
.

Aegis
A Project Change Supervisor

User Guide

Peter Miller

User Guide Aegis

.

DEDICATIONS

This user guide is dedicated to my wife
Mary Therese Miller

for all her love and support
despite the computers.

And to my grandmother
Jean Florence Pelham

1905 — 1992
Always in our hearts.

This document describes aegis version 2.3
and was prepared March 10, 1995.

This document describing the aegis program, and the aegis program itself, are
Copyright © 1991, 1992, 1993, 1994, 1995 Peter Miller; All rights reserved.

This program is free software; you can redistribute it and/or modify it under the terms of
the GNU General Public License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this pro-
gram; if not, write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA
02139, USA.

Page 2 (./doc/c1.0.so) Peter Miller

Aegis User Guide

1. Introduction

The aegis program is a CASE tool with a differ-

ence. In the spirit of the UNIX† Operating Sys-

tem, the aegis program is a small component

designed to work with other programs.

Many CASE systems attempt to provide every-

thing, from bubble charts to source control to

compilers. Users are trapped with the compo-

nents supplied by the CASE system, and if you

don’t like one of the components (it may be too

limited, for instance), then that is just tough.

In contrast, UNIX provides many components of a

CASE system - compilers, editors, dependency

tools (such as make), source control (such as

SCCS). You may substitute the tool of your

choice - gcc, jove, cake, rcs (to name a few) if you

don’t like the ones supplied with the system.

The aegis program adds to this list with software

configuration management (SCM), and consistent

with UNIX philosophy, the aegis program does

not dictate the choice of any of the other tools

(although it may stretch them to their limits).

1.1. What does aegis do?

Just what is software configuration management?

This question is sufficiently broad as to require a

book in answer. In essence, the aegis program is

a project change supervisor. It provides a frame-

work within which a team of developers may

work on many changes to a program indepen-

dently, and the aegis program coordinates inte-

grating these changes back into the master source

of the program, with as little disruption as possi-

ble. Resolution of contention for source files, a

major headache for any project with more than

one developer, is one of the aegis program’s major

functions.

It should be noted that the aegis program is a

developer’s tool, in the same sense as make or

SCCS are developer’s tools. It is not a manager’s

tool - it does not provide progress tracking or help

with work allocation.

1.2. Why use aegis?

So why should you use the aegis program? The

aegis program uses a particular model of the

development of software projects. This model

has a master source (or baseline) of a project, con-

sisting of several (possibly several hundred) files,

and a team of developers creating changes to be

† UNIX is a trademark of Bell Laboratories.

made to this baseline. When a change is com-

plete, it is integrated with the baseline, to become

the new baseline. Each change must be atomic

and self-contained, no change is allowed to cause

the baseline to cease to work. "Working" is

defined as passing its own tests. The tests are

considered part of the baseline. Aegis provides

support for the developer so that an entire copy of

the baseline need not be taken to change a few

files, only those files which are to be changed

need to be copied.

The win in using the aegis program is that there

are O(n) interactions between developers and the

baseline. Contrast this with a master source

which is being edited directly by the developers -

there is O(n!) interactions between developers -

this makes adding "just one" more developer a

potential disaster.

Another win is that the project baseline always

works. Always having a working baseline means

that a version is always available for demonstra-

tions, or those "pre-release snapshots" we are

always forced to provide.

The above advantages are all very well - for man-

agement types. Why should Joe Average Pro-

grammer use the aegis program? Recall that

SCCS provides file locking, but only for one file

at a time. The aegis program provides the file

locking, atomically, for the set of files in the

change. Recall also that SCCS locks the file the

instant you start editing it. This makes popular

files a project bottleneck. The aegis program

allows concurrent editing, and a resolution mech-

anism just before the change must be integrated,

meaning fewer delays for J.A.Programmer.

Peter Miller (./doc/c1.4.so) Page 3

User Guide Aegis

1.3. How to use this manual

This manual assumes the reader is already famil-

iar with the UNIX operating system, and with

developing software using the UNIX operating

system and the tools available; terms such as RCS

and SCCS and make (1) are not explained.

There is also the assumption that the reader is

familiar with the issues surrounding team devel-

opment of software; coordination and multiple

version issues, for example, are not explained.

This manual is broken into a number of sections.

Chapter 2

describes how aegis works and some of the

reasoning behind the design and implemen-

tation of the aegis program. Look here for

answers to "Why does it..." questions.

Chapter 3

is a worked example of how particular users

interact with the aegis program. Look here

for answers to "How do I..." questions.

Chapter 4

is a discussion of how aegis interacts with

the History Tool, and provides templates

and suggestions for history tools known to

work with aegis.

Chapter 5

is a discussion of how aegis interacts with

the Dependency Maintenance Tool (DMT),

and provides templates and suggestions for

DMTs known to work with aegis.

Chapter 6

is a discussion of how aegis interacts with

the Difference Tools, and provides tem-

plates and suggestions for difference tools

known to work with aegis.

Chapter 7

describes the project attributes and how the

various parameters may be used for particu-

lar projects.

Chapter 8

is a collection of helpful hints on how to

use aegis effectively, based on real-world

experience. This is of most use when ini-

tially placing projects under the supervision

of the aegis program.

Appendix A

is a quick reference for placing an existing

project under aegis.

Appendix B

is a glossary of terms.

1.4. GNU GPL

Aegis is distributed under the terms and condi-

tions of the GNU General Public License. Pro-

grams which are developed using Aegis are not

automatically subject to the GNU GPL. Only

programs which are derivative works based on

GNU GPL code are automatically subject to the

GNU GPL. We still encourage software authors

to distribute their work under terms like those of

the GNU GPL, but doing so is not required to use

Aegis.

Page 4 (./doc/c7.0.so) Peter Miller

Aegis User Guide

2. How Aegis Works

Before you will be able to exploit aegis fully, you

will need to know what aegis does and why.

The aegis program provides a change control

mechanism and a repository, a subset of the func-

tionality which CASE vendors call Software Con-

figuration Management (SCM). In order to fit

into a software engineering environment, or any

place software is written, aegis needs a clearly

defined place is the scheme of things.

This chapter describes the model of the software

development process embodied in the aegis pro-

gram, some of the deliberate design decisions

made for aegis, some of the things aegis will and

wont do for you, and the situations where aegis is

most and least useful.

2.1. The Model

The model of the software development process

used by aegis evolved and grew with time in a

commercial software development environment,

and it has continued to be used and developed.

Unfortunately, this environment was the largest

experienced by the author to date, and consisted

of only about forty software engineers working on

a single project.1

2.1.1. The Baseline

Most CASE systems revolve around a repository:

a place where stuff is kept. This stuff is the raw

material that is processed in some way to produce

the final product, whatever that may be. This

stuff is the preferred form for editing or compos-

ing or whatever.

In the aegis program, the repository is known as

the baseline and the units of stuff are UNIX files.

The aegis program makes no distinction between

text and binary files, so both are supported.

The history mechanism which must be included

in any repository function is not provided by the

aegis program. It is instead provided by some

other per-project configurable software, such as

RCS. This means that the user may select the his-

tory tool most suited to any giv en project. It also

means that aegis is that much smaller to test and

maintain. You will not be able to have binary files

in your baseline if the history tool of your choice

1 "Unfortunately," because many real-world projects

are far larger, but the author has yet to experience, and

understand, the issues and procedures required. (Think

of problems, yes; think of real-world solutions, no.)

can’t cope with them.

The structure of the baseline is dictated by the

nature of each project, with some minor excep-

tions. The aegis program attempts to make as few

arbitrary rules as possible. There is one manda-

tory file in the baseline, and one mandatory direc-

tory. The file is called config , and contains the

per-project configuration information; the direc-

tory is called test , and contains all of the tests.

The contents and structure of the test directory

are also dictated by aegis. Tests are treated just

like any other source file, and are subject to the

same process.

The baseline in aegis has one particular attribute:

it always works. It is always there to show off to

visiting big-wigs, it is always there to grab a copy

of and ship a "pre-release snapshot" to some

overly anxious customer, it is always there to let

upper management "touch and feel" the progress

being made towards the next release.

You may claim that "works" is comfortably fuzzy,

but it is not. The baseline contains not only the

source of a project, but also the tests for a project.

Tests are treated just like any other source file,

and are subject to the same process. A baseline is

defined to "work" if and only if it passes all of its

own tests. The aegis program has mandatory test-

ing, to ensure that all changes to the baseline are

accompanied by tests, and that those tests have

been run and are known to pass. This means that

no change to the baseline may result in the base-

line ceasing to work2.

The model may be summarised briefly: it consists

of a baseline (master source), updated through

the agency of an integrator , who is in turn fed

changes by a team of developers . These terms

will be explained in the following sections. See

figure 1 for a picture of how files flow around the

system.

The baseline is a set of files including the source

files for a projects, and also all derived files (such

as generated code, binary files from the compiler,

etc), and all of the tests. Tests are treated just like

any other source file, and are subject to the same

process. All files in the baseline are consistent

with each other.

2 Well, mostly. It is possible for this restriction to be

relaxed if you feel there are special circumstances for a

particular change. The danger is that a change will be in-

tegrated with the baseline when that change is not actual-

ly of acceptable quality.

Peter Miller (./doc/c7.1.so) Page 5

User Guide Aegis

baseline

development

directory

integrator

integrate

begin

integration

directory

integrate

pass

development

directory

Figure 1: Flow of Files through the Model

Thus the baseline may be considered to be the

closure of the source files, in mathematical terms.

That is, it is the source files and all implications

flowing from those source files, such as object

files and executables. All files in the baseline are

consistent with each other; this means that devel-

opment builds can take object files from the base-

line rather than rebuild them within the develop-

ment directory.

The baseline is readable by all staff, and usually

writable by no-one. When it is necessary to write

to the baseline, this is done by aegis, as will be

shown below.

In many ways, the baseline may be thought of as

a database, and all derived files are projections

(views) of the source files. Passing its own tests

may be thought of as input validation of fields.

This is a powerful concept, and indeed the imple-

mentation of the aegis program performs many of

the locking and synchronization tasks demanded

of a database engine.

All of the files forming this database are text files.

This means that they may be repaired with an

ordinary text editor, should remedial action be

necessary. The format is documented in section 5

of the reference manual. Should you wish to per-

form some query not yet available in aegis, the

files are readily accessible to members of the

appropriate UNIX group.

Tests are treated just like any other source file,

and are subject to the same process.

2.1.2. The Change Mechanism

Any changes to the baseline are made by atomic

increments, known (unoriginally) as "changes".

A change is a collection of files to be added to,

modified in, or deleted from, the baseline. These

files must all be so altered simultaneously for the

baseline to continue to "work".3

For example, if the calling interface to a function

were changed in one file, all calls to that function

in any other file must also change for the baseline

to continue to work. All of the files must be

changed simultaneously, and thus must all be

included in the one change. Other files which

would logically be included in such an change

include the reference manual entry for the func-

tion, the design document relating to that area of

functionality, the relevant user documentation,

tests would have to be included for the functional-

ity, and existing tests may need to be revised.

Changes must be accompanied by tests. These

tests will either establish that a bug has been fixed

(in the case of a bug fix) or will establish that new

functionality works (in the case of an enhance-

ment).

Tests are shell scripts, and as such are capable of

testing anything which has functionality access-

able from the command line. The ability to run

background processes allows even client-server

models to be tested. Tests are thus text files, and

are treated as source files; they may be modified

by the same process as any other source file.

Tests usually need to be revised as a project grows

and adapts to changing requirements, or to be

extended as functionality is extended. Tests can

ev en be deleted if the functionality they tests has

been deleted; tests are deleted by the same pro-

cess as any other source file.

3 Whether to allow sev eral logically independent

changes to be included in the one change is a policy deci-

sion for individual projects to make, and is not dictated

by the aegis program. It is a responsibility of reviewers

to ensure that all new and changed functionality is tested

and documented.

Page 6 (./doc/c7.1.so) Peter Miller

Aegis User Guide

2.1.3. Change States

As a change is developed using aegis, it passes

through six states. Many aegis commands relate

to transitions between these states, and aegis per-

forms any validation at these times.

The six states of a change are described as fol-

lows, although the various state transitions, and

their conditions, will be described later.

2.1.3.1. Awaiting Development

A change is in this state after it has been created,

but before it has been assigned to a developer.

This state can’t be skipped: a change can’t be

immediately assigned to a developer by an admin-

istrator, because this disempowers the staff.

The aegis program is not a progress tracking tool,

nor is it a work scheduling tool; plenty of both

already exist.

2.1.3.2. Being Developed

A change is in this state after it has been assigned

to a developer, by the developer. This is the coal

face: all development is carried out in this state.

Files can be edited in no other state, this particu-

larly means that only developers can develop,

reviewers and integrators only have the power to

veto a change. Staff roles will be described more

fully in a later section.

To advance to the next state, the change must

build successfully, it must have tests, and it must

pass those tests.4

The new tests must also fail against the baseline;

this is to establish that tests for bug-fixes actually

reproduce the bug and then demonstrate that it is

gone. New functionality added by a change will

naturally fail when tested in the old baseline,

because it is not there.

When these conditions are met, the aegis program

marks all of the changes files as locked, simulta-

neously. If any one of them is already locked,

you can’t leave the being developed state,

because the file is part of a change which is some-

where between being reviewed and being

integrated .

If any one of them is out-of-date with respect to

the baseline, the lock is not taken, either. Locking

4 It is possible for these testing requirements to be

waiv ed on either a per-project or per-change basis. How

is described in a later section. The power to waive this

requirement is not automatically granted to developers,

as experience has shown that it is usually abused.

the files at this state transition means that popular

files may be modified simultaneously in many

changes, but that only differences to the latest ver-

sion are ever submitted for integration. The aegis

program provides a mechanism, described later,

for bringing out-of-date files in changes up-to-

date without losing the edits made by the devel-

oper.

2.1.3.3. Being Reviewed

A change is in this state after a developer has

indicated that development is complete. The

change is inspected, usually by a second party (or

parties), to ensure that it matches the what it is

meant to be doing, and meets other project or

company standards you may have.

The style of review, and who may review, is not

dictated by the aegis program. A number of alter-

native hav e been observed:

• You may have a single person who coordinates

review panels of, say, 4 peers, with this coordina-

tor the only person allowed to sign-off review

passes or fails.

• You may allow any of the developers to review

any other developer’s changes.

• You may require that only senior staff, familiar

with large portions of the code, be allowed to

review.

The aegis program enforces that a developer may

not review their own code. This ensures that at

least one person other than the developer has

scrutinized the code, and eliminates a rather obvi-

ous conflict of interest. It is possible to turn this

requirement off on a per-project basis, but this is

only desirable for projects with a one person team

(or maybe two). The aegis program has no way

of knowing that the user passing a review has

actually looked at, and understood, the code.

The reviewer knows certain things about a change

for it to reach this state: it has passed all of the

conditions required to reach this state. The

change compiles, it has tests and it passes those

tests, and the changes are to the current version of

the baseline. The reviewer may thus concentrate

on issues of completeness, implementation, and

standards - to name only a few.

2.1.3.4. Awaiting Integration

A change is in this state after a reviewer has indi-

cated that a change is acceptable to the

reviewer(s). This is essentially a queue, as there

may be many dev elopers, but only one integration

Peter Miller (./doc/c7.1.so) Page 7

User Guide Aegis

may proceed at any one time.

The issue of one integration at a time is a philo-

sophical one: all of the changes in the queue are

physically independent; because of the Develop

End locking rules they do not have intersecting

sets of files. The problem comes when one

change would break another, in these cases the

integrator needs to know which to bounce and

which to accept. Integrating one change at a time

greatly simplifies this, and enforces the "only

change one thing at a time" maxim, occasionally

at the expense of integrator throughput.

2.1.3.5. Being Integrated

A change is in this state when the integration of

the change back into the baseline is commenced.

A (logical) copy of the baseline is taken, and the

change is applied to that copy. In this state, the

change is compiled and tested once again.

The additional compilation has two purposes: it

ensures that the successful compile performed by

the developer was not a fluke of the developer’s

environment, and it also allows the baseline to be

the closure of the sources files. That is, all of the

implications flowing from the source files, such as

object files and linked programs or libraries. It is

not possible for aegis to know which files these

are in the development directory, because aegis is

decoupled from the build mechanism (this will

discussed later).

To advance to the next state, the integration copy

must have been compiled, and the tests included

in the change must have been run and passed.

The integrator also has the power of veto. A

change may fail an integration because it fails to

build or fails tests, and also just because the inte-

grator says so. This allows the being integrated

state to be another review state, if desired. The

being integrated state is also the place to monitor

the quality of reviews and reviewers.

Should a faulty change manage to reach this

point, it is to be hoped that the integration pro-

cess, and the integrator’s sharp eyes, will detect it.

While most of this task is automated, this step is

necessary to ensure that some strange quirk of the

developer’s environment was not responsible for

the change reaching this stage. The change is

built once more, and tested once more. If a

change fails to build or test, it is returned to the

developer for further work; the integrator may

also choose to fail it for other reasons. If the inte-

grator passes that change, the integrated version

becomes the new baseline.

2.1.3.6. Completed

A change reaches this state when integration is

complete. The (logical) copy of the baseline used

during integration has replaced the previous copy

of the baseline, and the file histories have been

updated. Once in this state, a change may never

leave it, unlike all other states.

If you wish to remove a change which is in this

state from the baseline, you will have to submit

another change.

2.1.4. The Software Engineers

The model of software development used by aegis

has four different roles for software engineers to

fill. These four roles may be overlapping sets of

people, or be distinct, as appropriate for your pro-

ject.

2.1.4.1. Developer

This is the coal-face. This role is where almost

ev erything is done. This is the only role allowed

to edit a source file of a project.

Most staff will be developers. There is nothing

stopping a developer from also being an adminis-

trator, except for the possible conflict of interests

with respect to testing exemptions.

A dev eloper may edit many of the attributes of a

change while it is being developed. This is

mostly useful to update the description of the

change to say why it was done and what was actu-

ally done. A dev eloper may not grant testing

exemptions (but they may be relinquished).

2.1.4.2. Reviewer

The role of the reviewer is to check a developer’s

work. This review may consist of a peer examin-

ing the code, or it may be handled by a single

member of staff setting up and scheduling multi-

person review panels. The aegis program does

not mandate what style of review, it only requires

that a reviewer pass or fail each change. If it

passes, an integrator will handle it next, otherwise

it is returned to the developer for further work.

In a large team, the reviewers are usually selected

from the more senior members of the team,

because of their depth of experience at spotting

problems, but also because this is an opportunity

for more senior members of staff to coach juniors

on the finer points of the art.

Page 8 (./doc/c7.1.so) Peter Miller

Aegis User Guide

The aegis programs makes some of the reviewer’s

task easier, because the reviewer knows several

specific things about a change before it comes up

for review: it builds, it has tests, and they hav e run

successfully. There is also optional (per project)

additional conditions imposed at the end of devel-

opment, such as line length limits, or anything

else which is automatically testable. The aegis

program also provides a difference listing to the

reviewer, so that each and every edit, to each and

ev ery file, can be pointed out to the reviewer.

There is nothing stopping a reviewer from being

either an administrator or a developer. The aegis

program specifically prevents a developer from

reviewing his own work, to avoid conflicts of

interest. (It is possible for this restriction to be

waiv ed, but that only makes sense for one person

projects.)

It will occasionally be necessary to arbitrate

between a developer and a reviewer. The appro-

priate person to do this would have line responsi-

bility above both staff inv olved. Thus it is desir-

able that supervisors/managers not be reviewers,

except in very small teams.

2.1.4.3. Integrator

The role of the integrator is to take a change

which has already been reviewed and integrate it

with the baseline, to form a new baseline. The

integrator is thus the last line of defence for the

baseline.

There is nothing preventing an administrator from

being an administrator, a dev eloper or a reviewer.

The aegis program specifically prevents a devel-

oper or reviewer from integrating his own work,

eliminating any conflict of interests. (It is possi-

ble for this restriction to be waived, but that only

makes sense for one and two person projects.)

It will occasionally be necessary to arbitrate

between an integrator and a reviewer and/or a

developer. The appropriate person to do this

would have line responsibility above all of the

staff inv olved. Thus it is desirable that supervi-

sors/mangers not be integrators, except in very

small teams.

The baseline is readable by all developers, but not

writable. All updates of the baseline to reflect

changes produced by developers are performed

through the agency of the integrator.

2.1.4.4. Administrator

The project administrator has the following

duties:

• Create new changes. These may be the result of

some customer bug reporting mechanism, it may

be the result of new functionality being requested.

• Grant testing exemptions. By default, aegis

insists that all changes be accompanied by tests.

The project administrator may grant case-by-case

exemptions, or a project-wide exemption.

• Add or remove staff. The four roles described in

this section may be assigned to, or removed from,

specific UNIX logins by the project administrator.

• Edit project attributes. There are many

attributes attached to a project, only a project

administrator may alter them.

• Edit change attributes. There are many

attributes attached to a change, only a project

administrator may alter all of them.

A project usually has only one or two administra-

tors at any one time.

2.1.5. The Change Process

This section will examine the progression of a

change through the six change states. Most of the

attention will be given to the conditions which

must be met in order to progress from one state to

the next, as this is where the software develop-

ment model employed by aegis is most often

expressed.

See figure 2 for a picture of how all of the states

and transitions fit together.

2.1.5.1. New Change

A project administrator creates a change. This

change will consist mostly of a description at this

time. The project administrator is not able

(through aegis) to assign it to a specific developer.

The change is awaiting development; it is in the

aw aiting development state.

2.1.5.2. New Change Undo

It is possible to abandon a change if it is in the

awaiting development state. All record of the

change, including its description, will be deleted.

It is called new change undo to emphasize the

state it must be in to delete it.

Peter Miller (./doc/c7.1.so) Page 9

User Guide Aegis

new

change

aw aiting

development

develop

begin

being

developed

develop

end

being

reviewed

review

pass

aw aiting

integration

integrate

begin

being

integrated

integrate

pass

completed

new

change

undo

develop

begin

undo

develop

end

undo

develop

end

undo

integrate

begin

undo

review

fail

review

pass

undo

integrate

fail

Figure 2: Change States and Transitions

2.1.5.3. Develop Begin

A dev eloper, for whatever reason, scans the list of

changes awaiting development. Having selected a

change, the developer then assigns that change to

herself.

