
Using and Creating Cryptographic-Quality Random Numbers
Jon Callas, jon@worldbenders.com

3 June 1996

There’s an old mathematician’s joke that few decades ago, 
statisticians were concerned about the random number 
tables they had to use. They were difficult, ungainly, and 
just a pain. So a number of people got together and 
decided that if they could find out what the most random 
number is, they could just use that and lose all those thick 
books of random numbers. After much work, they found 
out that the random number is 17. I won’t bore you with 
the proof — much. The proof shows that The Random 
Number cannot be larger than 17, and then shows that it 
cannot be less than 17. Therefore it must be 17. The flaw 
in this proof is, of course, obvious.

Most of us know what random numbers are traditionally 
used for: games, simulations, testing, numerical analysis, 
etc. However, a number of us are now starting to work 
with privacy software, and privacy software needs to use 
random numbers for generating public / private key pairs, 
producing session keys, creating some digital signatures 
and message authentication codes, and many other uses. 
But we can’t just use 17, and we can’t even use the 
functions that come with our favorite development 
system. Creating good random numbers is a hard 
problem, so hard that there isn’t a library we can just use. 

In this paper, I will talk about randomness, what it means, 
how you get it, how you use it, and how to misuse it. This 
is a hard problem. Most of the mistakes I’ll talk about I’ve 
made myself. Given the nature of the study, there’s likely 
at least one comment in this paper that I’ll regret in five 
years. The good news is that with a little bit of study, 
humility, and cleverness a good hacker can do some good 
work.

What does it mean to be random?

This is a good question. In fact, it’s the crux of the issue. 
Random numbers, at some sense can be thought to be 
arbitrary, unknowable, unpredictable. Because we’re 
working on computers, we can think of random numbers 
as being random bits, or streams of random bits, which we 
group together, form modulos on, use in massaged forms. 

The canonical mathematical definition is that a string is 
random if there is no shorter way to state the string than to 
state the string itself. In plain English, it's random if you 
can't compress it. Note that this means that compression is 
a randomizing function.

Statistics tells us a few things about random bits. Zeros 
ought to occur as often as ones. A pair of zeros should 

occur half as often as single zero, and as often as a pair of 
ones. A triplet ought to occur half as often as a pair, a 
quarter as often as a single bit. If you take samples in 
pairs, a graph shouldn’t show clumps. There are other 
statistical tests such as the chi-squared test you can 
perform on a stream of numbers to show how random (or 
how much they stray from random) they are. The degree 
to which a stream of bits follows this statistical form is 
the degree to which it is said to be entropic. This is the 
strict mathematical definition. Please note that there is no 
well-defined term for something that is entropic and 
unknowable. Many people (including me) casually use the 
term "entropic" to mean statistically random and 
unknowable. 

These are good enough for traditional purposes (although 
some traditional random number generators have some 
amusing flaws — most implementations 



of rand() show clumps if you plot pairs on an x-y graph), 
but not in privacy and cryptography. The notion that a 
random number is unknowable is central to cryptographic 
work. If you construct a zillion digit prime number, and 
then post it on your web page, you might as well just use 
17. It’s no less safe, and you can probably remember it.

Cryptographers use the notion of “The Adversary” to help 
them focus their thought. The adversary is a hypothetical 
person who is trying to break the system. Depending on 
what you are trying to do, the adversary has certain 
abilities. The adversary can always disassemble your code 
and understand it. The adversary can always use brute 
force. The adversary can’t read your mind. For us on 
Macintoshes, it’s safe to assume our user can (sometimes) 
use the system without the adversary watching. For our 
purposes, a perfectly random number is one that the 
adversary has to guess, that is that there is no strategy for 
determining it that is better than brute force. Note that this 
is equivalent to the mathematical definition. If there were 
a shorter way to state the string, then this would form the 
basis of some way to guess it that's more efficient than 
brute force. Strong cyphers are also randomizing 
functions; the cyphertext output of a function is random, 
and ideally perfectly random. It follows all the statistical 
tests, and in effect looks like noise. Much of cryptanalysis 
centers around breaking codes by discovering and 
exploiting imperfections in a function’s ability to 
randomize.

Random numbers may be strong or weak (perfectly 
random numbers are the strongest), and also knowable or 
unknowable. Knowable random numbers are also called 
pseudo-random numbers. Pseudo-random numbers are 
knowable because they come from a mathematical 
function. For example, the number produced by summing 
the digits of your date of birth is completely pseudo-
random and knowable because it’s a fixed formula, but it 
may be secret. Flipping a coin is truly random, assuming 
the right coin, but pretty easy for the adversary to guess. A 
lopsided coin may be statistically skewed, and thus 
weakly random, but also truly random. 

