
1 The Standard Template Library and Macintosh Programming

The Standard Template Library and Macintosh Programming

George G. Geller, Ph.D.
Macintosh programmer and consultant.

email: 71321,2544@compuserve.com

The Standard Template Library (STL) was developed by Alexander Stepanov
and Meng Lee. This large and innovative body of code has been adopted as an
important part of the new ANSI draft standard C++ and promises to
dramatically influence the way C++ programmers work.

STL is simultaneously efficient, general, and compact in representation. Its
central paradigm is the decomposition of programming tasks into generalized
algorithms that work on 'containers'. The containers hold native C++ data
types or user-defined objects. This approach, known as generic programming,
drastically reduces the code base necessary to handle many common
programming tasks.

In this presentation, I will introduce STL and show examples of its application
in Macintosh programming. The current state of STL support in Macintosh C+
+ compilers will also be reviewed.

In this paper I will demonstrate how to use the Standard Template Library
(STL) to help you with your Macintosh C++ programming.

Although Alexander Stepanov, the principal author of the library,
has a mathematical background which is readily apparent in the
published specifications I won't spend a lot of time showing you a
bunch of abstractions. I'll just go over the basics that you
absolutely need to understand so that you can follow the concrete
examples that I will present later.

In order to use STL you must have a good grasp of C++ templates.
You have to understand some details about how your development
environment implements templates. And, more likely than not,
you have to get used to looking at template code in your debugger.

In exchange for this small investment, STL gives you an immense

payback. To start with, you no longer have to implement most
types of data structures; vectors (which are equivalent to dynamic
arrays), linked lists, b-trees, and associative arrays are all provided.
You no longer have to implement many common algorithms such
as sorting and searching. Also, STL handles many issues of
memory management automatically for you -- you almost never
need to use the C++ new and delete.

STL will be part of the next ANSI standard. That means it will be
included with any C++ compiler on any platform. Since it is a
standard, you can be confident that code you write using STL will
work in the future and with any hardware platform or compiler.

To get started with STL, you should probably read one of the
introductory books I list in the bibliography. I recommend Mark
Nelson's "C++ Programmer's Guide to the Standard Template

The Standard Template Library and Macintosh Programming 1

2 The Standard Template Library and Macintosh Programming

Library."

Comments about efficiency: In general the performance matches
what you get for hand-coded C. The advanced container classes
(set, multiset, map, and mulitmap) in STL use red-black trees.
Alexander Stepanov, the principal author of STL, believes that this
is the best structure for something that will reside in

The Standard Template Library and Macintosh Programming 2

3 The Standard Template Library and Macintosh Programming

memory. Anyone is free to try their hand at substituting another
structure such as a B*tree, skip lists, splay trees, or half-balanced
trees. Comparing the performance of the various structures could
become a major research project.

Much of my paid work involves porting applications from other
platforms (whose names needn't be mentioned here, since we don't
have barf bags handy) to the Macintosh. A really cute trick that the
implementors of STL pulled off was to isolate the machine
dependencies of the memory model to their allocator class. This
leaves the code you actually work with looking very clean.

What is STL? It is fundamentally a collection of container
templates, which are classes, and algorithm or function templates.
Supporting these is the concept of an iterator. An iterator is a
generalized pointer. Just as you de-reference a pointer in C to gain
access to a member of an array, you use an iterator to gain access
to an object stored in one of STL's container classes. There are
several types of iterators. They all support the basic operations of
incrementing and dereferencing. If you use the right kind of
iterator object (an insertion iterator), STL's container classes
automatically grow to accommodate however many elements you
want to add, up to the limit of available RAM.

It is vital to understand that STL algorithms are not encapsulated in
classes. They are function templates that operate on the container
classes. This means that most algorithms work with most
container classes. However, it does make "naked" STL harder to
use than a typical class library. One solution to this is to write
specialized wrapper classes that use STL. In the example program
for this talk I used this approach for my macString class which
transparently handles the chore of dealing with Pascal and C style
strings in Macintosh programming. MacString objects uses the
STL vector container class to store the string data. There are
commercial libraries available, from RogueWave and probably
others, that use the class wrapper approach to hide the complexity
of naked STL.

