
\

Experiences Implementing SMTP with PowerPlant

Christopher Haupt, CyberPuppy Software, Inc.
cfh@cyberpuppy.com

Abstract

This paper provides an introduction to the Simple Mail Transport Protocol. It explains the basic state
machine that describes the protocol, and details the flow of information that encompasses a mail
transaction. A Metrowerks PowerPlant implementation of the basic SMTP mechanism is presented, with
details on how to get started with the PowerPlant networking classes. Some of the issues you must watch
out for with the current class framework are revealed.

Introduction

With all of the excitement over the last twelve months regarding the
Internet, one aspect has been curiously absent. With the staggering
growth of the Internet, both in size measured by interconnected
computers and in people, you do not frequently hear what is
occurring in the children's market space. New versions of Netscape
Navigator, Microsoft Explorer, and others are wonderful tools, but
they assume that the user will be an individual who can find her own
way around the networks, without the need for coaching or
protection.

Consider the experience you have while browsing various web sites.
Although most computer-savvy individuals have no problem with the
abstract concept of "cyberspace", most new computer users–
including many younger children–have trouble pinning down
network locations within a spatial frame of reference. This feeling is
exasperated by the fact that while you may be browsing a site at the
same time as many other users, you never get a sense of the
community that forms around that site's content.

To some degree, the problem of community has been addressed over
the years via chatting technologies (IRC, MUD/MOOs, etc.). Until
recently, this has remained a separate domain from web and other
information technologies.

My company decided to tackle the problem of community from a
new angle; providing a space for children to gather, find one-another,
and make new pen-pals. The technologies would emphasize
interpersonal interaction while providing for seamless integration of
static and dynamic content. From this goal, the product PigMail was
born.

One feature of PigMail is the support for plugins that can provide
new tools and toys to the user. This paper briefly discusses some of
the information that was uncovered in creating a very simple, very
small module for sending and receiving email. In particular, it
discusses an implementation of the Simple Mail Transport Protocol
(SMTP) [RFC821] using the Metrowerks PowerPlant network

classes. Hopefully this treatment will provide a helpful starting point
for individuals interested in working on such projects. The paper
assumes a basic familiarity with PowerPlant and networking. A good
introduction to networking in general, and TCP/IP development in
particular is [COMER91] and [TANNEN81].

The functional requirements of the simple emailer include the ability
to send email via SMTP as single shots. Therefore, there is no need
to keep the message around. The user types a new message or replies
to some other message, and when done, immediately initiates a
connection, sends the message, and then throws away the document.
When on the receiving end, mail messages are gathered one at a time
from a mail host using the Post Office Protocol (POP3) [RFC1725],
and stored locally within a simple mail container file. The target
system includes MacOS 7.1 or newer, and either Open Transport or
MacTCP. My discussion below uses CodeWarrior 8, PowerPlant, and
some of the netbourne patches.

Experiences Implementing SMTP with PowerPlant 1

\
Issues such as performance and memory management are not
included in this discussion, although memory usage is always a
concern when trying to create small, tight modules. Also,
implementation of a mail agent to extract messages from mailboxes
is not discussed in this document. See [RFC1725] and others for
discussions about mail retrieval protocols such as POP3 and IMAP4
[RFC1730].

The Simple Mail Transport Protocol (SMTP)

The Simple Mail Transport Protocol was designed to be an easily
implemented, reliable mechanism for moving mail messages from
one trusted host to another. This discussion provides an overview of
the protocol, but the definitive specification is [RFC821].
[COMER91] provides an alternate treatment of this material.

SMTP as a protocol is specified independently of a transport service.
This paper describes an SMTP implementation using TCP, which is
the most common transport medium in use today for SMTP on
microcomputers. SMTP is assigned to the permanent TCP port 25.

The SMTP specification describes a lock-step protocol in which the
sender and the receiver transmit very specifically formatted messages
to one another, awaiting a response before continuing. At a high
level, the SMTP architecture can be described by a simple finite state
machine which contains three main states, and one intermediate state.
See Figure 1 below.