The change is now being developed; it is in the

being developed state.

A number of aegis commands only work in this

state, including commands to include files and

tests in the change (be they new files to be added

to the baseline, files in the baseline to be modi-

fied, or files to be deleted from the baseline),

commands to build the change, commands to test

the change, and commands to difference the

change.

The process of taking sources files, the preferred

form for editing of a project, and transforming

them, through various manipulations and transla-

tions, into a "finished" product is known as build-

ing. In the UNIX world this usually means things

like compiling and linking a program, but as

fancy graphical programs become more wide-

spread, the source files could a binary output from

a graphical Entity-Relationship-Diagram editor,

which would then be run through a database

schema generator.

The process of testing a change has three aspects.

The most intuitive is that a test must be run to

determine of the functionality works. The second

requirement is that the test be run against the

baseline and fail; this is to ensure that bugs are

not just fixed, but reproduced as well. The third

requirement is optional: all or some of the tests

already in the baseline may also be run. Tests

consist of UNIX shell scripts - anything that can

be done in a shell script can be tested.

In preparation for review, a change is differenced.

This usually consists of automatically comparing

the present contents of the baseline with what the

change proposes to do to the baseline, on a file-

by-file basis. The results of the difference, such

as UNIX diff -c output, is kept in a difference file,

for examination by the reviewer(s). The benefit

of this procedure is that reviewers may examine

these file to see every change the developer made,

rather than only the obvious ones. The differenc-

ing commands are per-project configurable, and

other validations, such as line length restrictions,

may also be imposed at this time.

To leave this state, the change must have source

files, it must have tests, it must have built success-

fully, it must have passed all its own tests, and it

must have been differenced.

2.1.5.4. Develop Begin Undo

It is possible to return a change from the being

developed state to the awaiting development state

if it has no source files and has no tests. This is

usually desired if a developer selected the wrong

change by mistake.

Page 10 (./doc/c7.1.so) Peter Miller

Aegis User Guide

2.1.5.5. Develop End

When the conditions for the end of development

have been met (the change must have source files,

it must have tests, it must have built successfully,

it must have passed all its own tests, and it must

have been differenced) the developer may cause

the change to leave the being developed state and

enter the being reviewed state. The aegis program

will check to see that all the conditions are met at

this time. There is no history kept of unsuccessful

develop end attempts.

2.1.5.6. Develop End Undo

There are many times when a developer thinks

that a change is completed, and goes hunting for a

reviewer. Half way down the hall, she thinks of

something that should have been included.

It is possible for a developer to rescind a Develop

End to allow further work on a change. No rea-

son need be given. This request may be issued to

a change in either the being reviewed or awaiting

integration states.

2.1.5.7. Review Pass

This event is used to notify aegis that the change

has been examined, by a method unspecified as

discussed above, and has been found to be accept-

able.

2.1.5.8. Review Pass Undo

The reviewer of a change may rescind a Review

Pass while the change remains in the awaiting

integration state. No reason must be supplied.

The change will be returned to the being reviewed

state.

2.1.5.9. Review Fail

This event is used to notify aegis that the change

has been examined, by a method unspecified as

discussed above, and has been found to be unac-

ceptable.

A file containing a brief summary of the problems

must be given, and will be included in the

change’s history.

The change will be returned to the being devel-

oped state for further work.

It is not the responsibility of any reviewer to fix a

defective change.

2.1.5.10. Integrate Begin

This command is used to commence integration

of a change into the project baseline.

Whether a physical copy of the baseline is used,

or a logical copy using hard links, is controlled by

the project configuration file. The change is then

applied to this copy.

The integrator must then issue build and test com-

mands as appropriate. This is not automated as

some integrator tasks may be required in and

around these commands.

2.1.5.11. Integrate Begin Undo

This command is used to return a change to the

integration queue, with out prejudice. No reason

need be given.

This is usually done when a particularly important

change is in the queue, and the current integration

is expected to take a long time.

2.1.5.12. Integrate Pass

This command is used to notify aegis that the

change being integrated is acceptable.

The current baseline is replaced with the integra-

tion copy, and the history is updated.

2.1.5.13. Integrate Fail

This command is used to notify aegis that an inte-

gration is unacceptable, usually because it failed

to build or test in some way, or sometimes

because the integrator found a deficiency.

A file containing a brief summary of the prob-

lems must be given, and the summary will be

included in the change’s history.

The change will be returned to the being devel-

oped state for further work. The integration copy

of the baseline is deleted, leaving the original

baseline unchanged.

It is not the responsibility of any integrator to fix a

defective change, or even diagnose what the

defect may be.

Peter Miller (./doc/c7.2.so) Page 11

User Guide Aegis

2.2. Philosophy

The philosophy is simple, and that makes some of

the implementation complex. When a change is

in the being developed state, the aegis program is

a dev eloper’s tool. Its purpose is to make it as

easy for a developer to develop changes as possi-

ble. When a change leaves (or attempts to leave)

the being developed state, the aegis program is

protecting the project baseline, and does not exist

to make the developer happy. The aegis program

attempts to adhere to the UNIX minimalist philos-

ophy. Least unnecessary output, least command

line length, least dependence on 3rd party tools.

No overlap in functionality of other tools.

2.2.1. Development

During the development of a change, the aegis

program exists to help the developer. It helps him

navigate around his change and the project, it

copies file for him, and keeps track of the ver-

sions. It can even tell him what changes he has

made.

2.2.2. Post Development

When a change has left the "being developed"

state, or when it is attempting to leave that state,

the aegis program ceases to attempt to help the

developer and proceeds to defend the project

baseline. The model used by aegis states that "the

baseline always works", and aegis attempts to

guarantee this.

2.2.3. Minimalism

The idea of minimalism is to help the user out. It

is the intention that the aegis program can work

out unstated command line options for itself, in

cases where it is "safe" to do so. This means a

number of defaulting mechanisms, all designed to

help the user.

2.2.4. Overlap

It was very tempting while writing the aegis pro-

gram to have it grow and cover source control and

dependency maintenance roles. Unfortunately,

this would have meant that the user would have

been trapped with whatever the aegis program

provided, and the aegis program is already plenty

big. To add this functionality would have div erted

effort, resulting in an inferior result. It would also

have violated the underlying UNIX philosophy.

2.2.5. Design Goals

A number of specific ideas molded the shape of

the aegis program. These include:

The UNIX philosophy of writing small tools for

specific tasks with little or no overlap. Tools

should be written with the expectation of use in

pipes or scripts, or other combinations.

• Stay out of the way. If it is possible to let a pro-

ject do whatever it likes, write the code to let it. It

is not possible to anticipate even a fraction of the

applications of a software tool.

• People. The staff using aegis should be in

charge of the development process. They should

not feel that some machine is giving them orders.

• Users aren’t psychic. Feedback must be clear,

accurate and appropriate.

Page 12 (./doc/c7.5.so) Peter Miller

Aegis User Guide

2.3. Security

Access to project data is controlled by the UNIX

group mechanism. The group may be selected as

suitable for your project, as may the umask.

All work done by developers (build, difference,

etc) is all with a default group of the project’s

group, irrespective of the user’s default group.

Directories (when BSD semantics are available)

are all created so that their contents default to the

correct group. This ensures that reviewers and

integrators are able to examine the change.

Other UNIX users not in the project’s group may

be excluded, or not, by the appropriate setting of

the project umask. This umask is used by all

aegis actions, assuring appropriate default

behaviour.

A second aspect of security is to ensure that

developers are unable to deliberately deceive

aegis. At develop end, all files in the development

directory are marked read only, aegis notes the

time stamps on the files. Should the files be tam-

pered with at any later date, aegis will notice. If a

change is returned to the being developed state,

the files are marked writable again.

2.4. Scalability

How big can a project get before aegis chokes?

There are a huge number of variables in this ques-

tion.

The most obvious bottleneck is the integrator. An

artificial "big project" example: Assume that the

av erage integration takes an hour to build and test.

A full-time integrator could be expected to get 7

or 8 of these done per day (this was the observed

av erage on one project the author was involved

in). Assume that the average time for a developer

to develop a change is two weeks; a figure recom-

mended by many text books as These two

assumptions mean that for this "big project" aegis

can cope with 70 to 80 developers, before integra-

tions become a bottleneck.

The more serious bottle neck is the dependency

maintenance tool. Seventy developers can churn

out a staggering volume of code. It takes a very

long time to wade through the file times and the

rules, just to find the one or two files which

changed. This can easily push the integrate build

time past the one hour mark. Developers also

become very vocal when build times are this long.

Peter Miller (./doc/c1.3.so) Page 13

User Guide Aegis

2.5. When (not) to use Aegis

The aegis program is not a silver bullet; it will not

solve all of your problems. Aegis is suitable for

some kinds of projects, useful for others, and use-

less for a few.

The most difficult thing about the aegis program

is that it takes management buy-in. It takes effort

to convince many people that the model used by

aegis has benefits, and you need management

backing you up when some person comes along

with a way of developing software "without the

extra work" imposed by the model used by aegis

program.

There is extra up-front work: writing tests. The

win is that the tests hang around forever, catching

minor and major slips before they become embar-

rassing "features" in a released product. Preven-

tion is cheaper than cure in this case, the tests

save work down the track.

All of the "extra work" of writing tests is a long-

term win, where old problems never again reap-

pear. All of the "extra work" of reviewing

changes means that another pair of eyes sights the

code and finds potential problems before they

manifest themselves in shipped product. All of

the "extra work" of integration ensures that the

baseline always works, and is always self-

consistent. All of the "extra work" of having a

baseline and separate development directories

allows multiple parallel development, with no

inter-developer interference; and the baseline

always works, it is never in an "in-between" state.

In each case, not doing this "extra work" is a false

economy.

The existence of these tests, though, is what deter-

mines which projects are most suited to aegis and

which are not. It should be noted that suitability

is a continuous scale, not black-and-white. With

effort and resources, almost anything fits.

2.5.1. Projects for which Aegis is Most Suit-

able

Projects most suited to supervision by aegis are

straight programs. What the non-systems-

programmers out there call "tools" and sometimes

"applications". These are programs which take a

pile of input, chew on it, and emit a pile of output.

The tests can then compare actual outputs with

expected outputs.

As an example, you could be writing a sed (1)

look-alike, a public domain clone of the UNIX sed

utility. You could write tests which exercise every

feature (insertion, deletion, etc.) and generate the

expected output with the real UNIX sed. You

write the code, and run the tests; you can immedi-

ately see if the output matches expectations.

This is a simple example. More complex exam-

ples exist, such as aegis itself. The aegis program

is used to supervise its own development. Tests

consist of sequences of commands and expected

results are tested for.

Other types of software have been developed

using aegis: compilers and interpreters, client-

server model software, magnetic tape utilities,

graphics software such as a ray-tracer. The range

is vast, but it is not all types of software.

2.5.2. Projects for which Aegis is Useful

For many years there have been full-screen appli-

cations on text terminals. In more recent times

there is increasing use of graphical interfaces.

In developing these types of programs it is still

possible to use aegis, but several options need to

be explored.

2.5.2.1. Testing Via Emulators

There are screen emulators for both full-screen

text and X11 available. Using these emulators, it

is possible to test the user interface, and test via

the user interface. As yet, the author knows on no

freely available emulators suitable for testing via

aegis. If you find one, please let me know.

2.5.2.2. Limited Testing

You may choose to use aegis simply for its ability

to provide controlled access to a large source.

You still get the history and change mechanisms,

the baseline model, the enforced review. You

simply don’t test all changes, because figuring out

what is on the screen, and testing it against expec-

tations, is too hard.

If the program has a command line interface, in

addition to the full-screen or GUI interface, the

functionality accessible from the command line

may be tested using aegis.

It is possible that "limited testing" actually means

"no testing", if you have no functionality accessi-

ble from the command line.

2.5.2.3. Testing Mode

Another alternative is to provide hooks into your

program allowing you to substitute a file for user

input, and to be able to trigger the dump of a

"screen image". The simulated user input can

Page 14 (./doc/c1.3.so) Peter Miller

Aegis User Guide

then be fed to the program, and the screen dump

(in some terminal-independent form) can be com-

pared against expectations.

This is easier for full-screen applications, than for

X11 applications. You need to judge the cost-

benefit trade-off. Cost of development, cost of

storage space for X11 images, cost of not testing.

2.5.2.4. Manual Tests

The aegis program provides a manual test facility.

It was originally intended for programs which

required some physical action from a user, such as

"unplug ethernet cable now" or "mount tape

XG356B now". It can also be used to have a user

confirm that some on-screen activity has hap-

pened.

The problem with manual tests is that they simply

don’t happen. It is far more pleasant to say "run

the automatic tests" and go for a cup of coffee,

than to wait while the computer thinks of mind-

less things to ask you to do. This is human

nature: if it can be automated, it is more likely to

happen.

2.5.3. Projects for which Aegis is Least Suit-

able

Another class of software is things like operating

system kernels and firmware; things which are

"stand alone". This isolated nature makes it the

most difficult to test: to test it you want to provide

physical input and watch the physical output. By

its very nature, it is hard to put into a shell script,

and thus hard to write an aegis test for.

2.5.3.1. Operating Systems

It is not impossible, just that few of us hav e the

resources to do it. You need to have a test system

and a testing system: the test system has all of its

input and outputs connected to the outputs and

inputs of the testing system. That is, the testing

system controls and drives the test system, and

watches what happens.

For example, many operating system vendors test

their products by using computers connected to

each serial line to simulate "user input". The sys-

tem can be rebooted this way, and using dual-

ported disks allows different versions of a kernel

to be tried, or other test conditions created.

For software houses which write kernels, or

device drivers for kernels, or some other kernel

work, this is bad news: the aegis program is prob-

ably not for you. It is possible, but there may be

more cost-effective dev elopment strategies. Of

course, you could always use the rest of aegis, and

ignore the testing part.

2.5.3.2. Firmware

Firmware is a similar deal: you need some way to

download the code to be tested into the test sys-

tem, and write-protect it to simulate ROM, and

have the necessary hardware to drive the inputs

and watch the outputs.

As you can see, this is generally not available to

run-of-the-mill software houses, but then they

rarely write firmware, either. Those that do write

firmware usually have the download capabilities,

and some kind of remote operation facility.

Peter Miller (./doc/c7.4.so) Page 15

User Guide Aegis

2.6. Further Work

The aegis program is far from finished. A number

of features are known to be lacking.

At the date of this writing, aegis is being

actively supported and improved.

2.6.1. Hierarchy of Projects

It would be nice if there was some way to use one

projects as a sort of "super change" to a "super

project", so that large teams (say 1000 people)

could work as lots of small teams (say 100 peo-

ple). As a small team gets their chunk ready,

using the facilities provided to-date by aegis, the

small team’s baseline is treated as a change to be

made to the large team baseline.

This idea can be extended quite naturally to any

depth of layering.

The desired semantics, let alone the implementa-

tion details, can not begin without more experi-

ence to show (and fix) the warts on the existing

functionality.

After reading Tr ansaction Oriented Configuration

Management: A Case Study Peter Fieler, Grace

Downey, CMU/SEI-90-TR-23, this is not a new

idea. It also provies some ideas for how to do

branching sensably.

2.6.2. Code Coverage Tool

It would be very helpful if a code coverage tool

could be used to analyze tests included with

changes to ensure that the tests actually exercised

the lines of code changed in the change.

Another use of the code coverage tool would be to

select regression tests based on the object files

recompiled by a change, and those regression

tests which exercise those files.

While there is freeware C code coverage tool

available, based on GNU C, the interfacing and

semantics still need more thought.

2.6.3. Branching

The aegis program does not provide support for

branching in the history files. The semantics of

the baseline, the source files and their closure,

would appear to imply that a baseline is required

for every leaf in the history tree.

Branching is provided in this way with the new

release functionality. An entire new project is

derived from an existing project, including

another baseline. The history, howev er, is sev ered

from the original project, precluding automatic

merging by aegis at a later date. It also precludes

having a single change to be applied to more than

one branch.

Should better semantics become available, or a

better algorithmic approach, this is certainly one

area of aegis which could be improved.

2.6.4. Virtual File System

There is almost sufficient information in the aegis

data base to create a virtual file system, overlay-

ing the development directory atop the baseline5.

This could be implemented similarly to auto-

mounters, intercepting file system operations by

pretending to be an NFS server. Many commer-

cial CASE products provide such a facility.

Such a virtual file system has a number of advan-

tages: you don’t need such a capable DMT, for

starters; it only needs the dynamic include depen-

dencies, and does not need a search path6. Sec-

ond, many horrible and dumb compilers, notably

FORTRAN and "fourth" GLs, don’t hav e ade-

quate include semantics; overlaying the two direc-

tories make this much easier to deal with7. Many

graphical tools, such as bubble chart drawers, etc,

when they do actually have include files, have no

command line specifiable search path.

The disadvantage is that this adds significant

complexity to an already large program. Also,

implementation is limited to NFS capable sys-

tems, or would have to be rewritten for a variety

of other systems. The semantics of interactions

between the daemon and other aegis commands,

while clearly specifiable, are challenging to

implement. Performance could also be a signifi-

cant factor.

The question is "is it really necessary?" If the job

can be done without it, does the effort of writing

such a beast result in significant productivity

gains?

The addition of the create_symlinks_before_build

fielf to the project config file has greatly reduced

the need for this functionality. Howev er, it does

not provide copy-on-write semantics, nor auto-

matic aecp functionality; which a virtual file sys-

tem could do.

5 Reminiscent of Sun’s TFS, but not the same.
6 Discussed in the Dependency Maintenance Tool

chapter.
7 There are other ways, discussed in the Tips and

Tr aps chapter.

Page 16 (./doc/c2.0.so) Peter Miller

Aegis User Guide

3. The Change Development Cycle

As a change to a project is developed using aegis,

it passes through several states. Each state is

characterised by different quality requirements,

different sets of applicable aegis commands, and

different responsibilities for the people involved.

These people may be divided into four categories:

developers, reviewers, integrators and administra-

tors. Each has different responsibilities, duties

and permissions; although one person may belong

to more than one category, depending on how a

project is administered.

This chapter looks at each of these categories, by

way of an example project undergoing its first

four changes. This example will be examined

from the perspective of each category of people in

the following sections.

There are six hypothetical users in the example:

the developers are Pat, Jan and Sam; the reviewers

are Robyn and Jan; the integrator is Isa; and the

administrator is Alex8. There need not have been

this many people involved, but it keeps things

slightly cleaner for this example.

The project is called "example". It implements a

very simple calculator. Many features important

to a quality product are missing, checking for

divide-by-zero for example. These have been

omitted for brevity.

8 The names are deliberately gender-neutral. Finding

such a name starting with "I" is not easy!

Peter Miller (./doc/c2.0.so) Page 17

User Guide Aegis

3.1. The Developer

The developer role is the coal face. This is where new software is written, and bugs are fixed. This exam-

ple shows only the addition of new functionality, but usually as modifications of existing code, similar to

bug-fixing activity.

3.1.1. The First Change

While the units of change, unoriginally, are called "changes", this also applies to the start of a project - a

change to nothing, if you like. The developer of this first change will be Pat.

First, Pat has been told by the project administrator that the change has been created. How Alex created

this change will be detailed in the "Administrator" section, later in this chapter. Pat then acquires the

change and starts work.

pat% aedb -l -p example
Project "example"
List of Changes

Change State Description
------- ------- -------------

1 awaiting_ Create initial skeleton.
development

pat% aedb example 1
aegis: project "example": change 1: development directory "/u/pat/

example.001"
aegis: project "example": change 1: user "pat" has begun development
pat% aecd
aegis: project "example": change 1: /u/pat/example.001
pat%

At this point aegis has created a development directory for the change and Pat has changed directory to the

development directory9.

Five files will be created by this change.

pat% aenf config Howto.cook gram.y lex.l main.c
aegis: project "example": change 1: file "Howto.cook" added
aegis: project "example": change 1: file "config" added
aegis: project "example": change 1: file "gram.y" added
aegis: project "example": change 1: file "lex.l" added
aegis: project "example": change 1: file "main.c" added
pat%

The contents of the config file will not be described in this section, mostly because it is a rather complex

subject; so complex it requires four chapters to describe: the chapter, the chapter, the Difference Tools

chapter and the Project Attributes chapter. The contents of the Howto.cook file will not be described in

this section, as it is covered in the Dependency Maintenance Tool chapter.

The file main.c will have been created by aegis as an empty file. Pat edits it to look like this

#include <stdio.h>

static void
usage()
{

fprintf(stderr, "usage: example\n");
exit(1);

}

9 The default directory in which to place new dev elopment directories is configurable for each user.

Page 18 (./doc/c2.1.so) Peter Miller

Aegis User Guide

void
main(argc, argv)

int argc;
char **argv;

{
if (argc != 1)

usage();
yyparse();
exit(0);

}

The file gram.y describes the grammar accepted by the calculator. This file was also created empty by

aegis, and Pat edits it to look like this:

%token DOUBLE
%token NAME

%union
{

int lv_int;
double lv_double;

}

%type <lv_double> DOUBLE expr
%type <lv_int> NAME

%prec ’+’ ’-’
%prec ’*’ ’/’
%prec UNARY

%%

example
: /* empty */
| example command

command
: expr
| error

expr
: DOUBLE

{ $$ = $1; }
| ’(’ expr ’)’

{ $$ = $2; }
| ’-’ expr

%prec UNARY
{ $$ = -$2; }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr
{ $$ = $1 / $3; }

| expr ’+’ expr
{ $$ = $1 + $3; }

| expr ’-’ expr
{ $$ = $1 - $3; }

The file lex.l describes a simple lexical analyzer. It will be processed by lex(1) to produce C code imple-

menting the lexical analyzer. This kind of simple lexer is usually hand crafted, but using lex allows the

example to be far smaller. Pat edits the file to look like this:

Peter Miller (./doc/c2.1.so) Page 19

User Guide Aegis

%{
#include <math.h>
#include <gram.h>
%}
%%
[\t\n]+ ;
[0-9]+(\.[0-9]*)?([eE][+-]?[0-9]+)? {

yylval.lv_double = atof(yytext);
return DOUBLE;

}
[a-z] {

yylval.lv_int = yytext[0] - ’a’;
return NAME;

}
. return yytext[0];

Note how the gram.h file is included using the #include <filename> form. This is very important

for builds in later changes, and is discussed more fully in the Using Cook section of the Dependency Main-

tenance Tool chapter.

