
The Speech Recognition Manager Revealed

Matt Pallakoff & Arlo Reeves

As any Star Trek fan knows, the computer of the future will talk and listen. Macintosh computers have already been talking for
a decade, using speech synthesis technologies such as Macintalk or the Speech Synthesis Manager. Now any Power Macintosh
application can use Apple’s new Speech Recognition Manager to recognize and respond to spoken commands as well. In this
article, we’ll show you how easy it is to add speech recognition to your application.

Speech recognition technology has improved significantly in the last
few years. It may still be a long while before you’ll be able to carry on
arbitrary conversations with your computer. But if you understand the
capabilities and limitations of the new Speech Recognition Manager,
you’ll find it easy to create speech recognition applications that are fast,
accurate, and robust.

With code samples from a simple speech recognition application,
SRSample, this article shows you how to get started using the Speech
Recognition Manager quickly. You’ll also get some tips on how to
make your application’s use of speech recognition compelling,
intuitive, and reliable. For all the technical details, check out the
Inside Macintosh chapter “Speech Recognition Manager,”
included on the accompanying CD along with SRSample.

WHAT THE SPEECH RECOGNITION MANAGER
CAN AND CANNOT DO
The Speech Recognition Manager consists of an API and a recognition
engine. Under System 7.5, these are packaged together in version 1.5 or
later of the Speech Recognition extension. (This packaging may change
in future OS versions.)

The Speech Recognition Manager runs only on Power Macintosh
computers with 16-bit sound input. Speech recognition is simply too
computation-intensive to run well on most 680x0 systems. The
installed base of Power Macs is growing by about five million a year,
however, so plenty of machines — including the latest PowerPC
processor–based PowerBooks — can run speech recognition.

The current recognition has the following capabilities and limitations:

• It’s speaker independent, meaning that users don’t need to train it
before they can use it.

• It recognizes continuous speech, so users can speak naturally,
without — pausing — between — each — word.

• It’s designed for North American adult speakers of English. It’s
not localized yet, and in general it won’t work as well for

children.

• It supports command-and-control recognition, not dictation. It
works well when your application asks it to listen for at most a
few dozen phrases at a time, but it can’t recognize arbitrary
sentences and its accuracy decreases substantially if the number
of utterances it’s asked to listen for grows too large. For
example, it won’t accurately recognize one name out of a list of
five thousand names.

OVERVIEW OF THE SPEECH RECOGNITION
MANAGER API
To use the Speech Recognition Manager, you must first open a
recognition system, which loads and initializes the recognition
toolbox and specifies which speech recognition services are available.
(Currently, only short English utterances can be recognized.) You then
allocate a recognizer, which listens to a speech source for
sound input. A recognizer might also display a feedback window
that shows the user when to speak and what the recognizer thinks was
said.

The Speech Recognition Manager Revealed Page 1

To define the spoken utterances that the recognizer should listen for,
you build a language model and pass it to the recognizer. A
language model is a flexible network of words and phrases that defines
a large number of possible utterances in a compact and efficient way.
The Speech Recognition Manager lets your application rapidly change
the active language model, so that at different times your application
can listen for different things.

After the recognizer is told to start listening, it sends your application a
recognition result whenever it hears the user speak an utterance
contained in the current language model. A recognition result contains
the part of the language model that was recognized and is typically sent
to your application via Apple events. (Alternatively, you can request
notification using callbacks if you cannot support Apple events.) Your
application then processes the recognition result to examine what the
user said and responds appropriately. This speech recognition scheme is
shown in Figure 1.

Figure 1.
The speech recognition scheme. Telephone input is not supported in Version 1.5 of the Speech Recognition Manager.

SPEECH OBJECTS

The recognition system, recognizer, speech source, language models,
and recognition results are all objects belonging to classes derived from
the SRSpeechObject class, in accordance with object-oriented design

principles. These and other objects are arranged into the class hierarchy
shown in Figure 2. The class hierarchy gives the Speech Recognition
Manager API the flexibility of polymorphism. For example, you can
call the routine SRReleaseObject to dispose of any SRSpeechObject.

