
Executor Internals 1

Executor Internals:
How to Efficiently Run Mac Programs on PCs

Mathew J. Hostetter <mat@ardi.com>
Clifford T. Matthews <ctm@ardi.com>

After MacHack '96, this paper will be available from http://www.ardi.com

Executor is a commercial Macintosh emulator that uses no software from Apple, but is still able to run much 680x0 based Macintosh software
faster on Pentiums than the same software runs on 680x0 based Macs. This paper contains some implementation details, including descriptions
of Executor's synthetic CPU, graphics subsystem and debugging environment. Portability issues, current limitations and future plans are also
presented.
Executor Overview
What Executor is
Executor is a commercial emulator that allows PCs to run many
Macintosh applications. Executor does not require Macintosh
ROMs or a Macintosh System file and contains no Appple code
itself. Executor was written entiredly by engineers without
Macintosh backgrounds who have not disassembled any of Apple's
ROMs or System file.
Limitations
Because Executor was written strictly from publicly available
documentation (Inside Macintosh, Tech. Notes, etc.), programs
which make use of undocumented features of MacOS may fail
under Executor. Furthermore, there are some portions of MacOS
that we haven't implemented yet. Executor is sufficiently large that
there are probably bugs in some of our code as well. We realize
these are major limitations, but this paper is primarily concerned
with implementation details that are interesting to our fellow
programmers as opposed to feature sets and limitations which are
of more concern to end users and our marketing department.
Design Goals
Our goal is for Executor to be accurate, fast and portable. Beyond
that, completeness is a secondary issue.

Accuracy means that each subsystem that we implement should
behave exactly according to the functional specs for the subsystem
that we've derived from a combination of reading documentation,
writing test cases and running programs under Executor.

Fast is harder to qualify. As programmers we like to use advanced
techniques that will result in programs running under Executor as
quickly as possible. Unfortunately, we have a limited number of
engineer hours in a week and most engineering time is spent
implementing new subsystems or finding and fixing subtle
incompatibilities. We're proud of the speed that we've obtained so
far, but we know that we can do better in the future.

Portability is the ability to support multiple platforms from the
same source base. A platform is a combination of CPU, operating
system and graphics device or windowing system. Executor
currently supports Intel 80[3456]86 and compatible CPUs,
Motorola m680[34]0 CPUs, the operating systems DOS, Linux and
NEXTSTEP and can interact with VGA, SVGA, Display
PostScript and X-Windows. To get the best performance on some

architectures we do use architecture specific code, but we also
write portable versions to be used where the platform specific
versions can't be. Although not supported as a product, Executor
was ported to DEC's Alpha, but since ARDI has no Alpha and DEC
lost interest, the Alpha port is no longer current. Although not
recently, ROMlib, ARDI's rewrite of the MacOS OS and Toolbox
routines, has been ported to a wide variety of platforms, including
MIPS , m88k , Clipper, IBM RT, SPARC and even VAX based
systems.

Those three design goals have led us in the direction of dynamic
code generation for both the 680x0 emulation and for our blitter.
In both cases we use high level descriptions of what we want
accomplished and then use special purpose tools at compile time to
translate these high level

Executor Internals 2

descriptions into constructs that we can then use at run time.

High level descriptions are less error prone, allowing us to
document the semantics that we wish to see in our synthetic CPU
or blitter using a special purpose language that is directly suited to
the task at hand, rather than a general purpose language like C or
the traditional language of speed freaks -- assembler.

High level descriptions also lend themselves to portability. We
have our tools generate portable constructs for the general case
and, with a little more programming effort, faster architecture
specific constructs for the architectures that we consider most
important.

Since the conversion from high level description to useful
construct takes place at compile time, there is no need to worry
about the CPU cycles spent doing the mapping. This allows us to
design our code by thinking: "At runtime, what would be the
optimal instruction sequence to perform a specific task?" Once we
know the answer to that question we can ask: "How can we
represent at a high level, the task is being accomplished by that
optimal set of instructions?". Then, the final question is "Given
what we want to generate and how we want to represent it, what
does the compile time mapping look like?". The entire time we're
pondering those three questions, we're keeping accuracy,
portability and efficiency in mind.
Executor Subsystems
Synthetic CPU

Overview
Syn68k is the name of the synthetic CPU that Executor 2 uses.
Syn68k is both highly portable and fast. The portable core of
Syn68k, which works by dynamically compiling 680x0 code into
an efficient interpreted form, was designed to run on all major

CPU's. On supported architectures, Syn68k can also translate
680x0 code into native code that the host processor can run
directly.

Syngen
Syngen analyzes a lisp-like file describing the bit patterns and
semantics of the 680x0 instruction set and produces lookup tables
and C code for the runtime system to use. The code and tables
generated by syngen depend somewhat on the characteristics of the
host processor; for example, on a little endian machine it is
advantageous to byte swap some extracted 680x0 operands at
translation time instead of at runtime.

The 680x0 description file can describe multiple ways to emulate
any particular 680x0 opcode. The runtime system looks at what
CC bits are live after the instruction and chooses the fastest variant
it can legally use. In Figure 1, we have two CC variants of lsrw;
one computes no CC bits, and the other computes all of them.

The 680x0 description file can also specify which 680x0 operands
should be "expanded" to become implicitly known by the
corresponding synthetic opcode. For example, fully expanding out
"addl dx,dy" would result in 64 synthetic opcodes, one
for each combination of data register operands. This results in
smaller and faster synthetic opcodes at the expense of increasing
the total number of synthetic opcodes. To conserve space, we only
"expand out " common 680x0 opcodes. On host architectures
where we can compile to native code, we don't waste space by
"expanding out" common synthetic opcodes.