Perhaps the strongest motivation for adopting STL and the generic
programming approach is that it vastly reduces the amount of
coding you have to do. You get this reduction because you (or a
library author) write a container class only once, then use C++
templates and generic programming to apply various algorithms to
your container class. The algorithm, say a sort, is written only
once and is applicable to different types of containers such as
arrays or queues. This is the central paradigm that I mentioned in
the abstract. Consider this example: you have three different
classes of objects, lets call them strings, window pointers, and
sprites. And you have three different types of containers that you
want to use to store these objects in, vectors, queues, and stacks.
And you need insertion, extraction, and sorting algorithms for
every combination of object and container. That leaves you with a
total of 27 (3x3x3) algorithms to implement. If you use generic
programming techniques you reduce the number of algorithms to
just 3. This is a very simple example. In real world-applications,
the benefits are potentially much greater.

STL is open. The source code is provided and is an a form that is
easy to use and modify. You can write a new algorithm and apply
it to any of STL's container classes. Conversely, you can write a
new container class and use STL's library of algorithms on it.

What is missing from STL? Most notably, persistence. There is
nothing built-in that lets you store and retrieve your objects and
data structures to a file. There are commercial extensions to STL,
from vendors such as RogueWave and ObjectSpace, that include
persistent object databases. There are also hints (in the interview
of Alexander Stepanov for the March 1995 Dr. Dobbs Journal) that
future versions of STL will include persistent objects. Also there is
nothing analogous to a class browser.

What will you find in STL? You'll find a great implementation of
containers and algorithms. Alexander Stepanov has spent two
decades working on generic programming and the ideas behind
STL. The classes and functions are in there. There is a heck of a
lot of functionality. It is up to you, the programmer, to know
where it is and how to use it. You'll need to keep a reference book
handy.

The Standard Template Library and Macintosh Programming 3

4 The Standard Template Library and Macintosh Programming

STL example program for the Macintosh

I wrote a program called Dupes to demonstrate using STL
programming techniques on the Macintosh. Dupes catalogs your
hard disk and creates a listing of files that have duplicate names.

From the pedagogic standpoint there are two primary points to be
made about Dupes.

First, I created a macString class that uses the STL vector container
to store string data in a form that is easy to access and manipulate.
This class has member functions that allow transparent access to
your string object as a C string or a Pascal string. The following
code snippet illustrates:
 #include "macString.h"
 macString ms;
 strcpy(ms, "STL saves work."); /* copy a C string into ms */
 ParamText(ms, 0L, 0L, 0L); /* access ms as a Pascal string */
 Alert(129, nil);
If you are so inclined, you can reuse the code for the macString
class in your own application.

Second, Dupes uses the STL multimap container class to store and
efficiently access each file name and the full path name in RAM.
The file name (e.g. notes.txt) is used as the key, and the full path
name (e.g.hd:MacHack:notes.txt) is stored as a value. You will see
how little coding I had to do to accomplish this. STL does all the
hard work.

Let's examine the code for macString.cp (listing 3, below). The
first thing to notice is that we include stl.h. This, not an object
library, is where the Standard Template Library is added to the
project. Note again that all the code for the library is actually in
stl.h and some associated text files. STL is completely open;
nothing is held back or hidden.

The next interesting thing in macString.cp is a collection of no less
than twelve template statements. These commands instantiate the
templates in stl.h to create the type of objects and functions that
you need for your application. Some of the template commands
are remarkably complicated. Fortunately, you don't have to figure
them out yourself. Some development environments implicitly
generate the necessary template commands. In Symantec C++ you
can figure out which ones you need based on the linker errors that
are generated. You don't even need to type in the code, just copy it
from the error output window.

Most of the magic of the macString class is encapsulated in the
synchronize function. Synchronize uses two Boolean data
members, bPStrOK and bCStrOK to ensure that the C string and
Pascal string contain the same data. The other member function of
macString are responsible for calling synchronize at the
appropriate times.

