
ObjectProDSP User's Reference

Paul P. Budnik Jr. Phd.

Internet: support@MTNMATH.COM

September 1994

c

 1994 Mountain Math Software

All rights reserved

`.dvi' �le created September 16, 1994

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

Math

Mountain

Software

P. O. Box 2124, Saratoga, CA 95070

Fax or voice (408) 353-3989

Published by Mountain Math Software, P. O. Box 2124, Saratoga, CA 95070.

Copyright

c

 1994 by Mountain Math Software. All rights reserved.

Permission is granted to make and distribute verbatim copies of this manual

provided the copyright notice and this permission notice are preserved on all

copies.

Permission is granted to copy and distribute modi�ed versions of this manual

under the conditions for verbatim copying, provided also that the sections

entitled \GNU General Public License" and \Licensing" are included exactly

as in the original, and provided that the entire resulting derived work is

distributed under the terms of a permission notice identical to this one, and

provided the derived work is clearly identi�ed as a derived work and not

solely the creation of either the orignal authors or the authors of the derived

work.

Permission is granted to copy and distribute translations of this manual into

another language, under the above conditions for modi�ed versions, except

that the sections entitled \GNU General Public License" and \Licensing",

and this permission notice, may be included in translations approved by

Mountain Math Software instead of in the original English. Translations of

the section entitled \GNU General Public License" must also be approved

by the Free Software Foundation which owns the copyright to that text.

Licensing

ObjectProDSP

TM

is licensed for free use and distribution under version 2

of the GNU General Public License. See Appendix D for the full text of

this license. There is absolutely no warranty for ObjectProDSP under this

license. ObjectProDSP is a trademark of Mountain Math Software.

You are free to use and distribute ObjectProDSP under the terms of version

2 of the GNU General Public License. Please note that none of the Object-

ProDSP system is licensed for use under the GNU Library General Public

License. The Gnu General Public License allows you to distribute executables

or librarys linked with or created by ObjectProDSP only if you make all the

source code used to create the librarys or executables (other than standard

librarys that are part of a compiler or operating system) freely available.

Please read the license in Appendix D for the full legal explanation of these

conditions.

Mountain Math Software plans to o�er, for a fee, a commercial version that

will allow you to distribute executables generated with ObjectProDSP under

standard commercial terms.

If you wish to extend ObjectProDSP you can distribute your code with Ob-

jectProDSP under the terms of the GNU General Public License. If you

include an appropriate copyright notice in your name for your upgrades then

no one, including Mountain Math Software, will be able to distribute your

code under any terms other than the GNU General Public License without

your permission.

If you �nd ObjectProDSP useful in a commercial environment you are asked

to consider purchasing a support contract. This is not shareware and you are

under no obligation to do so but you will gain aceess to direct support from

Mountain Math Software and you will make a contribution to the continued

success of ObjectProDSP and thus to any of your endeavors that bene�t from

it.

If you are interrested in a custom port of ObjectProDSP to directly support

your company's DSP development board or processor please contact us.

Mountain Math Software

P. O. Box 2124

Saratoga, CA 95070

Internet: support@MTNMATH.COM

Fax or voice (408) 353-3989

Documentation

� ObjectProDSP Overview and Tutorial This gives a general description

of ObjectProDSP's purpose and function. It includes several tutorial

examples. There are appendices on the DSP node and class library and

Mountain Math Software.

� ObjectProDSP User's Reference This is the document you are reading.

This describes the user interface and DSP++, a C++ based language for

DSP. (You do not need to known DSP++ or C++ to use ObjectProDSP.

DSP++ statements are generated for you when you graphically enter

a network or execute menu data base commands.) This document in-

cludes a reference manual for the menu data base. Appendixes contain

a synopsis of menu data base commands and a general index.

� ObjectProDSP Library Reference This gives a detailed description of

ObjectProDSP interactive objects including DSP processing nodes.

� ObjectProDSP Developer's Reference This tells how to write DSP

processing nodes and add them to ObjectProDSP. It describes Object-

Pro++

TM

, an extended C++ language for de�ning interactive objects for

DSP or other applications. It explains how to modify the part of the

menu data base that does not come from interactive object de�nitions

in ObjectPro++. It describes how to update the ObjectProDSP manuals

to include your new nodes and objects. Information about these objects

is extracted from your de�nitions by ObjectPro++ and added to the

manuals.

ObjectProDSP and ObjectPro++ are trademarks of Mountain Math Software.

Contents

Licensing v

Documentation vii

1 Using this manual 1

2 Using ObjectProDSP 3

2.1 Getting started : 3

2.2 Introduction to ObjectProDSP : : : : : : : : : : : : : 4

2.2.1 It is easy to create and edit a DSP network : 4

2.2.2 The main window : : : : : : : : : : : : : : : 5

2.2.3 Windows management : : : : : : : : : : : : 6

2.3 Pull down menu codes : : : : : : : : : : : : : : : : : : 6

2.4 Moving though a help window : : : : : : : : : : : : : 7

2.5 The menu data base : : : : : : : : : : : : : : : : : : : 7

2.6 Editing a DSP network : : : : : : : : : : : : : : : : : 8

2.7 Aborting commands and deleting windows : : : : : : : 9

2.8 Saving window and display images : : : : : : : : : : : 9

2.9 Help Structure : 10

2.9.1 Pull down menus : : : : : : : : : : : : : : : 10

2.9.2 Help menu database tree : : : : : : : : : : : 11

2.9.3 Message levels : : : : : : : : : : : : : : : : : 11

2.9.4 State description : : : : : : : : : : : : : : : : 11

3 Release notes and validation 12

3.1 Release notes for ObjectProDSP version 0.1 : : : : : : 12

3.1.1 System requiremnts : : : : : : : : : : : : : : 12

3.1.1.1 Memory : : : : : : : : : : : : : : : 12

3.1.1.2 Disk space : : : : : : : : : : : : : : 12

3.1.1.3 Other hardware : : : : : : : : : : : 13

3.1.1.4 Software requirements : : : : : : : : 13

3.1.1.5 Using gdb : : : : : : : : : : : : : : 14

3.1.2 DSP Node library and target code e�ciency 14

3.1.3 Supported targets : : : : : : : : : : : : : : : 15

3.1.4 Filter design : : : : : : : : : : : : : : : : : : 15

3.1.5 Bugs : 16

3.1.6 Deleted TargetSystem capability : : : : : : : 16

3.2 ObjectProDSP validation suites : : : : : : : : : : : : : 16

4 Creating and editing DSP networks 17

4.1 ObjectProDSP networks : : : : : : : : : : : : : : : : : 17

4.2 Graphically editing a network : : : : : : : : : : : : : : 18

4.3 Network display : 19

4.3.1 Select menu : : : : : : : : : : : : : : : : : : 19

4.3.2 Link menu : : : : : : : : : : : : : : : : : : : 20

4.4 DSP processing nodes : : : : : : : : : : : : : : : : : : 20

4.5 Plots : 20

4.5.1 Plotting FFT (blocked) output : : : : : : : : 21

4.5.2 Output after a network has been edited : : : 21

4.5.3 Invalid numeric values : : : : : : : : : : : : : 22

4.5.4 Saving and reading plots : : : : : : : : : : : 22

4.6 Plot detail : 22

4.7 Listing plot coordinates : : : : : : : : : : : : : : : : : 23

4.8 Views of plot data : 23

4.9 Listing output from a DSP process : : : : : : : : : : : 24

4.10 Moving through and saving listing output : : : : : : : 24

5 Menu database overview 25

5.1 Network window connection to menu database : : : : 25

5.2 The objects menu : 25

5.3 Saving the state : 26

5.4 Menu data base commands : : : : : : : : : : : : : : : 26

5.5 The setup menu : 27

5.6 Debugging menu : 27

5.7 Examples : 28

5.8 Variables : 28

5.9 Recording and playing back sessions : : : : : : : : : : 29

6 Member functions 30

6.1 Node member functions : : : : : : : : : : : : : : : : : 30

6.2 Make stand alone target executable : : : : : : : : : : 30

6.3 Bu�er descriptors : 31

7 The DSP++ language 33

7.1 ObjectProDSP language overview : : : : : : : : : : : 33

7.2 The DSP++ interactive interpreter : : : : : : : : : : : : 34

7.3 DSP networks : 34

7.3.1 C++ language extensions for networks : : : : : 35

7.3.2 Modeling DSP processor arithmetic : : : : : : 35

7.4 A language for DSP? : : : : : : : : : : : : : : : : : : : 36

7.5 Data
ow model : 37

7.5.1 Data input/output model : : : : : : : : : : : 37

7.5.2 Processing nodes : : : : : : : : : : : : : : : : 38

8 ObjectProDSP example networks 39

8.1 Examples menu : 39

8.2 Basic example : 39

8.3 FFT example : 40

8.4 Three stage �r �lter example : : : : : : : : : : : : : : 41

8.5 Feedback example : 43

8.6 Fir �lter response example : : : : : : : : : : : : : : : 44

8.7 Adding new examples : : : : : : : : : : : : : : : : : : 45

ObjectProDSP MENUS REFERENCE 47

9 Using the menus reference manual 49

10 ObjectProDSP menu data base 49

11 Structured access to on-line documentation 50

11.1 Online manual : 51

11.2 Control information display : : : : : : : : : : : : : : : 53

12 Object classes 53

13 DSP processing objects 54

13.1 Options for Add : 56

13.2 Options for Block : 60

13.3 Options for CxFFT : 61

13.4 Options for CxFir : 63

13.5 Options for Demod : 64

13.6 Options for Demux : 66

13.7 Options for FindStartTail : : : : : : : : : : : : : : : 67

13.8 Options for Gain : 68

13.9 Options for GainPad : : : : : : : : : : : : : : : : : : : 70

13.10 Options for Integrate : : : : : : : : : : : : : : : : : : 71

13.11 Options for Interpolate : : : : : : : : : : : : : : : : : 73

13.12 Options for MaskWord : : : : : : : : : : : : : : : : : : : 74

13.13 Options for Mux : 75

13.14 Options for PackWord : : : : : : : : : : : : : : : : : : : 76

13.15 Options for Power : 77

13.16 Options for RealFir : : : : : : : : : : : : : : : : : : : 79

13.17 Options for RepackStream : : : : : : : : : : : : : : : : 80

13.18 Options for SampleDelay : : : : : : : : : : : : : : : : : 81

13.19 Options for ToInteger : : : : : : : : : : : : : : : : : : 82

13.20 Options for ToMach : 83

13.21 Options for Truncate : : : : : : : : : : : : : : : : : : : 84

13.22 Options for UnpackWord : : : : : : : : : : : : : : : : : 86

14 Signal generator objects 87

14.1 Options for ConstantData : : : : : : : : : : : : : : : : 88

14.2 Options for Cos : 89

14.3 Options for CxCos : 91

14.4 Options for CxImp : 93

14.5 Options for Normal : 94

14.6 Options for Ramp : 96

14.7 Options for UniformNoise : : : : : : : : : : : : : : : : 98

15 Plotting objects 99

15.1 Options for EyePlot : : : : : : : : : : : : : : : : : : : 100

15.2 Options for Plot : 101

16 Listing objects 102

16.1 Options for HexList : : : : : : : : : : : : : : : : : : : 102

16.2 Options for Listing : : : : : : : : : : : : : : : : : : : 103

17 Nodes that access disk �les 105

17.1 Nodes to read and write ascii �les : : : : : : : : : : : : 105

17.2 Nodes to read and write binary �les : : : : : : : : : : : 111

18 Networks 125

18.1 Options for CircBufDes : : : : : : : : : : : : : : : : : 125

18.2 Options for DataFlow : : : : : : : : : : : : : : : : : : : 129

18.3 Options for Network : : : : : : : : : : : : : : : : : : : 132

19 Display simple variables 147

20 Read �les 148

20.1 Control debugging options : : : : : : : : : : : : : : : : 149

21 Program State 150

21.1 Record or playback a session : : : : : : : : : : : : : : : 151

22 Base class member functions 152

22.1 Describe member DisplayInputTiming of Display-

NodeStr : 152

22.2 Describe member DisplayInputTiming of Process-

NodeStr : 153

22.3 Select parameter of DisplayNodeStr member LinkIn

to describe : 154

22.4 Describe member DisplayOutputTiming of Process-

NodeStr : 154

22.5 Describe member DisplayOutputTiming of SignalStr 155

22.6 Describe member Edit of DisplayNodeStr : : : : : : : 155

22.7 Describe member Edit of ProcessNodeStr : : : : : : : 156

22.8 Describe member Edit of SignalStr : : : : : : : : : : 156

22.9 Describe member LinkIn of DisplayNodeStr : : : : : 156

22.10 Describe member LinkIn of ProcessNodeStr : : : : : 157

22.11 Describe member NextFreeInput of DisplayNodeStr : 157

22.12 Describe member NextFreeInput of ProcessNodeStr : 158

22.13 Describe member NextFreeOutput of ProcessNodeStr 158

22.14 Describe member NextFreeOutput of SignalStr : : : 158

22.15 Select parameter of ProcessNodeStr member Set-

SampleRate to describe : : : : : : : : : : : : : : : : : : 158

22.16 Describe member Raise of DisplayNodeStr : : : : : : 159

22.17 Describe member Raise of ProcessNodeStr : : : : : : 159

22.18 Describe member Raise of SignalStr : : : : : : : : : 159

22.19 Select a member of DisplayNodeStr to describe : : : : 160

22.20 Select a member of this DisplayNodeStr to execute : : 161

22.21 Select a member of ProcessNodeStr to describe : : : : 161

22.22 Select a member of this ProcessNodeStr to execute : : 163

22.23 Select a member of SignalStr to describe : : : : : : : 164

22.24 Select a member of this SignalStr to execute : : : : : 166

23 Class hierarchy 167

23.1 ProcessNodeStr class hierarchy : : : : : : : : : : : : : 167

23.2 SignalStr class hierarchy : : : : : : : : : : : : : : : : 167

23.3 DisplayNodeStr class hierarchy : : : : : : : : : : : : : 168

Appendixes 169

A Environmental variables A{1

B Commands index B{1

D GNU GENERAL PUBLIC LICENSE D{1

References E{1

Index F{1

1

1 Using this manual

The ObjectProDSP user interface, signal processing language and menu data

base are described in this manual. Section 2 describes the basics of starting

the program, and gives an introduction to using it. Section 3 contains the

release notes for this version. Section 4 describes how to graphically create

and edit a network and view the output. Section 5 gives an overview of the

menu data base. Section 6 describes the generic member functions. The

information in the above sections is available as on-line help screens.

Section 7 describes the ObjectProDSP language for Digital Signal Process-

ing. Language statements are created by interactively editing a network and

though the menu database. You do not need to know the DSP++ language

but you may �nd it of interest.

The second part of this manual is a printed version of the menu data base.

This part of the manual is created automatically from the same source used

to create the interactive data base.

Appendix A describes the environmental varialbes used by ObjectProDSP.

Appendix B is an index of ObjectProDSP menu commands. It includes a

brief synopsis of each command. Appendix D is version 2 of the GNU General

Public License.

2 1. USING THIS MANUAL

3

2 Using ObjectProDSP

In this section we describe how to start ObjectProDSP and give a brief

overview of how to use it.

2.1 Getting started

Environmental variable OPD_ROOT must be set to the root directory where

ObjectProDSP is installed.

To execute ObjectProDSP enter the unix command `opd'. This assumes that

opd or a link to it is installed in your execution path.

ObjectProDSP automatically saves it state on exiting. The state includes any

networks or other user de�ned objects. These are restored by reading the

default state �le when you next execute ObjectProDSP in the same directory.

You can override the loading of the default state and action �les with com-

mand line options. (An action �le allows you to record your actions during

a session as opposed to a state �le which only records the �nal state that

resulted from those actions.) The default �le to store the state is dsppp.0.

Previous backups are kept in dsppp.N where the larger N is the older the

backup is. The default is to save the four most recent backups. Up to 10

backups can be saved. The default action �le is .opdinit.

The following command line parameters are optional.

-c do not read a default state or action �le.

-r specify an initial state �le (do not use the default).

-a specify an initial action �le (do not use the default).

-i use the 16 bit integer simulator instead of the default single precision

oating point version.

-e describes the environmental variables used by ObjectProDSP.

-d run gdb on the DSP process.

4 2. USING ObjectProDSP

-g run gdb on the user interface process.

-T use the command line version of gdb.

2.2 Introduction to ObjectProDSP

ObjectProDSP is an object oriented tool for Digital Signal Processing (DSP)

design analysis and implementation. You can graphically de�ne a DSP net-

work, provide test signals and view the output.

You can generate a stand alone C++ program that performs the functions of

this network and link this program into your DSP application.

With the source code distribution you can de�ne your own DSP nodes or

other interactive objects.

The interface is designed to be self teaching. Access to most functions is

through a menu data base. Instructions for each window and the most im-

portant functions in a window are available in pull down menus.

ObjectProDSP runs as two Unix processes: user interface and DSP execution.

You can interrogate the menu data base, manipulate data plots and perform

other operations in parallel with DSP execution.

2.2.1 It is easy to create and edit a DSP network

To get a quick idea of what you can do with ObjectProDSP select help

(this is already selected when ObjectProDSP starts execution) examples,

fft and execute by clicking the left mouse button over the push buttons in

the menu data base. A window with a DSP network and three windows of

plotted output will appear. Select the plot labeled FFT Plt plot of FFT FFT

and type ctrl-b (hold the ctrl key down and type b). A new window will

appear with the same data on a decibel power scale.

To add a fourth plot of the input data to the FFT do the following. Select

objects and plot from the menu data base. Then hold the shift key down

and click the left mouse button with the cursor over the Plot button. An

2.2 Introduction to ObjectProDSP 5

unlinked plot node will appear in the network window. Hold the shift key

down while clicking the right mouse button over the node labeled FFT Sum in

the network window. The selected node will be highlighted and a message will

appear in the information window saying: Linking output bu�er on output

channel 0 in node FFT Sum. Hold the shift key down and click the left mouse

button over the unlinked plot node in the network. The plot node will be

linked into the network at the point you selected.

To execute the edited network select database and network from the menu

bar in the network window. A separate window with commands for con-

trolling the network will appear. Select exec and Execute. You will be

prompted for the number of input samples to generate. Type RETURN to

select the default. A new window will appear with the plot of the FFT input

data and the other plots will be updated with the new data you generated.

2.2.2 The main window

ObjectProDSP starts with two windows. The information window displays

help for most operations. It is frequently updated.

The main window contains four parts. At the top are pull down menus that

control and document the window. Next is a section for entry of DSP++ lan-

guage statements. ObjectProDSP signal processing operations are de�ned in

C++ using classes and member functions. This internal DSP extension of C++

is called DSP++. Most often DSP++ statements are generated by menu selec-

tions or by graphically editing a network. You can enter statements directly

by selecting the highlighted line at the bottom of this section and typing

language statements. For example you can enter double A = (Pi+3.5)/4;

Statements are scrolled up in this section as are messages related to execu-

tion of these statements. The history of all text in this window is available

through the create DSP++ history window option under the Data base

pull down menu.

The next section in the main window contains a record of up to the last

three commands executed from the menu data base and messages related

to command execution. The history of all text in this window is available

through the create command history window option under the Data base

6 2. USING ObjectProDSP

pull down menu. You can enter commands directly in the highlighted line in

this section. Commands will �rst be searched for in the visible menu data

base buttons and then the full data base will be searched. If you enter a valid

unique command the corresponding command will be executed. A command

that selects a menu and is not on the visible data base buttons will cause

the selected menu to appear in a separate window. For example if you type

CxFFT the menu for that class will appear in a window.

To directly enter DSP++ statements or menu commands use the pull down

menu select or click the left mouse in the text entry area. To return key-

board input to menu shortcut keys type the escape key.

The last section of the main window provide push button access to the menu

data base. From this data base you can control most ObjectProDSP func-

tions.

2.2.3 Windows management

It is easy to create many windows. There are some facilities for managing

windows. You can delete some windows (type ctrl-shift delete), but not

any windows containing network output. You can raise windows (make

them appear above any overlapping windows) with options in the network

window pull down menus and the menu data base. This can be helpful in

locating the window output form a particular node. For example to raise

a plot or listing node position the mouse over the plot node in the network

window and type upper case W (shift-W).

2.3 Pull down menu codes

The most important commands for most windows are documented and avail-

able in the menu bars at the top of the window. There is a simple coding

scheme for shortcut keystrokes and mouse shortcuts. Mouse shortcuts (if

available) are in square brackets []. Keyboard shortcuts are in round brack-

ets (). Keyboard shortcuts are denoted as a single character like (p) for

lower case p or a word that designates the key like (space) for the space

2.4 Moving though a help window 7

bar. A key can be modi�ed with the shift or control keys. (shift-space)

means hold the shift key down and press the space bar. For the most part

you can enter shortcut keys whenever the window is selected and the cursor

positioned within it. However there are some dead spots in some windows.

If you �nd that shortcut keys are having no e�ect move the cursor around.

Known dead spots are in blank space in the right part of network displays

and in the transition between sections in the main menu. Short cut keys will

not work in the main menu if you have selected keyboard entry for one of the

two text areas. Type escape to return to short cut keys in the main window.

Mouse buttons are denoted as [L] (left), [M] (middle) and [R] (right). Most

mouse actions occur when the button is released. Any that occurs when a

button is pressed are preceded by the letter D. Mouse buttons are modi�ed

with either or both of the shift and control keys. [ctrl-L] means hold the con-

trol key down while pressing and releasing the left button. shift is generally

used for commands related to editing networks and ctrl for commands to

access the menu database.

2.4 Moving though a help window

Help windows, pop up windows and the information window are the only ones

that do not have a menu bar at the top to document their use. In addition

to using the scroll bar you can use the following keys to move through the

help and information windows: page up, page down, home (beginning of

�le), end, up arrow, down arrow. You can delete a help window by typing

ctrl-shift-delete.

2.5 The menu data base

The two or three rows of buttons in the lower part of the main window

provide access to the menu data base. Most functions are available in this

data base. Objects you create interactively are added to it. Documentation

is integrated at three levels. Moving the mouse over a button produces a brief

description above the button. Pressing the left or right mouse button while

the cursor is over a selection usually displays a more complete description of

8 2. USING ObjectProDSP

the selection in the information window. Some selections have an associated

help �le. Clicking the right mouse button will display this �le in a new

window.

The information window contents is frequently updated. Usually any infor-

mation that you might want to reference later is also scrolled into the DSP++

command history. If you want to preserve something in the information win-

dow that has not been scrolled use the append information window to

DSP++ history option under the Data base menu.

You can peel off lines of the help data base menu to appear in a separate

window. Hold the control key down and select the menu with the left mouse

button. If the selection is a menu then that menu will appear in a separate

window otherwise the menu that contains this selection will appear. There

are never more than three rows of buttons displayed in the main window. If

you go deeper only the top level and the deepest two levels will be displayed.

Database menus in a separate window display as many levels as you select

up to the height of the screen.

A menu data base button is selected when you release the left mouse button

(or type RETURN) with the cursor positioned inside the button. Buttons

that execute commands are in boldface. Other buttons select new menus.

Commands can be entered directly in the lower highlighted area of the main

window. Just click the mouse in this area and type the command. First

the visible commands will be searched and then the entire data base. Menus

selected in this way are peeled off into a separate window if the selection

is not among the displayed buttons. Type the escape key to stop entering

commands and return input to pull down menu shortcut keys.

2.6 Editing a DSP network

The menu database provides information about nodes and networks. A but-

ton in the database labeled with a node class name (select objects and then

dsp processing to see the processing node classes) allows you to add an

instance of this class to a network. If no network is being edited a new net-

work will be created. You can select the default parameters of the node or

2.7 Aborting commands and deleting windows 9

you can be prompted for each parameter. The pull down menu Edit and

control shows how to do this. The help �les in the network editing window

tell you how to edit an existing network. To create a network editing window

hold the shift key down and press the left mouse button selecting any class

(other is not a class) under the dsp processing menu. This will create a

new network window with an instance of the selected object.

2.7 Aborting commands and deleting windows

You can abort commands which prompt you for input by typing the escape

key. You can abort the current DSP command by selecting abort from

the state menu. You can delete help, information and menu windows

by selecting the window to be deleted and typing delete while holding the

control and shift keys down.

2.8 Saving window and display images

You can save any window (except pop up windows) and the entire X-window

display to a disk �le. This �le can be viewed using xwud or converted to

postscript format for printing with xpr. The window save commands use

the utility $OPD X BIN/xwd. This is assumed to be in directory $OPD X BIN

(which defaults to /usr/bin/X11 if OPD X BIN is not de�ned in the environ-

ment). If that program is not at that location no �les will be generated.

To save the current window type ctrl-shift-*. To save the current window

without �rst raising it above overlapping windows type ctrl-shift-&. These

commands are accessible in the pull down menus in the main window under

Edit and control. The �rst of these commands is in the pull down menus

for the network and plot menus. Both commands work for all windows. The

save window commands are among the few commands not accessible through

the menu data base.

To save the entire display type ctrl-shift-^ in the main window.

10 2. USING ObjectProDSP

2.9 Help Structure

The help facility consists of the following:

1. Pull down menus at the top of most windows document the main com-

mands in the window. These commands can be accessed using the pull

down menus and with shortcut keys and mouse commands listed in the

pull down menus.

2. A subtree in the menu data base serves as an online reference manual.

3. Con�rmation and other messages are displayed in response to user com-

mands. You can control how much of this information is displayed by

changing the help level.

4. Help windows are available for many data base menu selections by press-

ing the right mouse button.

5. All user de�ned objects are added to the menu data base. You can list

the objects you de�ned and their parameters.

6. Example DSP++ programs and ObjectProDSP sessions are provided.

The multiple methods for providing information is intended to make it quick

and convenient to obtain the information you need.

2.9.1 Pull down menus

Most windows have pull down menus at the top. To access a pull down menu

click on it. The �rst menu in each window is labeled Help and provides

documentation of the window. The others contain the main commands in

the window. These commands are accessible through the pull down menus

and though short cut keys and mouse buttons. Each menu item gives the

short cut keys for itself. The coding for key and mouse short cuts is described

in the pull down menu codes selection from the help pull down menu in

the main window.

2.9 Help Structure 11

2.9.2 Help menu database tree

All selections in the menu data base have one line of help information dis-

played when the cursor is over the help button. Many display a short para-

graph of information when the left mouse button is pressed. Some display a

help window when the right mouse button is released.

Selecting help in the top level of the menu data base provides access to an

online reference manual organized by topics.

2.9.3 Message levels

Selecting help and then help levels gives the menu of three available help

levels. The default, help all, provides hints and con�rmation messages that

may be helpful to the new user. help confirm con�rms most commands.

help none only displays error messages.

Some messages are displayed redundantly in both the information window

and scrolled in the main window. This allows related messages such as all

those associated with a single statement to be collected. All messages are

preserved in a history �le that can be viewed by selecting create DSP++

history window from the Data base pull down menu.

2.9.4 State description

In building a DSP network you are de�ning objects in a global name space.

This space starts with some prede�ned objects. These are primarily DSP

processing nodes and facilities for generating and displaying data. The real

number � is de�ned in the variable `Pi'.

These objects are organized in a hierarchical tree structure.

These description are accessible in the menu data base from the objects

button.

12 3. RELEASE NOTES AND VALIDATION

3 Release notes and validation

This section contains the release notes and information about validation

suites.

3.1 Release notes for ObjectProDSP version 0.1

This is the �rst public beta release of ObjectProDSP. Although this is a beta

release and some problems are to be expected, considerable e�ort was put

into validating this release to make it a useful and valuable tool. Earlier

versions have been used by Mountain Math Software in consulting projects.

Many useful ideas that came from those projects have been incorporated in

this version.

.

3.1.1 System requiremnts

3.1.1.1 Memory ObjectProDSP runs well with 16 megabytes of phys-

ical memory and 30 megabytes of swap space. We have also run it with 20

megabytes of physical memory and no swap space but we needed to be care-

ful about what else is running. We suggest 16 megabytes of physical memory

and a 16 megabyte swap partition. The program cannot recover if it runs

out of memory but you can automatically and frequently save the state.

3.1.1.2 Disk space Binary installation: 8 megabytes

Source
oat installation: 31 megabytes

Source
oat and int16 installation: 37 megabytes

There is only one source distribution that includes the documentation. The

above sizes are total requirements after you have dearchived the distributions

and built the executables.

3.1 Release notes for ObjectProDSP version 0.1 13

The following are the additional disk space needed to build the documenta-

tion and run the validation tests.

Float only validation or test data creation: 34 megabytes

Float and int16 validation or test data creation: 38 megabytes

Documentation: 20 megabytes

This is the additional space to build .dvi but not postscript �les from the

source distribution. However it does include the postscript format �les of the

X-windows images. They are converted from the more compact xwud format

when the manuals are created. These are needed to build the .dvi �les and

they require 15 of the 20 megabytes of space.

The documentation component of the distribution contains only the postscript

�les. These require an additional 20 megabytes if you decompress them again

because of the X-windows images. You may be able to pipe them directly to

your printer with gzip without creating the uncompressed �les.

3.1.1.3 Other hardware ObjectProDSP can be used (awkwardly) with

standard VGA resolution. The higher the resolution and the larger the mon-

itor the better. A resolution of at least 1024 x 768 is recommended. A color

monitor and display card is required. The InterViews monochrome mode is

not supported and does not work. Although a high performance graphics

card is desirable graphics performance should be reasonable with almost any

card.

Hardware
oating point is recommended.

3.1.1.4 Software requirements The binary distribution requires XFree86

2.0 and a version of Linux that supports XFree86 2.0. It make work with

earlier versions of XFree86 but we have not tested this. If you want to create

stand alone executables you also need gcc 2.5.8, libc 4.4.24 and the version

of libg++ that comes with Slackware 1.2.0. Other versions may work but

this has not been tested.

The binary release for version 0.1 is currently available only for Linux. It

14 3. RELEASE NOTES AND VALIDATION

should be possible to port ObjectProDSP to any system on which InterViews

version 3.1 is available.

.

3.1.1.5 Using gdb You can run either or both of the two ObjectPro-

DSP processes with the GNU debugger. If large numbers of programs are not

compiled with the -O option under gcc-2.5.8 the executable become large and

di�cult to work with using the debugger. This is due to the large number of

inline functions de�ned inside class de�nitions. These are made into static

functions in each module if -O is not used.

3.1.2 DSP Node library and target code e�ciency

Although there are many nodes in the existing library this is one area that

we hope to expand quickly. For example we do not yet have an IIR �lter

or a FIR �lter for non integer resampling. The list of possibilities is almost

endless. It is usually straightforward and simple to make an ObjectProDSP

node from an existing C or C++ kernel algorithm. If you are aware of public

domain or GPL licensed code that would make good candidates let us know.

Everyone is encouraged to write their own nodes and release them under the

GPL.

The easiest way to write a node is to use routines ReadWord and WriteWord

for every input and output operation. This is simple but results in fairly

ine�cient code. Most of the exiting nodes are written in this way. It is not

di�cult operate on chunks of data in bu�ers and this signi�cantly improves

performance. Routines are available to determine the amount of consecutive

input and output available and there are special classes to simplify using this

information. We hope to convert most of the nodes to operate on chunks of

data in the near future. The existing nodes will usually not be suitable for de-

manding real time applications or other applications where high performance

is critical.

3.1 Release notes for ObjectProDSP version 0.1 15

3.1.3 Supported targets

All nodes are translated into two C++ programs. One is suitable for inter-

active use and the other for dedicated applications. You can automatically

generate a stand alone executable of any network you create interactively.

This facility has been used to generate code for the TI TMS320C30 processor.

The C++ code that ObjectProDSP generates was translated to C with the

front end of a C++ compiler and this in turn was compiled with TI's C

compiler. The stand alone target code should be portable to any system

with a C++ compiler. With a C++ to C translator the code should be usable

on any processor with a C compiler.

Currently there is no custom support for target processors. You must make

any modi�cations needed for a particular target to the generic C++ code

generated. The support for the TMS320C30 used a proprietary board and

driver software for a customer of Mountain Math Software.

3.1.4 Filter design

Currently there is no �lter design software integrated into ObjectProDSP.

There are public domain packages available and it is simple to edit the output

from these and to use as coe�cients for a �lter. We would eventually like to

integrate one of more of these programs.

To use a �lter designed elsewhere de�ne the coe�cients for a �lter with a

statement like the following:

MachWord * coeff[] = {.1, .2, .8};

Then de�ne a complex �r �lter with the following statement:

CxFir filter(1, 0, 0.0, 0, coeff);

The above can be typed in the DSP++ statement entry window or can be

entered in a �le and read with the read state option in the state menu.

Alternatively you can use the create option and when you are prompted for

the �lter coe�cients you can enter the name of the array coeff. (To create

16 3. RELEASE NOTES AND VALIDATION

a CxFir node select objects, dsp processing and CxFir. Then click the

right mouse button with the cursor over the CxFir button.)