SRSpeechObject

SRRecognitionSystem

SRRecognizer

SRLanguageObject
SRWord

SRPhrase

SRPath

SRLanguageModel

SRRecognitionResultSRSpeechSource

Figure 2.
The speech object class hierarchy

The Speech Recognition Manager Revealed Page 2

The most important speech objects are as follows:

• SRRecognitionSystem — An application typically opens one of
these at startup (by calling SROpenRecognitionSystem) and
closes it at shutdown (by calling SRCloseRecognitionSystem).
Applications allocate other kinds of objects by calling routines
like SRNewWord, which typically take the
SRRecognitionSystem object as their first argument.

• SRRecognizer — An application gets an SRRecognizer from an
SRRecognitionSystem by calling SRNewRecognizer. The
SRRecognizer does the work of recognizing utterances and
sending recognition results back to the application. It begins
doing this whenever the application calls SRStartListening and
stops whenever the application calls SRStopListening.

• SRLanguageModel, SRPath, SRPhrase, SRWord — An
application builds its language models from these object types,
which are all subclasses of SRLanguageObject. (A phrase is a
sequence of one or more words, and a path is a sequence of
words, phrases, and language models.) A language model, in
turn, describes what a user can say at any given moment. For
example, if an application displayed ten animals and wanted to
allow the user to say any of the animals’ names, it might build a
language model containing ten phrases, each corresponding to an
animal’s name.

• SRRecognitionResult — When an utterance is recognized, an
SRRecognitionResult object is sent (using either an Apple event
or a callback routine, whichever the application prefers) to the
application that was listening for that utterance. The
SRRecognitionResult object describes what was recognized. An
application can then look at the result in several forms: as text, as
SRWords and SRPhrases, or as an SRLanguageModel, which can
assist in automatic parsing of the uttered phrase.

Each class of speech object has a number of properties that define how
the objects behave. For example, all descendants of SRLanguageObject
have a kSRSpelling property that shows how they’re spelled. Your
application uses the SRSetProperty and SRGetProperty routines to set
and get the various properties of each these objects.

RELEASING OBJECT REFERENCES

You create objects by calling routines like SRNewRecognizer and
SRNewWord. When you’ve finished using them, you dispose of them
by calling SRReleaseObject. You can also acquire references to existing
objects by calling routines like SRGetIndexedItem (for example, to get
the second word in a phrase of several words).

The Speech Recognition Manager maintains a reference count for each
object. An object’s reference count is incremented by calls to
SRNewXXX and SRGetXXX, and is decremented by calls to
SRReleaseObject. An object gets disposed of only when its reference
count is decremented to 0. Therefore, to avoid memory leaks, your

application must balance every SRNewXXX or SRGetXXX call with
a call to SRReleaseObject.

A SIMPLE SPEECH RECOGNITION EXAMPLE
It’s easy to add simple speech recognition capabilities to your
application. All you need to do is perform a small number of operations
in sequence:

1. Initialize speech recognition by determining whether a valid
version of the Speech Recognition Manager is installed, opening
an SRRecognitionSystem, allocating an SRRecognizer, and
insstalling an Apple event handler to handle recognition result
notifications.

2. Build a language model that specifies the utterances your
application is listening for.

3. Set the recognizer’s active language model to the one you built
and call SRStartListening to start listening and processing
recognition result notifications.

We’ll describe each of these operations in more detail.

The Speech Recognition Manager Revealed Page 3

INITIALIZING SPEECH RECOGNITION

First, you must verify that a valid version of the Speech Recognition

Manager is installed on the target machine. Listing 1 shows how to do
this. Note that only versions 1.5 and later of the Speech Recognition
Manager adhere to the API used in this article.

Listing 1.

Determining the Speech Recognition Manager version

Boolean HasValidSpeechRecognitionVersion (void)
{

OSErr status;
long theVersion;
Boolean validVersion = false;
const unsigned long kMinimumRequiredSRMVersion = 0x00000150;

status = Gestalt (gestaltSpeechRecognitionVersion, &theVersion);
if (!status)

if (theVersion >= kMinimumRequiredSRMVersion)
validVersion = true;

return validVersion;
}

Listing 2 shows how to open an SRRecognitionSystem, allocate an
SRRecognizer, and install your Apple event handler. All of this happens

when your application starts up. The Apple event handler
HandleRecognitionDoneAE is described later (Listing 4).