Interpreted Code
Our interpreted code consists of contiguous sequences of
"synthetic opcodes" and their operands. Syngen can generate
ANSI C, but when

(defopcode lsrw_ea
 (list 68000 amode_alterable_memory () (list "1110001011mmmmmm"))
 (list "-----" "-----" dont_expand

(assign $1.muw (>> $1.muw 1)))
 (list "CN0XZ" "-----" dont_expand

(list
 (assign ccx (assign ccc (& $1.muw 1)))

 (ASSIGN_NNZ_WORD (assign $1.muw (>> $1.muw 1))))))

Figure 1. Syn68k description of lsrw

Executor Internals 3

compiled with GCC it uses C language extensions that make
synthetic opcodes be pointers to the C code responsible for
interpreting that opcode. This "threaded interpreting" entirely
eliminates switch dispatch and loop overhead.

Native Code
For the 80x86 architecture, Syn68k supports an optional
architecture-specific native code extension that tries to generate
native code whenever possible. In those rare cases when it cannot,
it reverts to our interpreted code. Since Syn68k supports both
native and synthetic code, the runtime system automatically inserts
gateways between the two whenever there is a transition.

Three major problems make translating 680x0 code to 80x86 code
difficult:

• The 80x86 has only 8 registers, while the 680x0 has 16.

• The 80x86 is little endian, while the 680x0 is big endian.

• The 80x86 does not have general-purpose postincrement and
predecrement operators, which are used frequently in 680x0
code.

On the other hand, several factors make the job easier than it
would be for RISC machines:

• The 80x86 has all of the CISC addressing modes commonly
used in 680x0 code.

• The 80x86 has CC bits that map directly to their 680x0
counterparts (except for the 680x0's X bit).

• The 80x86 supports 8-, 16- and 32-bit operations, (although
it can only support 8 bit operations on four of its registers).

• The 80x86 and 680x0 have analogous conditional branch
instructions.

• The 80x86 allows unaligned memory accesses without

substantial overhead.

The toughest problem is the lack of registers. On 32-register RISC
architectures it's easy to allocate one RISC register for each 680x0
register, but on the 80x86 a different approach is needed. The
obvious solution is to perform full-blown inter-block register
allocation, but we fear that using traditional compiler techniques
would be unacceptably slow.

For now, we have adopted a simple constraint: between basic
blocks, all registers and live CC bits must reside in their canonical
home in memory. Within a block, anything goes. So what liberties
does Syn68k take within a block?

The 80x86 register set is treated as a cache for recently used 680x0
registers, and the 80x86 CC bits are used as a cache for the 680x0
CC bits. At any particular point within a block, each 680x0
register is either sitting in its memory home or is cached in an
80x86 register, and each live 680x0 CC bit is either cached in its
80x86 equivalent or stored in its memory home. Cached registers
may be in canonical form, may be byte swapped, may have only
their low two bytes swapped, or may be offset by a known constant
from their actual value.

Each 680x0 instruction can require that 680x0 registers be cached
in particular ways. For example, movel d0, mem requires d0 to
be cached in big endian byte order. The compilation engine
generates the minimal code needed to satisfy those constraints and
then calls a sequence of routines to generate the native code. As
each 680x0 instruction is processed, each 680x0 register's cache
status is updated. Dirty registers are canonicalized and spilled
back to memory at the end of each block (or when we run out of
80x86 registers and we need to make room).

We allow 680x0 registers to be cached with varying byte orders
and offsets so that we can perform the optimizations of lazy byte
swapping and lazy constant offsetting. If the 680x0 program loads
a register from memory and then ends up writing it out later, we
avoid unnecessary byte swaps by not canonicalizing the value
immediately. Lazy constant offsetting mitigates

Executor Internals 4
pea 0x1
pea 0x2
pea 0x3
pea 0x4
...

becomes this 80x86 code:

movl _a7,%edi
movl $0x01000000,-4(%edi) ; "push" big-endian constant
movl $0x02000000,-8(%edi)
movl $0x03000000,-12(%edi)
movl $0x04000000,-16(%edi)
... <more uses of a7 may follow, and they'll use %edi>
subl $16,%edi
movl $edi,_a7
...

Figure 2. Lazy Constant Offsetting
the overhead of postincrement and predecrement side effects.
Figure 2 is an example of lazy constant offsetting.

As mentioned above, we use the 80x86 condition code bits as a
cache for the real 680x0 CC bits. Although live cached CC bits are
occasionally spilled back to memory because some 80x86
instruction is about to clobber them, this trick almost always
works. Using 80x86 CC bits, we can frequently get away with
extremely concise code sequences; for example, a 680x0 compare
and conditional branch becomes an 80x86 compare and conditional
branch.

Self-modifying Code
Like most dynamically compiling emulators, Syn68k doesn't detect
self-modifying code; the overhead is too high. Fortunately, self-
modifying programs don't work on the real 68040 either. We rely

on the program making explicit system calls to flush the caches
whenever 680x0 code may have been modified or created. Some
programs (like HyperCard) flush the caches very often, which can
cause real performance headaches if code is continuously
recompiled. We have solved this problem by checksumming
680x0 blocks as they are compiled and only decompiling blocks
which fail their checksums. This optimization alone sped up some
HyperCard stacks by a factor of three or so.

Examples
Figure 3 contains two sample 680x0 code sequences from real
applications, and the 80x86 code that Syn68k generates for them.
We chose these code sequences specifically to showcase several of
the techniques we use, so you shouldn't use them as a substitute for
benchmarks. Not all 680x0 code translates as well as these
examples do, but these examples are far from exotic.

