
Demo 1

NeuroLab™
Neural Network Library for Extend™

+
 Extend™

NeuroLab DEMO Manual

Copyright© 1994-95 by MIKUNI BERKELEY R&D CORP. All rights reserved.
Printed in the United States of America. The demo software describe with this manual may be copied. It may not sold or

distributed for commercial use. NeuroLab is a trade mark of MIKUNI BERKELEY R&D CORP. Extend is a trademark of
Imagine That, Inc. All other names used in this manual are the trademarks of their respective owners.

MIKUNIMIKUNI BERKELEY R&D CORP.
4000 Lakeside Dr. Richmond, CA 94806

TEL (510) 222-9880 FAX (510) 222-9884

E-mail: neurolab-info@mikuni.com

WWW: http://www.mikuni.com

Demo 2

NeuroLab DEMO manual (Version 1.2, August 1995)
COPYRIGHT© 1994-95 by MIKUNI BERKELEY R&D CORP. All rights reserved.

NeuroLab is a trademark of MIKUNI BERKELEY R&D CORP.
Extend and Imagine That! are trademarks of Imagine That, Inc.
Macintosh is a registered trademark of Apple Computer Inc.

NeuroLab library requires the Extend simulation application developed by Imagine That, Inc. IMAGINE THAT, INC.

SPECIFICALLY DISCLAIMS ANY AND ALL EXPRESS AND IMPLIED WARRANTIES INCLUDING, WITHOUT

LIMITATION, THE WARRANTY OF MERCHANTABILITY AND OF FITNESS FOR A PARTICULAR PURPOSE, AND

THE STATUTORY WARRANTY OF NON-INFRINGEMENT. In addition, Imagine That, Inc. will not be liable for any

special, incidental, or consequential damages of any kind, and whether arising out of breach of contract, warranty, tort

(including negligence), strict product liability or otherwise, even if advised of the possibility of strict damage or if such

damage could have reasonably been forseen.

The NeuroLab is an add-on library to the Extend simulation application. Just as for Extend, NeuroLab is licensed to be used

on only one computer at a time that is owned or operated by the user. If you or your company want to use the NeuroLab on

more than one machine, you must purchase a separate license for each machine.

Technical questions
For technical questions and customer support concerning NeuroLab, contact MIKUNI BERKELEY R&D CORP. For
technical questions and customer support concerning Extend, contact Imagine That, Inc.

About NeuroLab About Extend
Mikuni Berkeley R&D Corp. Imagine That, Inc.
4000 Lakeside Dr. 6830 Via Del Oro, Suite 230
Richmond, CA 94806 San Jose, CA 95119
Tel: 510-222-9880 Tel: 408-365-0305
Fax: 510-222-9884 Fax: 408-629-1251
E-mail: 72450.3237@compuserve.com

neurolab-info@mikuni.com
WWW: http://www.mikuni.com/neurolab

Demo 3

Contents

Installation and requirements iv

Chap. 1. Introduction 1
Before you try NeuroLab Models

What are artificial neural networks ? 1

What is NeuroLab 1
Blocks
Modeling
Applicable fields

NeuroLab™ feature summary 3

General rules of notations 3
Mathematical notation
Block colors
Connector types

Chap. 2. Examples 5
Exclusive or (XOR) example with educational blocks 5

Decoder example with feed-forward layer blocks 9

Character recognition example with Hopfield 11

Identification (nonlinear forward dynamics) example 12

Inverted pendulum control (feedback error learning method) 14

Travelling Salesman Problem (TSP) with feature map 16

Chap. 3. Block reference 20

Product information 53
Order form 54

Demo 4

Installation and requirements
This NeuroLab Demo v1.2 is executable only under the Extend 3.1 Demo program. If you already have Extend,
please run the examples from application. In other words, to run the examples in this software package, double click
application (Extend 3.1 Demo) first and open the examples from “Open” in the “File” menu.

The requirements of this NeuroLab™ Demo v1.2 are
Macintosh® II or later (faster machines with FPU are recommended)
Extend (demo version 3.1 is included)
System software 6.07 or up
7 MB free space to install NeuroLab Demo and Extend Demo on the hard disk.

NeuroLab Demo v1.2 comes with two high density floppy disks. Files in the disks are in a compressed format (except
NeuroLab ReadMe). To install,

• Insert disk labeled “NeuroLab Demo #1.”
• Double click file named “NeuroLab Demo Installer.” An installation window will show up on the screen.
• Select a destination drive for the installation by clicking “Drive” button.
• Click “Install” button to start the installation.
• Follow instruction to insert disk “NeuroLab Demo #2.”
• The installation is complete when you see dialog “The "NeuroLab™ Demo" has been installed successfully”
on your screen.

The installer creates a new folder named “NeuroLab Demo v1.2” in the destination drive’s (you just assigned) root
folder. All required files are put in the folder.

Demo 5

Chap. 1. Introduction

Before you try NeuroLab models
This manual is written under the assumption that you already have experience with the Extend program and Macintosh
computers. Users need to have some knowledge about Extend such as distinction of input and output connectors, how
to open a library and put blocks in the model, how to set simulation parameters, how to connect blocks, how to change
the parameters of blocks and so on. If you are not familiar with these topics, you might want to take a look at the
“Extend Demo Manual”, try to run the tutorial models in the “Tutorial” folder, and run some example models.

❐ What are Artificial Neural Networks ?
The human brain may be the most sophisticated biological neural network in the universe and is often much more
efficient, adaptable and tolerant than conventional computers in the fields of recognition, control and learning. For
example, a baby can easily distinguish its parents' faces every time, even though the faces appear in different
orientations or in different lighting. The number of neurons in the human brain is estimated to be the order of 10 11 and
the processing speed of a neuron is about 10-2 second. Although the processing speed of biological neurons is much
slower than that of digital computers, the massive parallel processing power of these neurons overcomes their speed
deficit. Most biological neurons have nonlinear responses to input stimuli to learn the nonlinearities of required
functions. The redundant structure of biological neural networks with sufficient numbers of neurons helps to make a
fault tolerant system because the contribution of one neuron/subnet is very small and can be covered by other
neurons/subnets by adaptation or learning. The nonlinearity of neurons, the massive parallel processing power and the
redundancy of networks are the most important reasons for the human brain's superiority.

The development of artificial neural networks was inspired by neuroscience, the study of the brain, biological neurons
and synapses. They are intended to mimic the behavior of biological learning and decision-making processes, without
trying to be biologically realistic in detail. Artificial neural networks are considered to be a simplified model of the
human brain used to solve difficult problems in conventional computers by conventional methods. Desirable features
and motivation for research in artificial neural networks are:

• highly parallel computation --- The developed algorithms can be implemented into special hardware/computers.

• system flexibility --- Networks can adapt to new environments by “learning.” The network does not have to be
programmed in FORTRAN or C.

• robustness and fault tolerance, as in the brain --- Nerve cells in the brain die every day without affecting its
performance.

• capability of handling imperfect information --- Networks can deal with fuzzy, noisy, incomplete or probabilistic
data.

Often “artificial neural networks” are referred to simply as “neural networks”. In this manual, “neural networks”
always refers to “artificial neural networks” unless they are specified as “biological neural networks”.

❐ What is NeuroLab ?

Demo 6

NeuroLab is a neural network library for the block-based simulation program Extend. It is a powerful and effective
tool for understanding, designing and simulating neural network systems. The blocks in this library can be used in
conjunction with other Extend blocks to create complex application models embedding neural networks. NeuroLab
consists of more than 70 functional blocks for artificial neural network implementation and many example models in
several professional fields.

The purpose of this library is to help users understand the basics of neural networks and to offer a convenient tool for
simulation of neural network applications. The field of neural networks has a history of only several decades and has
found solid applications only in the past ten years. Neural networks are still a developing field and flexible/powerful
tools are required for the development of algorithms, network structures and applications. With that tool, users can test,
modify, simulate and evaluate their models/ideas before the actual implementation. We believe that NeuroLab is an
ideal tool for educators, researchers and industrial engineers to explore the power of neural networks.

• Blocks
The functional blocks in NeuroLab are organized and structured to meet the requirements of many levels of end users.
For example, the educational blocks will help beginners to understand neural systems since each of these blocks is
designed to represent an exact mathematical calculation step in neural computing. NeuroLab also provides
intermediate blocks which give users the flexibility to build various neural network structures since these structures are
currently major research topics. Advanced/combined blocks serve in the speedy development and simulation of neural
network applications since significant software overhead is removed. Several types of neural networks are included in
NeuroLab to meet users' application requirements.

• Modeling
Thanks to the inherent features of the Extend program, NeuroLab also provides icon-based functional blocks for easy
implementation of high quality simulation models. Just click, drag and connect blocks to see how neural networks
learn and solve specific problems in real time. Users don't have to remember cumbersome commands or procedures to
build models.

Users can construct neural networks from individual neurons, single-layer networks or multi-layer networks depending
on which blocks are used. Network parameters such as the specific back-propagation methods, learning rates, initial
weights and biases, and neuron number and type are easily changed in the dialog boxes of the functional blocks. In
addition, familiarity with the Extend model simulation scripting language ModL allows you to modify the NeuroLab
blocks for your own purposes with customized icons, dialog boxes, and of course with your codes. You can also
include compiled program modules which are written in other languages using XCMD (external commands) and
XFCN (external functions) interfaces for Macintosh and DLL (dynamic-link libraries) for Windows.

NeuroLab provides many kinds of output blocks to monitor neural network status using vivid color displays and
animation in real time. The calculated results and final network status are easily saved to disk files for later simulation
and examination. Data is imported to the models by text files.

• Applicable fields

Demo 7

NeuroLab is applicable in any field where nonlinear mapping and adaptive capability are integral parts of problem-
solving. Data processing is perhaps the most prominent area for their utilization, especially in image processing
(character recognition, object recognition and image restoration), since neural networks can learn or memorize
nonlinear mappings between inputs and outputs. Another application of neural networks is adaptive nonlinear control
because neural networks learn and adapt to nonlinear dynamics. Medical diagnoses using large amounts of patient data
are one of the data classification examples which require nonlinear classification capability. Other fields include
optimization, approximation and future prediction of nonlinear problems. NeuroLab provides easy-to-modify high
quality examples in these areas. NeuroLab adds new dimensions for enhancing many applications.