Initial Data 1CommitOKOKData 2DisconnectOK/
ERR
ERRERRERRConnect

Figure 1. SMTP Finite State Machine

SMTP defines a small, required command set, with several optional
commands included for convenience purposes. Table 1 shows the
minimal set required for a SMTP sending client.

HELO - Initial State Identification
MAIL - Mail Sender Reverse Path
RCPT - One Recipient's Forward Path
DATA - Mail Message Text State
RSET - Abort Transaction and Reset all buffers
NOOP - No Operation
QUIT - Commit Message and Close Channel

Table 1. Minimum SMTP Command Set

Commands may have zero or more parameters. Commands and their
parameters are issued as ASCII plain text strings. A command is
terminated with a carriage-return, line-feed (<CRLF>) pair.
Commands do not span lines, the termination pair completes the
command line. See example 1.

MAIL FROM:<cfh@cyberpuppy.com><CRLF>

Example 1. A Mail Sender command

Acknowledgment messages are formed by a three digit return code,
followed by optional text. The three digits represent error and success
codes. See example 2 below. Note that only the first three digits are
significant within an acknowledgment message. The textual portion
of the reply messages is for human understanding and can contain
any text. Messages are grouped by meaning by using the first digit as
a key. Messages beginning with a "2" are success messages, "3"'s are
error codes, etc.

250 Requested mail action okay<CRLF>

Example 2. Typical Reply Acknowledgment

Normally, the acknowledging process will send one reply message
per command. Each reply is ended with the standard <CRLF> token.
It is possible that more than one acknowledgment message may be
sent and this is not prohibited by the protocol specification. You
should consider that some servers may generate more than one line
of response and handle that case accordingly–this occurs most
frequently with message 220, the service ready message transmitted
on startup from the receiver when the sender initiates a connection. If
you aren't careful, this can throw your state machine off. The

Experiences Implementing SMTP with PowerPlant 2

\
updated SMTP specification states that multiline responses should
include a hyphen ("-") immediately following the result code of each
intermediate status code. The final result line is formatted normally.

A typical SMTP session can be characterized as shown in Figure 2
and described here. The sender ([S]) opens a two-way channel to the
receiver ([R]). The receiver can be the final destination or an
intermediate node described in the messages path explicitly or
implicitly by network routing tables. At connect time, both hosts are
in the Initial state. [R] sends an acknowledgment that the channel is
open. [S] sends a HELO message, identifying itself to the receiver.
Note that authentication is not required, so it is very easy to spoof
sender IP addresses. SMTP is not a secure messaging protocol. [R]
sends back a success or error message, possibly denying access to the
sender. If the HELO was successful, both sides are now in the Data 1
state. [S] sends a MAIL command describing the sending party's
fully qualified reverse path. [R] acknowledges the successful receipt
of the path and clears all of its transaction buffers. [S] sends one or
more RCPT commands describing the forward path of recipients of
the mail message, one recipient per line. [R] accepts or rejects each
address.

SenderReceiverOpen Connection220HELO 128.0.0.0250MAIL FROM:<cfh@cyberpuppy.com>250RCPT TO:<chris@machack.com>250DATA354(header & body
followed by EOM)
250QUIT221
Connection Closed

Figure 2. Typical SMTP Transaction Data Flow

[S] now sends a DATA command, instructing the receiver that all
following data is the actual mail message, thereby putting the
transaction in the Data 2 state. Transmission of the message text
completes when the end-of-message (EOM) sequence is sent (a
<CRLF>.<CRLF> triplet). Data transparency is achieved by stuffing
any instance of the EOM sequence occurring within the body of a
message with a period "." character prefix. The receiver checks each
line for a leading period and removes it before buffering the data.
Only when [R] detects the "real", tailing EOM, does it send an
acknowledgment.

[S] sends a QUIT command to place the transaction in the Commit
state. [R] acknowledges the

Experiences Implementing SMTP with PowerPlant 3

\
command and closes the channel. It then delivers the message to the
recipients' mailboxes or forwards the message on to the next server in
the recipients' forward paths.