The files are processed, compiled and linked together using the aeb command; this is known as building a

change. This is done through aegis so that aegis can know the success or failure of the build. (Build suc-

cess is a precondition for a change to leave the being developed state.) The build command is in the config

file so vaguely described earlier. In this example it will use the cook(1) command which in turn will use the

Howto.cook file, also alluded to earlier. This file describes the commands and dependencies for the various

processing, compiling and linking.

pat% aeb
aegis: project "example": change 1: development build started
aegis: cook -b Howto.cook project=example change=1

version=1.0.C001 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -I/projects/example/baseline -O -c gram.c
cook: lex lex.l
cook: mv lex.yy.c lex.c
cook: cc -I. -I/projects/example/baseline -O -c lex.c
cook: cc -I. -I/projects/example/baseline -O -c main.c
cook: cc -o example gram.o lex.o main.o -ll -ly
aegis: project "example": change 1: development build complete
pat%

The example program is built, and Pat could even try it out:

pat% example
1 + 2
3
ˆD
pat%

At this point the change is apparently finished. The command to tell aegis this is the develop end com-

mand:

pat% aede
aegis: project "example": change 1: no current ’aegis -DIFFerence’

registration
pat%

It didn’t work, because aegis thinks you have missed the difference step.

The difference step is used to produce files useful for reviewing changes, mostly in the form of context dif-

ference files between the project baseline and the development directory. Context differences allow review-

ers to see exactly what has changed, and not have to try to track them down and inevitably miss obscure but

Page 20 (./doc/c2.1.so) Peter Miller

Aegis User Guide

important edits to large or complex files.

pat% aed
aegis: set +e; diff -c /dev/null /u/pat/example.001/Howto.cook >

/u/pat/example.001/Howto.cook,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.001/config >

/u/pat/example.001/config,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.001/gram.y >

/u/pat/example.001/gram.y,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.001/lex.l >

/u/pat/example.001/lex.l,D; test $? -eq 0 -o $? -eq 1
aegis: set +e; diff -c /dev/null /u/pat/example.001/main.c >

/u/pat/example.001/main.c,D; test $? -eq 0 -o $? -eq 1
aegis: project "example": change 1: difference complete
pat%

Doing a difference for a new file may appear a little pedantic, but when a change consists of tens of files, so

modifications of existing files and some new, there is a temptation for reviewers to use "more *,D" and thus

completely miss the new files if it were not for this pedanticism10.

So that reviewers, and conscientious developers, may locate and view all of these difference files, the com-

mand

pat% more ‘find . -name "*,D" -print | sort‘
...examines each file...

pat%

could be used, however this is a little too long winded for most users, and so the aedmore alias does exactly

this. There is a similar aedless alias for those who prefer the less (1) command.

So now Pat is done, let’s try to sign off again:

pat% aede
aegis: project "example": change 1: no current ’aegis -Test’

registration
pat%

It didn’t work, again. This time aegis is reminding Pat that every change must be accompanied by at least

one test. This is so that the project team can be confident at all times that a project works11. Making this a

precondition to leave the being developed state means that a reviewer can be sure that a change builds and

passes its tests before it can ever be reviewed. Pat adds the truant test:

pat% aent
aegis: project "example": change 1: file "test/00/t0001a.sh" new

test
pat%

The test file is in a weird place, eh? This is because many flavours of UNIX are slow at searching directo-

ries, and so aegis limits itself to 100 tests per directory. Whatever the name, Pat edits the test file to look

like this:

#!/bin/sh
#
test simple arithmetic
#
tmp=/tmp/$$
here=‘pwd‘
if [$? -ne 0]; then exit 1; fi

10 This is especially true when you use a tool such as fcomp(1) which gives a complete file listing with the inserts and

deletes marked in the margin. This tool is also available from the author of aegis.
11 As discussed in the How Aegis Works chapter, aegis has the objective of ensuring that projects always work, where

"works" is defined as passing all tests in the project’s baseline. A change "works" if it passes all of its accompanying tests.

Peter Miller (./doc/c2.1.so) Page 21

User Guide Aegis

fail()
{

echo FAILED 1>&2
cd $here
rm -rf $tmp
exit 1

}

pass()
{

cd $here
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

mkdir $tmp
if [$? -ne 0]; then exit 1; fi
cd $tmp
if [$? -ne 0]; then fail; fi

#
with input like this
#
cat > test.in << ’foobar’
1
(24 - 22)
-(4 - 7)
2 * 2
10 / 2
4 + 2
10 - 3
foobar
if [$? -ne 0]; then fail; fi

#
the output should look like this
#
cat > test.ok << ’foobar’
1
2
3
4
5
6
7
foobar
if [$? -ne 0]; then fail; fi

#
run the calculator
and see if the results match
#
$here/example < test.in > test.out
if [$? -ne 0]; then fail; fi
diff test.ok test.out
if [$? -ne 0]; then fail; fi

#
this much worked
#
pass

Page 22 (./doc/c2.1.so) Peter Miller

Aegis User Guide

There are several things to notice about this test file:

• It is a Bourne shell script. All test files are Bourne shell scripts because they are the most portable.12

(Actually, aegis likes test files not to be executable, it passes them to the Bourne shell explicitly when

running them.)

• It makes the assumption that the current directory is either the development directory or the baseline.

This is valid, aegis always runs tests this way; if you run one manually, you must take care of this

yourself.

• It checks the exit status of each and every command. It is essential that even unexpected and impossible

failures are handled.

• A temporary directory is created for temporary files. It cannot be assumed that a test will be run from a

directory which is writable; it is also easier to clean up after strange errors, since you need only throw

the directory away, rather than track down individual temporary files. It mostly protects against

rogue programs scrambling files in the current directory, too.

• Every test is self-contained. The test uses auxiliary files, but they are not separate source files (figuring

where they are when some are in a change and some are in the baseline can be a nightmare). If a test

want an auxiliary file, it must construct the file itself, in a temporary directory.

• Two functions have been defined, one for success and one for failure. Both forms remove the temporary

directory. A test is defined as passing if it returns a 0 exit status, and failing if it returns anything

else.

• Tests are treated just like any other source file, and are subject to the same process. They may be altered

in another change, or even deleted later if they are no longer useful.

The most important feature to note about this test, after ignoring all of the trappings, is that it doesn’t do

much you wouldn’t do manually! To test this program manually you would fire it up, just as the test does,

you would give it some input, just as the test does, and you would compare the output against your expecta-

tions of what it will do, just as the test does.

The difference with using this test script and doing it manually is that most development contains many

iterations of the "build, test, think, edit, build, test..." cycle. After a couple of iterations, the manual testing,

the constant re-typing, becomes obviously unergonomic. Using a shell script is more efficient, doesn’t for-

get to test things later, and is preserved for posterity (i.e. adds to the regression test suite).

This efficiency is especially evident when using commands13 such as

pat% aeb && aet ; vi aegis.log
...
pat% !!
...
pat%

It is possible to talk to the shell extremely rarely, and then only to re-issue the same command, using a work

pattern such as this.

As you have already guessed, Pat now runs the test like this:

pat% aet
aegis: sh /u/pat/example.001/test/00/t0001a.sh
aegis: project "example": change 1: test "test/00/t0001a.sh"

passed
aegis: project "example": change 1: passed 1 test
pat%

Finally, Pat has built the change, prepared it for review and tested it. It is now ready for sign off.

12 Portable for aegis’ point of view: Bourne shell is the most widely available shell. Of course, if you are writing code

to publish on USENET or for FTP, portability of the tests will be important from the developer’s point of view also.
13 This is a csh specific example, unlike most others.

Peter Miller (./doc/c2.1.so) Page 23

User Guide Aegis

pat% aede
aegis: project "example": change1: no current ’aegis -Build’

registration
pat%

Say what? The problem is that the use of aent cancelled the previous build registration. This was because

aegis is decoupled from the dependency maintenance tool (cook in this case), and thus has no way of know-

ing whether or not the new file in the change would affect the success or failure of a build14. All that is

required is to re-build, re-test, re-difference (yes, the test gets differenced, too) and sign off.

pat% aeb
aegis: logging to "/u/pat/example.001/aegis.log"
aegis: project "example": change 1: development build started
aegis: cook -b Howto.cook project=example change=1

version=1.0.C001 -nl
cook: "all" is up-to-date
aegis: project "example": change 1: development build complete
pat% aet
aegis: logging to "/u/pat/example.001/aegis.log"
aegis: sh /u/pat/example.001/test/00/t0001a.sh
aegis: project "example": change 1: test "test/00/t0001a.sh"

passed
aegis: project "example": change 1: passed 1 test
pat% aed
aegis: logging to "/u/pat/example.001/aegis.log"
aegis: set +e; diff -c /dev/null /u/pat/example.001/test/00/

t0001a.sh > /u/pat/example.001/test/00/t0001a.sh,D; test
$? -eq 0 -o $? -eq 1

aegis: project "example": change 1: difference complete
pat% aede
aegis: sh /usr/local/lib/aegis/de.sh example 1 pat
aegis: project "example": change 1: development completed
pat%

The change is now ready to be reviewed. This section is about developers, so we will have to leave this

change at this point in its history. Some time in the next day or so Pat receives electronic mail that this

change has passed review, and another later to say that it passed integration. Pat is now free to develop

another change, possibly for a different project.

3.1.2. The Second Change

The second change was created because someone wanted to name input and output files on the command

line, and called the absence of this feature a bug. When Jan arrived for work, and lists the changes awaiting

development, the following list appeared:

jan% aedb -l -p example
Project "example"
List of Changes

14 Example: in addition to the executable file "example" shown here, the build may also produce an archive file of the

project’s source for export. The addition of one more file may push the size of this archive beyond a size limit; the build

would thus fail because of the addition of a test.

Page 24 (./doc/c2.1.so) Peter Miller

Aegis User Guide

Change State Description
------ ------ ------------

2 awaiting_ Add input and output file names to the
development command line.

3 awaiting_ add variables
development

4 awaiting_ add powers
development

jan%

The first on the list is chosen.

jan% aedb -c 2 -p example
aegis: project "example": change 2: development directory "/u/

jan/example.002"
aegis: project "example": change 2: user "jan" has begun

development
jan% aecd
aegis: project "example": change 2: /u/jan/example.002
jan%

The best way to get details about a change is to used the "change details" listing.

jan% ael cd
Project "example", Change 2
Change Details

NAME
Project "example", Change 2.

SUMMARY
file names on command line

DESCRIPTION
Optional input and output files may be specified on the
command line.

CAUSE
This change was caused by internal_bug.

STATE
This change is in ’being_developed’ state.

FILES
Change has no files.

HISTORY
What When Who Comment
------ ------ ----- ---------
new_change Fri Dec 11 alex

14:55:06 1992
develop_begin Mon Dec 14 jan

09:07:08 1992
jan%

Through one process or another, Jan determines that the main.c file is the one to be modified. This file is

copied into the change:

jan% aecp main.c
aegis: project "example": change 2: file "main.c" copied
jan%

This file is now extended to look like this:

Peter Miller (./doc/c2.1.so) Page 25

User Guide Aegis

#include <stdio.h>

static void
usage()
{

fprintf(stderr, "usage: example [<infile> [<outfile>]]\n");
exit(1);

}

void
main(argc, argv)

int argc;
char **argv;

{
char *in = 0;
char *out = 0;
int j;

for (j = 1; j < argc; ++j)
{

char *arg = argv[j];
if (arg[0] == ’-’)

usage();
if (!in)

in = arg;
else if (!out)

out = arg;
else

usage();
}

if (in && !freopen(in, "r", stdin))
{

perror(in);
exit(1);

}
if (out && !freopen(out, "w", stdout))
{

perror(out);
exit(1);

}

yyparse();
exit(0);

}

A new test is also required,

jan% aent
aegis: project "example": change 2: file "test/00/t0002a.sh" new

test
jan%

which is edited to look like this:

#!/bin/sh
#
test command line arguments
#
tmp=/tmp/$$
here=‘pwd‘
if [$? -ne 0]; then exit 1; fi

Page 26 (./doc/c2.1.so) Peter Miller

Aegis User Guide

fail()
{

echo FAILED 1>&2
cd $here
rm -rf $tmp
exit 1

}

pass()
{

cd $here
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

mkdir $tmp
if [$? -ne 0]; then exit 1; fi
cd $tmp
if [$? -ne 0]; then fail; fi

#
with input like this
#
cat > test.in << ’foobar’
1
(24 - 22)
-(4 - 7)
2 * 2
10 / 2
4 + 2
10 - 3
foobar
if [$? -ne 0]; then fail; fi

#
the output should look like this
#
cat > test.ok << ’foobar’
1
2
3
4
5
6
7
foobar
if [$? -ne 0]; then fail; fi

Peter Miller (./doc/c2.1.so) Page 27

User Guide Aegis

#
run the calculator
and see if the results match
#
(Use /dev/null for input in case input redirect fails;
don’t want the test to hang!)
#
$here/example test.in test.out < /dev/null
if [$? -ne 0]; then fail; fi
diff test.ok test.out
if [$? -ne 0]; then fail; fi
$here/example test.in < /dev/null > test.out.2
if [$? -ne 0]; then fail; fi
diff test.ok test.out.2
if [$? -ne 0]; then fail; fi

#
make sure complains about rubbish
on the command line
#
$here/example -trash < test.in > test.out
if [$? -ne 1]; then fail; fi

#
this much worked
#
pass

Now it is time for Jan to build and test the change. Through the magic of static documentation, this works

first time, and here is how it goes:

jan% aeb
aegis: logging to "/u/pat/example.002/aegis.log"
aegis: project "example": change 2: development build started
aegis: cook -b /projects/example/baseline/Howto.cook

project=example change=2 version=1.0.C002 -nl
cook: cc -I. -I/projects/example/baseline -O -c main.c
cook: cc -o example main.o /projects/example/baseline/gram.o

/projects/example/baseline/lex.o -ll -ly
aegis: project "example": change 2: development build complete
jan% aet
aegis: logging to "/u/pat/example.002/aegis.log"
aegis: sh /u/jan/example.002/test/00/t0002a.sh
aegis: project "example": change 2: test "test/00/t0002a.sh"

passed
aegis: project "example": change 2: passed 1 test
jan%

All that remains if to difference the change and sign off.

jan% aed
aegis: logging to "/u/pat/example.002/aegis.log"
aegis: set +e; diff -c /projects/example/main.c /u/jan/

example.002/main.c > /u/jan/example.002/main.c,D; test $?
-eq 0 -o $? -eq 1

aegis: project "example": change 2: difference complete
jan% aedmore
...examines the file...

jan%

Note how the context difference shows exactly what has changed. And now the sign-off:

Page 28 (./doc/c2.1.so) Peter Miller

Aegis User Guide

jan% aede
aegis: project "example": change 2: no current ’aegis -Test

-BaseLine’ registration
jan%

No, it wasn’t enough. Tests must not only pass against a new change, but must fail against the project base-

line. This is to establish, in the case of bug fixes, that the bug has been isolated and fixed. New functional-

ity will usually fail against the baseline, because the baseline can’t do it (if it could, you wouldn’t be adding

it!). So, Jan needs to use a variant of the aet command.

jan% aet -bl
aegis: sh /u/jan/example.002/test/00/t0002a.sh
usage: example
FAILED
aegis: project "example": change 2: test "test/00/t0002a.sh" on

baseline failed (as it should)
aegis: project "example": change 2: passed 1 test
jan%

Running the regression tests is also a good idea

jan% aet -reg
aegis: logging to "/u/pat/example.002/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example": change 2: test "test/00/t0001a.sh"

passed
aegis: project "example": change 2: passed 1 test
jan%

Now aegis will be satisfied

jan% aede
aegis: sh /usr/local/lib/aegis/de.sh example 2 jan
aegis: project "example": change 2: development completed
jan%

Like Pat in the change before, Jan will receive email that this change passed review, and later that it passed

integration.

3.1.3. The Third and Fourth Changes

This section will show two people performing two changes, one each. The twist is that they hav e a file in

common.

First Sam looks for a change to work on and starts, like this:

sam% aedb -l
Project "example"
List of Changes

Change State Description
------- ------- -------------

3 awaiting_ add powers
development

4 awaiting_ add variables
development

sam% aedb 3
aegis: project "example": change 3: development directory "/u/

sam/example.003"
aegis: project "example": change 3: user "sam" has begun

development
sam% aecd
aegis: project "example": change 3: /u/sam/example.003
sam%

Peter Miller (./doc/c2.1.so) Page 29

User Guide Aegis

A little sniffing around reveals that only the gram.y grammar file needs to be altered, so it is copied into the

change.

sam% aecp gram.y
aegis: project "example": change 3: file "gram.y" copied
sam%

The grammar file is changed to look like this:

%token DOUBLE
%token NAME
%union
{

double lv_double;
int lv_int;

};

%type <lv_double> DOUBLE expr
%type <lv_int> NAME
%left ’+’ ’-’
%left ’*’ ’/’
%right ’ˆ’
%right UNARY

%%
example

: /* empty */
| example command ’0

{ yyerrflag = 0; fflush(stderr); fflush(stdout); }
;

command
: expr

{ printf("%g0, $1); }
| error
;

expr
: DOUBLE
| ’(’ expr ’)’

{ $$ = $2; }
| ’-’ expr

%prec UNARY
{ $$ = -$2; }

| expr ’ˆ’ expr
{ $$ = pow($1, $3); }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr
{ $$ = $1 / $3; }

| expr ’+’ expr
{ $$ = $1 + $3; }

| expr ’-’ expr
{ $$ = $1 - $3; }

;

The changes are very small. Sam checks to make sure using the difference command:

Page 30 (./doc/c2.1.so) Peter Miller

Aegis User Guide

sam% aed
aegis: logging to "/u/sam/example.003/aegis.log"
aegis: set +e; diff -c /projects/example/baseline/gram.y /u/sam/

example.003/gram.y > /u/sam/example.003/gram.y,D; test $?
-eq 0 -o $? -eq 1

aegis: project "example": change 3: difference complete
sam% aedmore
...examines the file...

sam%

The difference file looks like this

*** /projects/example/baseline/gram.y
--- /u/sam/example.003/gram.y

*** 1,5 ****
--- 1,6 ----
%{
#include <stdio.h>

+ #include <math.h>
%}
%token DOUBLE
%token NAME

*** 13,18 ****
--- 14,20 ----
%type <lv_int> NAME
%left ’+’ ’-’
%left ’*’ ’/’

+ %right ’ˆ’
%right UNARY
%%
example

*** 32,37 ****
--- 34,41 ----

| ’-’ expr
%prec UNARY
{ $$ = -$2; }

+ | expr ’ˆ’ expr
+ { $$ = pow($1, $3); }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr

These are the differences Sam expected to see.

At this point Sam creates a test. All good software developers create the tests first, don’t they?

sam% aent
aegis: project "example": change 3: file "test/00/t0003a.sh" new

test
sam%

The test is created empty, and Sam edit it to look like this:

Peter Miller (./doc/c2.1.so) Page 31

User Guide Aegis

:
here=‘pwd‘
if test $? -ne 0 ; then exit 1; fi
tmp=/tmp/$$
mkdir $tmp
if test $? -ne 0 ; then exit 1; fi
cd $tmp
if test $? -ne 0 ; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 1

}

pass()
{

cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

cat > test.in << ’end’
5.3 ˆ 0
4 ˆ 0.5
27 ˆ (1/3)
end
if test $? -ne 0 ; then fail; fi

cat > test.ok << ’end’
1
2
3
end
if test $? -ne 0 ; then fail; fi

$here/example test.in < /dev/null > test.out 2>&1
if test $? -ne 0 ; then fail; fi

diff test.ok test.out
if test $? -ne 0 ; then fail; fi

$here/example test.in test.out.2 < /dev/null
if test $? -ne 0 ; then fail; fi

diff test.ok test.out.2
if test $? -ne 0 ; then fail; fi

it probably worked
pass

Everything is ready. Now the change can be built and tested, just like the earlier changes.

Page 32 (./doc/c2.1.so) Peter Miller

Aegis User Guide

sam% aeb
aegis: logging to "/u/sam/example.003/aegis.log"
aegis: project "example": change 3: development build started
aegis: cook -b /projects/example/baseline/Howto.cook

project=example change=3 version=1.0.C003 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -I/projects/example/baseline -O -c gram.c
cook: cc -I. -I/projects/example/baseline -O -c /projects/

example/baseline/lex.c
cook: cc -o example gram.o lex.o /projects/example/baseline/

main.o -ll -ly -lm
aegis: project "example": change 3: development build complete
sam%

Notice how the yacc run produces a gram.h which logically invalidates the lex.o in the baseline, and so the

lex.c file in the baseline is recompiled, using the gram.h include file from the development directory, leav-

ing a new lex.o in the development directory. This is the reason for the use of

#include <filename>

directives, rather then the double quote form.

Now the change is tested.

sam% aet
aegis: logging to "/u/sam/example.003/aegis.log"
aegis: sh /u/sam/example.003/test/00/t0003a.sh
aegis: project "example": change 3: test "test/00/t0003a.sh"

passed
aegis: project "example": change 3: passed 1 test
sam%

The change must also be tested against the baseline, and fail. Sam knows this, and does it here.

sam% aet -bl
aegis: logging to "/u/sam/example.003/aegis.log"
aegis: sh /u/sam/example.003/test/00/t0003a.sh
1,3c1,6
< 1
< 2
< 3

> syntax error
> 5.3
> syntax error
> 4
> syntax error
> 27
FAILED
aegis: project "example": change 3: test "test/00/t0003a.sh" on

baseline failed (as it should)
aegis: project "example": change 3: passed 1 test
sam%

Running the regression tests is also a good idea.

Peter Miller (./doc/c2.1.so) Page 33

User Guide Aegis

sam% aet -reg
aegis: logging to "/u/sam/example.003/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example": change 3: test "test/00/t0001a.sh"

passed
aegis: sh /projects/example/baseline/test/00/t0002a.sh
aegis: project "example": change 3: test "test/00/t0002a.sh"

passed
aegis: project "example": change 3: passed 2 tests
sam%

A this point Sam has just enough time to get to the lunchtime aerobics class in the staff common room.

