
Scriptability:
A Bare-Bones Introduction

Kevin C. Killion
Stone House Systems, Inc.

kevin@shsmedia.com

Set aside your IM, AE Registry, and tech notes for the moment. Starting fresh, let's review the bare essentials you need to
start making your app scriptable. Simple things should be simple, complex things should be possible, so let's ignore the
rampant excesses of the AppleScript spec for now. This paper will introduce scripting with a simplified explanation of the
concepts, and follow this up with implementation of a minimal, but very useful initial set of scripting functions. As an
added bonus, we'll consider how to design your implementation for accessibility from BASIC as well as AppleScript.

An unprecedented number of new sets of APIs have been added to
MacOS in the last few years. As of this writing, some 35+ different
add-on technologies are provided by Apple in the MacOS SDK. Some
of these technologies give developers the ability to implement exciting
new features with a minimum of new coding effort. The Thread
Manager, for example, enables an entirely different approach for
handling long processing times without delaying the user, and it does so
with only a few simple API calls. QuickTime has been another
unqualified hit: simple to implement, and yet an incredible crowd-
pleaser with customers.

Other new technologies released by Apple have not been so successful.
Take AOCE: Many of the features it made possible were hard to
explain, or passed minimal real benefits through to the end user.
Nonetheless, documentation was vast and dense. It was hardly a
surprise when Apple would say (in the January 5, 1996 issue of
MacWeek) that it was "confusing to use" and that the entire API would
be thrown out.

We might make an attempt to categorize MacOS add-on APIs with a
cost/benefit approach. Every developer will have a different view, of
course, depending on his or her own interests and target markets. For
myself, I'd view the MacOS APIs this way:

ImplementationTime,
Cost and Effort

QuickTimeThread MgrEdition MgrBalloon HelpApple GuideQuickDraw GXAOCEDrag MgrScripting

This leads to a kind of technological triage. Some technologies are no-
brainers: if an application can make any use at all of QuickTime, it
should. Other toolkits are easy to dismiss: the documentation and
methods for QuickDraw GX, for example, are so turgid and involved
that only a high-end graphics program is likely to benefit.

For many developers, AppleScript belongs firmly in the upper right
quadrant: high benefit at a high cost. AppleScript offers tantalizing
power and flexibility, and could lead an application into a
collaborative world in which the whole is much greater than the
sum of the parts. On the other hand, the task of making an app
scriptable appears daunting and formidable. Dave Mark says,
"Many people (myself included) are intimidated the first time they
try to take on the

Apple Event Manager. In many ways, this task is as complex as
when you first learned to work with the Mac Toolbox."

Why Implement Scripting?

To start taking AppleScript seriously, we must first reinvigorate
ourselves with the potential that AppleScript offers.

1) At the very least, AppleScript serves as a macro language that is far
more powerful than most any scratch-baking scripting facility that a
developer is likely to dream up on his or her own.

2) The principal language offered by Apple's scripting facilities leaves a
powerful first impression: Who would not be charmed by a
programming language that looks so much like English?

3) AppleScript crosses application borders. It goes where no
application-based macro language can go: into another application.

4) It adds panache: scriptability is a recognizable marketing advantage.
Even if a customer or prospect has no clue about what AppleScript
looks like or what it's for, they probably perceive that having it is a
good thing.

Beyond these, AppleScript provides the developer with additional
benefits, which may not be as obvious:

5) Scriptability invests the user with a sense of personal participation,
and that can only be good for long-term commitment to a product. Just
ask your six-year-old: the favorite toys are the ones that offer lots of
play value.

6) That sense of empowerment and entitlement not only adds your
customer to your development team, but to your sales team as well. An
"enlisted" customer can generate powerful positive word-of-mouth
advertising.

7) AppleScript is an avenue for addressing outlier requests. I have
often had key customers request some unusual feature as their "gotta
have" top priority, even though other customers would see such a
feature as worthless menu clutter. AppleScript provides the perfect
solution.

8) Scripting reduces conflicting pressures on development, by giving
users the power to implement new features themselves.

9) Ofttimes, merely having that power is satisfying to customers, even
if it isn't used immediately! One of the great strengths of Microsoft
Excel is the perception that one can do anything with it, no matter how
convoluted; whether someone would ever actually undertake that effort
is a question that is easily overlooked.

10) Scripting can be a profit center. A customers may place high value
on having a custom report or process developed, made possible and
practical by AppleScript.

So, Why Not Implement Scripting?

It isn't too hard to understand why developers have ignored AppleScript
in droves, despite the inherent appeal of what it could deliver.

Technical Obstacles to Scripting

1) The sheer vastness of the documentation: "Inside Macintosh:
Interapplication Communication" is a thousand pages of intense and
cross-dependent text. The "registry", without which we are warned not
to proceed, adds more desk ballast.

2) No high-level interface: One might argue that the paucity of
simplified, high-level API calls may be the single greatest technical
deficiency of the Mac toolkit in general versus its modern competition.
AppleScript is no exception. In its simplest description, a scripting
facility should provide a developer with the ability to expose the
"objects" of an application and make them available for manipulation
by an external process. This kind of basic implementation should be
possible with a reduced set of simplified calls. (It is true that some level
of scripting support has been built into some class libraries. However,
since each such class library is developed independently, there is little
portability between them. Of course, other class libraries and
procedural projects are left out in the cold.)

3) Lack of a "start here" subset: Implementing the four "required"
AppleEvent handlers gets developers on a roll. At that point,
development comes to a screeching stop in the face of the massive
documentation. There is no sense given that there is any valid subset of
calls and features with which to get started on implementing the juicier
parts of scripting. (As we will see, it is possible to start with a decent,
manageable subset.)

4) Minimal sample code: As of this writing, the developer CDs offer
only three examples of implementing scripting in a program.

5) Spaghetti sample code: "Quill" was an early piece of sample code
that was not only unfinished (pretty scary) but which suggested
unbelievable complexity nonetheless.

6) Aren't-I-wonderful: In technical writing, awe of the AppleScript
architecture too often gets in the way of clear exposition of what a
developer needs to do. Rather than identifying specific development
steps, writing has often dwelled on terminology and theory.

7) The hidden power of the AppleScript language: The syntax of the
language does not appear (on first blush, at least) to have much of a
one-for-one correspondence with the code that must be built in the app.
Thus, the purpose of each code element remains elusive. ("Uh, you
mean I have to 'install' an 'object accessor'? What for?")