3.1.5 Bugs

There is a know bug in the pop up menus. If a new window obscures a pop

up window while it is the process of appearing, subsequent behavior of the

menu bar is erratic and, if the window is rebuilt, ObjectProDSP can crash.

If this happens you should immediately save and exit and then read the

state back in and continue working. This problem is rare and can be avoided

by not using the pop up windows when new windows are being created by

the DSP process at the start of execution of a network.

3.1.6 Deleted TargetSystem capability

Previous versions had a TargetSystem capability that was used extensively

in a previous project. We have not had time to test and update this so

we removed it. Code that references and supports TargetSystem is still

present. We only removed the user interface .usr �les. We plan to restore

this capability in a future release. TargetSystem refers to combining several

networks in a single Target module. The generation of Target stand alone

code for a single network is extensively tested in the validation suites.

3.2 ObjectProDSP validation suites

There are several regression tests you can use to check the installation or

check to see if any source changes you made create new problems.

Some of the validation suites also have a limited use as tutorials. Select pause

under the state and session menus to set a delay between each command.

With this delay you can play back action �le validation suites as a tutorial.

(One limitation of this is you do not see the pop up windows that prompt

for user input.)

17

The output from node validation tests are written with the node CompareDisk.

This tests the current output against known good results. If any errors

are encountered a �le giving the list of errors is generated. See README in

$OPD ROOT/validate for more information. Go to $OPD ROOT/build and en-

ter make VALIDATE to run the full suite of validation tests. This will take a

while.

4 Creating and editing DSP networks

4.1 ObjectProDSP networks

A network consists of one or more data stream sources, DSP processes that

transform input data streams to output data streams and data stream sinks.

The simplest complete network is a signal node linked to a plot node as in

the basic example. You can build DSP networks interactively, execute them

and display the output. You can construct a stand alone version of a network

in C++ that you can execute or link with a target application. When a stand

alone target is generated any plot nodes are replaced with nodes that write

their output to disk.

Many DSP processes transform data in a uniform linear way. Whenever

possible this information is used to compute sample rates and times for data

streams. It is also used to construct deterministic scheduling schemes for the

stand alone DSP networks.

The network menu under objects describes several structures related to

network control. CircBufDes is the bu�er descriptor class used to control

bu�er size and related parameters. DataFlow is the controller for a network.

Most controller functions are also directly accessible through the Network

object. Network is the class for de�ning a network. TargetSytem is a class

for building a target system for stand alone execution using multiple networks

that you can create interactively.

18 4. CREATING AND EDITING DSP NETWORKS

4.2 Graphically editing a network

You can create and edit a network using the keyboard or mouse. The Edit

button in the upper left hand corner of the network window must be de-

pressed to enable editing. To select editing press and release any mouse

button with the cursor in the Edit button. Only one network can be edited

at a time.

To create a new network disable editing on any existing network and create

an instance of a node. When a network window is �rst displayed, editing will

be enabled unless there is existing network with editing enabled. Instances

of nodes can be created and added to a network from the menu database.

Select menu database under the Help pull down menu for a description. Or

try the example described in the introduction help window.

Once a node is in the network window you can connect it to other nodes in

the same window. Nodes can be connected either to an output channel or

a bu�er for an output channel. There are �xed number of unique output

channels (most commonly one) for each node. You can have many taps from

a single output channel. Use the middle mouse button to select the next

unused output channel. Use the right mouse button to add a tap to the

bu�er in the current output channel. (For all network editing operations

with the mouse you must hold the shift key down.)

The bu�ers are represented by a small box with a number in it if there is

more than one connection for the bu�er. If you want to tap into a node for

a channel that is already connected press the right mouse button in the box

representing the bu�er you want to connect to. If there is more than one

input or output channel for a node the channel number will appear in front

of (output channel) or after (input) channel the bu�er for the connection.

A single node can be replaced with a di�erent compatible node. To replace

a node hold both the control and shift keys down and press and release the

right mouse button on the node to be replaced. Then do the same thing to

select the replacement node.

You can remove a node from a network. This will force any node in the

network that is only connected through that node to also be removed from

4.3 Network display 19

the network. Most removed nodes will be available for reuse but some will be

deleted because they cannot be reconnected. You can also clear all nodes in

a network with the Network and DataFlowmember function ClearNetwork.

An existing node can be added to a network with member function edit.

4.3 Network display

The Select and Link menus allow you to select a node for, connect or dis-

connect it to other nodes, display nodes connected to it and perform related

operations.

4.3.1 Select menu

As you add nodes to a network the window will grow to �xed limits and a

horizontal scroll bar will then appear. If you want to change these limits,

resize the window using the windows manger commands and then select

redraw to existing size from this menu. The dimensions of you set will

now be upper limits on how large the window can grow.

Ordinarily editing is selected by the check box in the upper left corner of the

network window. It can also be enabled or disabled from this menu.

The remaining commands select a node by highlighting its name. You can

initially select the upper left HOME or lower right END node. You can move

the selection with the arrow keys. Display windows associated with a node

(such as plots and listings) are displayed above overlapping windows with

the raise selected outputs option.

A selected node is either one that is highlighted or one that has the mouse

cursor positioned over it. Highlighted nodes are chosen �rst for commands

entered by the keyboard. Nodes selected by the mouse are chosen �rst for

mouse commands.

20 4. CREATING AND EDITING DSP NETWORKS

4.3.2 Link menu

The link menu allows you to highlight the connections to a node and perform

editing operations on the node. You can show the connections to a node

by selecting it and choosing to highlight the input connections, the output

connections or all connections. Use the left, middle and right mouse buttons

respectively for this. You can do this for a node drawn with a box and for

the labels of a node that are not in a box.

4.4 DSP processing nodes

DSP processing nodes perform DSP operations on the data in their input

channels and write the results to their output channels. There can be any

number of input or output channels. For example there are nodes that do

multiplexing (combine multiple channels into a single channel) and demulti-

plexing (the inverse). The number of input channels is displayed as an integer

on the left of each node in a network. (If no integer is displayed there is a

single input channel.) Similarly the number of output channels is displayed

on the right. Each output channel of a node can have multiple bu�ers. The

number of bu�ers is displayed in a small box to the right of the node. Each

bu�er is a copy of the same data stream. In contrast the di�erent channels

in a node ordinarily contain di�erent data. For example in a node for demul-

tiplexing each output channel will represent one of the demultiplexed data

streams.

To access the DSP processing nodes select objects and dsp processing.

4.5 Plots

Plots in ObjectProDSP are windows on data streams. You can move the

window though the data with the page-up and page-down commands and

the scroll bar at the bottom of each plot.

Real data may be plotted as a linear time series. Complex data may be

plotted as a linear time series or as an eye or X-Y plot, i. e. where the real

4.5 Plots 21

value determines the X coordinate and the imaginary value determines the y

coordinate. The linear plot node con�gures itself based on the type of input

data it receives. If its input is complex it will plot the real and imaginary

components in di�erent colors.

Data streams have an element size parameter that determines the number of

scalar values in each sample. This includes but is not limited to 1 for real

and 2 for complex data. All element size components will be displayed on

the same plot using with di�erent colors for each component.

To access the plot nodes select objects and plot.

4.5.1 Plotting FFT (blocked) output

If the input to a plot node is from an FFT one frame from the FFT will be

displayed in each plot. The X axis will be labeled in frequency based on the

sample rate of the data stream and the FFT parameters. (A default sample

rate of 1 hz for the �rst input channel is assumed if no rate is set.)

A block size parameter associated with each data stream determines the

number of samples displayed in a plot. If the block size is 1 then the a

strictly linear time series is assumed. The block size parameter is generated

by the FFT node and read by the plot node.

4.5.2 Output after a network has been edited

If you execute a network, edit it and then execute it for additional iterations

there may be discontinuities in the output at the point of the edit. If your

editing adds new plotting nodes these will have a di�erent time base then the

plot nodes that were present before the edit. When you edit a network all

the bu�ers are cleared and the nodes are reset. If you want output from an

edited network with a consistent time base write the state out and then read

it back in with options in the state menu. You must use the read over

state option if you want to replace a network that has already been de�ned.

Alternatively you can exit ObjectProDSP and then reexecute it. The state

22 4. CREATING AND EDITING DSP NETWORKS

will be saved and read back in when you restart (unless you use the -c option

or not using the default state �le name).

4.5.3 Invalid numeric values

If the numbers sent to the plotting routine in the user interface process are

not valid IEEE
oating point values they will be converted to 0. A warning

is displayed the �rst times this happen. A count of these is kept and can

be displayed from state and plot err in the menu data base. This should

not happen unless you a debugging a node that generates such values. There

is only limited protection against this. Such values can cause the system to

crash with a
oating point exception.

4.5.4 Saving and reading plots

A plot can be saved as a �le and a plot window image from the View pull

down menu. This image window is saved with the X-windows utility xwd. It

can be translated to a postscript �le with the utility xpr. The postscript �le

can be included in printed documents.

A plot saved in a �le can be read by ObjectProDSP and includes all the data

in the original plot, not just the data displayed in the window. To read a plot

�le saved in this way select setup and read plot in the menu data base.

4.6 Plot detail

There are two ways to change the detail displayed in a plot. You can change

the size of a window and you can show more or less of the data in the window.

Use the standard X-windows controls to change the window size.

The pull down menus at the top of each plot window can be used to change

the scale.

To change the data displayed in a plot with short cut use the arrow keys to

indicate more or less detail in the either or both dimensions. You then select

4.7 Listing plot coordinates 23

a region of the existing plot. If you are showing more detail this region will

�ll the plot window. If you are showing less detail the data displayed in the

plot window will be compressed to �t in the region you select.

To select a region press the mouse button at one corner of the plot and drag

the cursor to the other corner. When you let up on the mouse you will have

selected a region and the window will be redrawn with the selected data. To

return to the original scale type home. You can alternate between two scales

by typing shift-home and home.

4.7 Listing plot coordinates

If you click the left mouse button at any location in a plot the coordinates

of that position will be scrolled to the DSP++ history area in the main win-

dow. If you click the right mouse button close enough to a plotted point the

coordinates of that point will be displayed and a box will appear around the

point.

4.8 Views of plot data

The default view of all plots is linear. You can also view plots (except eye

plots) on a power scale, a decibel scale or a power-decibel scale. The pull

down menus can be used to select di�erent views and they document the

short cut keys to create views.

Data in a long stream for a new view is transformed up to the last point you

display. Thus creating a new view and going to the last frame of that view

may take some time.

You can also create one or more copy views of any plot. This can be useful

if you want to simultaneously compare di�erent frames of the same data

stream.

You can save a plot window in a format that can be converted to postscript

for inclusion in printed matter. You can save the entire plot data stream to

a �le that can be read later with the read plot option under setup.

24 4. CREATING AND EDITING DSP NETWORKS

4.9 Listing output from a DSP process

The list menu under objects gives access to nodes that display ascii for-

matted data.

The HexList and Listing nodes write data to text windows. As the process

executes the data available for display is continually updated. You can scroll

through this data at any time, even while execution is proceeding. You can

make the windows larger or smaller. If you increase their height more lines

will be displayed at once. If you decrease their width some part of each line

may not be displayed.

The HexList node displays one or more channels in hexadecimal format and

hard limits (with a warning) any input that will not �t in a 32 bit word.

HexList displays an index of the total words output. If you do not want

to display several channels in a single listing you may prefer to use the Hex

option in the more
exible Listing node.

Listing lists its input in decimal or hexadecimal format. Under hexadecimal

format values that would over
ow 32 bits are hard limited with a warning.

Listing groups elements from each sample in parenthesis. It gives a sample

index for each line. If the data is blocked (for example FFT output) it gives

a block index and an index within the block. Only the two least signi�cant

digits of these indices are displayed. Periodically there is a line that gives

the complete index. by samples and blocks.

4.10 Moving through and saving listing output

A listing display is a window on a data stream. You can move the window

through the data stream using the scroll bar or the keyboard with the short-

cut keys described in the the pull down menu. You can save the entire data

stream to an ascii �le. Because this �le contains sample indices it may not be

suitable for exporting data to other processes. The AsciiFile node (under

objects, disk and ascii) is designed for that purpose.

25

5 Menu database overview

5.1 Network window connection to menu database

Using the menu data base you can add nodes to a network change variables

in a node and control a network. If you create an instance of a node from the

menu database it will be added to the network being edited. If no network

is being edited a new network will be created. Select objects in the main

menu and a class of objects like dsp processing. Then hold the shift key

down and push and release the left mouse button on a an object like Add.

An instance of that object with default parameters will be added to the

network. If you use the right mouse button you will be prompted for each of

the parameters.

You can get a database menu for the network, bu�er descriptor or controller

from the Database pull down menu. You can can also get a menu for a

selected node (or the class of that node). The menu for a node and the class

of a node provide access to the documentation for the node including the

values of parameters.

5.2 The objects menu

The objectsmenu describes the nodes or objects you can create interactively

and all instances of those objects. The nodes are grouped under submenus.

dsp processing selects nodes that read input channels and write output

channels, signal select nodes that create output data streams with no input

data streams and without reading disk �les. plot selects the plotting nodes.

list selects nodes that display numeric values. disk selects nodes that read

or write disk �les.

The network menu describes objects related to network de�nition and con-

trol. These include the network itself Network, the bu�ers assigned to a

network CircBufDes and the controller for a network DataFlow.

Finally the variables menu lists de�ned variables and arrays.

26 5. MENU DATABASE OVERVIEW

5.3 Saving the state

State refers to the state of any DSP networks you are editing. The state

is saved when you select save and exit. You can have the state saved

periodically and you can save it at any point from the statemenu. Multiple

backup copies of the state are maintained. See the state menu for details.

You can also create action �les as a record of almost everything you do

with the mouse or keyboard. State �les only preserve the �nal state of

networks you create. Action �les preserve the history of most actions in a

session. Because of the way action �les are tied to the detailed structure

of menus they may not be portable across versions of ObjectProDSP. You

should use state �les and not action �les to back up your work. They are also

not completely reliable because of timing considerations. They are intended

mainly to support regression tests of the user interface and to allow you to

easily customize the initial windows.

Select state, session and rec to record your actions. You can only correctly

play back an action �le if ObjectProDSP is in the same state it was when

the action �le was created. Thus you should ordinarily start recording at the

beginning of a session. Whenever you record or play back actions the session

menu is selected to make sure the menu data base buttons are in the correct

state. Action �les were designed for regression testing but they can also be

used for automated demonstrations and as an additional level of backup.

5.4 Menu data base commands

The menu data base is a central point for controlling ObjectProDSP. It is a

hierarchical menu tree with integrated documentation.

The top level help menu provides online manuals, example DSP networks

and control over the amount of help information displayed.

Most of the tree is under the objects menu. This contains all the classes of

objects you can manipulate interactively and all instances of those objects.

For example a DSP processing network is an object as is each of the nodes

in the network. All of the manipulations of a network are through member

5.5 The setup menu 27

functions. Many of these functions are called when graphically editing a

network and most easily used in that way. However they are all implemented

as member functions and documented as such in the menu data base.

The state menu allows you to save the DSP network state and to control

how often the state is saved automatically and how many copies of the state

are preserved. It allows you to abort the DSP process and to exist without

saving the state. It includes a sessionmenu to record and play back sessions.

The objects menus provides access to the objects you manipulate to create

DSP networks. These are organized as categories of objects such as DSP

processing and signal generators. Under each category there are the classes

of objects that implement a function such as FFT. These are implemented

and documented as C++ classes. (It is not necessary to understand C++ to

use ObjectProDSP. You can do everything by graphically editing networks

and using menus.) Under each class the instances of objects of that class are

available. You use the classes to create instances of the objects and then you

use member functions of the objects to manipulate them.

5.5 The setup menu

The setup menu allows you to read and ObjectProDSP state �le. If you

choose read state and the �le de�nes a variable or object that already

exists an error message will be displayed and the �le read will stop. If you

choose read over state then previously de�ned objects referenced in the

�le will be overwritten.

From setup you can read an ObjectProDSP plot �le and display the contents

in a window. Finally you can access a debugmenu for options that are helpful

if you are debugging your own processing nodes.

5.6 Debugging menu

The debug menu controls options that are helpful in debugging your own

processing nodes. Trace outputs the name of each node just before it is

28 5. MENU DATABASE OVERVIEW

executed to the log �le dsp.messages. Trace is helpful if your node crashes

the program. It allows you to trace which node is causing the problem. heap

ck does a simple heap consistency check just before and just after each node is

executing by allocating and freeing many memory segments. This frequently

catches problems related to an inconsistent heap and makes it easier to trace

the source of the problem. This option can signi�cantly increase execution

time.

Finally you can control how often some over
ows are reported with the over

lin option. There are two di�erent mechanisms for reporting over
ow. The

more complex one is controlled by this option and only works if the node

makes special provisions for it. Most conversions check for over
ow and issue

a warning if an over
ow occurs. The total number of warnings reported for

each network execution is limited to four. All warnings will be written to

dsp.messages if trace is enabled.

5.7 Examples

The examples menu under help contains several examples. You can get a

brief description of each example, view the DSP++ code for it and execute

it. If you use the execute option and you have used any of the variables in

the example you will get an error messages. With execute over previously

de�ned variables with the same names will be overwritten.

The DSP++ code for each example (generated by save state) is in directory

$OPD ROOT/examp. By adding a �le with su�x .xml to this directory you can

add more examples to this menu. You need to add a help �le with the same

base name and su�x .hlp to directory $OPD ROOT/help for each example

you add.

5.8 Variables

You can interactively de�ne scalar variables and arrays by entering declara-

tions and assignment statements in C syntax in the DSP++ statement entry

area in the main window. These variables can be used in arithmetic expres-

5.9 Recording and playing back sessions 29

sions entered in this area and as parameter values that you are interactively

prompted for. You cannot enter expression when prompted for a parameter

value. You must either enter a numerical value or the name of a variable.

All variables you de�ned and their values can be listed from the variables

menu under objects. This menu is organized by the variable type. MachWord

is the type of the simulator you are using. In the standard simulators it is a

16 bit integer a and single precision
oating point value. AccMachWord is a

double precision version of the same value that is typically used to represent

the increased accuracy of a processor's accumulator.

5.9 Recording and playing back sessions

You can record and play back complete sessions. Select state and session

from the menu data base or use the Actions pull down menu. You cannot

record or play back X-windows operations such as resizing a window. You

also cannot record scrolling through windows or changing the scaling on plots.

However every menu data base command, or pull down menu command no

matter how it is entered can be recorded.

Recording is not completely reliable because of timing considerations. In

particular if you enter a command that prompts for inputs and those prompts

originate from the DSP process you must not do anything else until the

prompt appears. Action �les are mainly useful for regression test validation

and for customizing the initial appearance of ObjectProDSP. They are not

a reliable way to back up your work. Use state �les for that purpose.

There are examples of recorded sessions in the directory $OPD ROOT/validate.

30 6. MEMBER FUNCTIONS

6 Member functions

6.1 Node member functions

Each node can have member functions speci�c to that node. In addition

there are generic member functions served by all nodes, all signal nodes and

all display nodes.

Raise raises a network window containing the node, i. e. makes the window

visible over any overlapping windows. It also raises a plot or listing generated

by the node.

SetSampleRate sets the output sample rate of a node and adjust the sample

rate for all nodes in the network.

DisplayInputTiming and DisplayOutputTiming displays the timing for the

input and output channels of a node.

Edit adds the node to a network being edited or creates a new network if

none is being edited.

Other member functions are related to editing a network and are not normally

used directly.

6.2 Make stand alone target executable

ObectPro++ translates its source into two C++ programs. One is suitable

for interactive use and the other for stand alone applications. You can au-

tomatically generate a stand alone executable of any network you create

interactively with the MakeTarget member function of a network.

This option generates C++ code and a Makefile to create a stand alone

executable for the network using the target C++ code for each of the nodes

in the network. When a target is created all plotting nodes are replaced with

OutputNode objects. The data that was plotted in the interactive version

of the network will be written to a disk �le. This data can be read with

InputNode and plotted or processed in other ways.

6.3 Bu�er descriptors 31

6.3 Bu�er descriptors

Bu�er descriptors determine how data is bu�ered between nodes. Currently

only circular bu�ers are supported. Usually you do not need to worry about

these. They are created and assigned to a network automatically and the

default values are generally su�cient. You need to use these objects to

change the default bu�er size or to modify the control and bu�ering in the

stand alone version of a network. In interactive execution all bu�ers are of

a �xed size and this must be large enough to prevent blocking. In the stand

alone network bu�ers are made as small as possible consistent with other

constraints.

There is a potential trade o� between bu�er size and e�ciency. You can

specify a desired size for the bu�er and whether the bu�er should be enlarged

(increased performance) or shrunk (minimal memory requirements) if the

desired size will waste memory.

There are two scheduling algorithms available. With �xed scheduling a static

table determines the number of executions for each node. With some net-

works �xed scheduling is impossible or would produce an excessively long

table. You can select if you want to attempt to used �xed scheduling. If it is

not possible to used �xed scheduling then dynamic scheduling will be used.

Dynamic scheduling is slightly less e�cient because it requires computing

the number of times a node can execute every time it is invoked. However

this is done with an e�cient algorithm that does not require a divide.

To assign a new bu�er to an existing network select network menu from the

pull down menu for Data base in the network window. Then select exec

and SetBufferDescriptor (you may need to select other several times to

get to SetBufferDescriptor) in the menu window for the network. You

can also assign a bu�er descriptor to an existing network be marking that

network as being edited and creating a CircBufDesc object instance.

32 6. MEMBER FUNCTIONS

33

7 The DSP++ language

Development of Digital Signal Processing (DSP) applications is a labor in-

tensive time consuming process. Each implementation is a custom product

that makes little use of previous work and has little that can be reused in fu-

ture projects. This is not unlike the state of programming in the early �fties

when all programs were custom products written in assembly language.

Things are changing slowly. C compilers are becoming available for many

DSP processors. While these generally do not provide the e�ciency required

for the kernel DSP algorithms they do allow prototyping in C and limiting

assembly code to the kernel routines.

It is generally the case that any DSP system implementation is preceded

by the construction of high level model. This is required because of the

complexity of DSP algorithms and the many issues and tradeo�s involved in

their implementation. Thus every system is implemented twice. The �rst

is a functional implementation in a development environment that supports

analysis and debugging of the algorithms. The second is a custom assembly

language implementation on DSP processors.

DSP++ is a language and a methodology to dramatically improve the e�-

ciency of DSP system implementation. It uses the object oriented methodol-

ogy of C++ and the universality of C to provide a practical approach to the

problems of DSP system implementation.

The DSP++ language itself is a restricted subset of C++. Classes for signal

processing objects form the core of the DSP++ language. These include

signal processing nodes, signal generation and input nodes and signal output

or display nodes. There are additional objects for de�ning DSP network,

controlling DSP networks and controlling bu�er allocation.

7.1 ObjectProDSP language overview

DSP++ is a set of C++ classes for de�ning and manipulating DSP networks.

The operators for de�ning a network are + and >>. The + operator adds

34 7. THE DSP++ LANGUAGE

thread to an existing network. For example the statement Net + Signal

adds a signal node Signal to a network Net. To connect a node to a node

already linked in a network enter Net >> Node A. These two statements can

be written as a single statement: Net + Signal >> Node A.

Technically the operators + and >> are member functions of the DSP++ class

Network. You write statements using these member functions as shown above

but they are de�ned as functions operator+(SignalStr& signal node) and

operator>>(Node& node). All the operations in DSP++ are implemented

as member functions and documented as such in the menu data base. C++

member functions have been extended in ObjectPro++ to create interactive

member functions. If you interactively execute a member function you be

prompted for the parameter values. Creating instances of an object is a

special case of the member function. The function to create an instance is

called a constructor. When you create an object interactively that object is

added to the menu data base.

7.2 The DSP++ interactive interpreter

The interpreter works similarly to the language SmallTalk. Instead of a C

main program you de�nes and manipulates objects. The objects are DSP

processing nodes that are built into networks. The networks are then exe-

cuted and the output displayed. The simulation results may be graphical or

numeric. They can be viewed interactively and saved to a disk �le.

Although you can enter statements directly it is easier and quicker to have

most statements written for you. As you graphically editing a DSP network

DSP++ statements are generated to implement the actions you request. You

can create nodes by a single mouse click (when the default parameters are

adequate) and connect nodes in the network with two mouse clicks.

7.3 DSP networks

DSP++ allows you to de�ne an arbitrary network of DSP processing nodes.

This network can include feedback loops and resampling. Input can be from

7.3 DSP networks 35

either signal generation nodes or disk �les. Output can be to plot windows,

text windows, disk �les or any combination of these. The same data output

can be sent to multiple destinations.

Analysis routines determine the completeness and consistency of the network

and insure that all feedback loops have enough delay to prevent deadlock. A

timing analysis routine determines the timing relationship of all data streams.

The data is displayed with timing labels that re
ect the e�ect of DSP pro-

cessing. For example, the correct time of the output sample of a symmetric

FIR �lter is the time of the midpoint of the �lter impulse response. DSP++

understands and accounts for such timing relationships.

Networks can be controlled interactively. You may specify how many input

samples are created and display the output generated. He may then vary

some of the parameters and execute the network again, to see the e�ect of

these changes. Networks can be edited interactively. Display nodes may be

added at any point in the network.

7.3.1 C++ language extensions for networks

The operators + and >> used in de�ning DSP networks is an example of an

internal C++ language extension. One speci�es the addition of a new thread

to a network as Net + Signal where Net is a network and Signal is signal

source node. To connect a new node to a node already in a network one

writes Net >> Node_A. One can write the whole thing as a single statement:

Net + Signal >> Node_A.

The language extension capabilities of C++ allow the de�nition of a high

level DSP language while maintaining conformance to the industry standard

programming language C++.

7.3.2 Modeling DSP processor arithmetic

The arithmetic in the ObjectProDSP processing nodes is done on two de�ned

classes: MachWord and AccMachWord. These classes correspond to the basic

word size (MachWord) and the accumulator word size (AccMachWord) of target

36 7. THE DSP++ LANGUAGE

systems. Doing this allows us take our existing library of DSP processing

nodes and model the arithmetic of virtually any target DSP processor. There

is no need to modify the processing node code. We merely need to de�ne the

arithmetic operators in these two classes to correspond to the arithmetic in

the target DSP processor.

Currently ObjectProDSP has two arithmetic models. The �rst uses all single

precision
oating point arithmetic. The second model assumes a 16 bit word

size and a 32 bit accumulator. It is possible to do both 32 bit integer and 32

bit
oating point operations in the
oating point simulator.

7.4 A language for DSP?

The world is not in need of more programming languages. It can bene�t

from extending languages to more e�ectively deal with applications. C++

and object oriented languages in general recognize this. They are designed to

be the bottom level of a hierarchy of object libraries for di�erent application

areas.

The traditional method of extending languages is via subroutine libraries.

This method is e�ective and useful. It works well for low level routines such

as those in the standard library provided with most C compilers. It is also

useful for providing high level functions that are used frequently such as

Digital Signal Processing kernel operations.

Subroutine libraries have limitations:

� Subroutine calls with more than a few parameters are awkward.

� It is di�cult to construct libraries that are both general and easy to use.

� Libraries do not support use of natural mathematical notation such as

arithmetic operators in matrix and vector expressions.

Good engineering practice aims at building complex systems in a modu-

lar layered way. No tools will insure that a project is implemented in this

manner. Good tools can make it easier and less labor intensive to do so.

Subroutine libraries is an important but limited step in this direction.

7.5 Data
ow model 37

DSP++ will support the creation of DSP programs that can be ported to a

variety of architectures. The idea is to allow the expression of a DSP algo-

rithm at as high a level of abstraction as possible. The algorithm is designed,

developed, debugged and veri�ed at that level. It can then be directly ported

to any target architecture that supports a standard C compiler.

ObjectProDSP uses both C++ facilities such as class hierarchies and a lan-

guage preprocessor to allow a single program to be suitable for both interac-

tive execution and use in a dedicated DSP processor.

Use of DSP++ provides critical advantages to the creator of DSP products.

1. Time to market will improve signi�cantly: The algorithm will be ex-

pressed and validated at a high level and then rapidly ported to the

target architecture.

2. Porting of existing products to new or more cost e�ective hardware

architectures will be a relatively easy task.

3. The same application can be supported on a variety of architectures.

4. The overall cost of software development and maintenance will be re-

duced.

7.5 Data
ow model

Virtually all computer processes �t a data
ow model at least to the extent

of having input and output. In the absence of output, there is no point to

the program. In the absence of input, the program only needs to be run

once. DSP processes are frequently, but not always, blessed with regular and

predictable data
ow. We need to fully exploit this predictability without

limiting DSP++ to only support regular data
ow.

7.5.1 Data input/output model

A general mechanism for modeling such data
ow and using the model to

schedule process execution is described in [7]. We incorporate some of these

38 7. THE DSP++ LANGUAGE

ides in our data
ow model. We support processes that have one or more

input and one or more output nodes and consume and emit data as follows.

Input channel i for node j needs to have available in its input bu�er B

j

i

+XC

j

i

samples to output on channel k XD

j

k

output samples. X is a parameter that

can be set to any integer value.

There are many examples that �t this model. A FIR �lter of length L with

output resampling of r must have L � r + rk inputs to generate k outputs.

An FFT of size F with an overlap factor of v requires F�vF+vFk inputs to

generate Fk outputs. Many DSP processes have a �xed relationship between

input and output samples that �t this model.

7.5.2 Processing nodes

Node de�nitions must satisfy generic and process speci�c requirements. For

example a FIR �lter will contain a pointer to the �lter coe�cients and the

�lter length. It will also contain generic data
ow model parameters that

relate input data consumption to output data generation. To support both

generic and speci�c requirements we use C++ derived classes. We de�ne a

generic base class for all processing nodes that �t the data
ow model and

then construct derived classes for speci�c functions such as FIR �lters.

39

8 ObjectProDSP example networks

There are several examples to illustrate the ObjectProDSP language and

tool. It is easy to add custom examples to your installation and have these

available in the menus. This section describes the examples menu and the

basic examples. Your installation may have additional examples.

8.1 Examples menu

The Help selection in the main menu and then the examples option lead

to the examples menu. From this menu you can select any of the examples

described in the following sections. You can then select a description of the

example, execute it or read its DSP++ code.

8.2 Basic example

The basic example generates and displays 1024 samples from a complex sine

wave. It shows how to declare a signal generator, a plot and a network. It

shows how to de�ne a simple network topology and execute the network.

This is the ObjectProDSP program for this example.

// This basic example displays a complex sine wave

// Declare the signal generator:

CxCos BasicSig ;

// Declare the plot:

Plot BasicPlt ;

// Declare the network:

Network Basic ;

// Define the network topology:

40 8. OBJECTPRODSP EXAMPLE NETWORKS

Basic + BasicSig >> BasicPlt ;

// Display the network in graphical form

Basic.GraphDisplay();

// Execute the network generating 1024 samples:

Basic.Execute(1024);

8.3 FFT example

This example adds a complex sine wave to Gaussian noise. This sum is

processed by an FFT. The FFT output and both of the signal sources are

plotted. This example shows how to:

1. Sum two data streams to generate a single output.

2. Link a display node into an existing network.

3. Use the Gaussian noise generator.

4. Display multiple plots.

5. Use he FFT.

This is the ObjectProDSP program for this example.

// Generate a complex .08 hz sine signal

// assuming a 1 hz sample rate

// The initial phase is 0 and the amplitude is 32.

CxCos FFT_Sig(2.*Pi*.08,0,32);

// Define a 512 (2^9) point fft node

CxFFT FFT_FFT(9);

// Define 3 plot nodes for the output, noise and signal

Plot FFT_Plt;

Plot FFT_PltNoise ;

8.4 Three stage �r �lter example 41

Plot FFT_PltSignal ;

// Define a gaussian random number generator with

// standard deviation of 32, and mean of 0.

// Generate pairs of sample for complex data.

Normal FFT_Noise(32.,0,2);

// Define a summation node for 2 complex channels.

// The overall gain of this node is 1.

Add FFT_Sum(2,2,1.);

// Define a network

Network FFT_Net;

// Define the network topology

FFT_Net + FFT_Sig >> FFT_Sum >> FFT_FFT >> FFT_Plt ;

FFT_Net + FFT_Noise >> FFT_Sum ;

FFT_Net.Link(FFT_Noise)>>FFT_PltNoise ;

FFT_Net.Link(FFT_Sig)>>FFT_PltSignal ;

// Display the network in graphical form

FFT_Net.GraphDisplay();

// Execute the network generating 4096 samples

FFT_Net.Execute(4096);

8.4 Three stage �r �lter example

This is the ObjectProDSP program for this example.

