
Harvest C      Page 1

Experiences from the Development of Harvest C
Eric W. Sink

Abstract:
This paper describes the development of Harvest C, a full C compiler and linker for the Macintosh.    This 
project has revealed a number of interesting issues, partially due to its unusual size, and partially due to the 
internal structure of Macintosh applications.    The following areas will be considered:

• Memory management for large abstract data structures
• Compiling the usual Macintosh extensions to C
• Macintosh application structure and linking
• The history of Harvest C and its future directions
• Comparisons with commercial C compilers

Harvest C is freely distributable 

Introduction

This paper describes the development of Harvest C, a full C 
compiler and linker for the Macintosh.    Harvest C compiles 
the full ANSI C language, as well as almost all of the MPW™ 
Macintosh extensions.    All inclusive, the compiler consists of 
over 100,000 lines of C code and has been in development for 
19  months.      Harvest  C  does  not  represent  an  advance  in 
compiler  technology,  but  an  advance  in  the  availability  of 
development  tools  for  the Macintosh.      As this  is  the case, 
some of the information presented here will not be particularly 
revelatory for the experienced student of compiler design.    It 
is hoped that this discussion will be of interest and value for 
the Macintosh enthusiast, both expert and novice.    Some of 
the  material  presented  here  is  technical,  some is  anecdotal. 
There  will  be  discussion  of  future  directions  as  well  as 
experience.

History

Harvest  C began as a  learning exercise in compiler  design. 
Initially, all development was done on a Sun 3, constructing a 
simple  compiler  that  generated  68020  assembly  language, 
using  68881  instructions  for  all  floating  point  operations. 
That compiler advanced to the point that it correctly compiled 
itself as well as enquire 4.31 and GNU Chess 3.12.      At this 
point, Harvest C (then called Ecc) had no Macintosh features. 
As development  continued,  much of  the  Macintosh-specific 
code was written on the Sun as well.     The parser and code 
generator  were  modified  to  handle  pascal  function 
declarations.    An assembler was added and code was written 
to dump object files in MPW format.    As indicated above, a 

1Enquire is a program by Steven Pemberton, CWI, 

Amsterdam(steven@cwi.nl), designed to test floating point accuracy 

in C compilers.

2GNU Chess is distributed by the Free Software Foundation, 657 

Massachusetts Ave., Cambridge, MA 02139.

replacement for  the Memory Manager was written to allow 
Macintosh specific code to be written and tested.    In fact, a 
replacement for much of the File Manager was written as well. 
These functions had the ability to read and write Macintosh 
files on a UNIX™ system.      The files were manipulated in 
Binhex format.    In those days, Ecc could compile a C source 
file directly into a Binhexed MPW object file.

The code generator for SANE™ floating point was written on 
the Sun as well, though it obviously could not be tested there. 
The entire linker was written after porting to the Mac, because 
a functional equivalent of the Resource Manager would have 
been a huge and futile task.

In  its  earlier  incarnations,  Harvest  C sported some features 
that it now lacks.    It was originally planned that Ecc would be 
a cross compiler, retaining its ability to run on a UNIX system 
as  well  as  its  ability  to  generate  assembler  source  for  the 
UNIX assembler.    At one point, Ecc successfully did function 
inlining like GNU CC3.    Ecc also had the ability to calculate 
and report a number of software metrics, including Halstead’s 
[2], McCabe’s [3] and others. Ecc also once included support 
for  much of the Objective-C [1] language.      None of these 
features are currently being maintained.

Harvest C was first released in October 1991.      Although it 
was  unreliable  and  had  an  atrocious  user  interface,  it  was 
capable of generating simple Macintosh applications.    Version 
1.2 is a substantial improvement over previous releases.

Development  now  takes  place  in  the  THINK  C™ 

environment,  using  the  THINK  Class  Library4 for  user 
interface  implementation.      Since  development  moved from 
UNIX to the Macintosh, Harvest C no longer compiles itself. 

3GNU CC is distributed by the Free Software Foundation.