❐ NeuroLab™ feature summary

• Interactive network parameters in the dialog box
Neuron numbers Neuron types
Initial weights & biases Learning method

• Various types of neural networks
Hopfield network Perceptron
Competitive networks Feature maps
Recurrent networks Context networks
Boltzmann machine Counterpropagation network
Single-layer feed-forward networks
Multi-layer feed-forward networks

• Many back-propagation options
Momentum method Adaptive learning rate
Normalized method Accumulated learning

• High quality application examples in many fields

• Network status monitored in real time

• Educational blocks for beginners

• Intermediate blocks for flexible-structure neural networks

• Advanced, combined blocks for speedy applications

• More than 70 functional blocks

❐ General rules (Color of block & Variable type) of notations

In this manual, the notations of certain items are distinguished by typeface for clarity. The typefaces for each item are
as follows:

Command menu items are enclosed in quotation marks ----> “Menu item”
Items in the dialog box are printed in italics ----> • Dialog item
Emphasized words are printed in italics ----> Concept word
The name of each block, model and library is printed in bold ----> Block name
The name of each connector is printed in italics ----> in, out, array

Mathematical notations
For clarity of mathematical understanding, the notation of variables are described here. A one dimensional variable
and a two or more dimensional variable are called vector and matrix, respectively.

Variable Example Explanation
Scalar w lower case
Vector W upper case with underline
Matrix W upper case with underline, bold type face

Thus the variables with underlines may have more than one element. The i-th element of a vector V and the element of

Demo 8

a matrix in the j-th row, i-th column are expressed by vi and wji respectively.

Demo 9

Scalar vs. Array
In the modeling with NeuroLab, the word array is used to refer to both vectors and matrices in order to clearly
distinguish these from scalars. Thus there are only two data types in NeuroLab block connectors: the scalar and the
array. The term array refers to all variables from one dimensional to five dimensional.

Block colors
All blocks in NeuroLab are grouped and color-coded according to their functions. The color of each block is defined
by the perimeter color of that block . Color coding is as follows:

Color Functions
Green Input from file or function generator as model input
Red Output to file or display results; animation blocks
Light green Dynamics and control
Light blue Basic function; data handling, data conversion
Brown Neural network blocks
Orange Educational blocks

This is convenient for making and interpreting models since it is possible to recognize the basic functions of the blocks
from their colors.

Connector names and colors
All blocks in NeuroLab have value input and output connectors (not item input and output connectors for discrete
event simulation; refer to the Extend manual for details). There are two types of value input and output signals: scalar
and array. If variables are combined into an array, model connections are simplified and easy to trace because there are
fewer connections between blocks. Most connectors of NeuroLab blocks are assigned to array signals (except in the
case of educational blocks) to take advantage of this. On the other hand, the user has to be careful not to mix up array
connectors and scalar connectors since a connection between an array connector and a scalar connector is possible and
might give the user garbage simulation results. To reduce user confusion between scalar signals and array signals, each
connector in the NeuroLab library is clearly specified by data types.

The array connectors are visually distinguishable by outer covers attached to the original value connectors (refer to
Extend’s manual). In addition, the connector name colors are assigned. The connectors which have underlined names
are assigned to array (light blue for input, dark blue for output). The scalar connectors’ (with names not underlined)
colors are green for input and red for output.

Variables Connector Color Sample
Scalar In Green in
Scalar Out Red out
Array In Light blue with underline netIn
Array Out Dark blue with underline netOut
Changeable Violet flex

All blocks for continuous simulation which come with the Extend program use scalar value input and output. Even
though data type checks are implemented in NeuroLab blocks, physical connections between scalar and array
connectors are possible. In this case, an error message will be displayed during execution and the simulation will be
stopped. The NeuroLab libraries provide three blocks to convert data types, Scalar to Array, Array to Scalar, and
Shift register.

Demo 10

Chap. 2 Examples

 Xor.Edu.Layered ÿ EDU_XOR2.MOX

 Xor.Edu.Mixed ÿ EDU_XOR.MOX

Exclusive or (XOR) Example with Educational Blocks

I. Model A — layered architecture using three neurons

II. Model B — flexible architecture using two neurons

Construction of the above two neural networks requires Adaptive Weighted Sum, Sigmoid, Linear, I/O Control and
BP Control blocks in NeuroLab. In addition, Input Data and Plotter I/O blocks in Extend generic and plotter
libraries are used to setup the desired input/output relationship to train the networks and to display simulation results.

Description

The XOR function can be considered as an input/output mapping,

Input 1 Input 2 Output
0 0 0
0 1 1
1 0 1
1 1 0

The function output is TRUE when one and only one of the two inputs is on and is FALSE when the two inputs are
both on or off. The exclusive or function can be interpreted geometrically as next figure.

Demo 11

It is easy to see from the figure that the function is not linearly separable. Thus, a simple perceptron that can handle
only linearly separable problems, doesn’t have enough freedom to achieve the input/output mapping of the XOR
function. Algebraically, it can be shown that a two-layer feed-forward neural network is capable of learning the XOR
problem. Intuitively, a two-layer perceptron that is able to handle mapping between two inputs and one output should
have at least three neurons, as shown in model A. Model B is an alternative network architecture that can achieve the
mapping of XOR function but uses only two neurons. Note the direct connections between input signals and the output
neuron.

Input 1

Input 2

1

1

0

0

— TRUE

— FALSE

A basic neuron has two basic functions — adaptive linear summation and nonlinear transformation. NeuroLab
provides Adaptive Weighted Sum and several nonlinear transformation blocks to simulate the two fundamental
functions. In the first model, we use three Input Data blocks for implementing of the exclusive Or logic. For building
the network, we use three Adaptive Weighted Sum blocks associated with two Sigmoid blocks and one Linear block
to simulate the hidden and output neurons. The I/O Control and BP Control blocks are introduced to handle the
forward and backward calculation flow of the network. Finally, a Plotter I/O block is used to monitor the accumulated
square error of the network’s computation. With these blocks, the construction of the Extend model is straightforward,

• Add proper Adaptive Weighted Sum and Sigmoid blocks to the newly created model window by selecting block
names from Library menu or by dragging block icons from the opened library window to the model window.
• Add an output neuron to the model. The output neuron consists of a Linear block and a third Adaptive Weighted
Sum block.
• Add an I/O Control and a BP Control blocks to the model to manage simulation orders of the network.
• Add three Input Data blocks to the model. The three blocks will be used to define the XOR logic.
• Add a Plotter I/O block to the model for monitoring the simulation results.
• Arrange the blocks in the model window accordingly and make the proper connections.

In the network, dialog boxes of the three Input Data blocks define the XOR logic which are used to train the network,

Demo 12

The data sequences are repeated every 4 seconds. Once the desired input/output relationships are defined, the user can
run the model and witness the decreasing of output error because all other blocks have their meaningful default values
and setups.

Which parameters you should change
During simulation, current neuron weights and biases are displayed in Adaptive Weighted Sum dialog boxes, and
square errors are plotted in the Plotter I/O window.
To further explore the power and flexibility of the model, we suggest that users examine the Adaptive Weighted Sum
block in detail, since parameters determining the learning processes, e.g., learning methods, learning rates, and initial
conditions, are defined in this block.

There are two back-propagation methods, simple and momentum, to be chosen in the Adaptive Weighted Sum block
dialog. Simple learning is

Δw ij = –η
∂E

∂w ij

and for momentum learning is

 Δw ij(t+1)=–η(1- α) ∂E
∂w ij

+ αΔw ij(t)

where E is output error of the network, and η and α are the learning rate and momentum parameter, respectively.
Furthermore, we can select one of the three provided weight/bias

Demo 13

initialization schemes for different situations. For example, by using same initial values of weights and biases, it is
easy to compare the convergence speeds of different learning methods. On the other hand, by using the most current
weights and biases, we can accumulate learnings from different simulations, therefore speed up the learning process
and shorten the total learning time. Additionally, if a good estimation of initial conditions doesn’t exist, we can assign
random small numbers as initial weights and biases. However, the network might sometimes converge to a local
equivalent point. In that case, we need to try other sets of initial conditions.
Among the educational blocks, there are six nonlinear transfer functions that can be applied for constructing of
neurons. In this model, the sigmoid function is used in the two hidden neurons. We can assign a positive number,
called temperature, to the sigmoid function,

In addition to the learning rate and momentum parameter defined in Adaptive Weighted Sum dialog, the temperature
also plays an important role in neural network convergence. Schematically, the temperature parameter affects sigmoid
functions in the following way,

High t emperat ure

Low t emperat ure

Therefore, nonlinearity of sigmoid function at low temperature is stronger than that at high temperature. In general, we
can increase convergence speed by reducing the temperature. However, if the temperature is too low, the computation
can be trapped by some local minimum or even become unstable. Try to find an optimal temperature for a certain set
of initial conditions.
At this stage, the network is ready for simulation. However, before running the simulation, we should have proper
simulation setups. In this problem, we chose

Demo 14

During simulation, the plotter block monitors square error of the network output. A typical simulation result is

which shows a gradually decreasing of the error. In the plot, the square errors are accumulated four times (specified in
BP Control block dialog) during simulation, because we have four sets of input/output relationships.

 Decoder ÿ DECODER.MOX

Two-bit decoder with single-layer network blocks

Description

This is an example of a two-bit binary decoder using a feed-forward network. The desired input-output relationship is
specified in a data file (the file name is “Decode.txt”). The format of this data file is simple and can be easily created
using a word processing program (don’t forget to save in “text only” format). The first row of this file is a comment
line. The second line specifies three parameters: the number of patterns, the number of inputs, and the number of
outputs. The data given below contains four patterns with two bit inputs and four bit outputs. In the next four rows

Demo 15

of data, the first two columns are the inputs and the last four columns are the corresponding desired outputs.

// Desired input-output relationships for the Decoder example
4 2 4
0 0 1 0 0 0
0 1 0 1 0 0
1 0 0 0 1 0
1 1 0 0 0 1

In this example, the redundancy of the neural network is tested. The minimum network to achieve this decoding
function is one hidden layer with two neurons and one output layer with four neurons.

The next graph shows the computed network outputs and desired outputs of one of the four output neurons. You can
see that the network outputs gradually converges to the desired outputs as learning progresses. You can specify the
view area of plotter by changing the minimum and maximum values of two coordinates.

150 162.5 175 187.5 200
-0.5

0

0.5

1

1.5

Time

Value
Plotter I/O

Network Desired

The weight and bias values can be monitored in real time using color animation in the Matrix Color Display block.
The display’s row corresponds to the neuron number in the current layer and the column corresponds to the neuron
number in its previous layer. The values close to zero are displayed in green color. Using this information you can
easily find out if one of the neurons is not necessary, because all connections to that neuron are displayed in green.

To see the color display of the weights and biases during simulation, make sure the “Show Animation” option in the
“Run” menu is on. You can specify how often animation is updated in the dialog box of the Matrix Color Display
block.

Which parameters you should change

To see different convergence speeds, change the learning rates or use other back-propagation options. To observe the
effects of the network structure, change the number of neurons of each layer or add/delete the hidden layers.

Demo 16

 Character Recognition ÿ CHARRECG.MOX

Character recognition example with Hopfield network.