Executor Internals 5

Example 1 (Solarian):

680x0 code:

addqb #1,a4@(1)
movel #0,d0
moveb a4@,d0
swap d0
clrw d0
swap d0
asll #2,d0
lea a5@(-13462),a0
addal d0,a0
moveal a0@,a0
movel #0,d0
moveb a4@(1),d0
cmpw a0@,d0
bcs 0x3fffee2

80x86 code:

movl _a4,%edi ; addqb #1,a4@(1)
addb $0x1,0x1(%edi)
xorl %ebx,%ebx ; movel #0,d0
movb (%edi),%bl ; moveb a4@,d0
rorl $0x10,%ebx ; swap d0
xorw %bx,%bx ; clrw d0
rorl $0x10,%ebx ; swap d0
shll $0x2,%ebx ; asll #2,d0
movl _a5,%esi ; lea a5@(-13462),a0
leal 0xffffcb6a(%esi),%edx
addl %ebx,%edx ; addal d0,a0
movl (%edx),%edx ; moveal a0@,a0
xorl %ebx,%ebx ; movel #0,d0
movb 0x1(%edi),%bl ; moveb a4@(1),d0
bswap %edx ; cmpw a0@,d0
movw (%edx),%cx
rorw $0x8,%cx
cmpw %cx,%bx
movl %edx,_a0 ; <spill dirty 68k
movl %ebx,_d0 ; registers back to memory>
jb 0x6fae0c ; bcs 0x3fffee2
jmp 0x6faf0c ; <go to "fall through" code>

Executor Internals 6

Example 2 (PageMaker):

680x0 code:

movel #0,d2
moveb d0,d2
lslw #8,d0
orw d0,d2
movel d2,d0
swap d2
orl d2,d0
movel a0,d2
lsrb #1,d2
bcc 0x3fffed4

80x86 code:

xorl %ebx,%ebx ; movel #0,d2
movl _d0,%edx ; moveb d0,d2
movb %dl,%bl
shlw $0x8,%dx ; lslw #8,d0
orw %dx,%bx ; orw d0,d2
movl %ebx,%edx ; movel d2,d0
rorl $0x10,%ebx ; swap d2
orl %ebx,%edx ; orl d2,d0
movl _a0,%ecx ; movel a0,d2
movl %ecx,%ebx
shrb %bl ; lsrb #1,d2
movl %ebx,_d2 ; <spill dirty 68k
movl %edx,_d0 ; registers back to memory>
jae 0x3b734c ; bcc 0x3fffed4
jmp 0x43d48c ; <go to "fall through" 68k code>

Figure 3. 680x0 -> 80x86 examples
Graphics

SVGA Graphics
The DOS world is one of standards. Many standards. Standards
made by engineers who were even more short-sighted than the
folks who brought you ROM85, only to be replaced by
SysEnvirons which was then replaced by Gestalt. The first color
graphics adapter for the PC (CGA) was replaced with EGA, which
was then replaced by VGA, which eventually gave way to several
different Super Video Graphics Array (SVGA) cards.

SVGA cards have a couple of properties that make them less than
perfect targets for the output of Macintosh emulators. First, the
default is for SVGA's video memory to only be mapped into the
PC address space through a 64k window (or bank). If you want to
display 640x480x8 bits you need to write 64k of information to the
64k screen address range, then tell the video card that you want
that same address to represent a different 64k chunk of the screen,
then you write to that address range again, then you switch banks
again, and so forth.

The second major complication is that under DPMI, the address
space that contains the SVGA video memory is not in the same
address space that a 32-bit application uses. For those of you used

to programming in a flat address space, it might be hard to believe
that you need special machine language address space overriding
prefixes to access screen memory, but under DPMI 0.9 (which is
the version of DPMI that Microsoft supports; we wouldn't have to
do this under 1.0) "selector" overrides really are necessary.

Executor Internals 7

Blitter Overview
A Region is a data structure that describes a set of pixels. Regions
can be created by the application by calling various MacOS
toolbox routines. In addition the toolbox routines themselves
sometimes create Regions for their own purposes.

A blitter is a set of software or hardware which takes sets of bits,
representing pixels, and combines them with other sets of bits in a
variety of different ways. A Region blitter is a blitter that
processes pixels by Regions (rather than by rectangles or rectangle
lists).

A Simple Blitter
One way to write a simple Region blitter is to start with a
subroutine that parses the start/stop pairs of a Region scanline and
draws the corresponding pixels. This subroutine is then called
once for each row of pixels to be displayed.

Unfortunately, this approach is slow since each scanline gets re-
parsed every time it is drawn. The Region for a 300 pixel tall
rectangle consists of a single scanline with a repeat count of "300";
this "simple Region blitter" will parse that scanline 300 times!
That's a lot of redundant work.

There are many possible ways to get away with parsing each
scanline only once. One approach is to convert the start/stop pairs
into a bit mask where the bits in the mask correspond to the bits in
the target bitmap that are to be changed. The inner blitting loop
then becomes an exercise in bitwise arithmetic. In C, such a loop
might look something like this:

for (x = left; x < right; x++)
 dst[x] = (dst[x] & ~mask[x])

| (pattern_value & mask[x]);

That's not bad, but we can do better.

A Dynamically Recompiling Blitter
Using an explicit bit mask array is unnecessarily slow in the
common case of filling a rectangle. For a rectangular Region,
mask[x] is usually all one bits, making the bit munging a waste of
time. And even when the masks are never solid (e.g. when
drawing a thin vertical line), this technique is still unnecessarily
slow. As it turns out, even the cycles the CPU spends loading
mask bits from memory are unnecessary. Furthermore, even if we
were satisfied with the level of performance that C code like the
above provides, we couldn't use it on a stock SVGA system
because it wouldn't know how to access the SVGA portion of
memory.

Executor's blitter uses the techniques of partial evaluation and
dynamic code generation to eliminate redundant work and also
give us access to SVGA memory. On the 80x86 each scanline is
quickly translated into executable code, and that code gets
executed once each time the scanline needs to be drawn. On
non-80x86 platforms, each scanline is compiled into threaded code
which is executed by a machine-generated interpreter to draw the
scanlines.

Before describing how the dynamic compilation process works,
let's take a look at an example. Consider the case where a 401x300
rectangle is to be filled with white pixels (pixel value zero on the
Macintosh). This might happen, for example, when erasing a
window. Furthermore, let's assume that the target bitmap has four
bits per pixel, since that's somewhat tricker to handle than 8 bits
per pixel. Figure 4 shows the subroutine that Executor
dynamically generates to draw this rectangle on a Pentium.

loop: andl $0xff,0x50(%edi) ; clear leftmost 6 boundary pixels
addl $0x54,%edi ; set up pointer for loop
movl $0x31,%ecx ; set up loop counter
rep
stosl ; slam out 49 aligned longs
andl $0xffff0f00,0x0(%edi) ; clear 3 right boundary pixels
addl $0x28,%edi ; move to next row
decl %edx ; decrement # of rows left
jne loop ; continue looping if appropriate
ret ; we're done!