Earlier the same day, Pat arrived for work a little after Sam, and also looked for a change to work on.

pat% aedb -l
Project "example"
List of Changes

Change State Description
------- ------- -------------

4 awaiting_ add variables
development

pat%

With such a wide choice, Pat selected change 4.

pat% aedb 4
aegis: project "example": change 4: development directory "/u/

pat/example.004"
aegis: project "example": change 4: user "pat" has begun

development
pat% aecd
aegis: project "example": change 4: /u/pat/example.004
pat%

To get more information about the change, Pat then uses the "change details" listing:

pat% ael cd
Project "example", Change 4
Change Details

NAME
Project "example", Change 4.

SUMMARY
add variables

DESCRIPTION
Enhance the grammar to allow variables. Only single
letter variable names are required.

CAUSE
This change was caused by internal_enhancement.

STATE
This change is in ’being_developed’ state.

FILES
This change has no files.

Page 34 (./doc/c2.1.so) Peter Miller

Aegis User Guide

HISTORY
What When Who Comment
------ ------ ----- ---------
new_change Mon Dec 14 alex

13:08:52 1992
develop_begin Tue Dec 15 pat

13:38:26 1992
pat%

To add the variables the grammar needs to be extended to understand them, and a new file for remembering

and recalling the values of the variables needs to be added.

pat% aecp gram.y
aegis: project "example": change 4: file "gram.y" copied
pat% aenf var.c
aegis: project "example": change 4: file "var.c" added
pat%

Notice how aegis raises no objection to both Jan and Pat having a copy of the gram.y file. Resolving this

contention is the subject of this section.

Pat now edits the grammar file.

pat% vi gram.y
...edit the file...

pat% aed
aegis: logging to "/u/pat/example.004/aegis.log"
aegis: set +e; diff -c /projects/example/baseline/gram.y /u/pat/

example.004/gram.y > /u/pat/example.004/gram.y,D; test $?
-eq 0 -o $? -eq 1

aegis: project "example": change 4: difference complete
pat%

The difference file looks like this

...

The new var.c file was created empty by aegis, and Pat edits it to look like this:

static double memory[26];

void
assign(name, value)

int name;
double value;

{
memory[name] = value;

}

double
recall(name)

int name;
{

return memory[name];
}

Little remains except to build the change.

Peter Miller (./doc/c2.1.so) Page 35

User Guide Aegis

pat% aeb
aegis: logging to "/u/pat/example.004/aegis.log"
aegis: cook -b /tmp/8508/example.proj/baseline/Howto.cook

project=example change=4 version=1.0.C004 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -I/projects/example/baseline -O -c gram.c
cook: cc -I. -I/projects/example/baseline -O -c /projects/

example/baseline/lex.c
cook: cc -I. -I/projects/example/baseline -O -c var.c
cook: cc -o example gram.o lex.o /projects/example/baseline/

main.o var.o -ll -ly -lm
aegis: project "example": change 4: development build complete
pat%

A new test for the new functionality is required.

:
here=‘pwd‘
if test $? -ne 0 ; then exit 1; fi
tmp=/tmp/$$
mkdir $tmp
if test $? -ne 0 ; then exit 1; fi
cd $tmp
if test $? -ne 0 ; then exit 1; fi

fail()
{

echo FAILED 1>&2
cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 1

}
pass()
{

cd $here
chmod u+w ‘find $tmp -type d -print‘
rm -rf $tmp
exit 0

}
trap "fail" 1 2 3 15

cat > test.in << ’end’
a = 1
a + 1
c = a * 40 + 5
c / (a + 4)
end
if test $? -ne 0 ; then fail; fi

cat > test.ok << ’end’
2
9
end
if test $? -ne 0 ; then fail; fi

$here/example test.in < /dev/null > test.out 2>&1
if test $? -ne 0 ; then fail; fi

diff test.ok test.out
if test $? -ne 0 ; then fail; fi

Page 36 (./doc/c2.1.so) Peter Miller

Aegis User Guide

$here/example test.in test.out.2 < /dev/null
if test $? -ne 0 ; then fail; fi

diff test.ok test.out.2
if test $? -ne 0 ; then fail; fi

it probably worked
pass

The new files are then differenced:

pat% aed
aegis: logging to "/u/pat/example.004/aegis.log"
aegis: set +e; diff -c /projects/example/baseline/gram.y /u/pat/

example.004/gram.y > /u/pat/example.004/gram.y,D; test $?
-eq 0 -o $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.004/test/00/
t0004a.sh > /u/pat/example.004/test/00/t0004a.sh,D; test
$? -eq 0 -o $? -eq 1

aegis: set +e; diff -c /dev/null /u/pat/example.004/var.c > /u/
pat/example.004/var.c,D; test $? -eq 0 -o $? -eq 1

aegis: project "example": change 4: difference complete
pat%

Notice how the difference for the gram.y file is still current, and so is not run again.

The change is tested.

pat% aet
aegis: logging to "/u/pat/example.004/aegis.log"
aegis: sh /u/pat/example.004/test/00/t0001a.sh
aegis: project "example": change 4: test "test/00/t0004a.sh"

passed
aegis: project "example": change 4: passed 2 tests
pat%

The change is tested against the baseline.

pat% aet -bl
aegis: logging to "/u/pat/example.004/aegis.log"
aegis: sh /u/pat/example.004/test/00/t0001a.sh
1,2c1,4
< 2
< 9

> syntax error
> syntax error
> syntax error
> syntax error
FAILED
aegis: project "example": change 4: test "test/00/t0004a.sh" on

baseline failed (as it should)
pat%

And the regression tests

Peter Miller (./doc/c2.1.so) Page 37

User Guide Aegis

pat% aet -reg
aegis: logging to "/u/pat/example.004/aegis.log"
aegis: sh /projects/example/baseline/test/00/t0001a.sh
aegis: project "example": change 4: test "test/00/t0001a.sh"

passed
aegis: sh /projects/example/baseline/test/00/t0002a.sh
aegis: project "example": change 4: test "test/00/t0002a.sh"

passed
aegis: project "example": change 4: passed 2 tests
pat%

Note how test 3 has not been run, in any form of testing. This is because test 3 is part of another change,

and is not yet integrated with the baseline.

All is finished for this change,

pat% aede
aegis: sh /usr/local/lib/aegis/de.sh example 4 pat
aegis: project "example": change 4: development completed
pat%

Anxious to get this change into the baseline, Pat now wanders down the hall in search of a reviewer, but

more of that in the next section.

Some time later, Jan returns from aerobics feeling much improved. All that is required for change 3 is to

do develop end, or is it?

jan% aede
aegis: project "example": change 3: file "gram.y" in baseline

has changed since last ’aegis -DIFFerence’ command
jan%

A little sleuthing on Jan’s part with the aegis list command will reveal how this came about. The way to

resolve this problem is with the difference command.

jan% aed
aegis: logging to "/u/pat/example.003/aegis.log"
aegis: co -u’1.1’ -p /projects/example/history/gram.y,v > /tmp/

aegis.14594
/projects/example/history/gram.y,v --> stdout revision 1.1 (unlocked)
aegis: (diff3 -e /projects/example/baseline/gram.y /tmp/

aegis.14594 /u/jan/example.003/gram.y | sed -e ’/ˆw$/d’
-e ’/ˆq$/d’; echo ’1,$p’) | ed - /projects/example/
baseline/gram.y > /u/jan/example.003/gram.y,D

aegis: project "example": change 3: difference complete
aegis: project "example": change 3: file "gram.y" was out of

date, see "gram.y,D" for details
aegis: new ’aegis -Build’ required
jan%

This was caused by the conflict between change 4, which is now integrated, and change 3; both of which

are editing the gram.y file. Jan examines the gram.y,D file, and discovers that it contains an accurate

merge of the edit done by change 4 and the edits for this change. The difference file looks like this:

Page 38 (./doc/c2.1.so) Peter Miller

Aegis User Guide

%{
#include <stdio.h>
#include <math.h>
%}
%token DOUBLE
%token NAME
%union
{

double lv_double;
int lv_int;

};

%type <lv_double> DOUBLE expr
%type <lv_int> NAME
%left ’+’ ’-’
%left ’*’ ’/’
%right ’ˆ’
%right UNARY

%%
example

: /* empty */
| example command ’\n’

{ yyerrflag = 0; fflush(stderr); fflush(stdout); }
;

command
: expr

{ printf("%g0, $1); }
| NAME ’=’ expr

{ assign($1, $3); }
| error
;

expr
: DOUBLE
| NAME

{ extern double recall(); $$ = recall($1); }
| ’(’ expr ’)’

{ $$ = $2; }
| ’-’ expr

%prec UNARY
{ $$ = -$2; }

| expr ’ˆ’ expr
{ $$ = pow($1, $3); }

| expr ’*’ expr
{ $$ = $1 * $3; }

| expr ’/’ expr
{ $$ = $1 / $3; }

| expr ’+’ expr
{ $$ = $1 + $3; }

| expr ’-’ expr
{ $$ = $1 - $3; }

;

This is because most such conflicts are actually working on logically separate portions of the file. Tw o dif-

ferent areas of the grammar in this case. In practice, there is rarely a real conflict, and it is usually small

enough to detect fairly quickly. Notice that aegis did not automatically put the merge in place of your

edited file, for just this reason.

Jan simply copies the difference file on top of the original, and rebuilds:

Peter Miller (./doc/c2.1.so) Page 39

User Guide Aegis

jan% mv gram.y,D gram.y
jan% aeb
aegis: logging to "/u/jan/example.003/aegis.log"
aegis: project "example": change 3: development build started
aegis: cook -b /tmp/13906/example.proj/baseline/Howto.cook

project=example change=3 version=1.0.C003 -nl
cook: rm gram.c
cook: rm gram.h
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: rm gram.o
cook: cc -I. -I/projects/example/baseline -O -c gram.c
cook: rm lex.o
cook: cc -I. -I/projects/example/baseline -O -c /projects/

example/baseline/lex.c
cook: rm example
cook: cc -o example gram.o lex.o /projects/example/baseline/

main.o /projects/example/baseline/var.o -ll -ly -lm
aegis: project "example": change 3: development build complete
jan%

Notice how the list of object files linked has also adapted to the addition of another file in the baseline,

without any extra work by Jan.

All that remains is to test the change again.

jan% aet
aegis: /bin/sh /tmp/13906/example.chan.3/test/00/t0003a.sh
aegis: project "example": change 3: test "test/00/t0003a.sh"

passed
aegis: project "example": change 3: passed 1 test
jan%

And test against the baseline,

jan% aet -bl
aegis: /bin/sh /tmp/13906/example.chan.3/test/00/t0003a.sh
1,3c1,6
< 1
< 2
< 3

> syntax error
> 5.3
> syntax error
> 4
> syntax error
> 27
FAILED
aegis: project "example": change 3: test "test/00/t0003a.sh" on

baseline failed (as it should)
aegis: project "example": change 3: passed 1 test
jan%

Perform the regression tests, too. This is important for a merged change, to make sure you didn’t break the

functionality of the code you merged with.

Page 40 (./doc/c2.1.so) Peter Miller

Aegis User Guide

jan% aet -reg
aegis: logging to "/u/jan/example.003/aegis.log"
aegis: /bin/sh /projects/example/baseline/test/00/

t0001a.sh
aegis: project "example": change 3: test "test/00/t0001a.sh"

passed
aegis: /bin/sh /projects/example/baseline/test/00/

t0002a.sh
aegis: project "example": change 3: test "test/00/t0002a.sh"

passed
aegis: /bin/sh /projects/example/baseline/test/00/

t0004a.sh
aegis: project "example": change 3: test "test/00/t0004a.sh"

passed
aegis: project "example": change 3: passed 3 tests
jan%

All done, or are we?

jan% aede
aegis: project "example": change 3: no current ’aegis -Diff’

registration
jan%

The difference we did earlier, which revealed that we were out of date, does not show the differences since

the two changes were merged, and possibly further edited.

jan% aed
aegis: logging to "/u/jan/example.003/aegis.log"
aegis: set +e; diff /projects/example/baseline/gram.y /u/pat/

example.003/gram.y > /u/pat/example.003/gram.y,D; test $? -le 1
aegis: project "example": change 3: difference complete
jan%

This time everything will run smoothly,

jan% aede
aegis: project "example": change 3: development completed
jan%

Some time soon Jan will receive email that this change passed review, and later that it passed integration.

Within the scope of a limited example, you have seen most of what aegis can do. To get a true feeling for

the program you need to try it in a similarly simple case. You could even try doing this example manually.

Peter Miller (./doc/c2.1.so) Page 41

User Guide Aegis

3.1.4. Developer Command Summary

Only a few of the aegis commands available to developers have been used in the example. The following

table (very tersely) describes the aegis commands most useful to developers.

Command Description

aeb Build

aeca edit Change Attributes

aecd Change Directory

aecp Copy File

aecpu Copy File Undo

aed Difference

aedb Develop Begin

aedbu Dev elop Begin Undo

aede Develop End

aedeu Develop End Undo

ael List Stuff

aenf New File

aenfu New File Undo

aent New Test

aentu New Test Undo

aerm Remove File

aermu Remove File Undo

aet Test

You will want to read the manual entries for all of these commands. Note that all aegis commands have a

−Help option, which will give a result very similar to the corresponding man (1) output. Most aegis com-

mands also have a −List option, which usually lists interesting context sensitive information.

Page 42 (./doc/c2.2.so) Peter Miller

Aegis User Guide

3.2. The Reviewer

The role of a reviewer is to check another user’s work. You are helped in this by aegis, because changes

can never reach the being reviewed state without several preconditions:

• The change is known to build. You know that it compiled successfully, so there is no need to search for

syntax errors.

• The change has tests, and those tests have been run, and have passed.

This information allows you to concentrate on implementation issues, completeness issues, and local stan-

dards issues.

To help the reviewer, a set of "command D" files is available in the change development directory. Every

file which is to be added to the baseline, removed from the baseline, or changed in some way, has a corre-

sponding "comma D" file.

3.2.1. The First Change

Robyn finds out what changes are available for review by asking aegis:

robyn% aerpass -l -p example

Project "example"
List of Changes

Change State Description
------- ------- -------------

1 being_reviewed Place under aegis
robyn%

Any of the above changes could be reviewed, Robyn chooses the first.

robyn% aecd -p example -c 1
aegis: project "example": change 1: /u/pat/example.001
robyn% aedmore
...examines each file...

robyn%

The aedmore command walks the development directory tree to find all of the "comma D" files, and dis-

plays them using There is a corresponding aedless for those who prefer the command.

Once the change has been reviewed and found acceptable, it is passed:

robyn% aerpass example 1
aegis: sh /usr/local/lib/aegis/rp.sh example 1 pat robyn
aegis: project "example": change 1: passed review
robyn%

Some time soon Isa will notice the email notification and commence integration of the change.

3.2.2. The Second Change

Most reviews have the same pattern as the first.

robyn% aerpass -l -p example

Project "example"
List of Changes

Change State Description
------- ------- -------------

2 being_reviewed file names on command line
robyn%

Always change directory to the change’s dev elopment directory, otherwise you will not be able to review

the files.

Peter Miller (./doc/c2.2.so) Page 43

User Guide Aegis

robyn% aecd -p example -c 2
aegis: project "example": change 2: /u/jan/example.002
robyn%

Another useful way of finding out about a change is the "list change details" command, viz:

robyn% ael cd -p example -c 2

Project "example", Change 2
Change Details

NAME
Project "example", Change 2.

SUMMARY
file names on command line

DESCRIPTION
Optional input and output files may be specified on
the command line.

CAUSE
This change was caused by internal_bug.

STATE
This change is in ’being_integrated’ state.

FILES
Type Action Edit File Name
------- ------- ------- -----------
source modify 1.1 main.c
test create test/00/t0002a.sh

HISTORY
What When Who Comment
------ ------ ----- ---------
new_change Fri Dec 11 alex

14:55:06 1992
develop_begin Mon Dec 14 jan

09:07:08 1992
develop_end Mon Dec 14 jan

11:43:23 1992
robyn%

Once Robyn knows what the change is meant to be doing, the files are then examined:

robyn% aedmore
...examines each file...

robyn%

Once the change is found to be acceptable, it is passed:

robyn% aerpass example 2
aegis: sh /usr/local/lib/aegis/rp.sh example 2 jan robyn
aegis: project "example": change 2: passed review
robyn%

Some time soon Isa will notice the email notification and commence integration of the change.

The reviews of the third and fourth changes will not be given here, because they are almost identical to the

other changes. If you want to know how to fail a review, see the manual entry.

Page 44 (./doc/c2.2.so) Peter Miller

Aegis User Guide

3.2.3. Reviewer Command Summary

Only a few of the aegis commands available to reviewers have been used in this example. The following

table (very tersely) describes the aegis commands most useful to reviewers.

Command Description

aecd Change Directory

aerpass Review Pass

aerpu Review Pass Undo

aerfail Review Fail

ael List Stuff

You will want to read the manual entries for all of these commands. Note that all aegis commands have a

−Help option, which will give a result very similar to the corresponding man (1) output. Most aegis com-

mands also have a −List option, which usually lists interesting context sensitive information.

Peter Miller (./doc/c2.3.so) Page 45

User Guide Aegis

3.3. The Integrator

This section shows what the integrator must do for each of the changes shown to date. The integrator does

not have the ability to alter anything in the change; if a change being integrated is defective, it is simply

failed back to the developer. This documented example has no such failures, in order to keep it manageably

small.

3.3.1. The First Change

The first change of a project is often the trickiest, and the integrator is the last to know. This example goes

smoothly, and you may want to consider using the example project as a template.

The integrator for this example project is Isa. Isa knows there is a change ready for integration from the

notification which arrived by email.

isa% aeib -l -p example

Project "example"
List of Changes

Change State Description
------- ------- -------------

1 awaiting_ Place under aegis
integration

isa% aeib example 1
aegis: project "example": change 1: link baseline to integration

directory
aegis: project "example": change 1: apply change to integration

directory
aegis: project "example": change 1: integration has begun
isa%

The integrator must rebuild and retest each change. This ensures that it was no quirk of the developer’s

environment which resulted in the success at the development stage.

isa% aeb
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: project "example": change 1: integration build started
aegis: cook -b Howto.cook project=example change=1

version=1.0.D001 -nl
cook: yacc -d gram.y
cook: mv y.tab.c gram.c
cook: mv y.tab.h gram.h
cook: cc -I. -O -c gram.c
cook: lex lex.l
cook: mv lex.yy.c lex.c
cook: cc -I. -O -c lex.c
cook: cc -I. -O -c main.c
cook: cc -o example gram.o lex.o main.o -ll -ly
aegis: project "example": change 1: integration build complete
isa%

Notice how the above build differed from the builds that were done while in the being developed state; the

extra baseline include is gone. This is because the integration directory will shortly be the new baseline,

and must be entirely internally consistent and self-sufficient.

You are probably wondering why this isn’t all rolled into the one aegis command. It is not because there

may be some manual process to be performed after the build and before the test. This may be making a

command set-uid-root (as in the case of aegis) or it may require some tinkering with the local oracle or

ingress database. Instructions for the integrator may be placed in the description field of the change

attributes.

The change is now re-tested:

Page 46 (./doc/c2.3.so) Peter Miller

Aegis User Guide

isa% aet
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: sh /project/example/delta.001/test/00/t0001a.sh
aegis: project "example": change 1: test "test/00/t0001a.sh"

passed
aegis: project "example": change 1: passed 1 test
isa%

The change builds and tests. Once Isa is happy with the change, perhaps after browsing the files, Isa then

passes the integration, causing the history files to be updated and the integration directory becomes the

baseline.

isa% aeipass
aegis: logging to "/projects/example/delta.001/aegis.log"
aegis: ci -u -m/dev/null -t/dev/null /projects/example/delta.001/

Howto.cook /projects/example/history/Howto.cook,v;
rcs -U /projects/example/history/Howto.cook,v

/projects/example/history/Howto.cook,v <--
/projects/example/delta.001/Howto.cook

initial revision: 1.1
done
RCS file: /projects/example/history/Howto.cook,v
done
aegis: rlog -r /projects/example/history/Howto.cook,v | awk

’/ˆhead:/ {print $2}’ > /tmp/aegis.15309
...lots of similar RCS output...

aegis: project "example": change 1: remove development directory
aegis: sh /usr/local/lib/aegis/ip.sh example 1 pat robyn isa
aegis: project "example": change 1: integrate pass
isa%

All of the staff inv olved, will receive email to say that the change has been integrated. This notification is a

shell script, so USENET could be usefully used instead.

You should note that the development directory has been deleted. It is expected that each develop-

ment directory will only contain files necessary to develop the change. You should keep "precious" files

somewhere else.

3.3.2. The Other Changes

There is no difference to integrating any of the later changes. The integration process is very simple, as it is

a cut-down version of what the developer does, without all the complexity.

Your project may elect to have the integrator also monitor the quality of the reviews. An answer to "who

will watch the watchers" if you like.

It is also a good idea to rotate people out of the integrator position after a few weeks in a busy project, this

is a very stressful position. The position of integrator gives a unique perspective to software quality, but the

person also needs to be able to say "NO!" when a cruddy change comes along.

Peter Miller (./doc/c2.3.so) Page 47

User Guide Aegis

3.3.3. Integrator Command Summary

Only a few of the aegis commands available to integrators have been used in this example. The following

table (very tersely) describes the aegis commands most useful to integrators.

Command Description

aeb Build

aecd Change Directory

aeib Integrate Begin

aeibu Integrate Begin Undo

aeifail Integrate Fail

ael List Stuff

aet Test

aeupass Integrate Pass

You will want to read the manual entries for all of these commands. Note that all aegis commands have a

−Help option, which will give a result very similar to the corresponding man (1) output. Most aegis com-

mands also have a −List option, which usually lists interesting context sensitive information.

Page 48 (./doc/c2.4.so) Peter Miller

Aegis User Guide

3.4. The Administrator

The previous discussion of developers, reviewers and integrators has covered many aspects of the produc-

tion of software using the aegis program. The administrator has responsibility for everything they don’t,

but there is very little left.

These responsibilities include:

• access control: The administrator adds and removes all categories of user, including administrators. This

is on a per-project basis, and has nothing to do with UNIX user administration. This simply nominates

which users may do what.

• change creation: The administrator adds (and sometimes removes) changes to the system. At later stages,

developers may alter some attributes of the change, such as the description, to say what they fixed.

• project creation: The aegis program does not limit who may create projects, but when a project is created

the user who created the project is set to be the administrator of that project.