Listing 2.

Initializing the Speech Recognition Manager

/* Our global variables */
SRRecognitionSystem gRecognitionSystem = NULL;
SRRecognizer gRecognizer = NULL;
SRLanguageModel gTopLanguageModel = NULL;
AEEventHandlerUPP gAERoutineDescriptor = NULL;

OSErr InitSpeechRecognition (void)
{

OSErr status = kBadSRMVersion;

/* Ensure that the Speech Recognition Manager is available. */
if (HasValidSpeechRecognitionVersion ()) {

/* Open the default recognition system. */
status = SROpenRecognitionSystem (&gRecognitionSystem, kSRDefaultRecognitionSystemID);

/* Use standard feedback window and listening modes. */
if (!status) {

The Speech Recognition Manager Revealed Page 4

short feedbackNeeded = kSRHasFeedbackHasListenModes;

status = SRSetProperty (gRecognitionSystem, kSRFeedbackAndListeningModes,
&feedbackNeeded,

sizeof(feedbackNeeded));
}

/* Create a new recognizer. */
if (!status)

status = SRNewRecognizer (gRecognitionSystem, &gRecognizer, kSRDefaultSpeechSource);

/* Install our Apple event handler for recognition results. */
if (!status) {

status = memFullErr;
gAERoutineDescriptor = NewAEEventHandlerProc (HandleRecognitionDoneAE);

if (gAERoutineDescriptor)
status = AEInstallEventHandler (kAESpeechSuite, kAESpeechDone, gAERoutineDescriptor,

0,
false);

}
}

return status;
}

Notice how we call SRSetProperty to request Apple’s standard
feedback and listening modes for the recognizer. To have a successful
experience with speech recognition, users need good feedback
indicating when the recognizer is ready for them to talk and what
utterances the recognizer has recognized (see “Speech Recognition
Tips”). In addition, because of the recognizer’s tendency to misinterpret
background conversation and noises as speech, it’s usually a good idea
to let the user tell the recognizer when to listen by pressing a pre-
defined key (the “push-to-talk” key). Your application can get all of this
important behavior for free, simply by setting the
kSRFeedbackAndListeningModes property as shown in Listing 2.
Users can use Apple’s Speech control panel (which comes bundled on
new Macintoshes and on system updates) to tailor the behavior to suit

their needs, choosing preferred feedback characters (that is, the faces
displayed in the feedback window) and preferred push-to-talk keys.

BUILDING A SIMPLE LANGUAGE MODEL

Your application needs to build a language model —
gTopLanguageModel in our sample code — that specifies what the
recognizer is listening for. Listing 3 shows how your application can
create a simple language model. (We’ll discuss fancier language models
later in this article.) Even simple language models should avoid using
phrases that sound similar to one another; just like a human listener, the
recognizer may have a hard time distinguishing between similar-
sounding phrases.

The Speech Recognition Manager Revealed Page 5

Listing 3.

Building a simple language model

OSErr BuildLanguageModel (void)
{

OSErr status = noErr;
const char kLMName[] = "<TopLM>";

/* First, allocate the gTopLanguageModel language model. */

status = SRNewLanguageModel (gRecognitionSystem, &gTopLanguageModel, kLMName,
strlen (kLMName));

if (!status) {
long refcon = kTopLMRefcon;

/* Set the refcon of our top language model so that when we process our recognition */
/* result we'll be able to distinguish it from the rejection word, "???". */
status = SRSetProperty (gTopLanguageModel, kSRRefCon, &refcon, sizeof (refcon));

if (!status) {
const char *kSimpleStr[] = { "Hello", "Goodbye", "What Time Is It?", NULL };
char **currentStr = (char **) kSimpleStr;
long refcon = kHelloRefCon;