Figure 4. Dynamically generated blitting code

Executor Internals 8

This code, when called with the proper values in its input registers,
will draw the entire rectangle. Note how the inner loop is merely a
"rep ; stosl"...it doesn't get much more concise than that!
The astute reader will know that on certain 80x86 processors "rep ;
stosl" is not the fastest possible way to set a range of memory.
This is true, but because our code generation is dynamic, in the
future we can tailor the specific code sequence generated to the
processor on which Executor is currently running. The blitter
already does this when it needs to emit a byte swap; on the 80486
and up we use the "bswap" instruction, and on the 80386 (which
doesn't support "bswap") we use a sequence of rotates.

One thing you may notice in this example is that the bit masks
used to clear the boundary pixels look strange. They are actually
correct, since 80x86 processors are little endian.

Unlike some processors, such as the 68040, the 80x86 instruction
and data caches are always coherent. Consequently, no cache
flushes need to be performed before the dynamically created code
can be executed.

Figure 5 contains another example, this time drawn from a real
application. The program "Globe", by Paul Mercer, draws a
spinning globe

on the screen as fast as it can. Each "globe frame" is a 128x128
Pixmap. Here is the code that Executor generates and runs when
Globe uses CopyBits to transfer one frame to the screen at 8 bits
per pixel.

Again the inner loop is very tight, just a "rep ; movsl" this time.

Meta-Assembler

No matter how fast the generated code, if Executor spends too
much time generating that code then any speedup will be negated
by the increased time required for dynamic compilation.
Consequently, the dynamic compilation from Region to 80x86
code needs to be fast. We solved this problem with a "meta-
assembler" written in Perl.

Whereas an assembler tells a computer how to translate assembly
instructions into machine code, our meta-assembler tells the
computer how to generate tiny translators. These translators will
then be used to translate pixel manipulation requests into machine
code. Another way of looking at it is that the meta-assembler
generates code that generates code. This meta-assembly process is
done only once: when Executor is compiled.

The blitter operates on aligned longs in the destination bitmap. As
the compilation engine strides through the scanline's start/stop
pairs from left to right, it identifies which bits in each long are part
of the Region and determines which of several pixel manipulation
requests to issue to the tiny translators that were created by the
meta-assembler.

• Some but not all bits in the current long are in the Region.

• All bits in the current long are in the Region.

• All bits in this long and the next long are in the Region.

• All bits in this long and the next two longs are in the Region.

• All bits in this long and the next three longs are in the
Region.

loop: movl $0x20,%ecx ; set up loop counter for 32 longs
rep
movsl ; copy one row (128 bytes)
addl $0xffffff00,%esi ; advance to previous src row
addl $0xfffffd00,%edi ; advance to previous dst row
decl %edx ; decrement # of rows remaining
jne loop
ret

Figure 5. Blitting code from Globe

Executor Internals 9

• More than four contiguous longs are
completely in the Region, and the number of longs equals 0
mod 4.

• More than four contiguous longs are completely in the
Region, and the number of longs equals 1 mod 4.

• More than four contiguous longs are completely in the
Region, and the number of longs equals 2 mod 4.

• More than four contiguous longs are completely in the
Region, and the number of longs equals 3 mod 4.

The particular case encountered determines which function pointer
to load from a lookup table corresponding to the current drawing
mode. For example, the "patCopy" drawing mode has one table of
function pointers, "patXor" another. There are also some special
case tables for drawing patterns that are either all zero bits or all
one bits.

The main blitter doesn't care what drawing mode is being used,
since it does all mode-specific work through the supplied function
pointer table.

Each function pointer points to a function that generates 80x86
code for the appropriate case. For example, one function generates
code for a "patCopy" to three contiguous longs, one generates code
for "patXor" only to certain specified bits within one long, etc.

The blitter compilation engine marches through the Region
scanline from left to right, calling code generation functions as it
goes. The generated code is accrued into a 32-byte aligned buffer
on the stack. In this way, the blitter constructs a subroutine to draw
the Region.

The compilation engine isn't very complicated. The tricky part is
the numerous generation subroutines, which need to be fast since
they are called so often and need to be easy to write since there are
so many of them. For each drawing mode there's one for each case
the compilation engine cares about. For pattern drawing modes,
there are separate specialized subroutines for cases like patterns
that can be entirely expressed in one 32-bit value ("short/narrow")
patterns, patterns which can be expressed as one 32-bit value for
each row, but which vary per row ("tall/narrow"), as well as "wide"
variants of both. Beyond that, there are some versions specialized
for 80486 and higher processors (which have the "bswap"
instruction).

Generating fast and robust code generators is where the Perl meta-
assembler comes into play.

The meta-assembler takes as input an assembly language template,
and generates as output Pentium-scheduled assembly code that
outputs an 80x86 binary for the input template. This process only
takes place when Executor is compiled. Got it? This can be a little
confusing, so a few examples are in order.

Here is perhaps the simplest template:

 @meta copy_short_narrow_1
movl %eax,@param_offset@(%edi)

 @endmeta

This template describes what should be done when the blitter
wants to write one long to memory. The meta-assembler processes
that into this 80x86 assembly code which is to be called by the
blitter compilation engine:

.align 4,0x90
_xdblt_copy_short_narrow_1:

movw $0x8789,(%edi)
movl %eax,2(%edi)
addl $6,%edi
ret

The subroutine that the meta-assembler has produced above, when
executed, will generate the movl instruction (i.e. the movl
instruction in the template) followed by its argument. The meta-
assembler has deduced that "movl" in the example template is
80x86 opcode 0x8789.

