
Macintosh and Windows 3.0:    A Developer’s Perspective

Waldemar Horwat

Abstract

The Macintosh Toolbox and Microsoft Windows 3.0/3.1 are both powerful graphical environments for writing applications.
Although many programming details of these two environments are almost identical, they follow quite different
philosophies and differ in fundamental aspects.    Neither is clearly superior, but their weak and strong points are very
different.    This paper examines and compares both operating systems from a developer's perspective, highlighting their
differences in philosophy.

This paper also contains an appendix that defines object-oriented programming and abstraction and shows one instance
in which they conflict.    This may be one of the operating system/application interface conflict areas in the near future.

1.    Introduction

The two main graphical environments for personal
computers today are Microsoft Windows 3 and the
Macintosh operating system.    This paper compares
these two environments from a software developer’s
perspective.    I’ve had opportunities to develop major
applications in both environments and will include some
of my experiences as examples; however, the comments
are intended to be general and should apply to other
application developers.

The scopes compared will be the general paradigms
used by the two systems (section 2), important technical
considerations (section 3), and development
environments (section 4).    Although features will be
used as examples, this paper is not a feature
comparison of the Macintosh and Microsoft Windows.
Most of the features are duplicated in both systems, and
there are other sources of information for readers
interested in specific features—refer to [1] and [3].    Also,
no attempt will be made to compare the two environ-
ments from the point of view of general users.

One can avoid some of the issues presented below by
programming in a machine-independent environment
such as XVT or Cognits.    However, these environments
do not completely insulate the program from the
operating system on which it is running.    Moreover, one
may not wish to write a program for the lowest common
denominator system; in fact, as the operating systems
are getting more powerful and provide more services, it
is becoming increasingly more difficult to design abstract
interfaces that let a program run well under several

environments.    Thus, the issues in this paper are still
relevant to developers using cross-platform
environments.

History

The Macintosh was first introduced in 1984, although it
borrowed heavily from Apple’s Lisa design, which was
released in 1983.    Microsoft Windows was first released
in November 19851 but did not gain wide acceptance
until version 3.0 in May 1990.    Both of the systems have
fairly long (in software terms) histories and are rooted in
software technologies of the early 1980’s.    The histories
of the two environments are apparent from the
programming interfaces and often cause grief, as will be
shown later.

In the remainder of this paper, “Windows” will indicate
either Microsoft Windows 3.0 or 3.1.

2.    Paradigms

In this section, the philosophies and guiding principles
behind the Macintosh operating system and Windows
are compared on a general level—the languages which
influenced the systems’ original designs, the
environments’ attitudes towards object-oriented
programming, and their emphases in simplifying certain
tasks at the expense of others.    This section closes with

1It was announced in November 1983—a few months before the
Macintosh introduction!

Macintosh and Windows 3.0 1

a discussion of the levels of entropy in these two
environments.

Languages

Possibly owing to their origins in the early 1980’s, both
the Macintosh operating system and Windows have
Pascal-based interfaces to their system calls—Pascal
calling conventions are used.    The main C compilers for
both environments use extra keywords such as pascal
when declaring the interfaces to the system functions.
Of course, one can write programs in other languages,
but the interfaces to the operating system calls are
limited to what one can express in Pascal—no variable
numbers of arguments, and no C++ features.

Several other places, such as string handling, reflect the
language origin of the original operating system design.
Most Macintosh system calls use Pascal strings;
Windows was less Pascal-dominated and its strings tend
to be null-terminated or have explicit lengths.
Equivalent functions that use C null-terminated strings
are available as libraries on the Macintosh, but they
incur extra overhead.    Furthermore, they can cause
problems in that the strings returned by the system (such
as filenames) can contain nulls, which most standard C
routines have trouble with.    I am not stating that Pascal
or C-style strings are better (there are also other
alternatives), but just that the choice of initial language
affects the “style” of operating system interfaces.

Object Orientation

Syntax

As a result of the Pascal/C origins of the environments,
neither environment provides direct support for object-
oriented programming such as using C++ classes.    One
can encapsulate system calls in object-oriented shells,
but this leads to one of the following situations:

• Using one of the standard libraries like MacApp or
Borland’s C++ object library.    This provides standard
object-oriented interfaces, but the program size usually
increases significantly and performance may suffer.
The object-oriented libraries tend to do a lot more work
and make more system calls than necessary by doing
things like constantly focusing on the drawing port.
Also, the libraries may be somewhat behind the state of
the art when the operating system interfaces evolve.

• Writing a custom object-oriented library to en-
capsulate just the managers one uses.    This can lead to
good performance, both in terms of code size and
speed.    Unfortunately, everyone’s libraries will be

different, making it harder to read or reuse other
programmers’ code.

Using MacApp with C++ does expose one weakness
which is due to its origins with Object Pascal—it does
not support C++’s more advanced features such as
constructors, destructors, multiple inheritance, or type
casting.    Thus, one does not entirely gain the
advantages of fully encapsulated objects.