4The THINK Class Library is distributed by Symantec Corporation 

with THINK C.



Harvest C      Page 2

At the current time, it would be impossible to do so, as the 
source  code  now  takes  advantage  of  the  object  oriented 
extensions to THINK C, which are not part of the language 
which Harvest C recognizes.    In the future, it may be possible 
to  extend  Harvest  C’s  input  language  to  allow  for  self-
compilation once again.

Motivation

It is the author’s opinion that a set of free development tools 
would benefit the Macintosh community.    It may be argued 
that Macintosh programming is far too complex to be placed 
in the hands of anyone who is not serious enough to invest in a 
commercial  development  system.      The  hope  is  that  the 
existence of a usable free C compiler will:

• Facilitate  the  learning  of  the  C language  on  a  wider 
scale.

• Spark innovation in amateur programmers, resulting in 
new Macintosh applications.

• Encourage  others  to  produce  and  distribute  related 
tools.

In general, the response from the Macintosh community has 
been very positive.    It is still unknown whether Harvest C can 
survive  in  the  presence  of  inexpensive  commercial 
alternatives.    

Technical Information

Overview

As of version 1.2, the user interface is somewhat of a hybrid 
of MPW and THINK C.    Harvest C is designed to be used in 
the same manner as THINK C.    However, an interactive shell 
is  provided,  reminiscent  of  MPW.      This  will  be  described 
later.    Harvest C does not provide an integrated editor, but it 
does  support  the  “project  file”  metaphor  as  opposed  to 

Makefiles.      Harvest  C  relies  on  AppleEvents™ to 
communicate with stand-alone text editors.    This mechanism 
will be discussed later.

Like any typical compiler for a language like C, Harvest C 
consists  of  a  preprocessor,  lexical  analyzer,  parser,  code 
generator, assembler, and linker.    Each of these components is 
discussed below.

The preprocessor and lexical analyzer are integrated together. 
All  preprocessor  commands  are  handled  “on  the  fly”, 
including  macro  expansion.      The  result  is  a  stream  of 
preprocessed  tokens,  passed  to  the  parser.      The 
preprocessor/lexer is hand-written, not machine-generated.

The preprocessor exists in two sections.     First, the function 
GetCharacter is  the  routine  that  passes  individual 
characters to the lexer for the construction of tokens.      The 

stream of characters resulting from multiple consecutive calls 
to  GetCharacter corresponds  to  the  source  file  after 
trigraph  conversion,  backslash  line  splicing,  comment 
removal,  and  all  preprocessor  directives  except  macro 
expansion.      GetCharacter is  actually the interface to a 
larger collection of routines.

The interface from the parser to the lexer is a routine called 
GetToken.    GetToken calls the GetCharacter routine, 
pieces tokens together,  and handles macro expansion.      The 
return value is a code indicating the type of token that was 
found. 

The  parser  in  Harvest  C  is  hand-written,  not  machine-
generated.    It was written using the grammar provided by the 
ANSI C committee as a reference.     As it parses the source 
file, it constructs symbol tables and parse trees that reflect the 
semantics  of  the  source  file  in  translation.      The  parser  is 
responsible  for  both  syntactic  and  semantic  error  checking. 
Error messages are accumulated and presented to the user in a 
scrolling log, each with its file and line position.    The parser 
is  also  capable  of  generating  warnings  for  a  number  of 
questionable constructs.    These warnings are presented to the 
user  in  the  same  manner  as  error  messages.      The  data 
structures  created  by  the  parser  bear  a  nearly  one-to-one 
correspondence with the structure of the C language itself.

A simple code generator translates the parse tree data structure 
to another data structure which directly represents the 68000 
family assembly language.    No intermediate representation is 
used.      Register allocation is done “on the fly”,  rather than 
employing a graph coloring algorithm later.

There  is  a  small  peephole  “optimizer”  that  makes  a  few 
modifications to the 68k code stream at this point.    Harvest C 
currently  does  not  have  a  “real”  optimizer,  as  it  does  not 
support  code  motion,  basic  block  optimizations,  register 
coloring,  loop  induction  variable  optimizations,  or  common 
subexpression elimination.