Listing 1 contains the code for Dupes main itself. In terms of
understanding STL, the primary thing to notice is that we use the

multimap container class to store the full path name for each file
on the disk indexed by the file name. This is done in the global
simply defined by: mmap m;

In main we call CatalogADirectory to fill up the multimap, then we
use a while loop to print out the files sorted by name. Note the
conditional for the while loop:

while (i != m.end())

Why can't we use:

while (i < m.end()) /* !!wrong!! */

The answer is that as an iterator into a multimap, the acutal
numerical value of i has no meaning. The valid operations for this
type of iterator are dereferencing, copying, and incrimenting.

In main's next while loop, we erase all the entries in the map that
correspond to files with unique names. The name is unique if the
key is unique. The count function of STL multimap return the
number of entries that have the supplied key. We want to erase
those entries using the erase function (i.e. cout() == 1). But wait!
After we erase an entry with m.erase(i), iterator i is no longer
valid. So, we store the value of i in a tempory variable j that we
can use the next time through the loop.

The Standard Template Library and Macintosh Programming 4

5 The Standard Template Library and Macintosh Programming

The last thing to do in main is to type out the list of duplicate file
names we wanted in the first place. The final while loop does just
this.

The other three functions in DupesMain.cp basically deal with the
ugliness of the Macintosh file manager. This is the kind of code I
like to write with one eye on THINK Reference and the other eye
on my debugger. CatalogADirectory is a recursive function that
starts at an indicated folder and traverses all the contained folders.
In doing so it fills up the multimap global with the names of all the
files it finds.

NextFileInDirectory is a tiny helper function for
CatalogADirectory. It handles the logic of moving through a
folder and makes the actual call to the PBGetCatInfo Macintosh
toolbox function. For more information on PBGetCatInfo and how
to use it consult Inside Macintosh or THINK Reference.

DirID2FullPath converts a Macintosh directory ID to the
corresponding full path name. Note that it uses macString's +=
operator to conveniently concatenate the folder names to produce
thefull path.

I hope you can see how much STL increase your productivity.
Without STL's multimap class, writing Dupes would have been a
daunting task. With STL, it took me about half a day to get the
main functionality fo Dupes up and running. And, as a bonus we
get the macString class which should be useful in a variety of
contexts.

Appendix: Annotated STL Bibliography

Graham Glass and Brett Schuchert, "The STL <PRIMER>",
Prentice Hall PTR, 1996. At 327 pages, this is the most concise of
the STL books I've seen. In spite of the word primer in the title, it
assumes more sophistication on the part of the reader than the
other texts. It also pushes the ObjectSpace commercial library, an

extension of the ANSI STL. The source for demo programs is on
the Symantec Developer's Advantage CD-ROM and is available on
the World Wide Web.

David R. Musser and Atul Saini, "STL Tutorial and Reference
Guide", Addison Wesley, 1996. This book includes excellent
example programs that use STL and generic programming
techniques. The tutorial section is very good. The reference
section is very formal.

Mark Nelson, "C++ Programmer's Guide to the Standard Template
Library", IDG Books, 1995. For my taste this is the best single
book on STL. The tutorial introduction starts slowly and covers
everything thoroughly. Each entry in the reference section
includes an illustrative source code sample. An MS-DOS formatted
floppy with STL and the source for the example programs is
bundled with the book.

Alexander Stepanov, "The Standard Template Library", BYTE
Magazine, October 1995, Volume 20, Number 10, October 1995.
Brief introduction and historical perspective straight from STL's
primary author.

Dan Zigmond, "Generic Programming and the C++ STL", Dr.
Dobbs's Journal, issue #233, August 1995. Includes good
illustrative source code.

Al Stevens, "Alexander Stepanov and STL", Dr. Dobbs's Journal,
March 1995. An interview with STL's primary author. Contains
many historical insights and some speculation about possible
future additions to the library.

Al Stevens, "The Standard Template Library", Dr. Dobbs's Journal,
April 1995. A very brief introduction with useful source.

butler.hpl.hp.com -- The mother lode for the latest STL.