Structure

Aside from the language syntax (which is important), one
can also ask whether the structure of the operating
system is object-oriented.    By this I mean whether
system structures are presented as abstract, self-
contained entities that can only be manipulated by
functions and from which one can derive subclasses
(see appendix A).

In this respect, Windows has a more object-oriented
structure than the Macintosh operating system.
Windows communicates with application windows and
controls by registering an application’s entry point and
then sending it messages as appropriate.    If the window
or control does not wish to do anything special with a
message, it can pass the message to a default handler
specified by Windows.    Thus, each window and control
is effectively overriding a default.    Windows also allows
defining controls by overriding the behaviors of pre-
defined controls, but this is difficult and has to be done
by trial-and-error for the reasons stated in appendix A—
when changing one area of a window by overriding the
draw message, one cannot be sure that the window
doesn’t make assumptions about the size or shape of
the area being changed.    Fortunately, the default
window and control functions don’t seem to be doing
that, but they could without violating any rules in the
documentation.

The Macintosh is more procedural, in that the operating
system relies on the program to dispatch events and has
no direct access to a program’s windows and controls.
This is a disadvantage; for example, when a modal
dialog is shown, the program’s event loop is not
executing until the dialog is dismissed, so none of the
program’s other windows can be updated.    If part of
another window belonging to the program becomes
invalidated, a partial deadlock will occur.    The
workaround is quite messy [2].

While Windows’ object design is better for most
applications, it is not superior in all cases.    One trouble
spot in Windows’ implementation of messages is quitting
a program (or, worse, quitting Windows).    The program
gets one quit message and is then expected to instantly
decide whether it wants to quit, and, if so, do it cleanly

2 Compilers

without receiving any more messages.    This is fine if the
main program’s event dispatcher gets the quit message
—it can just exit the program.    On the other hand, if a
dialog event loop gets the program’s quit message, then
it is difficult to cleanly unwind all of the pending calls on
the stack precisely because the program is not
procedural; the dialog’s only choice is to return to the
Windows dialog handler, but when that handler returns
to the place in the program where the dialog was in-
voked, the program won’t know that it is supposed to
quit.

Philosophies

As with object orientation, the philosophies of the two
environments differ significantly.    The Macintosh
environment is built from the bottom up—the various
managers provide general, flexible interfaces, only parts
of which are necessary to support the next higher level
of managers; low-level managers are emphasized.    On
the other hand, Windows is constructed in more of a top-
down manner—the higher-level managers are
emphasized, and they provide larger building blocks
than the Macintosh equivalents, but they are often
inflexible.

A couple of examples should illustrate this.    Defining a
little, scrollable and resizable window for editing text is
quite easy in Windows—much easier than working with
TextEdit on a Macintosh and hooking it up to properly
respond to various events.    If you want a window for
editing text in Windows, then everything is simple.    But
suppose you would like a scrollable and resizable
window containing read-only text such that the program
can either scroll to a specific position or determine which
portion of text the window is showing?    It turns out that
such a simple change is impossible in Windows!
Although defining a standard text window is easy,
making trivial requests such as determining what text is
in the visible portion of the window is impossible2.

Another example is using Windows’ Multiple Document
Interface, which is a library for nesting windows inside
other windows3.    As long as what you want is standard,
closable, resizable, zoomable subwindows, everything is
easy.    On the other hand, suppose that your
application’s documents should be nonresizable.
Although Windows generally supports nonresizable
windows well, the Multiple Document Interface insists

2I cannot state with certainty that this is impossible, only that Microsoft

developer technical support spent several days trying to do it and

couldn’t figure out any way.

3The Windows user interface guidelines differ from the Macintosh, in
that if an application has several documents open, they should appear
as subwindows within one large window belonging to the application.

that every document be resizable, have close and zoom
boxes, etc.    I was able to write enough message filters
to prevent the windows from being resized and closed
(by killing appropriate messages), and to zoom them
back if they are maximized4, but there is no way to
remove the zoom boxes from the window’s title bar!    I
could define my own window class whose windows are
designed to look just like the standard ones but with no
zoom boxes, but that is likely to cause compatibility
problems—in future releases of the system software the
standard window appearance could change, or windows
could acquire more features which my windows wouldn’t
have.

The Macintosh doesn’t suffer from the building blocks’
lack of flexibility as much.    On the Macintosh it is often
hard to get something like a text-editing window to work,
but once it works, one can change it at will.    Thus,
Windows lets one write “standard” programs quickly,
while the Macintosh lets one write more flexible
programs, but slower.

Diversity

The characters of the Macintosh and Windows are also
affected by the diversity of the platforms on which they
run.    In 1984 programming the Macintosh was simple—
there was only one version of the computer and its
ROM, and additional hardware and software options
were limited.    Now, however, writing a Macintosh
program for wide distribution is like wrestling an octopus
—there are more than a dozen different computers to
worry about, four different processors with and without
floating point coprocessors and memory management
units, several versions of the operating system, and
plenty of other hardware and software options.