Description

This example is a self-correlation memory test using a Hopfield network. The sample data and calculation method of
the Hopfield network used here are exactly the same as in [Lippmann, 1987]. The memorization method used in a
Hopfield network is different from the memorization methods of conventional computers. In the network, images are
stored in the pattern of weight values instead of the actual pixel values. After base images are stored in the network, a
probe image is presented to the network. If the probe image is close to one of the stored base images, this base image
will be retrieved.

The upper four characters shown with the model(12*10=120 bits/image) are base images and the probe image is a
character 3 with some added random noise. The weight values of the Hopfield network block are calculated from the
base images at the beginning of the simulation. Then the probe image is fed into the network for the initial states of
network neurons and, during simulation, the network neuron states are calculated until there are no further changes of
neuron states.

After calculation, a clear image of the character 3 is retrieved. The character display blocks animate the image digitally
according to the neuron states. The user can see the evolution of the output image (neuron’s output) at each calculation
step.

Which parameters you should change

To see another character image set, change the image file names. You can make image files easily using a word
processing program (don’t forget to save in “Text only” format). To see the effect of the stochastic neurons, change the
Hopfield block to a Boltzmann Machine block.

 Nonlinear Dynamics ÿ NL_DYN.MOX

Nonlinear forward dynamics identification

Demo 17

Description

This example is the identification of a nonlinear plant’s forward dynamics. To identify a nonlinearity, a hidden layer
with nonlinear neurons has to be included in the network. The nonlinear plant dynamics is described by a first order
nonlinear differential equation in the dialog box of the N/L Cont Plant block as text “x1dot = -3.0*x1^3 + u1”. Here
x1 is the output of the plant and also the plant state.

 dx1

dt
= –3.0x

1
3 + u1

The Shift Register block provides 10 sampled plant input data for the neural network. The general mathematical
expression for this identification is

 x
1
(k+1) = f(u (k),u (k–1),...,u(k–9))

This implies that the network tries to estimate the plant output from the history of only the input, since the input
usually affects the internal state. In other words, the neural network tries to estimate internal state effects from the
input of the plant.

If the function f() is linear, this is a FIR (finite impulse response) filter approximation which is often used for the
communication channel approximation in the signal processing field.

90 92.5 95 97.5 100
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Time

Value
Plotter I/O

|Error| Network Plant

Demo 18

The plot below shows the plant response and neural network approximation to the sine wave after the neural network
has been learning for 90 seconds. The user will notice that the plant has a nonlinear response to the sine wave input
and the neural network identifier has an excellent estimate of plant output.

This model can be used for nonlinear function estimation (without dynamics) if the equations in the dialog box don’t
have the derivative keywords “DOT” or “dot”.

Which parameters you should change

To investigate the capability for nonlinear identification, change the plant dynamics (order of plant, coefficients of
equations, etc.) and change the configuration (neuron type, neuron number, hidden layer number. etc.) of the neural
network. To increase the accuracy of the estimation, increase the amount of input data and the number of neurons in
the hidden layer. You will notice a calculation speed difference. To increase the nonlinearity of the network, reduce the
temperature of the neurons in the hidden layer.

 Inverted Pendulum ÿ INVPEND.MOX

Inverted pendulum control with feedback error learning.

Description

This adaptive control example uses a two-layer feed-forward neural network. The plant consists of the cart and the
inverted pendulum attached to that cart. The basic idea is to add the neural network to augment the state feedback
controller which is tuned for nominal parameter values at the vertical equilibrium position. The control objectives are
to balance the inverted pendulum and

Demo 19

to control the cart position. The neural network is a feed-forward compensator that improves the performance of the
state feedback controller by adapting to the nonlinear dynamics and parameter changes of the inverted pendulum.

This learning scheme is called “feedback error learning” [Kawato, 1987] because the output of the state feedback
controller is considered the error to be minimized. If the neural network learns the inverse dynamics of the plant, there
is no feedback error. Please compare the above model with the following block diagram to find out which parts are the
plant, which parts are the compensator and so on.

In this model, the Array Combiner block provides the inputs for the neural network. The Equation block is the state
feedback controller. Four plant parameters are set by the Constant block and the nominal values of the inverted
pendulum are listed on this model.

This compensator successfully increases the robustness of the control system to the pendulum's parameter variations;
thus, the control system performs better than the state feedback control alone as learning progresses. The use of an
advanced, combined two-layer feed-forward network greatly reduces model complexity and increases calculation
speed. The animation block shows the real time motion of the inverted pendulum and is a vital tool for presentation.

θ
xStateFeedback+Ref

States

States (x, dx/dt, θ, dθ/dt)

Neural NetworkController

Nonlinear Plant(Inverted Pendulum)

Two-Layer Feed-ForwardNeural NetworkNNC
FBC FORCE Position+

Demo 20

Which parameters you should change

To see how the neural network compensator increases stability with respect to parameter changes, change the
pendulum mass to 1.0 Kg from the nominal value 0.2 Kg. The performance of the controller gets better as the neural
network learning progresses. You can see that the neural network successfully compensates for this parameter change
in 5 seconds from the plot of force applied to the cart in the following graph.

0 10 20 30 40
-1

-0.5

0

0.5

1

Time

Value
Plotter I/O

Ref Theta Position Force

Then set the value of multiplier for signal NNC to zero to omit the effect of the neural network compensator. The state
feedback controller can’t balance the inverted pendulum for this parameter value.

Demo 21

To see the capability of nonlinear identification, change the configuration (neuron type, neuron number, hidden layer
number, neuron temperature. etc.) of the neural network. The user can try different plants or different control schemes
in this model.

 TSP FM ÿ TSP_FM.MOX

Traveling Salesman Problem (TSP) with Feature Map

Construction of the model requires Feature Map (2D to 1D), MNN Input, and XY Array Plotter blocks.

Description

The task of this example is to identify an optimal (or near optimal) closed path for traveling through a group of cities
with one and only one stop at each city. The first neural network approach to the TSP was by Hopfield and Tank in
1985, using Hopfield networks. This example demonstrates an alternative approach to the problem using a feature
map.

A feature map is a competitive network with information being conveyed in the neurons’ geometrical arrangement in
the network. By defining a neighborhood function, the winning unit and its neighbor neurons are able to learn during
simulation. We expect the network weights will finally be equal to the coordinates of the cities, if we repeatedly
present all city coordinates to the network.

For the TSP , network inputs are a set of points (city locations) on a plane and outputs are a closed line passing all the
given points. Therefore, the problem requires a feature map that maps data in the plane to a closed line (ring). During
learning, the ring will be stretched accordingly so that the final contour passes all given cities.

The feature map approach has one drawback when applied to solve the TSP. Because the overall learning processes are
unsupervised, there is no guarantee (or proof) that the achieved travel path is indeed the optimal one. However,
intuitively, we are convinced that it is at least a good solution since the path doesn’t intersect itself.

Functions of blocks shown in the model are summarized as follows.

• The MNN Input block provides data of city coordinates. In each simulation step, one set of city coordinates
(i.e., a two-element array) is passed, sequentially or randomly, to the connected network. In the example, we
generate 70 random numbers in the interval (-10, 10) to form coordinates for 35 cities located inside a 20 by 20
square region.

City 1 2 3 4 5 6 7 8 9
x 6.6868 4.5289 -3.4113 6.0417 2.6353 -5.0932 -9.1716 -6.9337 5.3413
y -5.3584 0.7306 -1.3876 -1.9284 9.7465 3.3382 7.0106 7.3503 -3.7679

Demo 22

City 10 11 12 13 14 15 16 17 18
x -8.7654 0.3861 8.583 -5.5897 -5.9087 -8.2201 3.9938 4.1292 -0.1074
y -7.0322 9.952 2.7905 -0.6385 8.6383 3.8155 6.3081 0.8307 1.4561

City 19 20 21 22 23 24 25 26 27
x -4.7644 4.2314 -2.4327 -5.9871 -5.3478 2.2781 -0.61 7.2237 9.5448
y -6.8157 8.905 6.4267 -6.8917 -9.1785 -5.1277 -7.7996 -8.0692 0.3755

City 28 29 30 31 32 33 34 35
x -1.1096 -9.3151 0.4754 -9.3672 5.0635 1.8318 6.4578 -3.4084
y -9.5519 1.2297 7.1375 0.3382 3.4905 4.7435 3.9692 -9.544

• The Feature Map (2D to 1D) block calculates and updates its weights for the winning neighborhood neurons.

• The Cyclic Array Separator block splits the weights into two arrays with x-coordinate and y-coordinate,
respectively.

• The XY Array Plotter displays cities and the computed contour for result visualization.

• The Shift Register block adjusts array length, since the XY Array Plotter block requires all inputs to have
same dimension.

The city data stored in a text file can be read, viewed and modified in the MNN Input block dialog. The data will then
be presented to connected network blocks one city at a time. In the dialog, we also decide that data will be outputted in
random or sequential order in the simulation. In general, the order doesn’t have significant effects on the feature map
results, if the neighborhood function is adjusted properly as learning progresses.

In the Feature Map (2D to 1D) block dialog, users are allowed to freely choose the number of neurons, learning
parameters and the weight initialization method. How many neurons is sufficient for handling the TSP with 35 cities is
not clear. We might suggest that 35 neurons may be enough. However, depending on the city locations and initial
conditions, it is possible that several neurons will converge to the same city. Therefore, it may be wise to choose a
number of neurons that is

Demo 23

equal to or greater than twice the number of cities. Here is the Feature Map (2D to 1D) dialog. We will have 100
neurons in the feature map simulation.

One important aspect of implementing a feature map is that we would like the learning rate and neighborhood size of
the network to be decreased gradually as simulation proceeds. In the dialog, we define both initial and final learning
rates and neighborhood size for the feature map. Here, both initial and final learning rates must be numbers between 0
and 1, inclusively.

For this problem, we need a ring type neighborhood function, since we are looking for a shortest closed loop trip. Also,
for the first run, we must set the initial weights to lie on a circle sequentially.

Here is a plot for initial network weights and city locations.

The initial weights are arranged sequentially around a circle centered at (0, 0) with radius 3.0. As an example, we
choose the initial and final learning rates to be 0.5 and 0.01; and the initial and final neighborhoods to be 3 and 1,
respectively. Typical results with these settings after 35 and 350 simulation steps are shown in the following figures.

Demo 24

As you see, the weight ring is gradually stretched out to fit the given cities. To fine tune the optimal traveling path, we
then reset the initial neighborhood size to 1 and use the latest weights to continue the simulation. After another 350
steps, a near optimal traveling path is achieved.

Which parameters you should change

You may further explore this example by:

• Changing the number of neurons in the Feature Map (2D to 1D) block and trying to use a minimum number of
neurons to achieve a near optimal traveling path.

• Using different initial and final learning rates and neighborhood sizes to see how they affect the speed of
convergence.

• Placing the initial weight ring at different locations with different radii. Do the changes affect the performance of the
feature map?

• Changing the settings in the MNN Input block to present the city coordinates in sequential order. Does this affect the
convergence rate?