Executor Internals 10

Let's take a look at a more complicated template. This template
handles the case where we want to bitwise OR a pattern to the
destination bitmap, and the number of longs to transfer equals zero
mod 4 (e.g. if the blitter wants to OR 36 longs to memory):

@meta or_short_narrow_many_mod_0
addl $@param_offset@,%edi

 movl $@param_l_cnt_div_4@,%ecx
1: orl %eax,(%edi)

orl %eax,4(%edi)
orl %eax,8(%edi)
orl %eax,12(%edi)
addl $16,%edi
decl %ecx
jnz 1b

@lit leal (%eax,%edx,4),%ecx
@lit addl %ecx,edi_offset
@endmeta

The meta-assembler compiles that to this:

.align 4,0x90
_xdblt_or_short_narrow_many_mod_0:

movw $0xC781,(%edi)
movl %eax,2(%edi)
movl $0x47090709,11(%edi)
movb $0xB9,6(%edi)
movl $0x8470904,15(%edi)
movl $0x754910C7,23(%edi)
movl $0x830C4709,19(%edi)
movb $0xEF,27(%edi)
movl %edx,%ecx
shrl $2,%ecx
movl %ecx,7(%edi)
addl $28,%edi
leal (%eax,%edx,4),%ecx
addl %ecx,edi_offset
ret

This mechanically generated subroutine generates the executable
80x86 binary for the "or_short_narrow_many_mod_0" template. It
gets called by the blitter compilation engine when it needs code to
OR a bunch of longs to memory.

The output of the meta-assembler isn't meant for human
consumption. As such, the output contains a hodge-podge of
magic numbers (0x47090709, 0xB9, 0x8470904, etc.).
These numbers are fixed machine code values corresponding to
opcodes, constant operands, and other values.

Even though this subroutine is longer than the previous example, it
still doesn't take very long to execute. Furthermore, it only gets
called when the blitter has determined that many longs are to be

ORed to memory, so the time taken actually blitting to memory
will typically dwarf the time taken to execute these 15 code
generation instructions.

The meta-assembler is a Perl script that works by running
numerous syntactically modified versions of the assembly template
through "gas", the GNU assembler, and examining the output bytes
to discover which bits are fixed opcode bits and which bits
correspond to operands. Once it has figured out what goes where,
it generates 80x86 assembly code which writes out the constant
bytes and computes and writes out the operand bytes. That code is
run through a simple Pentium instruction scheduler and the meta-
assembler is done. This entire process is, of course, done only
once, when Executor is compiled.

A Portable Dynamically Recompiling Blitter
Although the meta-assembler-based blitter works only on 80x86
processors, Executor itself can run on non-Intel processors. On
other CPUs (such as the 68040 used in the NeXTstation)
Executor's blitter works somewhat differently.

The basic idea is still the same: translate Region scanlines into an
efficient form once and then use that efficient form each time the
scanline gets drawn. This time, however, the "efficient form" is
processor independent, and the blitter is written entirely in C.

As is the case with the 80x86-specific blitter, the portable blitter
compilation engine examines scanline start/stop pairs and
identifies which of several cases is appropriate. One case is
"output three longs", another is "output only certain pixels within
the current long", and so on.

Like the 80x86-specific blitter, the particular case encountered
determines which entry in a lookup table will be used. But there
the similarity ends. The lookup tables contain pointers to C code
labels1 rather than to routines that generates 80x86 code on the fly.

1"What the heck is a pointer to a C code label?", you ask? gcc (the GNU C compiler) has a "pointer to label" extension to the C language
which makes the statement "&&my_label" evaluate to a
"void *" that points to the compiled code for "my_label:" within a C function. This, combined with gcc's "goto void *" extension,
allows C programs to execute goto statements whose destinations are not known at compile time.

Executor Internals 11

Each scanline gets translated into an array of opcodes for the
"blitter opcode interpreter" (which will be described below). Each
opcode is stored in one of these C structs:

struct
{
 /* Pointer to C code to handle
 this opcode. */
 const void *label;

 /* Offset into scanline */
 int32 offset;

 /* Extra operand with
 different uses. */
 int32 arg;
};

For example, consider the case where the blitter wants to write out
five contiguous longs from a "simple" pattern starting 64 bytes into
the current row. In this case, "label" would equal
"&©_short_narrow_many_5", "offset" would equal 64, and
"arg" would equal 5.

The Blitter Opcode Interpreter
The blitter opcode interpreter is machine generated C code created
by a Perl script when Executor is compiled. That Perl script takes
as input C code snippets that tell it how to handle particular
drawing modes, and produces as output C code for an interpreter.

Here is the template taken as input by the Perl script for the
"copy_short_narrow" case. This is the simple case where the
pixels for the pattern being displayed can be stored entirely within
one 32-bit long (for example, solid white or solid black).

begin_mode cpy_shrt_narrow max_unwrap
repeat @dst@ = v;
mask @dst@ = (@dst@ & ~arg)

| (v & arg);
end_mode

The "repeat" field tells the Perl script what C code to generate
for the simple case where all pixels in the destination long are to be
affected. The "mask" case tells it what to do when it must only
modify certain bits in the target long and must leave others alone.
Max_unwrap tells the Perl script to unroll the new blitting loop.

The generated interpreter takes as input an array of blitter opcode
structs, which it then proceeds to interpret once for each row to be
drawn.

Here is the section of the (machine-generated) interpreter that
handles the copy_short_narrow cases. Remember that each "blitter
opcode" is really just a pointer to one of these C labels. This code
would get used when filling a rectangle with a solid color.

copy_short_narrow_mask:

 *dst = (*dst & ~arg) | (v & arg);
 JUMP_TO_NEXT;
copy_short_narrow_many_loop:
 dst += 8;
copy_short_narrow_many_8:
 dst[0] = v;
copy_short_narrow_many_7:
 dst[1] = v;
copy_short_narrow_many_6:
 dst[2] = v;
copy_short_narrow_many_5:
 dst[3] = v;
copy_short_narrow_many_4:
 dst[4] = v;
copy_short_narrow_many_3:
 dst[5] = v;
copy_short_narrow_many_2:
 dst[6] = v;
copy_short_narrow_many_1:
 dst[7] = v;
 if ((arg -= 8) > 0)
 goto copy_short_narrow_many_loop;
 JUMP_TO_NEXT;

Note how the inner blitting loop is "unwrapped" for speed. A
blitter opcode would specify that 39 longs are to be output by
making its "arg" field be 39 and the "label" field point to
"copy_short_narrow_many_7", in the middle of the unwrapped
loop (39 mod 8 equals 7). The interpreter would jump there and
loop until all of the pixels had been written out, at 32 bytes per
loop iteration. This is very fast, especially for portable code.