Writing a general program on a Macintosh requires the
use of gestalt or sysEnvirons5.    The idea is that
programs should check for the existence of computer
features before using them.    While this is a good idea
and much better than the situation before gestalt was
introduced, in practice it suffers for the following
reasons:

• It’s difficult to write a program that can work with or
without many combinations of system features.
Worrying about which combinations of managers are
present can make the programmer paranoid and
obscure the structure of the program.

4Just killing the maximize message turns out to be unsafe. This is yet

another example of the hazard of overriding from Appendix A.

5Assuming that they themselves are available; one has to check for

the existence of these calls first! (Some of the libraries do that
automatically.)

Macintosh and Windows 3.0 3

• It’s difficult to test programs that use gestalt
extensively.    When new computers are introduced that
include new subsets of features, many latent bugs in
programs become apparent6.

The first problem leads to “least common denominator
programming.”    Developers write programs for the
lowest platform for which the program will be distributed
and then either cannot take advantage of or must
duplicate the operating system features of higher-end
platforms.

Apple has been exacerbating this problem by appending
new operating system functionalities to the old ones
instead of supplanting the old ones.    A classic example
is the introduction of the desktop database calls in
System 7.    These calls, while quite useful, work only on
hard disks!    They are worthless to many developers
who wish to take advantage of them, because
developers must still use the old, illegal hacks to access
the desktop information on floppy disks.    By introducing
the new calls, Apple increased the complexity of the sys-
tem without solving the developers’ problem.    This is an
important reason why revisions of the Macintosh
operating system tend to break applications.

The Windows world is currently in a better situation
because there are fewer versions of Windows to worry
about (nobody is coding for versions earlier than 3.0
anymore, and it’s safe to assume version 3.1 in future
programs since there is little reason for users not to
upgrade).    Also, compatibility rules are enforced better
in Windows—see section 4 of this paper.    Thus, while
Macintosh programmers must use gestalt to case for
various features of the system software to make sure
that their programs run with Systems 6 and 7 (many
Macintoshes cannot run System 7 well), Windows
programmers can blithely assume version 3.1 and just
post a little dialog and quit the program if this version is
not present.

Of course, Windows suffers greatly from least common
denominator thinking in the choice of memory models
and processors—the requirement that it work on 8086’s
made memory management very awkward (more on this
in section 3).    Also, Windows inherits from the chaos in
the PC clone arena—there are countless video drivers
and printing models, and no reasonable sound capabil-
ities on most PC’s.    While Windows tries to insulate the
program from these differences, they do show through,
and some drivers do not support some operations7.

6This may be an opportunity for a developer tool for testing

applications—a random Macintosh system generator.

7Windows provides calls to let programs determine which drawing

primitives are allowed on which devices; this is analogous to a fine-
grain gestalt.

Moreover, with the introduction of Windows NT, Windows
could acquire the same dichotomy that currently exists
between System 6 and 7 on the Macintosh.

Summary

Although Windows and the Macintosh have procedural
designs, both are structured partially object-oriented—
Windows’ structure is better—and both have object-
oriented libraries available.    The major philosophical
difference between the two systems is that the
Macintosh provides building blocks which make it
possible to create almost anything, while Windows’
facilities are easy to use for common tasks but make
some specialized tasks needlessly difficult.

Both systems have sizable histories, originating around
1983.    The Macintosh has more of a compatibility
burden because old versions continue to be in use, while
Windows has only one current version, 3.1; 3.0 is being
phased out rapidly.

3.    Technical Amenities

While the last section described general differences, this
section delves into more detail on a few aspects of
programming for the Macintosh or Windows.
Differences in graphics, hardware, and memory models
will be examined.

Graphics

One of the Macintosh’s main strengths is its tight
integration of graphics to virtually all applications.
Almost all applications use QuickDraw in some way for
user interface.    Unfortunately, this tight integration,
combined with Apple’s original objective of having only
one version of the Macintosh, made upgrading
Macintosh graphics calls difficult.    As a result, even
today color is clearly an add-on in the Macintosh
programming interfaces.    Old black-and-white
applications continue to work on today’s color machines,
but any application that wants to use color must test for
the existence of several managers (such as whether
Color QuickDraw or 32-bit QuickDraw are present) and
do different things accordingly.    This is a burden and
discourages use of color in applications where color
drawing is not a primary function.

When one becomes familiar enough with it to cross the
potential barrier, Color QuickDraw can be a powerful tool
—it is fast, has a good color model, and allows
customization of its color matching scheme.    On the

4 Compilers

other hand, it is difficult to learn and many operations are
error-prone.    Take a look at TechNote 120 to see how
much code is necessary to draw into an off-screen
bitmap (the situation got better with the introduction of
GWorlds in 32-bit QuickDraw).    Also, try to figure out
which addresses are 24-bit and which ones are 32-bit;
even the video card manufacturers often get that one
wrong!    Finally, the Macintosh drawing architecture
does not fare well at resolutions substantially different
from 72 dpi—the screen is assumed to have a resolution
close to 72dpi, and printing higher-resolution graphics
requires working around QuickDraw.