Collecting, Cooking, and Feeding Entropy

Collecting truly random numbers is hard. Collecting 
perfect random numbers is hard. Collecting perfect, truly 
random numbers is non-trivial. The best way to do it is to 
treat each problem separately. Figure out how to get 
entropy, or randomness, or what I’ve called how truly 
random the number is, and then use that entropy to 
produce something that is statistically (ideally perfectly) 
random. In short, we want to get some entropic numbers, 
and then use them to seed a pseudo-random number 
generator. Better still, set up a process whereby we 
continually sample entropic numbers and continually and 

cumulatively seed a pseudo-random number generator.

It’s a good idea to collect as much entropy as possible 
before using a system. If you are creating a key pair, it’s a 
good idea to have a tenth to a fifth as much entropy as the 
length of the key (if you’re generating a 1024-bit key, it’s 
a good idea to have 100 to 200 bits of entropy). More is of 
course always better. Also note that by one bit of entropy I 
mean that it’s as random as a coin flip. A coin marked 
with 17 on one side and 23 on the other side has one bit of 
entropy, but anyone foolish enough to assume it’s the low 
bit is going to be in for a rude surprise. This is, in fact, a 
common mistake! Don’t assume that the low bit of a 
random sample is the random bit! In fact, the entropy may 
(as in the coin above) be smeared across the whole of the 
sample, or aggregated across multiple samples. 

There are many ways to get truly random numbers. Some 
outré methods include making hardware devices that 
generate noise, observing cosmic ray flux, and observing 
light emissions from trapped 



mercury atoms. They’re great in theory — and in some 
sorts of practice, as there are some very high-quality 
random generator chips out there — but we have to work 
with existing equipment. Here is a list of ways to get 
entropic numbers, and my biased opinions on their pros 
and cons:

Use your user. Users are among the most entropic things 
there are. The obvious drawbacks are that it takes time to 
get entropic responses from the user, and if you have no 
user (if you’re a server), this doesn’t help. Nonetheless, if 
you do have one, you should use user inputs, as these are 
the hardest for the adversary to acquire or spoof. You can:

Look at the keyboard. Timings between keystrokes aren’t 
bad. People tend to type rather regularly, except when 
they don’t. Ticks between keystrokes are probably good 
for one bit per stroke. If you use the value of the 
keystroke itself there are two dangers. One is that you 
might leak information about the person’s typing, which 
can be bad, and could ruin the whole game if it’s the 
passphrase for their key that you leak. The other is that 
English text contains only about an average of 1.3 bits of 
entropy per character (or so say Cover and King from an 
IEEE paper). My paranoia meter tells me to avoid using 
keystroke content because I fear leaking valuable 
information, unless I use a good distiller (which I’ll 
discuss below) and am careful to use other streams of 
entropy too.

Look at the mouse. Timings between clicks are probably 
better than timings between keystrokes, but they happen 
less often. There’s easily a bit there. The position of the 
mouse is also a good one, but there is obvious skew. Mice 
spend a lot of time in the menu bar. There’s a lot of white 
space in the menu bar, and menus aren’t used evenly. 
Dialog boxes tend to go in the same places, and lay out 
their components regularly. If you measure the mouse 
position in an event, it’s a mediocre sample. My gut feel 
is that there’s a bit of entropy in the whole mouse 
position. If you sample it in a VBL, null event, or some 
other free-running time, I feel confident at guessing that 
it’s got two bits of entropy, when moving.

If you have no user, you have to use your hardware for a 
stream of entropy. This is annoying, but not impossible. 
Here are some methods you might use:

Look at the clock. Simply looking at the clock provides 
some, but not a lot of entropy. If you use the time() 
function in the C library or the GetDateTime() function 
from the toolbox, it’s pretty easy for the adversary to 
search outward from now, and home in on your value. 
Finer resolution clocks are better, but the same principle 
holds. If you seeded a PRNG with TickCount() and 
nothing else, a search will find it quickly. There are only 
31.5 million ticks in a year. However, a stream of 

observations that look at the clock at the primary interrupt 
time (and use the microsecond clock) can get a lot of 
entropy quickly. Of course, there are other considerations, 
such as the fact that there is at least one regular interrupt 
on the system, and it’s possible for the adversary to do 
things to generate interrupts (like ping you).

Use the disk. At the Crypto ‘94 conference, Davis, Ihaka, 
and Fenstermach showed that air turbulence inside a disk 
drive creates enough randomness to make cryptographic-
strength random numbers. Obviously, there are a number 
of ways to do this badly, but with a good enough clock, 
and properly flushing (or disabling) the caches, this will 
work. A unix implementation of this scheme has 
generated over 100 bits per minute.