All of these things will be examined

3.4.1. The First Change

Many things need to happen before development can begin on the first change; the project must be created,

the staff but be given access permissions, the change must be created.

alex% aenpr example -dir /projects/example
aegis: project "example": project directory "/projects/example"
aegis: project "example": created
alex%

Once the project has been created, the project attributes are set. Alex will set the desired project attributes

using the -Edit option of the aepa command. This will invoke an editor (vi(1) by default) to edit the pro-

ject attributes. Alex edits them to look like this:

description = "Aegis Documentation Example Project";
developer_may_review = false;
developer_may_integrate = false;
reviewer_may_integrate = false;

The project attributes are set as follows:

alex% aepa -edit -p example
...edit as above...

aegis: project "example": attributes changed
alex% ael p
List of Projects

Project Directory Description
------- ----------- -------------
example /projects/example Aegis Documentation Example

Project
alex%

The various staff must be added to the project. Developers are the only staff who may actually edit files.

alex% aend pat jan sam -p example
aegis: project "example": user "pat" is now a developer
aegis: project "example": user "jan" is now a developer
aegis: project "example": user "sam" is now a developer
alex%

Reviewers may veto a change. There may be overlap between the various categories, as show here for Jan:

alex% aenr robyn jan -p example
aegis: project "example": user "robyn" is now a reviewer
aegis: project "example": user "jan" is now a reviewer
alex%

The next role we need to fill is an integrator.

Peter Miller (./doc/c2.4.so) Page 49

User Guide Aegis

alex% aeni isa -p example
aegis: project "example": user "isa" is now an integrator
alex%

Once the staff hav e been given access, Alex creates the first change. The -Edit option of the annc com-

mand is used, to create the attributes of the change. They are edited to look like this:

brief_description = "Create initial skeleton.";
description = "A simple calculator using native \
floating point precision. \
The four basic arithmetic operators to be provided, \
using conventional infix notation. \
Parentheses and negation also required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example
...edit as above...

aegis: project "example": change 1: created
alex%

At this point, Alex walks down the hall to Pat’s office, to ask Pat to develop the first change. Pat has had

some practice using aegis, and can be relied on to do the rest of the project configuration speedily.

3.4.2. The Second Change

Some time later, Alex patiently sits through the whining and grumbling of an especially pedantic user. The

following change description is duly entered:

brief_description = "file names on command line";
description = "Optional input and output files may be \
specified on the command line.";
cause = internal_bug;

The pedantic user wanted to be able to name files on the command line, rather than use I/O redirection.

Also, having a bug in this example is useful. The change is created as follows:

alex% aenc -edit -p example
...edit as above...

aegis: project "example": change 2: created
alex%

At some point a developer will notice this change and start work on it.

3.4.3. The Third Change

Other features are required for the calculator, and also for this example. The second change adds exponen-

tiation to the calculator, and is described as follows:

brief_description = "add powers";
description = "Enhance the grammar to allow exponentiation. \
No error checking required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example
...edit as above...

aegis: project "example": change 3: created
alex%

At some point a developer will notice, and this change will be worked on.

Page 50 (./doc/c2.4.so) Peter Miller

Aegis User Guide

3.4.4. The Fourth Change

A fourth change, this time adding variables to the calculator is added.

brief_description = "add variables";
description = "Enhance the grammar to allow variables. \
Only single letter variable names are required.";
cause = internal_enhancement;

The change is created as follows:

alex% aenc -edit -p example
...edit as above...

aegis: project "example": change 4: created
alex%

At some point a developer will notice, and this change will be worked on.

3.4.5. Administrator Command Summary

Only a few of the aegis commands available to administrators have been used in this example. The follow-

ing table lists the aegis commands most useful to administrators.

Command Description

aeca edit Change Attributes

ael List Stuff

aena New Administrator

aenc New Change

aencu New Change Undo

aend New Dev eloper

aeni New Integrator

aenpr New Project

aenrv New Reviewer

aepa edit Project Attributes

aera Remove Administrator

aerd Remove Dev eloper

aeri Remove Integrator

aermpr Remove Project

aerrv Remove Reviewer

You will want to read the manual entries for all of these commands. Note that all aegis commands have a

−Help option, which will give a result very similar to the corresponding man (1) output. Most aegis com-

mands also have a −List option, which usually lists interesting context sensitive information.

Peter Miller (./doc/c2.0.so) Page 51

User Guide Aegis

3.5. What to do Next

This chapter has given an overview of what using

aegis feels like. As a next step in getting to know

aegis, it would be a good idea if you created a

project and went through this same exercise; you

could use this exact example, or you could use a

similar small project. This idea simply to run

through many of the same steps as in the example.

Typos and other natural events will ensure that

you come across a number of situations not

directly covered by this chapter.

If you have not already done do, a printed copy of

the section 1 and 5 manual entries will be invalu-

able. If you don’t want to use that many trees,

they will be available on-line, by using the

"-Help" option of the appropriate command vari-

ant. Try:

% aedb -help
...manual entry...

%

Note that this example has not demonstrated all of

the available functionality. One item of particular

interest is that tests, like any other source file,

may be copied into a change and modified, or

ev en deleted, just like any other source file.

Page 52 (./doc/c3.0.so) Peter Miller

Aegis User Guide

4. The History Tool

The aegis program is decoupled from the history

mechanism. This allows you to use the history

mechanism of your choice, SCCS or RCS, for

example. You may even wish to write your own.

The intention of this is that you may use a history

mechanism which suits your special needs, or the

one that comes free with your flavour of UNIX

operating system.

The aegis program uses the history mechanism

for file history and so does not require many of

the features of SCCS or RCS. This simplistic

approach can sometimes make the interface to

these utilities look a little strange.

4.1. Interfacing

The history mechanism interface is found in the

project configuration file called config , relative to

the root of the baseline. It is a source file and

subject to the same controls as any other source

file. The history fields of the file are described as

follows

4.1.1. history_create_command

This field is used to create a new history. The

command is always executed as the project owner.

Substitutions available for the command string

are:

${Input}

absolute path of source file

${History}

absolute path of history file

In addition, all substitutions described in aesub(5)

are available.

4.1.2. history_get_command

This field is used to get a file from history. The

command may be executed by developers. Sub-

stitutions available for the command string are:

${History}

absolute path of history file

${Edit}

edit number, as giv en by the history_get_-

command.

${Output}

absolute path of destination file

In addition, all substitutions described in aesub(5)

are available.

4.1.3. history_put_command

This field is used to add a new change to the his-

tory. The command is always executed as the

project owner. Substitutions available for the

command string are:

${Input}

absolute path of source file

${History}

absolute path of history file

In addition, all substitutions described in aesub(5)

are available.

4.1.4. history_query_command

This field is used to query the topmost edit of a

history file. Result to be printed on the standard

output. This command may be executed by

developers. Substitutions available for the com-

mand string are:

${History}

absolute path of history file

In addition, all substitutions described in aesub(5)

are available.

Peter Miller (./doc/c3.1.so) Page 53

User Guide Aegis

4.2. Using SCCS

The entries for the commands are listed below.

SCCS uses a slightly different model than aegis

wants, so some maneuvering is required. The

command strings in this section assume that the

SCCS commands admin and get and delta are in

the command search PATH, but you may like to

hard-wire the paths, or set PATH at the start of

each. You should also note that the strings are

always handed to the Bourne shell to be executed,

and are set to exit with an error immediately a

sub-command fails.

4.2.1. history_create_command

This command is used to create a new project his-

tory. The command is always executed as the

project owner.

The following substitutions are available:

${Input}

absolute path of the source file

${History}

absolute path of the history file

The entry in the config file looks like this:

history_create_command =
"admin -n -i$i -y \
${d $h}/s.${b $h}; \

admin -di ${d $h}/s.${b $h}; \
get -e -t -p -s \
${d $h}/s.${b $h} \
> /dev/null";

Note that the "get -e" is necessary to put the s.file

into the edit state, but the result of the get can be

discarded, because the "admin -i" did not remove

the file.

4.2.2. history_get_command

This command is used to get a specific edit back

from history. The command may be executed by

developers.

The following substitutions are available:

${History}

absolute path of the history file

${Edit}

edit number, as giv en by history_query_-

command

${Output}

absolute path of the destination file

The entry in the config file looks like this:

history_get_command =
"get -r’$e’ -s -p -k \

${d $h}/s.${b $h} > $o";

4.2.3. history_put_command

This command is used to add a new "top-most"

entry to the history file. This command is always

executed as the project owner.

The following substitutions are available:

${Input}

absolute path of source file

${History}

absolute path of history file

The entry in the config file looks like this:

history_put_command =
"cd ${d $i}; \
delta -s -y ${d $h}/s.${b $h}; \
get -e -t -p -s \

${d $h}/s.${b $h} > $i";

Note that the SCCS file is left in the edit state,

and that the source file is left in the baseline.

4.2.4. history_query_command

This command is used to query what the history

mechanism calls the top-most edit of a history

file. The result may be any arbitrary string, it

need not be anything like a number, just so long

as it uniquely identifies the edit for use by the his-

tory_get_command at a later date. The edit num-

ber is to be printed on the standard output. This

command may be executed by developers.

The following substitutions are available:

${History}

absolute path of the history file

The entry in the config file looks like this:

history_query_command =
"get -t -g ${d $h}/s.${b $h} 2>&1";

Note that "get" reports the edit number on stderr.

4.2.5. Templates The lib/config.example/sccs

file in the Aegis distribution contains all of the

above commands, so that you may readily

insert them into your project config file.

Page 54 (./doc/c3.2.so) Peter Miller

Aegis User Guide

4.3. Using RCS

The entries for the commands are listed below.

RCS uses a slightly different model than aegis

wants, so some maneuvering is required. The

command strings in this section assume that the

RCS commands ci and co and rcs and rlog are

in the command search PATH, but you may like to

hard-wire the paths, or set PATH at the start of

each. You should also note that the strings are

always handed to the Bourne shell to be executed,

and are set to exit with an error immediately a

sub-command fails.

In these commands, the RCS file is kept unlocked,

since only the owner will be checking changes in.

The RCS functionality for coordinating shared

access is not required.

One advantage of using RCS version 5.6 or later

is that binary files are supported, should you want

to have binary files in the baseline.

4.3.1. history_create_command

This command is used to create a new file history.

This command is always executed as the project

owner.

The following substitutions are available:

${Input}

absolute path of the source file

${History}

absolute path of the history file

The entry in the config file looks like this:

history_create_command =
"ci -f -u -d -M -m$c -t/dev/null \
$i $h,v; rcs -U $h,v";

The "ci -f" option is used to specify that a

copy is to be checked-in even if there are no

changes. The "ci -u" option is used to specify

that an unlocked copy will remain in the baseline.

The "ci -d" option is used to specify that the

file time rather than the current time is to be used

for the new revision. The "ci -M" option is used

to specify that the mode date on the original file is

not to be altered. The "ci -t" option is used to

specify that there is to be no description text for

the new RCS file. The "ci -m" option is used to

specify that the change number is to be stored in

the file log if this is actually an update (typically

from aenf after aerm on the same file name).

The "rcs -U" option is used to specify that the

new RCS file is to have unstrict locking.

4.3.2. history_get_command

This command is used to get a specific edit back

from history. This command is always executed

as the project owner.

The following substitutions are available:

${History}

absolute path of the history file

${Edit}

edit number, as giv en by history_query_-

command

${Output}

absolute path of the destination file

The entry in the config file looks like this:

history_get_command =
"co -r’$e’ -p $h,v > $o";

The "co -r option is used to specify the edit to

be retrieved. The "co -p option is used to spec-

ify that the results be printed on the standard out-

put; this is because the destination filename will

never look anything like the history source file-

name.

4.3.3. history_put_command

This command is used to add a new "top-most"

entry to the history file. This command is always

executed as the project owner.

The following substitutions are available:

${Input}

absolute path of source file

${History}

absolute path of history file

The entry in the config file looks like this:

history_put_command =
"ci -f -u -d -M -m$c $i $h,v"

/* Uses ci to deposit a new revision, using -d and

-M as described */ /* for his-

tory_create_command. The -m flag stores the

change number */ /* in the file log, which allows

rlog to be used to find the Aegis */ /* change

numbers to which each revision of the file corre-

sponds. */ history_put_command =

"ci -u -d -M -m$c $i $h,v";

The "ci -f" option is used to specify that a

copy is to be checked-in even if there are no

changes. The "ci -u" option is used to specify

that an unlocked copy will remain in the baseline.

The "ci -d" option is used to specify that the

file time rather than the current time is to be used

Peter Miller (./doc/c3.2.so) Page 55

User Guide Aegis

for the new revision. The "ci -M" option is used

to specify that the mode date on the original file is

not to be altered. The "ci -m" option is used to

specify that the change number is to be stored in

the file log, which allows rlog to be used to find

the change numbers to which each revision of the

file corresponds.

It is possible for a a very cautious approach has

been taken, in which case the his-

tory_put_command may be set to the same string

specified above for the

4.3.4. history_query_command

This command is used to query what the history

mechanism calls the top-most edit of a history

file. The result may be any arbitrary string, it

need not be anything like a number, just so long

as it uniquely identifies the edit for use by the his-

tory_get_command at a later date. The edit num-

ber is to be printed on the standard output. This

command is always executed as the project owner.

The following substitutions are available:

${History}

absolute path of the history file

The entry in the config file looks like this:

history_query_command =
"rlog -r $h,v | \
awk ’/ˆhead:/ {print $$2}’";

4.3.5. diff3_command

RCS also provides a merge program, which can

be used to provide a three-way merge.

All of the command substitutions described in

aesub (5) are available. In addition, the following

substitutions are also available:

${ORiginal}

The absolute path name of a file containing

the version originally copied. Usually in a

temporary file.

${Most_Recent}

The absolute path name of a file containing

the most recent version. Usually in the

baseline.

${Input}

The absolute path name of the edited ver-

sion of the file. Usually in the development

directory.

${Output}

The absolute path name of the file in which

to write the difference listing. Usually in

the development directory.

The entry in the config file looks like this:

diff3_command =
"set +e; \
merge -p -L baseline -L C$c \
$mr $orig $in > $out; \
test $? -le 1";

The "merge -L" options are used to spec-

ify labels for the baseline and the development

directory, respectively, when conflict lines are

inserted into the result. The "merge -p"

options is used to specify that the results are to be

printed on the standard output.

A variation found useful by some sites15 is

to replace the source file in the development

directory with the output of the merge.

diff3_command =
"set +e; \
merge -p -L baseline -L C$c \
$mr $orig $in > $out; \
test $? -le 1 && \
mv $input $input,B && \
mv $output $input";

Note that this variation replaces the

$input file with the the result of the merge, in

the hope that conflicts will cause syntax errors if

they are not resolved. The $input file is kept in

a ,B (backup) file for reference by the developer,

if required.

4.3.6. Templates The lib/config.example/rcs file

in the Aegis distribution contains all of the

above commands, so that you may readily

insert them into your project config file.

15 My thanks to Simon Pickup <si-

mon@adacel.com.au> for this suggestion.

Page 56 (./doc/c3.3.so) Peter Miller

Aegis User Guide

4.4. Using fhist

The fhist program was written by David I. Bell

and is admirably suited to providing a history

mechanism with out the "cruft" that SCCS and

RCS impose.

4.4.1. history_create_command

This command is used to create a new project his-

tory. The command is always executed as the

project owner.

The following substitutions are available:

${Input}

absolute path of the source file

${History}

absolute path of the history file

The entry in the config file looks like this:

history_create_command =
"fhist ${b $i} -create -cu -i $i \
-p ${d $h} -r";

4.4.2. history_get_command

This command is used to get a specific edit back

from history. The command may be executed by

developers.

The following substitutions are available:

${History}

absolute path of the history file

${Edit}

edit number, as giv en by history_query_-

command

${Output}

absolute path of the destination file

The entry in the config file looks like this:

history_get_command =
"fhist ${b $h} -e ’$e’ -o $o \
-p ${d $h}";

Note that the destination filename will never look

anything like the history source filename, so the

-p is essential.

4.4.3. history_put_command

This command is used to add a new "top-most"

entry to the history file. This command is always

executed as the project owner.

The following substitutions are available:

${Input}

absolute path of source file

${History}

absolute path of history file

The entry in the config file looks like this:

history_put_command =
"fhist ${b $i} -cu -i $i \
-p ${d $h} -r";

Note that the source file is left in the baseline.

4.4.4. history_query_command

This command is used to query what the history

mechanism calls the "top-most" edit of a history

file. The result may be any arbitrary string, it

need not be anything like a number, just so long

as it uniquely identifies the edit for use by the his-

tory_get_command at a later date. The edit num-

ber is to be printed on the standard output. This

command may be executed by developers.

The following substitutions are available:

${History}

absolute path of the history file

The entry in the config file looks like this:

history_query_command =
"fhist ${b $h} -l 0 \
-p ${d $h} -q";

4.4.5. Templates The lib/config.example/fhist

file in the Aegis distribution contains all of the

above commands, so that you may readily

insert them into your project config file.

Peter Miller (./doc/c4.0.so) Page 57

User Guide Aegis

5. The Dependency Maintenance Tool

The aegis program places heavy demands on the

dependency maintenance tool, so it is important

that you select an appropriate one. This chapter

talks about what a dependency tool requires, and

gives examples of how to use the various alterna-

tives.

At this writing, the author has seen few suffi-

ciently capable dependency maintenance tools.

5.1. Required Features

When selecting a Dependency Maintenance Tool

it is important to keep in mind that, ideally, it

must be able to cope with a hierarchy of parallel

source directory trees.

The heart of any DMT is an inference engine.

This inference engine accepts a goal of what you

want it to construct and a set of rules for how to

construct things, and attempts to construct what

you asked for given the rules you specified. This

is exactly a description of an expert system, and

the DMT needs to be an expert system for con-

structing files.

This perspective on what the aegis program needs

from a DMT reveals that the old-faithful make(1)

distributed with so many flavours of UNIX really

isn’t good enough, and that something like PRO-

LOG is probably ideal.

5.1.1. Search Lists

For the union of all files in a project and all files

in a change (remembering that a change only

copies those files it is modifying, plus it may add

or remove files) for all files you must be able to

say to the dependency maintenance tool,

"If and only if the file is up-to-date in

the baseline, use the baseline copy of

the file, otherwise construct the file in

the development directory".

The presence of a source file in the change makes

the copy in the baseline out-of-date.

Most DMTs with this capability implement it by

using some sort of search path, allowing a hierar-

chy of directories to be scanned with little or no

modification to the rules.

If your DMT of choice does not provide this func-

tionality, the create_symlinks_before_build field

of the project config file may be set to which tells

aegis to maintain symbolic links in the develop-

ment directory for all files in the baseline which

are not present in the development directory. (See

and for more information.) This incurs a certain

amount of overhead when aegis maintains these

links, but a similar amount of work is done within

DMTs which have search path functionality.

5.1.2. Dynamic Include File Dependencies

Include file dependencies are very important,

because a change may alter an include file, and all

of the sources in the baseline which use that

include file must be recompiled.

Consider the example given earlier: the include

file describing the interface definition of a func-

tion is copied into a change and edited, and so is

the source file defining the function. It is essen-

tial that all source files in the baseline which

include that file re recompiled, which will usually

result in suitable diagnostic errors if any of the

clients of the altered function have yet to be

included in the change.

There are two ways of handling include file

dependencies:

• They can be kept in a file, and the file can be

maintained by suitable programs (maintaining it

manually never works, that’s just human nature).

• They can be determined by the DMT when it is

scanning the rules to determine what needs updat-

ing.

5.1.2.1. Static File

Keeping include dependencies in a file has a num-

ber of advantages:

• Most existing DMTs have the ability to include

other rules files, so that when performing a devel-

opment build from a baseline rules file, it could

include a dependencies file in the development

directory.

• Reading a file is much faster than scanning all of

the source files.

Keeping include dependencies in a file has a num-

ber of disadvantages:

• The file is independent of the DMT, it is either

generated before the DMT is invoked, in which

case it may do more work than is necessary, or it

may be invoked after the DMT (or after the DMT

has scanned its rules), in which case it may well

be out-of-date when the DMT needs it.

For example, the use of gcc -M produces "dot d"

files, which may be merged to construct such an

includable dependency file. This happens after

the DMT has read and applied the rules, but pos-

sibly before the DMT has finished executing.16

16 See the Using Make section for how GNU Make

may be used. It effectively combines both methods:

Page 58 (./doc/c4.1.so) Peter Miller

Aegis User Guide

• Many tools which can generate this information,

such as the gcc -M option, are triggered by source

files, and are unable to manage a case where it is

an include file which is changing, to include a dif-

ferent set of other include files. In this case, the

inaccurate dependencies file may contain refer-

ences to the old set of nested include files, some

of which may no longer exist, This causes the

DMT to incorrectly generate an error stating that

the old include file is missing, when it is actually

no longer required.

If a DMT can only support this kind of include

file dependencies, it is not suitable for use with

aegis.

5.1.2.2. Dynamic

In order for a DMT to be suitable for use with

aegis, it is essential that rules for the DMT may

be specified in such a way that include file depen-

dencies are determined "on the fly" when the

DMT is determining if a given rule is applicable,

and before the rule is applied.

This method suffers from the problem being

rather slow; but this is amenable to some caching

and the losses of performance are not as bad as

could be imagined.

This method has the advantage of correctness in

all cases, where a static file may at times be out-

of-date.

keeping .d files and dynamically updating them. Because

it combines both methods, it has some of the advantages

and disadvantages of both.

Peter Miller (./doc/c4.2.so) Page 59

User Guide Aegis

5.2. Using Cook

The cook program is the only dependency main-

tenance tool, known to the author, which is suffi-

ciently capable to supply aegis’ needs.17 Tools

such as cake and GNU Make are described later.

They need a special tweak to make them work.

This section describes appropriate contents for the

Howto.cook file, input to the cook (1) program. It

also discusses the build_command and

integrate_build_command and link_baseline and

change_file_command and project_file_command

and link_integration_directory fields of the con-

fig file. See aepconf (5) for more information

about this file.

5.2.1. Invoking Cook

The build_command field of the config file is

used to invoke the relevant build command. In

this case, it is set as follows

build_command =
"cook -b ${s Howto.cook} -nl\
project=$p change=$c version=$v";

This command tells cook where to find the

recipes. The ${s Howto.cook} expands to a

path into the baseline during development if the

file is not in the change. Look in aesub (5) for

more information about command substitutions.