8) Disinterest in the AppleScript language: Some developers think
AppleScript is too cutesy to take seriously. Other developers (myself
included) feel that AppleScript has more serious problems as well.

9) The 'aete' resource: This messy and convoluted resource is the
linchpin of scripting, and dealing with it cannot be avoided.

Marketing Obstacles to Scripting

1) The promise of collaborative applications only works if there is
someone to talk to. With the conspicuous and embarrassing exception
of Microsoft applications, a comparatively small portion of MacOS
apps offer serious scriptability.

2) The promise of a common scripting language is often not borne out.
The president of one well-known Mac publisher says that "There isn't
just one AppleScript. There is AppleScript for Excel, AppleScript for
ClarisWorks, and so on. Each variation sports its own terminology and
set of available verbs. Even products within a category, such as word
processors, can have markedly differing scripting dictionaries."

3) There is no guarantee that the effort involved in adding scriptability
will pay out in terms of customer satisfaction. Part of this is because…

4) The portion of Mac users who do any kind of AppleScripting today
is vanishingly small. In my own survey of my major customers, who in
turn have thousands of end users and a number of technical support
groups, I failed to find a lead on even a single person who had any
experience at all with AppleScript.

5) The challenge of mastering AppleScript: With few books for support
and no similar prior experience to build upon (with the exception of
HyperTalk for a few folks), learning AppleScript is not simple.
Although many users already have experience with BASIC, which in
many respects is a far more powerful and flexible language, this
experience doesn't help much when learning AppleScript's rather
unique approach. Moreover, the allure of an "English" syntax soon
dissolves into the reality of stilted, run-on sentences with peculiar
structures.

6) Dictionary shock: From my own experience, I have seen how
customers react with a glazed expression when first seeing scripting
dictionaries.

7) Support costs: While scriptability may eventually deliver benefits to
you and your customers, the initial learning hump might impact your
short-range support costs. When users run into trouble writing
AppleScript statements, who else do they have to call but you? With so
few sources for AppleScript information or expertise (contrasted with
BASIC, for example), there is simply nowhere else to turn.

Does This Sound Like You?

The growth of AppleScript and scripting has languished over that cost
benefit issue: The benefits are irrefutable, but the cost of development
is often seen as insurmountable. But if implementation can be

made manageable and affordable, the scriptability becomes a much
more viable option.

AppleScript divides Mac developers into two camps: the mystical and
the mystified. Some developers have bought into scripting completely,
and are aglow with fervor for the Object Model, the OSL, the
terminology resources and the natural language interface. The rest of
this article is not for this enlightened group.

This article is intended for those who remain perplexed by scripting. I
intend to provide a "start here" approach for adding scripting to your
application. If your perspective of scripting matches the outline
presented in the text up to now, keep reading.

"Scripting" versus "AppleScript"

A key step is to understand the difference between "scripting" and
"AppleScript". When you make your app scriptable, you are doing
nothing that has anything inherently to do with AppleScript!
AppleScript is merely a language provided to access the scripting
facilities of the system and applications.

The features and strengths of AppleScript often bear little relation to the
code you write to support scripting. Moreover, there is nothing to
prevent other languages from being developed to drive scripting. In
fact, provision for such languages is built into the Mac scripting
toolkits. Some folks love AppleScript, but not everyone. If you're in
the latter group, then consider scripting anyway and hope that
alternative scripting languages emerge.

Objects and Properties

Every application deals with a set of "things". An accounting system
has clients, accounts, transactions, reports and many other elements. A
model of some industrial process may have inputs, processing stages
and outputs. A transportation management system may have parcels,
containerized shipments, sources, destinations, warehouses and
vehicles. (I'm bored to tears with Apple's fixation on text and pictures,
so I like to use other examples.)

Of course, there is nothing novel about the concept of objects and
properties. As programmers, we are used to the distinction between
methods and instance variables in OOP. Even users have some sense of
the distinction; for 12 years now they have dealt with screen "objects"
and manipulated their "properties" through dialogs and commands.

(The original Xerox workstations crystallized this philosophy with a
specific "Props" button on the keyboard. The user selected a screen
object, and pressed Props to access a dialog to change the properties of
an object. As time goes on, the brilliance of the Xerox design becomes
even more evident. Much of what we admire in OpenDoc already was

fundamental on the Xerox workstations of 1981!)

It's important to note that a crucial way of identifying the objects in an
application is to tell whether they can be created or removed. A
shipment can be removed from our transportation system, but we
cannot "remove" its color. The shipment is an object, color is one of
that object's properties.

Of the tasks we envision enabling through scripting, an enormous
portion involve reading and setting the values of these properties. With
just these two actions, the user can create custom reports, transfer
selected information to other applications, tweak settings to improve
some measure of performance, and do many other things.

The Role of Context

Six-year-old on phone: "Do you want to come and play at my house?"
Classmate: "Where's your house?"
Six-year-old (puzzled): "Here!"

User: "Tell me the weight of the shipment."
Computer: "Which shipment?"
User: "This one!"

In an interactive, live program, direct pointing can identify the "thing"
to be discussed. But that obviously isn't sufficient for a batch-style,
hands-off operation. Moreover, there are plenty of situations in which a
script may wish to talk to elements that aren't even part of the visible
interface.

Consequently, "this one" is not a sufficient direction to a target. To
identify this target, a descriptive address is needed, and it's natural to do
that in terms of the context within a larger entity.

Parent of classmate: "Where's your house?"
Parent of six-year-old: "We're the third house on the block, on the block
nearest the school, on the east side of the town."

Computer: "Which shipment?"
User: "The one stamped '47', in Bin C, on the upper shelf, of the truck
that left at 10 am"

These addresses identify the object of interest with a series of
successively larger contexts. Note that each context is an object in
itself: house, block, side of town, the town, bins, shelves, trucks these
are the objects, the things, of their respective applications. And each
step in establishing context describes how one object is referenced with
respect to another.

Context vs. Containment

Mac scripting documentation describes this relationship as
containment, which is a very useful and descriptive name. However, we
must quickly make note of what containment is not:

1) "Containment" is not exclusive: a cell in a spreadsheet is contained
by a row but it's also contained by a column.