Use a microphone. Reading the microphone that is built 
into many Macs (like the PowerBook I’m writing this on), 
gives a source of apparently random data. I say apparently 
because this technique gives me the willies. White noise 
frequently isn’t. As I listen to things in the room here with 
me, there is 60Hz hum from power sources, A whine from 
my disk drive, fans in the room which are 



noisy but still have a regular component from their 
rotation, whine from nearby monitors, and so on. If I were 
mixing disk timings with sound samples, I would worry 
about how the disk’s chatter would make the two 
dependent on each other. Second, signal analysis is one of 
the most developed disciplines there is, and that makes 
me worry. Lastly, I would worry that two servers in the 
same room would be too tied to each other as the 
environment they are sampling is similar. I wouldn’t use 
sound alone, and I wouldn’t use it and disk timings alone. 
Other people I respect recommend compressing audio 
information as a way of removing skew, and then using it. 
As long as audio data is distilled with some suitable 
distiller (as I'll discuss below), it can be a fine source of 
randomness, in spite of the willies it sometimes gives me.

Use video. Reading the video memory of your computer 
can give another source of randomness. A number of 
people recommend reading the video buffer under the 
mouse cursor, too.

Use the network. There are all sorts of things on the net 
that are unpredictable. However, they are as accessible to 
other people as they are to you. Packet timings could be 
observed and then guessed about, so that they’d be only 
weakly random. Other interesting things that seem 
random may not be. Certainly it is arbitrary what the 
checksum of all of yesterday’s netnews postings are, but if 
the adversary used the same netnews provider, its entropy 
value could be as low as zero. There are other ways a 
determined adversary could observe your readings, or 
even feed them to you! As long as you consider network 
readings to be weakly entropic, they’re probably okay.

Use your computer’s state. These observations can be 
anywhere from worthless to excellent. The number of 
page faults that have happened on a VM system might 
increase wildly, or sit static. Checksumming memory 
might be worthless if a helpful program like Ram Doubler 
is zeroing it to make it more compressible! Some values, 
like your ethernet address are arbitrary, but not random 
(since a good adversary already has that along with your 
SSN and your mother’s maiden name).

Distilling Randomness

Once you have a big bag of random observations, or a 
stream of them that you can generate over time, what do 
you do with them? You want to mix them together, and 
get a value that is as random as all of them together; we 
want some entropy-preserving additive function.

The simplest, and one of the more useful is the XOR. It’s 
cheap, it’s fast. The drawback of using XOR is that if the 
random samples are in some way correlated, the 
correlation will actually remove randomness from the 

XORed streams.

Cryptographic functions can distill entropy. For example, 
you might take the first 8 bytes of sample, and repeatedly 
DES encrypt it with further samples, you’d get something 
that would have up to 56 bits of randomness, to the degree 
with which DES is a randomizer (differential 
cryptanalysis studies show that DES is non-random to a 
degree of approximately 10-8 bit per operation). 
Unfortunately, this technique is quite slow.

Checksums are also excellent ways to distill entropy, so 
long as you pick a good one. A checksum designed for 
error recovery (examples are any CRC) is a poor function 
to use. CRCs in particular are designed for the exact 
opposite of what we want. We want differences in a data 
stream to compound on each other, while a CRC is 
specifically designed to flag differences and allow some 
of them to be recovered. 



If checksums are the right idea but the wrong function, 
then what is the right function? 

A class of functions called “message digests,” 
“cryptographic checksums,” etc. have a number of useful 
properties. They are designed for producing digital 
signatures, integrity checks, and so on, and to do so in the 
face of an adversary who wants to forge one of these. 
Digesters are designed in Ron Rivest’s words to be secure 
in that, “It is computationally infeasible to find two 
messages that hashed to the same value. No attack is more 
efficient than brute force.” Thus, if we hash a series of 
random samples, it is not practical to learn what those 
samples were. Note that this is the same thing as my 
definition of the output’s being perfectly random, and thus 
the hash preserves the entropy found in the samples. This 
has the additional useful effect that many weakly entropic 
samples can be combined to carry entropy equivalent to 
the whole of the entropy of all the samples. Note that 
while these hashes distill entropy, they cannot hold more 
entropy than their size. They are bottles that you can 
shake up entropy in, but a 128-bit hash cannot hold 129 
bits worth of entropy.

These characteristics make them excellent functions for 
our purposes. Common functions used today are MD2, 
MD4, and MD5 (done by Ron Rivest), SHA (the US 
government’s Secure Hash Algorithm, also known as 
SHS, the Secure Hash Standard), GOST (the Russian 
hasher), RIPE-MD, and RIPE-MD160 (which are 
European standards for hashes).