/*==*/
Building Dupes

Dupes is built from a Symantec C++, version 8 (from the SDA release 5
CD-ROM) project for PowerPC only. The project has four source files:
DupesMain.cp, macString.cp and DemoSTR.r. There are also seven runtime
libraries: InterfaceLib, MathLib, PPCANSI.o, PPCCPlusLib.o, PPCIOStreams.o,
PPCRuntime.o and StcCLib.o. The output is to a console Window and is
echoed to a log file.

The Standard Template Library and Macintosh Programming 5

6 The Standard Template Library and Macintosh Programming

/*==*/

// Listing 1: DupesMain.cp

#define OLDROUTINELOCATIONS 0
#include <ConditionalMacros.h>
#include <Types.h> // For Str255
#include <Dialogs.h> // For Alert
#include <TextUtils.h> // For c2pstr
#include <PLStringFuncs.h> // For PLstrcpy
#include <ToolUtils.h> // For BitTst
#include <Files.h>

#include <console.h>

#include <assert.h>
#include <stdlib.h>
#include <iostream.h>

#include "macString.h"

#define rUserAlert 129

typedef multimap<macString,macString, less<macString> > mmap;
mmap m;

static void CatalogADirectory(long);
static void DirID2FullPath(long, macString&);
static Boolean NextFileInDirectory(long, HFileInfo&, macString&);

long countFiles = 0;
long countDirectories = 0;

int main()
{

console_options.ncols = 135; // Works for 17" monitor.
console_options.nrows = 50; // Works for 17" monitor.
cecho2file("Dupes.log", 0, stdout);

cout << "Dupes: Examining the default volume..." << endl;
cout << endl;

CatalogADirectory(fsRtDirID); // start at the root
cout << endl;

cout << "Total Directories = " << countDirectories << endl;
cout << "Total Files = " << countFiles << endl;
cout << endl;

// At this point all the files are in mmap, indexed by the file name
// Print out in sorted order
mmap::iterator i;
i = m.begin();
while (i != m.end ())
{

cout << (*i).first << " -> " << (*i).second << endl;
i++;

}
cout << endl;

// Remove all the entries that have unique keys
mmap::iterator j;
i = m.begin();

The Standard Template Library and Macintosh Programming 6

7 The Standard Template Library and Macintosh Programming
while (i != m.end ())
{

const macString& key = (*i).first;
if (m.count(key) == 1)
{

j = i;
j++;
m.erase(i);

}
else
{

for (int ii = m.count(key); ii > 0; ii--)
{

i++; j++;
}

}
i = j;

}

// print out the list of files with duplicate names
i = m.begin();
while (i != m.end ())
{

cout << (*i).first << " -> " << (*i).second << endl;
i++;

}
cout << endl;

return EXIT_SUCCESS;
}

static void CatalogADirectory(
long iDir)

{
HFileInfo fileInfo;
macString sName;
macString sDir;
macString sFull;

DirID2FullPath(iDir, sDir);
cout << sDir << endl;

fileInfo.ioFDirIndex = 0;
fileInfo.ioVRefNum = 0;
while (NextFileInDirectory(iDir, fileInfo, sName)){

if (fileInfo.ioFlAttrib & ioDirMask)
{ // another directory, recurse

countDirectories++;
CatalogADirectory(fileInfo.ioDirID);

}
else
{ // file, add to catalog

countFiles++;
sFull = sDir + sName;
cout << sFull << endl;
m.insert (pair<const macString, macString> (sName, sFull));

}
}

}

The Standard Template Library and Macintosh Programming 7

8 The Standard Template Library and Macintosh Programming
static void DirID2FullPath(

long dirID,
macString& sFullPath)

{
DirInfo dirInfo;
Str255 str255Dir;
OSErr err;
macString sTemp;

sFullPath = "";
dirInfo.ioDrParID = dirID;
dirInfo.ioNamePtr = str255Dir;
do {

dirInfo.ioVRefNum = 0;
dirInfo.ioFDirIndex = -1;
dirInfo.ioDrDirID = dirInfo.ioDrParID;
err = PBGetCatInfo((CInfoPBRec *)&dirInfo, false);
sTemp = sFullPath;
sFullPath = str255Dir;
sFullPath += ":";
sFullPath += sTemp;