CxCos Cos02hz(2 * Pi * .02, 0.0, 1.024e+03);

CxCos CosPt2hz(2 * Pi * .2, 0.0, 1.024e+03);

Network Fir_net;

CxFFT FFT_1024(10, 0.0, 5.e-01, 0);

42 8. OBJECTPRODSP EXAMPLE NETWORKS

CxFFT FFT_256(8, 0.0, 5.e-01, 0);

static MachWord Stage_one[] = {

-1.8691079691052437e-02, -3.1646952033042908e-02,

1.3136906921863556e-01, 4.188159704208374e-01

};

CxFir Fir_one(2, 0, 0.0, 0, Stage_one);

static MachWord Stage_two[] = {

5.0137522630393505e-03, 8.9365877211093903e-03,

-3.1649746000766754e-02, -5.4023709148168564e-02,

1.3631737232208252e-01, 4.3563303351402283e-01

};

CxFir Fir_two(2, 0, 0.0, 0, Stage_two);

static MachWord Stage_three[] = {

8.3521055057644844e-04, 2.0192209631204605e-03,

8.7504170369356871e-04, -1.5354243805631995e-03,

-1.9233264029026031e-03, 1.4449445297941566e-03,

3.3509572967886925e-03, -4.9146544188261032e-04,

-4.9332436174154282e-03, -1.4811638975515962e-03,

6.0873683542013168e-03, 4.6224407851696014e-03,

-6.2061776407063007e-03, -8.7587479501962662e-03,

4.5680347830057144e-03, 1.3436957262456417e-02,

-4.8366468399763107e-04, -1.7854765057563782e-02,

-6.6574704833328724e-03, 2.0863097161054611e-02,

1.7380831763148308e-02, -2.0901164039969444e-02,

-3.2361775636672974e-02, 1.565072312951088e-02,

5.3351804614067078e-02, -3.5667233169078827e-04,

-8.7312132120132446e-02, -4.2652428150177002e-02,

1.8306387960910797e-01, 4.0873810648918152e-01

};

CxFir Fir_three(2, 0, 0.0, 0, Stage_three);

Normal Fir_noise("Fir_noise", 1.024e+03, 0.0, 2);

Add Fir_sum("Fir_sum", 3, 2, 1.);

Plot Plot_cos02hz;

Plot Plot_cosPt2hz;

8.5 Feedback example 43

Plot Plot_fft_1024;

Plot Plot_fir_sum;

Plot Plot_fft_256;

CircBufDes Fir_net_buf(4096) ;

// Network topology for `Fir_net'

Fir_net + Fir_noise >> Fir_sum >>Fir_one >> Fir_two >> Fir_three >>

FFT_256 >> Plot_fft_256 ;

Fir_net.Link(Fir_sum,0) >> FFT_1024 >> Plot_fft_1024 ;

Fir_net.Link(Fir_sum,0) >> Plot_fir_sum ;

Fir_net + Cos02hz >> Fir_sum.LinkIn(1) ;

Fir_net.Link(Cos02hz,0) >> Plot_cos02hz ;

Fir_net + CosPt2hz >> Fir_sum.LinkIn(2) ;

Fir_net.Link(CosPt2hz,0) >> Plot_cosPt2hz ;

Fir_net.AssignBuffers(Fir_net_buf);

Fir_net.GraphDisplay();

Fir_net.Execute(4096);

8.5 Feedback example

This example shows a feedback loop that produces over
ows. It includes a

four sample delay so the feedback loop will not deadlock.

This is the ObjectProDSP program for this example.

// Declare signal and output nodes

CxCos SigG(1.2566370614399999e-01, 0.0, 1.024e+03);

Listing FeedbackListing;

// Declare the DSP nodes

SampleDelay Delay_4(4);

Add CxAddNode_2(2, 2, 1.);

Gain Gain4X(4.);

44 8. OBJECTPRODSP EXAMPLE NETWORKS

// Declare the network

Network Feedback ;

// Network topology for `Feedback'

Feedback + SigG >> CxAddNode_2 >> Gain4X >> FeedbackListing;

Feedback.Link(Gain4X,0) >> Delay_4 >> CxAddNode_2.LinkIn(1) ;

// Display the network in graphical form

Feedback.GraphDisplay();

// Execute the network

Feedback.Execute(256);

8.6 Fir �lter response example

This example creates a graph of the frequency response of a �r �lter operat-

ing on a complex data stream. The plot is generate by passing an impulse

through the �lter and taking a complex FFT of this output. The resulting

complex plot shows the amplitude and phase response of the �lter. Position

the cursor in this plot and type ^B to see a decibel power plot or ^P to see

a power plot of the same data.

This is the ObjectProDSP program for this example.

MachWord Fir_resp_cxfir_data[] = {

1.0001855116570368e-04, 3.7074790452606976e-04,

4.4659440754912794e-04, -5.3696951363235712e-04,

-2.6749277021735907e-03, -3.5268759820610285e-03,

8.2571519305929542e-04, 1.0149464011192322e-02,

1.508740521967411e-02, 2.4800843093544245e-03,

-2.7687691152095795e-02, -4.934985563158989e-02,

-2.2059476003050804e-02, 7.307908684015274e-02,

2.0401032269001007e-01, 2.992863655090332e-01 } ;

Network Fir_resp_net ;

CxFFT Fir_resp_fft(7, 0.0, .5, 0);

8.7 Adding new examples 45

CxFir Fir_resp_cxfir(1, 0, 0.0, 0, Fir_resp_cxfir_data);

CxImp Fir_resp_cximp(128, 0.0, 1000, 0.0, 0);

Plot Fir_resp_fft_plot ;

Plot Fir_resp_cxfir_plot;

// Network topology for `Fir_resp_net'

Fir_resp_net + Fir_resp_cximp >> Fir_resp_cxfir >>

Fir_resp_fft >> Fir_resp_fft_plot ;

Fir_resp_net.Link(Fir_resp_cxfir,0) >> Fir_resp_cxfir_plot ;

Fir_resp_net.GraphDisplay();

Fir_resp_net.Execute(2048);

8.7 Adding new examples

To add an example to the ObjectProDSP menus you create a help �le and

place it in directory $PPD ROOT/examp and a DSP++ language �le and add

it to $PPD ROOT/help. The example �les must have su�x .xml. The cor-

responding help �le must have the same base name and end in su�x .hlp.

.hlp are created automatically from .roff �les in $PPD ROOT/doc/roff. See

ObjectProDSP Developer's Reference for instructions for creating help �les.

The examples appear in the menus in alphabetic order with the root of the

�le name as the option to select a given example.

46 8. OBJECTPRODSP EXAMPLE NETWORKS

ObjectProDSP MENUS REFERENCE

49

9 Using the menus reference manual

The following sections list the ObjectProDSP menus. They are structured

to match the hierarchy in the ObjectProDSP interactive menus with two

exceptions. The Main menu described in the next section has all its child

menus at the same top level as itself. Menus that fall under the menu of all

ObjectProDSP classes in Section 12 on page 53 are also at the top level.

Every interactive class in ObjectProDSP has an identical hierarchy of menus

to create, destroy and manipulate objects. This hierarchy is shown twice for

nodes Add in Section 13.1 on page 56 and node InputNode in Section 17.2.2

on page 115. It is not shown for other nodes to avoid needless repetition of the

same information. All other ObjectProDSP menus are fully described. For

additional details about the parameters and documentation of any Object-

ProDSP object see the ObjectProDSP Library Reference[3]. The information

in this section is available on-line from within ObjectProDSP.

10 ObjectProDSP menu data base

This is the main ObjectProDSP menu. All other menus and commands are

reachable from this menu.

The commands in this menu are:

� help: Main help menu. This menu option invokes the menu de�ned in

Section 11 on page 50.

� objects: Display and describe existing objects. This menu option in-

vokes the menu de�ned in Section 12 on page 53.

� setup: Read state and plot �les, debugging. This menu option invokes

the menu de�ned in Section 20 on page 148.

� state: Program state menu. This menu option invokes the menu de-

�ned in Section 21 on page 150.

50 11. STRUCTURED ACCESS TO ON-LINE DOCUMENTATION

� save and exit: Save program state and exit. This menu option is a

command.

save and exit exits to the operating system. If you have not saved

the state of objects since they were last changed the state will be saved

before exiting. Use the statemenu if you wish to exit without saving. If

the DSP process is hung you may need to do this twice to get information

about its state.

11 Structured access to on-line documenta-

tion

The help menu contains information organized by topics. It covers the Ob-

jectProDSP language and describes the use of this program. It has informa-

tion for the new user and is an on-line reference manual. You can control the

amount of automatic help information from this menu.

The commands in this menu are:

� introduction: Basic information for the new user. This menu option

is a command.

The introduction help screen provides a general description of the

ObjectProDSP system. It describes on the purpose, capabilities and

general structure of this tool.

� copying: THERE IS NOWARRANTY and information about copying.

This menu option is a command.

Copyright 1994 Mountain Math Software, all rights reserved. This soft-

ware is licensed for free use and distribution under version 2 of the GNU

General Public License. You can use and distribute this software free of

charge provided you do so in accord with the provisions of this license.

The copying help screen contains the text of this license, a warranty

notice (THERE IS NO WARRANTY) and information about support

and other licensing arrangements.

11.1 Online manual 51

� manual: Online ObjectProDSP manual. This menu option invokes the

menu de�ned in Section 11.1 on page 51.

� examples: Display and execute examples. See Section 8 on page 39

for a description of the examples menu and the basic set of examples.

There may be additional examples available in your installation.

� help levels: Control the display of help information. This menu op-

tion invokes the menu de�ned in Section 11.2 on page 53.

11.1 Online manual

The manualmenu is an online manual. It describes how to graphically create

and edit DSP networks, the DSP++ language, and other capabilities of this

tool.

The commands in this menu are:

� about help: Describe the help facilities. This menu option is a com-

mand.

The about help help screen describes the level of help available, how

to access help information and how to control the information displayed

automatically.

� DSP nets: Graphically creating and editing networks. This menu option

is a command.

The DSP nets help screen describe how to graphically create and edit

DSP networks. It describes how to execute the networks and create a

stand alone program that implements the network you built.

� DSP++: ObjectProDSP language. This menu option invokes the menu

de�ned in Section 11.1.1 on page 52.

� commands: Data base commands, record and playback a session. This

menu option is a command.

The commands help screen describes commands accessible through the

menu data base and describes how to record and playback action �les

of commands and other user input.

52 11. STRUCTURED ACCESS TO ON-LINE DOCUMENTATION

� release: Release notes for this version. This menu option is a com-

mand.

The release help screen displays the release notes for this version of

ObjectProDSP. These include known limitations and describe things we

would like to change and improve.

11.1.1 ObjectProDSP language

The DSP++ menu describes describes the main elements in the DSP++ lan-

guage. It also contains information on validation suites.

The commands in this menu are:

� network help: ObjectProDSP networks. This menu option is a com-

mand.

Ths network help screen describes ObjectProDSP processing networks.

Processing is done in a network of nodes or objects. The initial node

or nodes are signal sources. The terminal node or nodes output to a

window or disk �le.

� object help: DSP processing objects. This menu option is a command.

The object help screen describes the ObjectProDSP processing ob-

jects.

� plot help: Plotting objects. This menu option is a command.

The plot help screen describes objects that plot their input.

� syntax: ObjectProDSP language syntax. This menu option is a com-

mand.

The syntax help screen gives an introduction ObjectProDSP language

structure. You do not need to know this language but you may �nd it

helpful especially if you are already familiar with C++. Often operations

that you enter graphically are translated to DSP++ language statements

which are scrolled in the main window.

� validation: ObjectProDSP validation suites. This menu option is a

command.

11.2 Control information display 53

ObjectProDSP has facilities for automated validation.

11.2 Control information display

From the help levels menu you can change the information displayed au-

tomatically. This includes descriptions such as this one of menu entries and

the con�rmation messages from most actions.

The commands in this menu are:

� help none: Display no help information. This menu option is a com-

mand.

help none disables display of help information except for error mes-

sages.

� help confirm: Display action con�rmation messages only. This menu

option is a command.

help confirm displays con�rmation messages for most user actions. It

disables the automatic display of the menu item descriptions such as

this is. These descriptions can still be selected manually using mouse

button three.

� help all: Display all help messages. This menu option is a command.

help all enables all help displays including con�rmation of user actions

and descriptions of each menu selection.

12 Object classes

The objects menu provides tree structured access to the de�nitions and

descriptions of objects. It allows objects to be created and destroyed.

The commands in this menu are:

� dsp processing: DSP processing objects. This menu option invokes

the menu de�ned in Section 13 on page 54.

54 13. DSP PROCESSING OBJECTS

� signal: Signal generation objects. This menu option invokes the menu

de�ned in Section 14 on page 87.

� plot: Plotting objects. This menu option invokes the menu de�ned in

Section 15 on page 99.

� list: Listing objects. This menu option invokes the menu de�ned in

Section 16 on page 102.

� disk: Read and write disk �les. This menu option invokes the menu

de�ned in Section 17 on page 105.

� network: Network and system objects. This menu option invokes the

menu de�ned in Section 18 on page 125.

� variables: Simple variables. This menu option invokes the menu de-

�ned in Section 19 on page 147.

13 DSP processing objects

These objects do signal processing such as �ltering, demodulation and re-

sampling. The dsp processing menu displays object classes and object

instances including those you have de�ned interactively.

The commands in this menu are:

� Add: Add sums two or more input channels. This menu option invokes

the menu de�ned in Section 13.1 on page 56.

� Block: Converts an input stream to a new blocking and sample size.

This menu option invokes the menu de�ned in Section 13.2 on page 60.

� CxFFT: CxFFT computes the complex FFT of a single input channel.

This menu option invokes the menu de�ned in Section 13.3 on page 61.

� CxFir: CxFir is a complex symmetric (even or odd) �r �lter. This menu

option invokes the menu de�ned in Section 13.4 on page 63.

55

� Demod: DemodFreq is a complex modulation/demodulation function.

This menu option invokes the menu de�ned in Section 13.5 on page

64.

� Demux: Demultiplexes 1 input channel to Channels output channels.

This menu option invokes the menu de�ned in Section 13.6 on page 66.

� FindStartTail: discard initial input data within bounds. This menu

option invokes the menu de�ned in Section 13.7 on page 67.

� Gain: Gain provides a linear gain. This menu option invokes the menu

de�ned in Section 13.8 on page 68.

� GainPad: GainPad provides a linear gain. This menu option invokes the

menu de�ned in Section 13.9 on page 70.

� Integrate: Integrate sums consecutive input vector. This menu op-

tion invokes the menu de�ned in Section 13.10 on page 71.

� Interpolate: sample rate conversion with linear interpolation. This

menu option invokes the menu de�ned in Section 13.11 on page 73.

� MaskWord: applies a mask to a binary data stream. This menu option

invokes the menu de�ned in Section 13.12 on page 74.

� Mux: Multiplexes Channels inputs into 1 output channel. This menu

option invokes the menu de�ned in Section 13.13 on page 75.

� PackWord: packs multiple input words to a single output word. This

menu option invokes the menu de�ned in Section 13.14 on page 76.

� Power: Power computes and scales the power in each sample. This menu

option invokes the menu de�ned in Section 13.15 on page 77.

� RealFir: RealFir is a real symmetric (even or odd) �r �lter. This

menu option invokes the menu de�ned in Section 13.16 on page 79.

� RepackStream: repack bit streams to di�erent physical word sizes. This

menu option invokes the menu de�ned in Section 13.17 on page 80.

� SampleDelay: delays the output by a selected number of samples. This

menu option invokes the menu de�ned in Section 13.18 on page 81.

56 13. DSP PROCESSING OBJECTS

� ToInteger: converts MachWord data stream to integer. This menu

option invokes the menu de�ned in Section 13.19 on page 82.

� ToMach: converts binary data stream to MachWord. This menu option

invokes the menu de�ned in Section 13.20 on page 83.

� Truncate: Limit the dynamic range and signi�cant bits in a stream.

This menu option invokes the menu de�ned in Section 13.21 on page 84.

� UnpackWord: unpack a single input word to multiple output words. This

menu option invokes the menu de�ned in Section 13.22 on page 86.

13.1 Options for Add

The commands in this menu are:

� help: Explain the use of Add. This menu option is a command.

� param: Parameters of Add. This menu option invokes the menu de�ned

in Section 13.1.1 on page 57.

� variables: Changeable variables of Add. This menu option invokes the

menu de�ned in Section 13.1.2 on page 57.

� members: Members of Add. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Add. This menu option

invokes the menu de�ned in Section 13.1.3 on page 58.

� create default: Create instance of Add with default parameters. This

menu option is a command.

� create: Create instance of Add. This menu option is a command.

13.1 Options for Add 57

13.1.1 Menu of Parameters for Add Object

The commands in this menu are:

� Channels: Parameter Channels of Add object. This menu option is a

command.

Channels speci�es the number of input channels to be added together

in a single output channel.

� ElementSize: Parameter ElementSize of Add object. This menu option

is a command.

ElementSize speci�es the sample size for each channel. The most com-

mon use of ElementSize is to set it to two for a complex data stream.

All input data streams must have the same sample size. If set to 0

ElementSize is set automatically based on its value for the �rst input

node.

� Scale: Parameter Scale of Add object. This menu option is a command.

Scale is a scale factor applied to each channel before it is added to the

output channel. The channel addition will clip any data that would

otherwise create an over
ow and generate a help message. Only one

help messages is generated, for every 400 input samples regardless of

the number of over
ows that may occur.

13.1.2 Menu of Variables for Add Object

The commands in this menu are:

� Scale: Changeable variable Scale of Add object. This menu option is

a command.

Scale is a scale factor applied to each channel before it is added to the

output channel. The channel addition will clip any data that would

otherwise create an over
ow and generate a help message. Only one

help messages is generated, for every 400 input samples regardless of

the number of over
ows that may occur.

58 13. DSP PROCESSING OBJECTS

13.1.3 Select an Instance of Add to describe or delete

The commands in this menu are:

� instance of this class: Select this instance of Add. This menu option

invokes the menu de�ned in Section 13.1.3.1 on page 58.

13.1.3.1 Describe or delete an instance of object Add The com-

mands in this menu are:

� desc: Describe this instance of Add. This menu option is a command.

� param: Describe parameters of this Add. This menu option invokes the

menu de�ned in Section 13.1.3.1.1 on page 58.

� exec: Select a member of Add to execute. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object exec. See , Section 22.22 on

page 163 for additional base class member functions in this menu.

� variables: Describe variables of this Add. This menu option invokes

the menu de�ned in Section 13.1.3.1.2 on page 59.

� set: Set variable values of this Add. This menu option invokes the menu

de�ned in Section 13.1.3.1.3 on page 59.

� delete: Delete this Add. This menu option is a command.

13.1.3.1.1 Menu of Parameters for Add Object Instance The com-

mands in this menu are:

� Channels: Parameter Channels of Add object instance. This menu

option is a command.

Channels speci�es the number of input channels to be added together

in a single output channel.

13.1 Options for Add 59

� ElementSize: Parameter ElementSize of Add object instance. This

menu option is a command.

ElementSize speci�es the sample size for each channel. The most com-

mon use of ElementSize is to set it to two for a complex data stream.

All input data streams must have the same sample size. If set to 0

ElementSize is set automatically based on its value for the �rst input

node.

� Scale: Parameter Scale of Add object instance. This menu option is a

command.

Scale is a scale factor applied to each channel before it is added to the

output channel. The channel addition will clip any data that would

otherwise create an over
ow and generate a help message. Only one

help messages is generated, for every 400 input samples regardless of

the number of over
ows that may occur.

13.1.3.1.2 Menu of Variables for Add Object Instance The com-

mands in this menu are:

� Scale: Changeable variable Scale of Add object instance. This menu

option is a command.

Scale is a scale factor applied to each channel before it is added to the

output channel. The channel addition will clip any data that would

otherwise create an over
ow and generate a help message. Only one

help messages is generated, for every 400 input samples regardless of

the number of over
ows that may occur.

13.1.3.1.3 Menu of Variables for Add Object Instance The com-

mands in this menu are:

� set Scale: Change value of variable Scale for an instance of Add. This

menu option is a command.

Scale is a scale factor applied to each channel before it is added to the

output channel. The channel addition will clip any data that would

60 13. DSP PROCESSING OBJECTS

otherwise create an over
ow and generate a help message. Only one

help messages is generated, for every 400 input samples regardless of

the number of over
ows that may occur.

13.2 Options for Block

The commands in this menu are:

� help: Explain the use of Block. This menu option is a command.

� param: Parameters of Block. This menu option invokes the menu de-

�ned in Section 13.2.1 on page 60.

� members: Members of Block. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Block. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Block with default parameters.

This menu option is a command.

� create: Create instance of Block. This menu option is a command.

13.2.1 Menu of Parameters for Block Object

The commands in this menu are:

� ElementSize: Parameter ElementSize of Block object. This menu

option is a command.

ElementSize is the number of words in each output sample (1 for real,

2 for complex or larger for other purposes).

13.3 Options for CxFFT 61

� BlockSize: Parameter BlockSize of Block object. This menu option

is a command.

BlockSize is the number of samples in each output block. If set to 1

the output is not blocked.

� OutputArithmetic: Parameter OutputArithmetic of Block object.

This menu option is a command.

Block can read data from any input arithmetic type. OutputArithmetic

selects the output arithmetic type. On a 32 bit simulator Block can

write output as either 32 bit
oating point or 32 bit �xed point. Choose

0 to write output in the default type of the simulator, 1 for 32 bit integers

and 2 for 32 bit
oating point.

13.3 Options for CxFFT

The commands in this menu are:

� help: Explain the use of CxFFT. This menu option is a command.

� param: Parameters of CxFFT. This menu option invokes the menu de�ned

in Section 13.3.1 on page 62.

� variables: Changeable variables of CxFFT. This menu option invokes

the menu de�ned in Section 13.3.2 on page 62.

� members: Members of CxFFT. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of CxFFT. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of CxFFT with default parameters.

This menu option is a command.

� create: Create instance of CxFFT. This menu option is a command.

62 13. DSP PROCESSING OBJECTS

13.3.1 Menu of Parameters for CxFFT Object

The commands in this menu are:

� LogSize: Parameter LogSize of CxFFT object. This menu option is a

command.

LogSize is the log base 2 of the FFT size.

� Overlap: Parameter Overlap of CxFFT object. This menu option is a

command.

Overlap speci�es the fractional overlap of successive FFTs. For example

Overlap = .5 and LogSize = 64 would result in each FFT being 32

samples beyond the previous FFT. Overlap= 1.0 is interpreted to mean

that successive FFTs having their inputs separated by a single sample.

� CenterFrequency: Parameter CenterFrequency of CxFFT object. This

menu option is a command.

The true center frequency of the FFT is determined by the data entering

it. CenterFrequency allows you to rotate the output bins to conform

to this. The default value of .5 corresponds to a signal with center

frequency of 0 hz in the input sample stream. This value should set to

the relative position of the center frequency of the input sample stream.

� InverseFlag: Parameter InverseFlag of CxFFT object. This menu

option is a command.

InverseFlag set to 1 selects an inverse FFT.

13.3.2 Menu of Variables for CxFFT Object

The commands in this menu are:

� CenterFrequency: Changeable variable CenterFrequency of CxFFT ob-

ject. This menu option is a command.

The true center frequency of the FFT is determined by the data entering

it. CenterFrequency allows you to rotate the output bins to conform

13.4 Options for CxFir 63

to this. The default value of .5 corresponds to a signal with center

frequency of 0 hz in the input sample stream. This value should set to

the relative position of the center frequency of the input sample stream.

13.4 Options for CxFir

The commands in this menu are:

� help: Explain the use of CxFir. This menu option is a command.

� param: Parameters of CxFir. This menu option invokes the menu de-

�ned in Section 13.4.1 on page 63.

� members: Members of CxFir. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of CxFir. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of CxFir with default parameters.

This menu option is a command.

� create: Create instance of CxFir. This menu option is a command.

13.4.1 Menu of Parameters for CxFir Object

The commands in this menu are:

� Resample: Parameter Resample of CxFir object. This menu option is

a command.

Resample speci�es the �lter resampling factor. This is the ratio of the

input sampling rate to the output sampling rate.

64 13. DSP PROCESSING OBJECTS

� ZeroPad: Parameter ZeroPad of CxFir object. This menu option is a

command.

ZeroPad speci�es the number of 0's that are added after each input

sample. If Zero padding is done the �lter must be designed as an inter-

polation �lter.

� DemodFreq: Parameter DemodFreq of CxFir object. This menu option

is a command.

DemodFreq is the demodulation frequency in radians per sample. Input

sample N is multiplied by e^(-i � 2 � Pi � DemodFreq � N) before

the �ltering operation. If DemodFreq is 0 then the demodulation step is

skipped.

� Odd: Parameter Odd of CxFir object. This menu option is a command.

Odd determines if the �lter is odd (Odd =1) or even (Odd =0).

� Coeff: Parameter Coeff of CxFir object. This menu option is a com-

mand.

Coeff is the list of �lter coe�cients. The �lter is symmetric and only

half (or half plus one for odd length �lters) are speci�ed. The �rst in the

list is the �rst coe�cient of the �lter. The middle coe�cient is at the

end of the list. The default values for the coe�cients de�ne a low pass

FIR �lter with a pass band of .125 times the sample rate and transition

band of .375 times the sample rate. The pass band is extremely
at

and the stop band is down over 100 db. This is an overdesigned �lter

for most practical applications but it provides a good test case. The

performance will be degraded by 16 bit integer arithmetic.

13.5 Options for Demod

The commands in this menu are:

� help: Explain the use of Demod. This menu option is a command.

� param: Parameters of Demod. This menu option invokes the menu de-

�ned in Section 13.5.1 on page 65.

13.5 Options for Demod 65

� variables: Changeable variables of Demod. This menu option invokes

the menu de�ned in Section 13.5.2 on page 65.

� members: Members of Demod. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Demod. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Demod with default parameters.

This menu option is a command.

� create: Create instance of Demod. This menu option is a command.

13.5.1 Menu of Parameters for Demod Object

The commands in this menu are:

� DataType: Parameter DataType of Demod object. This menu option is

a command.

DataType selects complex input and complex output (0), complex input

and real output (1), real input and complex output (2) or real input and

real output (3).

� DemodFreq: Parameter DemodFreq of Demod object. This menu option

is a command.

DemodFreq is the demodulation frequency in radians/sample. Input

sample N is multiplied by e^(-i � N � 2 � Pi � DemodFreq)

13.5.2 Menu of Variables for Demod Object

The commands in this menu are:

66 13. DSP PROCESSING OBJECTS

� DemodFreq: Changeable variable DemodFreq of Demod object. This menu

option is a command.

DemodFreq is the demodulation frequency in radians/sample. Input

sample N is multiplied by e^(-i � N � 2 � Pi � DemodFreq)

13.6 Options for Demux

The commands in this menu are:

� help: Explain the use of Demux. This menu option is a command.

� param: Parameters of Demux. This menu option invokes the menu de-

�ned in Section 13.6.1 on page 66.

� members: Members of Demux. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Demux. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Demux with default parameters.

This menu option is a command.

� create: Create instance of Demux. This menu option is a command.

13.6.1 Menu of Parameters for Demux Object

The commands in this menu are:

� Channels: Parameter Channels of Demux object. This menu option is

a command.

Demux demultiplexes a single input channel into Channels output chan-

nels.

13.7 Options for FindStartTail 67

� InputSampleSize: Parameter InputSampleSize of Demux object. This

menu option is a command.

The input channel has samples of InputSampleSize words.

� InputElementSize: Parameter InputElementSize of Demux object.

This menu option is a command.

The parameter does not a�ect the demultiplexing loop. The input chan-

nel must have this value for InputElementSize. If you are demultiplex-

ing an element into its component parts (such as demultiplexing complex

data to real and imaginary streams) Channels and InputElementSize

must have the same value.

� OutputElementSize: Parameter OutputElementSize of Demux object.

This menu option is a command.

The parameter does not a�ect the demultiplexing loop. All output

channels have this value for OutputElementSize.

13.7 Options for FindStartTail

The commands in this menu are:

� help: Explain the use of FindStartTail. This menu option is a com-

mand.

� param: Parameters of FindStartTail. This menu option invokes the

menu de�ned in Section 13.7.1 on page 68.

� members: Members of FindStartTail. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of FindStartTail. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of FindStartTail with default pa-

rameters. This menu option is a command.

68 13. DSP PROCESSING OBJECTS

� create: Create instance of FindStartTail. This menu option is a

command.

13.7.1 Menu of Parameters for FindStartTail Object

The commands in this menu are:

� LowerBound: Parameter LowerBound of FindStartTail object. This

menu option is a command.

A sample containing an initial element > LowerBound will be ignored.

Once one element of a sample has passed both bound tests all later

samples will be passed to the next node. If the �rst element in a sample

passes the tests then that sample will be passed.

� UpperBound: Parameter UpperBound of FindStartTail object. This

menu option is a command.

An initial element < UpperBound will be ignored. Once one element of

a sample has passed both bound tests it and all later samples will be

passed to the next node. If the �rst element in a sample passes the tests

then that sample will be passed.

� Flags: Parameter Flags of FindStartTail object. This menu option

is a command.

If bit 2 is set then the �rst bounds test is ignored. If bit 3 is set the

second test is ignored. If both bits 2 and 3 are set you can skip a �xed

number of samples by setting Skip.

� Skip: Parameter Skip of FindStartTail object. This menu option is

a command.

The �rst Skip samples are read but not written.

13.8 Options for Gain

The commands in this menu are:

13.8 Options for Gain 69

� help: Explain the use of Gain. This menu option is a command.

� param: Parameters of Gain. This menu option invokes the menu de�ned

in Section 13.8.1 on page 69.

� variables: Changeable variables of Gain. This menu option invokes

the menu de�ned in Section 13.8.2 on page 69.

� members: Members of Gain. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Gain. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Gain with default parameters.

This menu option is a command.

� create: Create instance of Gain. This menu option is a command.

13.8.1 Menu of Parameters for Gain Object

The commands in this menu are:

� Scale: Parameter Scale of Gain object. This menu option is a com-

mand.

Scale speci�es the ratio of input amplitude to output amplitude. Inte-

ger over
ows are prevented by clipping. The �rst time clipping occurs a

help message is generated. A new help message is generated after every

400 clippings.

13.8.2 Menu of Variables for Gain Object

The commands in this menu are:

70 13. DSP PROCESSING OBJECTS

� Scale: Changeable variable Scale of Gain object. This menu option is

a command.

Scale speci�es the ratio of input amplitude to output amplitude. Inte-

ger over
ows are prevented by clipping. The �rst time clipping occurs a

help message is generated. A new help message is generated after every

400 clippings.

13.9 Options for GainPad

The commands in this menu are:

� help: Explain the use of GainPad. This menu option is a command.

� param: Parameters of GainPad. This menu option invokes the menu

de�ned in Section 13.9.1 on page 70.

� variables: Changeable variables of GainPad. This menu option invokes

the menu de�ned in Section 13.9.2 on page 71.

� members: Members of GainPad. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of GainPad. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of GainPad with default parameters.

This menu option is a command.

� create: Create instance of GainPad. This menu option is a command.

13.9.1 Menu of Parameters for GainPad Object

The commands in this menu are:

13.10 Options for Integrate 71

� Scale: Parameter Scale of GainPad object. This menu option is a

command.

Scale speci�es the ratio of input amplitude to output amplitude. Inte-

ger over
ows are prevented by clipping. The �rst time clipping occurs a

help message is generated. A new help message is generated after every

400 clippings.

� ElementSize: Parameter ElementSize of GainPad object. This menu

option is a command.

ElementSize speci�es the sample size. The most common use of

ElementSize is to set it to two for a complex data stream or 1 for

real data. Set it to 0 to convert real to complex data by padding the

imaginary part with 0.

� NullOutputSample: Parameter NullOutputSample of GainPad object.

This menu option is a command.

If NullOutputSample is non zero then all samples after NullOutput-

Sample will be zero. If NullOutputSample is 0 then the input is written

to the output continuously.

13.9.2 Menu of Variables for GainPad Object

The commands in this menu are:

� Scale: Changeable variable Scale of GainPad object. This menu option

is a command.

Scale speci�es the ratio of input amplitude to output amplitude. Inte-

ger over
ows are prevented by clipping. The �rst time clipping occurs a

help message is generated. A new help message is generated after every

400 clippings.

13.10 Options for Integrate

The commands in this menu are:

72 13. DSP PROCESSING OBJECTS

� help: Explain the use of Integrate. This menu option is a command.

� param: Parameters of Integrate. This menu option invokes the menu

de�ned in Section 13.10.1 on page 72.

� variables: Changeable variables of Integrate. This menu option in-

vokes the menu de�ned in Section 13.10.2 on page 73.