The 68k data structures are assembled and converted into yet 
another  data  structure,  representing  object  code  records. 
Finally,  the  object  code  data  structures  are  dumped  to  an 
object file.    The file format used is identical to that used by 
the MPW linker and tools.

The Linker

Though somewhat less sophisticated, the Harvest C linker is 
functionally  compatible  with  its  MPW  counterpart.      It 
operates as follows:

1. Read all the object files into memory.
2. Resolve  all  references.      This  step  verifies  that  no 

symbol is defined twice.    For every reference record, 
it searches for the symbol being referenced.    Pointer 



Harvest C      Page 3

links  between  referenced  symbols  are  constructed. 
Every referenced symbol is marked as active, so that 
inactive  symbols  may  be  stripped.      The  linker 
currently is not smart enough to strip symbols which 
are only referenced by inactive symbols.    Consider 
Figure 1.    Each oval represents a module.    An arrow 
from one module to another represents a reference. 
For  example,  from  the  figure  it  can  be  seen  that 
module A references module B.    Modules A and E 
are  inactive,  because  no  modules  reference  them. 
Module  B  is  active,  because  it  is  referenced  by 
module A.    A smarter linker would deduce that since 
B is only referenced by A, and A is inactive, then B is 
inactive as well.    On the other hand, module D must 
be considered active, even though it is referenced by 
an inactive module, because it is also referenced by 
the active module C.

3. Assign  A5  offsets.      Every  global  data  module  is 
assigned a location in the A5 world.      On program 

startup,  a  region  of  memory  is  allocated  for  the 
purpose of holding global program data and the jump 
table.    Register A5 is set to point somewhere in the 
middle  of  this  block,  dividing  the  region  into  two 
parts.      The  memory  at  negative  offsets  from  A5 
contains global data.    The jump table lives above A5. 
A data  module  might  be  assidned  an  A5 offset  of 
-2E6 (hex).    Code modules get A5 offsets as well, 
but  the  offset  point  to  the  jump table  entry.      The 
jump table is discussed below.

4. Adjust  all  references.      For every reference record, 
the module containing the reference must be patched 
with the A5 offset of the referenced symbol.

5. Build  the  global  data  initialization  segment.      In 
terms  of  emulating  the  MPW linker,  this  was  the 
most difficult aspect of implementation.     Basically, 
all  initialized  global  data  must  be  stored  in  a 
compressed table which is appended to the end of the 
segment called %A5Init.    A detailed explanation of 
the data format would be too lengthy to include here.

6. Build the jump table.    The jump table uses the same 
format as described in Inside Macintosh.    Harvest C 
is  currently  not  smart  enough  to  know when  it  is 
necessary to generate a jump table entry, so the jump 
table contains an entry for every function.

7. Generate the application file.    This means dumping 
the CODE segments using AddResource().    The 
application signature is set as well.

8. Add a SIZE resource, configured according to user 
defined options.

9. Add  all  resources  contained  in  any  resource  files 
present in the project.

Memory Management

Memory Management has been a difficult issue throughout the 
development  of  Harvest  C.      The  implementation  of  a 
compiler demands a large quantity of complex, dynamically 
allocated  data  structures  for  symbol  tables,  parse  trees, 
assembler records, and so on.    Harvest C not only allocates 
many data structures, it allocates many different kinds of data 
structures.      Certainly  Harvest  C’s  data  structures  could  be 
more efficiently designed.     After all, the project began as a 
learning  endeavor.      However,  the  services  offered  by  the 
Memory  Manager  are  perhaps  too  low-level  for  use  in  the 
allocation of individual blocks in a program such as this. 