You will note that the SMTP protocol does not handle any of the
fields you would associate with a standard mail message (fields such
as Subject:, Reply-To:, etc.). These fields, which make up a message
that conforms to [RFC822], are built and parsed by the mail handling
agent on either end of the SMTP transaction. SMTP treats the mail
message in an opaque manner, sending the headers and message
body all at once during the Data state. The SMTP code only peeks at
the message to ascertain EOM transparency conditions.

Implementing SMTP in PowerPlant

To implement a simple SMTP client for the PigMail project, I chose
to create a simple mail editor and tie it to the SMTP code by using a
LSingleDoc derived class and its associated window member.
Initially, this implementation used a threaded approach. Soon after,
debugging of the PowerPlant network classes bogged things down. I

muttered "Keep It Simple Stupid" to myself a couple of times and
created the very simple, event-loop based asynchronous version
which is presented here.

The threaded implementation is actually not much more difficult to
construct, but it does obscure the discussion at this introductory level.
However, because SMTP is a simple problem domain, it is a great
opportunity for experimenting with threading. You could implement
the entire SMTP state machine as one thread, to which you hand off
all data and let it rip. Or, you could be creative and implement a two
thread approach and play with the Producer/Consumer model of
cooperative processes [SILBER92]. I tried both, and while they work
fine, they violated my KISS requirement. The most important thing I
learned with these experiments was the danger of mixing threads
which operate with different PowerPlant drawing contexts, talk about
major view foci problems!

The simple mail sender class displays a window which contains three
text edit fields: destination address, subject, and message body. It
also contains a control to send the message when done and a status
field. Figure 3 shows a picture of the interface.

Experiences Implementing SMTP with PowerPlant 4

\

Figure 3. Simple Mail Editor

In the event-loop/asynchronous handling implementation below, I
began by creating a LSingleDoc, LAsyncClient class
similar to the one shown in Listing 1. [Note: To facilitate your

understanding in the following walk through, you may want to refer
to the sample source code that should be supplied with this paper's
distribution.]

class CPMailEditorDoc : public LSingleDoc, public LListener, public LAsyncClient {
public:

CPMailEditorDoc(LCommander *inSuper,
const LStr255 &inTo = "",
const LStr255 &inSubj = "");

virtual ~CPMailEditorDoc();

virtual void ListenToMessage(MessageT inMessage, void *ioParam);
virtual void Connect();
virtual void Disconnect();
virtual Boolean IsIdle();
virtual Boolean AllowSubRemoval(LCommander* inSub);

protected:
virtual void HandleAsyncMessage(const LAsyncMessage& inMessage);

void BuildSessionWindow(void);
void SendMailMessage(void);
void RunMachine(char *inDataBuffer, Uint32 inDataSize);
void SendHELO(Boolean inUseShort = false);
void SendQUIT(void);
void SendRSET(void);
void SendNOOP(void);
void SendMAIL(void);
void SendRCPT(LStr255 &inRecipient);

Experiences Implementing SMTP with PowerPlant 5

\
Boolean SendNext(void);
void SendDATA(void);
void SendBody(void);
void SendHeader(void);
Boolean ParseReply(char *inBuffer, Uint32 inBufferLen,

Uint32& inPos);

MailPreferenceTypeH mMailPrefs;
LStr255 mTo;
LStr255 mSubject;
Handle mBody;
LEndpoint* mEndpoint;
LCaption* mStatusPane;
Int32 mMachineState;
Int32 mLastCode;
Int32 mCurPos;
Int32 mMachineReplyState;
char statusBuffer[8];

};

Listing 1. SMTPClient Class Definition.

The constructor initializes all member data, and calls the
::BuildSessionWindow() member function to create the
interface. The To: and Subject: fields are filled with optional data
supplied by the caller of the constructor.

At this point, control rests within the standard PowerPlant event
mechanism, and the user can interact with the editor. When her
message is done, she presses the Send button, and away we go.

The SMTPClient class receives the button message via its
::ListenToMessage() method. Here we call a
::SendMailMessage() method.
::SendMailMessage() extracts the data from the UI and
initiates a connection.