2) "Containment" does not necessarily mean physical enclosure: In our
transportation program, a roadside weigh station might be used as a
context within which to identify the tenth truck weighed today. The
weigh station does not "contain" the truck in any English sense of the
word, but it does provide a context for identification.

3) "Containment" does not necessarily involve visible entities on the
screen. More generally, scripting certainly should be available even if
there are no visible entities on screen at all; we might desire to
"operate" a faceless application.

4) "Containment" does not necessarily correspond to subclassing in a
class library: "box" and "letter" may be subclasses of "parcel" within
our app, but we could conceivable desire to identify and handle boxes
and letters in entirely different ways in our user scripting facility.

5) "Containment" does not necessarily correspond to supervisory
relationships in a class library: Clicking on a client name may involve
a class library's handling of a large pane as supervising the subpane
containing the client name, and a document supervising the large pane.
For our scripting purposes, "containment" may instead refer to the
client's position on a list of clients, which isn't involved in the class
bureaucracy at all.

So, while "containment" is a handy term in our scripting efforts, be
aware that, more than anything else, it is merely a way to establish
context for identification of objects.

Are Properties "Contained"?

A parcel does not "contain" a weight, a spreadsheet cell does not
"contain" a font size, and a client does not "contain" a name.
Nonetheless, when we understand that the role of "containment"
references in scripting has more to do with context and identification
than it does with enclosure, certain similarities do emerge.

"Change the color." "Of what?" "Of the third row."

In this example, reference to the object identifies, in a very real sense,
the context of the value to be changed. Understanding this subtlety will
make it easier to understand the syntactic similarity of property
references and object references in both AppleScript and other scripting
languages. Later on, this will also help to explain why the same user
routine winds up being useful for identification ("resolution") of both
objects and properties.

A Make-Believe Scripting Language

To get our heads around where scripting is positioned, and why
AppleScript sentences look like they do, let's do a thought experiment.

Let's imagine that AppleScript doesn't exist. Then imagine that we
were given the task of designing a scripting language from scratch.
Further suppose that we buy into the concepts of:

objects as the entities within an application
objects have properties to be examined and set
objects are identified within contexts of other objects

Now, what structures might we place into our new language to
implement these concepts?

To illustrate the task, let's suppose we have a simple tabular document,
with a number of table rows that can be colored individually.

ApplesBananasCherriesDatesFigsGuava

First, it seems natural to allow language variables to refer to properties
of the objects in our application. A first try at devising such a scheme in
BASIC, for example, might involve calling some subroutine that
retrieves the needed value.

mycolor = GetValue("color")
 ' "color" is a pre-arranged keyword

We immediately see that we can't talk about color without talking about
of what, so we also need some way to denote context. Let's next
imagine another available subroutine called GetObject that provides a
reference to an object, when we ask for a specific entry on a list. We
then could expand our GetValue routine to use this reference as a
context. We then have:

thisrow = GetObject("row", 4)
 ' get the fourth row ("row" is a pre-arranged
keyword)
mycolor = GetValue(thisrow, "color")
 ' get its color

We're making progress, but to get that row, we need to reference its
context. A row only has meaning within the context of a document. In
turn, the document is only one of several documents that may be open,
but the context there isn't as clear. We might decide to denote this "top
level" or "global" context with "NIL". Then:

thisdoc = GetObject(NIL, "doc", 1)

 ' get the first document
thisrow = GetObject(thisdoc, "row", 4)
 ' from the doc, get the fourth row
mycolor = GetValue(thisrow, "color")
 ' from this row, get its color

In a very simplistic form, note that all of our references constitute a
series of pairwise operations:

- within the "global" context, identify a document
- within the document context, identify a row
- within the row context, reference the color property

Now let's play language designer. Rather than clutter our programming
with lots and lots of subroutine calls, let's devise some new syntax
elements to streamline the coding.

Since everything we've done involves these pairs, we might quickly
devise a syntax that combines the two elements of context and a
"contained" object or property. A simple dot may serve this purpose:

{context}.{contained item}

For convenience, we might allow skipping any top-level "NIL"
reference. With these changes, the previous listing could then be
simplified as:

thisdoc = doc(1)
 ' get the first document
thisrow = thisdoc.row(4)
 ' from the doc, get the fourth row
mycolor = thisrow.color
 ' from this row, get its color

Again, the pairwise nature of these references is evident. But for the
user's convenience, we could allow these statements to be strung
together, so that the intermediate variables aren't required:

mycolor = doc(1).row(4).color
 ' get color of 4th row of doc #1

While this new, crisp syntax looks more complex, it's easy to imagine
that processing of it still relies on those good ol' pairwise steps. (And,
lo and behold, what we have just devised is not an imaginary language!
With small variations, this is the syntax used in Microsoft's Visual
Basic family of languages.)

Now let's take a look at another language, namely AppleScript:

get the color of row 4 of document 1

Again, it's a long statement, but the fundamental notion is that
processing this will involve a series of ever-finer context resolutions.

Prerequisites for Coding

Although this is intended to be a "bare bones" introduction, we will
require a few prerequisites before getting into the coding.

First, we will assume that you have already implemented the four
"required" AppleEvents, namely, Open Application, Open Documents,
Print Documents, and Quit Application. Supporting these events are
already well-documented, and are comparatively straightforward. If by
some chance you have not implemented the required events, start there.
They are very well described, complete with code examples, in "Inside
Macintosh: Interapplication Communication", pages 4-11 through 4-20.

As a by-product of implementing the required events, we'll also assume
you have some notion of the idea of AppleEvents acting as containers
to transport "clumps" of data. Since you needed to "install" your
"handlers" for these required events, we'll also assume that you're
familiar with those buzzwords.

To initialize the scripting facilities for your program, you must call the
AEObjectInit routine in your application's initialization:

err := AEObjectInit;

Of course, you should always check the result of this and all other calls
that return an error parameter. In this text, we will skip that for clarity.
However, error handling is implemented in the listing accompanying
this article.

Set Data and Get Data

We are now ready to implement the first two crucial "handlers" to
enable scripting. The "Set Data" and "Get Data" AppleEvents are the
messengers that allow a user to retrieve and change properties of
application objects. They are the heart of scripting.

In concept, their function is very simple. Let's start with the Set Data
event (see figure, below). After you have created and installed your
handler routine for Set Data, your application is prepared to receive
these events. Each Set Data event contains two parameters: First, the
parameter identified as "keyDirectObject" contains a reference to the
property that is to be changed. Second, a parameter labelled
"keyAEData" contains the new value for the property.