/* Add each of the strings in kSimpleStr to the language model, and set the refcon */
/* to the index of the string in the kSimpleStr array. Note that SRAddText is a */
/* shortcut for calling SRNewPhrase, SRAddLanguageObject, and SRReleaseObject in */
/* succession */

while (*currentStr && !status) {
status = SRAddText (gTopLanguageModel, *currentStr, strlen (*currentStr), refcon++);
++currentStr;

}

/* Augment this simple language model with a fancier one. */
if (!status)

status = AddFancierLanguageModel (gTopLanguageModel);
}

}

return status;
}

The Speech Recognition Manager Revealed Page 6

A recognizer returns a special speech object, called the rejection
word, if it hears an utterance but cannot recognize it. Listing 3 sets the
reference constant of the top-level language model to a pre-defined
value to be able to distinguish that model from the rejection word.

Note in Listing 3 that we add the phrases “Hello,” “Goodbye,” and
“What time is it?” to our gTopLanguageModel using the call
SRAddText, a convenient shortcut for the sequence of calls
SRNewPhrase, SRAddLanguageObject, and SRReleaseObject.
SRAddText also sets the kSRRefCon property of each added phrase.
We’ll use this reference constant when we examine the recognition
result to help determine what was said.

HANDLING RECOGNITION RESULT NOTIFICATIONS

Listing 4 shows how your application would process result
notifications given this simple language model. In the first part of the
listing, our Apple event handler, HandleRecognitionDoneAE, uses the
routine AEGetParamPtr to extract the status of the result as well as the
recognizer and recognition result objects from the Apple event. At this
point, it could easily get the text of what was heard by getting the
kSRTEXTFormat property of the recognition result. But a more useful
form of the result is the kSRLanguageModelFormat. This language
model parallels the language model gTopLanguageModel, but instead
of containing all of the phrases “Hello,” “Goodbye,” and “What time is
it?” it contains only a copy of the phrase that was recognized.

Listing 4.

Processing a recognition result

pascal OSErr HandleRecognitionDoneAE (AppleEvent *theAEevt, AppleEvent *reply, long refcon)
{

OSErr recognitionStatus = 0, status;
long actualSize;
DescType actualType;

/* Get recognition result status. */
status = AEGetParamPtr (theAEevt, keySRSpeechStatus, typeShortInteger, &actualType,

(Ptr) &recognitionStatus, sizeof
(recognitionStatus), &actualSize);

/* Get the SRRecognizer. */
if (!status && !recognitionStatus) {

SRRecognizer recognizer;
status = AEGetParamPtr (theAEevt, keySRRecognizer, typeSRRecognizer, &actualType,

(Ptr) &recognizer, sizeof (recognizer),
&actualSize);

/* Get the SRRecognitionResult. */
if (!status) {

SRRecognitionResult recResult;
status = AEGetParamPtr (theAEevt, keySRSpeechResult, typeSRSpeechResult, &actualType,

(Ptr) &recResult, sizeof (recResult),
&actualSize);

/* Extract the language model from the result. */
if (!status) {

SRLanguageModel resultLM;
long propertySize = sizeof (resultLM);

The Speech Recognition Manager Revealed Page 7

status = SRGetProperty (recResult, kSRLanguageModelFormat, &resultLM, &propertySize);

/* Process the language model. */
if (!status) {

ProcessRecognitionResult (resultLM, recognizer);

/* What we SRGot we must SRRelease! */
SRReleaseObject (resultLM);

}
/* Also release the recognition result. */
SRReleaseObject (recResult);

}
}

}

/* If recognition went fine, how about the processing? */
return recognitionStatus ? recognitionStatus : status;

}

OSErr ProcessRecognitionResult (SRLanguageModel resultLM, SRRecognizer recognizer)
{

OSErr status = noErr;

if (resultLM && recognizer) {
long refcon;
long propertySize = sizeof (refcon);

status = SRGetProperty (resultLM, kSRRefCon, &refcon, &propertySize);

/* Is the resultLM a subset of our top language model or is */
/* it the rejection word, "???"? */
if (!status && refcon == kTopLMRefcon) {

SRLanguageObject languageObject;
propertySize = sizeof (languageObject);