Here is a short discussion of a few commonly used hash 
functions:

MD4 is a 128-bit hash. It was broken in late 1995. By 
broken, I mean that a message like, “I promise to pay 
Mary $100” has been found to have the same hash as, “I 
owe Mary $10,000, please pay it to her.” It is therefore 
completely unusable for producing signatures, but 
probably still has some use in distilling randomness. It has 
the advantage that it is very fast. If you use it, be prepared 
for tongue-clucking. I stopped using it several years ago.

MD5 is an improved version of MD4. It isn’t as fast as 
MD4, but was designed to improve its weaknesses. MD5 
is widely used for computing digital signatures. Recently, 
some cryptanalysts have found weaknesses in MD5 
similar to weaknesses found in MD4 before it was broken. 
This makes many people nervous about it. 

Since I started writing this article, Hans Dobbertin of the 
German Information Securoty Agency (and one of the 
inventors of RIPE-MD160) claims to have found a new 
weakness in MD5's compress stage. Without going into 
details, I note that you can find a copy of his paper at 
<http://www.cs.ucsd.edu/users/bsy/dobbertin.ps> or write 

to him at <mailto:dobbertin@skom.rhein.de>.

SHA is another improvement on MD4, developed at the 
NIST. It has all the improvements of MD5, with some 
others, including those that make it a larger hash. It is a 
160-bit hash, and has no known weaknesses.

RIPE-MD is another variation of MD4, also designed to 
improve it. It has also been broken recently, and a 160-bit 
version called RIPE-MD160 has been produced.

MD2 is another of Rivest’s hash algorithms. It is also a 
128-bit hash, and no weaknesses have been found in it. Its 
drawbacks are that it is slower than most other hashes 
(one-tenth the speed of MD4, one-seventh the speed of 
MD5 and RIPE-MD, and one-third the speed of SHA) and 
that when it was originally released, it was released with a 
license saying it was freely usable in privacy enhanced 
mail systems only.

There are also a number of hashes that are based upon 
using cyphers to mix up the hash values, including the 
Russian 



GOST hash, a 256-bit hash. Unfortunately, they’re all 
slow — GOST runs at less than half the speed of MD2. 
Speed, is of course relative. GOST can hash about 20 
megabytes per second on a Quadra 950, but if you want to 
set up a system that hashes something every interrupt, this 
is quite slow. Also, for US software developers, while it is 
legal to export a cypher that you’re only using in a hash 
function, many people don’t want to take the chance. This 
is what is known to the lawyers as a “chilling effect.”

Some people in the crypto world are a little worried about 
the current state of hashes, as the fast, exportable ones 
(which are also the basis of the approved signature 
standards of both the US and the EC) all come from a 
“monoculture” of MD4 variants. The 128-bit strains have 
been broken or are showing signs of strain. The 160-bit 
versions seem good, but people worry.

I recommend using MD5 or SHA. MD5’s weaknesses are 
disturbing, but we’re not producing signatures, we’re 
distilling entropy. The generator I include with this paper 
uses SHA, but mostly because it is a bigger bottle. 

Following is a graph of the comparative speeds of the 
hash functions I have discussed here. The data come from 
Bruce Schneier and Wei Dei.

Using a distiller

An advantage of using a hash function as a distiller is that 
hash functions give a different answer if you hash things 
in a different order. Thus, if the adversary knew that you 
hashed A and B, but did not know what order you hashed 
them in, at least you get one bit of entropy, while you’d 
get none if you simply XORed them.

Another is that there can be an advantage to hashing 
things with little or no entropy. For example, suppose you 
had a VBL task that hashed the mouse position on every 
interrupt. Obviously, if the mouse hasn’t moved, there is 
no additional entropy gained, but since H(A,A,B) != 
H(A,A,A,B) this second strategy has the advantage of 
introducing some entropy based not only on the mouse 
movement position, but mouse movement timing. I and 
many other people recommend hashing a lot of things 

because they might be useful particularly in a generator 
that continuously updates its store of randomness.

I recommend thoughtfully deciding what are good things 
to hash, constructing a process by which samples are 
regularly added to the distiller, and then using the distiller 
output as the seed to a secondary pseudo-random number 
generator (PRNG).

Pseudo Random Generators

There are a variety of functions you can use as PRNGs 
that are random to cryptographic strengths. A simple one 
is to use chained hashes. For example, after hashing your 
seed values, produce the final hash, take one byte of the 
hash as a random value and then hash the whole 
checksum back into the soup. If you are continually 
adding entropy to the system, this is effectively a perfect, 
truly random generator.