AppleEventAppleEventkeyDirectObject“font of row 1 of
document 1”

keyAEData“Geneva”My
App

Figure 1: The Set Data event

Our code for this event involves retrieving these two parameters,
figuring out what internal variable in our program corresponds to the
property that has been specified, and then changing that variable's
value. (For a complete implementation example of code used in this
paper, see the listing, "Scripting.p". This sample listing is partially
based on Apple's "Quill" example.)

Handling the Get Data event is similar (see figure, below). In this case,
the AppleEvent that has been received has only one parameter, a
reference to the object and property of interest. This is exactly the same
as for the Set Data event. The big difference is that when we access the
corresponding variable in our program, we retrieve its existing value,
and send it back to the calling application. We do this by packaging up
this value as a parameter and attaching it to the reply AppleEvent.

AppleEventAppleEventkeyDirectObject“font of row 1 of
document 1”

ReplyReplykeyAEResult“Geneva”My
App

Figure 2: The Get Data event

So far, it hardly sounds difficult at all, does it?

We tell the system that we have Set Data and Get Data handlers by
installing them as follows in our application's initialization area:

err := AEInstallEventHandler(kAECoreSuite,
kAESetData, @HandleSetData, 0, FALSE)
err := AEInstallEventHandler(kAECoreSuite,
kAEGetData, @HandleGetData, 0, FALSE)

Like all AppleEvent handlers, the calling sequence for our routines
consists of an AppleEvent being received, a possible reply event, and a
reference constant:

FUNCTION HandleSetData (theAppleEvent: AppleEvent;
reply: AppleEvent; refCon: LongInt): OSErr;

The reference constant makes it possible to handle several different
kinds of events with the same handler. For example, you could

conceivably have a single routine that handles both Set Data and Get
Data by installing the same routine for both functions, and telling them
apart with that constant. However, for code clarity, I'd recommend
ignoring the refCon and coding each handler separately.

Within each of these handlers, we retrieve the direct object (the object
and property to be accessed) as follows:

err := AEGetParamDesc(theAppleEvent, keyDirectObject,
typeWildCard, myDirObj);

We now have the reference to the property to be retrieved or set,
contained in the variable myDirObj. This variable is declared as type
AEDesc, which has mystical trappings to it but which really is nothing
more than a handle with a 4-character label (a DescType) on it:

TYPE AEDesc = RECORD
 descriptorType: DescType;
 dataHandle: Handle;
END;

Ah, but what's in that handle? For initial scripting efforts, it is sufficient
to state that this handle contains an encoded representation of the entire
specification. For our figures, that specification is "font of row 1 of
document 1", in a compact binary form. (No, it is not the literal text of
this specification.)

This is where the fun starts. It might be possible to parse the contents of
this handle ourselves, determining the structure and successive
"containments" implied. Mull that over for a while, and think about
how you would do that. Besides the effort involved in decoding and
parsing the message, we would have to do a great deal of bookkeeping
along the way.

Now recall our earlier lengthy discussion about context and
containment. We stressed that every step of the resolution involved a
pairing of a context and an object or property to be isolated from within
that context. What if we could reduce the problem of identifying that
direct object into a series of simpler requests of the context/object
form?

HARD: decipher "font of row 1 of document 1"
SIMPLER: Do each of the following:
 - find document 1
 - find row 1 within it
 - find the font of that

This process of breaking down a complex specifier into a reference of a
specific object or property is called "resolution". The Mac scripting
architecture makes resolution much easier by handling the bookkeeping
chore for us. To do this, we are given a function called AEResolve.
We call AEResolve, and hand it the complex specification. The
system will make additional calls back to our application, consisting of
a series of simpler resolution questions, like those listed immediately
above. When AEResolve returns, we are given a reference (of our
own design and in terms of the application's internals) that uniquely
identifies the target object or property.

The sheer power of this approach is that AppleScript and the scripting
engines within the system contain a great deal of leverage to
manipulate complex expressions on their own, requiring our application
to deal with only these simple context/object pairing questions.

If you've been paying close attention, you've noticed two leaps of faith
in the above discussion. First, we said that the system calls back to the
application to ask these pairing questions, but we have not yet said
how. Second, we said that AEResolve returns a reference to some
internal variable that is to be retrieved or set, but we have not yet said
where that comes from. We will cover those omissions in the next
sections.

For now, let's continue to operate on faith. We call AEResolve, and
we retrieve a spec for the application internal to be accessed. This is
another AEDesc, called newDesc in this sample. newDesc's handle
contains a structure that is our own device for referring to goodies in
the application. We extract this with a simple BlockMove, placing the
result in a structured variable we call myToken:

err := AEResolve(myDirObj, kAEIDoMinimum, newDesc);
BlockMove(newDesc.dataHandle^, @myToken,
myTokenSize);

The few statements we've examined so far are identical in both Set
Data and Get Data. Now, these two handlers will diverge. Consider
what each must do:

Set Data:
1. Retrieve the value specified for the application internals
2. Attach it to the outgoing "reply" AppleEvent

Get Data:
1. Extract the desired new value from the incoming AppleEvent
2. Set the correct application internal to this value

There is an obvious symmetry to setting and getting data elements.
Wherever possible, it's desirable to handle such similar functions with
the same code, to avoid them getting out of sync and to avoid largely
redundant code. For example, many programmers like to have a single
I/O routine for both reading and saving documents.

We will do the same here, bottlenecking both our Set Data and Get
Data procedures through one routine, called DoTransferProperty. In
each case, this routine is passed our "token" reference, and the relevant
AppleEvent (either the incoming or outgoing one).

For our Set Data handler, we give our handler the token and the
incoming AppleEvent:

VAR direction: (doSet, doGet);
...
direction := doSet;
err := DoTransferProperty(direction, myToken,
theAppleEvent);

The Get Data handler is passed the token and the outgoing reply
AppleEvent:

VAR direction: (doSet, doGet);
...
direction := doGet;
err := DoTransferProperty(direction, myToken, reply);

We are now very close to having our application take its first steps
towards scriptability. All we need to do now in our code is fill in the
steps we've taken on faith. These missing steps are:

1) Devise a means to uniquely identify variables in our system, using
"tokens".

2) Provide the callback routine that AEResolve will use to ask the
context/object questions, returning a specific token.
3) Implement the DoTransferProperty routine.