UNIX  memory  allocation  is  done  using  malloc(), 
resulting in pointers to structs.    Dynamic memory allocation 
on  the  Mac  is  usually  best  done  using  NewHandle(), 
resulting in Handles to structs.    This issue was ‘handled’5 by 
implementing a  NewHandle() function on the Sun,  using 

malloc().

typedef  char *Ptr;
typedef Ptr *Handle;
typedef unsigned long Size;

Handle NewHandle(Size n)
{

void **master;
master = malloc(sizeof(Ptr));
*master = malloc(n);
return *master;

}

The Macintosh Memory Manager simply will not tolerate the 
level of abuse which may be permissible in a UNIX virtual 
memory system.      The first  attempt at  a memory allocation 
strategy was to allocate one relocatable block for each node in 
a structure.    Under this scheme, a simple linked list structure 
might look like this:

struct listNode {
int data;
struct listNode **next;

};

The  Memory  Manager  offers  its  functionality  on  friendly 
terms with the rest of the operating system.    This friendliness 
does not come without overhead.      The ability to relocate a 
block  of  memory  is  very  useful,  particularly  when  dealing 
with  the  limited  memory  available  in  the  early  Macintosh 
models.      However,  under  the  Macintosh  design,  each 
relocatable  block  requires  a  master  pointer.      Harvest  C’s 

5The author conveys his apologies for the pun.

A B

C

E

D

Figure 1



Harvest C      Page 4

[admittedly imperfect] design of data structures resulted in the 
allocation of 30,000 handles or more during the compilation of 
medium-sized C source files.    This means that over 117K of 
memory is consumed by master pointers alone.    The Memory 
Manager does not provide acceptable performance with such 
extreme demands.

An alternative to the use of NewHandle() for every node, is 
to use  NewPtr().    This results in far less overhead due to 
the  lack of  master  pointers.      However,  as  most  Macintosh 
programmers know, the resulting heap fragmentation provides 
extraordinarily low performance.

The typical solution to this problem is to implement another 
layer of memory management on top of the Memory Manager. 
Many applications allocate very large chunks of memory using 
NewPtr(),  and  allocate  their  own  structures  from  larger 
blocks.    A solution of this nature was implemented, but it was 
later deemed unsatisfactory.    Essentially, implementations of 
this  nature  are  application-specific  versions  of  malloc(). 
Although it seems very un-Mac-like, a well-written  malloc 
library  seemed the  way to  go.  In  fact,  this  is  currently  the 
memory  allocation  strategy  used  by  Harvest  C.      Excellent 
results have been obtained thus far in the use of a malloc() 
written by Tim Endres6.      This library provides the standard 
functions malloc() and free().    The technique used is 
to  allocate  large  blocks  of  memory  using  NewPtr() and 
carve  smaller  blocks  out  of  it  to  fill  malloc() requests. 
Endres’ library  manages  all  the  necessary  blocks  lists  and 
other data structures internally.    It also provides support for 
multiple pools, debugging information, and statistics.

There  are  certainly  other  viable  strategies  for  handling 
memory.      Unfortunately,  experimenting  with  various 
strategies is time consuming, because the necessary changes to 
the code are extensive.      The most important lesson learned 
here is that on the Macintosh, the best memory management 
strategy is probably not obvious.    

Language Extensions

Harvest C supports a few important extensions to the ANSI C 
standard.    These extensions are important for their support of 
access to the Macintosh Toolbox.

In the MPW C 3.2 header files,  a  Toolbox trap function is 
typically declared somewhat like this:

#pragma parameter __D0 ReadDateTime(__A0)
pascal OSErr
ReadDateTime(unsigned long *time) = 0xA039; 

6This malloc library may be obtained from the author (e-

sink@uiuc.edu).  Tim Endres may be reached at time@ice.com.

This declaration contains a great deal of information for the 
code generator.    First of all, the #pragma directive specifies 
the  location  of  the  arguments  and  return  value  for  this 
function.      Using this  example,  Harvest  C would place this 
function’s single argument in register A0 instead of pushing it 
onto the stack as it usually would.

Furthermore,  this  declaration  informs  us  that 
ReadDateTime is a trap function.    When generating a call 
to  this  routine,  Harvest  C  will  generate  the  trap  0xA039 
instead of the usual JSR instruction.