• Trying to solve problems with more cities.

Demo 25

Chap. 3 Block references

❐ Adaptive Weighted Sum [Edu]

Weighted summation computation and weight/bias updates.

ws

bp

1 2 3 4
e

x

Inputs

Outputs

x1, x2, x3, x4: scalars, summation inputs and messages
bp : scalar, error feedback from following block and
message

ws: scalar, weighted summation result and message
e1, e2, e3, e4 : scalars, errors to connected blocks and
messages

Description

This is the only block of NeuroLab’s educational blocks that has a learning capacity. The Adaptive Weighted Sum
block, together with activation function blocks, forms one neuron. We recommend users pay extra attention to this
block while using the educational blocks to explore the structure and power of artificial neural networks.

This block performs weighted summation during forward calculation and updates weights/bias during backward
calculation. The maximum number of inputs to this block is four. Each input to this block, x, has a corresponding error
output, e, for back-propagation. The executions of the block are activated by messages instead of the simulation order
number of the block. When the block gets messages from all connected x connectors, the forward calculation will be
executed. In a forward calculation, the summation of bias and connected inputs multiplied by corresponding weights is
calculated. On the other hand, the backward calculation is executed when the block receives a message from the bp
connector. In the backward calculation, the block computes necessary corrections for the weights and bias using
simple or momentum back-propagation, and updates the weights and bias accordingly. The e connectors, if connected,
will send back-propagation errors (also computed in the backward calculation phase) to the connected blocks. Note
that, for a meaningful calculation, paired connectors x and e attached to the same color should connect to the same
block.

The two back-propagation methods are valid only when the bp connector is connected. If not bp is not connected, but a
back-propagation method is selected, the block will give users a warning message and temporarily switch itself to the
Hebbian rule with decay. If Hebbian with decay is selected, the information from the bp connector is ignored.

Dialog Choices

• Learning method: The choice of learning method to update weights and bias.

• momentum-delta: The momentum back-propagation algorithm will be used when this radio button is selected.

• simple-delta: The block uses simple back-propagation.

• Hebbian with decay: The Hebbian rule is used. This choice should be used when the block is connected to a
non-differentiable activation function.

• Learning rate: The learning rate of the neuron. This parameter is required for all three learning methods.

• Momentum parameter: The momentum parameter of the neuron. This parameter is needed only when momentum
delta is selected.

Demo 26

• w1, w2, w3, w4, b (initial value): The initial weights and bias of the neuron. The user can edit these values.

• w1, w2, w3, w4, b (current value): Displays updated weights and bias of the neuron during simulation.

• Weight/bias initialization: Choice of weight and bias initialization.

• Use random numbers: The random numbers uniformly distributed in the range bounded by two given
numbers.

• Use initial value column: The numbers given in the initial value column. This initialization method can
shorten the learning time if a set of good initial conditions is known.

• Use current value column: The numbers given in the current value column. Users can choose this method to
continue the learning process and hence gradually improve the performance of the network in different
simulation runs.

Connectors

• x (1-4): Each value inputted from x is multiplied with its corresponding weight to get the weighted summation during
forward calculation.

• ws: The weighted summation. A message is sent to all connected input connectors after forward calculation.

• bp: Receives error information and back-propagation message for backward calculation from a connected block.

• e (1-4): Sends error information and back-propagation message to all connected input connectors to activate the
back-propagation calculation of connected blocks.

Example

The educational blocks simulate elementary components of a neural network. They provide an ideal tool for modeling
small neural networks for illustration, presentation, and educational purposes. Here, we built a single neuron with two
educational blocks: an Adaptive Weighted Sum and a Sigmoid blocks.

Demo 27

❐ Array Combiner [Mis]

Combines arrays and scalars into one large array.

i1

i4

i5

i6

out

Inputs

Outputs

i1-i4: arrays, to be combined into a large array
i5, i6: scalars, to be combined into a large array

out: array, combined large array
info: array, dimension information

Description
The purpose of this block is to gain flexibility in data handling for scalars and arrays. This block combines four arrays
and two scalar signals into one large array. Four array input dimensions are automatically detected if this block is
connected to NeuroLab blocks. The total number of elements in the output array will be animated on this block during
simulation. The order of elements in the combined array is array in i1, i2, i3, i4 and scalar in i5, i6. The following
diagram shows how input arrays and scalars are combined. The dimension of the output array is m =
n1+n2+n3+n4+1+1 if all input connectors are connected. If some input connectors are not connected, their
corresponding input dimensions are set at zero. The counterpart block which separates an array into several arrays is
Array Separator.

input 1 : i1

input 2 : i2

input 3 : i3

input 4 : i4

input 5 : i5

input 6 : i6

Separat e

Combine

out put : out1

m

n1

n2

n4

1

1

1

1

(n 3 = 1)

Array combination and separation

Dialog choices

• Output array dimension: The dimension of the output array will be displayed.

Demo 28

• Input array dimensions: The dimension of each input array. If this block can not detect array dimensions, user have
to enter values.

Connectors

• i1 - i4: The input connectors correspond to the dialog choices Input 1 through Input 4, with the top connector number
1 and the bottom connector number 4.

• i5, i6: The scalar inputs.

• out: The output is a combined array.

• info: The output diamond connector supplies dimension information to the Array Separator block for array
separation.

❐ Array to Scalars (4) [Mis]

Gets up to four element values from an array and converts to scalars.

Inputs

Outputs

u : array

n1, n2, n3, n4 : scalars, selected array elements

Description

Most block connectors in NeuroLab pass arrays during simulation. There are many cases where users will need to
monitor a specific element of the passed arrays. For example, to plot variables in the neural networks, probably you
need this block because the Plotter I/O block in Extend’s ()Plotter Lib or (ÿ) PLOTTER.LIX handles only scalars.

Dialog choices

• Dimension of input array: Shows the dimension of input array.

• Channel 1, channel 2, channel 3, and channel 4: Each channel corresponds to an output connector. For example
channel 1 corresponds to the n1 connector.

• Element: The indices of array elements that will be passed to the output connectors.

• Values: Displays values of the selected elements.

Connectors

• u: Input array to this block.

• n1, n2, n3, and n4: Each connector, if connected, can output a chosen element of the input array.

❐ Binary Image Display [Mis]

Displays 1-bit (black & white) image in 2-D space.

Demo 29

Inputs

Outputs

array, image matrix (maximum dimensions are 16 by 12)

array, image matrix

Demo 30

Description

This block displays black and white (1-bit) image with dimension of up to 16 rows by 12 columns. It can be used to
display the input, output and base images of a Hopfield network. To see the image during simulation, users have to
turn on “Show Animation” under Extend’s “Run” menu.

Dialog Choices

• Number of images: The number of images stored in the input array.

• Image size: Displays or sets the dimensions of the input images.

• Rows: Image height in pixels.

• Columns: Image width in pixels.

• Show image: Choose to update the image during or after simulation.

• Multiple image display: Specifies how multiple images will be displayed.

• All: Displays all input images sequentially.

• Only one: Displays only one selected images.

• Image pixel size: The number of pixels that will be used to display one image bit. For example, pixel size=5 means
that the square area defined by 5 by 5 pixels in CRT is assigned for one bit of image.

Connectors

Both input and output connectors pass arrays which contain the same black and white images.

Demo 31

❐ Binary Image File In [Mis]

Reads a binary 2D image data from disk for Hopfield networks.

Inputs

Outputs

None

x: array, image data

Description

This block reads a image data from disk files which stored information in text format. The Hopfield and Boltzmann
Machine blocks use this block to input binary images. A binary image pixel (bit) can have only two states and their
values +1 and –1 indicate the on and off of an image pixel, respectively. The text files that will be read by this block
should have the following format:

Line 1: Comments (optional)
Line 2: n (integer)
Line 3: r1 (integer) c1 (integer)
Next r1 rows: Tabulated data (real number, r1 rows, each row has c1 column
Line r1+4: r2 (integer) c2 (integer)
Next r2 rows: Tabulated data (real number, r2 rows, each row has c2 columns)
etc.
Note: Data after non-numerical characters in each line are omitted

where n is the number of images stored in the file and, r1, r2, c1, and c2 are the row and column dimensions of the
input images, respectively.

Dialog Choices

• Read: Reads the specified data file. If the file name is unspecified before simulation or if the file cannot be found, a
standard file-open dialog will be opened so that the user can select the proper data file.

• Number of images: Displays the number of data sets in the input file.

• Image size: Displays the row and column dimensions of the input image.

• Column delimit: A selection of the column delimit character.

• File name: Name of the text file that stores the image data.

Connectors

• x: The array output connector. The block passes data containing binary images in array form at beginning of
simulation.

Demo 32

❐ BP Control [Edu]

Computes output errors & activates back-propagation (for educational blocks).

|e|

BP
Control

Error

ynyd

Inputs

Outputs

yn: scalars, neural network outputs and messages
yd: scalars, desired outputs and messages

error: scalars, network output errors and messages
|e|: scalar, accumulated root-mean-square error.

Description

This block is designed to be used with educational blocks for controlling simulation orders. It will compute neural
network output errors and activate backward calculation of the network when all corresponding yn and yd data are
ready. The block can handle at most four outputs from output neurons of a network. For meaningful results,
corresponding yn, yd and error connectors, which have the same color, should be connected accordingly.

Dialog Choices

• Accumulate |error| every __ steps: The number of simulation steps for accumulating root-mean-square error |e|. The
plot of |e| will be smoother if the value is equal to the number of training I/O sets. If this number is one, current error
is outputted.

• Current accumulated |error|: Displays the accumulated error.

• Stop learning if accumulated |error| < : You can specify the minimum value, at which it is considered that the
network has learned the problem to a certain accuracy, to stop the simulation.

Connectors

All connectors of the block are scalar connectors.

• yn: Four input connectors at the left of the block. These connectors receive computed results from the neurons.

• yd: Four input connectors at the right side of the block. These connectors receive the desired outputs of neurons.
Usually, these connectors are connected to I/O Control block.

• error: The block calculates the difference between yd and yn (in the same color), and passes the result to the four
corresponding error connectors. The error connectors then send messages to connected blocks to activate backward
calculation.

• |e|: Accumulated root-mean-square error between the desired and network outputs. The steps for accumulation can be
set in the block dialog.

Example

Demo 33

ws

bp

1 2 3 4
e

x

T

u

 f

f'

bpδ

|e|

BP
Control

Error

ynyd

Control
I/O

y d

x BP Control
I/O Control

❐ BP Delta Sum [Edu]

Sums up the errors for back-propagation delta.

δ
s

Inputs

Outputs

δ: scalars, back-propagation errors and messages from
connected function blocks

s: scalar, summation of all input δ’s and message

Description

This block is intended for use with educational blocks to sum up the errors for back-propagation when the model has
multiple errors that will back-propagate to the same Adaptive Weighted Sum block (i.e. multiple neurons and
multiple layers). This block is required for simulating multiple output networks with educational blocks.