Another scheme is to use a cypher or a cypher-variant that 
is seeded by a hash function.

Depending on your tastes, either scheme works. Repeated 
hashing is less well-studied than a hash-seeded cypher 
(breaking such a PRNG is equivalent to 



breaking the cypher using a hash-derived session key), 
but hashes are designed to be non-reversible. On the other 
hand, people have had more luck breaking hashes than 
cyphers recently. On the third hand, repeated hashing is 
significantly faster than most cyphers. On the fourth hand, 
if you picked a fast cypher with few problems known, you 
could get the best of both worlds.

In fact, the generator I have selected for this paper 
combines a SHA distiller with a “grinder” that is designed 
along the same lines as high-performance stream cyphers.

The  goals of this generator are that it be high-quality, 
allow for continuous update, and be reasonably fast. To 
achieve this, I've created it with two stages. The first stage 
is a distiller. I chose SHA as my distilling function, but 
you can easily replace this with some other function. My 
intent is that some background process will continuously 
update it with new observations. Also, there is a rating 
scheme for the observations. Whenever you enter an 
observation, you can rate the entropy value of the 
observation in tenths of bits. I picked this so you can 
easily add in many weakly entropic observations, and 
even observations that are arbitrary, but not at all entropic 
(like the ethernet address of the machine you're running 
on).

Every time the first stage gets enough observations to fill 
its entropic pool, it overflows into the second stage. The 
second stage of the generator is a stream generator, 
similar to an algorithm compatible with the stream cypher 
RC4. This algorithm differs from RC4 in that its list of 
bytes vary from 255 to 0 instead of 0 to 255, and by 
starting its stream from the 0th element of the array, rather 
than the first. Each time the first stage overflows into the 
second stage, I use a process similar to the key 
preparation for a stream cypher except that I generate 256 
random bytes and discard them, so as to further mix up 
the pool.

This has a number of useful features. Using a distiller 
makes it easy and desirable to continuously update an 
entropy pool with a variety of observations of varying 
strength. By using unrelated functions in both stages, the 
generator capitalizes on the strengths of each stage. The 
second stage holds a vast amount of randomness when it 
is iteratively updated; the byte array can be in a total of 
256! * 256 * 256 states (this is roughly 2^1700 states — 
note that this is somewhat smaller than the obvious guess, 
that of 2^2048 total bits of entropy, but certainly an 
excellent pool). It is also extremely non-linear, and  
resistant to linear and differential analysis. Lastly, this 
technique has advantage that new observations update the 
whole pool, rather than restarting it, and that using the 
random number generator interacts with the updates in a 
way that actually adds to the total entropy of the system.

Could We Do Better?

On the one hand, it's certainly arrogant to think that we 
couldn't. On the other hand, if I had a better generator 
lying around, I would have featured it in this article.

If I wanted to do better, I might look at the Blum, Blum, 
Shub (named for its inventors) generator. Glossing over 
its features, it has a number of useful properties, not the 
least of which are that it is provably as strong as factoring. 
On the other hand, it requires generating two large prime 
numbers, it is slow, and factoring is only conjectured to be 
difficult. Also, because it is based upon knowing prime 
numbers, it can't be the final step of a system like this one 
that collects large amounts of entropy. I could imagine an 
extension to this system that used a Blum, Blum, Shub 
generator along with others.

Conclusions

Generating good random numbers is difficult, but not 
overly so. If you use a 



distilling function, make many observations of entropy, 
and make a habit of guessing low about their valued 
entropy, you can quickly acquire enough entropy to run a 
good generator.

If you use a generator designed for cumulative update and 
actually update it, then you can get further good results.

If you want to read more about cryptographic systems, 
randomness, entropy, and pseudo-random generators, here 
are some sources:

Internet RFC 1750, by Eastlake, Crocker, and Shiller. 
Available from fine web sites everywhere. This includes 
discussions of randomness, other distilling functions that I 
didn’t discuss, and some other security considerations. It 
also contains a good bibliography.

There is also a draft appendix to RFC1750 written by Carl 
Ellison (of Cybercash) and Burt Kaliski (of RSADSI). 
This draft contains a lot of good information about 
physical ways to acquire randomness for those who like 
building hardware. It also contains a good discussion of 
places not to get randomness from. Carl also has a good 
bit of source code for playing with and measuring random 

numbers. 
<http://www.clark.net/pub/cme/P1363/ranno.html>

Applied Cryptography, Second Edition, by Bruce 
Schneier. Published by John Wiley and Sons, ISBN 0-
471-11709-9. If you only have one book on cryptography 
and privacy, it should be this book. It is simple enough for 
an intelligent layperson to read, contains enough meat to 
let you see some of the innards of systems, and an 
extensive bibliography.

