infinite number of monkeys,
typewriters, and bananas you could eventually reproduce all of the
great works of man. Part of the reason this takes so long is that a
monkey doesn’t know to hit E’s more often than Z’s. The monkey that
has an equal probability for all of the letters is an Order Zero Monkey.
He’s not very bright.

If we had a slightly smarter breed of monkey that typed E’s more
frequently than the Z’s it would take less time to reproduce Hamlet and
the rest. This is an Order One Monkey.

Let us have a still smarter monkey – one that knew after a Q, most of
the time the right letter to type is a U. This monkey knows the
probability of a second letter after a first and is an Order Two Monkey.

As the monkeys come from higher orders (Three, Four, etc.), the time it
takes for the great plays to be reproduced gets smaller, but the storage
requirements for the tables gets bigger (26^2, 26^3, …, 26^n).

This process can be simulated by building probability tables of the
letters of the alphabet from some source material and then using a
random number generator to make letters (a Random Monkey). With
an order one probability table the text is pretty poor. It is rare to get
whole words that are meaningful and nearly impossible to get a whole
sentence. (Our monkey needs 26 letters, a space, and some
punctuation.)

As the order of the probability table increases the quality of the text that
is produced by our Random Monkey improves markedly. By the time
the order gets above four, the Random Monkey is reproducing entire
strings of the original text, very much in the original style. If the
original source material was Shakespeare then the text would look like
very familiar indeed.

Loss-Less Compression 1

2 An Introduction to Image Processing and the Fourier Transform 2

Thus, we have found a way to quantify knowledge of the English
language in the form of a probability table. This knowledge can be
used for compression.

Some Random Monkey

Order 0: Equal Probability for all of the letters

Order 1: Knows the probability of the letter ‘E’

Order 2: Knows the probability of the letter ‘U’ after the
letter ‘Q’

Order 3: Knows the probability of the letter ‘N’ after the
letters ‘I’ and ‘O’.

Huffman coding - 1st order probabilities

Huffman coding (1952 paper “A Method for the Construction of
Minimum Redundancy Codes”) creates variable-length codes based
upon probabilities. These codes have an integral number of bits. For
instance, if the letter ‘E’ occurred 95% of the time, it could be
represented with just one bit ‘1’. Less frequent letters would take more
bits, and of course the least frequent letters take the most number of
bits – potentially many more than eight bits. The bit stream is decoded
with a binary tree, and the algorithm is as follows:

1. Each of the letters is laid out as a leaf of a binary tree (and is
added to a list of free nodes).

2. The two free nodes (letters or parent) with the lowest
probabilities are located.

3. A parent node for these free nodes is created with a weight
that is the sum of the two nodes.

4. The parent is then added to the list of free nodes, and the two
children are removed from the list.

5. One of the children is assigned a 1. The other is assigned a 0.

6. Repeat this sequence from #2 until there is only one free node
left (the root of the tree).

Therefore, the letters A thru G with the frequencies:

A B C D E F G
15 7 6 6 5 3 1

Would yield a tree that looks like this:

A
15
00

C
6

010

G
1

1111

D
6

011

B
7
10

E
5

110

F
3

1110

27

12

4

9

16

43

In this example, the ‘A’ is fairly frequent and only takes two bits to
represent, but the ‘G’ is less frequent and takes four bits to represent.
Since there are only seven letters, you could use three bits to represent
everything.

There are two ways to build up statistics on a selection of text or other
data. The first is to have a common probability table built up from
every bit of data around that could be accessable and the second is to
only look at the selection of data that is to be sent.

In the former case (static table) it is possible for the probability table to
be located with both the compressor and the decompressor and
therefore it need not be sent with each data set.

In the second case (dynamic table) the probability table needs to be sent
with the data set and as the order of this table increases, the size
increases exponentially.

Huffman coding is essentially a variable-length cypher, and is the best
of such methods that produce integral-length results. The disadvantage,
is that in this case, the best compression is 3:2 even if there are long
repeating strings.

In various spy stories there is a reference to cyphers and
One Use Pads. A one use pad is a Huffman tree where the
leaves of the tree are long messages. The goal is to only
use the tree once so that nobody can figure out what you
said.

Loss-Less Compression 2

3 An Introduction to Image Processing and the Fourier Transform 3

Arithmetic Coding, fractional bits

One of the problems with Huffman coding is that the smallest
compression possible is to reduce a character to one bit. Thus, the
greatest possible compression ratio (in the case of text with 6 bits) is
6:1. Or in the case of ASCII it is 8:1, if there is a really frequent letter
(say an E).

What if it were possible to use fractional bits to compress? Well, it is
possible. The method is called arithmetic coding.

If there was a letter that had a probability of 90%, the optimal size
would be 0.15 bits – much smaller than the one bit that Huffman would
assign to it.

The method is to assign a position between 0 and 1 along a
probabilility line for each letter. The order is unimportant. The same
sequence from before would yield:

A B C D E F G

.349 .512 .651 .791 .907 .977 1.0

So, in this case, the letter A is represented by the range 0 to 0.349, the
letter B is represented by the range 0.350 to 0.512, and the letter G is
represented by the range 0.978 to 1.0.