� members: Members of Integrate. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of Integrate. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of Integrate with default parame-

ters. This menu option is a command.

� create: Create instance of Integrate. This menu option is a command.

13.10.1 Menu of Parameters for Integrate Object

The commands in this menu are:

� IntegrationSize: Parameter IntegrationSize of Integrate object.

This menu option is a command.

IntegrationSize is the number of samples to sum.

� OutputStep: Parameter OutputStep of Integrate object. This menu

option is a command.

An output is generated for every OutputStep inputs. The number of

bu�ers that must be maintained is IntegrationSize / OutputStep.

� Scale: Parameter Scale of Integrate object. This menu option is a

command.

Scale multiplies each output sample. The intermediate arithmetic is

done in double
oating point point. Scale is applied to the �nal output

point before it is converted to MachWord.

13.11 Options for Interpolate 73

13.10.2 Menu of Variables for Integrate Object

The commands in this menu are:

� Scale: Changeable variable Scale of Integrate object. This menu

option is a command.

Scale multiplies each output sample. The intermediate arithmetic is

done in double
oating point point. Scale is applied to the �nal output

point before it is converted to MachWord.

13.11 Options for Interpolate

The commands in this menu are:

� help: Explain the use of Interpolate. This menu option is a command.

� param: Parameters of Interpolate. This menu option invokes the menu

de�ned in Section 13.11.1 on page 73.

� members: Members of Interpolate. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of Interpolate. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of Interpolate with default param-

eters. This menu option is a command.

� create: Create instance of Interpolate. This menu option is a com-

mand.

13.11.1 Menu of Parameters for Interpolate Object

The commands in this menu are:

74 13. DSP PROCESSING OBJECTS

� DeltaIn: Parameter DeltaIn of Interpolate object. This menu option

is a command.

DeltaIn is the number of input samples for DeltaOut output samples.

� DeltaOut: Parameter DeltaOut of Interpolate object. This menu

option is a command.

DeltaOut is the number of output samples generated from DeltaIn

input samples.

13.12 Options for MaskWord

The commands in this menu are:

� help: Explain the use of MaskWord. This menu option is a command.

� param: Parameters of MaskWord. This menu option invokes the menu

de�ned in Section 13.12.1 on page 74.

� members: Members of MaskWord. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of MaskWord. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of MaskWordwith default parameters.

This menu option is a command.

� create: Create instance of MaskWord. This menu option is a command.

13.12.1 Menu of Parameters for MaskWord Object

The commands in this menu are:

13.13 Options for Mux 75

� Mask: Parameter Mask of MaskWord object. This menu option is a com-

mand.

Mask will be applied to each input sample to create an output sample.

13.13 Options for Mux

The commands in this menu are:

� help: Explain the use of Mux. This menu option is a command.

� param: Parameters of Mux. This menu option invokes the menu de�ned

in Section 13.13.1 on page 75.

� members: Members of Mux. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Mux. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Mux with default parameters. This

menu option is a command.

� create: Create instance of Mux. This menu option is a command.

13.13.1 Menu of Parameters for Mux Object

The commands in this menu are:

� Channels: Parameter Channels of Mux object. This menu option is a

command.

Mux combines Channels input channels into a single output channel.

76 13. DSP PROCESSING OBJECTS

� InputSampleSize: Parameter InputSampleSize of Mux object. This

menu option is a command.

For each input channel it is assumed that a single sample is made up of

InputSampleSize words.

� OutputSampleSize: Parameter OutputSampleSize of Mux object. This

menu option is a command.

The number of words in an output channel sample is OutputSample-

Size.

� MinimumChunk: Parameter MinimumChunk of Mux object. This menu

option is a command.

MinimumChunk can be set to a minimum number of input samples to

be processed. This allows for greater e�ciency but limits the degree to

which data can be
ushed.

13.14 Options for PackWord

The commands in this menu are:

� help: Explain the use of PackWord. This menu option is a command.

� param: Parameters of PackWord. This menu option invokes the menu

de�ned in Section 13.14.1 on page 77.

� members: Members of PackWord. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of PackWord. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of PackWordwith default parameters.

This menu option is a command.

� create: Create instance of PackWord. This menu option is a command.

13.15 Options for Power 77

13.14.1 Menu of Parameters for PackWord Object

The commands in this menu are:

� InputWordSize: Parameter InputWordSize of PackWord object. This

menu option is a command.

InputWordSize is the number of bits in each input word to pack into

the output word.

� InputsPerOutput: Parameter InputsPerOutput of PackWord object.

This menu option is a command.

InputsPerOutput is the number of input words combined to form a

single output word.

13.15 Options for Power

The commands in this menu are:

� help: Explain the use of Power. This menu option is a command.

� param: Parameters of Power. This menu option invokes the menu de-

�ned in Section 13.15.1 on page 78.

� variables: Changeable variables of Power. This menu option invokes

the menu de�ned in Section 13.15.2 on page 78.

� members: Members of Power. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.21 on page 161 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Power. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Power with default parameters.

This menu option is a command.

� create: Create instance of Power. This menu option is a command.

78 13. DSP PROCESSING OBJECTS

13.15.1 Menu of Parameters for Power Object

The commands in this menu are:

� Amplitude: Parameter Amplitude of Power object. This menu option

is a command.

If Amplitude is set to 1, the output will be the square root of the power

and not the power.

� Scale: Parameter Scale of Power object. This menu option is a com-

mand.

Scale is a linear scale factor applied before summing the squared el-

ements in a sample. For integer arithmetic, Scale should be set to

prevent over
ows. Note the squaring operation (in the integer arith-

metic model) is done in double precision integer arithmetic. Thus if one

is taking the amplitude as the �nal output (Amplitude =1), over
ows

can only occur from the summation step. If integer over
ows do oc-

cur the output signal is clipped. The �rst time clipping occurs, a help

message is generated. A new help message is generated after every 400

clippings.

13.15.2 Menu of Variables for Power Object

The commands in this menu are:

� Scale: Changeable variable Scale of Power object. This menu option

is a command.

Scale is a linear scale factor applied before summing the squared el-

ements in a sample. For integer arithmetic, Scale should be set to

prevent over
ows. Note the squaring operation (in the integer arith-

metic model) is done in double precision integer arithmetic. Thus if one

is taking the amplitude as the �nal output (Amplitude =1), over
ows

can only occur from the summation step. If integer over
ows do oc-

cur the output signal is clipped. The �rst time clipping occurs, a help

message is generated. A new help message is generated after every 400

clippings.

13.16 Options for RealFir 79

13.16 Options for RealFir

The commands in this menu are:

� help: Explain the use of RealFir. This menu option is a command.

� param: Parameters of RealFir. This menu option invokes the menu

de�ned in Section 13.16.1 on page 79.

� members: Members of RealFir. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of RealFir. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of RealFir with default parameters.

This menu option is a command.

� create: Create instance of RealFir. This menu option is a command.

13.16.1 Menu of Parameters for RealFir Object

The commands in this menu are:

� Resample: Parameter Resample of RealFir object. This menu option

is a command.

Resample speci�es the �lter resampling factor. This is the ratio of the

input sampling rate to the output sampling rate.

� ZeroPad: Parameter ZeroPad of RealFir object. This menu option is

a command.

ZeroPad speci�es the number of 0's that are added after each input

sample.

80 13. DSP PROCESSING OBJECTS

� Odd: Parameter Odd of RealFir object. This menu option is a command.

Odd determines if the �lter is if odd (Odd =1) or even (Odd =0).

� Coeff: Parameter Coeff of RealFir object. This menu option is a

command.

Coeff is the list of �lter coe�cients. The �lter is symmetric and only

half (or half plus one for odd length �lters) are speci�ed. The �rst in the

list is the �rst coe�cient of the �lter. The middle coe�cient is at the end

of the list. The default values for the coe�cients de�ne a low pass FIR

�lter with a pass band of .125 times the total bandwidth and transition

band of .375 times the bandwidth. The pass band is extremely
at

and the stop band is down over 100 db. This is an overdesigned �lter

for most practical applications but it provides a good test case. The

performance will be degraded by 16 bit integer arithmetic.

13.17 Options for RepackStream

The commands in this menu are:

� help: Explain the use of RepackStream. This menu option is a com-

mand.

� param: Parameters of RepackStream. This menu option invokes the

menu de�ned in Section 13.17.1 on page 81.

� members: Members of RepackStream. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of RepackStream. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of RepackStream with default pa-

rameters. This menu option is a command.

� create: Create instance of RepackStream. This menu option is a com-

mand.

13.18 Options for SampleDelay 81

13.17.1 Menu of Parameters for RepackStream Object

The commands in this menu are:

� OutputWordSize: Parameter OutputWordSize of RepackStream object.

This menu option is a command.

OutputWordSize is the number of bits in each output word. The output

is treated as a continuous stream of bits made up of the least signi�cant

OutputWordSize bits from each physical output word.

� InputWordSize: Parameter InputWordSize of RepackStream object.

This menu option is a command.

InputWordSize is the number of bits in the input word. The input is

treated as a continuous stream of bits made up of the least signi�cant

OutputWordSize bits from each physical output word.

� SignedOutput: Parameter SignedOutput of RepackStreamobject. This

menu option is a command.

If SignedOutput is set the output will be written as a signed two's

compliment value in the full physical word size.

13.18 Options for SampleDelay

The commands in this menu are:

� help: Explain the use of SampleDelay. This menu option is a command.

� param: Parameters of SampleDelay. This menu option invokes the menu

de�ned in Section 13.18.1 on page 82.

� members: Members of SampleDelay. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of SampleDelay. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

82 13. DSP PROCESSING OBJECTS

� create default: Create instance of SampleDelay with default param-

eters. This menu option is a command.

� create: Create instance of SampleDelay. This menu option is a com-

mand.

13.18.1 Menu of Parameters for SampleDelay Object

The commands in this menu are:

� Delta: Parameter Delta of SampleDelay object. This menu option is

a command.

Delta speci�es the number of samples the output signal will be delayed

relative to the input.

� FillValue: Parameter FillValue of SampleDelay object. This menu

option is a command.

FillValue is the value to be output for each sample component for the

�rst Delta samples.

13.19 Options for ToInteger

The commands in this menu are:

� help: Explain the use of ToInteger. This menu option is a command.

� members: Members of ToInteger. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of ToInteger. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of ToInteger with default parame-

ters. This menu option is a command.

13.20 Options for ToMach 83

� create: Create instance of ToInteger. This menu option is a command.

13.20 Options for ToMach

The commands in this menu are:

� help: Explain the use of ToMach. This menu option is a command.

� param: Parameters of ToMach. This menu option invokes the menu

de�ned in Section 13.20.1 on page 83.

� members: Members of ToMach. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of ToMach. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of ToMach with default parameters.

This menu option is a command.

� create: Create instance of ToMach. This menu option is a command.

13.20.1 Menu of Parameters for ToMach Object

The commands in this menu are:

� SignedConversion: Parameter SignedConversion of ToMach object.

This menu option is a command.

If SignedConversion is set the input integer will treated as a two's

compliment signed value. Otherwise it will be considered unsigned.

84 13. DSP PROCESSING OBJECTS

13.21 Options for Truncate

The commands in this menu are:

� help: Explain the use of Truncate. This menu option is a command.

� param: Parameters of Truncate. This menu option invokes the menu

de�ned in Section 13.21.1 on page 84.

� variables: Changeable variables of Truncate. This menu option in-

vokes the menu de�ned in Section 13.21.2 on page 85.

� members: Members of Truncate. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of Truncate. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of Truncatewith default parameters.

This menu option is a command.

� create: Create instance of Truncate. This menu option is a command.

13.21.1 Menu of Parameters for Truncate Object

The commands in this menu are:

� Range: Parameter Range of Truncate object. This menu option is a

command.

Range is the number of bits in the dynamic range of the output (not

counting the sign bit).

� Accuracy: Parameter Accuracy of Truncate object. This menu option

is a command.

13.21 Options for Truncate 85

Accuracy is the number of signi�cant bits retained in the output (not

counting the sign bit). Accuracy will always be <= Range. If you

specify more accuracy then range accuracy will equal range.

� OverflowMode: Parameter OverflowMode of Truncate object. This

menu option is a command.

OverflowMode selects saturation (0) or truncation (1) mode. In satu-

ration mode an over
ow is replaced by the largest positive or negative

number representable depending on the sign of the input value. In Trun-

cation mode the high order bits are truncated as if the number was in

sign magnitude form.

� Round: Parameter Round of Truncate object. This menu option is a

command.

Round if set rounds the result. Otherwise it is truncated. Truncation is

always towards 0 and not two's compliment truncation.

13.21.2 Menu of Variables for Truncate Object

The commands in this menu are:

� Range: Changeable variable Range of Truncate object. This menu op-

tion is a command.

Range is the number of bits in the dynamic range of the output (not

counting the sign bit).

� Accuracy: Changeable variable Accuracy of Truncate object. This

menu option is a command.

Accuracy is the number of signi�cant bits retained in the output (not

counting the sign bit). Accuracy will always be <= Range. If you

specify more accuracy then range accuracy will equal range.

� OverflowMode: Changeable variable OverflowMode of Truncate object.

This menu option is a command.

OverflowMode selects saturation (0) or truncation (1) mode. In satu-

ration mode an over
ow is replaced by the largest positive or negative

86 13. DSP PROCESSING OBJECTS

number representable depending on the sign of the input value. In Trun-

cation mode the high order bits are truncated as if the number was in

sign magnitude form.

� Round: Changeable variable Round of Truncate object. This menu op-

tion is a command.

Round if set rounds the result. Otherwise it is truncated. Truncation is

always towards 0 and not two's compliment truncation.

13.22 Options for UnpackWord

The commands in this menu are:

� help: Explain the use of UnpackWord. This menu option is a command.

� param: Parameters of UnpackWord. This menu option invokes the menu

de�ned in Section 13.22.1 on page 86.

� members: Members of UnpackWord. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.21 on

page 161 for additional base class member functions in this menu.

� instance: Describe or delete an instance of UnpackWord. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of UnpackWord with default parame-

ters. This menu option is a command.

� create: Create instance of UnpackWord. This menu option is a com-

mand.

13.22.1 Menu of Parameters for UnpackWord Object

The commands in this menu are:

87

� OutputWordSize: Parameter OutputWordSize of UnpackWord object.

This menu option is a command.

OutputWordSize is the number of bits in the output word.

� OutputsPerInput: Parameter OutputsPerInput of UnpackWord object.

This menu option is a command.

OutputsPerInput is the number of output words unpacked from each

input word.

� SignedOutput: Parameter SignedOutput of UnpackWord object. This

menu option is a command.

If SignedOutput is set the output will be written as a signed two's

compliment value in the full physical word size.

14 Signal generator objects

There are several ways in which test signals can be generated. The signal

menu describes the signal generators and their parameters and instances of

them.

The commands in this menu are:

� ConstantData: generate a MachWord constant. This menu option in-

vokes the menu de�ned in Section 14.1 on page 88.

� Cos: Generates the real function Amplitude cos(Phase+N Frequency).

This menu option invokes the menu de�ned in Section 14.2 on page 89.

� CxCos: Generates the function Amplitude e^(2 Pi i(Phase+N Frequency)).

This menu option invokes the menu de�ned in Section 14.3 on page 91.

� CxImp: Generates a periodic impulse or square wave. This menu option

invokes the menu de�ned in Section 14.4 on page 93.

� Normal: Generate normally distributed noise samples. This menu op-

tion invokes the menu de�ned in Section 14.5 on page 94.

88 14. SIGNAL GENERATOR OBJECTS

� Ramp: generates a linear ramp function. This menu option invokes the

menu de�ned in Section 14.6 on page 96.

� UniformNoise: Generate uniformly distributed noise samples. This

menu option invokes the menu de�ned in Section 14.7 on page 98.

14.1 Options for ConstantData

The commands in this menu are:

� help: Explain the use of ConstantData. This menu option is a com-

mand.

� param: Parameters of ConstantData. This menu option invokes the

menu de�ned in Section 14.1.1 on page 88.

� variables: Changeable variables of ConstantData. This menu option

invokes the menu de�ned in Section 14.1.2 on page 89.

� members: Members of ConstantData. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.23 on

page 164 for additional base class member functions in this menu.

� instance: Describe or delete an instance of ConstantData. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of ConstantData with default pa-

rameters. This menu option is a command.

� create: Create instance of ConstantData. This menu option is a com-

mand.

14.1.1 Menu of Parameters for ConstantData Object

The commands in this menu are:

14.2 Options for Cos 89

� Value: Parameter Value of ConstantData object. This menu option is

a command.

Value is output as an an MachWord constant.

14.1.2 Menu of Variables for ConstantData Object

The commands in this menu are:

� Value: Changeable variable Value of ConstantData object. This menu

option is a command.

Value is output as an an MachWord constant.

14.2 Options for Cos

The commands in this menu are:

� help: Explain the use of Cos. This menu option is a command.

� param: Parameters of Cos. This menu option invokes the menu de�ned

in Section 14.2.1 on page 90.

� variables: Changeable variables of Cos. This menu option invokes the

menu de�ned in Section 14.2.2 on page 90.

� members: Members of Cos. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.23 on page 164 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Cos. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Cos with default parameters. This

menu option is a command.

� create: Create instance of Cos. This menu option is a command.

90 14. SIGNAL GENERATOR OBJECTS

14.2.1 Menu of Parameters for Cos Object

The commands in this menu are:

� Frequency: Parameter Frequency of Cos object. This menu option is

a command.

Frequency speci�es the signal frequency in radians per sample. In other

words the phase of a given sample is Frequency radians plus the phase

of the previous sample.

� Phase: Parameter Phase of Cos object. This menu option is a command.

Phase speci�es the initial phase of the �rst sample of the signal.

� Amplitude: Parameter Amplitude of Cos object. This menu option is

a command.

Amplitude speci�es the maximum amplitude of the continuous cosine

function. This may not be the maximum amplitude of the samples

generated. If the function is sampled at a phase that is an integer

multiple of Pi, then the samples will obtain this maximum.

14.2.2 Menu of Variables for Cos Object

The commands in this menu are:

� Frequency: Changeable variable Frequency of Cos object. This menu

option is a command.

Frequency speci�es the signal frequency in radians per sample. In other

words the phase of a given sample is Frequency radians plus the phase

of the previous sample.

� Phase: Changeable variable Phase of Cos object. This menu option is

a command.

Phase speci�es the initial phase of the �rst sample of the signal.

� Amplitude: Changeable variable Amplitude of Cos object. This menu

option is a command.

14.3 Options for CxCos 91

Amplitude speci�es the maximum amplitude of the continuous cosine

function. This may not be the maximum amplitude of the samples

generated. If the function is sampled at a phase that is an integer

multiple of Pi, then the samples will obtain this maximum.

14.3 Options for CxCos

The commands in this menu are:

� help: Explain the use of CxCos. This menu option is a command.

� param: Parameters of CxCos. This menu option invokes the menu de-

�ned in Section 14.3.1 on page 91.

� variables: Changeable variables of CxCos. This menu option invokes

the menu de�ned in Section 14.3.2 on page 92.

� members: Members of CxCos. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.23 on page 164 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of CxCos. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of CxCos with default parameters.

This menu option is a command.

� create: Create instance of CxCos. This menu option is a command.

14.3.1 Menu of Parameters for CxCos Object

The commands in this menu are:

� Frequency: Parameter Frequency of CxCos object. This menu option

is a command.

92 14. SIGNAL GENERATOR OBJECTS

Frequency speci�es the signal frequency in radians per sample. In other

words the phase of a given sample is Frequency radians plus the phase

of the previous sample.

� Phase: Parameter Phase of CxCos object. This menu option is a com-

mand.

Phase speci�es the initial phase of the �rst sample of the signal.

� Amplitude: Parameter Amplitude of CxCos object. This menu option

is a command.

Amplitude speci�es the maximum amplitude of the continuous cosine

function. This may not be the maximum amplitude of the samples

generated. If the function is sampled at a phase that is an integer

multiple of Pi, then the samples will obtain this maximum.

14.3.2 Menu of Variables for CxCos Object

The commands in this menu are:

� Frequency: Changeable variable Frequency of CxCos object. This menu

option is a command.

Frequency speci�es the signal frequency in radians per sample. In other

words the phase of a given sample is Frequency radians plus the phase

of the previous sample.

� Phase: Changeable variable Phase of CxCos object. This menu option

is a command.

Phase speci�es the initial phase of the �rst sample of the signal.

� Amplitude: Changeable variable Amplitude of CxCos object. This menu

option is a command.

Amplitude speci�es the maximum amplitude of the continuous cosine

function. This may not be the maximum amplitude of the samples

generated. If the function is sampled at a phase that is an integer

multiple of Pi, then the samples will obtain this maximum.

14.4 Options for CxImp 93

14.4 Options for CxImp

The commands in this menu are:

� help: Explain the use of CxImp. This menu option is a command.

� param: Parameters of CxImp. This menu option invokes the menu de-

�ned in Section 14.4.1 on page 93.

� members: Members of CxImp. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.23 on page 164 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of CxImp. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of CxImp with default parameters.

This menu option is a command.

� create: Create instance of CxImp. This menu option is a command.

14.4.1 Menu of Parameters for CxImp Object

The commands in this menu are:

� Period: Parameter Period of CxImp object. This menu option is a

command.

Period speci�es the number of samples before the impulse is repeated.

� Phase: Parameter Phase of CxImp object. This menu option is a com-

mand.

Phase the relative amplitude of the real and imaginary components of

the signal. With Phase = 0 all the energy is in the real part. With

Phase = pi/2 all the energy is in the imaginary part.

94 14. SIGNAL GENERATOR OBJECTS

� Amplitude: Parameter Amplitude of CxImp object. This menu option

is a command.

Amplitude speci�es the the magnitude of the impulse amplitude. It is

the square root of the sum of the squares of the real and imaginary

amplitudes.

� Width: Parameter Width of CxImp object. This menu option is a com-

mand.

Width speci�es the peak width as a fraction of sample period. Width =

0 produces an impulse one sample wide. Width = 1 results in a constant

amplitude and phase signal. Width = .5 results in a standard square

wave.

� Transition: Parameter Transition of CxImp object. This menu option

is a command.

Transition speci�es the sample index where the �rst signal transition

from 0 occurs. This may be longer than the sample Period.

14.5 Options for Normal

The commands in this menu are:

� help: Explain the use of Normal. This menu option is a command.

� param: Parameters of Normal. This menu option invokes the menu

de�ned in Section 14.5.1 on page 95.

� variables: Changeable variables of Normal. This menu option invokes

the menu de�ned in Section 14.5.2 on page 95.

� members: Members of Normal. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.23 on

page 164 for additional base class member functions in this menu.

� instance: Describe or delete an instance of Normal. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

14.5 Options for Normal 95

� create default: Create instance of Normal with default parameters.

This menu option is a command.

� create: Create instance of Normal. This menu option is a command.

14.5.1 Menu of Parameters for Normal Object

The commands in this menu are:

� Sigma: Parameter Sigma of Normal object. This menu option is a com-

mand.

Sigma speci�es the standard deviation of the normally distributed sam-

ples created by this generator. Sigma is a scale factor for values gener-

ated in the standard normal distribution.

� Mean: Parameter Mean of Normal object. This menu option is a com-

mand.

Mean speci�es the mean of the normally distributed samples created by

this generator. Mean is an o�set for the values generated in the standard

normal distribution.

� ElementSize: Parameter ElementSize of Normal object. This menu

option is a command.

ElementSize speci�es the number of words in a single sample. It is

most commonly 1 for real data or 2 for complex data.

� Seed: Parameter Seed of Normal object. This menu option is a com-

mand.

Seed seeds the random number generator. Each object instance main-

tains a separate history state for the random number generator. If the

same value of Seed is used in di�erent object instances they will generate

the same sequence.

14.5.2 Menu of Variables for Normal Object

The commands in this menu are:

96 14. SIGNAL GENERATOR OBJECTS

� Sigma: Changeable variable Sigma of Normal object. This menu option

is a command.

Sigma speci�es the standard deviation of the normally distributed sam-

ples created by this generator. Sigma is a scale factor for values gener-

ated in the standard normal distribution.

� Mean: Changeable variable Mean of Normal object. This menu option is

a command.

Mean speci�es the mean of the normally distributed samples created by

this generator. Mean is an o�set for the values generated in the standard

normal distribution.

14.6 Options for Ramp

The commands in this menu are:

� help: Explain the use of Ramp. This menu option is a command.

� param: Parameters of Ramp. This menu option invokes the menu de�ned

in Section 14.6.1 on page 97.

� variables: Changeable variables of Ramp. This menu option invokes

the menu de�ned in Section 14.6.2 on page 97.

� members: Members of Ramp. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.23 on page 164 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Ramp. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Ramp with default parameters.

This menu option is a command.

� create: Create instance of Ramp. This menu option is a command.

14.6 Options for Ramp 97

14.6.1 Menu of Parameters for Ramp Object

The commands in this menu are:

� Min: Parameter Min of Ramp object. This menu option is a command.

Min is the minimum and initial value of the ramp function.

� Max: Parameter Max of Ramp object. This menu option is a command.

Max is an upper bound on the ramp function. Before exceeding Max a

sample will be reset to Min.

� Increment: Parameter Increment of Ramp object. This menu option is

a command.

Increment is the amount added to the previous sample to generate the

next sample.

14.6.2 Menu of Variables for Ramp Object

The commands in this menu are:

� Min: Changeable variable Min of Ramp object. This menu option is a

command.

Min is the minimum and initial value of the ramp function.

� Max: Changeable variable Max of Ramp object. This menu option is a

command.

Max is an upper bound on the ramp function. Before exceeding Max a

sample will be reset to Min.

� Increment: Changeable variable Increment of Ramp object. This menu

option is a command.

Increment is the amount added to the previous sample to generate the

next sample.

98 14. SIGNAL GENERATOR OBJECTS

14.7 Options for UniformNoise

The commands in this menu are:

� help: Explain the use of UniformNoise. This menu option is a com-

mand.

� param: Parameters of UniformNoise. This menu option invokes the

menu de�ned in Section 14.7.1 on page 98.

� variables: Changeable variables of UniformNoise. This menu option

invokes the menu de�ned in Section 14.7.2 on page 99.

� members: Members of UniformNoise. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.23 on

page 164 for additional base class member functions in this menu.

� instance: Describe or delete an instance of UniformNoise. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of UniformNoise with default pa-

rameters. This menu option is a command.

� create: Create instance of UniformNoise. This menu option is a com-

mand.

14.7.1 Menu of Parameters for UniformNoise Object

The commands in this menu are:

� Maximum: Parameter Maximum of UniformNoise object. This menu op-

tion is a command.

Maximum is the largest value of uniformly distributed noise.

� Minimum: Parameter Minimum of UniformNoise object. This menu op-

tion is a command.

99

Minimum is the smallest value of uniformly distributed noise. Most com-

monly Minimum = - Maximum.

� ElementSize: Parameter ElementSize of UniformNoise object. This

menu option is a command.

ElementSize speci�es the number of words in a single sample. It is

most commonly 1 for real data or 2 for complex data.

� Seed: Parameter Seed of UniformNoise object. This menu option is a

command.

Seed seeds the random number generator. Each object instance main-

tains a separate history state for the random number generator. If the

same value of Seed is used in di�erent object instances they will generate

the same.

14.7.2 Menu of Variables for UniformNoise Object

The commands in this menu are:

� Maximum: Changeable variable Maximum of UniformNoise object. This

menu option is a command.

Maximum is the largest value of uniformly distributed noise.

� Minimum: Changeable variable Minimum of UniformNoise object. This

menu option is a command.

Minimum is the smallest value of uniformly distributed noise. Most com-

monly Minimum = - Maximum.

15 Plotting objects

Frequently DSP output is most easily evaluated with a data plot. The plot

menu lists the plotting objects their parameters and instances of them.

The commands in this menu are:

100 15. PLOTTING OBJECTS

� EyePlot: EyePlot plots complex signal in eye plot (X versus Y) form.

This menu option invokes the menu de�ned in Section 15.1 on page 100.

� Plot: Plot creates graphs of real, complex and two dimensional data

streams. This menu option invokes the menu de�ned in Section 15.2 on

page 101.

15.1 Options for EyePlot

The commands in this menu are:

� help: Explain the use of EyePlot. This menu option is a command.

� param: Parameters of EyePlot. This menu option invokes the menu

de�ned in Section 15.1.1 on page 100.

� members: Members of EyePlot. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.19 on

page 160 for additional base class member functions in this menu.

� instance: Describe or delete an instance of EyePlot. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of EyePlot with default parameters.

This menu option is a command.

� create: Create instance of EyePlot. This menu option is a command.

15.1.1 Menu of Parameters for EyePlot Object

The commands in this menu are:

� SamplesPerPlot: Parameter SamplesPerPlot of EyePlot object. This

menu option is a command.

EyePlot generates a series of plots with SamplesPerPlot in each display.

If the input block size is not 1 then that value is overrides this parameter.

15.2 Options for Plot 101

� Caption: Parameter Caption of EyePlot object. This menu option is

a command.

The plot caption is a string that will be displayed at the base of the

plot. The default value of 0 causes the plot node name to be used for

the caption.

15.2 Options for Plot

The commands in this menu are:

� help: Explain the use of Plot. This menu option is a command.

� param: Parameters of Plot. This menu option invokes the menu de�ned

in Section 15.2.1 on page 101.

� members: Members of Plot. See Section 13.1 on page 56 for an example

of the menu tree from this command and[3] for a complete desciption of

all options for this object members. See Section 22.19 on page 160 for

additional base class member functions in this menu.

� instance: Describe or delete an instance of Plot. See Section 13.1 on

page 56 for an example of the menu tree from this command and[3] for

a complete desciption of all options for this object instance.

� create default: Create instance of Plot with default parameters.

This menu option is a command.

� create: Create instance of Plot. This menu option is a command.

15.2.1 Menu of Parameters for Plot Object

The commands in this menu are:

� Caption: Parameter Caption of Plot object. This menu option is a

command.

102 16. LISTING OBJECTS

The Caption is displayed at the base of the plot. The default value of

0 causes the plot node name to be used for the caption. The caption

cannot contain blanks. Use underscore instead.

16 Listing objects

It is often useful to provide numeric listings of DSP data streams. The list

menu describes the listing objects their parameters and instances of them.

The commands in this menu are:

� HexList: HexList lists a speci�ed number of channels to a display

window. This menu option invokes the menu de�ned in Section 16.1 on

page 102.

� Listing: Listing lists a speci�ed number of channels to a display

window. This menu option invokes the menu de�ned in Section 16.2 on

page 103.

16.1 Options for HexList

The commands in this menu are:

� help: Explain the use of HexList. This menu option is a command.

� param: Parameters of HexList. This menu option invokes the menu

de�ned in Section 16.1.1 on page 103.

� members: Members of HexList. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.19 on

page 160 for additional base class member functions in this menu.

� instance: Describe or delete an instance of HexList. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

16.2 Options for Listing 103

� create default: Create instance of HexList with default parameters.

This menu option is a command.

� create: Create instance of HexList. This menu option is a command.

16.1.1 Menu of Parameters for HexList Object

The commands in this menu are:

� Channels: Parameter Channels of HexList object. This menu option

is a command.

HexList lists Channels signals of integer data in a hexadecimal format.

� Caption: Parameter Caption of HexList object. This menu option is

a command.

Caption speci�es a caption that will appear at the head of the listing.

If no caption is speci�ed (default 0) then the node name will be used.

The caption cannot contain blanks. Use underscore instead.

16.2 Options for Listing

The commands in this menu are:

� help: Explain the use of Listing. This menu option is a command.

� param: Parameters of Listing. This menu option invokes the menu

de�ned in Section 16.2.1 on page 104.

� variables: Changeable variables of Listing. This menu option invokes

the menu de�ned in Section 16.2.2 on page 104.

� members: Members of Listing. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.19 on

page 160 for additional base class member functions in this menu.

104 16. LISTING OBJECTS

� instance: Describe or delete an instance of Listing. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of Listing with default parameters.

This menu option is a command.

� create: Create instance of Listing. This menu option is a command.

16.2.1 Menu of Parameters for Listing Object

The commands in this menu are:

� Hex: Parameter Hex of Listing object. This menu option is a command.

Hex , when set, displays data in hexadecimal format. If a value will not

�t in a 32 bit integer it is hard limited.

� Caption: Parameter Caption of Listing object. This menu option is

a command.

Caption speci�es a caption that will appear at the head of the listing.

If no caption is speci�ed (default 0) then the node name will be used.

The caption cannot contain blanks. Use underscore instead.

16.2.2 Menu of Variables for Listing Object

The commands in this menu are:

� Hex: Changeable variable Hex of Listing object. This menu option is

a command.

Hex , when set, displays data in hexadecimal format. If a value will not

�t in a 32 bit integer it is hard limited.