The SMTPClient ::Connect() method makes use of a
wonderful PowerPlant object called the UNetworkFactory.
This object allows you to use the best transport mechanism installed
at run time. It will automatically switch between Open Transport and
"Classic Networking" (aka MacTCP) depending upon which is active
at the time the UNetworkFactory is called. We create an
asynchronous endpoint object that uses the event-loop to receive
incoming asynch messages. An endpoint is simply an object that
represents one-half of the communication link.

After creating the endpoint, we bind it to a network address. We
specify both the address information for the originator–the sender's
host–and the SMTP server host. Listing 2 shows the connection
sequence.

// ---
// • Connect
// ---
void CPMailEditorDoc::Connect()
{

mEndpoint = UNetworkFactory::CreateTCPEndpoint(
UNetworkFactory::Asynchronous(this));

ThrowIfNil_(mEndpoint);

// Initialization: Bind to any local port,
// then connect to the remote host.
LInternetIPAddress address(0, 0);
mEndpoint->Bind(address);

Experiences Implementing SMTP with PowerPlant 6

\

LInternetDNSAddress remoteAddress((**mMailPrefs).smtpHost, kSMTPPort);
mEndpoint->Connect(remoteAddress);

}

Listing 2. The Connection Method

The asynchronous networking mechanism in
PowerPlant is very easy to use. When network
commands complete, or incoming messages are
received, the networking classes call your
LAsyncClient object's
::HandleAsyncMessage() method. Here you
can crack the incoming message and dispatch to
your various handlers. Listing 3 shows the how
simple the ::HandleAsyncMessage() dispatch
mechanism is.

When we are establishing the initial connection, as soon as we are
notified that the connection is created, we set our endpoint to be in
auto-receive mode. This endpoint mode automatically issues a
receive command on your connection, thereby catching all data that
is sent to your client without needing to explicitly issue receive
commands.

In the SMTPClient code, whenever we get something from the
SMTP server, we send that in to our SMTP state machine (the
::RunMachine() method). ::RunMachine()
alternates between parsing incoming messages for their response
codes and sending the next appropriate SMTP command.

// ---
// • HandleAsyncMessage
// ---
void CPMailEditorDoc::HandleAsyncMessage(const LAsyncMessage& inMessage)
{

switch (inMessage.GetMessageType()) {
case T_DISCONNECT:
case T_ORDREL:

mEndpoint->AcceptDisconnect();
// fall thru as the connection is closed at the other end
// and we won't necessarily get the DISCONNECTCOMPLETE
// when we issue an AcceptDisconnect instead of a Disconnect

case T_DISCONNECTCOMPLETE:
delete this;
break;

case T_CONNECT:
case T_PASSCON:

if (inMessage.GetResultCode() == noErr)
mEndpoint->AutoReceive();

break;

case T_DATA:
case T_EXDATA:

LDataArrived* data = (LDataArrived*) &inMessage;
if (data->GetDataSize())

RunMachine((char *) data->GetDataBuffer(),
 data->GetDataSize());

break;
}

}

Listing 3. The HandleAsyncMessage Method.

Experiences Implementing SMTP with PowerPlant 7

\
Listing 4 shows part of the ::RunMachine()
method, which is an example implementation of the
SMTP state machine described above. This
implementation is a little unusual, and probably a
little less clear, because its external switch
statement jumps between result codes, while the

inner conditionals branch on the actual state of the
system. This code folds the alternating Reply/Send
states together. Most of the time, the machine will
be receiving state code 250 (success) and staying
within the first case. Later status cases cover
initialization, rundown, and error conditions.