Foundations of Cryptography (Fragments of a Book), by 
Oded Goldreich. Oded Goldreich is a mathematician and 
cryptographer the Weizmann Institute of Science. He is 
presently visiting MIT. Several years ago, he wrote four 
chapters of a planned ten-chapter book. He hasn’t made 
progress on them in a while, but in late 1995, he put his 
fragments on the Internet in both Postscript and HTML 
forms. The work is mathematical, but contains proofs for 
things I have merely asserted here concerning distillers, 
hash functions, and PRNGs. If you want to see the 
theorems behind the theory, this is the place. Available 
from <http://theory.lcs.mit.edu/~oded/>.



Random.c:

//
// Two-Stage Cryptographic Random Number Generator
//
// Copyright © 1996, Jon Callas, Eldacur Technologies. All Rights Reserved.
//
// You have permission to use this code in any commercial or non-commercial 
// programs provided you do the following:
//
// (1) Somewhere in your documentation, about box, etc. you state that you use Jon 
//     Callas's Two-Stage Random Number Generator and that it is copyright by him.
// (2) If you use it in a commercial product, you send me email at 
//     jon@worldbenders.com telling me that you're using it. I don't have any 
//     nefarious purposes, I'm not going to sell your name to some mailing list, I 
//     just want to know who is using it, so I can send updates to you and be able 
//     to brag about the bizillion people that use this.
// (3) If you find bugs, make substantive improvements, etc. that you make a best-
//     faith effort to send them to me so I can incorporate it into the code.
//
// That's it. That's all you have to do. It's not much to ask. It's not as odious 
// as a copyleft so why not do it?
//

#include "Random.h"

#ifdef COMPILE_COMMENTS

What this is:

This is a high-quality random number generator that can create large amounts of good random 
numbers. When used properly, it can hold some 1700 bits of randomness, or entropy in it. This 
is more than enough for any purpose you need to use it for. However, like any piece of 
precision machinery, it must be used properly and handled with care. 

Please take the care to read these instructions and follow them.

HOW TO USE IT
--- -- --- --

The base object type is a Randomizer. There are also objects here for the two stages, the 
Distiller and the Grinder. They'll be explained below. Usually you don't ever have to use 
them.

(1) Make a Randomizer. The statement:

Randomizer *r = new Randomizer();

is good enough.

(2) Find a source of random inputs. Real random inputs. Best things to use are user-driven 
inputs like mouse positions, timings of keystrokes, and stuff like that. Each observation you 
seed the Randomizer with should have a guess of how random it is, in decibits. Yeah, 
decibits. Tenths of bits. If you think it's as good as a coin toss (like the clock time), 
then it should be 10. If it's a really mediocre observation, use 1. If it's junk that you're 
using because you like it (like your ethernet address, contents of files, etc.) throw it into 
the mix, but 
rate it 0. It all gets mixed up into the first stage, the Distiller. Hint: Always Guess Low, 
Especially If You Are Writing Privacy Software! Once the Distiller is filled with enough 
entropy, it will empty itself into the second stage. You can force the Distiller to empty by 
using a negative number for your entropy guesss.

Add in seed values with:



r->AddSeed(sourcePtr, length, decibits);

For example, you'd add in a timing observation with:

r->AddSeed(&timer, 4, 10);

You can find out how much entropy is in the system with the call:

r->GetEntropy();

(3) You should make a habit of periodically adding stuff to the mix. Sample the mouse and put 
X,Y position in. Time how long it takes you to create, write garbage into, and delete a 1MB 
file. Have fun. If you are in the habit of using a variety of observations, and mixing them 
in to the Randomizer, the accumulated entropy will help your system be random. And remember, 
when you guess about your randomness, guess low, especially in the things you gather in the 
background!

(4) Get random values with these functions:

r->Byte(); r->Word(); r->Long();

These return a random 8, 16, and 32 bit quantity respectively. The function:

r->String(char *position, long size);

will fill the memory 'size' long pointed to by 'position' with random bytes.

(5) Saving State:

If you need to save the state of the Randomizer, you can call:

r->GetState(RandomState *state);
r->SetState(RandomState *state);

to save and restore the state. You should consider the state of the randomizer to be 
sensitive data! Treat it with the same respect you would treat password files, private keys, 
and other sensitive data. Don't let an adversary break your privacy system by scamming your 
random numbers!