Executor Internals 12

Of course, if any other pixels needed to be drawn, there would be
additional blitter opcode structs telling the interpreter what to do.
The interpreter dispatches to the next opcode by executing the
"JUMP_TO_NEXT" macro, which automatically uses GCC's
"goto void *" extension to "goto" the C label that handles the next
opcode.
Development Tools
Free Software
It is true that ARDI has a very tight R&D budget, but we really
don't skimp on the tools that we use to build Executor. We use free
software to develop Executor because we like to push the tools that
we use very hard and the only way we can do that and still sleep at
night is when we know that if we find bugs in our tools that they
can be fixed quickly. With free software the worst case is to fix
bugs ourselves, and that worst case is actually much better than the
average case with non-free software where you report a bug and
pray for a patch. In reality it's rare that we even have to resort to
the worst case since bugs reported are often fixed in less than a
day.

GCC
GCC is the Free Software Foundation's C compiler. It produces
good code and has a powerful inline assembly syntax that allows
optimization to be done on the expressions in the inline assembly
without the optimization ruining the assembly you've written.

Another handy GCC extension is "typeof" which can be used in
macros to cast a value to the type of a different value. The
combination of powerful inline assembly and typeof allows us to
have efficient macros that swap bytes in a 16 bit or 32 bit quantity.
Since the Mac and PC are of different endianness, quick byte
swapping routines are very important.

As mentioned above in our synthetic CPU and portable blitter
descriptions, we also use GCC's ability to take the address of a
label and store it in a variable so that we can produce our own
threaded code on the fly.

Hacked GCC
Because the source to GCC is available, it is possible, although not
necessarily advisable, to hack in custom extensions. At ARDI
we've done this twice in the past. At one time we used a set of
locally written modifications to support the pascal keyword so that
we could automatically call functions using Pascal calling
conventions. At the same time we also supported '1234' (i.e. the
ability to construct a 32-bit quantity out of four character constants
inside apostrophes). Eventually we decided that we didn't get
enough benefit from these extensions to make it worth patching
new versions of GCC as they came out.

The other time we modified GCC was when we were porting
Executor to DEC's Alpha processor. We were doing this under
OSF/1 which uses 64-bit pointers. Since Executor needs to use the
same internal representation that Macs use, we wanted a way to
easily write 32-bit pointers to memory in such a way that they
would be extended to 64-bits when they were read into a register
for use. To do this we made GCC support "pointer bit fields", a
logical extension that allowed bit-field notation to be used when

specifying pointers. At that time we didn't have a resident GCC
expert, so we were lucky that such modifications basically
consisted in taking out a few checks that disallowed such
constructs. Once those checks were removed, pointer bit-fields,
"just worked".

DJGPP
DJGPP is DJ Delorie's (see http://www.delorie.com) port
of GCC to MSDOS. It allows DOS users to compile UNIX
programs under DOS and to run them with little or no
modification. DJGPP is GCC and associated development tools
with a special UNIX like C-library and a "DOS Extender". DOS
extenders are used to combat OS inferiority. DOS is a 16-bit OS,
whereas most relatively modern OSes are 32-bit. DOS extenders
allow 32-bit programs to run under DOS. Executor is one such
program. In fact, we use the djgpp libraries and DOS extender but
we don't actually use the DOS port of GCC, because we don't like
DOS. We like Linux and GCC is well structured so we can do
cross-compilation and cross-linking with the djgpp libraries and
build our DOS product under Linux. We completely compile the
DOS version of Executor under Linux. We then copy the new
Executor binary to a DOS partition, reboot to DOS, test Executor
and then get the heck out of DOS. Time spent using Executor is
more like a Mac than it is like DOS.

Executor Internals 13

Debugging Tools
Internally we have many debugging tools to help us figure out why
an application may die or misbehave under Executor.
More Free Software

GDB in General
Almost all of our debugging is done under the GDB debugger. As
with GCC, we're not using GDB because it's the free debugger;
we're using the free debugger because it's GDB. GDB is quite
powerful.

Whenever we find that a given application fails under Executor, we
try to reproduce the failure under Linux. Debugging on a system
that has complete memory protection and pre-emptive multi-
tasking means that your system stays up even when your
application crashes. There's also no need to worry that when a
program is misbehaving that it's subtly corrupting other programs
on the system.
hardware watch points
Beyond the features that are handed to us due to the underlying
robustness of the OS, GDB also supports hardware watch points, at
least on 80x86 based PCs. "80x86"s have the ability to use
hardware to watch a small set of memory locations to see when
they change. Since the checking is done by hardware, the program
runs at full speed until the memory location is modified, at which
point the debugger stops, tells us which instruction modified which
memory address and what the old and new values are for that
address.

As an example, assume we want to know when the low-memory
global TheMenu is changing, here is how it might look under
GDB:

(gdb) watch TheMenu
Hardware watchpoint 1: TheMenu
(gdb) c
Continuing.
Hardware watchpoint 1: TheMenu

Old value = 0
New value = 768
C_HiliteMenu (mid=3) at menu.c:877
(gdb) swap16 768
$2 = 0x3
(gdb) c
Continuing.
Hardware watchpoint 1: TheMenu

Old value = 768
New value = 0
C_HiliteMenu (mid=0) at menu.c:877
(gdb) delete 3
(gdb) c
Continuing.

At the first (gdb) prompt above, we tell GDB that we want to be
alerted whenever the expression "TheMenu" changes. GDB is
clever enough to realize that it can watch that expression with a

hardware watchpoint, so it assigns watchpoint 1 to the task. We
then continue, which allows Executor to continue running

Executor Internals 14

whatever program it was already running.2

Eventually, when the menu bar was accessed, GDB told us that
TheMenu had changed from 0 to 768. 768 may sound like a weird
value for TheMenu to take, but this is on a byte swapped machine,
so we need to swap that 16-bit value to see what the TheMenu
would look like to a Mac program and we find that it's 3, a sane
value for TheMenu, after all. We let the program continue and
later TheMenu is changed back to zero.