// ---
// • RunMachine
// ---
void CPMailEditorDoc::RunMachine(char *inDataBuffer, Uint32 inDataSize)
{

Uint32 thePosition = 0;
Boolean done = false;

while (!done && thePosition < inDataSize)
if (ParseReply(inDataBuffer, inDataSize, thePosition))
{

switch (mLastCode) {
case 251: // ok, but non-local user
case 250: // success

switch (mMachineState) {
case eGreetingLong:
case eGreetingShort:

SendMAIL();
mMachineState = eMailSender;
break;

case eMailSender:
if (SendNext())

mMachineState = eMailDestination;
else

mMachineState = eMailInitiateData;
break;

case eMailDestination:
if (!SendNext())

mMachineState = eMailInitiateData;
break;

case eMailInitiateData:
SendDATA();
mMachineState = eMailBody;
break;

case eQuitting:
SendQUIT();
mMachineState = eDisconnecting;

break;

case eDisconnecting:
break;

default:

Experiences Implementing SMTP with PowerPlant 8

\
Assert_(false);
break;

}

Experiences Implementing SMTP with PowerPlant 9

\
break;

/*
...error cases and intermediate data case removed...see sample source
*/

}
}

}

Listing 4. SMTP State Machine Sample Implementation (Partial)

::ParseReply() collects the return information
from the server and breaks out the result code. It
discards the extra textual information. The Send
methods simply format the corresponding
commands with any parameters and push them out
the endpoint. Listing 5 shows a typical Send
method. Note that the ::SendNext() method

actually parses the To: field's data to allow for more
than one destination address. In this way, the user
can specify a comma delimited list of mail
addresses. SMTP only allows one forward path per
RCPT command, so we have to cycle through the n
addresses sequentially.

// ---
// • SendQUIT
// ---
void CPMailEditorDoc::SendQUIT(void)
{

LStr255 param("QUIT");
if (mStatusPane)

mStatusPane->SetDescriptor((StringPtr) param);
param += kCRLF;
Int32 theSize = param.Length();
mEndpoint->Send(¶m[1], theSize);

}

Listing 5. Typical Command Send Method

When we get to the Data state, we begin by
formatting and sending a [RFC822] header. The
header minimally includes return path information,
subject, recipient address information, and a
properly formatted date field. Other fields are
optionally appended to the header. The client then
sends each line of the message body, testing each
line for instances of the EOM sequence and
properly byte-stuffs those lines.

At the end of the message body, an EOM is sent. Assuming that the
server has accepted the transaction up until this point, we send a
QUIT command, which commits this transaction.

The QUIT causes the SMTP server to send an acknowledgment and
close the TCP channel from that end. The LAsyncClient
object receives a T_ORDREL message requesting an orderly
shutdown of the endpoint. The endpoint accepts the disconnect
request and then deletes itself.

Assuming that no error messages were encountered, we just sent an
Internet mail message via SMTP!

Implementation Problems

During this exercise, I encountered several gotchas with PowerPlant.
Here I will try to explain them. Note that some of these issues are
planned to be fixed within the PowerPlant release for CodeWarrior 9.
The bugs and problems have been reported to Metrowerks.

Endpoints in their current implementation are tricky beasts. One
problem with the asynchronous model is that you can get unusual
dependencies that are not normally expected. One of the great current
mysteries of the PowerPlant networking classes is when to properly
destroy an endpoint. The

Experiences Implementing SMTP with PowerPlant 10

\
asynchronous messages which tell an LAsyncClient what is
happening are allocated out of a pool of memory created by the
LEndpoint's Notifier object [most of the time, actually there is
a "bug" in that some LNetMessage objects are created from the
endpoint's pool is CW8]. The notifier is destroyed by the endpoint
when the endpoint is destroyed. Unfortunately, if you delete your
endpoint from within ::HandleAsyncMessage() when
you receive a message–such as T-DISCONNECTCOMPLETE–you
will kill the memory pool from which the message is currently

allocated. This causes problems when the message call stack pops
back to the message sending method, and then tries to delete itself
again. Boom!

Our destructor (see Listing 6) defers the deletion of the
LEndpoint object. In this example, we spawn a thread to handle
the deletion. This is clearly a work around, and an official solution
may exist by CodeWarrior 9's time-frame.