The Windows drawing model is more tightly integrated
and easier to use.    There is no dichotomy between
black-and-white and color calls, and graphics are
resolution (and even aspect ratio)-independent.    Using
off-screen bitmaps for tasks like saving parts of the
screen is easier than on the Macintosh, and, as long as
one remembers the rules for deallocating objects,
figuring out the proper sequence of calls to perform even
complex operations is easy.

Windows had to have a flexible drawing model due to
the variety of display and printing methods available for
the PC compatibles.    On the downside, there are
several kinds of pixelmaps that Windows has to support.
Windows also provides device-independent pixelmaps,
but, at least on the systems I’ve tried, drawing them is
very slow, even on a fast 80386 machine!    Printing is
also problematic, because printers may not support the
primitives that one would like to use to draw the printed
image.

Hardware

Ease of programming for the Macintosh and Windows
environments is affected by the hardware on which they
run.    Part of the effect is through diversity—in general,
the more diverse an environment is, the harder it is to
write applications for it.    The Macintosh has an
advantage here, in that Apple has control over all of the
hardware production, and, as a result, all Macintoshes
have SCSI, serial ports, fairly good sound output
capabilities (except for bugs in some sound drivers) and
sound input on new Macs, screens with square pixels,
standardized video interfaces and pixmap formats, and
standardized methods of writing drivers (unless, of
course, you would like to write a driver that also works
with A/UX).    The operating system is behind in a few
areas—few applications are able to take advantage of
multiple video pages on most video cards, and writing
graphics accelerators that work is more of an art than a
science.

Unless the operating system is deficient or the op-
erations are time-critical, applications rarely have to
interact with hardware directly, except for one obvious
area:    the processor itself.    Macintoshes support the
68000, 68020, 68030, and 68040, while PCs use the
8086, 80286, 80386, and 80486.    The differences
among these processors are noticeable in the Motorola
and great in the Intel family.    Macintosh programs tend
to have trouble with the caches on the newer 680x0’s
when using self-modifying code8.    PC programs are
more upwards-compatible9 (except for those that deal
with the memory management units, which keep on
changing; few programs use the MMUs, though).    On
the other hand, the 8086 and 80286 processors have
only 16-bit registers, so there is a substantial
performance and complexity penalty for writing programs
compatible with those two processors10.

For programmers working with assembly language, the
processor architectures themselves are significant.
Computer architects, including the chief Intel designers,
unanimously agree that the 80386 architecture is a bad
one—complex and haphazard instruction encoding,
small and unorthogonal register file, lots of bizarre
modes11, etc.    The 68020 also has a few too many
addressing modes and some unnecessary instructions,
but it has more registers and is much more orthogonal.
It’s clear that the Intel processors pay a performance
price for their architecture—20 to 200% slower than
equivalent RISCs12, depending on whom you ask, but the
bigger concern is probably the headaches that
programming 80x86’s causes.    If it were simple, why
are almost all Windows programs still 16-bit?    What has

8Microsoft programs are some of the biggest offenders here.

9Intel had to add logic to support self-modifying code on the newer

processors to avoid breaking too many existing programs.

10The 68000 is also a 16-bit processor but supports almost all 32-bit

instructions, so, except for a few poor design decisions such as the

32K TextEdit limit, the Macintosh never had the 16-bit problems

associated with the PCs.

11Here is an example of what can happen: Windows was occasionally
failing inside a drawing routine for no apparent reason. After a day of
searching for bugs in my code, I disassembled enough of the operating
system code to discover that it was overwriting its own stack with a
string operation. It turns out that a while earlier my program was
performing decrementing string operations. Windows got confused
when the string operation direction bit in the status register was set
(however, there is nothing I could find in the documentation that would
imply that that bit has to be cleared when calling operating system
routines). Using a status register bit to change the behavior of
instructions in this way is an example of a silly 80x86 design decision.
Several more of these bits will become apparent when the 80386 is
used in 32-bit mode.

12Intel claims that this figure is 20%. If this is true, then RISCs may

never become popular in personal computers, except for whichever
ones Apple adopts; PC customers will prefer compatibility to a 20%
speed improvement.

Macintosh and Windows 3.0 5

been happening in the seven years since the 80386 was
introduced?

Segments

Anyone who has programmed Windows applications in
assembly language or even a high-level language such
as C or C++ is familiar with segments and their high-
level language offspring:    near, far, and several other
brands of pointers13.    Manipulating these pointers
correctly is a time-consuming job, and doing anything
which requires data structures over 64K requires care
and ingenuity.    System calls expect their particular
brands of pointers and will fail if passed the wrong kinds
of pointers or if a data structure unexpectedly straddles a
64K boundary; many calls will only work on structures
smaller than 64K.    Even if one uses far pointers
throughout, one can get into trouble when using data in
large arrays that may have elements that straddle 64K
boundaries.    64K segments and near and far pointers
make programmers’ lives miserable (except for those
who have become experts in writing fast code despite
these obstacles and can thus command higher salaries),
and I am glad that they will be phased out in future
versions of Windows.