Besides these code changes, there is one more step: we must create an
'aete' resource.

Defining "Tokens"

Much of the existing document and sample code for scripting correctly
points out that the contents and usage of tokens are totally up to you.
Unfortunately, they often then go on to define very convoluted token
strategies for sake of illustration.

I have found that to get started with scripting, a very straightforward
token design is really quite sufficient.

The tokens passed between the system and your application consist of
AEDesc's which, as we've said, are nothing more than handles with
four-character labels. What you put in that label, and what you put in
that handle are up to you.

It is conceivable that a very simple application may be able to define all
of its objects and their properties with a coding that uses the label
alone, and leaves the handle at NIL. Suppose we have only the app
itself, and a single tabular document with no more than 99 rows and
columns (identify them as "A", "R", and "C"). Further suppose that no
object has more than 9 unique properties, and we will let "0" represent
the object itself. Then, we could use codings like this:
 R021 = the first property of row 2
 R020 = row 2 itself
 A001 = property #1 of the application (some global setting)

That just shows how simple a token strategy may be. A more realistic
token design will create a structured record identifying the object or
property. In the accompanying listing, this is the token definition used:

TYPE
MyTokenType = RECORD
 myTokenCode: DescType;
 theObject: CObject;
 subReference: longint;
 isAProperty: Boolean;
 propertyCode: DescType;
 END;

Here is how I use each of these fields in this record:

myTokenCode: this is just a simple code to identify the kind of
object being discussed. The code used here is only meaningful to the
application itself, of course, so it can be anything.

theObject: this is a handy place to store the handle containing the
most relevant object. For example, from TCL, this field could be set to
the actual object of concern.
subReference: I defined this field for convenient referral of
application elements which are not "objects" in the class hierarchy
themselves. For example, I may have an object "client" which
possesses an array of values representing billing dates. With theObject
referring to Smith Company and subReference 3, I can resolve down to
the third billing date for this client. If subReference=0, the token refers
to the object itself.
isAProperty: This same token structure is used for both objects and
their properties. For an object, isAProperty=FALSE, for a property, it's
TRUE.
propertyCode: another four-character code, of my own device,
identifying the needed property, if isAProperty=TRUE.

I have found that this simple token design satisfies all of the needs I
have encountered for basic scripting capability. Remember -- the
specifics of the design are totally up to you.

Answering Context Questions:
Object Accessor Routines

As we have said, the system's AEResolve procedure can be given a
complex specification of a series of containments and a final object and
property, and give back to us a reference to a specific application
variable or element. Clearly, this has a nice magical feeling to it.

AEResolve works by breaking the resolution task into a series of
simpler questions. Each of these questions takes the form, "Within
context, identify a particular element". We accept and handle these
questions by registering one or more object accessor routines.

The Apple documentation starts off with the assumption that you'll
want to have several object accessor routines to handle different cases.
I'll simplify things by using only a single accessor function. (Quite
frankly, I think an application can survive very nicely, and keep its code
more readable, by using only one.)

We install an object accessor with a simple call at initialization time:

err := AEInstallObjectAccessor(typeWildCard,
typeWildCard, @MyObjectAccessor, 0, FALSE)

The two "typeWildCard" parameters tell the system that the single
MyObjectAccessor routine should be called for all resolution questions.

The accessor routine has this calling sequence:

FUNCTION MyObjectAccessor (desiredClass: DescType;
containerToken: AEDesc; containerClass: DescType;
keyForm: DescType; keyData: AEDesc; VAR theToken:
AEDesc; theRefCon: longint): OSErr;

This calling sequence includes:
- a reference to the container, that is, the context (containerToken)
- the kind of element to be identified within the context
(desiredClass). For example, for an accounting system, a context
of a "client" may include both "account" and "transaction" elements;
we need to know which is being referenced)
- a reference (keyForm and keyData) for how to find the correct
element of the desired class
- an AEDesc into which we are to place our "token" referring to the
desired application element.

If you do use the single accessor routine strategy, then you'll dispatch
different cases of the question yourself. One clear differentiation is
between context/property questions and context/object questions. If the
system is looking to find a specific property for an object, your
accessor is called with keyForm = formPropertyID. In the
code listing accompanying this article, we have separate routines to
handle accessing properties, and identifying objects contained within
other objects:

VAR
 err: integer;
BEGIN
 IF keyForm = formPropertyID THEN
 err := PropertyAccessor(desiredClass,
containerToken, keyData, aTokenBody)
 ELSE IF containerClass = typeNull THEN
 err := AppObjectAccessor(desiredClass,
containerToken, keyForm, keyData, aTokenBody)
 ELSE IF containerClass = 'docu' THEN
 err := DocObjectAccessor(desiredClass,

containerToken, keyForm, keyData, aTokenBody)
 ELSE
 err := errAECantHandleClass;

 IF err = noErr THEN
 err := AECreateDesc(desiredClass, @aTokenBody,
myTokenSize, theToken);
 MyObjectAccessor := err;
END;

Note that if the desired element is contained by the application itself,
the containerClass is typeNull; this is the "top" of the
containment hierarchy. Also note that if we cannot provide the needed
resolution, we must return an appropriate error code, such as
errAECantHandleClass. This will let the system give an appropriate
friendly message to the user.

Let us now look at the resolution of properties of objects, and then
objects within objects.

Resolving Properties

Our resolution handler, MyObjectAccessor, calls another routine,
PropertyAccessor, to resolve a specifier down to a specific
property of a specific object. The routine is given a reference to the
object, we must return a reference to the property. The question here is
of the form, "Tell me how you'd like me to refer to the weight of this
package".

Fortunately, given the way we defined tokens, this is extremely easy.
We extract the token representing an object. Properties of this object
will be referenced with essentially the same token, just by setting
isAProperty to TRUE, and setting the propertyCode field. The
only complication is when we are asked about properties of the
application itself (typically these are global settings or values). In that
case, the containing token is 'typeNull', and we must fill in the fields
to note that the "object" under discussion is the application.