Dialog Choices

The input value(s) and summation result are displayed in block dialog during simulation.

Connectors

• δ: Back-propagation errors from the e connectors in the Adaptive Weighted Sum blocks.

• s: The summation of all input back-propagation errors. This connector should be connected to the bp connector in the
transfer function blocks like Sigmoid, Tanh, Linear, etc.

Example

The following model is the part of muti-layer feed-forward network. The BP Delta Sum block accumulates back
propagation errors and passes to the previous layer neuron.

Demo 34

ws

bp

1 2 3 4
e

x

T

u

 f

f'

bpδ

ws

bp

1 2 3 4
e

x

ws

bp

1 2 3 4
e

x u
f

f'

bpδ

u
f

f'

bpδ

δ
sBP Delta Sum

ws

bp

1 2 3 4
e

x u
f

f'

bpδ

Error-1

Error-2

Error-3

No. N layer

No. N+1 layer

❐ Hopfield [Net]

Hopfield network with discrete output neurons.

Inputs

Outputs

x: array, probe data, initial states of neurons
db: array, data base for setting of network weights

d: array, network output, retrieved image

Description

A Hopfield network contains McCulloch-Pitts neurons that are fully connected to each other without self-looping. The
connections among neurons of a standard Hopfield network are symmetric. Operations of a Hopfield network can be
divided into a storage phase and a retrieval phase. Strictly speaking, there is no training in a Hopfield network because
its weights are prescribed and do not change during simulation.

A typical application of Hopfield networks would be to build a network that stores content-addressable data or
information. For the image processing application, one neuron corresponds to one image pixel. Since this block uses a
discrete activation function, the outputs of neurons are suitable for black and white images.

The weights between neurons are determined from the base data or images supplied from the db connector. The probe
data are supplied from the x connector and set initial states (neuron states: fired or non-fired) of the network. During
the simulation, the states of network evolve and gradually settle to some equilibrium point. However, the equilibrium
point may or may not be exactly the pre-stored data or information.

Dialog Choices

Demo 35

• Calculate weights before simulation: If checked, the block uses the base images inputted from the db connector to
calculate the network weights before simulation.

• Number of images: The number of images stored in the network for future retrieving.

• Image size: Displays or sets the row and column dimensions of the input data or images.

Connectors

All three connectors pass arrays.

• x: The input image or pattern to be tested by the network. The data is also called “Probe image” which is the initial
state of the network.

• db: The image database that will be used to set the network weights.

• d: The pattern or image corresponding to x that is retrieved by the network.

Example

This is the character recognition example discussed in Chapter 4.

❐ Inverted Pendulum Animation [Mis]

Animates the motion of an inverted pendulum with position and angle.

x

θ Inputs

Outputs

x: scalar, cart position (meter)
θ: scalar, pendulum inclination angle (degree)

none

Description

The position and orientation of an inverted pendulum are supplied to the block for real time animation. The animation
window is attached to the right side of the block. Pendulum inclination angle is limited to ±45°. Control of the inverted
pendulum is considered to have failed when the inclination angle becomes greater than 45°. If control fails, the block
generates a beep sound and then stops the simulation.

The pictures animated during simulation are stored in the resource file NeuroLab.rsr in the () Extension folder of
Extend or (ÿ) EXTENSNS directory of Extend. Users can replace this resource

Demo 36

file and modify the script in the block to make their own animation blocks using the same technique.

Dialog Choices

• Update steps: Number of simulation steps for which the animation picture will be updated periodically.

• Animation window: The size for the animation window is determined by the number of screen pixels. Then that
window is assigned to the specified physical distance. If the width is assigned 4 meters, the animation window’s
horizontal limits correspond to -2 m and 2 m. The height of the window will be adjusted automatically to maintain the
proper aspect ratio.

• Current position: Shows current cart position.

• Current angle: Shows current inclination angle of the pendulum.

• Animate now: Replays previous animation results without running the simulation.

• Hide simulation: Hides simulation window from current model window.

• Clear data: Clears all stored animation data.

Connectors

All input connectors pass scalars.

• x: Position of cart in meter.

• θ: Inclination angle of the inverted pendulum in degree.

Animation

To see the animation results during simulation, you have to turn on the “Show Animation” option under Extend’s
“Run” menu.

❐ I/O Control [Edu]

Controls and activates the forward calculation of networks (educational).

Control
I/O

y d

x

Inputs

Outputs

yd: scalars, desired outputs
x: scalars, network inputs

yd: scalars, desired outputs and messages
x: scalars, network inputs and messages

Demo 37

Description

This is the block that should be used as an interface between networks built by educational blocks and their outside
systems. The block collects all possible inputs and desired outputs, then passes the data to blocks that are connected to
its output connectors and activates forward calculation in the network. The block can handle up to four inputs and four
desired outputs. Usually, the yd output connectors are connected to the BP Control blocks for computing output errors
of the network.

Connectors

All connectors pass scalars. The four input connectors at the upper left portion of the block get desired output data
from the outside system and pass it to the four output connectors at the upper right corner, accordingly. Similarly, the
four input connectors at the lower left portion of the block get network input data from the outside system and pass it
to the four output connectors at lower right corner.

Example

Below is an adaline network with four inputs and one output.

y

e
Aladine

|e|

BP
Control

Error

ynyd

Control
I/O

y d

x

❐ Lin Disc MIMO [Ctl]

Linear Discrete Multi-Input Multi-Output plant. Its dynamics are specified by a transfer function or first-
order difference equations.

u y

st

Gp(z)
Inputs

Outputs

u: array, plant inputs (dimension = plant inputs)

y: array, plant outputs (dimension = plant outputs)
st: array, internal states (dimension = system order)

Description
This is a linear multi-input multi-output (MIMO) discrete plant block (a discrete version of Lin Cont MIMO block).
Plant dynamics can be specified by either a transfer function (TF, only applicable to single-input single-output (SISO)
case when the input and output would be connected with a one element array) or a state space (SS) description. States
are time-dependent internal variables whose dynamics are described by first-order difference equations. The plant
order is the number of first-order difference equations. The maximum plant order is 6. All connectors require array
type signals.

The general form of the TF description is expressed as a ratio of polynomials in the sampling operator z (compare with
the Laplace operator s in the continuous case).

 Y(z)
U(z)

=
bnz n+...+b1z+ b0

anz n+...+a1z+ a0

Demo 38

Here bj, aj are coefficients of the j th power of z in the polynomials. The operator z means one time step advance (one

sampling period ahead). If you divide both numerator and denominator by zn, and express the reciprocal of z-j (i.e. j
steps delay), you can rewrite the transfer function into a difference equation.

State space representation is expressed in matrix form of difference equations.

 X(k+ 1) =ΦX(k)+ ΓU(k)
Y(k) =CX(k)+ D U(k)

Where Φ, Γ, C and D are system matrices whose dimensions depend on the numbers of inputs, outputs, and the system
order of the plant. X(k), Y(k) and U(k) are states, outputs and inputs at the k-th step, respectively.

Dialog choices

• System order: Plant order (maximum is 6).

• Inputs: Number of plant inputs (maximum is 6).

• Outputs: Number of plant outputs (maximum is limited to 6).

• Plant description: Choose the plant description from transfer function (TF) or state space (SS). Transfer function
description is only applicable to the SISO case.

• Convert: TF-->SS: Converts the plant dynamic description from TF to SS type. This conversion is achieved
by using a control canonical form.

• SS-->TF: Converts SS to TF description. A controllability matrix is used for this conversion and its singularity
is checked for proper conversion.

• Transfer Function: The coefficients of the transfer function polynomial using the sampling operator z. Accessible
coefficient boxes are determined by the plant order. If the plant is second order, the applicable coefficient boxes are b2,
b1, b0, a2, a1 and a0. Boxes on the left side always correspond to higher power of z.

• State Space: Four system matrices and the initial conditions of the plant are typed into the table by selecting the radio
buttons.

Demo 39

• Phi, Gamma, C, D matrices: System matrices correspond to first order difference equations. Each matrix's
appropriate dimension is displayed above the upper right corner of the table. Typed-in values are accepted only
inside of appropriate dimension. Note that the table index starts at 0 instead of 1.

• Initial condition: This column vector is used for the initial condition of the plant states.

Connectors

• u: The plant inputs. The array dimension should be equal to the input number. If this is not connected, input values of
zero are assumed.

• y: The plant outputs. The array dimension is the output number.

• st: The internal states of the plant. The array dimension is the plant order.

Example

This is a simulation set-up for the Lin Disc MIMO block. Notice that the connectors for the input and output of the
plant require array type connections. Please use the Array to Scalars and the Scalars to Array blocks for array to
scalar and scalar to array conversions.

❐ Linear [Edu]

Linear transfer function specified by slope and offset.

u
f

f'

bpδ
Inputs

Outputs

u : scalar, function input and message
bp : scalar, output error and message

f : scalar, function output and message
f’ : scalar, function derivative
δ : scalar, back-propagation delta and message

Description

A linear relationship, f(u) = slope*(u-offset), is implemented in the block. The block performs two types of operations,
forward and backward calculations. The executions are activated by messages instead of the simulation order number
of the block. In the forward calculation, the block outputs the function value f(u) and its derivative f'(u). The δ
connector outputs the back-propagation delta to the Adaptive Weighted Sum block for back-propagation learning.

When the u connector is NOT connected to the Adaptive Weighted Sum block, the block follows the simulation order
assigned by Extend and executes only forward calculation.

Dialog Choices

Demo 40

• Slope: The slope of the linear function.

• Offset: The function crosses the x-axis at this value.

• Input: Displays the input of the function.

• Output: Displays the output of the function.

Connectors

All connectors pass scalars.

• u: The function input. Also, the received message activates the forward calculation.

• f: The function output. The message is sent after the forward calculation.

• f ’: Calculated function derivative (same as the slope).

• bp: The output error from down-stream block. The received message activates the backward calculation which
updates weights and biases.

• δ: The value to be passed to the Adaptive Weighted Sum block for back-propagation learning. The message is sent
after the backward calculation.

❐ Madaline [Net]

Many adaptive linear elements.

w b

W B

e
x

Y

Many
Adalines

Inputs

Outputs

x : array, inputs of the network and message
e : array, output errors and message
w : array, initial weights in matrix form
b : array, initial biases

Y : array, outputs of the network and message
W : array, current weights in matrix form
B : array, current biases

Description

A Madaline block contains a layer of adaptive linear elements that are trained by the normalized Least Mean Square
(LMS) learning rule.

Dialog Choices

• Number of neurons: Specifies the number of adalines in the block.

• Learning rate: Specifies the network’s learning rate.

• Weight/bias initialization: Select a method for the initialization.

Demo 41

• Random numbers: Initializes initial weights and biases of the network as random numbers bounded by two
values that can be specified by users.