105

17 Nodes that access disk �les

Options in the disk menu support reading and writing of disk �les. You can

save the output from any node in a network to a disk �le. You can use data

in a disk �le as a signal source. This menu describes these objects, their

parameters and instances of them.

The commands in this menu are:

� ascii: Nodes to read �les. This menu option invokes the menu de�ned

in Section 17.1 on page 105.

� binary: Nodes to write �les. This menu option invokes the menu de�ned

in Section 17.2 on page 111.

17.1 Nodes to read and write ascii �les

The ascii menu provides access to nodes for reading and writing ascii for-

matted �les. From the asciimenu you can list the existing objects, describe

their parameters, create new objects and delete existing ones.

The commands in this menu are:

� AsciiFile: AsciiFile writes an ascii �le of data sent to it. This menu

option invokes the menu de�ned in Section 17.1.1 on page 106.

� ImportData: ImportData reads an ascii input �le. This menu option

invokes the menu de�ned in Section 17.1.2 on page 107.

� ReadFloat: ReadFloat reads an ascii
oat input �le. This menu option

invokes the menu de�ned in Section 17.1.3 on page 110.

� ReadInt: ReadInt reads an ascii integer input �le. This menu option

invokes the menu de�ned in Section 17.1.4 on page 110.

106 17. NODES THAT ACCESS DISK FILES

17.1.1 Options for AsciiFile

The commands in this menu are:

� help: Explain the use of AsciiFile. This menu option is a command.

� param: Parameters of AsciiFile. This menu option invokes the menu

de�ned in Section 17.1.1.1 on page 106.

� variables: Changeable variables of AsciiFile. This menu option in-

vokes the menu de�ned in Section 17.1.1.2 on page 107.

� members: Members of AsciiFile. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.19 on

page 160 for additional base class member functions in this menu.

� instance: Describe or delete an instance of AsciiFile. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of AsciiFile with default parame-

ters. This menu option is a command.

� create: Create instance of AsciiFile. This menu option is a command.

17.1.1.1 Menu of Parameters for AsciiFileObject The commands

in this menu are:

� FileName: Parameter FileName of AsciiFile object. This menu option

is a command.

FileName speci�es the output ascii �le name head of the listing. If no

caption is speci�ed (default 0) then the node name will be used.

� Hex: Parameter Hex of AsciiFile object. This menu option is a com-

mand.

Hex , when set, writes output in hexadecimal format. If the value will

not �t in a 32 bit integer it is hard limited and a warning is generated.

17.1 Nodes to read and write ascii �les 107

� NoGroup: Parameter NoGroup of AsciiFile object. This menu option

is a command.

NoGroup , if set, writes data one word per line. The default is to write

the words in a sample on a single line (up to 20 words per sample) and

to put brackets ` f g ' around blocks if the block size is larger then the

sample size. If NoGroup is set then the data is written one per line with

no grouping information.

� NoHeader: Parameter NoHeader of AsciiFile object. This menu option

is a command.

The default is to write a data header that describes the data format,

the time it was created and gives the names of the creating node and

network. If this option is set this header is omitted.

17.1.1.2 Menu of Variables for AsciiFile Object The commands in

this menu are:

� Hex: Changeable variable Hex of AsciiFile object. This menu option

is a command.

Hex , when set, writes output in hexadecimal format. If the value will

not �t in a 32 bit integer it is hard limited and a warning is generated.

17.1.2 Options for ImportData

The commands in this menu are:

� help: Explain the use of ImportData. This menu option is a command.

� param: Parameters of ImportData. This menu option invokes the menu

de�ned in Section 17.1.2.1 on page 108.

� members: Members of ImportData. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.23 on

page 164 for additional base class member functions in this menu.

108 17. NODES THAT ACCESS DISK FILES

� instance: Describe or delete an instance of ImportData. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of ImportData with default parame-

ters. This menu option is a command.

� create: Create instance of ImportData. This menu option is a com-

mand.

17.1.2.1 Menu of Parameters for ImportData Object The com-

mands in this menu are:

� FileName: Parameter FileName of ImportData object. This menu op-

tion is a command.

FileName speci�es the name of the disk �le to be read. If no �le name is

speci�ed (default 0) you will be prompted for a �le name when execution

starts.

� Format: Parameter Format of ImportData object. This menu option is

a command.

Format speci�es the format to use in reading data. Any standard C input

format can be used. The default, %d for integer decimal data, for octal

data. If the format string ends in X or x integer data is written to the

output stream on a
oating point simulator. If the last character is an

s and the format is a
oating point format the data will be normalized

on the 16 bit integer simulator, i. e. .5 will be converted to 16384 or

half of full scale. If the last two characters of the format string are

an underscore () and any other character they will be deleted from

the format. You can use this to control the type of output or scaling

independent of the format for reading data. The type of format is

determined by looking for the �rst occurrence of % ad then the �rst

occurrence of one the letters x, d, o ,`f' or e after that. Floating point

format characters must be preceded by a l and others must not. The

letter can be in either upper or lower case. If the format is not recognized

and error will be generated. x and o formats will read data as unsigned

17.1 Nodes to read and write ascii �les 109

32 bit integers. d will it as signed 32 bit integers. e and 'f' will read it

as a double
oating point value. Over
ows will be reported as warnings.

� Fields: Parameter Fields of ImportData object. This menu option is

a command.

Fields speci�es the number of data �elds on each line. If set to 0 then

all data �elds that are found on a line will be read (up to a maximum

line width of 1024 characters.) A data �eld is any contiguous string

of legal digits separated by white space (blank, tab, the beginning of a

line or the end of a line) from other data �elds or other information on

the line. Decimal and octal �elds can start with a + or -. Hexadecimal

�elds may start with an optional 0x or 0X provided the Format string

is %x or %X. The value Fields is an upper limit on the �elds on a line.

There may be fewer �elds on a line and even lines with no valid numeric

�elds.

� RepeatFlag: Parameter RepeatFlag of ImportData object. This menu

option is a command.

Setting RepeatFlag causes the �le to be read at the beginning once the

end of �le is encountered. If the �le is short it will only be read once

and the data will be retained in memory.

� SkipFields: Parameter SkipFields of ImportData object. This menu

option is a command.

SkipFields is a list of �elds (in increasing order) to skip. Fields start

at 1. If all values are 0 no �elds are skipped.

� SkipColumns: Parameter SkipColumns of ImportData object. This

menu option is a command.

SkipColumns is a list of pairs of column numbers in increasing order.

All data in columns starting at the �rst column number in the pair

and ending at the next column number after the second element in the

pair will be ignored. Thus the list f 20, 24, 30, 32 g would cause the

�ve columns 20 through 24 and the three columns 30 through 32 to

be skipped. If there are an odd number of entries all columns at or

following the last entry will be skipped. Columns start at 1. If only

values of 0 are entered no columns will be skipped.

110 17. NODES THAT ACCESS DISK FILES

17.1.3 Options for ReadFloat

The commands in this menu are:

� help: Explain the use of ReadFloat. This menu option is a command.

� param: Parameters of ReadFloat. This menu option invokes the menu

de�ned in Section 17.1.3.1 on page 110.

� members: Members of ReadFloat. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.23 on

page 164 for additional base class member functions in this menu.

� instance: Describe or delete an instance of ReadFloat. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of ReadFloat with default parame-

ters. This menu option is a command.

� create: Create instance of ReadFloat. This menu option is a command.

17.1.3.1 Menu of Parameters for ReadFloatObject The commands

in this menu are:

� FileName: Parameter FileName of ReadFloat object. This menu option

is a command.

FileName speci�es the disk �le to be read. If no name is speci�ed the

node name will be used.

17.1.4 Options for ReadInt

The commands in this menu are:

� help: Explain the use of ReadInt. This menu option is a command.

17.2 Nodes to read and write binary �les 111

� param: Parameters of ReadInt. This menu option invokes the menu

de�ned in Section 17.1.4.1 on page 111.

� members: Members of ReadInt. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.23 on

page 164 for additional base class member functions in this menu.

� instance: Describe or delete an instance of ReadInt. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of ReadInt with default parameters.

This menu option is a command.

� create: Create instance of ReadInt. This menu option is a command.

17.1.4.1 Menu of Parameters for ReadInt Object The commands

in this menu are:

� FileName: Parameter FileName of ReadInt object. This menu option

is a command.

FileName speci�es the the disk �le to be read. If no name is speci�ed

the node name will be used.

� Flags: Parameter Flags of ReadInt object. This menu option is a

command.

Flags &1 speci�es hex format �le with optional 0x or 0X pre�x for each

value. Flags &2 will write 32 bit integer data on a
oating point simu-

lator. Decimal format �les are read as signed integers and hexadecimal

format as unsigned.

17.2 Nodes to read and write binary �les

The binary menu provides access to nodes for reading and writing binary

disk �les. From the binary menu you can list the existing objects, describe

their parameters, create new objects and delete existing ones.

112 17. NODES THAT ACCESS DISK FILES

The commands in this menu are:

� CompareDisk: CompareDisk compares input to a �le written by an

OutputNode. This menu option invokes the menu de�ned in Sec-

tion 17.2.1 on page 112.

� InputNode: InputNode reads a disk �le written by an OutputNode. This

menu option invokes the menu de�ned in Section 17.2.2 on page 115.

� InputWord: InputWord reads words in a selected format from a binary

�le. This menu option invokes the menu de�ned in Section 17.2.3 on

page 118.

� OutputNode: OutputNode writes a speci�ed number of channels to a

disk �le. This menu option invokes the menu de�ned in Section 17.2.4

on page 120.

� OutputWord: OutputWord writes words in a selected format to a binary

�le. This menu option invokes the menu de�ned in Section 17.2.5 on

page 121.

� VoiceNode: VoiceNode reads Creative Voice format �les. This menu

option invokes the menu de�ned in Section 17.2.6 on page 122.

� VoiceStripOut: VoiceStripOut writes a Creative Voice format �le

with no header. This menu option invokes the menu de�ned in Sec-

tion 17.2.7 on page 124.

17.2.1 Options for CompareDisk

The commands in this menu are:

� help: Explain the use of CompareDisk. This menu option is a command.

� param: Parameters of CompareDisk. This menu option invokes the menu

de�ned in Section 17.2.1.1 on page 113.

� members: Members of CompareDisk. This menu option invokes the

menu de�ned in Section 17.2.1.2 on page 113. See Section 22.19 on page

160 for additional base class member functions in this menu.

17.2 Nodes to read and write binary �les 113

� instance: Describe or delete an instance of CompareDisk. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of CompareDisk with default param-

eters. This menu option is a command.

� create: Create instance of CompareDisk. This menu option is a com-

mand.

17.2.1.1 Menu of Parameters for CompareDisk Object The com-

mands in this menu are:

� FileName: Parameter FileName of CompareDisk object. This menu

option is a command.

FileName speci�es the name of the disk �le to be compared with the

data read from the input channels.

� MaxReport: Parameter MaxReport of CompareDisk object. This menu

option is a command.

Only the �rst MaxReport errors will be reported.

� Tolerance: Parameter Tolerance of CompareDisk object. This menu

option is a command.

Tolerance is the absolute value of the smallest di�erence that consti-

tutes an error. Ordinarily this value is 0.0. It might be set to a value

larger than 0 to compare slightly di�erent algorithms or results on two

di�erent computers with di�erent arithmetic.

� ErrorFile: Parameter ErrorFile of CompareDisk object. This menu

option is a command.

ErrorFile is a �le in which errors will be reported instead of displaying

them in a window.

17.2.1.2 Select a member of CompareDisk to describe The com-

mands in this menu are:

114 17. NODES THAT ACCESS DISK FILES

� DisplayHeader: Describe member DisplayHeader of CompareDisk.

This menu option invokes the menu de�ned in Section 17.2.1.2.1 on

page 114.

� IgnoreHeaderCount: Describe member IgnoreHeaderCountof Compare-

Disk. This menu option invokes the menu de�ned in Section 17.2.1.2.2

on page 114.

17.2.1.2.1 Describemember DisplayHeader of CompareDisk Display-

Header displays the parameters read from �le FileName. These include the

original node name that generated the �le, the caption for this node, the

number of input channels, and the number of scalar elements in a sample.

The arithmetic type is also shown. The output channels and sample size

for this node are determined by these values. If the data in the �le is in a

di�erent arithmetic format than that currently in use, the �le data will be

converted.

The commands in this menu are:

� desc DisplayHeader: Describe selected member of CompareDisk. This

menu option is a command.

17.2.1.2.2 Describemember IgnoreHeaderCount of CompareDisk The

data �le header contains a count of the number of machine words in each

channel. This count is written at the time the node creating the �le is deleted.

If ObjectProDSP exits abnormally then these counts may never be set and

one will not be able to read any of the data in the �le. This option causes

these counts to be ignored. The result is that data will be read until the

physical end of �le. This may result in samples of all 0 being read at the end

of the �le that were never written to it.

The commands in this menu are:

� desc IgnoreHeaderCount: Describe selected member of CompareDisk.

This menu option is a command.

17.2 Nodes to read and write binary �les 115

17.2.2 Options for InputNode

The commands in this menu are:

� help: Explain the use of InputNode. This menu option is a command.

� param: Parameters of InputNode. This menu option invokes the menu

de�ned in Section 17.2.2.1 on page 115.

� members: Members of InputNode. This menu option invokes the menu

de�ned in Section 17.2.2.2 on page 116. See Section 22.23 on page 164

for additional base class member functions in this menu.

� instance: Describe or delete an instance of InputNode. This menu

option invokes the menu de�ned in Section 17.2.2.3 on page 117.

� create default: Create instance of InputNode with default parame-

ters. This menu option is a command.

� create: Create instance of InputNode. This menu option is a command.

17.2.2.1 Menu of Parameters for InputNodeObject The commands

in this menu are:

� FileName: Parameter FileName of InputNode object. This menu option

is a command.

FileName speci�es the name of the disk �le to be read. If no �le name

is speci�ed (default 0) then the node name will be used.

� Flags: Parameter Flags of InputNode object. This menu option is a

command.

If Flags & 4 is set the sample rate is forced to 1, overwriting the default

values.

� DeltaOut: Parameter DeltaOut of InputNode object. This menu option

is a command.

DeltaOut is the minimum output size. The node is not scheduled until

space for DeltaOut words is available in the output bu�er. It will only

write multiples of DeltaOut samples.

116 17. NODES THAT ACCESS DISK FILES

17.2.2.2 Select a member of InputNode to describe The commands

in this menu are:

� DisplayHeader: Describe member DisplayHeader of InputNode. This

menu option invokes the menu de�ned in Section 17.2.2.2.1 on page 116.

� IgnoreHeaderCount: Describe member IgnoreHeaderCount of Input-

Node. This menu option invokes the menu de�ned in Section 17.2.2.2.2

on page 116.

17.2.2.2.1 Describe member DisplayHeader of InputNode Display-

Header displays the parameters read from �le FileName. These include the

original node name that generated the �le, the caption for this node, the

number of input channels, and the number of scalar elements in a sample.

The arithmetic type is also shown. The output channels and sample size

for this node are determined by these values. If the data in the �le is in a

di�erent arithmetic format than that currently in use, the �le data will be

converted.

The commands in this menu are:

� desc DisplayHeader: Describe selected member of InputNode. This

menu option is a command.

17.2.2.2.2 Describe member IgnoreHeaderCount of InputNode The

data �le header contains a count of the number of machine words in each

channel. This count is written at the time the node creating the �le is deleted.

If ObjectProDSP exits abnormally then these counts may never be set and

one will not be able to read any of the data in the �le. This option causes

these counts to be ignored. The result is that data will be read until the

physical end of �le. This may result in samples of all 0 being read at the end

of the �le that were never written to it.

The commands in this menu are:

� desc IgnoreHeaderCount: Describe selected member of InputNode.

This menu option is a command.

17.2 Nodes to read and write binary �les 117

17.2.2.3 Select an Instance of InputNode The commands in this menu

are:

� instance of this class: Select this instance of InputNode. This menu

option invokes the menu de�ned in Section 17.2.2.3.1 on page 117.

17.2.2.3.1 Operations on an instance of object InputNode The

commands in this menu are:

� desc: Describe this instance of InputNode. This menu option is a

command.

� param: Describe parameters of this InputNode. This menu option in-

vokes the menu de�ned in Section 17.2.2.3.2 on page 117.

� exec: Select a member of InputNode to execute. This menu option

invokes the menu de�ned in Section 17.2.2.3.3 on page 118. See , Sec-

tion 22.24 on page 166 for additional base class member functions in

this menu.

� delete: Delete this InputNode. This menu option is a command.

17.2.2.3.2 Menu of Parameters for InputNode Object Instance

The commands in this menu are:

� FileName: Parameter FileName of InputNode object instance. This

menu option is a command.

FileName speci�es the name of the disk �le to be read. If no �le name

is speci�ed (default 0) then the node name will be used.

� Flags: Parameter Flags of InputNode object instance. This menu

option is a command.

If Flags & 4 is set the sample rate is forced to 1, overwriting the default

values.

118 17. NODES THAT ACCESS DISK FILES

� DeltaOut: Parameter DeltaOut of InputNode object instance. This

menu option is a command.

DeltaOut is the minimum output size. The node is not scheduled until

space for DeltaOut words is available in the output bu�er. It will only

write multiples of DeltaOut samples.

17.2.2.3.3 Select a member of this InputNode to execute The com-

mands in this menu are:

� DisplayHeader: Execute selected member of InputNode. This menu

option is a command.

� IgnoreHeaderCount: Execute selected member of InputNode. This

menu option is a command.

17.2.3 Options for InputWord

The commands in this menu are:

� help: Explain the use of InputWord. This menu option is a command.

� param: Parameters of InputWord. This menu option invokes the menu

de�ned in Section 17.2.3.1 on page 119.

� members: Members of InputWord. See Section 13.1 on page 56 for an

example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.23 on

page 164 for additional base class member functions in this menu.

� instance: Describe or delete an instance of InputWord. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of InputWord with default parame-

ters. This menu option is a command.

� create: Create instance of InputWord. This menu option is a command.

17.2 Nodes to read and write binary �les 119

17.2.3.1 Menu of Parameters for InputWordObject The commands

in this menu are:

� FileName: Parameter FileName of InputWord object. This menu option

is a command.

FileName is the binary input �le to read. If no default(0) is given the

node name will be used.

� FormatIn: Parameter FormatIn of InputWord object. This menu option

is a command.

FormatIn is the binary input format. The options are: MachWord (0),

int8 (1), int16 (2), int32 (3), float (4), double (5). Integer words are

written in two's compliment format. Integer input values (Integer-

MachWord) are treated as signed. If over
ow occurs the data is hard

limited and a warning is given. The input stream can have any value

for sample size, (ElementSize)

� IntegerOut: Parameter IntegerOut of InputWord object. This menu

option is a command.

If IntegerOut is nonzero the output stream is written as IntegerMach-

Word. Otherwise it is written as MachWord. If over
ow occurs the data

is hard limited and a warning is given.

� InitialSkip: Parameter InitialSkip of InputWord object. This

menu option is a command.

The �rst InitialSkip bytes of the �le are ignored.

� ElementSize: Parameter ElementSize of InputWord object. This

menu option is a command.

ElementSize is the number of words per sample in the input �le.

� BlockSize: Parameter BlockSize of InputWord object. This menu

option is a command.

BlockSize is the number of samples per block in the input �le.

120 17. NODES THAT ACCESS DISK FILES

17.2.4 Options for OutputNode

The commands in this menu are:

� help: Explain the use of OutputNode. This menu option is a command.

� param: Parameters of OutputNode. This menu option invokes the menu

de�ned in Section 17.2.4.1 on page 120.

� members: Members of OutputNode. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.19 on

page 160 for additional base class member functions in this menu.

� instance: Describe or delete an instance of OutputNode. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of OutputNode with default parame-

ters. This menu option is a command.

� create: Create instance of OutputNode. This menu option is a com-

mand.

17.2.4.1 Menu of Parameters for OutputNode Object The com-

mands in this menu are:

� FileName: Parameter FileName of OutputNode object. This menu op-

tion is a command.

FileName speci�es the name of the disk �le to be created. If no caption

is speci�ed (default 0) then the node name will be used.

� Flags: Parameter Flags of OutputNode object. This menu option is a

command.

if bit 1 of Flags is set then an existing �le with the same name is

overwritten without comment. If the overwrite option is not set and a

�le with the same name exists this node will not be initialized properly

in non interactive mode and network execution will fail. In interactive

17.2 Nodes to read and write binary �les 121

mode, you will be asked to supply a new name. if bit 8 is set (Flags&8)

is true then the data will be converted from whatever format the input

channel is to 32 bit integer data and written in that format. The data

is hard limited.

� Channels: Parameter Channels of OutputNode object. This menu op-

tion is a command.

OutputNode writes Channels of data to a disk �le.

� FileBlockSize: Parameter FileBlockSizeof OutputNodeobject. This

menu option is a command.

FileBlockSize determines the number of consecutive samples written

to each channel. Making this larger reduces the number of disk accesses

at the cost of larger memory bu�ers.

� Caption: Parameter Caption of OutputNode object. This menu option

is a command.

Caption is a one line description of the contents of the �le. It is displayed

by executing a member function of an input node that reads this �le.

� DeltaIn: Parameter DeltaIn of OutputNode object. This menu option

is a command.

The node will read chunks of multiples of DeltaIn samples. Note for

complex data there are two words in each sample. The node will not be

executed unless DeltaIn input samples are available.

17.2.5 Options for OutputWord

The commands in this menu are:

� help: Explain the use of OutputWord. This menu option is a command.

� param: Parameters of OutputWord. This menu option invokes the menu

de�ned in Section 17.2.5.1 on page 122.

� members: Members of OutputWord. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

122 17. NODES THAT ACCESS DISK FILES

desciption of all options for this object members. See Section 22.19 on

page 160 for additional base class member functions in this menu.

� instance: Describe or delete an instance of OutputWord. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of OutputWord with default parame-

ters. This menu option is a command.

� create: Create instance of OutputWord. This menu option is a com-

mand.

17.2.5.1 Menu of Parameters for OutputWord Object The com-

mands in this menu are:

� FileName: Parameter FileName of OutputWord object. This menu op-

tion is a command.

FileName is the �le to be created. If no default(0) is given the node

name will be used.

� FormatOut: Parameter FormatOut of OutputWord object. This menu

option is a command.

FormatOut is the binary output format. The options are: MachWord

(0), int8 (1), int16 (2), int32 (3), float (4), double (5). Integer

words are written in two's compliment format. Integer input values (

IntegerMachWord) are treated as signed. If over
ow occurs the data

is hard limited and a warning is given. The input stream can have any

value for sample size, (ElementSize)

17.2.6 Options for VoiceNode

The commands in this menu are:

� help: Explain the use of VoiceNode. This menu option is a command.

17.2 Nodes to read and write binary �les 123

� param: Parameters of VoiceNode. This menu option invokes the menu

de�ned in Section 17.2.6.1 on page 123.

� members: Members of VoiceNode. This menu option invokes the menu

de�ned in Section 17.2.6.2 on page 123. See Section 22.23 on page 164

for additional base class member functions in this menu.

� instance: Describe or delete an instance of VoiceNode. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of VoiceNode with default parame-

ters. This menu option is a command.

� create: Create instance of VoiceNode. This menu option is a command.

17.2.6.1 Menu of Parameters for VoiceNodeObject The commands

in this menu are:

� FileName: Parameter FileName of VoiceNode object. This menu option

is a command.

FileNamemust be the name of an existing �le in the Creative Voice File

Format. Only uncompressed �les of block type 1 (New Voice Block) are

supported.

� NoHeader: Parameter NoHeader of VoiceNode object. This menu option

is a command.

NoHeader if set to 1 indicates the �le does not contain a header. Voice-

StripOut writes �les in Creative Voice format �les with no header.

17.2.6.2 Select a member of VoiceNode to describe The commands

in this menu are:

� DisplayHeader: Describe member DisplayHeader of VoiceNode. This

menu option invokes the menu de�ned in Section 17.2.6.2.1 on page 124.

124 17. NODES THAT ACCESS DISK FILES

17.2.6.2.1 Describe member DisplayHeader of VoiceNode Display-

Header displays the information in the �le header.

The commands in this menu are:

� desc DisplayHeader: Describe selected member of VoiceNode. This

menu option is a command.

17.2.7 Options for VoiceStripOut

The commands in this menu are:

� help: Explain the use of VoiceStripOut. This menu option is a com-

mand.

� param: Parameters of VoiceStripOut. This menu option invokes the

menu de�ned in Section 17.2.7.1 on page 124.

� members: Members of VoiceStripOut. See Section 13.1 on page 56 for

an example of the menu tree from this command and[3] for a complete

desciption of all options for this object members. See Section 22.19 on

page 160 for additional base class member functions in this menu.

� instance: Describe or delete an instance of VoiceStripOut. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

� create default: Create instance of VoiceStripOut with default pa-

rameters. This menu option is a command.

� create: Create instance of VoiceStripOut. This menu option is a

command.

17.2.7.1 Menu of Parameters for VoiceStripOut Object The com-

mands in this menu are:

� FileName: Parameter FileName of VoiceStripOut object. This menu

option is a command.

125

FileName is the �le to be created. If no default(0) is given the node

name will be used.

18 Networks

This menu describes classes for networks and their controllers. It describes

classes for building multiple network systems.

The commands in this menu are:

� CircBufDes: Circular bu�er descriptor. This menu option invokes the

menu de�ned in Section 18.1 on page 125.

� DataFlow: Data
ow based network control and scheduling. This menu

option invokes the menu de�ned in Section 18.2 on page 129.

� Network: Data
ow network objects. This menu option invokes the

menu de�ned in Section 18.3 on page 132.

18.1 Options for CircBufDes

The commands in this menu are:

� help: Explain the use of CircBufDes. This menu option is a command.

� param: Parameters of CircBufDes. This menu option invokes the menu

de�ned in Section 18.1.1 on page 126.

� variables: Changeable variables of CircBufDes. This menu option

invokes the menu de�ned in Section 18.1.2 on page 127.

� members: Members of CircBufDes. This menu option invokes the menu

de�ned in Section 18.1.3 on page 128.

� instance: Describe or delete an instance of CircBufDes. See Sec-

tion 13.1 on page 56 for an example of the menu tree from this command

and[3] for a complete desciption of all options for this object instance.

126 18. NETWORKS

� create default: Create instance of CircBufDes with default parame-

ters. This menu option is a command.

� create: Create instance of CircBufDes. This menu option is a com-

mand.

18.1.1 Menu of Parameters for CircBufDes Object

The commands in this menu are:

� Size: Parameter Size of CircBufDes object. This menu option is a

command.

Size determines the bu�er size for interactive execution. The larger the

bu�er is the more e�ciently the nodes can execute and the greater the

delay that is possible in the network. If the bu�ers are too small the

network may lock up without processing all input data.

� TargetSize: Parameter TargetSize of CircBufDes object. This menu

option is a command.

TargetSize is the desired size of the bu�er used in code prepared for

execution on the target processor. An analysis will determine if this size

is adequate and if it is larger than will be of bene�t. The size will be

optimized based on this target size as an approximate goal.

� TargetSizeGoal: Parameter TargetSizeGoal of CircBufDes object.

This menu option is a command.

TargetSizeGoal determines whether the bu�er will be made larger or

smaller then the selected size when the selected size is not optimal. If

TargetSizeGoal is 0 that space will be minimized. If TargetSizeGoal

is 1 then execution overhead will be minimized.

� TargetControlGoal: Parameter TargetControlGoal of CircBufDes

object. This menu option is a command.

TargetControlGoal determines how execution is controlled. If it is 0

then the bu�er size is �xed and the amount of data available in the bu�er

is computed before each execution step. If TargetControlGoal is 1 then

18.1 Options for CircBufDes 127

each node is executed according to a �xed predetermined schedule and

the bu�er size is optimized to this schedule. Nodes with feedback or that

require excessively large bu�ers are defaulted to execute without �xed

sequences. Fixed sequence execution provides more e�cient execution

at the expense of larger bu�er requirements.

� MaxTargetSize: Parameter MaxTargetSizeof CircBufDesobject. This

menu option is a command.

MaxTargetSize speci�es the maximumsize allowed for any single bu�er.

It can force the use of a non �xed sequence scheduler or even result in

an error message if the network cannot run without deadlock with this

size bu�er.

� MinTargetSize: Parameter MinTargetSizeof CircBufDesobject. This

menu option is a command.

MinTargetSize speci�es the minimum size allowed for any single bu�er.

Setting this to a larger value can improve execution e�ciency at the cost

of more memory.

18.1.2 Menu of Variables for CircBufDes Object

The commands in this menu are:

� TargetSize: Changeable variable TargetSize of CircBufDes object.

This menu option is a command.

TargetSize is the desired size of the bu�er used in code prepared for

execution on the target processor. An analysis will determine if this size

is adequate and if it is larger than will be of bene�t. The size will be

optimized based on this target size as an approximate goal.

� TargetSizeGoal: Changeable variable TargetSizeGoal of CircBufDes

object. This menu option is a command.

TargetSizeGoal determines whether the bu�er will be made larger or

smaller then the selected size when the selected size is not optimal. If

TargetSizeGoal is 0 that space will be minimized. If TargetSizeGoal

is 1 then execution overhead will be minimized.

128 18. NETWORKS

� TargetControlGoal: Changeable variable TargetControlGoalof Circ-

BufDes object. This menu option is a command.

TargetControlGoal determines how execution is controlled. If it is 0

then the bu�er size is �xed and the amount of data available in the bu�er

is computed before each execution step. If TargetControlGoal is 1 then

each node is executed according to a �xed predetermined schedule and

the bu�er size is optimized to this schedule. Nodes with feedback or that

require excessively large bu�ers are defaulted to execute without �xed

sequences. Fixed sequence execution provides more e�cient execution

at the expense of larger bu�er requirements.

� MaxTargetSize: Changeable variable MaxTargetSize of CircBufDes

object. This menu option is a command.

MaxTargetSize speci�es the maximumsize allowed for any single bu�er.

It can force the use of a non �xed sequence scheduler or even result in

an error message if the network cannot run without deadlock with this

size bu�er.

� MinTargetSize: Changeable variable MinTargetSize of CircBufDes

object. This menu option is a command.

MinTargetSize speci�es the minimum size allowed for any single bu�er.

Setting this to a larger value can improve execution e�ciency at the cost

of more memory.

18.1.3 Select a member of CircBufDes to describe

The commands in this menu are:

� AssignToEdit: Describe member AssignToEdit of CircBufDes. This

menu option invokes the menu de�ned in Section 18.1.3.1 on page 128.

18.1.3.1 Describe member AssignToEdit of CircBufDes AssignTo-

Edit makes this the descriptor for the network currently being edited. If a

previous descriptor was assigned it will be overwritten.

The commands in this menu are:

18.2 Options for DataFlow 129

� desc AssignToEdit: Describe selected member of CircBufDes. This

menu option is a command.

18.2 Options for DataFlow

The commands in this menu are:

� help: Explain the use of DataFlow. This menu option is a command.

� param: Parameters of DataFlow. This menu option invokes the menu

de�ned in Section 18.2.1 on page 129.

� members: Members of DataFlow. This menu option invokes the menu

de�ned in Section 18.2.2 on page 129.

� instance: Describe or delete an instance of DataFlow. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create: Create instance of DataFlow. This menu option is a command.

18.2.1 Menu of Parameters for DataFlow Object

The commands in this menu are:

� TheNet: Parameter TheNet of DataFlow object. This menu option is a

command.

TheNet is the Network to be controlled.

18.2.2 Select a member of DataFlow to describe

The commands in this menu are:

� GraphDisplay: Describe member GraphDisplay of DataFlow. This

menu option invokes the menu de�ned in Section 18.2.2.1 on page 130.

130 18. NETWORKS

� Execute: Describe member Execute of DataFlow. This menu option

invokes the menu de�ned in Section 18.2.2.2 on page 130.

� AssignBuffers: Describe member AssignBuffers of DataFlow. This

menu option invokes the menu de�ned in Section 18.2.2.3 on page 131.

� ClearBuffers: Describe member ClearBuffers of DataFlow. This

menu option invokes the menu de�ned in Section 18.2.2.4 on page 132.

� ClearNetwork: Describe member ClearNetwork of DataFlow. This

menu option invokes the menu de�ned in Section 18.2.2.5 on page 132.

18.2.2.1 Describe member GraphDisplay of DataFlow Member func-

tion GraphDisplay displays the network topology and timing.

The commands in this menu are:

� desc GraphDisplay: Describe selected member of DataFlow. This

menu option is a command.

� param GraphDisplay: Describe the parameters of member Graph-

Display. This menu option invokes the menu de�ned in Section 18.2.2.1.1

on page 130.

18.2.2.1.1 Select parameter of DataFlow member GraphDisplay to

describe The commands in this menu are:

� Option: Select this parameter of DataFlow member GraphDisplay to

describe. This menu option is a command.

