Mtools

Accessing MS-DOS disks
Edition 3.0, for Mtools version 3.0
May 1996

by Alain Knaff

Copyright (©) 1992, 1993, 1994, 1995, 1996 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Chapter 1: Common features of all mtools commands 1

Introduction

Mtools is a collection of tools for manipulating MS-DOS files. Mtools is a public domain
collection of programs to allow Unix systems to read, write, and manipulate files on an
MS-DOS filesystem (typically a floppy disk). Where reasonable, each program attempts to
emulate the MS-DOS equivalent command. However, unnecessary restrictions and oddities
of DOS are not emulated. For instance, it is possible to move subdirectories from one
subdirectory to another.

1 Common features of all mtools commands

1.1 Options and filenames

MS-DOS filenames are composed of a drive letter followed by a colon, a subdirectory, and
a filename. Only the filename part is mandatory, the drive letter and the subdirectory
are optional. Filenames without a drive letter refer to Unix files. Subdirectory names can
use either the ’/’ or ’\’ separator. The use of the ’\’ separator or wildcards requires the
names to be enclosed in quotes to protect them from the shell. However, wildcards in Unix
filenames should not be enclosed in quotes, because here we want the shell to expand them.

The regular expression "pattern matching" routines follow the Unix-style rules. For
example, ‘*’ matches all MS-DOS files in lieu of ‘*.*’. The archive, hidden, read-only and
system attribute bits are ignored during pattern matching.

All options use the - (minus) as their first character, not / as you’d expect in MS-DOS.

Most mtools commands allow multiple filename parameters, which doesn’t follow MS-
DOS conventions, but which is more user-friendly.

Most mtools commands allow options that instruct them how to handle file name clashes.
See Section 1.4 [name clashes|, page 2, for more details on these. All commands accept the -V
flags which prints the version, and most accept the -v flag, which switches on verbose mode.
In verbose mode, these commands print out the name of the MS-DOS files upon which they
act, unless stated otherwise. See Chapter 3 [Commands|, page 12, for a description of the
options which are specific to each command.

1.2 Current working directory

The mcd command (Section 3.3 [med], page 13) is used to establish the device and the
current working directory (relative to the MS-DOS filesystem), otherwise the default is
assumed to be A:/. However, unlike MS-DOS, there is only one working directory for all
drives, and not one per drive.

1.3 VFAT-style long file names

This version of mtools supports VFAT style long filenames. If a Unix filename is too long
to fit in a short DOS name, it is stored as a VFAT long name, and a companion short name
is generated. This short name is what you see when you examine the disk with a pre-7.0
version of DOS. The following table shows some examples of short names:

Long name MS-DOS name Reason for the change

Chapter 1: Common features of all mtools commands 2

thisisatest THISIS™1 filename too long
alain.knaff ALAIN™1.KNA extension too long
prn.txt PRN™1.TXT PRN is a device name
.abc ABC™1 null filename
hot+cold HOT_CO™1 illegal character

As you see, the following transformations happen to derive a short name:
e Illegal characters are replaces by underscores. The illegal characters are
=01, \"\\<>/7: .
e Extra dots, which cannot be interpreted as a main name/extension separator are re-
moved
e A “n number is generated,
e The name is shortened so as to fit in the 8+3 limitation
The initial Unix-style file name (whether long or short) is also called the primary name,
and the derived short name is also called the secondary name.
Example:
mcopy /etc/motd a:Reallylongname
Mtools creates a VFAT entry for Reallylongname, and uses REALLYLO as a short name.
Reallylongname is the primary name, and REALLYLO is the secondary name.
mcopy /etc/motd a:motd
Motd fits into the DOS filename limits. Mtools doesn’t need to derivate another name.
Motd is the primary name, and there is no secondary name.
In a nutshell: The primary name is the long name, if one exists, or the short name if
there is no long name.
Although VFAT is much more flexible than FAT, there are still names that are not
acceptable, even in VFAT. There are still some illegal characters left (\"*\\<>/?7:1), and
device names are still reserved.

Unix name Long name Reason for the change
prn prn-1 PRN is a device name
ab:c ab_c-1 illegal character

As you see, the following transformations happen if a long name is illegal:
e Illegal characters are replaces by underscores,
e A -n number is generated,

1.4 Name clashes

When writing a file to disk, its long name (primary name) or short name may collide with
an already existing file or directory. This may happen for all commands which create new
directory entries, such as mcopy, mmd, mren, mmove, mwrite and mread. When a name clash
happens, mtools asks you what it should do. It offers several choices:

overwrite
Overwrites the existing file. It is not possible to overwrite a directory with a

file.

Chapter 1: Common features of all mtools commands 3

rename Renames the newly created file. Mtools prompts for the new filename
autorename
Renames the newly created file. Mtools chooses a name by itself, without
prompting
skip Gives up on this file, and moves on to the next (if any)

To chose one of these actions, type its first letter at the prompt. If you use a lower case
letter, the action only applies for this file only, if you use an upper case letter, the action
applies to all files, and you won’t be prompted again.

You may also chose actions (for all files) on the command line, when invoking mtools:

-0 Overwrites primary names by default.

-0 Overwrites secondary names by default.
-r Renames primary name by default.

-R Renames secondary name by default.

-a Autorenames primary name by default.

-A Autorenames secondary name by default.
-s Skip primary name by default.

-S Skip secondary name by default.

-m Ask user what to do with primary name.
-M Ask user what to do with secondary name.

By default, the user is prompted if the primary name clashes, and the secondary name
is autorenamed.

If a name clash occurs in a Unix directory, mtools only asks whether to overwrite the
file, or to skip it.

1.5 Case sensitivity of the VFAT filesystem

The VFAT filesystem is able to remember the case of the filenames. However, filenames
which differ only in case are not allowed to coexist in the same directory. For example
if you store a file called LongFileName on a VFAT filesystem, mdir shows this file as
LongFileName, and not as Longfilename. However, if you then try to add LongFilename to
the same directory, it is refused, because case is ignored for clash checks.