• Latest results: Uses current network weights and biases as initial condition for the simulation.

Connectors

• x: Inputs array to the network. All inputs are fully connected to neurons in the block.

• e: Errors between the desired and computed outputs. The network will be trained by the LMS rule if the connector is
connected. Otherwise, decayed Hebbian learning will be executed.

• Y: Network output array that is equal to weighted summation over the network inputs.

• w: Inputs initial weights to the block if connected.

• b: Inputs initial biases to the block if connected.

• W: Outputs current weights for display.

• B: Outputs current biases for display.

❐ Matrix Color Display [Mis]

Displays matrix element values in continuous colors. One square box represents a matrix element and its
normalized value.

Inputs

Outputs

w : array, network weight matrix
b : array, network bias array

none

Description

The weights and biases of neurons are essential parameters in understanding the relative significance of each neuron in
the network. The library provides several ways for the user to examine the weights and biases of each neural layer.
This block uses Extend’s color animation feature to display the relative magnitude of weights and biases in color. Each
square box represents one weight or one bias. The blue and red colors represent the specified lower and upper limit
values, respectively. The intermediate color is generated by interpolation if the value is between these two specified
values.

In general, this block can be used to display any matrices and arrays. However, it is used to display current weights
and biases of a neural layer most of the time. When the block is connected to MNN

Demo 42

Hidden Layer and MNN Output Layer blocks, it has the ability to set the input matrix dimensions automatically (in
this case, the row number corresponds connected layer’s neuron and the column number corresponds previous layer or
input).

Users who build their own blocks and would like to use the auto-dimension function should have their blocks send out
the special array containing the dimensional information (see Appendix D).

Dialog Choices

• Number of matrices: The number of matrices in the input array.

• Matrix dimension: Displays or sets the dimensions of the input matrix.

• Display after simulation: Displays the result only at the end of simulation.

• Display during simulation: Updates the color display during simulation.

• Update colors every _ Steps: When “display during simulation” is selected, the block updates the color display at
every specified number of simulation cycles.

• Upper limit (red): If the element value is greater or equal to this value, a red color square is displayed at
corresponding location.

• Lower limit (blue): If the element value is smaller than or equal to this value, a blue color square is displayed at the
corresponding location. If the element value is between the above two values, the color is generated by interpolation.

• Auto scale: Sets the upper and lower limit of the display according to the maximum and minimum elements of the
input matrix when this button is clicked.

Connectors

Both connectors pass arrays.

• w: In general, this array connector inputs a two-dimensional matrix. Most of the time, it is connected to the current
weight matrix of a feed-forward neural layer.

• b: In general, it can be connected to any vector, but in NeuroLab applications it is connected to the current bias array
of a feed-forward neural layer.

Animation

Colors will change according to values of the weight matrix and bias array. Maximum values are displayed as pure red
and minimum values are pure blue.

Demo 43

❐ MNN BP Control [Net]

Calculates output errors and activates back-propagation.

Inputs

Outputs

+ : array, desired network outputs and message
– : array, calculated network outputs and message

E : array, output errors and message
1 : scalar, specified element of the (+) array
2 : scalar, specified element of the (–) array
3: scalar, specified element of the error array
4 : scalar, the accumulated RMS error

Description

The MNN BP Control block takes in two arrays from the + and – input connectors, computes the difference between
the two arrays, and passes the result to the E connector. In addition, users can choose to output specified element in the
+, – and error arrays, as well as the accumulated error, by using the four value connectors at the bottom of the block.

When the block is applied in a multi-layer feed-forward neural network, its main function is to compute the error
between the network and desired outputs. In this case, the + connector is connected to the desired outputs and the –
connector is connected to the network outputs. The output error array is then computed and directed back to the e
connector in the MNN Output Layer block or other feed-forward network blocks which will activate the network’s
back-propagation learning process.

Dialog Choices

• No back-propagation for ? step: This option forces the back-propagation errors to be zeros during the first specified
simulation steps.

• Array size: Displays the dimension of the input arrays.

• Channel 1, 2, 3 - element _ of: Indices for the elements of the +, – and error arrays to be passed through the 1, 2 and
3 output connectors.

• Steps for |error| accumulation: The simulation cycle number for accumulation of RMS error (root mean square of
error array).

• Stop simulation when ‘channel 4’ is less than: If checked, the simulation will be stopped when the accumulated RMS
error is less than that specified value.

Connectors

Demo 44

The connectors on the left and right hand sides of the block pass arrays. The four connectors at the bottom of the block
pass scalars.

• + and –: Two arrays are passed into this block through these two connectors. The two arrays must have the same
dimension. If both connectors receive the messages, then the difference is calculated.

• E: The array subtraction result is passed through this connector. The message is sent to connected blocks after the
calculation.

• 1: Selected element of the + array.

• 2: Selected element of the – array.

• 3: Element of error array.

• 4: The accumulated RMS error.

❐ MNN Hidden Layer [Net]

A hidden layer in a multi-layer feed-forward network.

5 G

Z

η

Inputs

Outputs

x: array, layer input and message
e : array, back-propagation error and message
w : array, initial layer weights
b : array, initial layer biases

Y : array, layer outputs and message
δ: array, back-propagation error and message
W : array, current layer weights
B : array, current layer biases
η: scalar, current learning rate
Z: array, activities of neurons

Description

A typical multi-layer feed-forward neural network contains an input layer, several hidden layers, and an output layer.
The network is connected to the outside world through the input and output layers. This block represents one layer of
hidden neurons in a multi-layer feed-forward neural network. The number of neurons must be specified before
simulation is started. The back-propagation function will work when it is turned on in the MNN Output Layer block
and the e connector is connected so that the block can get the back propagation error signal from its following layer.
Note that the forward and back-propagation calculations for the entire network are activated by messages and are
controlled by the MNN Input, the MNN Output Layer and the MNN BP Control blocks. The simulation order,
which is assigned by Extend, of blocks inside the neural network is insignificant for the simulation result.

Dialog Choices

• Neuron number: The number of neurons in this hidden layer.

• Learning rate: The learning rate (η) for the neurons in this layer (default value: 0.25).

• Momentum parameter: The momentum parameter (α) for neurons in this layer (default value: 0.5). This parameter
works only when momentum method is selected.

• Activation function: A choice of transfer functions for the neurons from sigmoid, hyperbolic-tangent and Gauss
functions.

• T/D: The temperature of sigmoid and hyperbolic-tangent function, or standard deviation for Gauss function.

Demo 45

• Back-propagation methods: Select a back-propagation method applied in this hidden layer. Note that the block will
perform back-propagation only when the back-propagation switch in the MNN Output Layer block is turned on.

For a simple learning algorithm,

Δwij = η δi uj fh'

For a momentum learning algorithm,

Δwij(k) = (1 - α) η δi uj fh'+ α Δwij(k-1)

The check box options, normalized and accumulate can be turned on individually so that there are eight
combinations for the learning method.

• Weight/bias initialization: The method selected here will be used to initialize the initial weights and bias for this
block when wi and/or bi connectors are not connected. Currently, there are two initialization algorithms to choose
from. One is to set the initial values as uniformly distributed random numbers between two specified values; the other
is to use the last simulation results to continue the simulation. The initialization method is omitted when wi and/or bi
connectors are connected.

• Save: Saves current weights and biases of the layer to a text file. The file format is listed in Weight/Bias File In
block.

• File name: The file name that will be used to save current weights and biases when the Save button is clicked. The
path name must be added before the file name if you want to save the file to other than the current directory. If the file
name is not specified, the standard file save dialog is displayed and requests your response.

Connectors

The η connector passes a scalar. All other connectors are array connectors.

• x: The block gets its input array from this connector. The inputs are fully connected to neurons in the block. The
received message activates the forward calculation.

• δ: The back-propagation delta calculated in this layer is sent to the previous layer through this connector. The
message is sent after the backward calculation.

•Y: The layer outputs. The message is sent after the forward calculation.

• e: The block uses this connector to get the error and other necessary information from the following layer so that
back-propagation can proceed. The received message activates the backward calculation.

Demo 46

• W: If connected, the block sends out current weights during simulation.

• B: If connected, the block sends out current biases during simulation.

• w: If connected, the block will get initial weights from this connector before simulation.

• b: If connected, the block will get initial biases from this connector before simulation.

• η: Current learning rate of this hidden layer.

• Z: Current activity levels of this hidden layer neurons.

Animation

Displays neuron numbers and neuron nonlinearity in the block icon.

Example

The model below shows the basic structure of a feed-forward network.

❐ MNN Input [Net]

Input units that control forward calculation in a multi-layer networks. Data for network is supplied from
connector, data file or data table in the dialog box.

y d

x

Inputs

Outputs

x: array, network inputs
yd : array, desired network outputs

X: array, inputs to downstream networks and message
Yd : array, desired output corresponding to X and
message

Description

This block is an important interface between networks built by ()NeuroLab Net Lib, (ÿ)NLAB_NET.LIX library’s
blocks and other blocks. The block processes input and desired output information for multi-layer feed-forward neural
networks. The important information of data is the number of I/O data sets and the dimensions of input and output
arrays. The block operates in two ways, depending on how it is applied or connected in the model. If the array input
connector x is not connected, the information can be read from a data file or from editable data tables in the block
dialog. If the input connector x is connected, this block resets the number of data sets to one and simply passes the
input array from x to X and passes the desired output array. In this case, the block will check the number of inputs and
outputs and display on the icon. The dimensions of the input and output arrays cannot exceed 512.

The block also activates and controls the execution of the forward calculation by sending a message through X
connector to the MNN Hidden Layer or the MNN Output Layer blocks.

Dialog choices

Demo 47

• Passes input/output data: Select one of the data sequences from sequentially or in random order. This option has
meaning only there are more than one data sets. Sometimes, random data presentation gets faster leaning.

• Clear: Clears all entries in the dialog box (data table, file name and other variables).

• Read: Reads input and desired output data from a file. The data file must be saved in ASCII format with items being
separated by the column delimiter. The first 2 lines contain the dimensional data information. From line 3, each line in
the file contains one set of input-output data. Format summary is

Line 1: // Comments (optional)¶
Line 2: nSet, nInput, nOutput¶

(3 integers - the number of I/O data sets, inputs and
desired outputs, separated by the column delimiter)

Line 3: The first set of I/O data; first inputs, then outputs¶
(nInput+nOutput real numbers, separated by the column
delimiter)

Line 4: The second set of I/O data
......

• Save: Saves the comments, the number of data sets, inputs and outputs, and data in input and desired output tables to
a file with the name specified in file name.

• Save as: The same operation as Save button except to save to the different file. A standard file dialog window is
opened for the user to enter the file name.

• Get I/O data from: Choose I/O data source from a disk data file or the data table in the dialog box. If the input
connector x is connected, this selection has no meaning.