18.2.2.2 Describe member Execute of DataFlow Member function

Execute executes the network being controlled. It causes the signal gen-

erator (or �rst node in the network) to produce a speci�ed number of input

samples. Each node is executed for as many iterations as possible given the

available input data and output bu�er space. Execution halts when no node

generates any new samples after a complete pass throughout the network.

18.2 Options for DataFlow 131

The commands in this menu are:

� desc Execute: Describe selected member of DataFlow. This menu op-

tion is a command.

� param Execute: Describe the parameters of member Execute. This

menu option invokes the menu de�ned in Section 18.2.2.2.1 on page

131.

18.2.2.2.1 Select parameter of DataFlow member Execute to de-

scribe The commands in this menu are:

� InputSamples: Select this parameter of DataFlow member Execute to

describe. This menu option is a command.

18.2.2.3 Describemember AssignBuffers of DataFlow Member func-

tion AssignBuffers bu�ers to a completely de�ned data
ow network. The

network is �rst checked for completeness. Bu�ers will not be assigned if the

network fails this test. The single parameter of this function speci�es the

bu�er characteristics.

The commands in this menu are:

� desc AssignBuffers: Describe selected member of DataFlow. This

menu option is a command.

� param AssignBuffers: Describe the parameters of member Assign-

Buffers. This menu option invokes the menu de�ned in Section 18.2.2.3.1

on page 131.

18.2.2.3.1 Select parameter of DataFlowmember AssignBuffers to

describe The commands in this menu are:

� Descriptor: Select this parameter of DataFlow member Assign-

Buffers to describe. This menu option is a command.

132 18. NETWORKS

18.2.2.4 Describe member ClearBuffers of DataFlow You can not

change the topology of a network while bu�ers are assigned. Member func-

tion ClearBuffers removes all bu�ers so that the network can be edited or

di�erent bu�ers assigned.

The commands in this menu are:

� desc ClearBuffers: Describe selected member of DataFlow. This

menu option is a command.

18.2.2.5 Describe member ClearNetwork of DataFlow Member func-

tion ClearNetwork removes all links in the network being controlled. The

nodes freed in this way can then be used in a di�erent network.

The commands in this menu are:

� desc ClearNetwork: Describe selected member of DataFlow. This

menu option is a command.

18.3 Options for Network

The commands in this menu are:

� help: Explain the use of Network. This menu option is a command.

� members: Members of Network. This menu option invokes the menu

de�ned in Section 18.3.1 on page 133.

� instance: Describe or delete an instance of Network. See Section 13.1

on page 56 for an example of the menu tree from this command and[3]

for a complete desciption of all options for this object instance.

� create default: Create instance of Network with default parameters.

This menu option is a command.

� create: Create instance of Network. This menu option is a command.

18.3 Options for Network 133

18.3.1 Select a member of Network to describe

The commands in this menu are:

� GraphDisplay: Describe member GraphDisplay of Network. This

menu option invokes the menu de�ned in Section 18.3.1.1 on page 134.

� Execute: Describe member Execute of Network. This menu option

invokes the menu de�ned in Section 18.3.1.2 on page 135.

� Raise: Describe member Raise of Network. This menu option invokes

the menu de�ned in Section 18.3.1.3 on page 135.

� ReplaceNode: Describe member ReplaceNode of Network. This menu

option invokes the menu de�ned in Section 18.3.1.4 on page 136.

� MakeTarget: Describe member MakeTarget of Network. This menu

option invokes the menu de�ned in Section 18.3.1.5 on page 136.

� MakeValidate: Describe member MakeValidate of Network. This

menu option invokes the menu de�ned in Section 18.3.1.6 on page 137.

� TargetValidate: Describe member TargetValidate of Network. This

menu option invokes the menu de�ned in Section 18.3.1.7 on page 138.

� SetTimingExact: Describe member SetTimingExact of Network. This

menu option invokes the menu de�ned in Section 18.3.1.8 on page 139.

� ReplaceWithOutput: Describe member ReplaceWithOutput of Network.

This menu option invokes the menu de�ned in Section 18.3.1.9 on page

140.

� ReplaceWithCompare: Describe member ReplaceWithCompareof Network.

This menu option invokes the menu de�ned in Section 18.3.1.10 on page

140.

� operator+: Describe member operator+ of Network. This menu option

invokes the menu de�ned in Section 18.3.1.11 on page 141.

� operator>>: Describe member operator>> of Network. This menu

option invokes the menu de�ned in Section 18.3.1.12 on page 141.

134 18. NETWORKS

� GraphDisplayWindow: Describe memberGraphDisplayWindow of Network.

This menu option invokes the menu de�ned in Section 18.3.1.13 on page

142.

� DisplayNames: Describe member DisplayNames of Network. This

menu option invokes the menu de�ned in Section 18.3.1.14 on page 143.

� SetBufferDescriptor: Describe member SetBufferDescriptor of

Network. This menu option invokes the menu de�ned in Section 18.3.1.15

on page 143.

� AssociateNode: Describe member AssociateNode of Network. This

menu option invokes the menu de�ned in Section 18.3.1.16 on page 143.

� Link: Describe member Link of Network. This menu option invokes

the menu de�ned in Section 18.3.1.17 on page 144.

� SelfLink: Describe member SelfLink of Network. This menu option

invokes the menu de�ned in Section 18.3.1.18 on page 145.

� AssignBuffers: Describe member AssignBuffers of Network. This

menu option invokes the menu de�ned in Section 18.3.1.19 on page 145.

� GetBufferDescriptor: Describe member GetBufferDescriptor of

Network. This menu option invokes the menu de�ned in Section 18.3.1.20

on page 146.

� ClearBuffers: Describe member ClearBuffers of Network. This

menu option invokes the menu de�ned in Section 18.3.1.21 on page 146.

� GetNetController: Describe member GetNetController of Network.

This menu option invokes the menu de�ned in Section 18.3.1.22 on page

146.

� ClearNetwork: Describe member ClearNetwork of Network. This

menu option invokes the menu de�ned in Section 18.3.1.23 on page 147.

18.3.1.1 Describe member GraphDisplay of Network Member func-

tion GraphDisplay displays network topology.

The commands in this menu are:

18.3 Options for Network 135

� desc GraphDisplay: Describe selected member of Network. This menu

option is a command.

18.3.1.2 Describe member Execute of Network Member function

Execute executes this network. It causes the �rst node in the network to

produce a speci�ed number of input blocks. Each node is executed for as

many iterations as possible given the available input data and output bu�er

space. Execution halts when no node generates any new samples after a

complete pass throughout the network.

The commands in this menu are:

� desc Execute: Describe selected member of Network. This menu op-

tion is a command.

� param Execute: Describe the parameters of member Execute. This

menu option invokes the menu de�ned in Section 18.3.1.2.1 on page

135.

18.3.1.2.1 Select parameter of Network member Execute to de-

scribe The commands in this menu are:

� InputSamples: Select this parameter of Network member Execute to

describe. This menu option is a command.

18.3.1.3 Describe member Raise of Network Raise will cause a win-

dow displaying this network to be raised to the top level over any overlapping

windows.

The commands in this menu are:

� desc Raise: Describe selected member of Network. This menu option

is a command.

136 18. NETWORKS

18.3.1.4 Describe member ReplaceNode of Network ReplaceNode

will substitute node Replacement for node ToReplace in the network. The

nodes must have the same number of input and output channels and be com-

patible in all other respects. If an error occurs the original node will remain

in the network.

The commands in this menu are:

� desc ReplaceNode: Describe selected member of Network. This menu

option is a command.

� param ReplaceNode: Describe the parameters of member ReplaceNode.

This menu option invokes the menu de�ned in Section 18.3.1.4.1 on page

136.

18.3.1.4.1 Select parameter of Networkmember ReplaceNode to de-

scribe The commands in this menu are:

� ToReplace: Select this parameter of Network member ReplaceNode to

describe. This menu option is a command.

� Replacement: Select this parameter of Network member ReplaceNode

to describe. This menu option is a command.

18.3.1.5 Describe member MakeTarget of Network Member function

MakeTarget will create source and executable code for this network for a

supported target. See the description of parameter Target for a list of the

available targets. See parameter Directory for a description of the �les

created.

The commands in this menu are:

� desc MakeTarget: Describe selected member of Network. This menu

option is a command.

� param MakeTarget: Describe the parameters of member MakeTarget.

This menu option invokes the menu de�ned in Section 18.3.1.5.1 on page

137.

18.3 Options for Network 137

18.3.1.5.1 Select parameter of Network member MakeTarget to de-

scribe The commands in this menu are:

� Target: Select this parameter of Network member MakeTarget to de-

scribe. This menu option is a command.

� Create: Select this parameter of Network member MakeTarget to de-

scribe. This menu option is a command.

� Directory: Select this parameter of Network member MakeTarget to

describe. This menu option is a command.

18.3.1.6 Describe member MakeValidate of Network Member func-

tion MakeValidate �rst replaces each display output node in this network

(such as plotting or listing nodes) with an OutputNode. This network is

then saved to directory DirName. Next the same nodes are replaced with a

CompareDisk node. This new network is written to the same directory under

a di�erent name. The �rst network saved state will include a statement to

execute for ExecuteCount + ExtraCountCreator blocks of input. The sec-

ond network will execute for ExecuteCount blocks. These networks are used

to generate baseline regression test data and to run tests against this data.

The commands in this menu are:

� desc MakeValidate: Describe selected member of Network. This menu

option is a command.

� param MakeValidate: Describe the parameters of member MakeValidate.

This menu option invokes the menu de�ned in Section 18.3.1.6.1 on page

137.

18.3.1.6.1 Select parameter of Network member MakeValidate to

describe The commands in this menu are:

� DirName: Select this parameter of Network member MakeValidate to

describe. This menu option is a command.

138 18. NETWORKS

� ExecuteCount: Select this parameter of Networkmember MakeValidate

to describe. This menu option is a command.

� ExtraCountCreator: Select this parameter of Network member Make-

Validate to describe. This menu option is a command.

� MaxReport: Select this parameter of Network member MakeValidate

to describe. This menu option is a command.

� Tolerance: Select this parameter of Network member MakeValidate

to describe. This menu option is a command.

� errorFile: Select this parameter of Network member MakeValidate

to describe. This menu option is a command.

18.3.1.7 Describemember TargetValidate of Network Member func-

tion TargetValidate �rst replaces each display output node in this network

(such as plotting or listing nodes) with an OutputNode. This network is then

used to generate a target system in directory DirName /create'. Next the

same nodes are replaced with a CompareDisk node. The code for this net-

work is written to the directory DirName /test. Shell scripts will be written

to directory DirName to execute the networks for ExecuteCount blocks (test

network) and (ExecuteCount+ ExtraCountCreator) blocks (test data cre-

ation network). DirName will contain all test data and error �les and network

state descriptions.

The commands in this menu are:

� desc TargetValidate: Describe selected member of Network. This

menu option is a command.

� param TargetValidate: Describe the parameters of member Target-

Validate. This menu option invokes the menu de�ned in Section 18.3.1.7.1

on page 138.

18.3.1.7.1 Select parameter of Network member TargetValidate to

describe The commands in this menu are:

18.3 Options for Network 139

� Target: Select this parameter of Network member TargetValidate to

describe. This menu option is a command.

� Create: Select this parameter of Network member TargetValidate to

describe. This menu option is a command.

� DirName: Select this parameter of Network member TargetValidate

to describe. This menu option is a command.

� ExecuteCount: Select this parameter of Network member Target-

Validate to describe. This menu option is a command.

� ExtraCountCreator: Select this parameter of Networkmember Target-

Validate to describe. This menu option is a command.

� MaxReport: Select this parameter of Networkmember TargetValidate

to describe. This menu option is a command.

� Tolerance: Select this parameter of Networkmember TargetValidate

to describe. This menu option is a command.

� ErrorFile: Select this parameter of Networkmember TargetValidate

to describe. This menu option is a command.

18.3.1.8 Describe member SetTimingExact of Network If the timing

analysis cannot resolve a network it may still execute correctly. If Exact is

one no attempt will be made to execute the network. Instead an error will

be generated. This is usually set for for validation tests to make sure that

timing analysis errors are not overlooked.

The commands in this menu are:

� desc SetTimingExact: Describe selected member of Network. This

menu option is a command.

� param SetTimingExact: Describe the parameters of member Set-

TimingExact. This menu option invokes the menu de�ned in Sec-

tion 18.3.1.8.1 on page 140.

140 18. NETWORKS

18.3.1.8.1 Select parameter of Network member SetTimingExact to

describe The commands in this menu are:

� Exact: Select this parameter of Network member SetTimingExact to

describe. This menu option is a command.

18.3.1.9 Describe member ReplaceWithOutput of Network Member

function ReplaceWithOutput replaces all plot and listing nodes with a new

output node with a name derived from the node it is replacing. The �le

name is the same as the node name. This is used to create regression tests.

First ReplaceWithOutput creates a network to generate test data. Then

ReplaceWithCompare creates a network for running a regression test against

the data. All three networks should be saved in separate state �les.

The commands in this menu are:

� desc ReplaceWithOutput: Describe selected member of Network. This

menu option is a command.

18.3.1.10 Describe member ReplaceWithCompare of Network Mem-

ber function ReplaceWithCompare replaces each OutputNode in a network

with a CompareDisk node. If an OutputNode has more than one input chan-

nel the operation will fail. This is useful in converting a network used to

generate a regression test case to a network for running the regression test.

The new node name is created from the node replaced. The �le name is the

output �le written by the node being replaced. The other parameters are set

to be the same as the corresponding parameters of this function.

The commands in this menu are:

� desc ReplaceWithCompare: Describe selected member of Network.

This menu option is a command.

� param ReplaceWithCompare: Describe the parameters of member Replace-

WithCompare. This menu option invokes the menu de�ned in Sec-

tion 18.3.1.10.1 on page 141.

18.3 Options for Network 141

18.3.1.10.1 Select parameter of Networkmember ReplaceWithCompare

to describe The commands in this menu are:

� MaxReport: Select this parameter of Network member ReplaceWith-

Compare to describe. This menu option is a command.

� Tolerance: Select this parameter of Network member ReplaceWith-

Compare to describe. This menu option is a command.

� ErrorFile: Select this parameter of Network member ReplaceWith-

Compare to describe. This menu option is a command.

18.3.1.11 Describe member operator+ of Network The + operator

appends its right operand (a signal generation node) TheNode to its left

operand (a data
ow Network).

The commands in this menu are:

� desc operator+: Describe selected member of Network. This menu

option is a command.

� param operator+: Describe the parameters of member operator+.

This menu option invokes the menu de�ned in Section 18.3.1.11.1 on

page 141.

18.3.1.11.1 Select parameter of Network member operator+ to de-

scribe The commands in this menu are:

� TheNode: Select this parameter of Network member operator+ to de-

scribe. This menu option is a command.

18.3.1.12 Describe member operator>> of Network The >> op-

erator appends its right operand (a processing or signal generation node)

TheNode to its left operand (a DataFlow Network).

The commands in this menu are:

142 18. NETWORKS

� desc operator>>: Describe selected member of Network. This menu

option is a command.

� param operator>>: Describe the parameters of member operator>>.

This menu option invokes the menu de�ned in Section 18.3.1.12.1 on

page 142.

18.3.1.12.1 Select parameter of Network member operator>> to

describe The commands in this menu are:

� TheNode: Select this parameter of Network member operator>> to

describe. This menu option is a command.

18.3.1.13 Describe member GraphDisplayWindow of Network Mem-

ber function GraphDisplay displays the network topology. In a window of

up to Width x Height pixels. The window may start out smaller and grow

larger as nodes are added to it but it will not exceed these dimensions. (If

needed a vertical scrollbar will be added to the window.)

The commands in this menu are:

� desc GraphDisplayWindow: Describe selected member of Network.

This menu option is a command.

� param GraphDisplayWindow: Describe the parameters of member Graph-

DisplayWindow. This menu option invokes the menu de�ned in Sec-

tion 18.3.1.13.1 on page 142.

18.3.1.13.1 Select parameter of Networkmember GraphDisplayWindow

to describe The commands in this menu are:

� Width: Select this parameter of Networkmember GraphDisplayWindow

to describe. This menu option is a command.

� Height: Select this parameter of Network member GraphDisplay-

Window to describe. This menu option is a command.

18.3 Options for Network 143

18.3.1.14 Describe member DisplayNames of Network Member func-

tion DisplayNames displays the names of the controller and bu�er descriptor

for this node in the help window.

The commands in this menu are:

� desc DisplayNames: Describe selected member of Network. This menu

option is a command.

18.3.1.15 Describe member SetBufferDescriptor of Network Set-

BufferDescriptor assigns descriptor Descriptor to this network. The net-

work need not be complete. No bu�ers are allocated.

The commands in this menu are:

� desc SetBufferDescriptor: Describe selected member of Network.

This menu option is a command.

� param SetBufferDescriptor: Describe the parameters of member

SetBufferDescriptor. This menu option invokes the menu de�ned

in Section 18.3.1.15.1 on page 143.

18.3.1.15.1 Select parameter of Networkmember SetBufferDescriptor

to describe The commands in this menu are:

� Descriptor: Select this parameter of Network member SetBuffer-

Descriptor to describe. This menu option is a command.

18.3.1.16 Describe member AssociateNode of Network Associate-

Node associates node TheNode with this network. It does not link the node

into the network. Its only e�ect is to have the node displayed in the window

in which the network appears.

The commands in this menu are:

144 18. NETWORKS

� desc AssociateNode: Describe selected member of Network. This

menu option is a command.

� param AssociateNode: Describe the parameters of member Associate-

Node. This menu option invokes the menu de�ned in Section 18.3.1.16.1

on page 144.

18.3.1.16.1 Select parameter of Network member AssociateNode to

describe The commands in this menu are:

� TheNode: Select this parameter of Network member AssociateNode to

describe. This menu option is a command.

18.3.1.17 Describe member Link of Network In building a data
ow

topology network the connection operator >> always links the output of the

last node accessed (from the network to the left of >>) to the node on the

right side of >>. For simple linear networks this is adequate. For nodes with

more than one output one must specify when to use channels other than 0

using Link. Link causes the next link from the network to begin at the

speci�ed TheNode and OutChannel.

The commands in this menu are:

� desc Link: Describe selected member of Network. This menu option is

a command.

� param Link: Describe the parameters of member Link. This menu

option invokes the menu de�ned in Section 18.3.1.17.1 on page 144.

18.3.1.17.1 Select parameter of Network member Link to describe

The commands in this menu are:

� TheNode: Select this parameter of Network member Link to describe.

This menu option is a command.

� OutChannel: Select this parameter of Network member Link to de-

scribe. This menu option is a command.

18.3 Options for Network 145

18.3.1.18 Describe member SelfLink of Network SelfLink estab-

lishes a feedback link in a data
ow network. Input parameters include the

source node and its output channel and the destination node and its input

channel.

The commands in this menu are:

� desc SelfLink: Describe selected member of Network. This menu op-

tion is a command.

� param SelfLink: Describe the parameters of member SelfLink. This

menu option invokes the menu de�ned in Section 18.3.1.18.1 on page

145.

18.3.1.18.1 Select parameter of Network member SelfLink to de-

scribe The commands in this menu are:

� NodeOut: Select this parameter of Network member SelfLink to de-

scribe. This menu option is a command.

� NodeIn: Select this parameter of Network member SelfLink to de-

scribe. This menu option is a command.

� ChannelOut: Select this parameter of Network member SelfLink to

describe. This menu option is a command.

� ChannelIn: Select this parameter of Network member SelfLink to de-

scribe. This menu option is a command.

18.3.1.19 Describemember AssignBuffers of Network Member func-

tion AssignBuffers bu�ers to a complete network. Bu�ers will not be as-

signed if the network is not complete. Descriptor determines the bu�er

characteristics.

The commands in this menu are:

� desc AssignBuffers: Describe selected member of Network. This

menu option is a command.

146 18. NETWORKS

� param AssignBuffers: Describe the parameters of member Assign-

Buffers. This menu option invokes the menu de�ned in Section 18.3.1.19.1

on page 146.

18.3.1.19.1 Select parameter of Network member AssignBuffers to

describe The commands in this menu are:

� Descriptor: Select this parameter of Networkmember AssignBuffers

to describe. This menu option is a command.

18.3.1.20 Describemember GetBufferDescriptor of Network Mem-

ber function GetBufferDescriptor returns the bu�er descriptor associated

with this network.

The commands in this menu are:

� desc GetBufferDescriptor: Describe selected member of Network.

This menu option is a command.

18.3.1.21 Describe member ClearBuffers of Network You can not

change the topology of a network while bu�ers are assigned. Member func-

tion ClearBuffers removes all bu�ers so that the network can be edited or

di�erent bu�ers assigned.

The commands in this menu are:

� desc ClearBuffers: Describe selected member of Network. This menu

option is a command.

18.3.1.22 Describe member GetNetController of Network Member

function GetNetController returns the network controller associated with

this network.

The commands in this menu are:

147

� desc GetNetController: Describe selected member of Network. This

menu option is a command.

18.3.1.23 Describe member ClearNetwork of Network Member func-

tion ClearNetwork removes all links in the network being controlled. The

nodes freed in this way can then be used in a di�erent network.

The commands in this menu are:

� desc ClearNetwork: Describe selected member of Network. This menu

option is a command.

19 Display simple variables

The variables menu displays the simple variables (integer and double pre-

cision
oating point).

The commands in this menu are:

� list int: List integer variables. This menu option is a command.

list int displays the names and values of integer variables.

� list float: List
oating point variables. This menu option is a com-

mand.

list float displays the names and values of
oating point double pre-

cision variables.

� list mach: List MachWord variables. This menu option is a command.

list mach displays the names and values of MachWord variables.

MachWord is the type for single precision objects in the machine being

simulated.

� list accmach: List AccMachWord variables. This menu option is a

command.

148 20. READ FILES

list accmach displays the names and values of AccMachWord vari-

ables. AccMachWord is the type for double precision (typically in the

accumulator) objects in the machine being simulated.

20 Read �les

From the setup menu you may read and execute a ObjectProDSP state �le

created in a previous session or created manually. You may also read a plot

�le created in a previous session and control debugging options.

The commands in this menu are:

� read state: Read a program state �le. This menu option is a com-

mand.

read state reads a text �le of ObjectProDSP language statements cre-

ated either automatically or manually. The objects de�ned in the �le

are added to existing objects. Existing objects will not be overwritten.

If an error occurs processing will stop and the error and line number

where it occurs will be displayed.

� read over state: Read a program state �le. This menu option is a

command.

read over state reads a text �le of ObjectProDSP language state-

ments created either automatically or manually. The objects de�ned in

the �le will be added to any objects already de�ned. If the �le de�nes

an existing object, it will be deleted and replaced by the object in the

�le. If an error occurs processing will stop and the error and line number

where it occurs will be displayed.

� read plot: Read and display a saved plot �le. This menu option is a

command.

read plot reads and displays a plot �le that was previously saved.

� debug: control debugging options. This menu option invokes the menu

de�ned in Section 20.1 on page 149.

20.1 Control debugging options 149

20.1 Control debugging options

The debugmenu allows you to control network tracing, reporting of over
ows

and check dynamic memory allocation integrity.

The commands in this menu are:

� trace: Turn on node tracing. This menu option is a command.

trace causes the name of each node to be output to the log �le

dsp.messages just before it is executed. If you are debugging mul-

tiple nodes and the program crashes this will allow you to determine

the node in which the problem occurs.

� trace off: Turn o� node tracing. This menu option is a command.

trace off disables the trace of node execution written to the log �le

dsp.messages.

� heap ck: Turn on heap integrity checking. This menu option is a com-

mand.

heap ck causes a check to be made on the heap integrity before and after

each node execution. This can be helpful in tracking errors related to

dynamic memory allocation that may not cause a problem immediately.

This check is not certain to �nd all problems with the heap but in

practice it seems to detect most of them and produce some system error.

Turning this on also turns on trace. This option can signi�cantly slow

program execution.

� heap ck off: Turn o� heap checking. This menu option is a command.

heap ck off turns o� the heap integrity check. If you are turning this

o� you may also want to turn o� tracing. Both these options are turned

on by heap ck but this command only turns of heap checking.

� over lim: Control over
ow reporting. This menu option is a command.

The �rst time over
ows occur in a node they are reported in the help

information window. Later over
ow are reported every time the total

number of new over
ows exceeds a user speci�ed limit. over lim sets

this limit. If trace is enabled then the count of over
ows in each node

are written to the log �le dsp.messages.

150 21. PROGRAM STATE

21 Program State

In the state menu you can save the DSP++ program state to a disk �le,

set ObjectProDSP to automatically save the program state periodically and

control and display the name of the �le in which to save the state. You can

also record and play back ObjectProDSP sessions.

The commands in this menu are:

� save: Save state. This menu option is a command.

Save the state to the latest version of the input �le name (or the name

last set by the set name command). The default name is dsppp. If

the �le name has a . in it then multiple backup versions will not be

generated and the state will be saved to stat.lxxxxxwhere l is a letter

and x a digit. Use save as if you want to be prompted for a �le name

with no support for multiple versions.

� save as: Save state with prompt for �le. This menu option is a com-

mand.

Save the state to a �le that you will be prompted for. If the �le already

exist you will be asked of you want to overwrite it.

� auto save: Save state periodically. This menu option is a command.

� set name: Display or change state �le name and number of backups.

This menu option is a command.

set name displays the current base name for saving DSP++ objects and

the number of backups saved. You can change either of these. If the

�le name name does not contain a ., the state will be saved in multiple

versions called NAME.0, NAME.1, etc. The LOWEST numbered version

is the most recent. Thus NAME.0 will always be the current or last

saved version. The default value for NAME is dsppp. If you specify a

�le name with a . the state will be saved to a unique name of the

form stat.XXXXX where XXXXX is a string created by the system utility

mktemp. The original �le you specify as input will never be overwritten

if it contains a ..

21.1 Record or playback a session 151

� session: Record and playback sessions. This menu option invokes the

menu de�ned in Section 21.1 on page 151.

� abort dsp: Abort DSP execution. This menu option is a command.

abort dsp aborts execution of the DSP process by generating a user

error. If the DSP process is not executing, this command has no e�ect.

� plot err: display plot data error counts. This menu option is a com-

mand.

plot err displays the count of non numeric values (NAN and in�nity) in

all plot data streams. This should not happen unless you are debugging

a node that generates such values. There is only limited protection

against this. Such values can cause the system to crash with a
oating

point exception.

� freeze: Freeze DSP execution. This menu option is a command.

freeze stops DSP process execution to temporarily reduce system load.

� thaw: Thaw DSP execution. This menu option is a command.

thaw resumes DSP process execution after a freeze .

� exit: Exit ObjectProDSP with optional state save. This menu option

is a command.

exit exits to the operating system. If you have not saved the state of

since you last changed something, you will be asked if you wish to save

the state. If the DSP process is hung you may need to do this twice to

get information about its state.

21.1 Record or playback a session

The sessionmenu allows you to record and play back entire ObjectProDSP

sessions.

The commands in this menu are:

� rec: Begin recording all session inputs. This menu option is a command.

152 22. BASE CLASS MEMBER FUNCTIONS

If you have previously been recoding and have not closed the �le record-

ing will continue in the same �le. Otherwise you will be prompted for a

�le name.

� rec off: Stop recording. This menu option is a command.

You can resume recording to the same �le with this option.

� rec close: Stop recording and close the �le. This menu option is a

command.

You can not resume recording to the same �le after this selection.

� play: Play back a recorded session. This menu option is a command.

To abort playback hold the control key (Ctrl) down and hit the Delete

key with the main ObjectProDSP window selected.

� pause: Specify delay in seconds between commands. This menu option

is a command.

pause prompts you for a delay in seconds between session commands.

This allows you to view recorded ObjectProDSP sessions as a tutorial

movie.

22 Base class member functions

This section contains member functions of ObjectProDSP base classes that

are not used directly. These member functions are shared by several derived

classes and are referenced from those classes.

22.1 Describe member DisplayInputTiming of Display-

NodeStr

Member function DisplayInputTiming displays the timing of the selects

input channel for this node.

The commands in this menu are:

22.2 Describe member DisplayInputTiming of ProcessNodeStr 153

� desc DisplayInputTiming: Describe selected member of Display-

NodeStr. This menu option is a command.

� param DisplayInputTiming: Describe the parameters of member Display-

InputTiming. This menu option invokes the menu de�ned in Sec-

tion 22.1.1 on page 153.

22.1.1 Select parameter of DisplayNodeStr member DisplayInput-

Timing to describe

The commands in this menu are:

� Channel: Select this parameter of DisplayNodeStr member Display-

InputTiming to describe. This menu option is a command.

22.2 Describe member DisplayInputTiming of Process-

NodeStr

Member function DisplayInputTiming displays the timing of the selected

input channel for this node.

The commands in this menu are:

� desc DisplayInputTiming: Describe selected member of Process-

NodeStr. This menu option is a command.

� param DisplayInputTiming: Describe the parameters of member Display-

InputTiming. This menu option invokes the menu de�ned in Sec-

tion 22.2.1 on page 153.

22.2.1 Select parameter of ProcessNodeStr member DisplayInput-

Timing to describe

The commands in this menu are:

154 22. BASE CLASS MEMBER FUNCTIONS

� Channel: Select this parameter of ProcessNodeStr member Display-

InputTiming to describe. This menu option is a command.

22.3 Select parameter of DisplayNodeStrmember Link-

In to describe

The commands in this menu are:

� Channel: Select this parameter of DisplayNodeStr member LinkIn to

describe. This menu option is a command.

22.4 Describe member DisplayOutputTiming of Process-

NodeStr

Member function DisplayOutputTiming displays the timing of the selected

output channel for this node.

The commands in this menu are:

� desc DisplayOutputTiming: Describe selected member of Process-

NodeStr. This menu option is a command.

� param DisplayOutputTiming: Describe the parameters of member

DisplayOutputTiming. This menu option invokes the menu de�ned

in Section 22.4.1 on page 154.

22.4.1 Select parameter of ProcessNodeStrmember DisplayOutput-

Timing to describe

The commands in this menu are:

� Channel: Select this parameter of ProcessNodeStr member Display-

OutputTiming to describe. This menu option is a command.

22.5 Describe member DisplayOutputTiming of SignalStr 155

22.5 Describe member DisplayOutputTiming of Signal-

Str

Member function DisplayOutputTiming displays the timing of the selected

output channel for this node.

The commands in this menu are:

� desc DisplayOutputTiming: Describe selected member of SignalStr.

This menu option is a command.

� param DisplayOutputTiming: Describe the parameters of member

DisplayOutputTiming. This menu option invokes the menu de�ned

in Section 22.5.1 on page 155.

22.5.1 Select parameter of SignalStrmember DisplayOutputTiming

to describe

The commands in this menu are:

� Channel: Select this parameter of SignalStrmember DisplayOutput-

Timing to describe. This menu option is a command.

22.6 Describe member Edit of DisplayNodeStr

If this node is not linked in an existing network it will be added to the display

of the network currently being edited. If there is no such network one will

be created.

The commands in this menu are:

� desc Edit: Describe selected member of DisplayNodeStr. This menu

option is a command.

156 22. BASE CLASS MEMBER FUNCTIONS

22.7 Describe member Edit of ProcessNodeStr

If this node is not linked in an existing network it will be added to the display

of the network currently being edited. If there is no such network one will

be created.

The commands in this menu are:

� desc Edit: Describe selected member of ProcessNodeStr. This menu

option is a command.

22.8 Describe member Edit of SignalStr

If this node is not linked in an existing network it will be added to the display

of the network currently being edited. If there is no such network one will

be created.

The commands in this menu are:

� desc Edit: Describe selected member of SignalStr. This menu option

is a command.

22.9 Describe member LinkIn of DisplayNodeStr

The LinkIn member function selects the next input channel to link to. It's

single parameter (Channel) speci�es the channel index. Ordinarily the �rst

unused channel is linked to. This function overrides that default.

The commands in this menu are:

� desc LinkIn: Describe selected member of DisplayNodeStr. This

menu option is a command.

� param LinkIn: Describe the parameters of member LinkIn. This menu

option invokes the menu de�ned in Section 22.3 on page 154.

22.10 Describe member LinkIn of ProcessNodeStr 157

22.10 Describe member LinkIn of ProcessNodeStr

The LinkIn member function selects the next input channel to link to. It's

single parameter (Channel) speci�es the channel index. Ordinarily the �rst

unused channel is linked to. This function overrides that default.

The commands in this menu are:

� desc LinkIn: Describe selected member of ProcessNodeStr. This

menu option is a command.

� param LinkIn: Describe the parameters of member LinkIn. This menu

option invokes the menu de�ned in Section 22.10.1 on page 157.

