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Loss-Less Compression:  

It depends upon what you know

J. Christian Russ, ADE Optical Systems, Inc.

Abstract: 

Loss-less compression is exactly what it sounds like.  Data is compressed and later restored to its original form – modem transmission, disk and tape  
storage, and RAM compression all depend upon data being restored EXACTLY as it was before.  But some forms of compression are better than others.  
In the last twenty years the field of data compression has changed significantly both because of better algorithms and faster computers.  This paper  
surveys the current state of compression and examines some of the pitfalls.

RLE – Run Length Encoding

The first kind of compression that we all learn about is RLE or Run 
Length Encoding.  It is performed by replacing strings of values that 
are identical (like a sequence of 0’s) with two numbers – the value and 
the number of times the value appears.

For binary images, this is simplified — now there is no need to indicate 
whether the value is a 1 or a 0, rather the number of 1’s is followed by 
the  number  of  0’s,  etc,  until  the  end  of  the  line  (typically  a  0,  0 
combination).  For some kinds of images (FAX) this works very well.

Frequency of English letters

In many cases, RLE is not good enough, especially when looking at the 
English  language.   There  just  aren’t  that  many  words  that  have 
sequences of the same letter repeating enough times to be worthwhile. 
Instead, we know some things about the frequency of the letters.  (For 
an example of this, watch Wheel of Fortune – all of the players know 
the relative frequency of the letters and guess the most frequent letters 
first.)

As you would guess, the letter E is the most frequent in the alphabet,  
and the letters Q and Z are the least frequent.  Because of this, if there 
were  a  way  to  use  fewer  bits  to  represent  the  E  and  more  bits  to  
represent the Q and Z, it would be worthwhile.  More on this later with 
Huffman coding.

Infinite number of monkeys

It  has  been  proposed  that  with  an  infinite  number  of  monkeys, 
typewriters,  and  bananas  you  could  eventually  reproduce  all  of  the 
great works of man.  Part  of the reason this takes so long is that  a  
monkey doesn’t know to hit E’s more often than Z’s.  The monkey that 
has an equal probability for all of the letters is an Order Zero Monkey.  
He’s not very bright.

If  we  had  a  slightly  smarter  breed  of  monkey that  typed  E’s  more 
frequently than the Z’s it would take less time to reproduce Hamlet and 
the rest.  This is an Order One Monkey.

Let us have a still smarter monkey – one that knew after a Q, most of 
the  time  the  right  letter  to  type  is  a  U.   This  monkey  knows  the 
probability of a second letter after a first and is an Order Two Monkey.

As the monkeys come from higher orders (Three, Four, etc.), the time it 
takes for the great plays to be reproduced gets smaller, but the storage 
requirements for the tables gets bigger (26^2, 26^3, …, 26^n).

This  process  can  be  simulated  by  building  probability  tables  of  the 
letters  of  the  alphabet  from some source  material  and  then  using  a 
random number generator to make letters (a Random Monkey).  With 
an order one probability table the text is pretty poor.  It is rare to get  
whole words that are meaningful and nearly impossible to get a whole 
sentence.   (Our  monkey  needs  26  letters,  a  space,  and  some 
punctuation.)

As the order of the probability table increases the quality of the text that 
is produced by our Random Monkey improves markedly.  By the time 
the order gets above four, the Random Monkey is reproducing entire 
strings  of  the  original  text,  very  much in  the  original  style.   If  the 
original source material was Shakespeare then the text would look like 
very familiar indeed.
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Thus,  we  have  found  a  way  to  quantify  knowledge  of  the  English 
language in the form of a probability table.  This knowledge can be 
used for compression.

Some Random Monkey

Order 0: Equal Probability for all of the letters

Order 1: Knows the probability of the letter ‘E’

Order 2: Knows the probability of the letter ‘U’ after the 
letter ‘Q’

Order 3: Knows the probability of the letter ‘N’ after the 
letters ‘I’ and ‘O’.

Huffman coding - 1st order probabilities

Huffman  coding  (1952  paper  “A Method  for  the  Construction  of 
Minimum  Redundancy  Codes”)  creates  variable-length  codes  based 
upon probabilities.  These codes have an integral number of bits.  For 
instance,  if  the  letter  ‘E’ occurred  95%  of  the  time,  it  could  be 
represented with just one bit ‘1’.  Less frequent letters would take more 
bits, and of course the least frequent letters take the most number of  
bits – potentially many more than eight bits.  The bit stream is decoded 
with a binary tree, and the algorithm is as follows:

1. Each of the letters is laid out as a leaf of a binary tree (and is  
added to a list of free nodes).

2. The  two  free  nodes  (letters  or  parent)  with  the  lowest 
probabilities are located.

3. A parent node for these free nodes is created with a weight 
that is the sum of the two nodes.

4. The parent is then added to the list of free nodes, and the two 
children are removed from the list.

5. One of the children is assigned a 1.  The other is assigned a 0.

6. Repeat this sequence from #2 until there is only one free node 
left (the root of the tree).

Therefore, the letters A thru G with the frequencies:

A B C D E F G
15 7 6 6 5 3 1

Would yield a tree that looks like this:

A
15
00

C
6

010

G
1

1111

D
6

011

B
7
10

E
5

110

F
3

1110

27

12

4

9

16

43

In this example, the ‘A’ is fairly frequent and only takes two bits to 
represent, but the ‘G’ is less frequent and takes four bits to represent. 
Since there are only seven letters, you could use three bits to represent 
everything.

There are two ways to build up statistics on a selection of text or other 
data.  The first is to have a common probability table built up from 
every bit of data around that could be accessable and the second is to  
only look at the selection of data that is to be sent. 

In the former case (static table) it is possible for the probability table to 
be  located  with  both  the  compressor  and  the  decompressor  and 
therefore it need not be sent with each data set.

In the second case (dynamic table) the probability table needs to be sent 
with  the  data  set  and  as  the  order  of  this  table  increases,  the  size 
increases exponentially.

Huffman coding is essentially a variable-length cypher, and is the best 
of such methods that produce integral-length results.  The disadvantage, 
is that in this case, the best compression is 3:2 even if there are long 
repeating strings.

In various spy stories there is a reference to cyphers and 
One Use Pads.  A one use pad is a Huffman tree where the 
leaves of the tree are long messages.  The goal is to only 
use the tree once so that nobody can figure out what you 
said.

Loss-Less Compression 2



3 An Introduction to Image Processing and the Fourier Transform 3

Arithmetic Coding, fractional bits

One  of  the  problems  with  Huffman  coding  is  that  the  smallest 
compression possible is to reduce a character to one bit.   Thus,  the 
greatest possible compression ratio (in the case of text with 6 bits) is 
6:1.  Or in the case of ASCII it is 8:1, if there is a really frequent letter  
(say an E).  

What if it were possible to use fractional bits to compress?  Well, it is 
possible.  The method is called arithmetic coding.

If there was a letter that had a probability of 90%, the optimal size 
would be 0.15 bits – much smaller than the one bit that Huffman would 
assign to it.

The  method  is  to  assign  a  position  between  0  and  1  along  a 
probabilility line for each letter.  The order is unimportant.  The same 
sequence from before would yield:

A B C D E F G

.349 .512 .651 .791 .907 .977 1.0

So, in this case, the letter A is represented by the range 0 to 0.349, the 
letter B is represented by the range 0.350 to 0.512, and the letter G is 
represented by the range 0.978 to 1.0.

The general idea is that each long word in the compressed sequence is 
used as a shift register where the number corresponding to the letter is 
added and then the entire number is multiplied by the range that letter 
occupied.  Decompression is similar to the Huffman method.

Adaptive Compression – Huffman

But  everything  doesn’t  stop  here.   It  is  usually  impossible  to  get 
statistics on the entire stream before the data is sent, or the statistics  
may change in mid-stream, so the statistics for one part of the data is 
different than for the next part.

In this case, an adaptive method would be helpful – how do we change 
the probability tree as we go?

It  would  be  possible  to  reserve  one  of  the  infrequent  codes  to 
correspond to a new tree being transmitted so that future data uses the 
new tree.  But in most cases, only a little of the tree would change. 
Therefore  you  would  just  send  the  probabilities  of  the  letters  that 
changed position in the binary tree.

This  has  the  advantage  of  being  better  than  Huffman  since  the 
probabilities can be changed.  The disadvantage is that some opcodes 
must be retained to send the tree, and the tree must be re-sent when the 
statistics change. 

Dictionary Based Compression

There is another way.  Longer sequences than just one letter can be 

turned into entries in the Huffman tree.  Then the bit patterns of the 
entries can be sent, or more simply, the address of the entries can be 
sent.  These are tokens within a dictionary.  Words that are not known 
are composed of letters using the old Huffman methods, but the words 
that are known are easily compressed and sent.

This method is strongly related to a type of encryption that was used in 
World  War  I.   Cypher  books  with  five-letter  combinations  were 
produced and sent out one to a ship.  The combinations translated to 
various  words  so  that  messages  could  be  sent.   If  some  kind  of 
frequency ordering could be done with these combinations (or tokens) 
compression could be achieved.

(Unfortunately, if you use the cypher too many times, and the enemy 
knows what the message was about, the cypher can be broken.)