FUNCTION PropertyAccessor (desiredClass: DescType;
containerToken: AEDesc; keyData: AEDesc; VAR
theTokenBody: MyTokenType): OSErr;
VAR
 propertyCode: DescType;

PROCEDURE Bail (bailErr: integer);
 BEGIN
 PropertyAccessor := bailErr;
 EXIT(PropertyAccessor);
 END;
BEGIN
 IF containerToken.descriptorType = typeNull THEN
 BEGIN {container is the app (which doesn't have a
token of its own), so make a token for the property}
 theTokenBody.myTokenCode := typeNull;
 theTokenBody.theObject := NIL;
 theTokenBody.subReference := 0;
 END
 ELSE IF NOT GetTokenFromAEDesc(containerToken,
theTokenBody) THEN
 Bail(eContainerDoesNotHaveValidToken);

 BlockMove(keyData.dataHandle^, @propertyCode, 4);

 theTokenBody.isAProperty := TRUE;
 theTokenBody.propertyCode := propertyCode;
 PropertyAccessor := noErr;
END;

Note that the object is specified with an AEDesc called
containerToken. We call a little utility routine
GetTokenFromAEDesc, which typically simply extracts one of our
tokens from the handle of the AEDesc.

We have been given a code for the desired property in the keyData
parameter. We use that value to set our propertyCode field.

Resolving Objects

Finding an object "contained" within another object requires a bit more
effort. However, once you get past the basic requirements of this step,
you'll quickly find some wondrous abilities.

Resolving object containment issues involves questions of the form,
"On this truck, give a way to refer to the fifth package on your
manifest", or, "For this list of customers, tell me how to refer to the
client named 'Able & Baker'".

In the "Scripting.p" listing, we have a routine
"DocObjectAccessor" which is used to find specific rows within a
given document.

As in the property case, we start by extracting one of our tokens from
the supplied containerToken. We also confirm that we are being
asked for a contained row (coded as 'crow'), which is the only
contained element we know about.

 IF NOT GetTokenFromAEDesc(containerToken, docToken)

THEN
 Bail(eContainerDoesNotHaveValidToken);

 IF desiredClass = 'crow' THEN
 {that's good}
 ELSE
 Bail(eContainerDoesNotContainRequestedClass);

In this example, we take the object reference contained in our token,
and convert it to a class reference meaningful within our TCL program.
The fact that this example used TCL is of small consequence; the
crucial notion is that you use whatever you defined as the contents of
the token to now identify a particular "object" in your application.

 doc := KMyDoc(docToken.theObject);

Now that we have a reference to the document, we will look at a list of
rows that happens to have been specified as part of our document. (For
TCL fans: In the actual application from which this is extracted, we
have our own document class, descended from CDocument, and one
of its variables, rowlist, is of class CList.)

 rowlist := doc.rowlist;
 nrow := rowlist.GetNumItems;

We now have an internal reference to the list of rows, and we know
how many entries the list has. We now look to see how we are to
identify the desired specific row. If keyForm =
formAbsolutePosition, that means that the row is to be
identified by a serial index. We then extract the desired index from
keyData, and check that it is within the valid range.

IF keyForm = formAbsolutePosition THEN
 BEGIN
 wantedIndex := LongHandle(keyData.dataHandle)^^;
 IF keyData.descriptorType = typeLongInteger THEN
 BEGIN
 IF wantedIndex <= 0 THEN
 wantedIndex := nmedia + wantedIndex + 1;
 END
 ELSE

 Bail(errInvalidReference);

 IF (wantedIndex < 1) | (wantedIndex > nrow) THEN
 Bail(eIndexNumberOutOfRange);

 row := KRow(rowlist.NthItem(wantedIndex));
{get desired row, by index}

 found := TRUE;
 END
 ELSE
 Bail(eOnlyNameIndexFirstOrLast);

If the desired sub-element was found, we set the fields of a token
accordingly; this is passed back to the system, completing the
resolution task.

 IF found THEN
 BEGIN
 theTokenBody.myTokenCode := rowTokenCode;
 theTokenBody.theObject := CObject(row);
 theTokenBody.subReference := 0;
 theTokenBody.isAProperty := FALSE;
 Bail(noErr);
 END
 ELSE
 Bail(errAENoSuchObject);

In this brief description, we have only shown how to resolve an element
within a container by serial index. With only a little more work (none
of it very complex) we add the ability to find elements by name or by
keyword (such as "first" or "last"). This adds an exciting pizzazz to the
scripting facility, and makes the user's AppleScripts simpler and more
lucid.

We won't discuss such enhancements here, but a few samples of these
improvements are included in the accompanying listing. Now that you
know what "object resolution" is actually about, you'll also find it
easier to understand the documentation on this topic in "Inside
Macintosh: Interapplication Communication", pages 6-12 to 6-15.

Getting and Setting Properties: Preparation

We have now accomplished all of the codework needed to allow the
user to examine and set values in the system, with the exception of the
actual nitty-gritty: the retrieval or setting itself!

As you'll recall, we referred to a single procedure, DoTransferProperty,
in both our Set Data and Get Data handlers. This routine will be used to
both set and get property values. We have defined its calling sequence
as follows:

FUNCTION DoTransferProperty (propAction:
propActionType; VAR myToken: MyTokenType; ae:

AppleEvent): OSErr;

The first parameter just sets a direction, either "doSet" or "doGet". (Of
course, you indicate this direction with just a Boolean, but I like the
self-documenting quality of enumerations.)

The second parameter is the token identifying the property under
discussion.

The third parameter is the AppleEvent involved, the incoming
AppleEvent for Set Data or the reply AppleEvent for Get Data.

The calls to DoTransferProperty thus looked like this:

{in the Set Data handler}
 direction := doSet;
 err := DoTransferProperty(direction, myToken,
theAppleEvent);

{in the Get Data handler}
 direction := doGet;
 err := DoTransferProperty(direction, myToken,
reply);

For full details, consult the complete listings accompanying this article.
For now, here are some highlights.

DoTransferProperty begins by pulling out the target object and its
desired property from the supplied token. If the object is specified as a
class library object or a data handle, it is a good idea to lock the object,
since we'll be doing a fair amount of juggling. (We also restore the
original lock value when this routine returns.)

 obj := myToken.theObject;
 prop := myToken.propertyCode;
 oldLock := obj.Lock(TRUE);

The main structure of DoTransferProperty consists of a series of
branches to handle the different types of objects that can be handled. If
the number of different object types becomes large, you may wish to
break this into separate routines, or to methods of the objects' separate
classes in a class library. For our simple example we have:

{APPLICATION}
 IF myToken.myTokenCode = typeNull THEN
 BEGIN
 - - -
 END

{WINDOW}
 ELSE IF myToken.myTokenCode=winTokenCode THEN
 BEGIN
 - - -
 END

{DOCUMENT}
 ELSE IF myToken.myTokenCode=docTokenCode THEN
 BEGIN
 - - -
 END

{ROWS}
 ELSE IF myToken.myTokenCode = rowTokenCode THEN
 BEGIN
 - - -
 END

 ELSE
 err := eCannotHandlePropertiesOfThisClass;

Within the BEGIN..END section for each class, we test for each
property that we support. If found, we pass the address of the property
itself and the relevant AppleEvent to another that does the actual
transfer.