22.10.1 Select parameter of ProcessNodeStrmember LinkIn to de-

scribe

The commands in this menu are:

� Channel: Select this parameter of ProcessNodeStr member LinkIn to

describe. This menu option is a command.

22.11 Describe member NextFreeInput of DisplayNode-

Str

This function displays the next available input link for this node.

The commands in this menu are:

� desc NextFreeInput: Describe selected member of DisplayNodeStr.

This menu option is a command.

158 22. BASE CLASS MEMBER FUNCTIONS

22.12 Describe member NextFreeInput of ProcessNode-

Str

This function displays the next available input link for this node.

The commands in this menu are:

� desc NextFreeInput: Describe selected member of ProcessNodeStr.

This menu option is a command.

22.13 Describe member NextFreeOutput of ProcessNode-

Str

This function displays the next available output link for this node.

The commands in this menu are:

� desc NextFreeOutput: Describe selected member of ProcessNodeStr.

This menu option is a command.

22.14 Describe member NextFreeOutput of SignalStr

This function displays the next available output link for this node.

The commands in this menu are:

� desc NextFreeOutput: Describe selected member of SignalStr. This

menu option is a command.

22.15 Select parameter of ProcessNodeStrmember Set-

SampleRate to describe

The commands in this menu are:

22.16 Describe member Raise of DisplayNodeStr 159

� Rate: Select this parameter of ProcessNodeStr member SetSample-

Rate to describe. This menu option is a command.

� Channel: Select this parameter of ProcessNodeStr member Set-

SampleRate to describe. This menu option is a command.

22.16 Describe member Raise of DisplayNodeStr

Raisewill cause a window displaying this network to be raised to the top level

over any overlapping windows. Examples of windows that will be a�ected

are a network display containing this node or a plot window for this node.

The commands in this menu are:

� desc Raise: Describe selected member of DisplayNodeStr. This menu

option is a command.

22.17 Describe member Raise of ProcessNodeStr

Raise will cause a displayed window referencing this node to raised to the

top level over any overlapping windows. Examples of windows that will be

a�ected are a network display containing this node or a plot window for this

node.

The commands in this menu are:

� desc Raise: Describe selected member of ProcessNodeStr. This menu

option is a command.

22.18 Describe member Raise of SignalStr

Raisewill cause a window displaying this network to be raised to the top level

over any overlapping windows. Examples of windows that will be a�ected

are a network display containing this node or a plot window for this node.

160 22. BASE CLASS MEMBER FUNCTIONS

The commands in this menu are:

� desc Raise: Describe selected member of SignalStr. This menu op-

tion is a command.

22.19 Select a member of DisplayNodeStr to describe

The following member functions can be selected to be described in the clases

derived from them. See Section 23 on page 167 for a description of the

ObjectProDSP class structure. The commands in this menu are:

� Raise: Describe member Raise of DisplayNodeStr. This menu option

invokes the menu de�ned in Section 22.16 on page 159.

� DisplayInputTiming: Describe memberDisplayInputTiming of Display-

NodeStr. This menu option invokes the menu de�ned in Section 22.1

on page 152.

� Edit: Describe member Edit of DisplayNodeStr. This menu option

invokes the menu de�ned in Section 22.6 on page 155.

� Unlink: Describe member Unlink of DisplayNodeStr. This menu op-

tion invokes the menu de�ned in Section 22.19.1 on page 160.

� LinkIn: Describe member LinkIn of DisplayNodeStr. This menu op-

tion invokes the menu de�ned in Section 22.9 on page 156.

� NextFreeInput: Describe member NextFreeInput of DisplayNodeStr.

This menu option invokes the menu de�ned in Section 22.11 on page 157.

22.19.1 Describe member Unlink of DisplayNodeStr

Member function Unlink disconnects this node from the DSP network it is

linked in.

The commands in this menu are:

22.20 Select a member of this DisplayNodeStr to execute 161

� desc Unlink: Describe selected member of DisplayNodeStr. This

menu option is a command.

22.20 Select a member of this DisplayNodeStr to exe-

cute

The following member functions can be selected for execution in the clases

derived from them. See Section 23 on page 167 for a description of the

ObjectProDSP class structure. The commands in this menu are:

� Raise: Execute selected member of DisplayNodeStr. This menu option

is a command.

� DisplayInputTiming: Execute selected member of DisplayNodeStr.

This menu option is a command.

� Edit: Execute selected member of DisplayNodeStr. This menu option

is a command.

� Unlink: Execute selected member of DisplayNodeStr. This menu op-

tion is a command.

� LinkIn: Execute selected member of DisplayNodeStr. This menu op-

tion is a command.

� NextFreeInput: Execute selected member of DisplayNodeStr. This

menu option is a command.

22.21 Select a member of ProcessNodeStr to describe

The following member functions can be selected to be described in the clases

derived from them. See Section 23 on page 167 for a description of the

ObjectProDSP class structure. The commands in this menu are:

� Raise: Describe member Raise of ProcessNodeStr. This menu option

invokes the menu de�ned in Section 22.17 on page 159.

162 22. BASE CLASS MEMBER FUNCTIONS

� SetSampleRate: Describe member SetSampleRate of ProcessNodeStr.

This menu option invokes the menu de�ned in Section 22.21.1 on page

162.

� DisplayInputTiming: Describe memberDisplayInputTiming of Process-

NodeStr. This menu option invokes the menu de�ned in Section 22.2

on page 153.

� DisplayOutputTiming: Describe member DisplayOutputTiming of

ProcessNodeStr. This menu option invokes the menu de�ned in Sec-

tion 22.4 on page 154.

� Edit: Describe member Edit of ProcessNodeStr. This menu option

invokes the menu de�ned in Section 22.7 on page 156.

� Unlink: Describe member Unlink of ProcessNodeStr. This menu op-

tion invokes the menu de�ned in Section 22.21.2 on page 163.

� LinkIn: Describe member LinkIn of ProcessNodeStr. This menu op-

tion invokes the menu de�ned in Section 22.10 on page 157.

� NextFreeInput: Describe member NextFreeInput of ProcessNodeStr.

This menu option invokes the menu de�ned in Section 22.12 on page 158.

� NextFreeOutput: Describe member NextFreeOutput of ProcessNode-

Str. This menu option invokes the menu de�ned in Section 22.13 on

page 158.

22.21.1 Describe member SetSampleRate of ProcessNodeStr

The SetSampleRate member function sets the sample rate for the speci�ed

output channel of this node. In turn the rates for all input and output chan-

nels connected to this node are adjusted with one exception. The adjustment

will � b + c not be made through a node output channel that speci�es a

timing relationship of TimingTypeRandom.

The commands in this menu are:

� desc SetSampleRate: Describe selected member of ProcessNodeStr.

This menu option is a command.

22.22 Select a member of this ProcessNodeStr to execute 163

� param SetSampleRate: Describe the parameters of member SetSample-

Rate. This menu option invokes the menu de�ned in Section 22.15 on

page 158.

22.21.2 Describe member Unlink of ProcessNodeStr

Member function Unlink disconnects this node from the DSP network it is

linked in. All nodes that are connected as outputs from this node will be

unlinked. This process continues recursively up to the terminal output nodes

of all a�ected threads. Unlinking the �rst node in a single thread network

will unlink every node in the network. If a node has two or more inputs and

only one of these is unlinked the node will remain connected to the network

on the una�ected input channel or channels.

The commands in this menu are:

� desc Unlink: Describe selected member of ProcessNodeStr. This

menu option is a command.

22.22 Select a member of this ProcessNodeStr to exe-

cute

The following member functions can be selected for execution in the clases

derived from them. See Section 23 on page 167 for a description of the

ObjectProDSP class structure. The commands in this menu are:

� Raise: Execute selected member of ProcessNodeStr. This menu option

is a command.

� SetSampleRate: Execute selected member of ProcessNodeStr. This

menu option is a command.

� DisplayInputTiming: Execute selected member of ProcessNodeStr.

This menu option is a command.

164 22. BASE CLASS MEMBER FUNCTIONS

� DisplayOutputTiming: Execute selected member of ProcessNodeStr.

This menu option is a command.

� Edit: Execute selected member of ProcessNodeStr. This menu option

is a command.

� Unlink: Execute selected member of ProcessNodeStr. This menu op-

tion is a command.

� LinkIn: Execute selected member of ProcessNodeStr. This menu op-

tion is a command.

� NextFreeInput: Execute selected member of ProcessNodeStr. This

menu option is a command.

� NextFreeOutput: Execute selected member of ProcessNodeStr. This

menu option is a command.

22.23 Select a member of SignalStr to describe

The following member functions can be selected to be described in the clases

derived from them. See Section 23 on page 167 for a description of the

ObjectProDSP class structure. The commands in this menu are:

� Raise: Describe member Raise of SignalStr. This menu option in-

vokes the menu de�ned in Section 22.18 on page 159.

� SetSampleRate: Describe member SetSampleRate of SignalStr. This

menu option invokes the menu de�ned in Section 22.23.1 on page 165.

� DisplayOutputTiming: Describe member DisplayOutputTiming of

SignalStr. This menu option invokes the menu de�ned in Section 22.5

on page 155.

� Edit: Describe member Edit of SignalStr. This menu option invokes

the menu de�ned in Section 22.8 on page 156.

� Unlink: Describe member Unlink of SignalStr. This menu option

invokes the menu de�ned in Section 22.23.2 on page 165.

22.23 Select a member of SignalStr to describe 165

� NextFreeOutput: Describe member NextFreeOutput of SignalStr.

This menu option invokes the menu de�ned in Section 22.14 on page

158.

22.23.1 Describe member SetSampleRate of SignalStr

The SetSampleRate member function sets the sample rate for the speci�ed

output channel of this node. In turn the rates for all input and output

channels connected to this node are adjusted with one exception. The ad-

justment will not be made through a node output channel that speci�es a

timing relationship of TimingTypeRandom.

The commands in this menu are:

� desc SetSampleRate: Describe selected member of SignalStr. This

menu option is a command.

� param SetSampleRate: Describe the parameters of member SetSample-

Rate. This menu option invokes the menu de�ned in Section 22.23.1.1

on page 165.

22.23.1.1 Select parameter of SignalStrmember SetSampleRate to

describe The commands in this menu are:

� Rate: Select this parameter of SignalStr member SetSampleRate to

describe. This menu option is a command.

� Channel: Select this parameter of SignalStr member SetSampleRate

to describe. This menu option is a command.

22.23.2 Describe member Unlink of SignalStr

Member function Unlink disconnects this node from the DSP network it is

linked in. All nodes that are connected as outputs from this node will be

unlinked. This process continues recursively up to the terminal output nodes

166 22. BASE CLASS MEMBER FUNCTIONS

of all a�ected threads. Unlinking the �rst node in a single thread network

will unlink every node in the network. If a node has two or more inputs and

only one of these is unlinked the node will remain connected to the network

on the una�ected input channel or channels.

The commands in this menu are:

� desc Unlink: Describe selected member of SignalStr. This menu op-

tion is a command.

22.24 Select a member of this SignalStr to execute

The following member functions can be selected for execution in the clases

derived from them. See Section 23 on page 167 for a description of the

ObjectProDSP class structure. The commands in this menu are:

� Raise: Execute selected member of SignalStr. This menu option is a

command.

� SetSampleRate: Execute selected member of SignalStr. This menu

option is a command.

� DisplayOutputTiming: Execute selected member of SignalStr. This

menu option is a command.

� Edit: Execute selected member of SignalStr. This menu option is a

command.

� Unlink: Execute selected member of SignalStr. This menu option is

a command.

� NextFreeOutput: Execute selected member of SignalStr. This menu

option is a command.

167

23 Class hierarchy

This section describes the ObjectProDSP class hierarchy for user objects.

C++ allow a set of member functions to be available in all classes derived

form the base class in which the member functions are de�ned. for CircBuf-

Des not found.

23.1 ProcessNodeStr class hierarchy

Following is a list of the classes derived from ProcessNodeStr. These classes

share the member functions listed in Section 22.21 on page 161 and Sec-

tion 22.22 on page 163. The derived class at each level are listed. Each of

these that is a base class has its derived classes listed in a later section.

1. Add, Block, CxFFT, FindStartTail, Gain, Integrate, Interpolate,

MaskWord, PackWord, Power, ProcessNode, SampleDelay, ToInteger,

ToMach, Truncate, UnpackWord

2. CxFir, Demod, Demux, GainPad, Mux, RealFir, RepackStream

23.2 SignalStr class hierarchy

Following is a list of the classes derived from SignalStr. These classes share

the member functions listed in Section 22.23 on page 164 and Section 22.24

on page 166. The derived class at each level are listed. Each of these that is

a base class has its derived classes listed in a later section.

1. InputNode, InputWord, Signal

2. ConstantData, Cos, CxCos, CxImp, ImportData, Normal, Ramp, Read-

Float, ReadInt, UniformNoise, VoiceNode

168 23. CLASS HIERARCHY

23.3 DisplayNodeStr class hierarchy

Following is a list of the classes derived from DisplayNodeStr. These classes

share the member functions listed in Section 22.19 on page 160 and Sec-

tion 22.20 on page 161. The derived class at each level are listed. Each of

these that is a base class has its derived classes listed in a later section.

1. AsciiFile, CompareDisk, DisplayNode, HexList, Listing, Output-

Node, OutputWord, PlotNode, VoiceStripOut

2. GenericPlotStr

3. EyePlot, GenericBlockPlotStr, GenericPlot

4. GenericBlockPlot, Plot

APPENDIXES

A{1

A Environmental variables

ObjectProDSP uses environmental variables to know what directories to

search for various �les.

The most important of these is $OPD ROOT. This is the root directory under

which ObjectProDSP is installed.

Following is a list of all environmental variables created by executing Ob-

jectProDSP with the -e option. Using this option is the best way to get

accurate information about your installation. The information below may

not be accurate for your installation.

OPD_ROOT is now set to `/usrb/dist/ftp/opd-0.1'.

The ObjectProDSP default value for `OPD_ROOT' is `/usr/local/lib/opd_root'.

This variable is the ObjectProDSP root directory.

The ObjectProDSP default value for `OPD_TEMP' is `/tmp'.

This variable is the system directory for temporary files.

The ObjectProDSP default value for `OPD_SHELL' is `/bin/sh'.

This variable is the executable for the ANSI standard shell.

The ObjectProDSP default value for `OPD_X_BIN' is `/usr/bin/X11'.

This variable is the directory for X-windows executables.

HOME is now set to `/home/paul'.

HOME is not set to a default value by ObjectProDSP.

This variable is the user home directory.

A{2 A. ENVIRONMENTAL VARIABLES

B{1

B Commands index

This section contains an index of ObjectProDSP commands with a cross

reference to the menu they occur in.

Add: Add sums two or more input channels. Section 13.1 on page 56.

ascii: Nodes to read �les. Section 17.1 on page 105.

AsciiFile: AsciiFile writes an ascii �le of data sent to it. Section 17.1.1 on

page 106.

AssignBuffers: Describe member AssignBuffersof DataFlow. Section 18.2.2.3

on page 131.

AssignBuffers: Describe member AssignBuffersof Network. Section 18.3.1.19

on page 145.

AssignToEdit: Describe memberAssignToEdit of CircBufDes. Section 18.1.3.1

on page 128.

AssociateNode: Describe member AssociateNodeof Network. Section 18.3.1.16

on page 143.

binary: Nodes to write �les. Section 17.2 on page 111.

Block: Converts an input stream to a new blocking and sample size. Section 13.2

on page 60.

CircBufDes: Circular bu�er descriptor. Section 18.1 on page 125.

ClearBuffers: Describe member ClearBuffers of DataFlow. Section 18.2.2.4

on page 132.

ClearBuffers: Describe member ClearBuffers of Network. Section 18.3.1.21

on page 146.

ClearNetwork: Describe member ClearNetwork of DataFlow. Section 18.2.2.5

on page 132.

B{2 B. COMMANDS INDEX

ClearNetwork: Describe member ClearNetwork of Network. Section 18.3.1.23

on page 147.

CompareDisk: CompareDisk compares input to a �le written by an OutputNode.

Section 17.2.1 on page 112.

ConstantData: generate a MachWord constant. Section 14.1 on page 88.

Cos: Generates the real function Amplitude cos(Phase + N Frequency). Sec-

tion 14.2 on page 89.

CxCos: Generates the function Amplitude e^(2 Pi i(Phase + N Frequency)).

Section 14.3 on page 91.

CxFFT: CxFFT computes the complex FFT of a single input channel. Section 13.3

on page 61.

CxFir: CxFir is a complex symmetric (even or odd) �r �lter. Section 13.4 on

page 63.

CxImp: Generates a periodic impulse or square wave. Section 14.4 on page 93.

DataFlow: Data
ow based network control and scheduling. Section 18.2 on

page 129.

debug: control debugging options. Section 20.1 on page 149.

Demod: DemodFreq is a complex modulation/demodulation function. Sec-

tion 13.5 on page 64.

Demux: Demultiplexes 1 input channel to Channels output channels. Sec-

tion 13.6 on page 66.

disk: Read and write disk �les. Section 17 on page 105.

DisplayHeader: Describe member DisplayHeader of CompareDisk. Section 17.2.1.2.1

on page 114.

DisplayHeader: Describe member DisplayHeader of InputNode. Section 17.2.2.2.1

on page 116.

B{3

DisplayHeader: Describe member DisplayHeaderof VoiceNode. Section 17.2.6.2.1

on page 124.

DisplayInputTiming: Describe member DisplayInputTiming of Display-

NodeStr. Section 22.1 on page 152.

DisplayInputTiming: Describe member DisplayInputTiming of Process-

NodeStr. Section 22.2 on page 153.

DisplayNames: Describe member DisplayNames of Network. Section 18.3.1.14

on page 143.

DisplayOutputTiming: Describe member DisplayOutputTiming of Process-

NodeStr. Section 22.4 on page 154.

DisplayOutputTiming: Describe member DisplayOutputTiming of SignalStr.

Section 22.5 on page 155.

dsp processing: DSP processing objects. Section 13 on page 54.

DSP++: ObjectProDSP language. Section 11.1.1 on page 52.

Edit: Describe member Edit of DisplayNodeStr. Section 22.6 on page 155.

Edit: Describe member Edit of ProcessNodeStr. Section 22.7 on page 156.

Edit: Describe member Edit of SignalStr. Section 22.8 on page 156.

exec: Select a member of InputNode to execute. Section 17.2.2.3.3 on page 118.

Execute: Describe member Execute of DataFlow. Section 18.2.2.2 on page 130.

Execute: Describe member Execute of Network. Section 18.3.1.2 on page 135.

EyePlot: EyePlot plots complex signal in eye plot (X versus Y) form. Sec-

tion 15.1 on page 100.

FindStartTail: discard initial input data within bounds. Section 13.7 on page

67.

Gain: Gain provides a linear gain. Section 13.8 on page 68.

GainPad: GainPad provides a linear gain. Section 13.9 on page 70.

B{4 B. COMMANDS INDEX

GetBufferDescriptor: Describe member GetBufferDescriptor of Network.

Section 18.3.1.20 on page 146.

GetNetController: Describe member GetNetController of Network. Sec-

tion 18.3.1.22 on page 146.

GraphDisplay: Describe member GraphDisplay of DataFlow. Section 18.2.2.1

on page 130.

GraphDisplay: Describe member GraphDisplay of Network. Section 18.3.1.1

on page 134.

GraphDisplayWindow: Describe member GraphDisplayWindow of Network. Sec-

tion 18.3.1.13 on page 142.

help: Main help menu. Section 11 on page 50.

help levels: Control the display of help information. Section 11.2 on page 53.

HexList: HexList lists a speci�ed number of channels to a display window.

Section 16.1 on page 102.

IgnoreHeaderCount: Describe member IgnoreHeaderCount of CompareDisk.

Section 17.2.1.2.2 on page 114.

IgnoreHeaderCount: Describe member IgnoreHeaderCount of InputNode. Sec-

tion 17.2.2.2.2 on page 116.

ImportData: ImportData reads an ascii input �le. Section 17.1.2 on page 107.

InputNode: InputNode reads a disk �le written by an OutputNode. Sec-

tion 17.2.2 on page 115.

InputWord: InputWord reads words in a selected format from a binary �le.

Section 17.2.3 on page 118.

instance: Describe or delete an instance of Add. Section 13.1.3 on page 58.

instance: Describe or delete an instance of InputNode. Section 17.2.2.3 on

page 117.

B{5

Integrate: Integrate sums consecutive input vector. Section 13.10 on page

71.

Interpolate: sample rate conversion with linear interpolation. Section 13.11

on page 73.

Link: Describe member Link of Network. Section 18.3.1.17 on page 144.

LinkIn: Describe member LinkIn of DisplayNodeStr. Section 22.9 on page

156.

LinkIn: Describe member LinkIn of ProcessNodeStr. Section 22.10 on page

157.

list: Listing objects. Section 16 on page 102.

Listing: Listing lists a speci�ed number of channels to a display window.

Section 16.2 on page 103.

MakeTarget: Describe member MakeTarget of Network. Section 18.3.1.5 on

page 136.

MakeValidate: Describe member MakeValidate of Network. Section 18.3.1.6

on page 137.

manual: Online ObjectProDSP manual. Section 11.1 on page 51.

MaskWord: applies a mask to a binary data stream. Section 13.12 on page 74.

members: Members of CircBufDes. Section 18.1.3 on page 128.

members: Members of CompareDisk. Section 17.2.1.2 on page 113.

members: Members of DataFlow. Section 18.2.2 on page 129.

members: Members of InputNode. Section 17.2.2.2 on page 116.

members: Members of Network. Section 18.3.1 on page 133.

members: Members of VoiceNode. Section 17.2.6.2 on page 123.

Mux: Multiplexes Channels inputs into 1 output channel. Section 13.13 on page

75.

B{6 B. COMMANDS INDEX

Network: Data
ow network objects. Section 18.3 on page 132.

network: Network and system objects. Section 18 on page 125.

NextFreeInput: Describe member NextFreeInput of DisplayNodeStr. Sec-

tion 22.11 on page 157.

NextFreeInput: Describe member NextFreeInput of ProcessNodeStr. Sec-

tion 22.12 on page 158.

NextFreeOutput: Describe member NextFreeOutput of ProcessNodeStr. Sec-

tion 22.13 on page 158.

NextFreeOutput: Describe memberNextFreeOutputof SignalStr. Section 22.14

on page 158.

Normal: Generate normally distributed noise samples. Section 14.5 on page 94.

objects: Display and describe existing objects. Section 12 on page 53.

operator>>: Describe member operator>> of Network. Section 18.3.1.12 on

page 141.

operator+: Describe member operator+ of Network. Section 18.3.1.11 on page

141.

OutputNode: OutputNode writes a speci�ed number of channels to a disk �le.

Section 17.2.4 on page 120.

OutputWord: OutputWord writes words in a selected format to a binary �le.

Section 17.2.5 on page 121.

PackWord: packs multiple input words to a single output word. Section 13.14

on page 76.

param: Describe parameters of this Add. Section 13.1.3.1.1 on page 58.

param: Describe parameters of this InputNode. Section 17.2.2.3.2 on page 117.

param: Parameters of Add. Section 13.1.1 on page 57.

param: Parameters of AsciiFile. Section 17.1.1.1 on page 106.

B{7

param: Parameters of Block. Section 13.2.1 on page 60.

param: Parameters of CircBufDes. Section 18.1.1 on page 126.

param: Parameters of CompareDisk. Section 17.2.1.1 on page 113.

param: Parameters of ConstantData. Section 14.1.1 on page 88.

param: Parameters of Cos. Section 14.2.1 on page 90.

param: Parameters of CxCos. Section 14.3.1 on page 91.

param: Parameters of CxFFT. Section 13.3.1 on page 62.

param: Parameters of CxFir. Section 13.4.1 on page 63.

param: Parameters of CxImp. Section 14.4.1 on page 93.

param: Parameters of DataFlow. Section 18.2.1 on page 129.

param: Parameters of Demod. Section 13.5.1 on page 65.

param: Parameters of Demux. Section 13.6.1 on page 66.

param: Parameters of EyePlot. Section 15.1.1 on page 100.

param: Parameters of FindStartTail. Section 13.7.1 on page 68.

param: Parameters of Gain. Section 13.8.1 on page 69.

param: Parameters of GainPad. Section 13.9.1 on page 70.

param: Parameters of HexList. Section 16.1.1 on page 103.

param: Parameters of ImportData. Section 17.1.2.1 on page 108.

param: Parameters of InputNode. Section 17.2.2.1 on page 115.

param: Parameters of InputWord. Section 17.2.3.1 on page 119.

param: Parameters of Integrate. Section 13.10.1 on page 72.

param: Parameters of Interpolate. Section 13.11.1 on page 73.

param: Parameters of Listing. Section 16.2.1 on page 104.

B{8 B. COMMANDS INDEX

param: Parameters of MaskWord. Section 13.12.1 on page 74.

param: Parameters of Mux. Section 13.13.1 on page 75.

param: Parameters of Normal. Section 14.5.1 on page 95.

param: Parameters of OutputNode. Section 17.2.4.1 on page 120.

param: Parameters of OutputWord. Section 17.2.5.1 on page 122.

param: Parameters of PackWord. Section 13.14.1 on page 77.

param: Parameters of Plot. Section 15.2.1 on page 101.

param: Parameters of Power. Section 13.15.1 on page 78.

param: Parameters of Ramp. Section 14.6.1 on page 97.

param: Parameters of ReadFloat. Section 17.1.3.1 on page 110.

param: Parameters of ReadInt. Section 17.1.4.1 on page 111.

param: Parameters of RealFir. Section 13.16.1 on page 79.

param: Parameters of RepackStream. Section 13.17.1 on page 81.

param: Parameters of SampleDelay. Section 13.18.1 on page 82.

param: Parameters of ToMach. Section 13.20.1 on page 83.

param: Parameters of Truncate. Section 13.21.1 on page 84.

param: Parameters of UniformNoise. Section 14.7.1 on page 98.

param: Parameters of UnpackWord. Section 13.22.1 on page 86.

param: Parameters of VoiceNode. Section 17.2.6.1 on page 123.

param: Parameters of VoiceStripOut. Section 17.2.7.1 on page 124.

param AssignBuffers: Describe the parameters of member AssignBuffers.

Section 18.2.2.3.1 on page 131.

B{9

param AssignBuffers: Describe the parameters of member AssignBuffers.

Section 18.3.1.19.1 on page 146.

param AssociateNode: Describe the parameters of member AssociateNode.

Section 18.3.1.16.1 on page 144.

param DisplayInputTiming: Describe the parameters of member Display-

InputTiming. Section 22.1.1 on page 153.

param DisplayInputTiming: Describe the parameters of member Display-

InputTiming. Section 22.2.1 on page 153.

param DisplayOutputTiming: Describe the parameters of member Display-

OutputTiming. Section 22.4.1 on page 154.

param DisplayOutputTiming: Describe the parameters of member Display-

OutputTiming. Section 22.5.1 on page 155.

param Execute: Describe the parameters of member Execute. Section 18.2.2.2.1

on page 131.

param Execute: Describe the parameters of member Execute. Section 18.3.1.2.1

on page 135.

param GraphDisplay: Describe the parameters of member GraphDisplay. Sec-

tion 18.2.2.1.1 on page 130.

param GraphDisplayWindow: Describe the parameters of member GraphDisplay-

Window. Section 18.3.1.13.1 on page 142.

param Link: Describe the parameters of member Link. Section 18.3.1.17.1 on

page 144.

param LinkIn: Describe the parameters of member LinkIn. Section 22.3 on

page 154.

param LinkIn: Describe the parameters of member LinkIn. Section 22.10.1 on

page 157.

param MakeTarget: Describe the parameters of member MakeTarget. Sec-

tion 18.3.1.5.1 on page 137.

B{10 B. COMMANDS INDEX

param MakeValidate: Describe the parameters of member MakeValidate. Sec-

tion 18.3.1.6.1 on page 137.

param operator>>: Describe the parameters of member operator>>. Sec-

tion 18.3.1.12.1 on page 142.

param operator+: Describe the parameters of member operator+. Section 18.3.1.11.1

on page 141.

param ReplaceNode: Describe the parameters of member ReplaceNode. Sec-

tion 18.3.1.4.1 on page 136.

param ReplaceWithCompare: Describe the parameters of member Replace-

WithCompare. Section 18.3.1.10.1 on page 141.

param SelfLink: Describe the parameters of member SelfLink. Section 18.3.1.18.1

on page 145.

param SetBufferDescriptor: Describe the parameters of member SetBuffer-

Descriptor. Section 18.3.1.15.1 on page 143.

param SetSampleRate: Describe the parameters of member SetSampleRate.

Section 22.15 on page 158.

param SetSampleRate: Describe the parameters of member SetSampleRate.

Section 22.23.1.1 on page 165.

param SetTimingExact: Describe the parameters of member SetTimingExact.

Section 18.3.1.8.1 on page 140.

param TargetValidate: Describe the parameters of member TargetValidate.

Section 18.3.1.7.1 on page 138.

Plot: Plot creates graphs of real, complex and two dimensional data streams.

Section 15.2 on page 101.

plot: Plotting objects. Section 15 on page 99.

Power: Power computes and scales the power in each sample. Section 13.15 on

page 77.

Raise: Describe member Raise of DisplayNodeStr. Section 22.16 on page 159.

B{11

Raise: Describe member Raise of Network. Section 18.3.1.3 on page 135.

Raise: Describe member Raise of ProcessNodeStr. Section 22.17 on page 159.

Raise: Describe member Raise of SignalStr. Section 22.18 on page 159.

Ramp: generates a linear ramp function. Section 14.6 on page 96.

ReadFloat: ReadFloat reads an ascii
oat input �le. Section 17.1.3 on page

110.

ReadInt: ReadInt reads an ascii integer input �le. Section 17.1.4 on page 110.

RealFir: RealFir is a real symmetric (even or odd) �r �lter. Section 13.16 on

page 79.

RepackStream: repack bit streams to di�erent physical word sizes. Section 13.17

on page 80.

ReplaceNode: Describe member ReplaceNode of Network. Section 18.3.1.4 on

page 136.

ReplaceWithCompare: Describe member ReplaceWithCompare of Network. Sec-

tion 18.3.1.10 on page 140.

ReplaceWithOutput: Describe member ReplaceWithOutput of Network. Sec-

tion 18.3.1.9 on page 140.

SampleDelay: delays the output by a selected number of samples. Section 13.18

on page 81.

SelfLink: Describe member SelfLink of Network. Section 18.3.1.18 on page

145.

session: Record and playback sessions. Section 21.1 on page 151.

set: Set variable values of this Add. Section 13.1.3.1.3 on page 59.

SetBufferDescriptor: Describe member SetBufferDescriptor of Network.

Section 18.3.1.15 on page 143.

SetSampleRate: Describe member SetSampleRate of ProcessNodeStr. Sec-

tion 22.21.1 on page 162.

B{12 B. COMMANDS INDEX

SetSampleRate: Describe member SetSampleRate of SignalStr. Section 22.23.1

on page 165.

SetTimingExact: Describe memberSetTimingExactof Network. Section 18.3.1.8

on page 139.

setup: Read state and plot �les, debugging. Section 20 on page 148.

signal: Signal generation objects. Section 14 on page 87.

state: Program state menu. Section 21 on page 150.

TargetValidate: Describe memberTargetValidateof Network. Section 18.3.1.7

on page 138.

select instance: Select this instance of Add. Section 13.1.3.1 on page 58.

select instance: Select this instance of InputNode. Section 17.2.2.3.1 on page

117.

ToInteger: converts MachWord data stream to integer. Section 13.19 on page

82.

ToMach: converts binary data stream to MachWord. Section 13.20 on page 83.

Truncate: Limit the dynamic range and signi�cant bits in a stream. Sec-

tion 13.21 on page 84.

UniformNoise: Generate uniformly distributed noise samples. Section 14.7 on

page 98.

Unlink: Describe member Unlink of DisplayNodeStr. Section 22.19.1 on page

160.

Unlink: Describe member Unlink of ProcessNodeStr. Section 22.21.2 on page

163.

Unlink: Describe member Unlink of SignalStr. Section 22.23.2 on page 165.

UnpackWord: unpack a single input word to multiple output words. Section 13.22

on page 86.

variables: Changeable variables of Add. Section 13.1.2 on page 57.