In order to allow for compilation of filter procedures and hook 
functions, Harvest C also deals correctly with normal pascal 
functions.      These  routines  receive  their  arguments  on  the 
stack in the opposite order of that used by C functions.     In 
addition,  char and  short parameters  occupy  two  stack 
bytes for pascal functions and four stack bytes for C functions. 
Finally, pascal functions remove their own arguments from the 
stack, and return their results on the stack.

All the various possibilities which can occur when generating 
a  function  call  make  that  aspect  of  the  Harvest  C  code 
generator  rather  complicated.      The  situation  is  even  more 
complex when struct valued functions are considered.

Comparison with THINK and MPW

Overview

As commercial  C  compilers  typically  have  a  large  staff  of 
developers and testers, it would be completely unrealistic to 
presume  that  Harvest  C  could  compete  effectively. 
Nonetheless, as it has been a goal to make the product usable, 
a  comparison  to  the  excellent  commercial  compilers  is 
indicate of the measure of success it has achieved.

It  is  not  the  purpose  of  Harvest  C  to  compete  with  the 
commercial offerings.    Both THINK C and MPW are distinct 
products, each with its own intrinsic value.    It is hoped that 
Harvest  C  will  be  viewed  in  a  similar  manner,  not  as  an 
attempt to dethrone its excellent neighbors.

Although  Harvest  C  has  not  matched  either  THINK  C  or 
MPW in speed, features or reliability, it has aimed at a certain 
amount of innovation of its own.    Harvest C combines many 
of the features of its commercial counterparts, in rather unique 
ways.

Tcl Scripting

The development of Harvest C is taking place in coordination 
with other authors working toward a set of freely distributable 
tools and applications.    We hope to provide a high degree of 
integration among applications through the use of a common 



Harvest C      Page 5

scripting  language,  the  Tool  Command Language  (Tcl)  [4]. 
Tcl7 provides a simple but full  featured language interpreter 
designed  to  be  embedded  in  applications.      Although  each 
application typically  provides its  own extensions to  Tcl,  all 
such applications share the same basic scripting mechanisms. 
Through the use of standard AppleEvents, an application may 
offer its “scriptability” as a service to other programs. 

An example of tool integration through Tcl and AppleEvents is 
the communication which takes place between Harvest C and 
Alpha8.    In the shareware arena, Alpha has shown itself to be 
a  powerful  text  editor  for  programmers.      Coordination has 
taken place to allow Harvest  C and Alpha to communicate, 
providing a more complete development environment.    Alpha 
has the ability to accept an arbitrary Tcl script encapsulated in 
an AppleEvent.     Harvest C uses this feature by passing Tcl 
commands  to  Alpha  for  various  functions.      For  example, 
double-clicking on an error or warning message (in the error 
log) will send a Tcl script to Alpha which looks something like 
this:

openFile “Disk:Folder:File.c”
set pos [rowcolPos LINENUM 0]
select $pos [nextLineStart $pos]

The result is that Alpha opens the given file and selects the 
given line, ready for editing at the site of the error.      Alpha 
also supports a full shell, offering a wide variety of functions 
to Harvest C simply through the use of Tcl.

Another application which supports identical Tcl scripting and 
communication  mechanisms  is  Tickle9.      Tickle  is  a  shell 
utility, providing a number of built in conversion utilities as 
well  as  the  ability  to  be  extended  using  XTCL resources 

(similar to HyperCard™ XCMDs).

Harvest C itself is also completely scriptable using Tcl.    This 
allows the user to control the development process in a more 
automated manner.    The user accesses this functionality either 
through AppleEvents or through an integrated “shell”.    After 
opening the Harvest  C shell,  the user may issue commands 
using standard Tcl as well as a number of extensions.    Harvest 
C currently supports the following extensions to the base Tcl 
language:

newProject ?PROJNAME?
openProject PROJNAME
closeProject
setOption OPTION BOOLEAN

OPTION BOOLEAN

7Throughout this paper, the Tool Command Language is referred to 

as Tcl and the THINK Class Library as TCL.