The relationship between compression and encryption – 
“If  they  don’t  know how the  data  is  compressed  it  is 
effectly encrypted.”

Building a dictionary can be a bit of a problem, but computers are fast 
so there must be some way of doing it.

Static Dictionary

If the dictionary is static – computed way in advance – there is no need 
to  transmit  it  along with  the  message.   This  can markedly  improve 
compression.  However, if the word you’re trying to send is not in the 
dictionary, or the probabilities of the words in the table do not match 
those in the dataset being sent, then it is very far from optimal.

In general, a static dictionary is good for small datasets, where there is  
not enough data for good 
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statistics, but some assumptions can be made – whether the data is Text, 
Code, Pictures, etc.

Adaptive Dictionary

Adaptive  dictionaries  are  constantly  changing  as  the  stream  comes 
through.   They must  be  computed on the  fly  (implying a  moderate 
amount of searching) and must be sent along with the message stream.

But,  if  the  statistics  of  the dataset  are  not  known,  it  is  vastly  more 
efficient than a static dictionary.  The other problem is how to make 
new entries in the dictionary – some entries may have to get disposed 
of in order to make space, so the additions to the dictionary get sent and 
it is maintained by both the compressor and decompressor.

Enter Ziv, Lempil, and Welch

In 1977 Jacob Ziv and Abraham Lempel published an article in IEEE 
Transactions on Information Theory.  Its successor was published in 
1978.  These two papers “A Universal Algorithm for Sequential Data 
Compression” and “Compression of Individual Sequences via Variable-
Rate Coding” are the core of the LZ77 and LZ78 algorithms.  They are 
two very different techniques, but have dominated the industry since 
their introduction.

LZ77 uses a “sliding window.”  The dictionary is a set of fixed length 
phrases within the window.  The window size is typically between 2K 
and 16K with phrase lengths typically up to 16 or 64 bytes.

LZ78 is completely different in how the dictionary is built up – it builds 
up phrases one symbol at a time when matches occur.

In both cases, as new elements get added to the dictionary, they are 
added to the data stream, so on the decoding side, the dictionary is also 
rebuilt.

In  1984,  Terry  Welch  of  Sperry  Research  Center  (now  owned  by 
Unisys)  published  an  implementation  of  the  LZ78  algorithm.   This 
algorithm is generally referred to LZW.

One of the big problems with compressed data is that a 
flipped  bit  can  have  highly  disasterous  effects.   If  the 
flipped bit occurs in a Huffman-encoded file, then the rest 
of the file can be damaged.  In the dictionary methods, a 
flipped bit in the dictionary can cause very unpredictable 
results, including crashing the host computer if the code is 
not protected.

Because of this, there is a need to add a CRC (Cyclical 
Redundancy Coding) method to catch errors within the 
data.  Repair is usually impossible unless a lot of CRC 
data  is  used,  often  undoing  any  advantage  gained  by 
compression.

Common implementations:

ARC (LZ78)

PKZIP (LZ77)

MNP-5 (Microcom – dynamic Huffman)

V.42bis (Dictionary scheme related to LZW)

QIC-122 (Stac’s LZ77-based method)

GIF (LZW variant)

TimesTwo Driver Level Compression

TimesTwo was a SCSI driver that took every block of data that was 
written  by  the  operating  system,  compressed  it,  and  wrote  it  in 
whatever available empty spaces there were on the disk.  (It used the 
Stac QIC-122 engine, although it could use any engine.) Underneath 
was a hash table that kept track of what portion of the disk was actually  
used, including starting addresses and lengths of the blocks that were 
there.  In addition, especially with very small files, TimesTwo was very 
good at allocating just enough space for the data being written, rather 
than put a small file into a large allocation block, it could be as small as 
a 512-byte physical block.

Unfortunately, on the driver level it is very difficult to tell what portion 
of the disk is in use and what is  not – merely that certain physical  
blocks are written together (and usually read together).  Random access 
structures  behaved  very  badly  because  compression  works  well  on 
medium sized and large sized pieces of 
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data,  not  small  things  like  allocation  blocks. 
In addition, if a record within a file was changed, such as a resource file 
or a database, performance was considerably degraded.  Fragmentation 
was another pitfall.  It was also impossible to access the disk without 
the driver, since no other drivers knew about the compression on the 
disk., including disk recovery packages.  A big problem, though, was 
that  if  you  filled  up  the  compressed  volume,  it  was  impossible  to 
decompress  it  since  the  data  was  bigger  than  your  disk  –  disk 
compression was a one way street.  