B{13

variables: Changeable variables of AsciiFile. Section 17.1.1.2 on page 107.

variables: Changeable variables of CircBufDes. Section 18.1.2 on page 127.

variables: Changeable variables of ConstantData. Section 14.1.2 on page 89.

variables: Changeable variables of Cos. Section 14.2.2 on page 90.

variables: Changeable variables of CxCos. Section 14.3.2 on page 92.

variables: Changeable variables of CxFFT. Section 13.3.2 on page 62.

variables: Changeable variables of Demod. Section 13.5.2 on page 65.

variables: Changeable variables of Gain. Section 13.8.2 on page 69.

variables: Changeable variables of GainPad. Section 13.9.2 on page 71.

variables: Changeable variables of Integrate. Section 13.10.2 on page 73.

variables: Changeable variables of Listing. Section 16.2.2 on page 104.

variables: Changeable variables of Normal. Section 14.5.2 on page 95.

variables: Changeable variables of Power. Section 13.15.2 on page 78.

variables: Changeable variables of Ramp. Section 14.6.2 on page 97.

variables: Changeable variables of Truncate. Section 13.21.2 on page 85.

variables: Changeable variables of UniformNoise. Section 14.7.2 on page 99.

variables: Describe variables of this Add. Section 13.1.3.1.2 on page 59.

variables: Simple variables. Section 19 on page 147.

VoiceNode: VoiceNode reads Creative Voice format �les. Section 17.2.6 on

page 122.

VoiceStripOut: VoiceStripOut writes a Creative Voice format �le with no

header. Section 17.2.7 on page 124.

B{14 B. COMMANDS INDEX

D GNU GENERAL PUBLIC LICENSE

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license

document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to

share and change it. By contrast, the GNU General Public License is in-

tended to guarantee your freedom to share and change free software{to make

sure the software is free for all its users. This General Public License applies

to most of the Free Software Foundation's software and to any other program

whose authors commit to using it. (Some other Free Software Foundation

software is covered by the GNU Library General Public License instead.)

You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our

General Public Licenses are designed to make sure that you have the freedom

to distribute copies of free software (and charge for this service if you wish),

that you receive source code or can get it if you want it, that you can change

the software or use pieces of it in new free programs; and that you know you

can do these things.

To protect your rights, we need to make restrictions that forbid anyone to

deny you these rights or to ask you to surrender the rights. These restrictions

translate to certain responsibilities for you if you distribute copies of the

software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or

for a fee, you must give the recipients all the rights that you have. You must

make sure that they, too, receive or can get the source code. And you must

D{1

show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)

o�er you this license which gives you legal permission to copy, distribute

and/or modify the software.

Also, for each author's protection and ours, we want to make certain that

everyone understands that there is no warranty for this free software. If the

software is modi�ed by someone else and passed on, we want its recipients to

know that what they have is not the original, so that any problems introduced

by others will not re
ect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We

wish to avoid the danger that redistributors of a free program will individually

obtain patent licenses, in e�ect making the program proprietary. To prevent

this, we have made it clear that any patent must be licensed for everyone's

free use or not licensed at all.

The precise terms and conditions for copying, distribution and modi�cation

follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION

0. This License applies to any program or other work which contains a

notice placed by the copyright holder saying it may be distributed under

the terms of this General Public License. The \Program", below, refers

to any such program or work, and a \work based on the Program" means

either the Program or any derivative work under copyright law: that is to

say, a work containing the Program or a portion of it, either verbatim or

with modi�cations and/or translated into another language. (Hereinafter,

translation is included without limitation in the term \modi�cation".) Each

licensee is addressed as \you".

Activities other than copying, distribution and modi�cation are not covered

by this License; they are outside its scope. The act of running the Program

is not restricted, and the output from the Program is covered only if its

D{2

contents constitute a work based on the Program (independent of having

been made by running the Program). Whether that is true depends on what

the Program does.

1. You may copy and distribute verbatim copies of the Program's source

code as you receive it, in any medium, provided that you conspicuously

and appropriately publish on each copy an appropriate copyright notice and

disclaimer of warranty; keep intact all the notices that refer to this License

and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may

at your option o�er warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of

it, thus forming a work based on the Program, and copy and distribute such

modi�cations or work under the terms of Section 1 above, provided that you

also meet all of these conditions:

a) You must cause the modi�ed �les to carry prominent notices

stating that you changed the �les and the date of any change.

b) You must cause any work that you distribute or publish, that

in whole or in part contains or is derived from the Program or any

part thereof, to be licensed as a whole at no charge to all third

parties under the terms of this License.

c) If the modi�ed program normally reads commands interactively

when run, you must cause it, when started running for such interac-

tive use in the most ordinary way, to print or display an announce-

ment including an appropriate copyright notice and a notice that

there is no warranty (or else, saying that you provide a warranty)

and that users may redistribute the program under these condi-

tions, and telling the user how to view a copy of this License. (Ex-

ception: if the Program itself is interactive but does not normally

print such an announcement, your work based on the Program is

not required to print an announcement.)

D{3

These requirements apply to the modi�ed work as a whole. If identi�able sec-

tions of that work are not derived from the Program, and can be reasonably

considered independent and separate works in themselves, then this License,

and its terms, do not apply to those sections when you distribute them as

separate works. But when you distribute the same sections as part of a whole

which is a work based on the Program, the distribution of the whole must be

on the terms of this License, whose permissions for other licensees extend to

the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your

rights to work written entirely by you; rather, the intent is to exercise the

right to control the distribution of derivative or collective works based on the

Program.

In addition, mere aggregation of another work not based on the Program

with the Program (or with a work based on the Program) on a volume of

a storage or distribution medium does not bring the other work under the

scope of this License.

3. You may copy and distribute the Program (or a work based on it, under

Section 2) in object code or executable form under the terms of Sections 1

and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable

source code, which must be distributed under the terms of Sec-

tions 1 and 2 above on a medium customarily used for software

interchange; or,

b) Accompany it with a written o�er, valid for at least three years,

to give any third party, for a charge no more than your cost of phys-

ically performing source distribution, a complete machine-readable

copy of the corresponding source code, to be distributed under the

terms of Sections 1 and 2 above on a medium customarily used for

software interchange; or,

c) Accompany it with the information you received as to the o�er to

distribute corresponding source code. (This alternative is allowed

only for noncommercial distribution and only if you received the

program in object code or executable form with such an o�er, in

D{4

accord with Subsection b above.)

The source code for a work means the preferred form of the work for making

modi�cations to it. For an executable work, complete source code means

all the source code for all modules it contains, plus any associated interface

de�nition �les, plus the scripts used to control compilation and installation of

the executable. However, as a special exception, the source code distributed

need not include anything that is normally distributed (in either source or

binary form) with the major components (compiler, kernel, and so on) of the

operating system on which the executable runs, unless that component itself

accompanies the executable.

If distribution of executable or object code is made by o�ering access to copy

from a designated place, then o�ering equivalent access to copy the source

code from the same place counts as distribution of the source code, even

though third parties are not compelled to copy the source along with the

object code.

4. You may not copy, modify, sublicense, or distribute the Program except

as expressly provided under this License. Any attempt otherwise to copy,

modify, sublicense or distribute the Program is void, and will automatically

terminate your rights under this License. However, parties who have received

copies, or rights, from you under this License will not have their licenses

terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed

it. However, nothing else grants you permission to modify or distribute the

Program or its derivative works. These actions are prohibited by law if you do

not accept this License. Therefore, by modifying or distributing the Program

(or any work based on the Program), you indicate your acceptance of this

License to do so, and all its terms and conditions for copying, distributing or

modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Pro-

gram), the recipient automatically receives a license from the original licensor

to copy, distribute or modify the Program subject to these terms and condi-

tions. You may not impose any further restrictions on the recipients' exercise

of the rights granted herein. You are not responsible for enforcing compliance

D{5

by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringe-

ment or for any other reason (not limited to patent issues), conditions are

imposed on you (whether by court order, agreement or otherwise) that con-

tradict the conditions of this License, they do not excuse you from the condi-

tions of this License. If you cannot distribute so as to satisfy simultaneously

your obligations under this License and any other pertinent obligations, then

as a consequence you may not distribute the Program at all. For example,

if a patent license would not permit royalty-free redistribution of the Pro-

gram by all those who receive copies directly or indirectly through you, then

the only way you could satisfy both it and this License would be to refrain

entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any par-

ticular circumstance, the balance of the section is intended to apply and the

section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents

or other property right claims or to contest validity of any such claims; this

section has the sole purpose of protecting the integrity of the free software

distribution system, which is implemented by public license practices. Many

people have made generous contributions to the wide range of software dis-

tributed through that system in reliance on consistent application of that

system; it is up to the author/donor to decide if he or she is willing to dis-

tribute software through any other system and a licensee cannot impose that

choice.

This section is intended to make thoroughly clear what is believed to be a

consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain

countries either by patents or by copyrighted interfaces, the original copy-

right holder who places the Program under this License may add an explicit

geographical distribution limitation excluding those countries, so that distri-

bution is permitted only in or among countries not thus excluded. In such

case, this License incorporates the limitation as if written in the body of this

License.

D{6

9. The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will be

similar in spirit to the present version, but may di�er in detail to address

new problems or concerns.

Each version is given a distinguishing version number. If the Program spec-

i�es a version number of this License which applies to it and \any later

version", you have the option of following the terms and conditions either of

that version or of any later version published by the Free Software Founda-

tion. If the Program does not specify a version number of this License, you

may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs

whose distribution conditions are di�erent, write to the author to ask for

permission. For software which is copyrighted by the Free Software Founda-

tion, write to the Free Software Foundation; we sometimes make exceptions

for this. Our decision will be guided by the two goals of preserving the free

status of all derivatives of our free software and of promoting the sharing and

reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT

PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE

STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM \AS IS" WITHOUT WARRANTY

OF ANYKIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT

NOT LIMITED TO, THE IMPLIEDWARRANTIESOFMERCHANTABIL-

ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE

RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-

GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR

OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR

AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR

D{7

ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE

THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR

DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR IN-

ABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED

TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR

LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE

OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),

EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF

THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible

use to the public, the best way to achieve this is to make it free software

which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach

them to the start of each source �le to most e�ectively convey the exclusion

of warranty; and each �le should have at least the \copyright" line and a

pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it

does.> Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published

by the Free Software Foundation; either version 2 of the License,

or (at your option) any later version.

This program is distributed in the hope that it will be useful, but

WITHOUT ANY WARRANTY; without even the implied war-

ranty of MERCHANTABILITY or FITNESS FOR A PARTICU-

LAR PURPOSE. See the GNU General Public License for more

details.

D{8

You should have received a copy of the GNU General Public Li-

cense along with this program; if not, write to the Free Software

Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it

starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for

details type `show w'. This is free software, and you are welcome

to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appro-

priate parts of the General Public License. Of course, the commands you use

may be called something other than `show w' and `show c'; they could even

be mouse-clicks or menu items{whatever suits your program.

You should also get your employer (if you work as a programmer) or your

school, if any, to sign a \copyright disclaimer" for the program, if necessary.

Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the pro-

gram `Gnomovision' (which makes passes at compilers) written by

James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program

into proprietary programs. If your program is a subroutine library, you may

consider it more useful to permit linking proprietary applications with the

library. If this is what you want to do, use the GNU Library General Public

License instead of this License.

D{9

D{10

References

[1] P. Budnik, ObjectProDSP Overview and Tutorial Mountain Math Soft-

ware, September 1994

[2] P. Budnik, DppUser, Mountain Math Software, September 1994

[3] P. Budnik, ObjectProDSP Library Reference, Mountain Math Software,

September 1994

[4] P. Budnik, ObjectProDSP Developer's Reference, Mountain Math Soft-

ware, September 1994

[5] Brian W. Kernighan and Dennis R. Ritchie, The C Programming Lan-

guage, Prentice-Hall, 1978.

[6] The ANSI X3J11 committe and Herbert Schildt The Annotated ANSI

C Standard, ANSI/ISO 9899-1990, Osborne McGraw-Hill, 1990.

[7] Edward A. Lee and David G. Messerschmitt, Synchronous Data Flow,

Proceedings of the IEEE, Vol 75, No. 9, September 1987.

[8] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley,

1986.

E{1

E{2

Index

>> 33, 34, 141, 144

[] 6

^B 44

$OPD ROOT A{1

$OPD ROOT/build 17

$OPD ROOT/examp 28

$OPD ROOT/help 28

$OPD ROOT/validate 17, 29

$OPD X BIN 9

$OPD X BIN/xwd 9

^P 44

$PPD ROOT/doc/ro� 45

$PPD ROOT/examp 45

$PPD ROOT/help 45

% 108

%d 108

%x 109

() 6

(p) 6

(shift-space) 7

(space) 6

+ 33, 34, 109, 141

- 109

-c 22

-e A{1

-O 14

. 150

.dvi 13

.hlp 28, 45

.opdinit 3

.ro� 45

.usr 16

.xml 28, 45

/usr/bin/X11 9

0x 109

abort 9, 27

abort dsp 151

Aborting commands and deleting

windows 9

about help 51

AccMachWord 29, 35

Accuracy 84, 85

Actions 29

Amplitude 78, 87, 90, 91, 92, 94,

B{2

append information window to DSP++

history option 8

ascii 24, 105

AsciiFile 105, 106, 107, B{1, B{6,

B{13

AsciiFile 24, 105, 106, F{8

AssignBu�ers 130, 131, 134, 145,

146, B{1, B{8, B{9

AssignToEdit 128, B{1

AssignBu�ers 130, 131, 134, 145,

146

AssignToEdit 128

AssociateNode 134, 143, 144, B{1,

B{9

AssociateNode 134, 143, 144

auto save 150

b 4

F{1

base class member functions 152

basic 17

Basic example 39

binary 105, 111

Block 54, 60, 61, B{7, F{6, F{8

BlockSize 61, 119

BlockSize 61, 119

Bu�er descriptors 31

Bugs 16

C 108

Caption 101, 102, 103, 104, 121

CenterFrequency 62

CenterFrequency 62

Channel 153, 154, 155, 156, 157,

159, 165

ChannelIn 145

ChannelOut 145

CircBufDes 17, 25, 125, F{8

CircBufDesc 31

class hierarchy 167

ClearBu�ers 130, 132, 134, 146, B{

1

ClearNetwork 130, 132, 134, 147,

B{1, B{2

ClearBu�ers 130, 132, 134, 146

ClearNetwork 19, 130, 132, 134,

147

coe� 15, 64, 80

commands 51

CompareDisk 17, 112, 114, F{8

ConstantData 88, 89, B{7, B{13

ConstantData 87, 88, F{8

Control debugging options 149

Control information display 53

copying 50

Cos 87, 89, 90, B{7, F{6, F{8, B{

13

create command history window 5

create DSP++ history window 5, 11

Creative Voice 112, B{13

ctrl 4, 7

ctrl-b 4

ctrl-shift delete 6

ctrl-shift-* 9

ctrl-shift-^ 9

ctrl-shift-& 9

ctrl-shift-delete 7

CxCos 91, 92, B{7, B{13

CxFFT 54, 61, 62, B{2, B{7, B{13

CxFir 54, 63, 64, B{2, B{7

CxImp 93, 94, B{7

CxCos 87, 91, F{6, F{8

CxFFT 6, 54, 61, F{6, F{8

CxFir 16, 54, 63, F{6, F{8

CxImp 87, 93, F{6, F{8

d 108, 109

DataType 65

Data base 5, 8, 11, 31

database 5, 25

DataType 65

dead spots 7

debug 27, 148, 149

Debugging menu 27

delete 9, 58, 117, 152

Deleted TargetSystem capability 16

Delta 82

DeltaIn 74, 121

DeltaOut 74, 115, 118

DeltaIn 74, 121

DeltaOut 74, 115, 118

F{2

Demod 55, 64, 65, 66, B{7, F{6,

F{8, B{13

DemodFreq 55, 64, 65, 66, B{2

DemodFreq 64, 65, 66

Demux 55, 66, 67, B{7, F{6, F{8

desc 58, 117

desc AssignBu�ers 131, 145

desc AssignToEdit 129

desc AssociateNode 144

desc ClearBu�ers 132, 146

desc ClearNetwork 132, 147

desc DisplayHeader 114, 116, 124

desc DisplayInputTiming 153

desc DisplayNames 143

desc DisplayOutputTiming 154, 155

desc Edit 155, 156

desc Execute 131, 135

desc GetBu�erDescriptor 146

desc GetNetController 147

desc GraphDisplay 130, 135

desc GraphDisplayWindow 142

desc IgnoreHeaderCount 114, 116

desc Link 144

desc LinkIn 156, 157

desc MakeTarget 136

desc MakeValidate 137

desc NextFreeInput 157, 158

desc NextFreeOutput 158

desc operator>> 142

desc operator+ 141

desc Raise 135, 159, 160

desc ReplaceNode 136

desc ReplaceWithCompare 140

desc ReplaceWithOutput 140

desc SelfLink 145

desc SetBu�erDescriptor 143

desc SetSampleRate 162, 165

desc SetTimingExact 139

desc TargetValidate 138

desc Unlink 161, 163, 166

Describe member Edit of SignalStr

156

Describe member Execute of DataFlow

130

Describe member Execute of Network

135

Describe member Link of Network

144

Describe member Raise of Network

135

Describe member Raise of SignalStr

159

Describe member SelfLink of Network

145

Describe member Unlink of SignalStr

165

Descriptor 131, 143, 145, 146

DirName 137, 138

Directory 136, 137

DirName 137, 139

disk 24, 25, 54, 105

Disk space 12

DisplayHeader 114, 116, 123, 124,

B{2, B{3

DisplayInputTiming 152, 153, 154,

160, 162, B{3, B{9

DisplayNames 134, 143, B{3

DisplayOutputTiming 154, 155, 162,

164, B{3, B{9

Display simple variables 147

DisplayHeader 114, 116, 118, 123,

124

DisplayInputTiming 30, 152, 153,

160, 161, 162, 163

F{3

DisplayNames 134, 143

DisplayNodeStr 168

DisplayOutputTiming 30, 154, 155,

162, 164, 166

double 119, 122

DSP nets 51

dsp processing 8, 9, 16, 20, 25, 53,

54

DSP processing nodes 20

DSP processing objects 54

DSP++ 52

DSP++ 51, 52

dsp.messages 28, 149

dsppp 150

dsppp.0 3

dsppp.N 3

e 108, 109

Edit and control 9

Editing a DSP network 8

ElementSize 57, 59, 60, 71, 95, 99,

119

END 19

environmental variables A{1

ErrorFile 113

ErrorFile 113, 138, 139, 141

escape 6, 7, 8, 9

Exact 139, 140

examples 4, 28, 39, 51

exec 5, 31, 58, 117, 118

ExecuteCount 137, 138

execute over 28

ExecuteCount 138, 139

exit 151

ExtraCountCreator 137, 138

ExtraCountCreator 138, 139

eye 20

EyePlot 100, 101, B{3, B{7

EyePlot 100, F{6, F{8

Feedback example 43

�t 4

FFT example 40

FFT Plt plot of FFT FFT 4

FFT Sum 5

Fields 109

FileBlockSize 121

FileBlockSize 121

FillValue 82

FillValue 82

Filter design 15

FindStartTail 67, 68, B{7

FindStartTail 55, 67, F{8

Fir �lter response example 44

Flags 68, 111, 115, 117, 120

oat 119, 122

Format 108, 109

FormatIn 119

FormatOut 122

FormatIn 119

FormatOut 122

freeze 151

Frequency 87, 90, 91, 92, B{2

Gain 55, 68, 69, 70, B{7, F{6, F{8,

B{13

GainPad 55, 70, 71, B{3, B{7, B{

13

GainPad 55, 70, F{6, F{8

gdb 3, 4

GetBu�erDescriptor 134, 146, B{4

GetNetController 134, 146, B{4

GetBu�erDescriptor 134, 146

GetNetController 134, 146

F{4

GraphDisplay 129, 130, 133, 134,

142, B{4, B{9

GraphDisplayWindow 134, 142, B{

4, B{9

GraphDisplay 129, 130, 133, 134

GraphDisplayWindow 134, 142

Graphically editing a network 18

gzip 13

heap ck 28, 149

heap ck o� 149

Height 142

help all 11, 53

help con�rm 11, 53

help levels 11, 51, 53

Help menu database tree 11

help none 11, 53

Help Structure 10

Hex 24, 104, 106, 107

HexList 102, 103, B{4, B{7

HexList 24, 102, F{6, F{8

HOME 19, 23

IgnoreHeaderCount 114, 116, B{4

IgnoreHeaderCount 114, 116, 118

ImportData 105, 107, 108, 109, B{

4, B{7

ImportData 105, 107, F{8

Increment 97

information 5, 9

InitialSkip 119

InitialSkip 119

InputElementSize 67

InputSampleSize 67, 76

InputWord 112, 118, 119, B{4, B{7

InputWordSize 77, 81

InputElementSize 67

InputsPerOutput 77

InputSamples 131, 135

InputSampleSize 67, 76

InputsPerOutput 77

InputWord 112, 118, F{8

InputWordSize 77, 81

int16 119, 122

int32 119, 122

int8 119, 122

IntegerMachWord 119, 122

IntegerOut 119

IntegerOut 119

IntegrationSize 72

IntegrationSize 72

Interpolate 55, 73, 74, B{7, F{8

introduction 18, 50

Introduction to ObjectProDSP 4

Invalid numeric values 22

InverseFlag 62

InverseFlag 62

l 108, 150

[L] 7

Link 19, 134, 144, B{5, B{9, F{3

LinkIn 154, 156, 157, 160, 162, B{

5, B{9

Link menu 20

LinkIn 156, 157, 160, 161, 162, 164

list 24, 25, 54, 102

list accmach 147, 148

list
oat 147

list int 147

list mach 147

Listing objects 102

Listing output from a DSP process

24

Listing plot coordinates 23

F{5

LogSize 62

LogSize 62

LowerBound 68

LowerBound 68

[M] 7

MachWord 56, 87, 89, 119, 122, B{

2, B{12

MachWord 29, 35

Main menu 49

MakeTarget 133, 136, 137, B{5, B{

9

MakeValidate 133, 137, 138, B{5,

B{10

Make stand alone target executable

30

make VALIDATE 17

Make�le 30

MakeTarget 30, 133, 136, 137

MakeValidate 133, 137

manual 51

Mask 75

MaskWord 74, 75, B{8

MaskWord 55, 74, F{8

Max 97

MaxReport 113

MaxTargetSize 127, 128

Maximum 98, 99

MaxReport 113, 138, 139, 141

MaxTargetSize 127, 128

Mean 95, 96

Memory 12

menu 9

Menu data base commands 26

menu database 18

Menu of Parameters for AddObject

57

Menu of Parameters for Block Ob-

ject 60

Menu of Parameters for CosObject

90

Menu of Parameters for CxCos Ob-

ject 91

Menu of Parameters for CxFFT Ob-

ject 62

Menu of Parameters for CxFir Ob-

ject 63

Menu of Parameters for CxImp Ob-

ject 93

Menu of Parameters for Demod Ob-

ject 65

Menu of Parameters for Demux Ob-

ject 66

Menu of Parameters for EyePlot

Object 100

Menu of Parameters for Gain Ob-

ject 69

Menu of Parameters for GainPad

Object 70

Menu of Parameters for HexList

Object 103

Menu of Parameters for Listing

Object 104

Menu of Parameters for MuxObject

75

Menu of Parameters for NormalOb-

ject 95

Menu of Parameters for Plot Ob-

ject 101

Menu of Parameters for Power Ob-

ject 78

Menu of Parameters for Ramp Ob-

ject 97

F{6

Menu of Parameters for ReadInt

Object 111

Menu of Parameters for RealFir

Object 79

Menu of Parameters for ToMachOb-

ject 83

Menu of Variables for Add Object

57

Menu of Variables for AsciiFile Ob-

ject 107

Menu of Variables for CircBufDes

Object 127

Menu of Variables for Cos Object

90

Menu of Variables for CxCos Ob-

ject 92

Menu of Variables for CxFFT Ob-

ject 62

Menu of Variables for Demod Ob-

ject 65

Menu of Variables for Gain Object

69

Menu of Variables for GainPad Ob-

ject 71

Menu of Variables for Integrate Ob-

ject 73

Menu of Variables for Listing Ob-

ject 104

Menu of Variables for Normal Ob-

ject 95

Menu of Variables for Power Ob-

ject 78

Menu of Variables for Ramp Ob-

ject 97

Menu of Variables for Truncate Ob-

ject 85

menus 49

Message levels 11

Min 97

MinTargetSize 127, 128

Minimum 98, 99

MinimumChunk 76

MinimumChunk 76

MinTargetSize 127, 128

mktemp 150

monochrome 13

Moving though a help window 7

Mux 55, 75, 76, B{8, F{6, F{8

NAME 150

NAME.0 150

NAME.1 150

Net 34

Net >> Node A 34

Net + Signal 34

Net + Signal >> Node A 34

Network display 19

network help 52

network menu 31

Networks 125

NextFreeInput 157, 158, 160, 162,

B{6

NextFreeOutput 158, 162, 165, B{

6

NextFreeInput 157, 158, 160, 161,

162, 164

NextFreeOutput 158, 162, 164, 165,

166

NoGroup 107

NoHeader 107, 123

Node member functions 30

NodeIn 145

NodeOut 145

Nodes that access disk �les 105

F{7

Nodes to read and write ascii �les

105

Nodes to read and write binary �les

111

NoGroup 107

NoHeader 107, 123

Normal 87, 94, 95, 96, B{8, F{6,

F{8, B{13

NullOutputSample 71

NullOutputSample 71

o 108

Object classes 53

object help 52

ObjectProDSP language 52

ObjectProDSP language overview

33

ObjectProDSP menu data base 49

ObjectProDSP networks 17

ObjectProDSP validation suites 16

Odd 64, 80

Online manual 51

opd 3

OPD ROOT 3

OPD X BIN 9

operator>> 133, 141, 142, B{6, B{

10

operator>>(Node& node) 34

operator+ 133, 141, B{6, B{10

operator+(SignalStr& signal node)

34

Option 130

Options for Add 56

Options for AsciiFile 106

Options for Block 60

Options for CircBufDes 125

Options for CompareDisk 112

Options for ConstantData 88

Options for Cos 89

Options for CxCos 91

Options for CxFFT 61

Options for CxFir 63

Options for CxImp 93

Options for DataFlow 129

Options for Demod 64

Options for Demux 66

Options for EyePlot 100

Options for FindStartTail 67

Options for Gain 68

Options for GainPad 70

Options for HexList 102

Options for ImportData 107

Options for InputNode 115

Options for InputWord 118

Options for Integrate 71

Options for Interpolate 73

Options for Listing 103

Options for MaskWord 74

Options for Mux 75

Options for Network 132

Options for Normal 94

Options for OutputNode 120

Options for OutputWord 121

Options for PackWord 76

Options for Plot 101

Options for Power 77

Options for Ramp 96

Options for ReadFloat 110

Options for ReadInt 110

Options for RealFir 79

Options for RepackStream 80

Options for SampleDelay 81

Options for ToInteger 82

F{8

Options for ToMach 83

Options for Truncate 84

Options for UniformNoise 98

Options for UnpackWord 86

Options for VoiceNode 122

Options for VoiceStripOut 124

other 9, 31

Other hardware 13

OutChannel 144

OutChannel 144

OutputArithmetic 61

OutputElementSize 67

OutputSampleSize 76

OutputStep 72

OutputWord 112, 121, 122, B{6,

B{8

OutputWordSize 81, 87

Output after a network has been

edited 21

OutputArithmetic 61

OutputElementSize 67

OutputNode 30, 112, 120, F{8

OutputsPerInput 87

OutputSampleSize 76

OutputsPerInput 87

OutputStep 72

OutputWord 112, 121, F{8

OutputWordSize 81, 87

over lim 149

over lin 28

Over
owMode 85

Over
owMode 85

Overlap 62

p 6

PackWord 76, 77, B{8

PackWord 55, 76, F{8

page-down 20

page-up 20

param AssignBu�ers 131, 146

param AssociateNode 144

param DisplayInputTiming 153

param DisplayOutputTiming 154,

155

param Execute 131, 135

param GraphDisplay 130

param GraphDisplayWindow 142

param Link 144

param LinkIn 154, 156, 157

param MakeTarget 136, 137

param MakeValidate 137

param operator>> 142

param operator+ 141

param ReplaceNode 136

param ReplaceWithCompare 140,

141

param SelfLink 145

param SetBu�erDescriptor 143

param SetSampleRate 158, 163, 165

param SetTimingExact 139, 140

param TargetValidate 138

pause 16, 152

peel o� 8

peeled o� 8

Period 93, 94

Phase 87, 90, 92, 93, B{2

play 152

Plot detail 22

plot err 22, 151

plot help 52

Plots 20

Plotting FFT (blocked) output 21

Plotting objects 99

F{9

Power 55, 77, 78, B{8, F{6, F{8,

B{13

ProcessNodeStr 167

Program State 150

Pull down menu codes 6, 10

Pull down menus 10

[R] 7

raise selected outputs 19

Ramp 88, 96, 97, B{8, F{6, F{8,

B{13

Range 84, 85

Rate 159, 165

ReadFloat 105, 110, B{8, B{11

ReadInt 105, 110, 111, B{8, B{11

Read �les 148

read over state 21, 27, 148

read plot 22, 23, 148

read state 15, 27, 148

ReadFloat 105, 110, F{8

ReadInt 105, 110, F{7, F{8

README 17

ReadWord 14

RealFir 55, 79, 80, B{8, B{11

RealFir 55, 79, F{7, F{8

rec 26, 151

rec close 152

rec o� 152

Record or playback a session 151

Recording and playing back ses-

sions 29

redraw to existing size 19

release 52

Release notes for ObjectProDSP ver-

sion 0.1 12

RepackStream 80, 81, B{8

RepackStream 55, 80, F{8

RepeatFlag 109

RepeatFlag 109

ReplaceNode 133, 136, B{10, B{11

ReplaceWithCompare 133, 140, 141,

B{10, B{11

ReplaceWithOutput 133, 140, B{

11

Replacement 136

ReplaceNode 133, 136

ReplaceWithCompare 133, 140, 141

ReplaceWithOutput 133, 140

Resample 63, 79

Round 85, 86

s 108

SampleDelay 81, 82, B{8

SampleDelay 55, 81, F{8

SamplesPerPlot 100

SamplesPerPlot 100

save 150

save and exit 16, 26, 50

save as 150

Saving and reading plots 22

Saving the state 26

Saving window and display images

9

Seed 95, 99

select 6, 19

Select an Instance of InputNode

117

Select menu 19

SelfLink 134, 145, B{10, B{11

SelfLink 134, 145, F{3

session 16, 26, 27, 29, 151

set 58, 59

SetBu�erDescriptor 134, 143, B{

10, B{11

F{10

SetTimingExact 133, 139, 140, B{

10, B{12

set name 150

set Scale 59

SetBu�erDescriptor 31, 134, 143

SetSampleRate 30, 162, 163, 164,

165, 166

SetTimingExact 133, 139, 140

setup 22, 23, 27, 49, 148, F{11

shift 7

shift-home 23

Sigma 95, 96

signal 25, 34, 54, 87

Signal generator objects 87

SignalStr 167, F{3

SignedConversion 83

SignedOutput 81, 87

SignedConversion 83

SignedOutput 81, 87

Size 126

Skip 68

SkipColumns 109

SkipFields 109

SkipColumns 109

SkipFields 109

Software requirements 13

stat.lxxxxx 150

stat.XXXXX 150

State description 11

Supported targets 15

syntax 52

System requiremnts 12

Target 136, 137, 139

TargetControlGoal 126, 128

TargetSize 126, 127

TargetSizeGoal 126, 127

TargetValidate 133, 138, 139, B{

10, B{12

TargetControlGoal 126, 128

TargetSize 126, 127

TargetSizeGoal 126, 127

TargetSystem 16

TargetSytem 17

TargetValidate 133, 138

thaw 151

TheNet 129

TheNode 141, 143, 144

The main window 5

The menu data base 7

The objects menu 25

The setup menu 27

TheNet 129

TheNode 141, 142, 144

Three stage �r �lter example 41

TimingTypeRandom 162, 165

ToInteger 82, 83

ToMach 83, B{8

ToReplace 136

ToInteger 56, 82, F{8

Tolerance 113, 138, 139, 141

ToMach 56, 83, F{7, F{9

ToReplace 136

trace 149

trace o� 149

Transition 94

Truncate 56, 84, 85, 86, B{8, F{9,

B{13

UniformNoise 98, 99, B{8, B{13

UniformNoise 88, 98, F{9

UnpackWord 86, 87, B{8

UnpackWord 56, 86, F{9

UpperBound 68

F{11

UpperBound 68

Using gdb 14

validation 52

Value 89

View 22

Views of plot data 23

VoiceNode 112, 122, 123, 124, B{3,

B{5, B{8, B{13

VoiceStripOut 112, 123, 124, B{8,

B{13

VoiceNode 112, 122, 124, F{9

VoiceStripOut 112, 124, F{9

W 6

Width 94, 142

Windows management 6

WriteWord 14

X 108, 150

xpr 9, 22

xwd 22

xwud 9, 13

XXXXX 150

ZeroPad 64, 79

ZeroPad 64, 79

F{12