The VFAT filesystem allows to store the case of a filename in the attribute byte, if all
letters of the filename are the same case, and if all letters of the extension are the same
case too. Mtools uses this information when displaying the files, and also to generate the
Unix filename when mcopying to a Unix directory. This may have unexpected results when
applied to files written using an pre-7.0 version of DOS: Indeed, the old style filenames map
to all upper case. This is different from the behavior of the old version of mtools which
used to generate lower case Unix filenames.

Chapter 2: How to configure mtools for your environment 4

1.6 XDF Disks (Only available on Linux)

XDF is a high capacity format used by OS/2. It can hold 1840 K per disk. That’s lower
than the best 2m formats, but its main advantage is that it is fast: 600 milliseconds per
track. That’s faster than the 21 sector format, and almost as fast as the standard 18 sector
format. In order to access these disks, make sure mtools has been compiled with XDF
support, and set the use_xdf variable for the drive in the configuration file. See Chapter 4
[Compiling mtools], page 18, and Section 2.6 [misc variables|, page 8, for details on how to
do this. Fast XDF access is only available for Linux kernels which are more recent than

1.1.34.

Caution / Attention distributors: If mtools is compiled on a Linux kernel more recent
than 1.3.34, it won’t run on an older kernel. However, if it has been compiled on an older
kernel, it still runs on a newer kernel, except that XDF access is slower. It is recommended
that distribution authors only include mtools binaries compiled on kernels older than 1.3.34
until 2.0 comes out. When 2.0 will be out, mtools binaries compiled on newer kernels may
(and should) be distributed. Mtools binaries compiled on kernels older than 1.3.34 won'’t
run on any 2.1 kernel or later.

1.7 Exit codes

All the Mtools commands return 0 on success, 1 on utter failure, or 2 on partial failure. All
the Mtools commands perform a few sanity checks before going ahead, to make sure that the
disk is indeed an MS-DOS disk (as opposed to, say an ext2 or minix disk). These checks
may reject partially corrupted disks, which might otherwise still be readable. To avoid
these checks, set the MTOOLS_SKIP_CHECK environmental variable or the corresponding

configuration file variable (see Section 2.4 [global variables|, page 5)

1.8 Bugs

An unfortunate side effect of not guessing the proper device (when multiple disk capacities
are supported) is an occasional error message from the device driver. These can be safely
ignored.

The fat checking code chokes on 1.72 Mb disks mformatted with pre-2.0.7 mtools. Set
the environmental variable MTOOLS_FAT_COMPATIBILITY (or the corresponding con-
figuration file variable, Section 2.4 [global variables], page 5) to bypass the fat checking.

The support for non-Linux OS variants has not been tested for a long time. It may
contain bugs, or even not work at all.

2 How to configure mtools for your environment

2.1 Description

This sections explains the syntax of the configurations files for mtools. The configuration
files are called /etc/mtools.conf and ~/.mtoolsrc. These configuration files describe the
following items:

Chapter 2: How to configure mtools for your environment 5

e Global configuration flags and variables
e Per drive flags and variables

e Character translation tables

2.2 Location of the configuration files

/etc/mtools.conf is the system-wide configuration file, and ~/.mtoolsrc is the user’s
private configuration file.

On some systems, the system-wide configuration file is called /etc/defaults/mtools. conf
instead.

2.2.1 General configuration file syntax

The configuration files is made up of sections. Each section starts with a keyword identifying
the section followed by a colon. Then follow variable assignments and flags. Variable
assignments take the following form:

name=value

Flags are lone keywords without an equal sign and value following them. A section either
ends at the end of the file or where the next section begins.

Lines starting with a hash (#) are comments. Newline characters are equivalent to
whitespace (except where ending a comment). The configuration file is case insensitive,
except for item enclosed in quotes (such as filenames).

2.3 Default values

For most platforms, mtools contains reasonable compiled-in defaults for physical floppy
drives. Thus, you usually don’t need to bother with the configuration file, if all you want
to do with mtools is to access your floppy drives. On the other hand, the configuration file
is needed if you also want to use mtools to access your hard disk partitions and dosemu
image files.

2.4 Global variables

Global variables may be set to 1 or to 0.
The following global flags are recognized:

MTOOLS_SKIP_CHECK
If this is set to 1, mtools skips most of its sanity checks. This is needed to
read some Atari disks which have been made with the earlier ROMs, and which
would not be recognized otherwise.

MTOOLS_FAT_COMPATIBILITY
If this is set to 1, mtools skips the fat size checks. Some disks have a bigger
FAT than they really need to. These are rejected if this option is not set.

MTOOLS_LOWER_CASE
If this is set to 1, mtools displays all-upper-case short filenames as lowercase.
This has been done to allow a behavior which is consistent with older versions
of mtools which didn’t know about the case bits.

Chapter 2: How to configure mtools for your environment 6

Example: Inserting the following line into your configuration file instructs mtools to skip
the sanity checks:

MTOOLS_SKIP_CHECK=1
Global variables may also be set via the environment:
export MTOOLS_SKIP_CHECK=1

2.5 Per drive flags and variables

2.5.1 General information

Per drive flags and values may be described in a drive section. A drive section starts with
drive "driveletter" :

Then follow variable-value pairs and flags.

This is a sample drive description:

drive a:

file="/dev/fd0" use_xdf=1

2.5.2 Disk Geometry Configuration

Geometry information describes the physical characteristics about the disk. Its has three

purposes:

formatting

filtering

The geometry information is written into the boot sector of the newly made disk.
However, you may also describe the geometry information on the command line.
See Section 3.8 [mformat|, page 14, for details.

On some Unices there are device nodes which only support one physical geom-
etry. For instance, you might need a different node to access a disk as high
density or as low density. The geometry is compared to the actual geometry
stored on the boot sector to make sure that this device node is able to correctly
read the disk. If the geometry doesn’t match, this drive entry fails, and the next
drive entry bearing the same drive letter is tried. See Section 2.6.1 [multiple
descriptions|, page 8, for more details on supplying several descriptions for one
drive letter.