There is one positive aspect of using segments that I
should mention here:    they simplify testing and
debugging programs.    Any reads or writes off either
edge of a global block of memory under Windows
generate processor faults, which make indexing errors
and wild references very easy to spot.    The program’s
data structures are protected from each other on a fine
scale.    I found many of my bugs this way; no Macintosh
equivalent is available14.    Nevertheless, this advantage
will disappear when segments are eliminated in Win-
dows NT—although the 80386 will always have
segments for compatibility, all of a program’s data will be
put into one large (up to 4 gigabytes) segment.

Unfortunately, this protection also causes unexpected
trouble:    doing a mere p++ when p points to the last
element of an array can cause a crash15.    You don’t even

13A near pointer is a 16-bit offset to the program’s current data
segment (the program also has code and stack segments, which may
or may not be equivalent depending on which of the many memory
models you are using). A far pointer is a 16-bit segment number and a
16-bit offset within that segment; under Windows 3.1, only 16-bit
segments can be used easily (there is a library to overcome this
limitation on 80386s, but using it requires writing glue routines for all
system calls and re-engineering the appliation program), so segments
are limited to 64K.

14A few Macintosh programs check the consistency of the heap, but

they won’t catch out-of-bounds reads or writes of one block that fall
into another.

15The crash is a clear violation of ANSI C; one often increments a
pointer past all of the elements of an array, and it is always legal to do

have to dereference the pointer.    Really!    Even some
Windows system calls crash due to this bug.

Memory Models

In addition to segmenting, other aspects of memory
management affect Macintosh and Windows
programmability.    The Macintosh memory management
grew out of the 128K Macintosh and is weak in virtual
memory and sharing memory among applications.
Virtual memory uses a number of clever tricks (hacks) to
work but is not perfect.    It uses half-solutions such as
keeping the entire system heap in memory to avoid
dealing with individual memory residency problems.    In
some cases, especially when dealing with hardware in-
terrupt handlers and device drivers, determining which
blocks of memory to lock down becomes difficult.

Macintosh applications are notoriously incestuous —they
walk through many data structures in the shared system
heap and globals, and sometimes follow pointers into
each others’ heaps.    INITs do even more bizarre things.
All of this makes providing real memory protection while
retaining compatibility difficult, which will continue to
make the Macintosh liable to crashes.

Another remnant of the Macintosh’s origins is the Finder
size specification for applications.    Applications only get
the amount of memory that the user allocates to them
and must use Multifinder memory for other purposes.
This dichotomy of memory usages complicates writing
programs; in most cases programmers don’t want to be
bothered with details like these16.

Windows has a more modern memory model, with
applications sharing a single global heap (but still having
separate local heaps).    This dichotomy works well in
practice, except when the local heap overflows (it’s
limited to less than 64K); also, one has to be very careful
not to mix handles to blocks in the two heaps.

There was one terrible aspect of programming for
Windows, which, fortunately, was eliminated in Windows
3.1.    Windows was often forced to relocate code by
changing every pointer to that code.    This meant that in
unexpected places Windows was walking through the
stack of an application and changing return addresses
(the stack frames always had to be in one of two uniform
formats, depending on whether a near or far procedure
was called).    Furthermore, Windows would move the

so.

16There are a few exceptions, where specifying memory usage limits

for applications is useful. For example, unless restricted somehow,

systems like Lisp will attempt to grab every byte of available memory,

displacing other applications.

6 Compilers

program’s data segment at unexpected times; thus, no
far pointers were allowed to the program’s local or global
variables or data in the local heap!    Merely calling
foo(&c), where c is a local variable and foo expects a
far pointer, could cause a crash.    If one really did want
to call foo on far pointers, one had to write two versions
of foo; if foo was a Windows system call, one some-
times had to allocate a block in the global heap, copy c
there, and then call foo.    Moreover, since the program’s
data segment did not move very often, these bugs were
hard to find.

All of these complications only occurred in Windows’ real
mode, which was required for the 8086 and optional for
the 80286 and above.    Since Windows is able to
relocate segments without changing pointers to them on
the 80286 and above (this is the essence of protected
mode), none of the above problems occur.    Real mode
was dropped in Windows 3.1, probably because of the
headaches it was causing for programmers.

Summary

Both the Macintosh and Windows environments suffer
for historical reasons.    The Macintosh is burdened by its
graphics and memory models, which were adequate
when the Macintosh was introduced but now must be
extended in tricky ways to provide new functionality
while retaining compatibility.    The Windows environment
is burdened by the Intel 80x86 architecture, which shows
through even into high-level languages like C or C++.
Segmenting, the way it is implemented on a 80x8617, is a
major cause of software frustration, but it does have one
redeeming feature of simplifying debugging and testing.

The above list by no means exhausts the important
areas where the Macintosh and Windows environments
differ.    There are many others, such as file
management, networking, document interchange, and
help systems.    Graphics, processor architecture, and
memory management are just the most pervasive ones.

4.    Development

So far we have concentrated on the contents of the
programs themselves.    Next we will take a quick look at
the usability of the development tools for writing
programs.    The issues are setting up the development
systems, referencing documentation, using languages

17There are other ways to implement segmenting that yield excellent

results and make programming even easier than on linear address-

space processors.

on the two environments, solving programming
problems, and debugging and testing the programs.