You can't see it, but in another window the source to Executor is
displayed so that we are automatically shown the 877th line of
menu.c when GDB's watch point triggers there.

The argument to the watch command is an arbitrary expression, so
it is possible to watch for much more complex changes than our
example demonstrated. Although only relatively simple
watchpoints will be handled by hardware watchpoints, the others
will be handled by software watchpoints which are much slower.

2I actually set this watchpoint in the session of Executor that I am using to run Word 5.1 for the Macintosh to compose this document
(Executor/Linux on a 90 MHz Pentium).

Executor Internals 15

Hacked GDB
Unlike GCC, where we made local modifications and then, upon
reflection, threw them out, we have made a slight change to GDB
that is a big win for debugging Executor (and Mac programs
running under Executor) on PCs. GDB always knows how to
disassemble the object code that it's running, and GDB is available
for many architectures, so we modified GDB so that on the 80x86
we can do both 80x86 disassembly and 680x0 disassembly. That
allows us to look at sections of memory within our emulator and
see what 680x0 code is there.

In the example below, Executor is running the game Risk, when
we interrupt Executor and then tell GDB to break in the routine
alinehandler. We then continue until alinehandler is hit. We then
disassemble, in 680x0 format, the first nine instructions at the
location from which alinehandler was dispatched. After doing that
we disassemble in 80x86 format the first nine instructions of
alinehandler itself.

(gdb) b alinehandler
Breakpoint 6 at 0x17ce2d: file executor.c,
line 369.
(gdb) c
Continuing.

Breakpoint 6, alinehandler (pc=3652006,
ignored=0x0) at executor.c:369
(gdb) set m68k
(gdb) x/9i pc
0x37b9a6 : _SystemTask
0x37b9a8 : clrw sp@-
0x37b9aa : movew #-1,sp@-
0x37b9ae : pea a5@(-27598)

0x37b9b2 : _GetNextEvent
0x37b9b4 : moveb sp@+,d0
0x37b9b6 : tstb d0
0x37b9b8 : beqw 0x37ba0e <end+667542>
0x37b9bc : movew a5@(-27598),d0
(gdb) set m68k off
(gdb) x/9i alinehandler
<alinehandler>: pushl %ebp
<alinehandler+1>: movl %esp,%ebp
<alinehandler+3>: subl $0x28,%esp
<alinehandler+6>: pushl %esi
<alinehandler+7>: pushl %ebx
<alinehandler+8>: jmp 0x17ce10
<alinehandler+48>
<alinehandler+10>: nop
<alinehandler+11>: nop
<alinehandler+12>: nop

Being able to disassemble 680x0 code on the 80x86 required us to
change approximately 50 source lines of GDB (remember, the
680x0 disassembly code was already present for use in GDB on
680x0 machines). We also added a set of tables so that a-line traps
and low-memory globals are displayed by name, rather than by
number.

Although our special circumstances led us to modify the GDB
source code, GDB is customizable out of the box. We've defined a
handful of macros that automate debugging tasks. Figure 6 is a
macro that crawls through the stack in mac space.

For comparison, Figure 7 is what GDB produces when
backtracking code that is compiled with GDB debugging symbols.

Executor Internals 16
define macktrace
 set $_fp = cpu_state.regs[14].ul.n + 0
 silentswap32 (((uint32*)$_fp)[1]+0)
 set $_pc = $_val + 0
 silentswap32 (((uint32*)$_fp)[0]+0)
 set $_fp = $_val + 0
 while $_fp > 100 && $_fp < 30000000
 set $_start = (long) $_pc + 0
 while $_start > (long)&end && *(uint16 *)$_start != 0x564E

set $_start = $_start - 2
 end
 printf "func=0x%lX, ret=0x%lX, fp=0x%lX, args=0x%02X%02X%02X%02X 0x%02X%02X%02X%02X
0x%02X%02X%02X%02X\n",\

$_start, $_pc, $_fp,\
((uint8 *)$_fp)[8], ((uint8 *)$_fp)[9], ((uint8 *)$_fp)[10],\
((uint8 *)$_fp)[11], ((uint8 *)$_fp)[12], ((uint8 *)$_fp)[13],\
((uint8 *)$_fp)[14], ((uint8 *)$_fp)[15], ((uint8 *)$_fp)[16],\
((uint8 *)$_fp)[17], ((uint8 *)$_fp)[18], ((uint8 *)$_fp)[19]

 silentswap32 ((uint32*)$_fp)[1]+0
 set $_pc = $_val + 0
 silentswap32 ((uint32*)$_fp)[0]+0
 set $_fp = $_val + 0
 end
end
(gdb) macktrace
func=0x3824F8, ret=0x38250E, fp=0xB28E3C, args=0x00B2E852 0x000300B2 0x8E580037
func=0x37A2BE, ret=0x37A3A6, fp=0xB28E4A, args=0x0037BA12 0x000000B2 0x8F840037
func=0x37AECE, ret=0x37AFF0, fp=0xB28E58, args=0x0001002E 0xE0BC0000 0x00010035
func=0x379D58, ret=0x379E0C, fp=0xB28F84, args=0x000100B2 0x8F9200B2 0x8F9A0000