If no geometry information is supplied in the configuration file, all disks are
accepted. On Linux (and on Sparc) there exist device nodes with configurable
geometry (/dev/£d0, /dev/fdl etc), and thus filtering is not needed (and ig-
nored) for disk drives. (Mtools still does do filtering on plain files (disk images)
in Linux: this is mainly intended for test purposes, as I don’t have access to a
Unix which would actually need filtering).

initial geometry

The geometry information (if available) is also used to set the initial geometry
on configurable device nodes. This initial geometry is used to read the boot
sector, which contains the real geometry. If no geometry information is supplied
in the configuration file, no initial configuration is done. On Linux, this is not
really needed either, as the configurable devices are able to auto-detect the disk
type accurately enough (for most common formats) to read the boot sector.

Chapter 2: How to configure mtools for your environment 7

Wrong geometry information may lead to very bizarre errors. That’s why I strongly
recommend that you don’t use geometry configuration unless you actually need it.

The following geometry related variables are available:

cylinders

cylinders
The number of cylinders. (cylinders is the preferred form, tracks is consid-
ered obsolete)

heads The number of heads (sides).

sectors The number of sectors per track.

Example: the following drive section describes a 1.44M drive:

drive a:
file="/dev/fd0H1440"
fat_bits=12

cylinders=80 heads=2 sectors=18

The following shorthand geometry descriptions are available:

1.44m high density 3 1/2 disk. Equivalent to: fat_bits=12 tracks=80 heads=2
sectors=18

1.2m high density 5 1/4 disk. Equivalent to: fat_bits=12 tracks=80 heads=2
sectors=15

720k double density 3 1/2 disk. Equivalent to: fat_bits=12 tracks=80 heads=2
sectors=9

360k double density 5 1/4 disk. Equivalent to: fat_bits=12 tracks=40 heads=2
sectors=9

The shorthand format descriptions may be amended. For example, 360k sectors=8
describes a 320k disk and is equivalent to: fat_bits=12 tracks=40 heads=2 sectors=8

2.5.3 Open Flags

Moreover, the following flags are available:

sync All i/o operations are done synchronously

nodelay The device or file is opened with the O_NDELAY flag. This is needed on some
non-Linux architectures.

exclusive
The device or file is opened with the O_EXCL flag. On Linux, this ensures
exclusive access to the floppy drive. On most other architectures, and for plain
files it has no effect at all.

Chapter 2: How to configure mtools for your environment 8

2.6 General Purpose Drive Variables

The following general purpose drive variables are available:

file The name of the file or device holding the disk image. This is mandatory. The
file name should be enclosed in quotes.

use_xdf If this is set to a non-zero value, mtools also tries to access this disk as an XDF
disk. XDF is a high capacity format used by OS/2. This is off by default. See
Section 1.6 [XDF disks|, page 4, for more details.

partition

Tells mtools to treat the drive as a partitioned device, and to use the given
partition. Only primary partitions are accessible using this method, and they
are numbered from 1 to 4. For logical partitions, use the more general offset
variable. The partition variable is intended for removable media such as
Syquests, ZIP drives, and magneto-optical disks. Although traditional DOS
sees Syquests and magneto-optical disks as ‘giant floppy disks’ which are
unpartitioned, OS/2 and Windows NT treat them like hard disks, i.e. par-
tioned devices. The partition flag is also useful DOSEMU hdimages. It is not
recommended for hard disks for which direct access to partitions is available
through mounting.

offset Describes where in the file the MS-DOS filesystem starts. This is useful for
logical partitions in DOSEMU hdimages, and for ATARI ram disks. By default,
this is zero, meaning that the filesystem start right at the beginning of the device
or file.

fat_bits The number of FAT bits. This may be 12 or 16. This is very rarely needed, as
it can almost always be deduced from information in the boot sector. On the
contrary, describing the number of fat bits may actually be harmful if you get
it wrong. You should only use it if mtools gets the autodetected number of fat
bits wrong, or if you want to mformat a disk with a weird number of fat bits.

Only the file variable is mandatory. The other parameters may be left out. In that
case a default value or an autodetected value is used.

2.6.1 Supplying multiple descriptions for a drive
It is possible to supply multiple descriptions for a drive. In that case, the descriptions are
tried in order until one is found that fits. Descriptions may fail for several reasons:

1. because the geometry is not appropriate,

2. because there is no disk in the drive,

3. or because of other problems.

Multiple definitions are useful when using physical devices which are only able to support

one single disk geometry. Example:

drive a: file="/dev/fdOH1440" 1.44m
drive a: file="/dev/fdOH720" 720k
This instructs mtools to use /dev/fd0H1440 for 1.44m (high density) disks and
/dev/fd0H720 for 720k (double density) disks. On Linux, this feature is not really needed,
as the /dev/fd0 device is able to handle any geometry.

Chapter 2: How to configure mtools for your environment 9

You may also use multiple drive descriptions to access both of your physical drives
through one drive letter:

drive z: file="/dev/fd0"
drive z: file="/dev/fd1"

With this description, mdir z: accesses your first physical drive if it contains a disk. If
the first drive doesn’t contain a disk, mtools checks the second drive.

When using multiple configuration files, drive descriptions in the files parsed last override
descriptions for the same drive in earlier files. In order to avoid this, use the drive+ or
+drive keywords instead of drive. The first adds a description to the end of the list (i.e.
it will be tried last), and the first adds it to the start of the list.

2.7 Character set translation tables

If you live in the USA, in Western Europe or in Australia, you may skip this section.

2.7.1 Why character set translation tables are needed

DOS uses a different character code mapping than Unix. 7-bit characters still have the
same meaning, only characters with the eight bit set are affected. To make matters worse,
there are several translation tables available depending on the country where you are. The
appearance of the characters is defined using code pages. These code pages aren’t the
same for all countries. For instance, some code pages don’t contain upper case accented
characters. On the other hand, some code pages contain characters which don’t exist in
Unix, such as certain line-drawing characters or accented consonants used by some Eastern
European countries. This affects two things, relating to filenames:

upper case characters
In short names, only upper case characters are allowed. This also holds for ac-
cented characters. For instance, in a code page which doesn’t contain accented
uppercase characters, the accented lowercase characters get transformed into
their unaccented counterparts.

long file names
MicroS$oft has finally come to their senses and uses a more standard mapping
for the long file names. They use Unicode, which is basically a 32 bit version
of ASCII. Tts first 256 characters are identical to Unix ASCII. Thus, the code
page also affects the correspondence between the codes used in long names and
those used in short names

Mtools considers the filenames entered on the command line as having the Unix mapping,
and translates the characters to get short names. By default, code page 850 is used with
the Swiss uppercase/lowercase mapping. I chose this code page, because its set of existing
characters most closely matches Unix’s. Moreover, this code page covers most characters
in use in the USA, Australia and Western Europe. However, it is still possible to chose a
different mapping. There are two methods: the country variable and explicit tables.