• data file: Data for the network is supplied from the disk file.

• File Name: File path name to which the data is read or saved. If you enter a path name for Macintosh, you can
specify folders by using colons (such as “My disk:Data folder:Data file”); otherwise, current path is used. For
windows, the path name is ”MYDISK\DATADIRC\DATAFILE”.

• Column delimiter: The character which delimits the columns in the data file.

• data table: Data for the network is supplied from the data table in the dialog box.

Demo 48

• Sets: The number of data sets of input and desired output relationships. If the connector x is connected (often
happens in the applications with networks), the number will be set to 1 automatically.

• Inputs: The number of inputs to the network.

• Outputs: The number of outputs of the network.

• Current set #: Indicates which I/O data set is being shown in the tables of neuron inputs and desired outputs.

• Table of neuron inputs: A data table with 512 rows in which users can check and modify the neuron inputs. In
simulation, the table is updated in every step to track current inputs to the neural network.

• Table of desired outputs: A data table with 512 rows in which users can check and modify the desired outputs
corresponding to each set of neuron inputs. In simulation, the table is updated in every step.

• Show previous set: Displays previous set of data in the tables.

• Show next set: Displays next set of data in the table.

Connectors

• x: If connected, the received data is passed to the connected network through the X connector. In this case, data
source selection is overridden.

• X: Input data to the connected neural network blocks. The message is also sent to the connected blocks.

• Yd: Desired output data to MNN BP Control block to calculate the output error for back-propagation learning. The
message is sent at every simulation step.

• yd: Desired output data from the outside of the networks. The received data is passed to the output connector Yd.

Animation

The icon indicates the number of data sets and dimensions of input and output arrays.

❐ MNN Output Layer [Net]

An output layer in a multi-layer feed-forward network.

Inputs

Outputs

x : array, layer inputs and message
e : array, output error from MNN BP Control block and
message
w , b : array, initial layer weights and biases

Y : array, layer outputs and message
δ : array, back-propagation delta and message
W , B: array, current layer weights and biases
η : scalar, current learning rate
Z : array, activities of neurons

Description

This layer contains all output neurons in a multi-layer feed-forward neural network. Like the MNN Hidden Layer
block, this block performs both forward and backward calculations which are activated by the messages at each
simulation step. Moreover, this block controls the execution of

Demo 49

back-propagation. The execution and parameters of the adaptive learning function are also set in this block. To ensure
that the network works correctly, connector e should be connected to the MNN BP Control block.

Dialog Choices

• Number of Neurons: The number of neurons in the output layer.

• Learning Rate: Learning rate of the output layer. The value may change during learning if the adaptive learning
option is on.

• Momentum parameter: Momentum parameter for back-propagation. This parameter doesn’t change during adaptive
learning.

• Output scaling: The scaling factor of the output function (default value is 1.0). This scaling is sometimes useful to
use functions whose outputs are limited to fit into the real models which require certain output ranges.

• Output Function: Activation function of output neurons (sigmoid, hyperbolic-tangent or linear).

• Back-propagation switch: Performs back-propagation learning while switch is on. Otherwise, only a forward
calculation occurs. Turning off the back-propagation switch is equivalent to a zero learning rate. However, the
computation will be much faster since no redundant codes will be executed during simulation.

• Back-propagation method: Choice of simple or momentum method. Each method can be combined with accumulated
and/or normalized algorithms. In total, there are eight methods to choose from.

• Use adaptive learning: If checked, the learning rate of the network will adjust according to the output error changes.

• adjust every ? steps: The number of simulation cycle for updating learning rate. The error is accumulated
during specified period and is used for judgment of update.

• error discard ratio: The old weights and biases will be restored when an increasing output error exceeds this
ratio. Default value is 1.04.

• LR increment: The learning rate is increased by this increment when the accumulated error is decreased.
Default value is 0.01.

• LR decreasing rate: The learning rate is decreased by this ratio when the rate of error increase is greater than
the discard ratio. Default value is 0.8.

• smallest LR allowed: The minimum learning rate that the adaptive learning method can reach.

Demo 50

• Weight/bias initialization: The method selected here will be used to initialize the initial weights and biases when w
and/or b connectors are not connected. There are two initialization algorithms. One is to set the initial values as
uniformly distributed random numbers between two specified values; the other is to use the last simulation results to
continue the simulation. The initialization method is omitted when w and/or b connectors are connected.

• Save: Saves current weights and biases of the layer to a text file. The file format is listed in Weight/Bias File In
block.

• File name: The file name to save current weights and biases when the Save button is clicked. The path name must be
added before the file name if you want to save the file to other than the current directory. If the file name is not
specified, the standard file save dialog is displayed and requests your response.

Connectors

The η connector passes a scalar. All other connectors pass arrays.

• X: Input array from previous layer. The received message activates forward calculation.

• Y: The computation results of the neural network. The message is sent after the forward calculation.

• e: The output error from the MNN BP Control block. The received message activates backward calculation.

• δ: The block sends back-propagation delta and message to previous layer for back-propagation. The message is sent
after the backward calculation.

• w: If connected, the block gets initial weights from this connector.

• b: If connected, the block gets initial biases from this connector.

• W : Current neuron weights.

• B : Current neuron biases.

• η: Current learning rate of the output layer.

• Z: Activities of neurons.

Animation

Displays number of neurons and neuron nonlinearity in the block icon.

❐ N/L Cont Plant [Ctl]

Nonlinear Continuous Plant. Its dynamics are specified by first-order nonlinear differential equations.

i1 o1

sti5 o5

o = fp(i)

Inputs

Outputs

i1 - i5: scalars, plant inputs

o1 - o5: scalars, equation outputs (corresponding to the
equation number)
st: array, internal states (dimension is plant’s order)

Demo 51

Description

The plant dynamics are described by the first-order nonlinear differential equations which use state and input names.
States are time-dependent internal variables whose dynamics are described by differential equations. Up to five
equations, including possibly five first-order nonlinear differential equations, are calculated. Each equation is compiled
before the simulation to speed up the calculation. The equations are typed-in to dialog boxes by the user. Differential
equations are distinguished by the state name with the keyword “DOT” in the equations. The result of each equation is
passed by the corresponding output connectors o1 through o5 on this block. The plant order is equal to the number of
first-order differential equations. Usually the plant order is equal to the equation number but when it is smaller than the
equation number, the user can enter non-dynamic equations. For example, if the equation number and the plant order
are specified 5 and 3, then the first 3 equations should be differential equations and the following 2 equations should
be non-dynamic equations.

These equations must be in the form: Result = formula; (don’t forget a semi-colon at the end of the equation). The user
can use Extend's built-in operators and functions, and some or all of the input variables and state variables as part of
the equations. The maximum variable names used in the equations are 5 inputs and possibly 5 state variables. If the left
side of the equation is specified "xyzDOT" and "xyz" is a state variable name, this equation is treated as a first order
nonlinear differential equation, otherwise it is considered a non-dynamic nonlinear equation. The differential and non-
dynamic equations are

 o
i
=

dsi

dt
= f (i

1
,i

2
,i

3
,i

4
,i

5
,s

1
,s

2
,s

3
,s

4
,s

5
)

 oi = f (i1,i2,i 3,i4,i5,s1,s 2,s3,s 4,s5)

where oi, ij, sk and f() are i-th output, j-th input, k-th state and a user-specified equation, respectively.

Each input and each state must be named in order to use it in the equation. You can use the default input value names
(x1, u1, etc.) or specify new names. If a specified input is used in at least one equation, and its connector is not
connected to another block, this block will warn you and stop simulation.

Extend's operators are:

+, -, *, /, ^ (exponentiation), MOD or % (modulus), AND or &&, OR or ||, NOT or !, == (equals), != or <> (not
equal), <, <=, >, >=

The Function buttons in the dialog display a listing of all built-in functions and procedures, including placeholders, to
remind you of which arguments are required. You can copy functions from the listing to your equation with the "Copy"
and "Paste" commands. You must replace the placeholders with the real arguments, and separate arguments with a
comma (,). The parentheses are required to show where the arguments begin and end. User-defined functions are not
allowed.

Dialog Choices

Similar to the Extend's programming script “ModL”, variable names, state names and operators are case insensitive so
that SIN, sin, Sin are interpreted the same.

• Number of equations: Total number of equations. The maximum number is 5.

• System order: Number of differential equations. This value must be smaller than or equal to the number of equations.
The maximum number is also 5. The same number of states’ names have to be typed-in.

• Integration method: Choice of three kinds of integration methods (Runge Kutta 4th order, modified Euler and simple
Euler methods) are available.

Demo 52

• Check&Compile: All variables and equations typed in the editable box are checked and compiled. If there is an error,
the error message will appear in the error dialog box. This action is automatically taken when the dialog box is closed.

• Function by Alphabet, Function by Type: Clicking these buttons opens a list of all of Extend's functions, including
placeholders for their arguments. The function lists are organized by alphabet or by type. You can copy the function
from the list into the equation. User-defined functions are not supported.

• Input 1 - 5: The names assigned to the variables at the 5 input connectors, from top (1) to bottom (5). You can use the
default dialog names (u1, u2, etc.), or type in your own. These names can be used in the equations.

• State 1 - 5: State variable names associated with differential equations. The value entered to the lower box
corresponding to each state name is its initial condition at the beginning of simulation.

• Equation 1 - 5: The editable text entry box for the equations. The limit is 255 characters. The equations must be in
the form: Result = Formula;. A semi-colon is required at the end of each equation.

Connectors

• i1 - i5: Input connectors corresponding to the dialog items Input 1 through 5. It is convenient for the adaptive control
model to assign some of the inputs to the varying plant parameters.

• o1 - o5: Output connectors get the results of each equation, i.e. the left side of each equation, from the top (equation
1) to bottom (equation 5).

• st: The connector at the bottom is the plant’s internal states. State1 corresponds to element 1 of array st whose
dimension equals the plant order.

Example

Demo 53

The previous dialog box is an example of how to write the dynamic equations of a pendulum. THETA and OMEGA
correspond to the angle θ and angular velocity ω, respectively in the following equations.

θ
l

m

xp

 dω
dt =(–mglsin θ + τ)/(m l2)

 dθ
dt =ω

 x
p

= l sin(θ)

Here m, l, xp are mass, rope length and position of the weight.

❐ Scalars to Array [Mis]

Organizes all input scalars into an array.

Inputs

Outputs

n1, n2, ..., n14 : scalars, up to 14 inputs

array, dimension is the number of connected inputs

Description

This block combines all scalars from connected input connectors into an array that has dimension equal to the number
of connected connectors. The order of the scalars in the array is arranged sequentially by connector number.
Connectors that are not used are discarded. For instance, if input connectors 2, 7, 10 of the block are connected, the
output of the block would be a 3-element array with values of elements 1, 2, 3 equal to values from connectors 2, 7,
10, respectively.