The general idea is that each long word in the compressed sequence is
used as a shift register where the number corresponding to the letter is
added and then the entire number is multiplied by the range that letter
occupied. Decompression is similar to the Huffman method.

Adaptive Compression – Huffman

But everything doesn’t stop here. It is usually impossible to get
statistics on the entire stream before the data is sent, or the statistics
may change in mid-stream, so the statistics for one part of the data is
different than for the next part.

In this case, an adaptive method would be helpful – how do we change
the probability tree as we go?

It would be possible to reserve one of the infrequent codes to
correspond to a new tree being transmitted so that future data uses the
new tree. But in most cases, only a little of the tree would change.
Therefore you would just send the probabilities of the letters that
changed position in the binary tree.

This has the advantage of being better than Huffman since the
probabilities can be changed. The disadvantage is that some opcodes
must be retained to send the tree, and the tree must be re-sent when the
statistics change.

Dictionary Based Compression

There is another way. Longer sequences than just one letter can be

turned into entries in the Huffman tree. Then the bit patterns of the
entries can be sent, or more simply, the address of the entries can be
sent. These are tokens within a dictionary. Words that are not known
are composed of letters using the old Huffman methods, but the words
that are known are easily compressed and sent.

This method is strongly related to a type of encryption that was used in
World War I. Cypher books with five-letter combinations were
produced and sent out one to a ship. The combinations translated to
various words so that messages could be sent. If some kind of
frequency ordering could be done with these combinations (or tokens)
compression could be achieved.

(Unfortunately, if you use the cypher too many times, and the enemy
knows what the message was about, the cypher can be broken.)

The relationship between compression and encryption –
“If they don’t know how the data is compressed it is
effectly encrypted.”

Building a dictionary can be a bit of a problem, but computers are fast
so there must be some way of doing it.

Static Dictionary

If the dictionary is static – computed way in advance – there is no need
to transmit it along with the message. This can markedly improve
compression. However, if the word you’re trying to send is not in the
dictionary, or the probabilities of the words in the table do not match
those in the dataset being sent, then it is very far from optimal.

In general, a static dictionary is good for small datasets, where there is
not enough data for good

Loss-Less Compression 3

4 An Introduction to Image Processing and the Fourier Transform 4

statistics, but some assumptions can be made – whether the data is Text,
Code, Pictures, etc.

Adaptive Dictionary

Adaptive dictionaries are constantly changing as the stream comes
through. They must be computed on the fly (implying a moderate
amount of searching) and must be sent along with the message stream.

But, if the statistics of the dataset are not known, it is vastly more
efficient than a static dictionary. The other problem is how to make
new entries in the dictionary – some entries may have to get disposed
of in order to make space, so the additions to the dictionary get sent and
it is maintained by both the compressor and decompressor.

Enter Ziv, Lempil, and Welch

In 1977 Jacob Ziv and Abraham Lempel published an article in IEEE
Transactions on Information Theory. Its successor was published in
1978. These two papers “A Universal Algorithm for Sequential Data
Compression” and “Compression of Individual Sequences via Variable-
Rate Coding” are the core of the LZ77 and LZ78 algorithms. They are
two very different techniques, but have dominated the industry since
their introduction.

LZ77 uses a “sliding window.” The dictionary is a set of fixed length
phrases within the window. The window size is typically between 2K
and 16K with phrase lengths typically up to 16 or 64 bytes.

LZ78 is completely different in how the dictionary is built up – it builds
up phrases one symbol at a time when matches occur.

In both cases, as new elements get added to the dictionary, they are
added to the data stream, so on the decoding side, the dictionary is also
rebuilt.

In 1984, Terry Welch of Sperry Research Center (now owned by
Unisys) published an implementation of the LZ78 algorithm. This
algorithm is generally referred to LZW.

One of the big problems with compressed data is that a
flipped bit can have highly disasterous effects. If the
flipped bit occurs in a Huffman-encoded file, then the rest
of the file can be damaged. In the dictionary methods, a
flipped bit in the dictionary can cause very unpredictable
results, including crashing the host computer if the code is
not protected.

Because of this, there is a need to add a CRC (Cyclical
Redundancy Coding) method to catch errors within the
data. Repair is usually impossible unless a lot of CRC
data is used, often undoing any advantage gained by
compression.

Common implementations:

ARC (LZ78)

PKZIP (LZ77)

MNP-5 (Microcom – dynamic Huffman)

V.42bis (Dictionary scheme related to LZW)

QIC-122 (Stac’s LZ77-based method)

GIF (LZW variant)

TimesTwo Driver Level Compression

TimesTwo was a SCSI driver that took every block of data that was
written by the operating system, compressed it, and wrote it in
whatever available empty spaces there were on the disk. (It used the
Stac QIC-122 engine, although it could use any engine.) Underneath
was a hash table that kept track of what portion of the disk was actually
used, including starting addresses and lengths of the blocks that were
there. In addition, especially with very small files, TimesTwo was very
good at allocating just enough space for the data being written, rather
than put a small file into a large allocation block, it could be as small as
a 512-byte physical block.