The recipes which follow will all remove their tar-

gets before constructing them, which qualifies

them for the next entry in the config file:

link_integration_directory = true;

The files must be removed first, otherwise the

baseline would cease to be self-consistent.

5.2.2. The Recipe File

The file containing the recipes is called

Howto.cook and is given to cook on the command

line.

The following items are preamble to the rest of

the file; they ask aegis for the source files of the

project and change so that cook can determine

what needs to be compiled and linked.

17 The version in use when writing this section was

1.5. All versions from 1.3 onwards are known to work

with the recipes described here.

project_files =
[collect aegis -l pf -terse

-p [project] -c [change]];
change_files =

[collect aegis -l cf -terse
-p [project] -c [change]];

source_files =
[sort [project_files]

[change_files]];

This example continues the one from chapter 3,

and thus has a single executable to be linked from

all the object files

object_files =
[fromto %.y %.o [match_mask %.y

[source_files]]]
[fromto %.l %.o [match_mask %.l

[source_files]]]
[fromto %.c %.o [match_mask %.c

[source_files]]]
;

It is necessary to determine if this is a develop-

ment build, and thus has the baseline for addi-

tional ingredients searches, or an integration

build, which does not. The version supplied by

aegis will tell us this information, because it will

be major.minor.Cchange for development builds

and major.minor.Ddelta for integration builds.

if [match_mask %1C%2 [version]] then
{

baseline = [collect aegis -cd -bl
-p [project]];

search_list = . [baseline];
}

The search_list variable in cook is the list of

directories to search for dependencies; it defaults

to only the current directory. The resolve builtin

function of cook may be used to ask cook for the

name of the file actually used to resolve depen-

dencies, so that recipe bodies may reference the

appropriate file:

example: [object_files]
{

[cc] -o example
[resolve [object_files]]
-ly -ll;

}

This recipe says that to cook the example pro-

gram, you need the object files determined earlier,

and them link them together. Object files which

were up to date in the baseline are used wherever

possible, but files which were out of date are con-

structed in the current directory and those will be

linked.

Page 60 (./doc/c4.2.so) Peter Miller

Aegis User Guide

5.2.3. The Recipe for C

Next we need to tell cook how to manage C

sources. On the surface, this is a simple recipe:

%.o: %.c
{
rm %.o;
[cc] [cc_flags] -c %.c;

}

Unfortunately it has forgotten about finding the

include file dependencies. The cook package

includes a program called c_incl which is used to

find them. The recipe now becomes

%.o: %.c: [collect c_incl -eia %.c]
{
rm %.o;
[cc] [cc_flags] -c %.c;

}

The file may not always be present to be removed

(causing a fatal error), and it is irritating to

execute a redundant command, so the remove is

mangled to look like this:

%.o: %.c: [collect c_incl -eia %.c]
{
if [exists %.o] then
rm %.o

set clearstat;
[cc] [cc_flags] -c %.c;

}

The "set clearstat" clause tells cook that the com-

mand will invalidate parts of its stat cache, and to

look at the command for what to invalidate.

Another thing this recipe needs is to use the base-

line for include files not in a change, and so the

recipe is altered again:

%.o: %.c: [collect c_incl -eia
[prepost "-I" "" [search_list]]
%.c]

{
if [exists %.o] then

rm %.o
set clearstat;

[cc] [cc_flags] [prepost "-I" ""
[search_list]] -c %.c;

}

See the Cook Reference Manual for a description

of the prepost builtin function, and other cook

details.

There is one last change that must be made to this

recipe, it must use the resolve function to refer-

ence the appropriate file once cook has found it

on the search list:

%.o: %.c: [collect c_incl -eia
[prepost "-I" "" [search_list]]

[resolve %.c]]
{

if [exists %.o] then
rm %.o

set clearstat;
[cc] [cc_flags] [prepost "-I" ""

[search_list]] -c [resolve %.c];
}

Only use this last recipe for C sources, the others

are only shown so that the derivation of the recipe

is clear; while it is very similar to the original, it

looks daunting at first.

5.2.3.1. C Include Semantics

The semantics of C include directives make the

#include "filename"

directive dangerous in a project developed with

the aegis program and cook.

Depending on the age of your compiler, whether

it is AT&T traditional C or newer ANSI C, this

form of directive will search first in the current

directory and then along the search path, or in the

directory of the including file and then along the

search path.

The first case is fairly benign, except that compil-

ers are rapidly becoming ANSI C compliant, and

an operating system upgrade could result in a

nasty surprise.

The second case is bad news. If the source file is

in the baseline and the include file is in the

change, you don’t want the source file to use the

include file in the baseline.

Always use the

#include <filename>

form of the include directive, and set the include

search path explicitly on the command line used

by cook.

Cook is able to dynamically adapt to include file

dependencies, because they are not static. The

presence of an include file in a change means that

any file which includes this include file, whether

that source file is in the baseline or in the change,

must have a dependency on the change’s include

file. Potentially, files in the baseline will need to

be recompiled, and the object file stored in the

change, not the baseline. Subsequent linking

needs to pick up the object file in the change, not

from the baseline.

Peter Miller (./doc/c4.2.so) Page 61

User Guide Aegis

5.2.4. The Recipe for Yacc

Having explained the complexities of the recipes

in the above section about C, the recipe for yacc

will be given without delay:

%.c %.h: %.y
{
if [exists %.c] then
rm %.c
set clearstat;

if [exists %.h] then
rm %.h
set clearstat;

[yacc] [yacc_flags] -d
[resolve %.y];

mv y.tab.c %.c;
mv y.tab.h %.h;

}

This recipe could be jazzed up to cope with the

listing file, too, if that was desired, but this is suf-

ficient to work with the example.

Cook’s ability to cope with transitive dependen-

cies will pick up the generated .c file and con-

struct the necessary .o file.

5.2.5. The Recipe for Lex

The recipe for lex is vary similar to the recipe for

yacc.

%.c: %.l
{
if [exists %.c] then
rm %.c
set clearstat;

[lex] [lex_flags] -d [resolve %.l];
mv lex.yy.c %.c;

}

Cook’s ability to cope with transitive dependen-

cies will pick up the generated .c file and con-

struct the necessary .o file.

5.2.6. Recipes for Documents

You can format documents, such as user guides

and manual entries with aegis and cook, and the

recipes are similar to the ones above.

%.ps: %.ms: [collect c_incl -r -eia
[prepost "-I" "" [search_list]]
[resolve %.ms]]

{
if [exists %.ps] then
rm %.ps

set clearstat;
roffpp [prepost "-I" ""
[search_list]] [resolve %.ms]
| groff -p -t -ms
> [target];

}

This recipe says to run the document through

groff, with the pic (1) and tbl (1) filters, use the

ms (7) macro package, to produce PostScript out-

put. The roffpp program comes with cook, and is

like soelim (1) but it accepts include search path

options on the command line.

Manual entries may be handled in a similar way

%.cat: %.man: [collect c_incl -r -eia
[prepost "-I" "" [search_list]]
[resolve %.man]]

{
if [exists %.cat] then

rm %.cat
set clearstat;

roffpp [prepost "-I" ""
[search_list]] [resolve %.man]
| groff -Tascii -t -man
> [target];

}

5.2.7. Templates The lib/config.example/cook

file in the Aegis distribution contains all of the

above commands, so that you may readily

insert them into your project config file.

Page 62 (./doc/c4.3.so) Peter Miller

Aegis User Guide

5.3. Using Cake

This section describes how to use cake as the

dependency maintenance tool. The cake package

was published in the comp.sources.unix USENET

newsgroup volume 12, around February 1988,

and is thus easily accessible from the many

archives around the internet.

It does not have a search path of any form,

not even something like VPATH . It does, how-

ev er, hav e facilities for dynamic include file

dependencies.

5.3.1. Invoking Cake

The build_command field of the config file is

used to invoke the relevant build command. In

this case, it is set as follows

build_command =
"cake -f ${s Cakefile} \
-DPROJECT=$p -DCHANGE=$c \
-DVERSION=$v";

This command tells cake where to find the rules.

The ${s Cakefile} expands to a path into the

baseline during development if the file is not in

the change. Look in aesub (5) for more informa-

tion about command substitutions.

The rules which follow will all remove their tar-

gets before constructing them, which qualifies

them for the next entry in the config file:

link_integration_directory = true;

The files must be removed first, otherwise the

baseline would cease to be self-consistent.

Another field to be set in this file is

create_symlinks_before_build =
true;

which tells aegis to maintain symbolic links

between the development directory and the

basline. This also requires that rules remove their

targest before constructing them, to ensure that

rules do not attempt to write their results onto the

read-only versions in the baseline.

5.3.2. The Rules File

The file containing the rules is called Cakefile and

is given to cake on the command line.

The following items are preamble to the rest of

the file; they ask aegis for the source files of the

project and change so that cake can determine

what needs to be compiled and linked.

#define project_files \
[[aegis -l pf -terse -p PROJECT \
-c CHANGE]];

#define change_files \
[[aegis -l cf -terse -p PROJECT \
-c CHANGE]];

#define source_files \
project_files change_files

#define CC gcc
#define CFLAGS -O

This example parallels the one from chapter 3,

and thus has a single executable to be linked from

all the object files

#define object_files \
[[sub -i X.c %.o source_files]] \
[[sub -i X.y %.o source_files]] \
[[sub -i X.l %.o source_files]]

Constructing the program is straightforward

example: object_files
rm -f example
CC -o example object_files

This rule says that to construct the example pro-

gram, you need the object files determined earlier,

and them link them together. Object files which

were up to date in the baseline are used wherever

possible, but files which were out of date are con-

structed in the current directory and those will be

linked.

5.3.3. The Rule for C

Next we need to tell cake how to manage C

sources. On the surface, this is a simple rule:

%.o: %.c
CC CFLAGS -c %.c

paralleling that found in most makes, however it

needs to delete the target first, and to avoid delet-

ing the .o file whenever cake thinks it is transitive.

%.o!: %.c
rm -f %.o
CC CFLAGS -c %.c

The -f option to the rm command is because the

file does not always exist.

Unfortunately this rule omits finding the include

file dependencies. The cake package includes a

program called ccincl which is used to find them.

The rule now becomes

%.o!: %.c* [[ccincl %.c]]
rm -f %.o
CC CFLAGS -c %.c

This rule is a little quirky about include files

Peter Miller (./doc/c4.3.so) Page 63

User Guide Aegis

which do not yet exists, but must be constructed

by some other rule. You may want to use gcc

-MM instead, which is almost as quirky when

used with cake. Another alternative, used by the

author with far more success, is to use the c_incl

program from the cook package, mentioned in an

earlier section. The gcc -MM understands C

include semantics perfectly, the c_incl command

caches its results and thus goes faster, so you will

need to figure which you most want.

5.3.3.1. Include Directives

Unlike cook described in an earlier section, using

cake as described here allows you to continue

using the

#include "filename"

form of the include directive. This is because the

development directory appears, to the compiler, to

be a complete copy of the baseline.

5.3.4. The Rule for Yacc

Having explained the complexities of the rules in

the above section about C, the rule for yacc will

be given without delay:

#define YACC yacc
#define YFLAGS

%.c! %.h!: %.y if exist %.y
rm -f %.c %.h y.tab.c y.tab.h
YACC YFLAGS -d %.y
mv y.tab.c %.c
mv y.tab.h %.h

This rule could be jazzed up to cope with the list-

ing file, too, if that was desired, but this is suffi-

cient to work with the example.

Cake’s ability to cope with transitive dependen-

cies will pick up the generated .c file and con-

struct the necessary .o file.

5.3.5. The Rule for Lex

The rule for lex is vary similar to the rule for

yacc.

#define LEX lex
#define LFLAGS

%.c!: %.l if exist %.l
rm -f %.c
LEX LFLAGS %.l
mv lex.yy.c %.c

Cake’s ability to cope with transitive dependen-

cies will pick up the generated .c file and con-

struct the necessary .o file.

5.3.6. Rules for Documents

You can format documents, such as user guides

and manual entries with aegis and cake, and the

rules are similar to the ones above.

%.ps!: %.ms* [[soincl %.ms]]
rm -f %.ps
groff -s -p -t -ms %.ms > %.ps

This rule says to run the document through groff,

with the soelim (1) and pic (1) and tbl (1) filters,

use the ms (7) macro package, to produce

PostScript output.

This suffers from many of the problems with

include files which need to be generated, as does

the C rule, above. You may want to use c_incl -r

from the cook package, rather than the soincl sup-

plied by the cake package.

Manual entries may be handled in a similar way

%.cat!: %.man* [[soincl %.man]]
rm -f %.cat
groff -Tascii -s -t -man %.man \

> %.cat

Page 64 (./doc/c4.4.so) Peter Miller

Aegis User Guide

5.4. Using Make

The program exists in many forms, usually one is

available with each UNIX version. The one used

in the writing of this section is GNU Make 3.70 ,

available by anonymous FTP from your nearest

GNU archive site. GNU Make was chosen

because it was the most powerful, it is widely

available (usually for little or no cost) and discus-

sion of the alternatives (SunOS make, BSD 4.3

make, etc), would not be universally applicable.

"Plain vanilla" make (with no transitive closure,

no pattern rules, no functions) is not sufficiently

capable to satisfy the demands placed on it by

aegis.

As mentioned earlier in this chapter, make is not

really sufficient, because it lacks dynamic include

dependencies. However, GNU Make has a form

of dynamic include dependencies, and it has a few

quirks, but mostly works well.

The other feature lacking in make is a search

path. While GNU Make has functionality called

VPATH , the implementation leaves something to

be desired, and can’t be used for the search path

functionality required by aegis. Because of this,

the create_symlinks_before_build field of the pro-

ject config file is set to true so that aegis will

arrange for the development directory to be full of

symbolic links, making it appear that the entire

project is in each change’s dev elopment directory.

5.4.1. Invoking Make

The build_command field of the project config

file is used to invoke the relevant build command.

In this case, it is set as follows

build_command =
"gmake -f ${s Makefile} project=$p \
change=$c version=$v";

This command tells make where to find the rules.

The ${s Makefile} expands to a path into the

baseline during development if the file is not in

the change. Look in aesub (5) for more informa-

tion about command substitutions.

The rules which follow will all remove their tar-

gets before constructing them, which qualifies

them for the next entry in the config file:

link_integration_directory = true;

The files must be removed first, otherwise the

baseline would cease to be self-consistent.

Another field to be set in this file is

create_symlinks_before_build =
true;

which tells aegis to maintain symbolic links

between the development directory and the base-

line. This also requires that rules remove their

targets before constructing them, to ensure that

rules do not attempt to write their results onto the

read-only versions in the baseline.

5.4.2. The Rule File

The file containing the rules is called Makefile

and is given to make on the command line.

The following items are preamble to the rest of

the file; they ask aegis for the source files of the

project and change so that make can determine

what needs to be compiled and linked.

project_files := \
$(shell aegis -l pf -terse -p \

$(project) -c $(change))
change_files := \

$(shell aegis -l cf -terse -p \
$(project) -c $(change))

source_files := \
$(sort $(project_files) \

$(change_files))
CC := gcc
CFLAGS := -O

This example parallels the one from chapter 3,

and thus has a single executable to be linked from

all the object files

object_files := \
$(patsubst %.y,%.o,$(filter \

%.y,$(source_files))) \
$(patsubst %.l,%.o,$(filter \

%.l,$(source_files))) \
$(patsubst %.c,%.o,$(filter \

%.c,$(source_files)))

Constructing the program is straightforward,

remembering to remove the target first.

example: $(object_files)
rm -f example
$(CC) -o example $(object_files) \

-ly -ll

This rule says that to make the example program,

you need the object files determined earlier, and

them link them together. Object files which were

up to date in the baseline are used wherever possi-

ble, but files which were out of date are con-

structed in the current directory and those will be

linked.

Peter Miller (./doc/c4.4.so) Page 65

User Guide Aegis

5.4.3. The Rule for C

Next we need to tell make how to manage C

sources. On the surface, this is a simple rule:

%.o: %.c
$(CC) $(CFLAGS) -c $*.c

This example matches the built-in rule for most

makes. But it forgets to remove the target before

constructing it.

%.o: %.c
rm -f $*.o
$(CC) $(CFLAGS) -c $*.c

The target may not yet exist, hence the -f option.

Something missing from this rule is finding the

include file dependencies. The GNU Make User

Guide describes a method for obtaining include

file dependencies. A set of dependency files are

constructed, one per .c file.

%.d: %.c
rm -f %.d
$(CC) $(CFLAGS) -MM $*.c \
| sed ’s/ˆ\(.*\).o :/\1.o \1.d :/’ \
> $*.d

These dependency files are then included into the

Makefile to inform GNU Make of the dependen-

cies.

include $(patsubst \
%.o,%.d,$(object_files))

GNU Make has the property of making sure all its

include files are up-to-date. If any are not, they

are made, and then GNU Make starts over, and re-

reads the Makefile and the include files from

scratch, before proceeding with the operation

requested. In this case, it means that our depen-

dency construction rule will be applied before any

of the sources are constructed.

This method is occasionally quirky about absent

include files which you have yet to write, or

which are generated and don’t yet exist, but this is

usually easily corrected, though you do need to

watch out for things which will stall an integra-

tion (because the integrator will not have write

permission on the integration directory).

The -MM option to the $(CC) command means

that this rule requires the gcc program in order to

work correctly. It may be possible to use

c_incl (1) from cook, or ccincl (1) from cake to

build the dependency lists instead; but they don’t

understand the conditional preprocessing as well

as gcc does.

This method also suffers when heterogeneous

development is performed. If you include differ-

ent files, depending on the environment being

compiled within, the .d files may be incorrect, and

GNU Make has no way of knowing this.

5.4.3.1. Include Directives

Unlike cook described in an earlier section, using

GNU Make as described here allows you to con-

tinue using the

#include "filename"

form of the include directive. This is because the

development directory appears, to the compiler, to

be a complete copy of the baseline.

5.4.4. The Rule for Yacc

Having explained the complexities of the rules in

the above section about C, the rule for yacc will

be given without delay:

%.c %.h: %.y
rm -f $*.c $*.h y.tab.c y.tab.h
$(YACC) $(YFLAGS) -d $*.y
mv y.tab.c $*.c
mv y.tab.h $*.h

This rule could be jazzed up to cope with the list-

ing file, too, if that was desired, but this is suffi-

cient to work with the example.

GNU Make’s ability to cope with transitive clo-

sure will pick up the generated .c file and con-

struct the necessary .o file.

To prevent GNU Make throwing away the transi-

tive files, and thus slowing things down in some

cases, make them precious:

.PRECIOUS: \
$(patsubst %.y,%.c,$(filter \

%.y,$(source_files))) \
$(patsubst %.y,%.h,$(filter \

%.y,$(source_files)))

5.4.5. The Rule for Lex

The rule for lex is vary similar to the rule for

yacc.

%.c: %.l
rm -f $*.c lex.yy.c
$(LEX) $(LFLAGS) $*.l
mv lex.yy.c $*.c

GNU Make’s ability to cope with transitive clo-

sure will pick up the generated .c file and con-

struct the necessary .o file.

To prevent GNU Make throwing away the transi-

tive files, and thus slowing things down in some

cases, make them precious:

Page 66 (./doc/c4.4.so) Peter Miller

Aegis User Guide

.PRECIOUS: \
$(patsubst %.l,%.c,$(filter \
%.l,$(source_files)))

5.4.6. Rules for Documents

You can format documents, such as user guides

and manual entries with aegis and GNU Make,

and the rules are similar to the ones above.

%.ps: %.ms
rm -f $*.ps
groff -p -t -ms $*.ms > $*.ps

This rule says to run the document through groff,

with the pic (1) and tbl (1) filters, use the ms (7)

macro package, to produce PostScript output.

This omits include file dependencies. If this is

important to you, the c_incl program from cook

can be used to find them. Filtering its output can

then produce the necessary dependency files to be

included, rather like the C rules, above.

Manual entries may be handled in a similar way

%.cat: %.man
rm $*.cat
groff -Tascii -s -t -man $*.man \
> $*.cat

5.4.7. Other Makes

All of the above discussion assumes that GNU

Make and GCC are used. If you do not want to

do this, or may not do this because of internal

company politics, it is possible to perform all of

the automated features manually.

This may, howev er, rapidly become spectacularly

tedious. For example: if a user needs to copy the

Makefile into their change for any reason, they

will need to constantly use aed (1) to "catch up"

with integrations into the baseline.

Reviewers are also affected: they must check that

each change to the Makefile accurately reflects

the object list and the dependencies of each

source file.

5.4.8. Templates The lib/config.example/make

file in the Aegis distribution contains all of the

above commands, so that you may readily

insert them into your project config file.

Peter Miller (./doc/c8.0.so) Page 67

User Guide Aegis

6. The Difference Tools

This chapter describes the difference commands

in the project configuration file. Usually these

commands are used by the aegis -DIFFerence

command when differencing files, but they may

be used to accomplish some other things.

6.1. Interfacing

The build commands are accessed from two fields

of the project configuration file (config).

6.1.1. diff_command

This command is used by aed (1) to produce a dif-

ference listing when file in the development direc-

tory was originally copied from the current ver-

sion in the baseline18.

All of the command substitutions described in

aesub (5) are available. In addition, the following

substitutions are also available:

${ORiginal}

The absolute path name of a file containing

the version originally copied. Usually in

the baseline.

${Input}

The absolute path name of the edited ver-

sion of the file. Usually in the development

directory.

${Output}

The absolute path name of the file in which

to write the difference listing. Usually in

the development directory.

An exit status of 0 means successful, even of the

files differ (and they usually do). An exit status

which is non-zero means something is wrong.

The non-zero exit status may be used to overload

this command with extra tests, such as line length

limits. The difference files must be produced in

addition to these extra tests.

6.1.2. diff3_command

This command is used by aed (1) to produce a dif-

ference listing when file in the development direc-

tory is out of date compared to the current version

in the baseline.

All of the command substitutions described in

aesub (5) are available. In addition, the following

substitutions are also available:

18 Or this is logically the case.

${ORiginal}

The absolute path name of a file containing

the version originally copied. Usually in a

temporary file.

${Most_Recent}

The absolute path name of a file containing

the most recent version. Usually in the

baseline.