HOW IT WORKS
--- -- -----

Stage 1 is the Distiller. It is a cryptographic checksum, specifically the Secure Hash 
Algorithm. The implementation of SHS I use here was written by Paul Kocher, given to me by 
Paul, and used with his kind permission.

A cryptographic checksum like this can be used to accumulate entropy. There is a problem when 
you toss together things you think are random. The problem is that they probably aren't as 
random as you think they are, and they probably aren't random in the way you think they are. 
The wonderful thing about a checksum like this is that it can distill all the entropy in your 
samples. It doesn't increase entropy, but it holds it up to its maximum (in the case of SHS, 
160 bits). It can even be used in things that are weakly random.

An example of a weakly random source follows: Suppose you were sampling white noise from a 
microphone in the lab you put your HoozieServer 2000 in. Let's also suppose that while it 
just sounds like hiss to you, if we do fourier analysis on the samples we find that it's all 
just a bunch of harmonics except for some small bit of noise that makes your sample be X mod 
Y one time in four, and A mod B the other three times in four. Depressing, huh? It's not 
hopeless, though. It does suck that you thought you were getting 16 bits of white noise on 
each sample of the microphone, but there is still some value here. There's actually a half-
bit of randomness in any sample you make. Yeah, fractional bits sound weird, but they 



really represent the flip of an off-kilter coin. You can still use them, so long as you don't 
overestimate their value.

This is why I tell you to make many samples, and always guess low. Murphy *is* out to get 
you.

Once you have accumulated enough entropy in the Distiller, we move it to the second stage of 
the generator. I trust your guesses, when you tell me there's enough, I go for it. That's why 
I'm being such a nag.

The second stage of the random number generator is a non-linear, arithmetic streamer. Its 
guts are mathematically similar to some of the non-linear streams used in some high-
performance stream cyphers, but adapted to the needs of a random number generator, as opposed 
to a stream cypher. 

The combination of the two of them give you a way to hold up to 2048 bits of entropy and use 
it to generate crypto-quality random numbers. If you use it properly, it will serve you well. 
If you misuse it, don't come complaining to me.

If you need to know more about random numbers, what makes a good random number, why the 
rand() function isn't good enough, or why things you think are random aren't, look at some of 
the following sources:

Internet RFC 1750, available on a web site near you.
Bruce Schneier's "Applied Cryptography", available in fine bookstores everywhere.

#endif

//
// The Distiller object, the first stage generator
//
Distiller::Distiller()
{

Init(); // Initialize the object
}

void Distiller::Init()
{

// The only reason this routine exists, as opposed to
// keeping it in the constructor is that I thought it might be
// useful to be able to re-init an existing distiller.

SetEntropy(0);
shsInit(&shs);

}

int Distiller::AddData(void *start, long length, int decibits)
{

totalEntropy += decibits; // Update the guess
shsUpdate(&shs, (unsigned char *) start, length);

// Hash in the observation

return totalEntropy;
}

void Distiller::GetHash(unsigned char hash[HASHLEN])
{

SHS_CTX context = shs; // Make a 
copy of the hash state

shsFinal(&context, hash); // Finalize the copied hash.
}

//
// This is the Grinder object, the second stage of the generator



//

Grinder::Grinder()
{

numberPlace = 0;
newPlace = 0;
InitNums();

}

Grinder::Grinder(void *theStuff, long stuffLen)
{

// We don't actually ever use this constructor, but here it is, in case
// you want to make a Grinder and give it some stuff.

numberPlace = 0;
newPlace = 0;
InitNums();
AddStuff(theStuff, stuffLen);

}

void Grinder::InitNums()
{

for (int i = 0; i < 256; i++) // put the numbers 255 to 0 into the array
numbers[i] = ~i;

}

void Grinder::AddStuff(void *theStuff, long stuffLen)
{

int i;
int j = 0;
int stuffPlace = 0;

for (i = 0; i < 256; i++)
{

j = (numbers[i] + ((unsigned char *) theStuff)[stuffPlace] + j);
j &= 0xff;

unsigned char t = numbers[i]; // Swap the 
appropriate number

numbers[i] = numbers[j];
numbers[j] = t;

stuffPlace = (stuffPlace + 1) % stuffLen;
}

for (i = 0; i < 256; i++) // Turn the crank through a complete
Turn(); // revolution to thoroughly mix up the

// numbers. Studies show that this lessens
// the effect of weakly random stuff.