As an example, our "row" class has properties that include its name, its
height, and various line and fill colors and patterns. We handle these
row properties by first coercing our object reference for convenient
future use. We then check for each property, calling the
"TransferProperty" routine when we find the correct one. Here is an
excerpt:

 row := KRow(obj);

 IF prop = '*mht' THEN
 err := TransferProperty(propAction, @row.height,
'I', SIZEOF(row.height), TRUE, ae)
 ELSE IF prop = 'flpt' THEN
 err := TransferProperty(propAction, @row.fillPat,
'I', SIZEOF(row.fillPat), TRUE, ae)
 ELSE IF prop = 'pppa' THEN
 err := TransferProperty(propAction, @row.linePat,
'I', SIZEOF(row.linePat), TRUE, ae)
 ELSE IF prop = 'flcl' THEN
 err := TransferProperty(propAction, @row.fillCol,
'I', SIZEOF(row.fillCol), TRUE, ae)
 ELSE IF prop = 'ppcl' THEN
 err := TransferProperty(propAction, @row.lineCol,

'I', SIZEOF(row.lineCol), TRUE, ae)
 ELSE IF prop = 'ppwd' THEN
 err := TransferProperty(propAction,
@row.lineThick, 'I', SIZEOF(row.lineThick), TRUE, ae)
 ELSE IF prop = 'pnam' THEN
 err := TransferProperty(propAction,
PTR(row.title^), 'S', SIZEOF(row.title^^), TRUE, ae)
 - - -
 ELSE
 err := eThisPropertyUnderConstruction;

For example, if the specified property is 'flpt', this is our code for "fill
pattern". In our application, we store the fill pattern for a row within
the "fillPat" instance variable of an object of type KRow. The
AppleEvent that contains the new value (Set Data) or the reply
AppleEvent to receive the existing value (Get Data) is specified by ae.
The actual transfer may now be performed.

Getting and Setting Properties: The Real Thing

All actual transfers are conducted by a routine we call
TransferProperty:

FUNCTION TransferProperty (propAction:
propActionType; propPtr: ptr; kind: char; lenProp:
integer; writeable: Boolean; ae: AppleEvent): OSErr;

We start by choosing an AppleEvent value type that best fits the
property:

 IF (kind = 'I') & (lenProp = 2) THEN
 descriptor := typeShortInteger
 ELSE IF (kind = 'I') & (lenProp = 4) THEN
 descriptor := typeLongInteger
 ELSE IF (kind = 'R') & (lenProp = 4) THEN
 descriptor := typeShortFloat
 ELSE IF (kind = 'R') & (lenProp = 8) THEN
 descriptor := typeLongFloat;

If the direction is "propGet", we must retrieve the value at the location
specified, and pack it into the supplied AppleEvent (which is the reply
event).

 IF propAction = propGet THEN
 BEGIN
 {get the value of the specified property}

 IF lenProp <= SIZEOF(buffer) THEN
 BlockMove(propPtr, @buffer, lenProp)
 {copy the property into the buffer}
 ELSE
 BEGIN
 err := eBufferTooSmall;
 GOTO 99;
 END;

 {stuff the value into the AppleEvent}
 IF descriptor <> difficult THEN
 err := AEPutParamPtr(ae, keyDirectObject,
descriptor, @buffer, lenProp)
 ELSE IF kind = 'S' THEN
 BEGIN
 strlen := ORD(buffer[0]);
 err := AEPutParamPtr(ae, keyDirectObject,
typeChar, @buffer[1], strlen);
 END
 ELSE
 err := eCannotHandleAPropertyOfThisType;
 END

On the other hand, if the direction is "propSet", we extract the desired
new value from the AppleEvent, and set the property to this new value:

 ELSE IF propAction = propSet THEN
 BEGIN
 IF NOT writeable THEN
 BEGIN
 err := errAENotModifiable;
 GOTO 99;
 END;

 {retrieve the new value from the AppleEvent}
 IF kind = 'S' THEN a string
 BEGIN
 err := AEGetParamPtr(ae, keyAEData, typeChar,
actualType, @buffer[1], SIZEOF(buffer) - 1,
actualSize);
 IF err = noErr THEN
 BEGIN
 strlen := actualSize;
 IF strlen > 255 THEN
 strlen := 255;
 buffer[0] := CHR(strlen);

 IF (strlen + 1) > lenProp THEN {too big to fit
in a string structure this size}
 BEGIN
 strlen := lenProp - 1;
 buffer[0] := CHR(strlen);
 END;

 BlockMove(@buffer, propPtr, strlen + 1);
 END;
 END

 ELSE IF descriptor <> difficult THEN
 BEGIN
 err := AEGetParamPtr(ae, keyAEData, descriptor,
actualType, @buffer, SIZEOF(buffer), actualSize);
 IF err = noErr THEN
 BEGIN
 IF descriptor <> actualType THEN {we
didn't get what we wanted}
 err := ePropertyValueSpecifiedInIncorrectFormat
 ELSE IF lenProp <> actualSize THEN
 err :=
ePropertyValueSpecifiedWithIncorrectSize;
 END;

 IF err = noErr THEN {everything looks good, so
revise the property itself!}
 BlockMove(@buffer, propPtr, lenProp);
 END
 ELSE
 err := eCannotHandleAPropertyOfThisType;
 END;

The beauty of the TransferProperty routine is that it handles all of the
get/set needs of this sample within one place. It includes provision for
variables of varying types and sizes, and provides a double-check so
that "read-only" properties (such as creation date, or whether a window
has a title bar) can't be revised.

Believe it or not, we have now concluded all of the coding additions
that are necessary to support the vital Set Data and Get Data events.
There is only one obstacle remaining before we can say that our
application is at least minimally scriptable.