/* The resultLM contains either an SRPath or an SRPhrase. We use the refcon */
/* property set in our language model building routines to distinguish between */
/* the results. */

/* We expect our result language model to contain only one item, a phrase or a */
/* path; get it. */
status = SRGetIndexedItem (resultLM, &languageObject, 0);

if (!status) {
long refcon;
propertySize = sizeof (refcon);

/* Get the refcon of the object at the root of our language model. */
status = SRGetProperty (languageObject, kSRRefCon, &refcon, &propertySize);

if (!status) switch (refcon) {
case kHelloRefCon:
case kGoodbyeRefCon:

The Speech Recognition Manager Revealed Page 8

case kWhatTimeIsItRefCon:
{

const char *kResponses[] =
{ "Hi There!", "Don't leave now!",

"It's time to use the Speech Recognition
Manager!" };

/* Speak and display our response using the feedback character.
Use */

/* the refcon as an index into our response array. */
status = SRSpeakAndDrawText (recognizer, kResponses[refcon],

strlen
(kResponses[refcon]));

}
break;

case kCompanyRefCon:
status = ProcessFancierLanguageModel (languageObject, recognizer);
break;

}

/* Always SRRelease what we SRGot. */
status = SRReleaseObject (languageObject);

}
}

}

return status;
}

For example, if the user said “Goodbye,” the language model returned
in the kSRLanguageModelFormat property would contain one phrase,
which would have a kSRSpelling property of Goodbye and a
kSRRefCon property of 1 (the value passed for that phrase in the
SRAddText call in Listing 3). ProcessRecognitionResult uses the
language model to determine what was said by getting the kSRRefCon
property of the spoken phrase and responding appropriately.

This example uses the SRSpeakAndDrawText routine to respond to
recognition events. The Speech Recognition Manager uses the Speech
Synthesis Manager to speak the string, and the animated feedback
character (displayed in Apple’s standard feedback window) lip-synchs
with the synthesized text. The Speech Recognition Manager also
displays the response text in the feedback window. (You can use other
routines to simply speak a string through the feedback window without
displaying it, or to display a string without speaking it.)

SETTING THE ACTIVE LANGUAGE MODEL AND STARTING

TO LISTEN

All we need to do now is make the language model we’ve built,
gTopLanguageModel, the active language model. We do this by
calling the SRSetLanguageModel function, which associates
gTopLanguageModel with the SRRecognizer we’ve allocated,
gRecognizer:

OSErr status = SRSetLanguageModel(gRecognizer,

 gTopLanguageModel);

You can build as many language models as you like, but there is always
just one that’s active. You can make another language model active
(and thereby deactivate the one that was previously active), or you can
enable and disable parts of the active language model.

The Speech Recognition Manager Revealed Page 9

Once we’ve set the active language model, we start the recognition
process by calling SRStartListening, as follows:

if (!status)

status = SRStartListening(gRecognizer);

Now we can start speaking to our application. When an utterance is

recognized as belonging to our language model, our Apple event
handler, HandleRecognitionDoneAE, will be called and the recognition
result will be processed. It’s that easy!

CLEANING UP

Listing 5 shows how to clean up when your application quits. In
general, you should release the speech objects in the order shown.

Listing 5.
Terminating speech recognition

OSErr TerminateSpeechRecognition (void)
{

OSErr status = noErr;

/* If we have a top-level language model, release it. */
if (gTopLanguageModel) {

status = SRReleaseObject (gTopLanguageModel);
gTopLanguageModel = NULL;

}

/* If we have a recognizer, release it. */
if (gRecognizer) {

status = SRStopListening (gRecognizer);
status = SRReleaseObject (gRecognizer);
gRecognizer = NULL;

}

/* If we have a recognition system, close it. */
if (gRecognitionSystem) {

status = SRCloseRecognitionSystem (gRecognitionSystem);
gRecognitionSystem = NULL;

}

/* Remove our Apple event handler and dispose of the handler's routine descriptor. */
if (gAERoutineDescriptor) {

status = AERemoveEventHandler (kAESpeechSuite, kAESpeechDone, gAERoutineDescriptor, false);
DisposeRoutineDescriptor (gAERoutineDescriptor);
gAERoutineDescriptor = NULL;

}

return status;
}

The Speech Recognition Manager Revealed Page 10

SPEECH RECOGNITION TIPS

Speech recognition is a completely new input mode, and using it properly isn’t always as straightforward as it might seem. While we don’t yet
have a complete set of human interface guidelines to guarantee a consistent and intuitive speech recognition user experience, there are a few
simple rules that all speech recognition applications should follow.