2.7.2 Configuration using Country

The COUNTRY variable is recommended for people which also have access to MS-DOS system
files and documentation. If you don’t have access to these, I'd suggest you’d rather use
explicit tables instead.

Chapter 2: How to configure mtools for your environment 10

Syntax:
COUNTRY="country [, [codepage] , country-file]"

This tells mtools to use a Unix-to-DOS translation table which matches codepage and an
lowercase-to-uppercase table for country and to use the country-file file to get the lowercase-
to-uppercase table. The country code is most often the telephone prefix of the country. Refer
to the DOS help page on "country" for more details. The codepage and the country-file
parameters are optional. Please don’t type in the square brackets, they are only there to
say which parameters are optional. The country-file file is supplied with MS-DOS, and is
usually called COUNTRY.SYS, and stored in the C:\D0OS directory. In most cases you don’t
need it, as the most common translation tables are compiled into mtools. So, don’t worry
if you run a Unix-only box which lacks this file.

If codepage is not given, a per country default code page is used. If the country-file
parameter isn’t given, compiled-in defaults are used for the lowercase-to-uppercase table.
This is useful for other Unices than Linux, which may have no COUNTRY.SYS file available
online.

The Unix-to-DOS are not contained in the COUNTRY . SYS file, and thus mtools always uses
compiled-in defaults for those. Thus, only a limited amount of code pages are supported. If
your preferred code page is missing, or if you know the name of the Windows 95 file which
contains this mapping, could you please drop me a line at Alain.Knaff@inrialpes.fr.

The COUNTRY variable can also be set using the environment.

2.7.3 Configuration using explicit translation tables

Translation tables may be described in line in the configuration file. Two tables are needed:
first the DOS-to-Unix table, and then the Lowercase-to-Uppercase table. A DOS-to-Unix
table starts with the tounix keyword, followed by a colon, and 128 hexadecimal num-
bers. A lower-to-upper table starts with the fucase keyword, followed by a colon, and 128
hexadecimal numbers.

The tables only show the translations for characters whose codes is greater than 128,
because translation for lower codes is trivial.

Example:

tounix:
0xc7 Oxfc 0xe9 0xe2 Oxed 0xe0 Oxeb 0xe7
Oxea Oxeb 0xe8 Oxef Oxee Oxec 0xc4 0xcb
0xc9 0Oxe6 0Oxc6 0xf4d 0xf6 O0xf2 Oxfb 0xf9
Oxff 0xd6 Oxdc 0xf8 0Oxa3 0xd8 0xd7 0x5f
Oxel Oxed 0xf3 Oxfa Oxfl Oxdl Oxaa Oxba
Oxbf Oxae Oxac Oxbd Oxbc Oxal Oxab Oxbb
0x5f 0xb5f 0xbf O0x5f 0x5f Oxcl 0Oxc2 0xcO
0xa9 0xbf 0xb5f 0x5f 0x5f 0xa2 0Oxab Oxac
0x5f Oxbf 0xbf 0x5f Oxbf 0xbf 0Oxe3d 0xc3
0x5f 0x5f 0xb5f 0x5f 0x5f 0xb5f 0x5f Oxa4d
0xf0 0xd0 0xc9 Oxcb 0xc8 0x69 0Oxcd Oxce
Oxcf 0xb5f 0x5f 0x5f 0x5f 0x7c 0x49 0x5f
0xd3 0Oxdf Oxd4 0xd2 Oxf5 0xd5 Oxbb5 Oxfe
Oxde Oxda 0xd9 Oxfd Oxdd Oxde Oxaf 0xb4

Chapter 2: How to configure mtools for your environment 11

Oxad Oxbl 0x5f Oxbe 0xb6 O0xa7 O0xf7 0xb8
0xb0 0xa8 O0xb7 0xb9 0xb3 0xb2 0x5f 0xbf

fucase:
0x80 0x9a 0x90 0xb6 0x8e 0xb7 0x8f 0x80
0xd2 0xd3 0xd4 0xd8 0xd7 Oxde 0x8e 0x8f
0x90 0x92 0x92 0xe2 0x99 0xe3 Oxea 0Oxeb
0x59 0x99 0x9a 0x9d 0x9c 0x9d 0x9%e 0x9f
0xb5 0xd6 0xe0 0xe9 0Oxab 0Oxab 0Oxa6 0xa7
0xa8 0xa9 Oxaa Oxab Oxac Oxad Oxae Oxaf
0xb0 0xbl 0xb2 0xb3 0xb4 0xb5 0xb6 0xb7
0xb8 0xb9 Oxba Oxbb Oxbc 0Oxbd Oxbe Oxbf
0xcO Oxcl 0xc2 0xc3 0xc4 0xcb 0xc7 0xc7
0xc8 0xc9 Oxca Oxcb Oxcc Oxcd Oxce Oxcf
0xd1l 0xdl 0xd2 0xd3 0xd4 0x49 0xd6 0xd7
0xd8 0xd9 Oxda Oxdb Oxdc Oxdd Oxde Oxdf
0xe0 Oxel 0Oxe2 0xe3d 0xeb 0xeb 0Oxe6 0xe8
0xe8 0xe9 Oxea 0Oxeb Oxed Oxed Oxee Oxef
0xf0 Oxf1 O0xf2 0xf3 0xf4 O0xf5 O0xf6 O0xf7
0xf8 0xf9 Oxfa Oxfb Oxfc Oxfd Oxfe Oxff

The first table maps DOS character codes to Unix character codes. For example, the
DOS character number 129. This is a u with to dots on top of it. To translate it into Unix,
we look at the character number 1 in the first table (1 = 129 - 128). This is Oxfc. (Beware,
numbering starts at 0). The second table maps lower case DOS characters to upper case
DOS characters. The same lower case u with dots maps to character 0x9a, which is an
uppercase U with dots in DOS.