Dialog Choices

None.

Connectors

All input connectors pass scalars.

The output connector passes an array.

Example

❐ Shift Register [Ctl]

Demo 54

A signal is shifted and stored in a memory register at every simulation step.

Inputs

Outputs

in: array or scalar, signal to be shifted and stored

out: array or scalar, manipulated signal

Demo 55

Description

The purpose of this block is to manipulate the signal and construct a time series data for control, identification and
other applications. The input signal is stored into a memory shift register as shown in the figure below. The input
signal is shifted at every simulation step so that the memory register contains the time series data. In digital control,
one simulation cycle (step) corresponds to one sampling period.
The size of the shift register is determined by the “shift data width” m and “delay” n (i.e. m+n time series signals are
stored in the shift register). The output is an array which contains m elements of the input time series signal. If the user
sets 1 data width and n delay, this block simply becomes the block for n delay. The order of the array elements is the
oldest signal first (element 1) and newest signal last (element m). At every simulation step, the above data
manipulation is performed. Signal data type of input and output (scalar or array) can be specified in the dialog box.

Dat a in
Shif t every sampling

n m

Dat a out

1m 2m-1

New Old

Dialog choices

• Register initialization: All elements of shift register are initialized by zeros or the input data at first simulation step,
or latest register value. The first data initialization prevents data discontinuity in shift register. The latest register value
initialization is useful for multiple simulations.

• Input data type: If array is selected, the element number of the array is set for input signal (array elements start 1).

Demo 56

• Shift data width: Dimension of time series for output is set.

• With delay: If this option is checked, the output signal is delayed by the specified number of simulation steps.

• Output data type: Specify the output data type. If scalar type is selected, only the delay option has meaning (shift
data width is fixed to 1).

Connectors
The input and output connectors can be assigned to either an array type or a scalar type depending on the dialog
selections.
• in: Data input.
• out: Shifted and delayed output.

❐ Sigmoid [Edu]

Sigmoid transfer function for neuron.

T

u

 f

f'

bpδ Inputs

Outputs

u : scalar, function input and message
T : scalar, temperature of sigmoid function
bp : scalar, output error and message

f : scalar, sigmoid function value and message
f’ : scalar, derivative of sigmoid function
δ : scalar, back-propagation delta and message

Description

The sigmoid logistic nonlinearity,

 f(u) =
1

1 + exp[–(u–θ)/ T]

is implemented in this block, with θ and T being known as the threshold value and temperature of the function,
respectively. The temperature is adjustable through the block dialog and through the connector T. The threshold θ is
fixed at zero since the Adaptive Weighted Sum block has a bias term.

This block performs two types of operations, forward and backward, activated by received messages instead of the
simulation order number of the block.

When the block receives a message from the u connector, the forward calculation will be executed. In forward
calculation, the block outputs values of function f(u) and its derivative f'(u). On the other hand, backward calculation is
executed when the block receives a message from the bp connector. After backward calculation, the δ connector
outputs the back-propagation delta and sends a message to the Adaptive Weighted Sum block for back-propagation
learning.

When the u connector is NOT connected to the Adaptive Weighted Sum block, the block follows the simulation order
assigned by Extend and executes only forward calculation.

Dialog Choices

• Temperature: Parameter used in evaluating the Sigmoid function. This value is applied when the T connector is not
connected.

• Adjust output when sigmoid ...: If the check box is checked, the output value of the Sigmoid function is clipped and
has a maximum value of 0.99 and minimum value of 0.01.

Demo 57

Connectors

• u: The input of the Sigmoid function. The received message activates forward calculation if the block is connected
with educational blocks in NeuroLab.

• T: Temperature parameter of the Sigmoid function. It will override the dialog value when connected.

• f: The output value of the Sigmoid function. It sends a message to activate forward calculation of connected blocks.

• f ’: The derivative of the Sigmoid function.

• bp: The output error. The received message activates backward calculation.

• δ: The back-propagation delta. It sends a message to connected Adaptive Weighted Sum blocks for back-
propagation learning.

Example

A neuron with the sigmoid transfer function can be trained by back-propagation methods.

❐ Tanh [Edu]

Hyperbolic tangent activation function

T f

f'
u

bpδ
Inputs

Outputs

u : scalar, function input and message
T : scalar, temperature (optional)
bp : scalar, output error and message

f : scalar, function output and message
f’ : scalar, derivative of tanh(u/T)
δ : scalar, back-propagation delta and message

Description

The hyperbolic tangent activation function

y = tanh(u/T)

is implemented in this block. The parameter (temperature) T in the above equation controls the function slope or shape.
The function increases the nonlinearity at lower temperatures. With the hyperbolic tangent function, the neuron output
is mapped from the interval (–∞, +∞) to the interval (–1, +1). The derivative of the tanh function takes the form

Demo 58

\F(dy,dx) = \F(1,T) sech2(u/T)

Note that the function is fully differentiable which allows the neuron to be trained by back-propagation methods.

The block performs both forward and backward operations triggered by messages instead of the simulation order
number of the block. When the block receives a message from the u connector, the forward calculation will be
executed. In the forward calculation, the function output is calculated for the given input u. On the other hand, a
backward calculation is executed when the block receives a message from bp connector.

When the u connector is NOT connected to the Adaptive Weighted Sum block, the block follows the simulation order
assigned by Extend and executes only forward calculation.

Dialog choices

• Temperature: The temperature of the tanh function when the T connector is not connected.

Connectors

All connectors are value connectors that pass scalars.

• u: The function input. This should be connected to the ws connector of an Adaptive Weighted Sum block. The
received message activates the forward calculation.

• f: The function output. It sends a message to connected blocks.

• f ’: The derivative of the tanh function.

• bp: The output error. The received message activates the backward calculation.

• δ: Back-propagation delta. It sends a message to connected blocks.

• T: Temperature of the tanh function. Will override the value given in block dialog , if connected.

❐ XY Array Plotter [Mis]

X-Y plotter for array variables (two sets of paired array).

Inputs

Outputs

X : arrays, x-channel data
Y : arrays, y-channel data

arrays corresponding to the inputs

Description

This is a modified version of the Worm Plotter block in the plotter library. This block inputs one or two paired arrays
instead of scalars. The block shows two sets of data plotted as x, y value pairs, but the number of points plotted is
equal only to the array length. You must connect Y inputs in order to plot data. If X input is not supplied, the array
element numbers are used for x values.

Demo 59

Dialog Choices

• Show plot during simulation: Opens plotter window and displays data during simulation if checked. Otherwise, data
is only plotted at the end of simulation.

• Plot every ? steps: The data will be stored and displayed in the plotter window at every specified simulation steps.
This option is useful for long simulation to save memory usage and to speed up calculation.

• Show plot: Re-draws the graph.

• Input data type: Selection of data real or integer.

Connectors

All connectors pass arrays. The top two inputs are for one pair of x, y values and the bottom is for a second pair.

• X: X-channel data. If not connected, x values are filled with the array element numbers by the block

• Y: Y-channel data.

Demo 60

Product Information
Requirement:

• NeuroLab™ v1.2 requires Extend™ version 3.1. Extend can be purchased in a bundled discount package with
NeuroLab

()Macintosh or Power Macintosh

• Macintosh II , SE/30 or later (faster machines with FPU are recommended)
• System software 6.07 or up (32 Bit QuickDraw is required)
• 4 MB of RAM (some image processing models require more RAM)
• 8 MB free space to install NeuroLab v1.2 and 8 MB for Extend on the hard disk.

(ÿ)Windows or Windows NT

• 80386 or greater (80486 or Pentium are recommended)
• DOS 5.0 or later, Windows 3.1 or later, and Win32s or later, OR Windows 95 or Windows NT 3.5 or
later.
• 4 MB of RAM (some image processing models require more RAM)
• 8 MB free space to install NeuroLab v1.2 and 10 MB for Extend on the hard disk.
• A math co-processor is highly recommended.
• VGA or better graphics capabilities.

Price:
Product Price

NeuroLab v1.2 $ 495
NeuroLab v1.2+ Extend v3.1 bundle $ 999
Sales Tax (California resident add 8.25%)
Shipping and Handling ($10.00, $14.00 for bundle)
TOTAL

Educational discount information is available upon request.
Volume discount information is also available upon request.

For additional information or to order a copy of NeuroLab,
contact

NeuroLab Dept.
MIKUNI BERKELEY R&D CORP.
4000 Lakeside Dr.
Richmond, CA 94806

TEL: (510) 222 - 9880
FAX:(510) 222 - 9884
Email: neurolab-info.mikuni.com
WWW: http://www.mikuni.com/neurolab

NeuroLab is a trademark of Mikuni Berkeley R&D Corp.
Extend and Imagine That! are trademarks of Imagine That, Inc.
Macintosh is a registered trademark of Apple Computer Inc.

Demo 61

NeuroLab™
Neural Network Library for Extend™

MIKUNI MIKUNI BERKELEY R&D CORP.
4000 LAKESIDE DR. RICHMOND, CA 94806

PHONE: (510) 222-9880 FAX: (510) 222-9884
e-mail: neurolab-info@mikuni.com

Order Form (Mail or fax this form)
Date:

Bill to: Ship to:
(if different from billing address)

Name ____________________________ Name _____________________________

Company ____________________________ Company _____________________________

Mailstop ____________________________ Mailstop _____________________________

Address ____________________________ Address _____________________________

City,State Zip ____________________________ City,State Zip _____________________________

Country ____________________________ Country _____________________________

Phone, Fax ____________________________ Phone, Fax _____________________________
-

Platform ❐ Mac ❐ Windows

Qty Description @Price Amount
___ NeuroLab v1.2* $495.00 ____________
___ NeuroLab v1.2+ Extend v3.1 $999.00 ____________

Special discount ____________
Add 8.25% Sales Tax for CA residents ____________
Add $10 S/H or $14 for Bundle** ____________
Total ____________

* NeuroLab v1.2 requires Extend v3.1, ** We ship by UPS Second Day (by Federal Express for
international orders) unless otherwise specified. Approximate charges are:

Domestic (Options) NeuroLab Bundle International NeuroLab Bundle
Fed-Ex Economy 2 days $15 $20 Fed-Ex(Mexico&Canada) $40 $60
Fed-Ex Priority Overnight $25 $30 Fed-Ex (Other) $45 $70

-
Payment: Visa, MasterCard, check or money order is acceptable.

❐ Credit Card (Visa, MasterCard)
Card #: _______________________________________
Expiration Date: _______________________________
Card Holder's Name:___________________________

Signature: _____________________________________

❐ Check or money order attached payable to Mikuni Berkeley R&D Corp.
Checks and money orders must be drawn on a US bank in US dollars.

Prices are subject to change without notice. These prices are good only in the USA, Canada and Mexico.
Please contact Mikuni Berkeley R&D Corp. for volume discount/academic pricing/site license information.