GIVE FEEDBACK
Your application must always provide feedback to let users know when they can speak, when their utterance has been recognized, and how it
was interpreted. The feedback services in the Speech Recognition Manager perform this for you, using the standard feedback window shown
in Figure 3. (The user’s recognized utterances are shown in italics, and the displayed feedback is in roman text. The string under the feedback
character’s face indicates the push-to-talk key.) All you need to do is set the kSRFeedbackAndListeningModes property as shown in Listing 2.

Figure 3.
Standard feedback window

Your application should use this standard feedback behavior unless you have a very good reason to provide your own feedback and custom
push-to-talk options. (Fast action games that take over the entire screen and don’t call WaitNextEvent are examples of applications that
wouldn’t use the standard feedback.) Not only will users enjoy the benefits of consistent behavior, but as Apple improves the feedback
components, your speech recognition applications will automatically inherit this improved behavior without having to be recompiled.

SHOW WHAT CAN BE SAID
Successful speech recognition applications always let the user know what he or she can say. The way they achieve this depends on the
application, but one good example is a Web browser that makes all visible hyperlinks speakable. This lets the user know what can be said
while restricting the size of the language model to improve recognition accuracy.

BE CLEAR AND COMPLETE
The recognition technology currently used by the Speech Recognition Manager works best when it’s listening for a small number of distinct
utterances. The longer an utterance is, the more easily it can be distinguished from other utterances. For example, distinguishing the isolated
words hot, cut, and quit is difficult and error prone. Recognition performance also decreases as the language model grows. The larger the
language model, the more time the recognizer must spend searching for a matching utterance and the larger the likelihood of two utterances in
the language model sounding similar. For best results, limit the size of the language model

The Speech Recognition Manager Revealed Page 11

to fewer than a hundred phrases at any time and avoid including phrases that are easily confused when spoken, like “wreck a nice beach” and
“recognize speech.”

DO SOMETHING DIFFERENT
Compelling applications of speech recognition are often novel ones. Instead of simply paralleling an application’s graphical user interface with
a spoken one (making all menu items speakable, for example), do something different — something that takes advantage of the unique
properties of speech. Combine speech synthesis with speech recognition to engage the user in a brief dialog. Use efficient language models to
allow a single utterance to trigger a series of commands that might otherwise require interaction with dialog boxes. Use the power of speech
recognition to augment the graphical interface your users are already so familiar with. Above all, use your imagination.

BUILDING FANCIER LANGUAGE MODELS

The Speech Recognition Manager provides a large number of routines
that your application can use to create and manipulate fancier language
models than the one created earlier in Listing 3. For example, suppose
you wanted to create an application that responds to users when they
say “Tell me the price of <company> stock,” where <company> is one
of several company names.

To create a language model like this, your application needs to create
an SRPath object that consists of the phrase “Tell me the price of”
followed by an embedded language model representing the

company names, followed by the word “stock.” The
AddFancierLanguageModel function (not shown, but included on the
accompanying CD) creates this path and adds it to the language model
created in Listing 3. (Note that the embedded company language model
is simply a list of phrases, just like the language model we created in
Listing 3.)

Figure 4 shows the structure of the entire language model. We’ve
limited the number of companies to three here for simplicity. The top
half of each box shows the spelling and refcon properties of each
object; the lower half indicates the object type.

SRLanguageModel
<TopLM>

SRPhrase
Hello

Goodbye

What time is it?