2.7.4 Unicode characters greater than 256

If an existing MS-DOS name contains Unicode character greater than 256, these are trans-
lated to underscores or to characters which are close in visual appearance. For example,
accented consonants are translated into their unaccented counterparts. This translation is
used for mdir and for the Unix filenames generated by mcopy. Linux does support Unicode
too, but unfortunately too few applications support it yet to bother with it in mtools. Most
importantly, xterm can’t display Unicode yet. If there is sufficient demand, I might include
support for Unicode in the Unix filenames as well.

Caution: When deleting files with mtools, the underscore matches all characters which
can’t be represented in Unix. Be careful with mdel!

2.8 Location of configuration files and parsing order

The configuration files are parsed in the following order:
1. compiled-in defaults
2. /etc/mtools.conf

3. /etc/mtools This is for backwards compatibility only, and is only parsed if
mtools.conf doesn’t exist.

4. ~/.mtoolsrc.

Chapter 3: Command list 12

Options described in the later files override those described in the earlier files. Drives
defined in earlier files persist if they are not overridden in the later files. For instance,
drives A and B may be defined in /etc/mtools.conf and drives C and D may be defined
in ~/.mtoolsrc However, if “/.mtoolsrc also defines drive A, this new description would
override the description of drive A in /etc/mtools.conf instead of adding to it. If you
want to add a new description to a drive already described in an earlier file, you need to
use either the +drive or drive+ keyword.

2.9 Backwards compatibility with old configuration file
syntax

The syntax described herein is new for version mtools-3.0. The old line-oriented syntax

is still supported. Each line beginning with a single letter is considered to be a drive

description using the old syntax. Old style and new style drive sections may be mixed

within the same configuration file, in order to make upgrading easier. Support for the old

syntax will be phased out eventually, and in order to discourage its use, I purposefully omit
its description here.

3 Command list

This section describes the available mtools commands, and the command line parameters
that each of them accepts. Options which are common to all mtools commands are not
described here, Section 1.1 [arguments], page 1, for a description of those.

3.1 Mattrib

Mattrib is used to change MS-DOS file attribute flags. It has the following syntax:
mattrib [~al+a] [-h|+h] [-r|+r] [-s|+s]| msdosfile [msdostiles . . .]

Mattrib adds attribute flags to an MS-DOS file (with the ‘+” operator) or remove at-
tribute flags (with the ‘-’ operator).

Mattrib supports the following attribute bits:
a Archive bit. Used by some backup programs to indicate a new file.

r Read-only bit. Used to indicate a read-only file. Files with this bit set cannot
be erased by DEL nor modified.

System bit. Used by MS-DOS to indicate a operating system file.
h Hidden bit. Used to make files hidden from DIR.

3.2 Mbadblocks

The mbadblocks command is used to scan an MS-DOS floppy and mark its unused bad
blocks as bad. It uses the following syntax:

mbadblocks drive:

Mbadblocks scans an MS-DOS floppy for bad blocks. All unused bad blocks are marked
as such in the FAT. This is intended to be used right after mformat. It is not intended to
salvage bad disks.

Chapter 3: Command list 13

3.2.1 Bugs

Mbadblocks should (but doesn’t yet :-() also try to salvage bad blocks which are in use by
reading them repeatedly, and then mark them bad.

3.3 Mcd

The mcd command is used to change the mtools working directory on the MS-DOS disk. It
uses the following syntax:

mcd [msdosdirectory]

Without arguments, mcd reports the current device and working directory. Otherwise,
mcd changes the current device and current working directory relative to an MS-DOS filesys-
tem.

The environmental variable MCWD may be used to locate the file where the device and
current working directory information is stored. The default is $HOME/ .mcwd. Information
in this file is ignored if the file is more than 6 hours old.

Mcd returns 0 on success or 1 on failure.

Unlike MS-DOS versions of CD, mcd can be used to change to another device. It may be
wise to remove old .mcwd files at logout.

3.4 Mcopy

The mcopy command is used to copy MS-DOS files to and from Unix. It uses the following
syntax:

mcopy [-tnvmoOsSrRA] sourcefile targetfile
mcopy [-tnvmoOsSrRA] sourcefile [sourcefiles...] targetdirectory
mcopy [-tnvm] MSDOSsourcefile

Mcopy copies the specified file to the named file, or copies multiple files to the named
directory. The source and target can be either MS-DOS or Unix files.

The use of a drive letter designation on the MS-DOS files, ’a:’ for example, determines
the direction of the transfer. A missing drive designation implies a Unix file whose path
starts in the current directory. If a source drive letter is specified with no attached file name
(e.g. mcopy a: .), all files are copied from that drive.

If only a single, MS-DOS source parameter is provided (e.g. "mcopy a:foo.exe"), an

implied destination of the current directory (‘.’) is assumed.

A filename of ‘-’ means standard input or standard output, depending on its position
on the command line.

Mcopy accepts the following command line options:

t Text file transfer. Mcopy translates incoming carriage return/line feeds to line
feeds.

n No warning. Mcopy doesn’t warn the user when overwriting an existing file.

m Preserve the file modification time. If the target file already exists, and the -n

option is not in effect, mcopy asks whether to overwrite the file or to rename
the new file (Section 1.4 [name clashes], page 2) for details).

Chapter 3: Command list 14

3.4.1 Bugs
Unlike MS-DOS, the '+’ operator (append) from MS-DOS is not supported. However, you
may use mtype to produce the same effect:

mtype a:filel a:file2 a:file3 >unixfile
mtype a:filel a:file2 a:file3 | mcopy - a:msdosfile

3.5 Mdel
The mdel command is used to delete an MS-DOS file. Its syntax is:
mdel [-v] msdosfile [msdosfiles ...]

Mdel deletes files on an MS-DOS filesystem.
Mdel asks for verification prior to removing a read-only file.

3.6 Mdeltree
The mdeltree command is used to delete an MS-DOS file. Its syntax is:

mdeltree [-v] msdosdirectory [msdosdirectories...]