Setup

When it comes to setting up a usable development
environment, the Macintosh was a clear winner, at least
from my experiences.    It’s fairly easy to set up a
Macintosh computer and the software for it straight out
of the box; the only trouble areas are potential
compatibility problems with newer models of the
Macintosh such as the Quadras (gurus who use forty-six
INITs may also run into compatibility problems).

It took me over two weeks just to install Windows 3.0
and get a development system running on a PC clone,
and I am not a novice.    All sorts of things went wrong;
the simplest were extraneous commands in the
AUTOEXEC.BAT and CONFIG.SYS files.    After
installing it, I found that Windows would hang when it
tried to run a DOS program.    What was causing this?
Obviously, it was the video driver, right?    I had followed
the Windows installation instructions for my main video
card exactly according to the manufacturer’s
specifications, but I found that I could get Windows to
work if I installed the driver another way.    The
manufacturer’s technical support just referred me to
Microsoft when asked about this.

The most complicated problem was using a second
video card (Microsoft’s CodeView required one under
Windows 3.0).    The video card worked under other
applications but not Microsoft’s CodeView.    After several
days of frustration and calls to technical support lines
(which yielded nothing), I discovered that changing some
of the DIP switches on the video card suddenly made
CodeView work.    None of this was documented
anywhere.

Not everyone will be able to set up a Macintosh this
smoothly or have as much trouble with PC compatibles.
Nevertheless, the concept of error checking during
installation on PC compatibles is much less advanced
than on the Macintosh.    You can never be sure that all
of the switches, options, and configuration files are set
up right, even after you have been using the system for
a while.    The Macintosh has considerably fewer options
and settings, and, in general, when they are set incor-
rectly, the system will fail in more obvious ways.

Macintosh and Windows 3.0 7

Documentation

Form

Both the Macintosh and Windows have voluminous
documentation.    The primary Macintosh documentation
is Inside Macintosh, volumes I-VI, and the Technical
Notes, while the primary Windows documentation is
Microsoft’s Software Development Toolkit.    The
Macintosh documentation is written in book form.
Although on-line Inside Macintosh is available, it is still
mainly a computer-readable book; I found the
HyperCard implementation of Inside Macintosh to be
awkward and slow and lack the formatting of the printed
form.    Moreover, since Inside Macintosh volumes IV, V,
and VI and the Technical Notes are delta documents,
one has to check in a number of places to determine
whether the description that one read in Inside
Macintosh I-III is still valid.    This deficiency can be
remedied only partially by publishing new books as long
as developers want to develop for pre-System 7
Macintoshes.

On the other hand, Windows documentation is primarily
in the form of a hypertext help file/application that has
good formatting and links between concepts (Microsoft
had the Word engine available to them to do this); two of
the reference books are just linearized printouts of the
hypertext (instead of the hypertext being created from
the books).    This format makes browsing through links a
pleasure.    As discussed in section 2, Windows does not
currently have a significant problem of multiple versions.

Content

Whereas the Windows on-line documentation is fun to
use, I found that it is poorly organized.    Graphics
primitives are spread throughout several contexts
(groupings), some of which are nonintuitive—why are
FillRect and FrameRect in the group of Painting
Functions in the Window Manager Interface Functions,
while FillRgn and FrameRgn are in the group of Region
Functions in the Graphics Device Interface Functions
(The Rectangle Functions in the Graphics Device Inter-
face Functions don’t include FillRect and FrameRect)?

The organization of Windows on-line documentation
makes it hard to search for specific functionality in some
cases (in most cases it’s pretty simple).    Whereas on
the Macintosh I can find the appropriate chapter of
Inside Macintosh and read the overview or index, this is
harder to do with Windows on-line documentation.    It
took me five months to discover that it’s possible for a
program to obtain its own pathname, which I did entirely
by accident; if there were overviews of the various

managers, I would have found the right method right
away18.

The Windows documentation is also less complete; it
omits discussion of issues such as what happens if a
null handle is disposed19; it’s not clear whether this is
legal or not, and sample programs give conflicting
evidence.    Inside Macintosh is more complete in this
respect.

Languages

There are plenty of good programming language
systems available for the Macintosh and Windows.    The
main systems for the Macintosh are Apple’s MPW and
the Think languages, while the main ones for Windows
are the Microsoft and Borland languages.    Since I was
writing applications in C++, I used MPW and Borland C+
+.

Both MPW and Borland are powerful programming
environments and provide good compilers and
assemblers.    The performance of both systems and
their compiled code is adequate.    Although Borland C++
is easier to use for beginners due to its integrated
environment (like the Think languages on the
Macintosh), it is much more complex than MPW when
used by advanced programmers.    There are numerous
options, and it’s quite easy to compile and link a program
with inconsistent ones without getting any errors or
warnings.    I had to play with the options for a while
before I got my compiled Windows program to run.