Unfortunately, on the driver level it is very difficult to tell what portion
of the disk is in use and what is not – merely that certain physical
blocks are written together (and usually read together). Random access
structures behaved very badly because compression works well on
medium sized and large sized pieces of

Loss-Less Compression 4

5 An Introduction to Image Processing and the Fourier Transform 5

data, not small things like allocation blocks.
In addition, if a record within a file was changed, such as a resource file
or a database, performance was considerably degraded. Fragmentation
was another pitfall. It was also impossible to access the disk without
the driver, since no other drivers knew about the compression on the
disk., including disk recovery packages. A big problem, though, was
that if you filled up the compressed volume, it was impossible to
decompress it since the data was bigger than your disk – disk
compression was a one way street.

Another sticky problem, that was nearly as big, was how to tell how
much space is left on the disk? Let’s say that there is 1MB of available
physical blocks on the volume. Do we tell the user that there is 2MB
free? What if he writes a file that is 1.9MB and it doesn’t fit? We
finally settled on a compromise – if there was 1MB left, we’d report
1:1 how much space was left, but if there was more than 1MB we’d
report the doubled amount (with a fudge factor for a smooth transition).
Also, there was a wild scavenger VBL task that searched through the
VIB looking for allocation blocks that had just been deleted and could
be released from the underlying hash table.

But, when writing something that was only going to be read and not
modified, it behaved marvelously. The ideal use for something like
TimesTwo would be in the mastering of CD’s.

In the end, it was a race of two competing problems: 1) a bug was
causing the hash table to keep getting corrupted, so files would just
disappear (a major customer service nightmare), and 2) ultimately hard
drive prices fell through the floor – why use compression and take the
risk of trashing your disk performance (and in some cases your data)
when a 1GB drive was under $1000 (and now under $200).

Other ideas included compressing floppies, but when a floppy costs
$0.40 why try to compress the data on it?

Patents

Unisys (Sperry) has a patent on LZW. V.42bis is based upon LZW.
Modem manufacturers may license it for a one time $25,000 fee.
Having an industry standard based upon a patented algorithm is
generally a bad idea, though.

Microsoft and Stac fought a major court battle over the compression in
MSDOS 6.0. Stac is one of the few companies that has achieved a
victory in dealing with Microsoft. Pyrrhic though it may be.

RAM Doubler

RAMDoubler gives your computer another method of having virtual
memory. Essentially it provides virtual memory to compressed
memory, rather than going to disk as would be the classic method. The
compression in RAMDoubler depends upon three principles:

• A lot of memory isn’t in use all at once – even within an
application. Whenever a program does a _DisposeHandle or

_DisposePtr that memory can be filled with 0’s and
compressed extremely well. (Unfortunately, Photoshop is a
really bad counter example – it allocates all of the memory
from its partition, fills it with stuff, and keeps it that way.)

• As long as the swapping that goes on (locate a block to swap
out, compress it, swap in the target block and decompress) is
faster than hard disk access it is better than classic virtual
memory.

• If there is no space to swap out to, the hard disk is a good last
resort.

As we saw above with TimesTwo, it is easier to compress moderate-
sized pieces of data than small pieces. The block-size can be chosen
carefully so that good compression statistics can be maintained.

Also, the swapping algorithm is not LRU (Least Recently Used), rather
it should be a combination of LRU and MC (Most Compressible). If it
doesn’t compress well, it shouldn’t be swapped out. There are some
obvious problems with variable sized storage of the compressed pieces.

The future for compression

The next steps for compression go beyond adaptive dictionaries:

1) Combination Dictionaries: LZ77 & LZ78 methods build up a
dictionary as they go along and transmit it, but there were advantages
with the static dictionaries, too. Why not combine the two methods? If
TimesTwo had a static dictionary as a starting point – based upon the
four most common data types on the Mac (Code, Text, Resources, and
Picts) – and then only transmitted the additions to the dictionary it
would have operated much better on small blocks of data, which they
ALL were. Also compression factors better than the typical 1.7:1
would have been achieved. (2.0:1 was claimed

Loss-Less Compression 5

6 An Introduction to Image Processing and the Fourier Transform 6

and achieved by having a fragment manager under the driver, the extra

2) We’ve also ignored a different type of pattern in a dictionary where

Conclusion

Compression and encryption seem to be related in many ways.

Encryption attempts to equalize and distribute the entropy in a message

You can encrypt data that has been compressed quite successfully.

You cannot compress data that has been encrypted. (Unless it has been

One additional trick with encryption is to add superfluous random data

that will confuse decryption. This, of course, defeats the purpose of
compression.

The goal of compression is to find as much redundant knowledge in a
message and remove it in such a way as it can be put back later, either
for storage or transmission. New methods tend to be discovered when
the economics of compression are great – storage costs or transmission
costs are high.

Loss-less compression knows fewer things about the content of the
messages (than lossy) and assumes that there is some self-similar
property that it can exploit. As increasing amounts of data are sent over
low-speed telephone lines (28.8k Baud) with the World-Wide-Web, the
demand for better compression will increase.

Loss-Less Compression 6