8Alpha is a shareware text editor for the Macintosh, by Pete Keleher 

(pete@rice.edu).

9Tickle is a freely distributable scripting environment for the 

Macintosh, by Tim Endres (time@ice.com).

setWarnings all BOOLEAN
WARNING BOOLEAN
WARNING BOOLEAN

setSig OSTYPE
setPartition INTEGER
setSIZEFlags INTEGER
bringUpToDate
buildApplication ?APPNAME?
makeClean
runApplication
addFiles FILENAME(S)
removeFiles FILENAME(S)
compile CFILENAME
listProject

In addition, a set of general Macintosh extension commands 
are  available.      As  an  example,  a  user  might  execute  the 
following script.

cd “MyDisk:Development:myApp”
newProject myApp.π
setSig LASJ
setPartition 500
eval addFiles [glob -t TEXT *.c]
eval addFiles [glob -t rsrc *]
makeClean
bringUpToDate
closeProject

The  effect  of  this  script  is  to  create  a  new project,  set  its 
partition and signature, add a group of C and resource files, 
and compile all the C files.    Other possibilities include:

• The  setOption command could be used to compile 
various files with different option settings.

• The Macintosh extension commands could be used to 
interact with the user during the build process.

• One could create a procedure to write a formatted list of 
the contents of the project file.

A  Macintosh  Tcl  distribution  is  available  to  allow  other 
developers to integrate Tcl into their applications easily.    The 
Tcl  scripting  language  is  appropriate  for  all  sorts  of 
applications.     Let us hope that other authors will undertake 
the  writing  of  simple,  freely  distributable  spreadsheets, 
databases and other applications, all based on Tcl.



Harvest C      Page 6

Benchmarks

Table 1 presents a comparison of the performance of Harvest 
C against THINK C.    Results from three test applications are 
presented.      The  Bullseye  and  MiniEdit  applications  are 
sample programs which come with THINK C.    The StdFile 
application is the C source from the DTS10 Sample Code #18. 
The  “Compile”  and  “Link”  columns  list  absolute  times  in 
seconds.    For each test, Harvest C’s results for each program 
are presented first, with THINK C’s ratings appearing on the 
following line.    The “Code size” column indicates the actual 
size  of  the  generated code whereas  the  “App size”  column 
shows the size of  the final  application,  including all  linked 
libraries and resources.

App (Compiler) Compile Link Code size
(seconds) (seconds) (bytes) (K bytes)

Bullseye (Harvest) 122 40 2224
(THINK) 11 6 1386

MiniEdit (Harvest) 320 55 8774
(THINK) 18 8 5288

StdFile (Harvest) 271 47 9040
(THINK) 12 9 5732

All timings were recorded on a Macintosh IIsi without FPU, in 
32-bit  mode.      Taking nothing away from the extraordinary 
speediness  of  the THINK compiler,  it  should be noted that 

Harvest  C’s lack of support  for  precompiled header files is 
responsible for some of the disparity in the timings.    The first 
two tests contain less than 1,000 lines of code, ignoring header 
files.    The StdFile test consists of just over 1,800 lines.

General Features

Harvest C was written to follow the conventions of MPW C 
3.2 and THINK C 5.0.    In fact, Harvest C does not provide 
any libraries  or  header  files.      Instead,  it  makes use of  the 
MPW C headers and libraries without modification.      Thus, 
Harvest C generates object files in MPW format, handles most 
all of the same extensions to C which are defined by MPW C, 
and  Harvest  C’s  linker  is  functionally  compatible  with  the 
MPW linker (although not as powerful).

Harvest C does not generate SADE™ debugging information, 
nor will it accept object files generated by MPW tools which 
contain SADE information.    With these exceptions, MPW and 
Harvest  C  have  successfully  shared  object  files  without 
difficulty.

10Developer Technical Support (Apple Computer, Inc.)