Figure 6. Macktrace Definition and Example

(gdb) backtrace
#0 C_SysBeep (i=10) at osutil.c:837
#1 0x18934d in PascalToCCall (ignoreme=2271560241, infop=0x29faa4)
 at emutrap.c:94
#2 0x17d0c9 in alinehandler (pc=3661160, ignored=0x0)
 at executor.c:399
#3 0x1c1b85 in trap_direct (trap_number=10, exception_pc=3661160,
 exception_address=0) at trap.c:201
#4 0x197cfc in S68K_HANDLE_0x00B5 () at syn68k.c:1038
#5 0x196067 in interpret_code (start_code=0x2df6c4) at syn68k.c:587
#6 0x12d476 in beginexecutingat (startpc=11730018)
 at launch.c:328
#7 0x12e1ce in launchchain (fName=0x2b53f8 "\004Risk", vRefNum=-32717,
 resetmemory=1 '\001') at launch.c:575
#8 0x12f6e0 in Launch (
 fName_arg=0x910 "\004Riskutor", 'ˇ' <repeats 27 times>, vRefNum_arg=-32717)
 at launch.c:1142
#9 0x17e1f7 in executor_main ()
 at executor.c:589
#10 0x13371a in main (argc=2, argv=0xbffffa04)
 at main.c:2112

Figure 7. GDB backtrace

Executor Internals 17

As you might guess, this disparity of information makes it much
easier for for us to track down bugs in our own code then finding
bizarre incompatibilities in the code that is being run under the

emulator.
Disassembler
Since GDB already knows how to disassemble 680x0 code it was
possible to write a driver for GDB so that it can disassemble Mac
programs. The driver is about 1,000 lines of C code, with another
500 lines describing the low-memory globals. Basically the driver
knows about CODE resources and how intersegment jumps work.
GDB normally doesn't produce labels for jump targets or the
beginning of subroutines, so the driver adds those too, to make the
output that much easier to read.11
Run-time Aids
Because we're using our own set of OS and Toolbox routines, we
can add code that is conditionally compiled into debug versions of
Executor that can provide still more information than GDB or
GDB macros can.

Debugtable, Debugnumber
Our A-line trap handler has a table, known as debugtable, of 4096
32-bit ints that it updates each time a trap is taken. Each time
alinehandler is called, a variable known as "debugnumber" is
incremented and then the value of debugnumber is stored in the
slot in debugtable corresponding to the aline trap that was called.
This allows us to see both what traps were recently executed and a
complete list of every trap that an application makes, no matter
how long the application has run.

This scheme has its drawbacks. Traps that are dispatched via
selectors are all lumped together. Traps whose addresses are taken
and then are called by jumps through the address don't show up in
debugtable. Although debugtable and debugnumber are perhaps
the least sophisticated portion of Executor, they're still quite handy,
since a visual inspection of the last 100 traps made before an
application died often gives a good idea of where to start looking
for the source of the incompatibility.

XX_slam
In the course of developing Executor, we did a major rewrite of our
memory manager and our TextEdit replacement. In both cases it's
not enough to just implement the APIs that are defined in Inside
Macintosh, we also have to duplicate the in-memory data
structures so that programs which count on them will run properly.
To help us verify that we weren't adding new bugs when we
rewrote those subsystems we added routines that would
consistency check the data structures that each of those subsystems
support.

Because these consistency checks are thorough but time
consuming, we call them "slams", and by default they are not
enabled, even in debugging versions of Executor. When they are
enabled, the data structures for each subsystem are slammed at the
entry to a call that might modify one of the data structures and the
data structure is slammed once again on exit of the routine. We
can turn them on at run-time either by using a command line
option when Executor is started or by using GDB to enable the
slamming. This is something we should have done for all of

Executor's subsystems from day one, since it's ever so helpful to be
told that going into routine XXX, the heap was fine, but coming
out the heap was corrupted.

Image Viewer
Reading disassembled code is much easier than staring at hex
numbers. Similarly, being able to view a portion of memory as
some sort of PixMap (assuming that the memory really is a bit
image) is also better than staring at a bunch of hex numbers. When
we build Executor for X-Windows, we also build an image server
that uses UNIX interprocess communication to communicate with
the process being debugged under GDB. This allows us to monitor
offscreen graphics, which can be very important when an
application makes many graphics calls and eventually an
abomination is drawn on the screen instead of what should have
been drawn.

Our debugging arsenal includes other, more prosaic, tools. In fact,
our debugging environment encourages the development of new
tools, because it's so easy to leverage existing tools into new tools
and even write new tools from scratch.

Executor Internals 18

Future Plans
Much of VCPU, a successor to Syn68k, has already been written.
VCPU performs many optimizations that Syn68k does not,
including improved register allocation, dead subregister
elimination, opcode "widening", and moving work outside of
loops. VCPU has a clean high-level syntax for specifying both
front ends and back ends, allowing it to dynamically compile both
PowerPC and m68k binaries on any architecture we decide to
support.

Although we don't explicitly mention it, the graphic subsystem one
layer above the blitter already has hooks in it to allow use of
graphics accelerators, where present. We plan a native port to
Win32 and OS/2 and those ports should be able to use fancier
graphic subsystems and also make use of the underlying network
APIs.

Currently INITs and CDEVs do not run under Executor, but the
same mechanisms that allow applications to run can also allow
INITs and CDEVs to run. QuickTime and ATM will both be high
priorities after Executor 2 ships.

We will also be developing compiler tools that will allow ISVs to
natively compile CPU specific routines to be used when their
applications are run under Executor. Executor already uses such
gateways internally.

Already, multiple simultaneous instances of Executor can be run
under NEXTSTEP and Linux (and to a lesser extent under
Windows '95). Currently only Executor/NEXTSTEP handles PICT
pasteboard cutting and pasting from one instantiation of Executor
to another, and no versions of Executor do enough file locking to
allow concurrent access of the same HFS volumes at once. This
needs to be fixed, since either through shared text segments under
UNIX and UNIX like operating systems or through DLLs under
Microsoft operating systems, it can be made fairly efficient to run
multiple instances of Executor simultaneously. When that is done,
each instance of Executor has its own address space and is
automatically scheduled by the underlying operating system
scheduler. That means that Executor "inherits" memory-protection
and pre-emptive multi-tasking from the underlying core operating
system.

By properly exploiting this inheritance it should be possible to
provide an environment that allows well-behaved Mac applications
to run efficiently under a variety of PC operating systems with
automatic protection from non-well-behaved applications.

One interesting variant on this theme would be to use Linux as the
core OS, but to hide it from the end-user, for a net result of an
80x86 box that boots an efficient, robust MacOS-like environment.

