
FlashPort

 You too can
 Go Native

 to PowerPC Macintosh

 S. Shastry

FlashPort

Introduction
FlashPort Product
FlashPort Technology
FlashPort Demonstration
Conclusion

Introduction

Software Migration Alternatives
Emulation
Traditional hand porting
Binary translation

Software Emulation

+Precise equivalence
-Performance loss
-Difficult to evolve

Traditional hand porting

+Maximizes performance
+Easy to maintain and evolve
-Precise equivalence difficult to achieve
-Porting effort is substantial

Binary translation

+Excellent performance
+Precise equivalence
+Maintainable
+Evolvable by replacement
-Requires precise and complex analysis

Binary Translation

Translation of applications in binary form
No changes in source required
Very sophisticated tool

Low level of abstraction
Analysis of all program paths
Accomodate a number of programming paradigms
Accomodate ill-behaved programs

Binary Translation
Two Possible Approaches

1Open Ended Translation
Most of code is found and translated
Rest of code is found at run-time and emulated

2Bounded Translation
All of the code is found and translated

 FlashPort Product

FlashPort
for Macintosh

Platforms:
Source Platform -- 68K based Macintosh
Target Platform -- PowerPC based Mac

Translation Goal:
Translation of complete executable binary
Translation of subprogram object code
Mix translated and compiled code

FlashPort
for Macintosh

Programs written in
68K Assembly
C, PASCAL or any procedural language
Mix of Assembly and procedural language

Has a graphical user interface. Generates:
Call Graph
Flow Graph

FlashPort
for Macintosh

Generates
68K assembly listing
PowerPC Assembly Listing
PowerPC Assembly source
debugging information

Is Native

FlashPort
for Macintosh

Enabling Technology for Apple’s strategy of
Macintosh Application Services
on Unix platform

FlashPort:
Proven Product

Using FlashPort, we have translated:
System 7 Macintosh ROM
System 7 System Files
System 7 Process Manager

FlashPort:
Proven Product

Using FlashPort, we have translated:
Commercial Applications:

WordPerfect
Stuffit
ArchiCAD
HyperCard
Vette!
AfterDark Modules
Apps from other major vendors

FlashPort:
Proven Product

For translations performed so far, we:
took commercial of-the-shelf software
had no access to the source code of the app
did not require any source changes
have translated millions of lines of code

FlashPort Identifies

Self-modifying code
Run-time generation of 68K code
Accessing code as data, moving code
Manipulation of A5 Jump table

FlashPort Identifies

Potential wild branches
Code in global data area
Routines that cannot be translated to native

calling conventions
Possible logic flaws in the program

 FlashPort Technology

Binary Translation
has to accommodate

Hardware Differences:
Machine instructions
Instruction sizes
Distance between code blocks

Binary Translation
has to accommodate

OS/Run-Time model differences
Memory and stack layout
Subprogram calling conventions
Toolbox calls
Mixed mode calls

Overview of FlashPort

Analyzer IL Generator Optimizer Code
Generator

Front End Back End

Figures out what
program does and
makes notes about
how thing are used

Recasts program in
machine-independent

form

Globally optimizes
machine-independent

form

Binds to target machine
performing

machine-dependent
optimizations

FlashPort Analyzer

Follows flow of control from program entrypoint
Divides program into procedures for analysis
Alternates between Pass1 (simple analysis) and

Pass2 (complex analysis) for maximal efficiency
Derives (in Pass2) a picture of the machine state

(called a context) for each block of a procedure
Applies calling context of call site to exit contexts of

callee (called arg-munging) to get effect of
procedure call

Uses Pass3 (analysis with actual arguments) where
necessary

Example of Arg-Munging

proc1: move.l #3,a1
pea array
jsr proc2

retlbl: add.w #4,sp
...

proc2: move.l 4(a7),a0
move.l a1,(a0)
rts

Placeholders for Pass2

REG %d0: P%d0
...
REG %sp: (stack + 4)
REG %pc: retaddr

Exit Context for proc2

REG %a0: *(long *)(stack[proc2] + 4)
REG %a1: P%a1[proc2]
REG %sp: stack[proc2] + 4
REG %pc: retaddr[proc2]

BASE: stack[proc2]
4: *(long *)(stack[proc2] + 4)
0: retaddr[proc2]

BASE: *(long *)(stack[proc2] + 4)
0: P%a1[proc2]

Calling Context for proc1

REG %a0: P%a0[proc1]
REG %a1: 3
REG %sp: stack[proc1] - 8
REG %pc: proc2

BASE: stack[proc1]
0: retaddr[proc1]
-4: array
-8: retlbl

Results in proc1 after
arg-munging

REG %a0: array
REG %a1: 3
REG %sp: stack[proc1] - 4
REG %pc: retlbl

BASE: stack[proc1]
0: retaddr[proc1]
-4: array

BASE: array
0: 3

Deriving calling
conventions

a1 and 4(sp) are arguments to proc2 because
they are used-before-set in proc2

a0 may be a return from proc2 if it is subseqently
used in proc1 before being reset

Because it takes register arguments proc2 is
classified as a non-standard routine

However the calling sequence for proc2 is
classified as normal because it is only jsr’ed to
and it only has normal returns

FlashPort IL Generator

Responsible for producing machine-independent
version of program

Extremely detailed and precise representation of
instruction semantics

Conversion of pointers to symbolic form
Conversions of distances to symbolic form
Biasing of pointer references
Conversion of “code vector” jumptables

FlashPort:
Optimizations

Dead code elimination
Unreachable code elimination
Constant propagation
Scalar propagation
Constant arithmetic
Symbolic arithmetic
Constant conditional evaluation

FlashPort:
Optimizations

Invariant code motion
Register propagation
Inverse scalar propagation
Common subexpression elimination
Range propagation

FlashPort:
Optimizations

Instruction reordering
Register Allocation
Pipeline scheduling

Load delay slot
Move from special registers
Across basic blocks

Automatic Generation of
Native Code

Convert ALINEs to Native Toolbox routine call
Map stack-based parameter passing to register-

based convention
Create Routine Descriptors for Mixed-mode calls
Use native floating point processor instructions
Eliminate indirection through A5

FlashPort Demonstration

Conclusion

FlashPort Binary translation is real
Supports

Incremental evolution
Single code base

Attractive alternative to hand porting
Native App for PowerPC
Reduces Time to Market

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