Another sticky problem, that was nearly as big, was how to tell how 
much space is left on the disk?  Let’s say that there is 1MB of available  
physical blocks on the volume.  Do we tell the user that there is 2MB 
free?  What if he writes a file that is 1.9MB and it doesn’t fit?  We 
finally settled on a compromise – if there was 1MB left, we’d report 
1:1 how much space was left, but if there was more than 1MB we’d 
report the doubled amount (with a fudge factor for a smooth transition). 
Also, there was a wild scavenger VBL task that searched through the 
VIB looking for allocation blocks that had just been deleted and could 
be released from the underlying hash table.

But, when writing something that was only going to be read and not 
modified, it  behaved marvelously.  The ideal use for something like 
TimesTwo would be in the mastering of CD’s.

In the end, it  was a race of two competing problems: 1) a bug was 
causing the hash table to keep getting corrupted, so files would just  
disappear (a major customer service nightmare), and 2) ultimately hard 
drive prices fell through the floor – why use compression and take the 
risk of trashing your disk performance (and in some cases your data) 
when a 1GB drive was under $1000 (and now under $200).

Other ideas included compressing floppies,  but  when a floppy costs 
$0.40 why try to compress the data on it?

Patents

Unisys (Sperry) has a patent on LZW.  V.42bis is based upon LZW. 
Modem  manufacturers  may  license  it  for  a  one  time  $25,000  fee. 
Having  an  industry  standard  based  upon  a  patented  algorithm  is 
generally a bad idea, though.

Microsoft and Stac fought a major court battle over the compression in 
MSDOS 6.0.  Stac is one of the few companies that has achieved a 
victory in dealing with Microsoft.  Pyrrhic though it may be.

RAM Doubler

RAMDoubler gives your computer another method of having virtual 
memory.   Essentially  it  provides  virtual  memory  to  compressed 
memory, rather than going to disk as would be the classic method.  The 
compression in RAMDoubler depends upon three principles:

• A lot  of  memory isn’t  in  use all  at  once – even within an 
application.  Whenever a program does a _DisposeHandle or 

_DisposePtr  that  memory  can  be  filled  with  0’s  and 
compressed extremely well.   (Unfortunately,  Photoshop is a 
really bad counter example – it allocates all of the memory 
from its partition, fills it with stuff, and keeps it that way.) 

• As long as the swapping that goes on (locate a block to swap 
out, compress it, swap in the target block and decompress) is 
faster  than  hard  disk  access  it  is  better  than  classic  virtual 
memory.  

• If there is no space to swap out to, the hard disk is a good last 
resort.

As we saw above with TimesTwo, it is easier to compress moderate-
sized pieces of data than small pieces.  The block-size can be chosen 
carefully so that good compression statistics can be maintained. 

Also, the swapping algorithm is not LRU (Least Recently Used), rather 
it should be a combination of LRU and MC (Most Compressible).  If it 
doesn’t compress well, it shouldn’t be swapped out.  There are some 
obvious problems with variable sized storage of the compressed pieces.

The future for compression

The next steps for compression go beyond adaptive dictionaries:

1)  Combination  Dictionaries:  LZ77  &  LZ78  methods  build  up  a 
dictionary as they go along and transmit it, but there were advantages 
with the static dictionaries, too.  Why not combine the two methods?  If 
TimesTwo had a static dictionary as a starting point – based upon the 
four most common data types on the Mac (Code, Text, Resources, and 
Picts)  –  and then only  transmitted  the  additions  to  the  dictionary it 
would have operated much better on small blocks of data, which they 
ALL were.   Also  compression  factors  better  than  the  typical  1.7:1 
would have been achieved.  (2.0:1 was claimed 
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and achieved by having a fragment manager under the driver, the extra 

2) We’ve also ignored a different type of pattern in a dictionary where 

Conclusion

Compression  and  encryption  seem  to  be  related  in  many  ways. 

Encryption attempts to equalize and distribute the entropy in a message 

You can encrypt data that has been compressed quite successfully.

You cannot compress data that has been encrypted.  (Unless it has been 

One additional trick with encryption is to add superfluous random data 

that will confuse decryption.  This, of course, defeats the purpose of 
compression.

The goal of compression is to find as much redundant knowledge in a 
message and remove it in such a way as it can be put back later, either  
for storage or transmission.  New methods tend to be discovered when 
the economics of compression are great – storage costs or transmission 
costs are high.  

Loss-less  compression  knows fewer  things  about  the  content  of  the 
messages  (than  lossy)  and  assumes  that  there  is  some  self-similar 
property that it can exploit.  As increasing amounts of data are sent over 
low-speed telephone lines (28.8k Baud) with the World-Wide-Web, the 
demand for better compression will increase.
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