The documentation styles differ for the two systems.
MPW documentation tends to be geared towards
advanced programmers (although that has been
improving lately), while Borland documentation is a mix
of tutorials and reference manuals.    The MPW
reference manuals are very detailed and precise; every
feature I wanted to know anything about was
documented.    On the other hand, while Borland’s
tutorials are well-done, the reference manuals leave a lot
to be desired.    I found it hard to find features I was look-
ing for, and many were not documented.    Examples
include Borland’s C/C++ extensions like near and far
classes, some assembler index expressions (addition is
not commutative here; I had to discover some of the

18There are some books which help with providing overviews of

various managers, such as the tutorial in Microsoft’s Software
Development Toolkit and [4], but they tend to shy away from more
advanced topics.

19Most calls work on null handles (I looked at the code). I avoid

calling them on null handles to avoid future compatibility problems and
also because Windows’ Discipline complains about using null handles;
however, most examples in books and documentation will make calls
on null handles under some error conditions.

8 Compilers

rules by trial and error), and structure operations (how
do I get the offset to an element within a structure?).

Both systems provide adequate additional programming
tools such as resource editors, compilers, and profilers.

Programming

When programming a system for the first time, one
usually relies on examples and reading other people’s
code.    Examples of simple functionality are plentiful on
both Windows and the Macintosh.    Examples of more
advanced applications are harder to get; MacApp and
the other object libraries are some of the best sources.

Another valuable source of examples is the system code
itself.    One often finds that one has to implement
something that is already done in the system, but maybe
a bit differently or maybe the system routine cannot be
called directly.    The best way to learn how to accomplish
such a task is to step through or disassemble the
relevant system routine.    This ensures that one doesn’t
miss some important aspects of compatibility with future
or localized systems.    Also, looking at things like a
window definition procedure may be essential to making
sure that one’s custom windows look the same way as
the system ones on a variety of screen resolutions and
other configurations.    Finally, disassembling code is
sometimes necessary to discover what is happening
when the system is not behaving as expected20.

Walking through and disassembling system code is
simple on the Macintosh due to the presence of several
powerful assembly-level debuggers.    Also, Macintosh
system calls are all routed through the A000 trap
bottleneck, which makes it easy to see every call the
system is making to itself while performing the task
being examined.    On the other hand, stepping through
and disassembling Windows is much harder, and there
is no easy way to identify system entry and exit points.

Debugging and Testing

The application debugging tools on both the Macintosh
and Windows are adequate, if a little cumbersome to
use, at both the source and assembly level.    Both
environments provide various tools for stressing
programs such as allocating most of memory under
Windows or doing a heap scramble on the Macintosh.
There are also visualization tools such as Windows
message browsers or A000 trap recorders on the
Macintosh.

20MacDTS old-timers will testify to that; I’ve sent numerous bug
reports showing the exact location of the error.

Both environments provide utilities to check whether
programs are well-behaved.    The Macintosh has a
Discipline, which is often useful but is sometimes over-
eager or over-lenient.    Windows 3.1 has a built-in
discipline which will report suspect system calls by
sending messages out of the computer’s serial port or
onto another screen.    This is a very useful facility for
catching common programming errors such as disposing
graphics structures in the wrong order or not disposing
them at all (Windows’ discipline will report these when
the program terminates).    Building this discipline into the
system was a wise investment by Microsoft—it will
reduce the number of crashes encountered by users and
simplify Microsoft’s job in evolving the system in the
future.

5.    Conclusion

The Macintosh and Windows are sophisticated graphical
operating systems for personal computers.    Both are
rapidly evolving and have large markets for third-party
software.    They provide many of the similar features,
but differ in the following areas:

• The Macintosh operating system emphasizes
providing flexible services for a wide variety of tasks.
Many specialized applications are possible, but simple
tasks may require a large initial investment of work.    On
the other hand, Windows emphasizes common tasks
and lacks some functionality for specialized ones.
Documentation and development environments mirror
this difference.    I do not exactly understand why this
distinction is so pervasive, but it seems to define the
fundamental “attitudes” of the two environments.

• Both systems are procedural, but Windows has a
more modern, object-oriented structure for passing
messages and events.

• Apple has more control over the hardware substrate,
resulting in more uniform system configurations and
features.    On the other hand, Apple has more versions
of the operating system, while there is only one target
version of Windows.    Thus, programmers for both
environments are likely to face the problems of
programming for multiple configurations.

• Programming the 68000-family chips is much easier
than programming the 8086 family.    The 8086-family
chips provide numerous hard-to-use modes, and,
probably not coincidentally, most Windows programs are
still 16-bit.

• System setup is much harder on PC compatibles,
and Windows does not solve this problem; in fact, it

Macintosh and Windows 3.0 9

introduces numerous .INI files and other potential areas
for users to make mistakes.

These are the main technical distinctions that I found in
my experiences; yours will differ slightly.    Of course,
technical considerations may be entirely secondary in
choosing the system for which one should develop
programs.    Windows’ installed base is growing much
more rapidly than the Macintosh and provides a larger
market for applications.    Also, even if someone were to
definitively establish that, say, developing for Windows is
harder than for the Macintosh (or vice versa), would this
mean that programmers would prefer to work on
Windows or the Mac?    Some might want to write more
ambitious programs; others might want a greater
challenge.