Mdeltree removes a directory and all the files and subdirectories it contains from an
MS-DOS filesystem. An error occurs if the directory to be removed does not exist.

3.7 Mdir
The mdir command is used to display an MS-DOS directory. Its syntax is:

mdir [-w| msdosdirectory
mdir [-w| [~a] msdosfile [msdosfiles. . .]
Mdir displays the contents of an MS-DOS directory.

Mdir supports the following command line options:

W Wide output. With this option, mdir prints the filenames across the page
without displaying the file size or creation date.
a Also list hidden files.

An error occurs if a component of the path is not a directory.

3.8 Mformat

The mformat command is used to add an MS-DOS filesystem to a low-level formatted
diskette. Its syntax is:
mformat [-t tracks] [-h heads] [-s sectors] [-1 volume_label] [-S sizecode]
[-2 sectors_on_track_0] [-M software_sector_size] [-al [-X] [-C] [-H hidden_sectors]
drive:
Mformat adds a minimal MS-DOS filesystem (boot sector, FAT, and root directory) to
a diskette that has already been formatted by a Unix low-level format.
The follow options are supported: (The S, 2, 1 and M options may not exist if this copy
of mtools has been compiled without the USE_2M option)

t The number of tracks (not cylinders).

Chapter 3: Command list 15

h The number of heads (sides).

s The number of sectors per track. If the 2m option is given, number of 512-byte
sector equivalents on generic tracks (i.e. not head 0 track). If the 2m option is
not given, number of physical sectors per track (which may be bigger than 512
bytes).

1 An optional volume label.
The sizecode. The size of the sector is 2 ~ (sizecode + 7).

2 2m format. The parameter to this option describes the number of sectors on
track 0, head 0. This option is recommended for sectors bigger than normal.

don’t use a 2m format, even if the current geometry of the disk is a 2m geometry.

M software sector size. This parameter describes the sector size in bytes used by
the MS-DOS filesystem. By default it is the physical sector size.

a If this option is given, an Atari style serial number is generated. Ataris store
their serial number in the OEM label.

X formats the disk as an XDF disk. See Section 1.6 [XDF disks|, page 4, for more

details. The disk has first to be low-level formatted using the xdfcopy utility
included in the fdutils package.

C creates the disk image file to install the MS-DOS filesystem on it. Obviously,
this is useless on physical devices such as floppies and hard disk partitions.

H number of hidden sectors. This parameter is useful for formatting hard disk
partition, which are not aligned on track boundaries (i.e. first head of first track
doesn’t belong to the partition, but contains a partition table). In that case
the number of hidden sectors is in general the number of sectors per cylinder.
This is untested.

n serial number.

To format a diskette at a density other than the default, you must supply (at least) those
command line parameters that are different from the default.

Mformat returns 0 on success or 1 on failure.

It doesn’t record bad block information to the Fat, use mkmanifest for that.

3.9 Mkmanifest

The mkmanifest command is used to create a shell script (packing list) to restore Unix
filenames. Its syntax is:

mkmanifest [files |

Mkmanifest creates a shell script that aids in the restoration of Unix filenames that
got clobbered by the MS-DOS filename restrictions. MS-DOS filenames are restricted to 8
character names, 3 character extensions, upper case only, no device names, and no illegal
characters.

The mkmanifest program is compatible with the methods used in pcomm, arc, and
mtools to change perfectly good Unix filenames to fit the MS-DOS restrictions. This
command is only useful if the target system which will read the diskette cannot handle vfat
long names.

Chapter 3: Command list 16

3.9.1 Example

You want to copy the following Unix files to a MS-DOS diskette (using the mcopy command).
very_long_name
2.many.dots
illegal:
good.c
prn.dev
Capital
Mcopy converts the names to:
very_lon
2xmany.dot
illegalx
good.c
xprn.dev
capital
The command:
mkmanifest very_long_name 2.many.dots illegal: good.c prn.dev Capital >manifest
would produce the following:
mv very_lon very_long_name
mv 2xmany.dot 2.many.dots
mv illegalx illegal:
mv xprn.dev prn.dev
mv capital Capital
Notice that "good.c" did not require any conversion, so it did not appear in the output.
Suppose I've copied these files from the diskette to another Unix system, and I now want
the files back to their original names. If the file "manifest" (the output captured above)
was sent along with those files, it could be used to convert the filenames.

3.9.2 Bugs

The short names generated by mkmanifest follow the old convention (from mtools-2.0.7)
and not the one from Windows 95 and mtools-3.0.

3.10 Mlabel

The mlabel command adds a volume label to a disk. Its syntax is:
mlabel [-vcs] drive: [new_labell

Mlabel displays the current volume label, if present. If new_label is not given, and if
neither the ¢ nor the s options are set, it prompts the user for a new volume label. To
delete an existing volume label, press return at the prompt.

Reasonable care is taken to create a valid MS-DOS volume label. If an invalid label is
specified, mlabel changes the label (and displays the new label if the verbose mode is set).
Mlabel returns 0 on success or 1 on failure.

Mlabel supports the following options:

c Clears an existing label, without prompting the user

Chapter 3: Command list 17

s Shows the existing label, without prompting the user.

3.11 Mmd

The mmd command is used to make an MS-DOS subdirectory. Its syntax is:
mmd [-vo0sSrRA] msdosdirectory [msdosdirectories. . . |

Mmd makes a new directory on an MS-DOS filesystem. An error occurs if the directory
already exists.

3.12 Mmount

The mmount command is used to mount an MS-DOS disk. It is only available on Linux, as
it is only useful if the OS kernel allows to configure the disk geometry. Its syntax is:

mmount msdosdrive [mountargs]

Mmount reads the boot sector of an MS-DOS disk, configures the drive geometry, and
finally mounts it passing mountargs to mount. If no mount arguments are specified, the
name of the device is used. If the disk is write protected, it is automatically mounted read
only.

3.13 Mmove

The mmove command is used to moves or renames an existing MS-DOS file or subdirectory.

mmove [-voOsSrRA] sourcefile targetfile
mmove [-voOsSrRA] sourcefile [sourcefiles...] targetdirectory

Mmove moves or renames an existing MS-DOS file or subdirectory. Unlike the MS-DOS
version of MOVE, mmove is able to move subdirectories.