} while (dirInfo.ioDrDirID != fsRtDirID); // The root, e.g. "pb:"
}

static Boolean NextFileInDirectory(
long iDir,
HFileInfo& fileInfo,
macString& s)

{
fileInfo.ioFDirIndex++;
fileInfo.ioDirID = iDir;
fileInfo.ioNamePtr = (unsigned char *)s;
return PBGetCatInfo((CInfoPBRec *)&fileInfo, false) == noErr;

}

/*==*/

// Listing 2: macString.h

#include <stl.h>

// The macString class stores a string and is accesible either as a Pascal
// string or as a c-string. The data is stored in str, a vector<char> and also
// in parallel in a Pascal string.
// Bugs:
// Should issue warnings when a macString with over 255 characters is accessed
// as a unsigned char * as this could result is truncation and data loss.
class macString{
public:

macString() : bPStrOK(true), bCStrOK(true), s(256) {}
macString(const macString&);
macString(char c) : bPStrOK(false), bCStrOK(true), s(256) {s[0] = c;

synchronize();}
macString(const char *s);
macString(const unsigned char *s);

operator char *() {return str();}
 operator const char *() {return conststr();}
 operator unsigned char *() {return pstr();}

operator const unsigned char *() {return constpstr();}
friend ostream& operator<< (ostream& os, macString& ms)

{os << ms.conststr(); return os;}
friend ostream& operator<< (ostream& os, const macString& ms)

{os << ms.conststr(); return os;}

The Standard Template Library and Macintosh Programming 8

9 The Standard Template Library and Macintosh Programming
friend operator< (macString& ms1, macString& ms2)

{return strcmp(ms1.conststr(), ms2.conststr()) < 0;}
friend operator< (const macString& ms1, const macString& ms2)

{return strcmp(ms1.conststr(), ms2.conststr()) < 0;}
friend operator== (macString& ms1, macString& ms2)

{return !strcmp(ms1.conststr(), ms2.conststr());}
friend operator== (const macString& ms1, const macString& ms2)

{return !strcmp(ms1.conststr(), ms2.conststr());}
macString& operator+=(const macString &);
friend macString operator+ (macString& ms0, macString& ms1);
macString& operator= (const macString&);
void dump(void);

private:
bool bCStrOK;
bool bPStrOK;
vector<char> s;
Str255 str255;

 const char* conststr() const;
char* str();
const unsigned char* constpstr();
unsigned char* pstr() {synchronize(); bCStrOK = false; return str255;}
void synchronize();

};

/*==*/

// Listing 3: macString.cp

#define OLDROUTINELOCATIONS 0
#include <ConditionalMacros.h>
#include <TextUtils.h> // For c2pstr
#include <PLStringFuncs.h> // For PLstrcpy

#include <assert.h>
#include <iostream.h>
#include <stl.h>

// This is the Symantec C++ 8.1 way to instantiate templates. Don't forget the
// ';' on the end of the line
template class vector<char>;
template void uninitialized_fill_n(char *,unsigned int,const char&);
template char *uninitialized_copy(char *,char *,char *);
template char *copy_backward(char *,char *,char *);
template char *copy(const char *,const char *,char *);
template char *uninitialized_copy(const char *,const char *,char *);
template void fill_all(char *,char *,const char&);
template void __distance(rb_tree<macString,pair<const macString,macString>,

select1st<pair<const macString,macString>,macString>,
less<macString>>::const_iterator,rb_tree<macString,
pair<const macString,macString>,
select1st<pair<const macString,macString>,macString>,
less<macString>>::const_iterator,unsigned int&,bidirectional_iterator_tag);

template void __distance(rb_tree<macString,pair<const macString,macString>,
select1st<pair<const macString,macString>,macString>,
less<macString>>::iterator,
rb_tree<macString,pair<const macString,macString>,
select1st<pair<const macString,macString>,macString>,
less<macString>>::iterator,unsigned int&,bidirectional_iterator_tag);

template char *copy(char *,char *,char *);
template insert_iterator<vector<char>> copy(const char *,const char *,

insert_iterator<vector<char>>);
template insert_iterator<vector<char>> copy(char *,char *,

insert_iterator<vector<char>>);