// ---
// • dtor
// ---
CPMailEditorDoc::~CPMailEditorDoc()
{

// tell notifiers to bug out
ClientIsClosing();

if (mMailPrefs)
::DisposeHandle((Handle) mMailPrefs);

// close endpoint if any
if (mEndpoint)
{

// try to defer the deletion of the endpoint
LSimpleThread *aThread =

NEW LSimpleThread((ThreadProc) DeleteEndpointObject,
(void*) mEndpoint);

if (aThread)
aThread->Resume();

else
delete mEndpoint;

mEndpoint = nil;
}

}

Listing 6. Destructor Defers Endpoint Deletion

A second problem can occur due to overflow
problems on sending data. The current endpoint
implementations of the Send method do not notify
you if the outgoing data has caused an overflow
condition. This can happen if you are relying on the
auto-send mechanism which copies your data to an
intermediate buffer. If you are generating data to go
out more quickly that it can be sent, or if you try to
send chunks larger than the pool can accommodate,
the send will fail silently. There is the beginning of a
mechanism to implement a notification of this error,
but it is not complete in the CodeWarrior 8 release.
You will need to apply a work around in your own
code and/or modify the class to patch this up. In my
sample code, I simply return the size of the buffer

sent or the result code by changing the Send
methods to make the data size parameter a
reference copy (e.g. void
LMacTCPEndpoint::Send(void* inData,
Uint32& ioDataSize, LNotifier*
inNotifier)).

Experiences Implementing SMTP with PowerPlant 11

\
Another significant gotcha is encountered when you implement a
scheme in which you take very small pieces of data out of the
incoming data stream. By making repeated calls to the endpoint's
Receive method with a buffer size of one–or other small sizes–
you will quickly run out of pool space. Or so it will seem. On closer
examination, you will note that there is sufficient space within the
pool, but it is impossible to allocate space for your receive request.
This fragmentation of the endpoint pools can be avoided by using all
data immediately when you get a T-DATA or T-EXDATA message.

If you must receive data in extremely small pieces, you can
implement a more sophisticated free block coalescing algorithm, or
some kind of intermediate buffering scheme. Using all of the data
immediately appears to be the most efficient mechanism at this time.

A final problem with the networking classes is a collection of
memory leaks. There are some instances of exceptions being raised
before deleting memory allocated from a pool. See
LMacTCPEndpoint::Receive() for an example. These
leaks are being cleaned up in the CodeWarrior 9 release.

Conclusion

This paper has provided an introduction to the Simple Mail Transport
Protocol. It explained the basic state machine that describes the
protocol, and details the flow of information that encompasses a mail
transaction.

A Metrowerks PowerPlant implementation of the basic SMTP
mechanism is presented, with details on how to get started with the
PowerPlant networking classes. Some of the issues you must watch
out for with the current class framework are revealed.

The goal of this paper has been to get you started on your own
experiments with the networking classes in general, and SMTP in

particular. With the provided implementation, you should be able to
add mail sending via SMTP to your project in short order.

If you use any of this information or code and have suggestions,
improvements, or questions, please let me know (and send a copy of
your cool application!)

Bibliography

[COMER91] Comer, Douglas E.. Internetworking with
TCP/IP Volume I: Principles, Protocols, and
Architecture. Prentice Hall, Englewood Cliffs, New Jersey. 1991.

[RFC821] Crocker, D.H. "Standard For The Format of ARPA
Internet Text Messages," ARPANET Request for Comments, No.
821. SRI International: Menlo Park. August 1982.

[RFC822] Postel, J.B. "Simple Mail Transfer Protocol," ARPANET
Request for Comments, No. 822. SRI International: Menlo Park.
August 1982.

[RFC1725] Myers, J.. "Post Office Protocol - Version 3,"
ARPANET Request for Comments, No. 1725. SRI International:
Menlo Park. November 1994.

[RFC1730] Crispin, M.. "Internet Message Access Protocol -
Version 4," ARPANET Request for Comments, No. 1730.
University of Washington. . December 1994.

[SILBER91] Silberschatz, Abraham, Peterson, James C., et. al..
Operating System Concepts, 3rd Edition. Addison-
Wesley Publishing Company, Reading, Mass.. 1991.

[TANNEN81] Tannenbaum, Andrew. Computer Networks.
Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 1981.

Experiences Implementing SMTP with PowerPlant 12