3.14 Mrd

The mrd command is used to remove an MS-DOS subdirectory. Its syntax is:
mrd [-v] msdosdirectory [msdosdirectories...]

Mrd removes a directory from an MS-DOS filesystem. An error occurs if the directory
does not exist or is not empty.

3.15 Mren
The mren command is used to rename or move an existing MS-DOS file or subdirectory.
Its syntax is:
mren [-voOsSrRA] sourcefile targetfile
Mren renames an existing file on an MS-DOS filesystem.
In verbose mode, Mren displays the new filename if the name supplied is invalid.

If the first syntax is used (only one sourcefile), and if the target name doesn’t contain
any slashes or colons, the file (or subdirectory) is renamed in the same directory, instead
of being moved to the current mcd directory as would be the case with mmove. Unlike the
MS-DOS version of REN, mren can be used to rename directories.

Chapter 5: Porting mtools to architectures which are not supported yet 18

3.16 Mtest

The mtest command is used to tests the mtools configuration files. To invoke it, just type
mtest without any arguments. Mtest reads the mtools configuration files, and prints the
cumulative configuration to stdout. The output can be used as a configuration file itself
(although you might want to remove redundant clauses). You may use this program to
convert old-style configuration files into new style configuration files.

3.17 Mtype

The mtype command is used to display contents of an MS-DOS file. Its syntax is:
mtype [-ts] msdosfile [msdosfiles...]
Mtype displays the specified MS-DOS file on the screen.

In addition to the standard options, Mtype allows the following command line options:

t Text file viewing. Mtype translates incoming carriage return/line feeds to line
feeds.
s Mtype strips the high bit from the data.

The mcd command may be used to establish the device and the current working directory
(relative to MS-DOS), otherwise the default is A: /.

Mtype returns 0 on success, 1 on utter failure, or 2 on partial failure.

Unlike the MS-DOS version of TYPE, mtype allows multiple arguments.

4 Architecture specific compilation flags

To compile mtools, first invoke ./configure before make. In addition to the standard
autoconfigure flags, there are two architecture specific flags available.

./configure --enable-xdf

./configure --disable-xdf
Enables support for XDF disks. This is on by default. See Section 1.6 [XDF
disks|, page 4, for details.

./configure --enable-vold

./configure --disable-vold
Enables support for vold on Solaris. When used in conjunction with vold,
mtools should uses different device nodes as for direct access.

5 Porting mtools to architectures which are not
supported yet

This chapter is only interesting for those who want to port mtools to an architecture which
is not yet supported. For most common systems, default drives are already defined. If you
want to add default drives for a still unsupported system, run config.guess, to see which

Chapter 5: Porting mtools to architectures which are not supported yet 19

identification autoconf uses for that system. This identification is of the form cpu-vendor-
os (for example sparc-sun-sunos). The cpu and the os parts are passed to the compiler as
preprocessor flags. The OS part is passed to the compiler in three forms.

1. The complete os name, with dots replaced by underscores. sco3.2v2 would yield
sco3_2v2

2. The base os name. Sco3.2v2 would yield Sco

3. The base os name plus its major version. Sco3.2v2 would yield Sco3

All three versions are passed, if they are different.
To define the devices, use the entries for the systems that are already present as tem-
plates. In general, they have the following form:
#if (defined (my_cpu) && defined(my_os))
#define predefined_devices

struct device devices[] = {
{ "/dev/first_drive", 'drive_letter', drive_description},

{ "/dev/last_drive", 'drive_letter', drive_description}

}
#define INIT_NOOP
#endif

" /dev/first_drive" is the name of the device or image file representing the drive.
Drive_letter is a letter ranging from a to z giving access to the drive. Drive_description
describes the type of the drive:

ED312 extra density (2.88M) 3 1/2 disk
HD312 high density 3 1/2 disk

DD312 double density 3 1/2 disk

HD514 high density 5 1/4 disk

DD514 double density 5 1/4 disk

DDsmall 8 sector double density 5 1/4 disk
Ss514 single sided double density 5 1/4 disk

SSsmall single sided 8 sector double density 5 1/4 disk
GENFD generic floppy drive (12 bit FAT)

GENHD generic hard disk (16 bit FAT)

GEN generic device (all parameters match)

Entries may be described in more detail:

fat_bits,open_flags,tracks,heads,sectors,offset ,DEF_ARG
fat_bits is either 12, 16 or 0. 0 means that the device accepts both types of FAT.

open_flags
may include flags such as O_NDELAY, or O_RDONLY, which might be neces-
sary to open the device. 0 means no special flags are needed.

Chapter 5: Porting mtools to architectures which are not supported yet 20

tracks,heads,sectors
describe the geometry of the disk. If tracks is 0, the heads and sectors param-
eters are ignored, and the drive accepts any geometry.

offset is used if the DOS filesystem doesn’t begin at the start of the device or image
file. This is mostly useful for Atari Ram disks (which contain their device driver
at the beginning of the file) or for DOS emulator images (which may represent
a partitioned device.

Definition of defaults in the devices file should only be done if these same devices are
found on a large number of hosts of this type. For purely local file, I recommend that you
use the /etc/mtools.conf and ~/.mtoolsrc configuration files.

However, the devices files also allows to supply geometry setting routines. These are
necessary if you want to access high capacity disks.

Two routines should be supplied:
1. Reading the current parameters
static inline int get_parameters(int fd, struct generic_floppy_struct *floppy)

This probes the current configured geometry, and return it in the structure
generic_floppy_struct (which must also be declared). Fd is an open file descriptor for
the device, and buf is an already filled in stat structure, which may be useful. This
routine should return 1 if the probing fails, and 0 otherwise.
2. Setting new parameters
static inline int set_parameters(int fd, struct generic_floppy_struct *floppy)
struct stat buf)

This configures the geometry contained in floppy on the file descriptor fd. Buf is the
result of a stat call (already filled in). This should return 1 if the new geometry cannot
be configured, and 0 otherwise.