SRPath

SRPhrase

SRPhrase

Tell me the price of
SRPhrase

<comapnyLM>
SRLanguageModel

stock

SRWord

Apple
SRPhrase

Netscape
SRPhrase

Pepsi

SRPhrase

0

1

2

3

0

1

2

Figure 4.
Language model built by calling BuildLanguageModel

The Speech Recognition Manager Revealed Page 12

Take a look at the code on the CD to see how to build the fancier
language model. Don’t worry if it seems like a lot of code to write just
to add the command “Tell me the price of <company> stock.” Below

we’ll describe a tool that can make the creation of complicated static
language models very easy. Listing 6 shows how your application
would process results given this fancier language model.

Listing 6.

Processing an SRPath result as built by AddFancierLanguageModel

OSErr ProcessFancierLanguageModel (SRPath resultPath, SRRecognizer recognizer)
{

OSErr status = noErr;

if (resultPath && recognizer) {
SRLanguageModel companyLM;

/* Get the second item in the path — it's the company language model. */
status = SRGetIndexedItem (resultPath, &companyLM, 1);

if (!status && companyLM) {
SRPhrase companyName;

/* The company language model contains just one phrase. */
status = SRGetIndexedItem (companyLM, &companyName, 0);

if (!status) {
long refcon;
long propertySize = sizeof (refcon);

/* Get the refcon from the company name. It's our index into the response array. */
status = SRGetProperty (companyName, kSRRefCon, &refcon, &propertySize);
if (!status) {

const char *kResponses[] =
{ "Apple stock is priced to move!",

"Netscape is trading at fifty dollars.",
"Why would you want to know that?"

};

status = SRSpeakAndDrawText (recognizer, kResponses[refcon],
strlen

(kResponses[refcon]));
}
/* What we SRGot we must SRRelease. */
status = SRReleaseObject (companyName);

}
status = SRReleaseObject (companyLM);

}
}
return status;

}

The Speech Recognition Manager Revealed Page 13

Speech recognition applications that support utterances like “Tell me
the price of <company> stock” or “Call <name>,” while limiting
<company> or <name> to a few dozen items, can be more compelling
than those that just respond to simple phrases. They are nicely limited
in scope, yet they allow the user to invoke actions more easily than they
could with a graphical user interface. What other technology does that?

MANIPULATING LANGUAGE MODELS
The Speech Recognition Manager contains several more routines and

properties for manipulating language models. We’ll look at a few of
them here.

Your application can create a large language model and then use the
SRSetProperty function to disable and enable parts of it quickly on the
fly, as shown in Listing 7. By enabling only parts of a language model,
you can minimize the number of utterances that the recognizer is
listening for.

Listing 7.

Disabling a part of a language model

/* Disable the stockPath part of the gTopLanguageModel. The stock path is the fourth */
/* item in this LM. */

SRPath stockPath;
OSErr status = SRGetIndexedItem (gTopLanguageModel, &stockPath, 3);

if (!status) {
Boolean enabled = false;
status = SRSetProperty (stockPath, kSREnabled, &enabled, sizeof (enabled));
SRReleaseObject (stockPath);

}

Your application can change, clear, or rebuild parts of a language model
dynamically to reflect the current context of your program. Listing 8

clears and then rebuilds the company language model that was
originally built by the AddFancierLanguageModel function.

Listing 8.

Emptying and refilling the <company> language model

/* Empty and refill the embedded <company> language model. Assume that stockPath is */
/* initialized. The companyLM is the second item in the stockPath. */

SRLanguageModel companyLM;
OSErr status = SRGetIndexedItem (stockPath, &companyLM, 1);

if (!status) {
/* This releases each phrase in the company language model. */
status = SREmptyLanguageObject (companyLM);

The Speech Recognition Manager Revealed Page 14

/* Now rebuild the company language model with new companies. */
if (!status) {

const char *kNewCompanies[] = { "I B M", "Motorola", "Coca Cola", NULL };
char **company = (char **) kNewCompanies;
long refcon = 0;

while (*company && !status) {
status = SRAddText (companyLM, *company, strlen (*company), refcon++);
++company;

}
}
SRReleaseObject (companyLM);

}

At any given moment, the active language model should be relatively
small, but your application can change the set of active phrases at any
moment. For example, if a Web browser application made its links
speakable, at any given moment there would only be a few dozen
visible links, so there would only be a few dozen phrases active. But if
you spent a couple of hours surfing the Web with that browser, you
would have seen many thousands of links throughout the session, and
you could have spoken any one of them while it was visible.