In general, Harvest C is functionally somewhat of an MPW in 

THINK C clothing:
• Like  THINK  C,  Project  files  are  used  instead  of 

Makefiles.
• Like MPW, a single object file (file.o) is generated for 

each C source file.
• Segmentation is controlled using #pragma segment 

directives in the source code.
• Toolbox traps use  #pragma parameter directives 

and inline functions.
• Project files may contain one or more resource files.
• Apple Events are used to communicate with Alpha for 

text editing, as well as with ResEdit™ for resource 
editing.

Table 2 briefly summarizes some differing aspects of Harvest 
C and the two principal commercial compilers.     This paper 
does not attempt to provide an in-depth comparison.

THINK MPW Harvest
Editor Built-in Built-in External
Scripting None Shell Tcl
Build Project Makefile Project
Debugger Integrated SADE None
OOP C++ subset Separately None

Conclusions

Since  Harvest  C  was  written  as  a  learning  experience,  a 
summary  of  what  was  learned  is  fitting.      Most  certainly, 
learning compiler design in a proper course is much easier. 
Much has been learned during code rewrites made necessary 
by inexperience.    A list of proverbs for Macintosh compiler-
writers  appears  below.      While  these  tidbits  are  purely  the 
opinion of one author, they do carry a bit of hindsight:

• Use compiler generation tools for the parser and lexer.
• Do not  be  discouraged  if  you  find  that  you  need  to 

rewrite  a  section  of  code.      This  is  “par  for  the 
course”.

• Pay very careful  attention to the design of your data 
structures, particularly parse trees and type records.

• Peruse  the  relevant  chapters  of  a  compiler  design 
textbook before you even begin writing the register 
allocator.

• Do use a class library such as TCL or MacApp for the 
user interface.

• MacsBug is your best friend.
• Participate  in  USENET  newsgroups  and  electronic 

mail.    The exchange of ideas is invaluable.

Table 1

Table 2



Harvest C      Page 7

Future Directions

As with any compiler, Harvest C has many areas of potential 
improvement.    Some parts should be rewritten for efficiency 
and/or cleanliness of design.    Currently the front end is being 
rewritten  to  use  a  yacc11 parser  with  a  lexer/preprocessor 
generated using flex12.

In addition, there is much that could be done which has simply 
not  been  possible  due  to  time  constraints.      Possible  areas 
include an optimizer, a smarter linker, and support for object 
oriented extensions.

Harvest C is still more of a development project than a stable,  
full-featured alternative to the commercial offerings.    In the 
hope that Harvest C may continue to grow, beyond the efforts 
of  a  single  developer,  the  program  is  available  in  source 
form13.      For  Harvest  C,  the  greatest  potential  for  positive 
impact upon the Macintosh community lies in its widespread 
usage.

Acknowledgements

Although the responsibility for the content and form of this 
paper is mine, it would not have been the same without the 
help  of  friends.      First,  thanks  to  Pete  Keleher,  who 
commented on draft versions of this paper.    Also, thanks to 
the many people with whom I communicate through electronic 
mail and network news.    They provide invaluable advice and 
feedback.      Thanks  to  Waldemar  Horwat  and all  who have 
helped in the coordination of MacHack.      Finally, thanks to 
my wife Lisa, for her patience and support.

References

1. Cox,  B.  Object  Oriented  Programming  :  An 
Evolutionary  Approach, Addison  Wesley,  Reading, 
MA (1986).

2. Halstead,  M.H.  Elements  of  Software  Science, 
Elsevier North-Holland (1977).

3. McCabe,  T.J.  A  Complexity  Measure.  IEEE 
Transactions on Software Engineering    SE-2, 4 (Dec 
1976).

11Yacc (Yet Another Compiler Compiler) is a compiler generation 

tool distributed with most UNIX systems.

12Flex is a compiler generation tool by Vern Paxson.

13Contact the author for details.  Eric W. Sink (e-sink@uiuc.edu) 
1014 Pomona Drive, Champaign, IL  61821.

4. Ousterhout,  J.K.  Tcl:  An  Embeddable  Command 
Language.      In  1990  Winter  USENIX  Conference 
Proceedings, USENIX, 1990.