${Input}

The absolute path name of the edited ver-

sion of the file. Usually in the development

directory.

${Output}

The absolute path name of the file in which

to write the difference listing. Usually in

the development directory.

An exit status of 0 means successful, even of the

files differ (and they usually do). An exit status

which is non-zero means something is wrong.

Page 68 (./doc/c8.2.so) Peter Miller

Aegis User Guide

6.2. Using diff and diff3

These two tools are available with most flavours

of UNIX, but often in a very limited form. One

severe limitation is the diff3 (1) command, which

often can only cope with 200 lines of differences.

The best alternative is to use GNU diff, with con-

text differences available, and a far more robust

diff3.

See the earlier Interfacing section for substitution

details.

6.2.1. diff_command

The entry in the config file looks like this:

diff_command =
"set +e; diff -c $original \
$input > $output; test $? -le 1";

This needs a little explanation:

• This command is always executed with the

shell’s -e option enabled, causing the shell to exit

on the first error. The "set +e" turns this off.

• The diff (1) command exits with a status of 0 if

the files are identical, and a status of 1 if they dif-

fer. Any other status means something horrible

happened. The "test" command is used to change

this to the exit status aegis expects.

6.2.2. diff3_command

The entry in the config file looks like this:

diff3_command =
"(diff3 -e $MostRecent $original \
$input | sed -e ’/ˆw$$/d’ -e \
’/ˆq$$/d’; echo ’1,$$p’) | ed - \
$MostRecent > $output";

This needs a lot of explanation.

• The diff3 (1) command is used to produce an

edit script that will incorporate into $MostRecent,

all the changes between $original and $input.

• The sed (1) command is used to remove the

"write" and "quit" commands from the generated

edit script.

• The ed (1) command is used to apply the gener-

ated edit script to the $MostRecent file, and print

the results on the standard output, which are redi-

rected into the $output file.

6.3. Using fhist

The fhist program by David I. Bell also comes

with two other utilities, fcomp and fmerge , which

use the same minimal difference algorithm.

See the earlier Interfacing section for substitution

details.

6.3.1. diff_command

The entry in the config file looks like this:

diff_command =
"fcomp -w $original $input \
-o $output";

The -w option produces an output of the entire

file, with insertions an deletions marked by

"change bars" in the left margin. This is superior

to context difference, as it shows the entire file as

context.

For more information, see the fcomp (1) manual

entry.

6.3.2. diff3_command

The entry in the config file looks like this:

diff3_command =
"fmerge $original $MostRecent \
$input -o $output -c /dev/null";

The output of this command is similar to the out-

put of the diff3_command in the last section.

Conflicts are marked in the output. For more

information, see the fmerge (1) manual entry.

Peter Miller (./doc/c5.0.so) Page 69

User Guide Aegis

7. The Project Attributes

The project attributes are manipulated using the

aepa (1) command. This command reads a pro-

ject attributes file to set the project attributes.

This file can be thought of as having several sec-

tions, each of which will be covered by this chap-

ter. You should see the aepattr (5) manual entry

for more details.

7.1. Description and Access

The description field is a string which contains a

description of the project. Large amounts of

prose are not required; a single line is sufficient.

The default_development_directory field is a

string which contains the pathname of where to

place new dev elopment directories. The path-

name must be absolute. This field is only con-

sulted if the uconf (5) field of the same name is

not set. Defaults to $HOME .

The umask field is an integer which is set to the

file permission mode mask. See umask (2) for

more information. This value will always be

OR’ed with 022, because aegis is paranoid.

7.2. Notification Commands

The develop_end_notify_command field is a

string which contains a command to be used to

notify that a change requires reviewing. All of

the substitutions described in aesub (5) are avail-

able. This field is optional, if it is not specified no

notification will be issued. This command could

also be used to notify other management systems,

such as progress and defect tracking, in addition

to notifying users.

The develop_end_undo_notify_command field is

a string containing a command used to notify that

a change has been withdrawn from review for fur-

ther development. All of the substitutions

described in aesub (5) are available. This field is

optional, if it is not specified no notification will

be issued. This command could also be used to

notify other management systems, such as

progress and defect tracking, in addition to notify-

ing users.

The re view_pass_notify_command field is a

string containing the command to notify that the

review has passed. All of the substitutions

described in aesub (5) are available. This field is

optional, if it is not specified no notification will

be issued. This command could also be used to

notify other management systems, such as

progress and defect tracking, in addition to notify-

ing users.

The re view_pass_undo_notify_command field is a

string containing the command to notify that a

review pass has has been rescinded. All of the

substitutions described in aesub (5) are available.

This field is optional, and defaults to the

develop_end_notify_command field if not speci-

fied. If neither is specified, no notification will be

issued. This command could also be used to

notify other management systems, such as

progress and defect tracking, in addition to notify-

ing users.

The re view_fail_notify_command field is a string

containing the command to notify that the review

has failed. All of the substitutions described in

aesub (5) are available. This field is optional, if it

is not specified no notification will be issued.

This command could also be used to notify other

management systems, such as progress and defect

tracking, in addition to notifying users.

The integrate_pass_notify_command field is a

string containing the command to notify that the

integration has passed. All of the substitutions

described in aesub (5) are available. This field is

optional, if it is not specified no notification will

be issued. This command could also be used to

notify other management systems, such as

progress and defect tracking, in addition to notify-

ing users.

The integrate_fail_notify_command field is a

string containing the command to notify that the

integration has failed. All of the substitutions

described in aesub (5) are available. This field is

optional, if it is not specified no notification will

be issued. This command could also be used to

notify other management systems, such as

progress and defect tracking, in addition to notify-

ing users.

7.2.1. Notification by email

The aegis command is distributed with a set of

shell scripts to perform these notifications by

email. They are installed into the

/usr/local/lib/aegis directory, by default; the

actual installed directory at your site is available

as the ${LIBrary} substitution. The entries in the

project attribute file look like this:

Page 70 (./doc/c5.0.so) Peter Miller

Aegis User Guide

develop_end_notify_command =
"sh $lib/de.sh $project $change \
$developer";

develop_end_undo_notify_command =
"sh $lib/deu.sh $project $change \
$developer";

review_pass_notify_command =
"sh $lib/rp.sh $project $change \
$developer $reviewer";

review_pass_undo_notify_command =
"sh $lib/rpu.sh $project $change \
$developer $reviewer";

review_fail_notify_command =
"sh $lib/rf.sh $project $change \
$developer $reviewer";

integrate_pass_notify_command =
"sh $lib/ip.sh $project $change \
$developer $reviewer $integrator";

integrate_fail_notify_command =
"sh $lib/if.sh $project $change \
$developer $reviewer $integrator";

7.2.2. Notification by USENET

The aegis command is distributed with a set of

shell scripts to perform these notifications by

USENET. They are installed into the

/usr/local/lib/aegis directory, by default; the

actual installed directory at your site is available

as the ${LIBrary} substitution. The entries in the

project attribute file look like this:

develop_end_notify_command =
"sh $lib/de.inews.sh $p $c alt.$p";

develop_end_undo_notify_command =
"sh $lib/deu.inews.sh $p $c alt.$p";

review_pass_notify_command =
"sh $lib/rp.inews.sh $p $c alt.$p";

review_pass_undo_notify_command =
"sh $lib/rpu.inews.sh $p $c alt.$p";

review_fail_notify_command =
"sh $lib/rf.inews.sh $p $c alt.$p";

integrate_pass_notify_command =
"sh $lib/ip.inews.sh $p $c alt.$p";

integrate_fail_notify_command =
"sh $lib/if.inews.sh $p $c alt.$p";

The last argument to each command is the news-

group to post the article in, you may want to use

some other group. Note that "$p" is an abbrevia-

tion for "$project" and "$c" is an abbreviation for

"$change".

7.3. Exemption Controls

The developer_may_review field is a boolean. If

this field is true, then a developer may review her

own change. This is probably only a good idea

for projects of less than 3 people. The idea is for

as many people as possible to critically examine a

change.

The developer_may_integrate field is a boolean.

If this field is true, then a developer may integrate

her own change. This is probably only a good

idea for projects of less than 3 people. The idea is

for as many people as possible to critically exam-

ine a change.

The re viewer_may_integrate field is a boolean. If

this field is true, then a reviewer may integrate a

change she reviewed. This is probably only a

good idea for projects of less than 3 people. The

idea is for as many people as possible to critically

examine a change.

The developers_may_create_changes field is a

boolean. This field is true if developers may cre-

ated changes, in addition to administrators. This

tends to be a very useful thing, since developers

find most of the bugs.

The default_test_exemption field is a boolean.

This field contains what to do when a change is

created with no test exemption specified. The

default is "false", i.e. no testing exemption, tests

must be provided.

This kind of blanket exemption should only be set

when a project has absolutely no functionality

available from the command line; examples

include X11 programs. The program could possi-

bly be improved by providing access to the func-

tionality from the command line, thus allowing

tests to be written.

7.3.1. One Person Projects

The entries in the project attributes file for a one

person project look like this:

developer_may_review = true;
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

All of the staff roles (administrator, dev eloper,

reviewer and integrator) are all set to be the same

user.

7.3.2. Two Person Projects

A two person project has the opportunity for each

to review the other’s work.

The entries in the project attributes file for a one

person project look like this:

developer_may_review = false.
developer_may_integrate = true;
reviewer_may_integrate = true;
developers_may_create_changes = true;

Peter Miller (./doc/c5.0.so) Page 71

User Guide Aegis

All of the staff roles (developer, reviewer and

integrator) are all set to allow both users.

7.3.3. Larger Projects

Once you have 3 or more staff on a project, you

can assign all of the roles to separate people. The

idea is for the greatest number of eyes to see each

change and detect flaws before they reach the

baseline.

The entries in the project attributes file for a one

person project look like this:

developer_may_review = false.
developer_may_integrate = false;
reviewer_may_integrate = false;
developers_may_create_changes = true;

For smaller teams, everyone may be a developer.

As the teams get larger, the more experienced

staff are often the reviewers, rather than everyone.

Page 72 (./doc/c6.0.so) Peter Miller

Aegis User Guide

8. Tips and Traps

This chapter contains hints for how to use the

aegis program more efficiently and documents a

number of pitfalls you may encounter.

This chapter is at present very "ad hoc" with no

particular ordering. Fortunately, it is, as yet,

rather small. The final size of this chapter is

expected to be quite large.

8.1. Renaming Include Files

Renaming include files can be a disaster, either

finding all of the clients, or making sure the new

copy is used rather than the old copy still in the

baseline.

Aegis provies some assistance. When the

aemv (1) command is used, a file in the develop-

ment directory is created in the old location, filled

with garbage. Compiles will fail very diagnosti-

cally, and you can change the reference in the

source file, probably after aecp(1)ing it first.

If you are moving an include file from one direc-

tory to another, but leaving the basename

unchanged, create a link19 between the new and

old names, but only in the development directory

(i.e. replacing the "garbage" file aegis created for

you). Create the link after aemv(1) has suc-

ceeded. This insulates you from a number of

nasty Catch-22 situations in writing the depen-

dency maintenance tool’s rules file.

8.2. Symbolic Links

If you are on a flavour of UNIX which has sym-

bolic links, it is often useful to create a symbolic

link from the development directory to the base-

line. This can make browsing the baseline very

simple.

Assuming that the project and change defaults are

appropriate, the following command

ln -s ‘aegis -cd -bl‘ bl

is all that is required to create a symbolic link

called bl pointing to the baseline. Note that the

aecd alias is inappropriate in this case.

This can be done automatically for every change,

by placing the line

develop_begin_command =
"ln -s $baseline bl";

into the project config file.

19 A hard link uses fewer disk blocks. Symbolic links

survive the subject file being deleted and recreated.

8.3. User Setup

There are a number of things which users of aegis

can do to make it more useful, or more user

friendly. This section describes just a few of

them.

8.3.1. The .cshrc file

The aliases for the various user commands used

throughout this manual are obtained by appending

a line of the form

source /usr/local/lib/aegis/cshrc

to the .cshrc file in the user’s home directory.

8.3.2. The AEGIS_PATH environment vari-

able

If users wish to use aegis for their own projects, in

addition to the "system" projects, the

AEGIS_PATH environment variable forms a

colon separated search path of aegis "library"

directories. The /usr/local/lib/aegis directory is

always implicitly added to this list.

The user should not create this library directory,

but let aegis do this for itself (otherwise you will

get an error message).

The AEGIS_PATH environment variable should

be set in the .cshrc file in the user’s home direc-

tory. Typical setting is

setenv AEGIS_PATH ˜/lib/aegis

and this is the default used in the /usr/local/lib/-

aegis/cshrc file.

8.3.3. The .aegisrc file

The .aegisrc file in the user’s home directory con-

tains a number of useful fields. See aeuconf (5)

for more information.

8.3.4. The defaulting mechanism

In order for you to specify the minimum possible

information on the command line, aegis has been

designed to work most of it out itself.

The default project is the project which you are

working on changes for, if there is only one, oth-

erwise it is gleaned from the .aegisrc file. The

command line overrides any default.

The default change is the one you are working on

within the (default or specified) project, if there is

only one. The command line overrides any

default.

Peter Miller (./doc/c6.0.so) Page 73

User Guide Aegis

8.4. The Project Owner

For the greatest protection from accidental

change, it is best if the project is owned by a

UNIX account which is none of the staff. This

account is often named the same as the project, or

sometimes there is a single umbrella account for

all projects.

When an aegis project is created, the owner is the

user creating the project, and the group is the

user’s default group. The creating user is

installed as the project’s first administrator.

A new project administrator should be created -

an actual user account. The UNIX password

should then be disabled on the project account - it

will never be necessary to use it again.20

The user nominated as project administrator many

then assign all of the other staff roles. Aegis takes

care of ensuring that the baseline is owned by the

project account, not any of the other staff, while

development directories always belong to the

developer (but the group will always be the pro-

ject group, irrespective of the developer’s default

group).

All of the staff working on a project should be

members of the project’s group, to be able to

browse the baseline, for reviewers to be able to

review changes. This use of UNIX groups means

that projects may be as secure or open as desired.

8.5. USENET Publication Standards

If you are writing software to publish on

USENET, a number of the source newsgroups

have publication standards. This section

describes ways of generating the following files,

required by many of the newsgroups’ moderators:

MANIFEST List of files in the distribu-

tion.

Makefile How to build the distribu-

tion.

CHANGES What happened for this

distribution.

patchlevel.h An identification of this

distribution.

Each of these files may be generated from infor-

mation known to aegis, with the aid of some fairly

simple shell scripts.

20 Unless bugs in aegis corrupt the database, in which

case repairs can be accomplished as the project account

using a text editor.

8.5.1. CHANGES

Write this section.

Look in the aux/CHANGES.sh file included in the

aegis distribution for an example of one way to do

this.

8.5.2. MANIFEST

Write this section.

Look in the aux/MANIFEST.sh and

aux/MANIFEST.awk files included in the aegis

distribution for an example of one way to do this.

8.5.3. Makefile

Write this section.

Look in the aux/Makefile.sh and

aux/Makefile.awk files included in the aegis dis-

tribution for an example of one way to do this.

8.5.4. patchlevel.h

Write this section.

Look in the aux/Howto.cook file included in the

aegis distribution for an example of one way to do

this.

8.5.5. Building Patch Files

The patch program by Larry Wall is one of the

enduring marvels of USENET. This section

describes how to build input files for this miracle

program.

Write this section.

Look in the aux/patches.sh file included in the

aegis distribution for an example of one way to do

this.

Page 74 (./doc/c6.1.so) Peter Miller

Aegis User Guide

8.6. Heterogeneous Development

The aegis program has support for heterogeneous

development. It will enforce that each change be

built and tested on each of a list of architectures.

It determines which architecture it is currently

executing on by using the uname(2) system call.

The uname(2) system call can yield uneven

results, depending on the operating systems ven-

dor’s interpretation of what it should return21. To

cope with this, each required architecture for a

project is specified as a name and a pattern.

The name is used by aegis internally, and is also

available in the ${ARCHitecture} substitution

(see aesub(5) for more information).

The patterns are simple shell file name patterns

(see sh(1) for more information) matched against

the output of the uname(2) system call.

The result of uname(2) has four fields of interest:

sysname, release, version and machine. These are

stitched together with hyphens to form an archi-

tecture variant to be matched by the pattern.

For example, a system the author commonly uses

is "SunOS-4.1.3-8-sun4m" which matches the

"SunOS-4.1*-*-sun4*" pattern. A solaris system,

a very different beast, matches the

"SunOS-5.*-*-sun4*" pattern. Sun’s 386 version

of Solaris matches the "SunOS-5.*-*-i86pc" pat-

tern. A convex system matches the "Con-

vexOS-*-10.*-convex" pattern.

8.6.1. Project config File

To require a project to build and test on each of

these architectures, the architecture field of the

project config file is set. See aepconf(5) for more

details on this file. The above examples of archi-

tectures could be represented as

architecture =
[
{
name = "sun4";
pattern = "SunOS-4.1*-*-sun4*";

},
{
name = "sun5";
pattern = "SunOS-5.*-*-sun4*";

},

21 For example, SCO 3.2 returns the nodename in the

sysname field, when it should place "SCO" there; Convex

and Pyramid scramble it even worse.

{
name = "sun5pc";
pattern = "SunOS-5.*-*-i86pc";

},
{

name = "convex";
pattern = "ConvexOS-*-10.*-*";

}
];

This would require that all changes build and test

on each of the "sun4", "sun5", "sun5pc" and "con-

vex" architectures.

If the architecture field does not appear in the pro-

ject config file, it defaults to

architecture =
[

{
name = "unspecified";
pattern = "*";

}
];

Setting the architectures is usually done as part of

the first change of a project, but it also may be

done to existing projects. This information is

kept in the project config file, rather than as a pro-

ject attribute, because it requires that the DMT

configuration file and the tests have corresponding

details (see below).

The lib/config.example/architecture file in

the Aegis distribution contains many architecture

variations, so that you may readily insert them

into your project config file.

8.6.2. Change Attribute

The architecture attribute is inherited by each new

change. A project administrator may subse-

quently edit the change attributes to grant exemp-

tions for specific architectures. See aeca(1) for

how to do this.

A build must be successfully performed on each

of the target architectures. Similarly, the tests

must be performed successfully on each. These

requirements are because there is often condi-

tional code present to cope with the vagaries of

each architecture, and this needs to be compiled

and tested in each case.

This multiple build and test requirement includes

both development and integration states of each

change.

Peter Miller (./doc/c6.1.so) Page 75

User Guide Aegis

8.6.3. Network Files

This method of heterogeneous development

assumes that the baseline and development direc-

tories are available as the same pathname in all

target architectures. With software such as NFS,

this does not present a great problem, however

NFS locking must also work.

There is also an assumption that all the hosts

remotely mounting NFS file systems will agree on

the time, because aegis uses time stamps to record

that various tasks have been performed. Software

such as timed(8) is required22.

8.6.4. DMT Implications

This method of heterogeneous development

assumes that the baseline will have a copy of all

object files for all target architectures simultane-

ously.

This means that the configuration file for the

DMT will need to distinguish all the variations of

the object files in some way. The easiest method

is to have a separate object tree for each

architecture23. To facilitate this, there is an

${ARCHitecture} substitution available, which

may then be passed to the DMT using the

build_command field of the project config file.

The architecture name used by aegis needs to be

used by the DMT, so that both aegis and the DMT

can agree on which architecture is currently tar-

geted.

8.6.4.1. Cook Example

As and example of how to do this, the cook

recipes from the DMT chapter are modified as

appropriate. First, the build_command field of the

project config file is changed to include the

${ARCHitecture} substitution:

build_command =
"cook -b ${s Howto.cook} \
project=$p change=$c \
version=$v arch=’$arch’ -nl";

Second, the C recipe must be changed to include

the architecture in the path of the result:

22 Some sites manage by running rdate(8) from

cron(8) every 15 minutes.
23 A tree the same shape as the source tree makes

navigation easier, and users need not think of file names

unique across all directories.

[arch]/%.o: %.c: [collect c_incl
-eia [prepost "-I" ""
[search_list]] [resolve %.c]]

{
if [not [exists [arch]]] then

mkdir [arch]
set clearstat;

if [exists [target]] then
rm [target]

set clearstat;
[cc] [cc_flags] [prepost "-I"

"" [search_list]] -c
[resolve %.c];

mv %.o [target];
}

Third, the link recipe must be changed to include

the architecture in the name of the result:

[arch]/example: [object_files]
{

if [not [exists [arch]]] then
mkdir [arch]

set clearstat;
if [exists [target]] then

rm [target]
set clearstat;

[cc] -o [target] [resolve
[object_files]] -ly -ll;

}

The method used to determine the

object_files variable is the same as before,

but the object file names now include the architec-

ture:

object_files =
[fromto %.y [arch]/%.o

[match_mask %.y [source_files]]]
[fromto %.l [arch]/%.o

[match_mask %.l [source_files]]]
[fromto %.c [arch]/%.o

[match_mask %.c [source_files]]]
;

Note that the form of these recipes precludes per-

forming a build in each target architecture simul-

taneously, because intermediate files in the

recipes may clash. However, aegis prevents

simultaneous build, for this and other reasons.

8.6.5. Test Implications

Tests will need to know in which directory the rel-

evant binary files reside. The test_command field

of the project config file may be changed from the

default

test_command =
"$shell $file_name";

to pass the architecture name to the test

Page 76 (./doc/c6.1.so) Peter Miller

Aegis User Guide

test_command =
"$shell $file_name $arch";

This will make the architecture name available as

$1 within the shell script. Tests should fail ele-

gantly when the architecture name is not given, or

should assume a sensible default.

8.6.6. Cross Compiling

If you are cross compiling to a number of differ-

ent target architectures, you would not use aegis’

heterogeneous development support, since it

depends on the uname(2) system call, which

would tell it nothing useful when cross compiling.

In this case, simply write the DMT configuration

file to cross compile to all architectures in every

build.

8.6.7. File Version by Architecture

There is no intention of ever providing the facility

where a project source file may have different ver-

sions depending on the architecture, but all of

these versions overload the same file name24.

The same effect may be achieved by naming files

by architecture, and using the DMT to compile

and link those files in the appropriate architecture.

This has the advantage of making it clear that sev-

eral variations of a file exist, one for each archi-

tecture, rather than hiding several related but inde-

pendent source files behind the one file name.