In addition to enabling and disabling parts of your language model, the
SRSetProperty function allows your application to make words,
phrases, paths, or language models repeatable (so that the user can say
that item one or more times in a row) or rejectable (so that if the user
says something else for that item, the recognizer will fill it in with a

special rejection word with a spelling of “???”).

Your application can also make any word, phrase, path, or language
model optional by setting the corresponding object’s kSROptional
property to true. In AddFancierLanguageModel, we’ve set the
kSROptional property of the SRWord “stock” to true, so the recognizer
is ready for the user to say “Tell me the price of Apple” as well as “Tell
me the price of Apple stock.”

Your application doesn’t have to build language models from scratch
each time it runs. The Speech Recognition Manager provides routines
for saving and loading language objects (for example,
SRPutLanguageObjectIntoHandle and
SRNewLanguageObjectFromDataFile). Listing 9 shows how you can
use these.

Listing 9.

Saving a language model into a resource

/* Allocate a Handle of size 0 to store our language model in; SRPutLanguageObjectIntoHandle */
/* will resize it as needed. */
Handle lmHandle = NewHandle (0);
OSErr status = MemError ();

if (!status) {
status = SRPutLanguageObjectIntoHandle (gTopLanguageModel, lmHandle);

The Speech Recognition Manager Revealed Page 15

if (!status) {
/* Save the language model as a resource in the current resource file. Pick a */
/* reasonable resource type and ID. */
AddResource (lmHandle, 'LMDL', 100, "\pTop Language Model");

/* Make sure it gets written to disk. */
if (!(status = ResError ()))

WriteResource (lmHandle);
}

DisposeHandle (lmHandle);
}

Apple provides a handy developer tool, called SRLanguageModeler,
for quickly creating, testing, and saving language models into resources
or data files. This tool is provided with other Speech Recognition
Manager developer information and lets you create language models by
writing them out in text form. SRLanguageModeler then lets you try
out the language model in a real recognition scenario to see how well
its phrases can be recognized and discriminated from one another. Once
you save the language models into a binary resource or file format, they
can be reloaded into your application using either the routine
SRNewLanguageObjectFromHandle or the routine
SRNewLanguageObjectFromDataFile, respectively. Unless the content
of your language models changes dynamically during the execution of
your program, SRLanguageModeler will eliminate the code you would
otherwise have to write to construct your language models.

SPEECH: THE FINAL FRONTIER
If you’ve grokked this article, you’ll have no problem making practical
use of speech recognition in your application. From the basics of
checking for the proper version of the Speech Recognition Manager to
some of the finer details of building language models, we’ve shown
you everything you need to know to get started. Take a look at the
SRSample application on the accompanying CD, which uses many of
the listings in this article. To dig even deeper, check out the Inside
Macintosh chapter “Speech Recognition Manager” and the
SRLanguageModeler tool, also on the CD. Finally, keep an eye on our
website at www.speech.apple.com for the latest versions of
Apple's speech recognition software, tools and sample code.

This is a preliminary draft of an article that will appear in Issue 27 of
develop, The Apple Technical Journal.

Reprinted with permission of Apple Computer, Inc.

Not for redistribution

develop, Apple’s quarterly technical journal, provides an in-depth
look at code and techniques that have been reviewed for robustness
by Apple engineers. Each issue comes with a CD that contains the
source code for that issue, as well as all back issues, Technical Notes,

sample code, and other useful software and documentation.
Subscriptions to develop are available through the Apple Developer
Catalog (1-800-282-2732 in the U.S., or (716)871-6555 outside the
U.S.), AppleLink ORDER.ADC, or Internet
order.adc@applelink.apple.com.

© 1996 Apple Computer, Inc. All rights reserved. Apple, the Apple
logo, and Macintosh are trademarks of Apple Computer, Inc.,
registered in the U.S. and other countries. develop is a trademark of
Apple Computer, Inc.

The Speech Recognition Manager Revealed Page 16