The Dreaded 'aete' Resource

This ugly little beast serves as the translator between how the user talks
about the components of your app and how your application discusses
those same elements with the scripting calls.

“fill pattern”

‘flpt’

‘aete’

For example, the user may create a script that refers to a property by the
name of "fill pattern". Using the 'aete' resource contained in your
application, the system translates this to a code of 'flpt'. When the
system asks your application about this property, it will refer to the 'flpt'
code.

Unfortunately, the organization of the 'aete' is remarkably convoluted. It
organizes the scripting terminology first into "suites" and then lists
events, objects and enumerations for each, with properties listed for
each object. The complexity of the 'aete' is indicated by the fact that
there are only two reasonable ways of creating and editing one, with a
resource compiler such as MPW's Rez, or with Resorceror. Apple's
own ResEdit tool is not capable of taking on 'aete'. (At the 1996
WWDC, Apple promised to deliver a more rational tool for aete
editing.)

At this stage, if you've gotten this far in your development, you'll
simply want to see scripting happening in your application. As a very
simple first cut, you may wish to start with an existing simple 'aete'
from another application. The 'aete' that is contained in the Scriptable
Text Editor ("STE") sample application from Apple serves as a good
foundation.

STE's 'aete' already includes the Get Data and Set Data events, and it
includes references to the document object. You may wish to test your
scripting features by implementing tests for these document properties.
To do this, copy the 'aete' unchanged from the STE into your app. (Of
course, it should never go on to users in this form.)

When you successfully have provided access to document properties in
this manner, you can then add a few of your own objects. Using Rez or
Resorceror, you will need to make these changes:
1) You will need to create entries for the new classes you define, and
2) You will need to identify these new classes as elements within the
existing classes that contain them. For example, if you define a class
"row" that is contained by the document, then the document class must
be revised to show that it now has "row" as one of its sub-elements.

When you have completed a very rough 'aete' resource, you can now
test and debug your newly-scriptable application!

At this point, you should pause and seriously review your objectives in
scripting and how they would best be handled within your scripting
facilities. When you finally get some form of scripting to work, the
temptation is strong to plunge ahead and start coding up all kinds of
objects and properties. Resist! This is the time to give deep thought to
what you want your dictionary to look like to your users. Cal Simone's
very fine articles in develop magazine are an excellent source for
insights in this area.

Counting

There is one final element that pretty much must be included to qualify
for a minimal level of scriptability. That is the ability for a script to
determine the count of the number of objects there are of a given kind.

[Code to support the calls for counting is included in the sample
code. Time permitting, this will be discussed in the live
presentation.]

Scripting Alternatives

There are many arguments for AppleScript as an ideal scripting
language. It would not be a stretch to say that many AppleScript users
have crossed over into serious fandom about the language.

One of the great allures of AppleScript is that it looks like English. At
the very least, this can help make it easier for people to understand
what an existing script is designed to do. While the meaning of
"row(3).height = 20" can be learned with some basic programming
training, the AppleScript equivalent, "set the height of row 3 to 20",
takes no training at all.

In counterpoint to its apparent simplicity, AppleScript is also a real
programming language that includes most of the essential constructs
one expects. The language includes loops, tests, branches, variables,
and mathematical and logical operators all the usual goodies.

Despite its allure, its strengths and its small but very dedicated fan
following, AppleScript may not be the ideal solution for all users in all
situations. The language does have some drawbacks as well:

1) The English language syntax of AppleScript, which is a boon for
easy reading of scripts, can be a barrier to writing of scripts. Use of
natural language

implies a fluidity of meaning that AppleScript just simply does not
support. I looked up the word "SET" in the Oxford dictionary, and it
had 194 definitions; in AppleScript, "set" has but one meaning. If we
promise the user that AS is natural to use, it becomes hard to explain
why "get count of rows, copy it to rowcount" doesn't work. Similarly,
all the keywords in "set me to true" are legal, but this sentence is
completely wrong in AppleScript.

2) Involved statements in AppleScript strip away much of the English-
like allure, by producing complex run-on sentences that really don't
look much like English anymore.

3) AppleScript would appear to be a poor choice for long programs to
do data processing, report generation or numerical calculations, if only
due to the sheer verbosity that would be required.

4) A simple set of syntax rules in a traditional computer language may
be easier to learn than a loose set of English-like structures. For
example, BASIC makes no promise of fluidity. To express commands,
a fairly simple set of rules do the job just fine.

5) Sources of information about AppleScript are limited, while there are
hundreds of books and classes on how to learn BASIC.

6) Many people already know BASIC. BASIC is a thriving,
immensely popular real world language. In the form of Visual Basic, it
is arguably the most popular development environment for Windows.
Even on the Mac, BASIC is rapidly gaining popularity as the preferred
macro language for Microsoft's applications.

[The live presentation of this paper include some experimental
approaches to scripting using tools other than AppleScript.]

Conclusions

Much of the benefit of making your application scriptable can be
achieved in a manageable series of short tasks. Once accomplished,
this also serves as a sound basis for expanding your support for
scripting.

Scriptability is not the same as AppleScript. Making an application
scriptable opens the door to control from other scripting languages in
the future.

Bibliography

Apple Computer, "Inside Macintosh: Interapplication Communication",
Addison-Wesley, 1993. This is the great mother ship for AppleEvent
and scripting information. For completeness, relative clarity, and
code samples, it is decidedly preferred to its predecessor, IM Volume
VI.

Dave Mark, "Ultimate Mac Programming", IDG Books, 1994. This is
the only source, other than the IM, for in-depth coverage of
implementing scriptability in one place. As usual, Mark provides a
cordial and painless introduction to his topic. This book also includes
(as appendixes) the Clark, Berdahl, and Simone (develop 21) articles
listed below.

Richard Clark, "Apple Event Objects and You", develop, Issue 10, May
1992. This fine article is notable in particular for its task-oriented
approach: it focuses on many of the issues that a scripting developer
will encounter.

Eric Berdahl, "Better Apple Event Coding Through Objects", develop,
Cal Simone, "Designing a Scripting Implementation", develop, Issue
Cal Simone, "Scripting Quandaries", develop, Issue 22, June 1995.
Cal Simone, "Thinking About Dictionaries", develop, Issue 23,
Greg Anderson, "Speeding Up whose Clause Resolution in Your
Cal Simone, "Steps to Scriptability", develop, Issue 24, December

1995.