The operating system scene is changing rapidly, and we
will see many new developments over the next few
years.    There will be new operating systems and new
processors, providing plenty of opportunities for
innovation.    I hope that the diversity of versions in the
industry will be brought under control and that new
systems will be designed wisely, paying attention to the
principles of abstraction; otherwise, the operating
systems will become even more difficult to maintain and
entropy will rise to unacceptable levels.

A.    Object-Oriented
Programming and Abstraction

This appendix defines object orientation and abstraction
in the context of programming languages and discusses
their interaction.    They are related, often confused,
concepts.    Object orientation and abstraction are at
odds in one area; it is important to be aware of their
limitations.

An object-oriented language is one that supports:

1. Defining data types (classes).    Each instance of a
class is called an object (or an instance) and has
associated methods and instance variables.

2. Defining functions (methods) that operate on those
objects.

3. Defining classes by inheriting from existing classes
and overriding some methods.

Many experts claim that using object-oriented
programming offers significant time savings in
programming, and, in most cases, this is correct.
However, object-oriented programming has a dark side

to it, and, furthermore, much of the gain attributed to
object-oriented programming may simply be due to the
use of abstraction.

Abstraction is one of the key ideas in programming (and
science in general).    In programming, it means
restricting the use of data structures to calling functions
that operate on them and accessing public instance
variables; all other operations such as calling private
functions on a data structure or accessing its other
components directly are forbidden.    This has the
following benefits:

• The user of an abstract data structure does not have
to know how it’s implemented.    He need only examine
the interface to use it.

• The implementor of an abstract data structure can
change its implementation, and, as long as he keeps the
same interface, he will not disrupt the users.

We use this concept all the time.    A car is an ab-
straction, with the functioning of the steering wheel and
pedals being the interface—one does not need to know
how a car works to use it, and the car manufacturer can
change the car’s engine design without having to re-
educate the users.

Features that aid in defining abstractions are often built
into the newer programming languages, but one can
define abstractions even in older languages such as C or
Pascal by following conventions.    Keep in mind, though,
that merely using a good language will not guarantee
that one’s program has good abstractions—it’s easy to
take short cuts and make all instance variables public or
define inappropriate interfaces.    Defining abstractions is
an art to be learned and practiced.

What does abstraction have to do with object-oriented
programming?    Well, characteristics 1 and 2 of object-
oriented programming are precisely what is needed to
define abstractions.    On the other hand, characteristic 3
is controversial and can sometimes undo all of the
benefits gained from 1 and 2.    The problem arises when
one begins to override methods when defining
subclasses.    If the overridden method replaces the
original method even when called by other methods from
the superclass (in C++ terminology it is a virtual
method), then other methods in the superclass can
suddenly change meaning.    For instance, if class
ArrowDrawingA overrides the drawLine method so
that it draws lines with arrows, then drawRectangle
may or may not suddenly start drawing rectangles with
arrows, depending on whether it calls drawLine or
some other internal method to draw its lines.    Which
one happens cannot be deduced from the interface to
the DrawingA class; thus, by using virtual overriding,

10 Compilers

one breaks the abstraction barrier and relies on the
class’s implementation instead of just the interface.
This is why most object libraries such as MacApp are not
useful without the source code.

Shallower, non-virtual overriding such as that in
DrawingB is always safe.      Virtual overriding relies
on information not present in class specifications21 and
should only be done with caution—don’t declare every
method virtual by default as some books recommend!
Virtual methods have some good uses such as
defining callbacks, but in those cases the exact
circumstances under which virtual methods are
called and not called should be documented along with
each class declaration.

class DrawingA
    {
    virtual void drawLine(Point start,

Point end);
    void drawRectangle(Point corner1,

Point corner2);
    ...
    }

class ArrowDrawingA:DrawingA
    {
    void drawLine(Point start, Point end);
    ...
    }

class DrawingB
    {
    void drawLine(Point start, Point end);
    void drawRectangle(Point corner1,

Point corner2);
    ...
    }

class ArrowDrawingB:DrawingB
    {
    void drawLine(Point start, Point end);
    ...
    }

21Some time ago this problem became apparent to me in another
manner—I was looking for a strong typing system for an object-
oriented language that did not require type-casting. It turns out that
even designing such a language is exceedingly difficult (much less
writing a compiler for it), and almost all of the difficulties stem from
virtual overriding. The same difficulties that break abstractions also
make programming languages difficult to design and understand, for
computers as well as humans.

Bibliography

[1] Apple Computer, Inc.    Inside Macintosh, Volumes
I–VI.    Addison-Wesley, 1985-1991.

[2] Apple Computer, Inc.    Macintosh Technical Note
304:    Pending Update Perils.    August 1991.

[3] Microsoft, Inc.    Microsoft Windows Software
Development Kit, 1991.

[4] Charles Petzold.    Programming Windows,
Second Edition.    Microsoft Press, 1990.

Macintosh and Windows 3.0 11