24 Some other SCM tools provide a repository with

this facility.

Peter Miller (./doc/c6.2.so) Page 77

User Guide Aegis

8.7. Writing Tests

This section describes a number of things you can

do to write better tests, and some pitfalls to be

avoided.

There are a number of suggestions for portability

of tests; this will definitely be important if you are

writing software to publish on USENET or for

FTP. Portability is often required within an

organization, also. Examples include a change in

company policy from one 386 UNIX to another

(e.g. company doesn’t like Linux, now you must

use AT&T’s SVR4 offering), or the development

team use gcc until the company finds out and

forces you to use the prototype-less compiler sup-

plied with the operating system.

8.7.1. Bourne Shell

The aegis program mandates that all tests be

Bourne shell scripts. This is because this shell is

available on all flavours of the UNIX operating

system. The script files need not have execute

permissions set, because the aegis program

always invokes them as

sh filename

so tests should not expect command line argu-

ments. The test is not passed the name of the pro-

ject nor the number of the change.

This means that if you can write in in a shell

script, you can test it. This includes such things

as client-server model interfaces, and multi-user

synchronization testing.

Some indication that the test script is a Bourne

shell script is a good idea. While many systems

accept that a first line starting with a colon is a

Bourne shell "magic number", a more widely

understood "magic number" is

#! /bin/sh

as the first line of the script file.

8.7.2. Current Directory

Tests are always run with the current directory set

to either the development directory change under

test when testing a change, or the integration

directory when integrating a change, or the base-

line when performing independent tests.

A test must not make assumptions about where it

is being executed from, except to the extent that it

is somewhere a build has been performed. A test

must not assume that the current directory is

writable, and must not try to write to it, as this

could damage the source code of a change under

development, potentially destroying weeks of

work.

8.7.3. Check Exit Status

A test script should check the exit status of every

single command, even those which cannot fail.

Do not rely on, or use, the set -e shell option (it

provides no ability to clean up on error).

Checking the exit status involves testing the con-

tents of the $? shell variable. Do not use an if

statement wrapped around an execution of the

program under test as this will miss core dumps

and other terminations caused by signals.

Checking the exit status of every command in the

script ensures that strange permission settings, or

disk space problems, will cause the test to fail,

rather than plow on and produce spurious results.

8.7.4. Trap Interrupts

Use the trap statement to catch interrupts 1 2 3

and 15 an cause the test to fail. This should per-

form any cleanup the test requires (such as

removing the temporary directory; see next item).

8.7.5. Temporary Directory

Tests should create a temporary directory in /tmp

and then cd into this directory.

This tends to isolate any vandalism that the pro-

gram under test may indulge in, and serves as a

place to write temporary files. At the end of the

test, it is sufficient to cd out of the temporary

directory and then rm -rf it, rather than track and

remove all test files which may or may not be cre-

ated.

8.7.6. PAGER

If the program under test invokes pagers on its

output, a la more(1) et al, it should be coded to

use the PAGER environment variable. Tests of

such programs should always set PAGER to cat

so that tests always behave the same, irrespective

of invocation method (either by aegis or from the

command line).

8.7.7. [test]

You should always use the test command, rather

than the square bracket form, as many systems do

not have the square bracket form, if you publish

to USENET or for FTP.

Page 78 (./doc/c6.2.so) Peter Miller

Aegis User Guide

8.7.8. Auxiliary Files

If a test requires extra files as input or output to a

command, it must construct them itself, using

here documents (see sh(1) for more information).

It is almost impossible to determine the location

of an auxiliary file, if that auxiliary file is part of

the project source. It could be in either the

change under test or the baseline.

8.7.9. New Test Templates

It is possible to specify most of the repetitious

items above in a file template used every time a

user creates a new test. See the aent(1) command

for more information.

Having the machine do it for you means that you

are more likely to do it.

Peter Miller (./doc/cA.0.so) Page 79

User Guide Aegis

9. Appendix A: New Project Quick Reference

For those of you too impatient to read a whole

great big document about how to use the aegis

program, this appendix gives a quick look at how

to place a project under aegis.

The style here is an itemized list. It does not try

to be exhaustive. For exact details on how to use

the various aegis commands, you should see the

manual pages, ditto for the formats and contents

of some files.

Probably the quickest start of all is to copy an

already existing project. The project used in

chapter 2 is complete, assuming you use the

author’s "cook" dependency maintenance tool.

The entirety of this example may be found, if

slightly obfuscated, in the aegis source file

test/00/t0011a.sh distributed with aegis.

9.1. Create the Project

The aenpr command is used to create a project.

You must supply the name on the command line.

The name should be ten characters or less, six

characters or less if you want version numbers

included.

The user who creates the project is the owner of

the project, and is set as the administrator. The

default group of the user who created the project

is used as the project’s group.

You may want to have a user account which owns

the project. You must create the project as this

user, and then use the aena and aera commands

to add an appropriate administrator, and remove

the owning user as an administrator. After this,

the password for the owning user may be dis-

abled, because the aegis program will, at appro-

priate times, set file ownership to reflect project

ownership or execute commands on behalf of the

project owner as the project owner.

9.1.1. Add the Staff

The aend command is used to add developers.

The aenrv command is used to add reviewers.

The aeni command is used to add integrators.

These commands may only be performed by a

project administrator.

You will still have to do this, even if the person

who created the project will be among these peo-

ple, or even be all of these people.

9.1.2. Project Attributes

The aepa command is used to change project

attributes. These attributes include the description

of the project, and booleans controlling whether,

for example, developers may review their own

work.

The project attributes file is described in the

aepattr(5) manual entry.

9.2. Create Change One

The aenc command is used to create a new

change. You will need to construct a change

attributes file with your favorite text editor before

running this command.

The change attributes file is described in the

aecattr(5) manual entry.

9.3. Develop Change One

This is the most grueling step. Indeed, the inte-

gration step will probably reveal things you

missed, and you may return to the being devel-

oped

state several times.

One of the people you nominated as a developer

will have to use the aedb command to commence

development of change 1. The aecd command

can be used to change directory into the just-

created development directory.

Add files to the change. The aenf command is

used to create new files. If you don’t use aenf

then the aegis program has no way of knowing

whether that file lying there in the development

directory is significant to the project, or just a

shopping list of the groceries you forgot to buy

yesterday.

One particular new file which must be created by

this change is the config file. This tells the aegis

program what history mechanism you wish to

use, what dependency maintenance command to

use, what file difference tools to use, and much

more. The aepconf(5) manual entry describes this

file.

If you are going to use the "cook" dependency

maintenance tool, another new file you will need

to create in this change is the "Howto.cook" file.

Some other tool will want some other rules file.

You probably have a prototype or some other

"seed" you have sort-of working. Create new files

for each source file and then copy the files from

wherever they are now into the development

directory.

Page 80 (./doc/cA.0.so) Peter Miller

Aegis User Guide

Use the aeb command to build the change. It will

need to build cleanly before it can advance to the

next step.

Use the aed command to difference the change.

It will need to difference cleanly before it can

advance to the next step.

Use the aent command to add new tests to the

command. It will need to have tests before it can

advance to the next step.

Most existing projects don’t hav e formal tests.

These tests will form a regression test-bed, used

to make sure that future changes never compro-

mise existing functionality.

Use the aet command to test the change. It will

need to test cleanly before it can advance to the

next step.

Once the change builds, differences and tests

cleanly, use the aede command to end develop-

ment. At this point, the mode of the files will be

changed to read only, preventing accidental modi-

fication of the files.

9.4. Review The Change

One of the people nominated as reviewers will

have to run the aerpass command to say that the

change passed review.

The aegis program does not mandate any particu-

lar review mechanism: you could use a single

peer to do the review, you could use a panel, you

could set the project so that developers may

review their own work and effectively eliminating

the review step. In projects with as few as two

people, it is always beneficial for someone other

than the developer to review changes.

Should a reviewer actually want to see the

change, the aecd command may be used to

change directory to the development directory of

the change. The difference files all end with a

"comma D" suffix, so the

more ‘find . -name "*,D" -print |

sort‘

command may be used to search them out and see

them. This is probably fairly useless for the first

change, but is vital for all subsequent changes.

There is a supplied alias for this command, it is

aedmore and there is a similar aedless alias if

you prefer the less (1) command.

There are some facts that a reviewer knows

because otherwise the change would not be in the

"being reviewed" state: • the change compiles

cleanly, • the change passes all of its tests. Other

information about the change may be obtained

using the "change_details" variation of the ael

command.

The aerfail command may also be used by

reviewers to fail reviews and return a change to

the developer for further work; the reviewer must

supply a reason for the change history to record

for all time. Similarly, the aedeu command may

be used by the developer to resume development

of a change at any time before it is integrated; no

stated reason is required.

9.5. Integrate the Change

A person nominated as an project integrator then

integrates the change. This involves making a

copy of the integration directory, applying the

modifications described by the change to this inte-

gration directory, then building and testing all

over again.

This re-build and re-test is to ensure that no spe-

cial aspect of the developers environment influ-

enced the success up to this point, such as a

unique environment variable setting. The re-build

also ensures that all of the files in the baseline,

remembering that this includes source files and all

other intermediate files required by the build pro-

cess, ensures that all of these files are consistent

with each other, that the baseline is self-

consistent. The definition of the baseline is that it

passes its own tests, so the tests are run on the

baseline.

Use the aeib command to begin integration.

The aeb command is used to build the integration

copy of the change.

The aet command is used to test the integration

copy of the change.

On later changes, the integration may also require

the aet -bl command to test the change against

the baseline. This tests ensures that the test fails

against the baseline. This failure is to ensure that

bug fixes are accompanied by tests which repro-

duce the bug initially, and that the change has

fixed it. New functionality, naturally, will not be

present in the old baseline, and so tests of new

functionality will also fail against the old base-

line.

Later changes may also have the regression tests

run, using the aet -reg command. This can be a

very time-consuming step for projects with a long

history, and thus a large collection of tests. The

aet command can also be used to run "representa-

tive" sets of existing tests, but a full regression

Peter Miller (./doc/cA.0.so) Page 81

User Guide Aegis

test run is recommended before a major release,

or, say, weekly if it will complete over the week-

end. This command is also available to develop-

ers, so that they hav e fewer surprises from irate

integrators.

The integrator may use the aeifail command to

return a change to its developer for further work;

a reason must be supplied, and should include rel-

evant excerpts from the build log in the case of a

build failure (not the whole log!), or a list of the

tests which failed for test failures.

The aeipass command may be used to pass an

integration. When the change passes, the file his-

tories are updated. In the case of the first change,

the history is created, and problems with the con-

fig file’s history commands will be revealed at

this point. The integration won’t pass, and should

be failed, so that the developer may effect repairs.

There are rarely problems at this point for subse-

quent changes, except for disk space problems.

Once the history is successfully updated, aegis

renames the integration directory as the baseline,

and throws the old baseline away. The develop-

ment directory is deleted at this time, too.

9.6. What to do Next

There, the first change is completed. The whole

cycle may now be repeated, starting at "Create

Change," for all subsequent changes, with very

few differences.

It is recommended that you read the Change

Development Cycle

chapter for a full worked example of the first four

changes of an example project, including some of

the twists which occur in real-world use of aegis.

Remember, too, the definition:

aegis (ee.j.iz) n. a protection, a defence.

It is not always the case that aegis exists to make

life "easier" for the software engineers. The goal

is to have a baseline which always "works",

where "works" is defined as passing all of its own

tests. Wherever possible, the aegis program

attempts to be as helpful and as unintrusive as

possible, but when the "working" definition is

threatened, the aegis program intrudes as neces-

sary. (Example: you can’t do an integrate pass

without the integration copy building success-

fully.)

All of the "extra work" of writing tests is a long-

term win, where old problems never again reap-

pear. All of the "extra work" of reviewing

changes means that another pair of eyes sights the

code and finds potential problems before they

manifest themselves in shipped product. All of

the "extra work" of integration ensures that the

baseline always works, and is always self-

consistent. All of the "extra work" of having a

baseline and separate development directories

allows multiple parallel development, with no

inter-developer interference; and the baseline

always works, it is never in an "in-between" state.

In each case, not doing this "extra work" is a false

economy.

Page 82 (./doc/cA.0.so) Peter Miller

Aegis User Guide

10. Appendix B: Glossary

The following is an alphabetical list of terms used

in this document.

administrator

Person responsible for administering a

project .

aw aiting_development

The state a change is in immediately after

creation.

aw aiting_integration

The state a change is in after it has passed

review and before it is integrated.

baseline

The repository; where the project master

source is kept.

being developed

The state a change is in when it is being

worked on.

being integrated

The state a change is in when it is being

integrated with the baseline.

being reviewed

The state a change is in after it is devel-

oped.

change

A collection of files to be applied as a sin-

gle atomic alteration of the baseline.

change number

Each change has a unique number identify-

ing it.

completed

The state a change is in after it has been

integrated with the baseline.

delta number

Each time the aeib (1) command is used to

start integrating a change into the baseline

a unique number is assigned. This number

is the delta number. This allows ascending

version numbers to be generated for the

baseline, independent of change numbers,

which are inevitably integrated in a differ-

ent order to their creation.

dependency maintenance tool

A program or programs external to aegis

which may be given a set of rules for how

to efficiently take a set of source files and

process them to produce the final product.

DMT

Abbreviation of Dependency Maintenance

Tool.

develop_begin

The command issued to take a change from

the awaiting development state to the being

developed state. The change will be

assigned to the user who executed the com-

mand.

develop_begin_undo

The command issued to take a change from

the being developed state to the awaiting

development state. The change must have

no files associated with it.

develop_end

The command issued to take a change from

the being developed state to the being

re viewed state. The change must be known

to build and test successfully.

develop_end_undo

The command issued to take a change from

the being reviewed state back to the being

developed state. The command must be

executed by the original developer.

developer

A member of staff allowed to develop

changes.

development directory

Each change is given a unique development

directory in which to edit files and build

and test.

history tool

A program to save and restore previous ver-

sions of a file, usually by storing edits

between the versions for efficiency.

integrate_pass

The command used to take a change from

the being integrated state to the completed

state. The change must be known to build

and test successfully.

integrate_begin

The command used to take a change from

the awaiting integration state to the being

integrated state.

integrate_begin_undo

The command used to take a change from

the being integrated state to the awaiting

integration state.

integrate_fail

The command used to take a change from

the being integrated state back to the being

developed state.

integration

The process of merging the baseline with

Peter Miller (./doc/cB.0.so) Page 83

User Guide Aegis

the development directory to form a new

baseline. This includes building and testing

the merged directory, before replacing the

original baseline with the new merged ver-

sion.

integration directory

The directory used during integration to

merge the existing baseline with a change’s

development directory .

integrator

A staff member who performs integration s.

new_change

The command used to create new changes.

new_change_undo

The command used to destroy changes.

review_fail

The command used to take a change from

the being reviewed state back to the being

developed state.

review_pass

The command used to take a change from

the being reviewed state to the awaiting

integration state.

reviewer

A person who may review changes and

either pass or fail them (re view_pass or

re view_fail respectively).

state

Each change is in one of six states: await-

ing development , being developed , being

re viewed , awaiting integration , being inte-

grated or completed .

state transition

The event resulting in a change changing

from one state to another.

Page 84 (./doc/cB.0.so) Peter Miller

Aegis User Guide

11. Appendix D: Why is Aegis Set-Uid-Root?

The goal for aegis is to have a project that

"works". There is a fairly long discussion about

this earlier in this User Guide. One of the first

things that must be done to ensure that a project is

not subject to mystery break downs, is to make

sure that the master source of the project cannot

be in any way altered in an unauthorized fashion.

Note this says "cannot", a stronger statement than

"should not".

Aegis is more complicated than, say, set-group-id

RCS, because of the flaw with set-group-id: the

baseline is writable by the entire development

team, so if a developer says "this development

process stinks" he can always bypass it, and write

the baseline directly. This is a very common

source of project disasters. To prevent this, you

must have the baseline read-only, and so the set-

group-id trick does not work. (The idea here is

that there is no way to bypass the QA portions of

the process. Sure, set-group-id will prevent acci-

dental edits on the baseline, if the developers are

not members of the group, but it does not prevent

deliberate checkin of unauthorized code. Again,

the emphasis is on "cannot" rather than "should

not".)

Also, using the set-group-id trick, you need multi-

ple copies of RCS, one for each project. Aegis

can handle many projects, each with a different

owner and group, with a single set-uid-root

executable.

Aegis has no internal model of security, it uses

UNIX security, and so becomes each user in turn,

so UNIX can determine the permissions.

11.1. Examples

Here are a few examples of the uid changes in

common aegis functions. Unix "permission

denied" errors are not shown, but it should be

clear where they would occur.

new change (aenc):

become invoking user and read (edit) the

change attribute file, validate the attribute

file, then become the project owner to write

the change state file and the project state

file.

develop begin (aedb):

become the project owner and read the pro-

ject state file and the change state file, to

see if the change exists and is available for

development, and if the invoking user is on

the developer access control list. Become

the invoking user, but set the default group

to the project group, and make a dev elop-

ment directory. Become the project again,

and update the change state file to say who

is developing it and where.

build (aeb):

become the project owner to read the pro-

ject and change state files, check that the

invoking user is the developer of the

change, and that the change is in the being

developed state. Become the invoking user,

but set the default group to the project

group, to invoke the build command.

Become the project owner to update the

change state to remember the build result

(the exit status).

copy file into change (aecp):

become the project owner to read the pro-

ject and change state files. Check that the

invoking user is the developer and that the

change is in the being developed state, and

that the file is not already in the change,

and that the file exists in the baseline.

Become the invoking user, but set the

default group to the project group, and copy

the file from the baseline into the develop-

ment directory. Become the project owner,

and update the change state file to remem-

ber that the file is included in the change.

integrate pass (aeip):

become the project owner to read the pro-

ject and change state files. Check that in

invoking user is the integrator of the

change, and that the change is in the being

integrated state. Become the integrator to

collect the integrate fail comments, then

become the project owner to delete the inte-

gration directory, then become the devel-

oper to make the development directory

writable again. Then become the project

owner to write the change state file, to

remember that the change is back in the

being developed state.

All the mucking about with default groups is to

ensure that the reviewers, other members of the

same group, have access to the files when it

comes time to review the change. The umask is

also set (not shown) so that the desired level of

"other" access is enforced.

As can be seen, each of the uid change either (a)

allows UNIX to enforce appropriate security, or

(b) uses UNIX security to ensure that unautho-

rized tampering of project files cannot occur.

Peter Miller (./doc/cD.0.so) Page 85

User Guide Aegis

Each project has an owner and a group: members

of the devlopment team obtain read-only access to

the project files by membership to the appropriate

group, to actually alter project files requires that

the development procedure embodied by aegis is

carried out. You could have a single account (not

a user’s account, usually, for obvious conflicts of

interest) which owns all project sources, or you

could have one account per project. You can have

one group per project, if you don’t want your var-

ious projects to be able to see each other’s work,

or you could have a single group for all projects.

11.2. Source Details

For implementation details, see the

os_become* functions in the aegis/os.c file.

The os_become_init function is called very

early in main, in the aegis/main.c file. After

that, all accesses are bracketed by os_become
and os_become_undo function calls, some-

times indirectly as project_become* or

user_become*, etc, functions. You need to

actually become each user, because root is not

root over NFS, and thus chown tricks do not

work, and also because duplicating kernel permis-

sion checking in aegis is a little non-portable.

Note, also, that most system calls go via the inter-

face sescribed in the aegis/glue.h file. This iso-

lates the system calls for UNIX variants which do

not have the seteuid function, or do not have a

correctly working one. The code in the

aegis/glue.c file spawns "proxy" process which

uses the setuid function to become the user and

stay that way. If the seteuid function is avail-

able, it is used instead, making aegis more effi-

cient. This isolation, however, makes it possible

for a system administrator to audit the aegis code

(for trojans) with some degree of confidence.

System calls should be confined to the

aegis/log.c , aegis/pager.c , aegis/os.c and

aegis/glue.c files. System calls anywhere else are

probably a Bad Thing.

Page 86 (doc/aegis.ms) Peter Miller

Aegis User Guide

Peter Miller (doc/aegis.ms) Page 87

Table of Contents

1. Introduction .. 3

1.1. What does aegis do? .. 3

1.2. Why use aegis? .. 3

1.3. How to use this manual .. 4

1.4. GNU GPL ... 4

2. How Aegis Works .. 5

2.1. The Model .. 5

2.2. Philosophy .. 12

2.3. Security ... 13

2.4. Scalability ... 13

2.5. When (not) to use Aegis ... 14

2.6. Further Work .. 16

3. The Change Development Cycle ... 17

3.1. The Developer .. 18

3.2. The Reviewer .. 43

3.3. The Integrator ... 46

3.4. The Administrator .. 49

3.5. What to do Next ... 52

4. The History Tool .. 53

4.1. Interfacing .. 53

4.2. Using SCCS .. 54

4.3. Using RCS .. 55

4.4. Using fhist .. 57

5. The Dependency Maintenance Tool .. 58

5.1. Required Features ... 58

5.2. Using Cook ... 60

5.3. Using Cake ... 63

5.4. Using Make .. 65

6. The Difference Tools ... 68

6.1. Interfacing .. 68

6.2. Using diff and diff3 .. 69

6.3. Using fhist .. 69

7. The Project Attributes .. 70

7.1. Description and Access .. 70

7.2. Notification Commands .. 70

7.3. Exemption Controls .. 71

Peter Miller (doc/aegis.ms) Page 1

User Guide Aegis

8. Tips and Traps .. 73

8.1. Renaming Include Files .. 73

8.2. Symbolic Links .. 73

8.3. User Setup .. 73

8.4. The Project Owner ... 74

8.5. USENET Publication Standards ... 74

8.6. Heterogeneous Development .. 75

8.7. Writing Tests .. 78

9. Appendix A: New Project Quick Reference .. 80

9.1. Create the Project ... 80

9.2. Create Change One ... 80

9.3. Develop Change One .. 80

9.4. Review The Change ... 81

9.5. Integrate the Change ... 81

9.6. What to do Next ... 82

10. Appendix B: Glossary .. 83

11. Appendix D: Why is Aegis Set-Uid-Root? .. 85

11.1. Examples .. 85

11.2. Source Details .. 86

Page 2 () Peter Miller