}

unsigned char Grinder::Turn()
{

// The actual work is done here for the second stage. This is what
// pops off random bytes. We spin this when we add more stuff to 
// stir it up.

register unsigned char t;

// We're going to swap two cells of stuff and numbers. We walk around the
// array, picking the next spot. The place we're going to swap it with
// is selected with the statements below:

newPlace = newPlace + numbers[numberPlace];



newPlace &= 0xff; // mod 256

t = numbers[numberPlace]; // Swap number cells
numbers[numberPlace] = numbers[newPlace];
numbers[newPlace] = t;

t += numbers[numberPlace]; // Add in the other cell
t &= 0xff;

numberPlace = (numberPlace + 1) & 0xff; // Find the next cell to play with

return numbers[t];
}

void Grinder::GetRandom(void *thePlace, long length)
{

unsigned char *x = (unsigned char *) thePlace;

for (int i = 0; i < length; i++) // Just step out N bytes
*x++ = Turn();

}

unsigned char Randomizer::Byte()
{

return Turn();
}

unsigned short Randomizer::Word()
{

return (Turn() << 8) | Turn();
}

unsigned long Randomizer::Long()
{

return (Turn() << 24) |
(Turn() << 16) |
(Turn() <<  8) |
Turn();

}

void Randomizer::AddSeed(void *seed, int seedLen, int entropyGuessInDecibits)
{

if (entropyGuessInDecibits < 0)
entropyGuessInDecibits = TOTALENTROPY;

AddData(seed, seedLen, entropyGuessInDecibits);

if (GetEntropy() > TOTALENTROPY)
{

unsigned char hash[HASHLEN];

GetHash(hash);
AddStuff(hash, HASHLEN);

SetEntropy(GetEntropy() - TOTALENTROPY);
}

}

Randomizer::Randomizer()
{

busy = 0;
}



void Randomizer::GetState(RandomState *state)
{

state->distillerEntropy = GetEntropy();
state->numberPlace = numberPlace;
state->newPlace = newPlace;
state->still = shs;

for (int i = 0; i < 256; i++)
state->numbers[i] = numbers[i];

}

void Randomizer::SetState(RandomState *state)
{

SetEntropy(state->distillerEntropy);
numberPlace = state->numberPlace;
newPlace = state->newPlace;
shs = state->still;

for (int i = 0; i < 256; i++)
numbers[i] = state->numbers[i];

}



Random.h

#ifndef RANDOM_H
#define RANDOM_H 1
//
/ Copyright © 1996, Jon Callas, Eldacur Technologies. All Rights Reserved.
//
// You have permission to use this code in any commercial or non-commercial 
// programs provided you do the following:
//
// (1) Somewhere in your documentation, about box, etc. you state that you use Jon 
//     Callas's Two-Stage Random Number Generator and that it is copyright by him.
// (2) If you use it in a commercial product, you send me email at 
//     jon@worldbenders.com telling me that you're using it. I don't have any 
//     nefarious purposes, I'm not going to sell your name to some mailing list, I 
//     just want to know who is using it, so I can send updates to you and be able 
//     to brag about the bizillion people that use this.
// (3) If you find bugs, make substantive improvements, etc. that you make a best-
//     faith effort to send them to me so I can incorporate it into the code.
//
// That's it. That's all you have to do. It's not much to ask. It's not as odious 
// as a copyleft so why not do it?
//

#include "shs.h"

const int HASHLEN = 20;
const int TOTALENTROPY = (HASHLEN * 8 * 10);

typedef struct
{

long distillerEntropy;
long numberPlace;
long newPlace;
long beenFullySeeded;
SHS_CTX still;
unsigned char numbers[256];

} RandomState;

class Distiller
{
protected:

SHS_CTX shs;
long totalEntropy;

public:
Distiller();

int AddData(void *start, long length, int decibits);
void GetHash(unsigned char hash[HASHLEN]);
void Init();
void SetEntropy(long decibits) { totalEntropy = decibits; };
int GetEntropy(void) { return totalEntropy; };

};

class Grinder
{
protected:

unsigned char numbers[256];
long numberPlace;
long newPlace;



void InitNums();

public:
Grinder();
Grinder(void *theStuff, long stuffLen);

unsigned char Turn();
void AddStuff(void *theStuff, long stuffLen);

void GetRandom(void *thePlace, long length);
};

class Randomizer : public Distiller, public Grinder
{
protected:

long busy; // Not presently used -- for future expansion
void Busy() { busy = 1; };
void NotBusy() { busy = 0; };

public:
Randomizer();
Randomizer(void *seed, int seedLen);

void AddSeed(void *seed, int seedLen, int entropyGuessInDecibits);
unsigned char Byte();
unsigned short Word();
unsigned long Long();
void String(void *start, long byteLen) { GetRandom(start, byteLen); };
long isBusy() { return busy; };
void GetState(RandomState *state);
void SetState(RandomState *state);

};

#endif