The Standard Template Library and Macintosh Programming 9

10 The Standard Template Library and Macintosh Programming
#include "macString.h"

#define VERBOSE 0

macString::macString(
const macString& ms)
: bCStrOK(true), bPStrOK(false), s(256)

{
macString &msIn = (macString)ms;
msIn.synchronize();
s = ms.s;
synchronize();

}

macString::macString(
const char *sIn)
: bCStrOK(true), bPStrOK(false), s(256)

{
s.reserve(strlen(sIn) + 1);
strcpy(s.begin(), sIn);
synchronize();

}

macString::macString(
const unsigned char *sIn)
: bCStrOK(false), bPStrOK(true), s(256)

{
PLstrcpy(str255, sIn);
synchronize();

}

const char* macString::conststr() const
{

macString& ms = (macString)*this;
ms.synchronize();
return s.begin();

}

const unsigned char* macString::constpstr()
{

macString& ms = (macString)*this;
ms.synchronize();
return str255;

}

void macString::synchronize()
{

assert(bCStrOK || bPStrOK);
assert(s.capacity() >= 256);
if (!bCStrOK)
{

PLstrcpy((unsigned char *)s.begin(), str255);
p2cstr((unsigned char *)s.begin());
bCStrOK = true;

}
if (!bPStrOK)
{

strncpy((char *)str255, s.begin(), 255);
c2pstr((char *)str255);
bPStrOK = true;

}
}

The Standard Template Library and Macintosh Programming 10

11 The Standard Template Library and Macintosh Programming
void macString::dump(void)
{

assert(bCStrOK || bPStrOK);
assert(s.capacity() >= 256);
cout << "in macString::dump" << endl;
cout << " this = " << this << endl;
cout << " s.capacity() = " << s.capacity() << endl;
cout << " strlen(s.begin()) = " << strlen(s.begin()) << endl;
cout << "-->" << *this << "<--" << endl;

}

macString& macString::operator+=(const macString &msc)
{

size_t len;

synchronize();
macString& ms = (macString)msc;
ms.synchronize();
len = strlen(s.begin()) + strlen(ms.s.begin()) + 1;
s.reserve(len);
strcat(s.begin(), ms.s.begin());
bPStrOK = false;
synchronize();
return *this;

}

macString operator+ (
macString& ms0,
macString& ms1)

{
ms0.synchronize();
ms1.synchronize();
macString ms(ms0);
ms += ms1;
return ms;

}

char* macString::str()
{

synchronize();
bCStrOK = false;
return s.begin();

}

macString& macString::operator=(const macString &mscIn)
{

macString& msIn = (macString)mscIn;
msIn.synchronize();
s = msIn.s;
bCStrOK = true;
bPStrOK = false;
synchronize();
return *this;

}

/*==*/

The Standard Template Library and Macintosh Programming 11

12 The Standard Template Library and Macintosh Programming
// Listing 4: DemoSTL.r

#define SystemSevenOrLater 1
#include "systypes.r"
#include "types.r"

#define rUserAlert 129

/* this ALRT and DITL are used as an error screen */
resource 'ALRT' (rUserAlert, purgeable) {

{40, 20, 150, 260},
rUserAlert,
{

OK, visible, silent,
OK, visible, silent,
OK, visible, silent,
OK, visible, silent

},
alertPositionMainScreen

};

resource 'DITL' (rUserAlert, purgeable) {
{

{80, 150, 100, 230},
Button {

enabled,
"OK"

},
{10, 60, 60, 230},
StaticText {

disabled,
"^0"

},
{8, 8, 40, 40},
Icon {

disabled,
2

}
}

};

The Standard Template Library and Macintosh Programming 12