A certain number of preprocessor macros should also be supplied:

TRACKS (f1oppy)
refers to the track field in the floppy structure

HEADS (f1loppy)
refers to the heads field in the floppy structure

SECTORS (f1oppy)
refers to the sectors per track field in the floppy structure

SECTORS_PER_DISK(floppy) refers to the sectors per disk field in the
floppy structure (if applicable, otherwise leave undefined)

BLOCK_MAJOR
major number of the floppy device, when viewed as a block device

CHAR_MAJOR
major number of the floppy device, when viewed as a character device (a.k.a.
"raw" device, used for fsck) (leave this undefined, if your OS doesn’t have raw
devices)

For the truly high capacity formats (XDF, 2m, etc), there is no clean and documented
interface yet.

Command Index

Command Index

21

Concept index

mattrib ... e 12
MbadbloCKS ..ottt it e 12
11T o o KPR 13
mcd (introduction) 1
ICOPY - v eee ettt ettt et et 13
mdel 14
mdeltreet 14
MAIT . o 14
mformat 14
Variable index

cylinders il 7
D

o B = AP 6
E

eXCIUSIVE ..ottt e 7
F

fat_bits ... 8
file. . e 8
fUCASE. .t 10
H

heads 7
Concept index

A

Accented characters..............cooiiinnn.. 9
Archive DIt ... 12
Atari Ram disk ... 8
B

Backwards compatibility L 12
Bad blocks..........o i 12

22
mformat (geometry used for)................... 6
mkmanifest........... i 15
mlabel..........oiiiiiiii i 16
11 1T P PP 17
11T 4 17
MIMOVE . o o ettt e e ettt e ettt e 17
11 e PP 17
1B =Y+ 17
MEEST . ottt e 18
M
MTOOLS_FAT_COMPATIBILITY.........cvvuvunen.. 5
MTOOLS_LOWER_CASEt 5
MTOOLS_SKIP_CHECKccuiiiiiiinann. 5
N
nodelay 7
S
SECTLOTS « ittt 7
STIIC ¢ e ettt e e 7
T
BOUNIX. .ot 10
BLACKS . .ottt 7
U
use_xXdf ... 8
C
Case sensitivity i 3
Changing file attributes........................ 12
Checking configuration file..................... 18
Command list........ooooiiiiiiiii i 12
Compile time configuration..................... 18
Compiled-in defaults..............., 18
Concatenating MS-DOS files................... 13
Configuration file 5
Configuration file name 5
Configuration file name (parsing order)......... 11
Configuration file parsing order 11
Configuration file syntax 5

Configuration file, old syntax................... 12

Concept index

Configuration files........... 4
Configuration of disk geometry.................. 6
Copying MS-DOS files ...t 13
CR/LF CONVETSIONS .« vvvvteieiiiaeenennn 13
Creating a directory 17
Current working directory 1, 13

D

Default configuration.............. 5
Default directory L 1, 13
Default values............o i 5
Deleting a directory.............. 17
deleting an MS-DOS directory recursively 14
deleting MS-DOS files................oooin... 14
Description of disk geometry 6
Directory........... o i 1,13
Directory creation i i 17
Directory listing ... 14
Directory removing ool 17
Disk Geometry....... il 6
Disk label.........oo 16
Dosemu hard disk image 8
Drive configuration................ 6
Drive configuration, example 6
Drive description......... ... il 6
Drive description, example 6
Drive independent configuration variables 5
Duplicate file names............... 2

E

Environmental variables......................... 5
Erasing a directory. ... 17
erasing an MS-DOS directory recursively....... 14
erasing MS-DOS files 14
exclusive access toa drive....................... 7

F

File name of devicenode 8
Filenames......... ... i 1
Filesystem creation 14
Format of disk, 6
Formatting disks......... oo oL 14

G

Global configuration variables................... 5

H

Hdimage......... 8
Hidden files. ... 12
High capacity formats, mounting............... 17

High density disko i 6

23
I
Image file........ 8
Initializing disks 14
Internationalization 9
L
Labeling a disk o oo 16
Linux enhancements (mmount)................. 17
Linux enhancements (XDF disks) 4
List of available commands..................... 12
Listing a directory ... 14
Location of configuration files 5
Location of configuration files (parsing order)... 11
Long filename.................. it 1
Low density disk ...t 6
M
Magneto-optical disks........................... 8
Making a directory............ ... 17
Marking blocks asbad 12
Mewd file. . ..o 13
Mounting a disko 17
Moving files (mmove)coooo.... 17
Moving files (mren)ooo. 17
N
Name clashes ... 2
Name of configuration files...................... 5
Name of configuration files (parsing order) 11
Name of device node ..., 8
National character set........................ ... 9
O
Old configuration file syntax 12
open flags.....o i 7
OPtioNS . vttt e 1
0S/2 (layout of removable media)............... 8
0OS/2 (XDF disks) . «ovvvvriiiiiiii i 4
Overwriting files it 2
P
packing listo o 15
Parsing ordero oot 11
Partitioned image file............ 8
Porting...... ..o 18
Primary filename 1,2

Concept index

R

Ramdisk...........coo i 8
Read errors............... oo it 12
Read-only files (changing the attribute) 12
Read-only files (listing them)................... 14
Reading MS-DOS filesovviiiennnnn... 13
recursively removing an MS-DOS directory 14
Removable mediao 8
Removing a directory 17
removing an MS-DOS directory recursively 14
removing MS-DOS files 14
Renaming files (mmove)........................ 17
Renaming files (mren) 17

S

Secondary file name oL 1,2
Solaris (compile time configuration of vold)..... 18
Subdirectory creation................ 17
Subdirectory removing 17
synchronous writing............ L 7
Syntax of the configuration file.................. 5
Syquest disks ... 8
System files.........oooiiiiiiii i 12

24
T
Testing configuration file for correctness........ 18
Text files ... 13
\Va
Verifying configuration file..................... 18
VFAT-style file names..................coooo.. 1
Vold (compile time configuration) 18
Windows 95-style file names..................... 1
Windows NT (layout of removable media) 8
Working directory 1, 13
Writing MS-DOS files................... 13
X
XDF disks . ovvvneii 4
XDF disks (compile time configuration) 18
XDF disks (how to configure) 8

Z

Zip disks. ..o 8

