
ObjectProDSP Overview and Tutorial

Paul P. Budnik Jr. Phd.

Internet: support@MTNMATH.COM

September 1994

c

 1994 Mountain Math Software

All rights reserved

`.dvi' �le created September 16, 1994

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

�

�

�

�

�E

E

E�

�

�

�

�E

E

E

E

E

E

Math

Mountain

Software

P. O. Box 2124, Saratoga, CA 95070

Fax or voice (408) 353-3989

Published by Mountain Math Software, P. O. Box 2124, Saratoga, CA 95070.

Copyright

c

 1994 by Mountain Math Software. All rights reserved.

Permission is granted to make and distribute verbatim copies of this manual

provided the copyright notice and this permission notice are preserved on all

copies.

Permission is granted to copy and distribute modi�ed versions of this manual

under the conditions for verbatim copying, provided also that the sections

entitled \GNU General Public License" and \Licensing" are included exactly

as in the original, and provided that the entire resulting derived work is

distributed under the terms of a permission notice identical to this one, and

provided the derived work is clearly identi�ed as a derived work and not

solely the creation of either the orignal authors or the authors of the derived

work.

Permission is granted to copy and distribute translations of this manual into

another language, under the above conditions for modi�ed versions, except

that the sections entitled \GNU General Public License" and \Licensing",

and this permission notice, may be included in translations approved by

Mountain Math Software instead of in the original English. Translations of

the section entitled \GNU General Public License" must also be approved

by the Free Software Foundation which owns the copyright to that text.

Licensing

ObjectProDSP

TM

is licensed for free use and distribution under version 2

of the GNU General Public License. See Appendix C for the full text of

this license. There is absolutely no warranty for ObjectProDSP under this

license. ObjectProDSP is a trademark of Mountain Math Software.

You are free to use and distribute ObjectProDSP under the terms of version

2 of the GNU General Public License. Please note that none of the Object-

ProDSP system is licensed for use under the GNU Library General Public

License. The Gnu General Public License allows you to distribute executables

or librarys linked with or created by ObjectProDSP only if you make all the

source code used to create the librarys or executables (other than standard

librarys that are part of a compiler or operating system) freely available.

Please read the license in Appendix C for the full legal explanation of these

conditions.

Mountain Math Software plans to o�er, for a fee, a commercial version that

will allow you to distribute executables generated with ObjectProDSP under

standard commercial terms.

If you wish to extend ObjectProDSP you can distribute your code with Ob-

jectProDSP under the terms of the GNU General Public License. If you

include an appropriate copyright notice in your name for your upgrades then

no one, including Mountain Math Software, will be able to distribute your

code under any terms other than the GNU General Public License without

your permission.

If you �nd ObjectProDSP useful in a commercial environment you are asked

to consider purchasing a support contract. This is not shareware and you are

under no obligation to do so but you will gain aceess to direct support from

Mountain Math Software and you will make a contribution to the continued

success of ObjectProDSP and thus to any of your endeavors that bene�t from

it.

If you are interrested in a custom port of ObjectProDSP to directly support

your company's DSP development board or processor please contact us.

Mountain Math Software

P. O. Box 2124

Saratoga, CA 95070

Internet: support@MTNMATH.COM

Fax or voice (408) 353-3989

Documentation

� ObjectProDSP Overview and Tutorial This is the document you are

reading. This gives a general description of ObjectProDSP's purpose

and function. It includes several tutorial examples. There are appen-

dices on the DSP node and class library and Mountain Math Software.

� ObjectProDSP User's Reference This describes the user interface and

DSP++, a C++ based language for DSP. (You do not need to known

DSP++ or C++ to use ObjectProDSP. DSP++ statements are generated

for you when you graphically enter a network or execute menu data base

commands.) This document includes a reference manual for the menu

data base. Appendixes contain a synopsis of menu data base commands

and a general index.

� ObjectProDSP Library Reference This gives a detailed description of

ObjectProDSP interactive objects including DSP processing nodes.

� ObjectProDSP Developer's Reference This tells how to write DSP

processing nodes and add them to ObjectProDSP. It describes Object-

Pro++

TM

, an extended C++ language for de�ning interactive objects for

DSP or other applications. It explains how to modify the part of the

menu data base that does not come from interactive object de�nitions

in ObjectPro++. It describes how to update the ObjectProDSP manuals

to include your new nodes and objects. Information about these objects

is extracted from your de�nitions by ObjectPro++ and added to the

manuals.

ObjectProDSP and ObjectPro++ are trademarks of Mountain Math Software.

Contents

Licensing iii

Documentation v

List of �gures ix

1 Purpose 1

2 Initial windows 4

3 Spectral analysis example 6

4 FIR �lter frequency response 14

5 Multi-stage FIR �lter 20

6 Constructing and editing DSP networks 26

Appendix A ObjectProDSP library

Appendix B Mountain Math Software

Appendix C GNU GENERAL PUBLIC LICENSE

Index

vii

viii

List of Figures

1 CASE tool for DSP analysis design and implementation : : : : 2

2 Initial windows : 5

3 Network from spectral analysis example : : : : : : : : : : : : : 6

4 FFT plot from spectral analysis example : : : : : : : : : : : : 7

5 Expanded spectral plot : 8

6 Power spectral plot : 9

7 Decibel spectral plot : 10

8 Program for spectral analysis example : : : : : : : : : : : : : 11

9 Menu for FFT Sig object : 12

10 Description of FFT Sig object : : : : : : : : : : : : : : : : : : 13

11 Network to compute FIR �lter response : : : : : : : : : : : : : 14

12 Complex plot of FIR �lter frequency response : : : : : : : : : 15

13 Power plot of FIR �lter frequency response : : : : : : : : : : : 16

14 Decibel plot of FIR �lter frequency response : : : : : : : : : : 17

15 Menu for Fir resp cximp object : : : : : : : : : : : : : : : : : 17

16 Description of Fir resp cximp object : : : : : : : : : : : : : : 18

17 Program for FIR �lter response : : : : : : : : : : : : : : : : : 19

18 Network for multiple stage �lter : : : : : : : : : : : : : : : : : 20

19 Spectral plot of multi-stage �lter input : : : : : : : : : : : : : 21

20 Spectral plot of multi-stage �lter output : : : : : : : : : : : : 22

21 Menu for Fir net object : 23

ix

22 Target code generation with large bu�ers : : : : : : : : : : : : 24

23 Editing a CxFir node into FFT Net. : : : : : : : : : : : : : : 26

24 Selecting FFT Sum to connect to. : : : : : : : : : : : : : : : : 27

25 Completed edit of FFT Net. : : : : : : : : : : : : : : : : : : : 28

26 Menu to execute edited network. : : : : : : : : : : : : : : : : : 29

27 New complex plot from edited network. : : : : : : : : : : : : : 29

28 Decibel power view of plot. : 30

x

1

1 Purpose

ObjectProDSP

TM

provides a high level environment for design and imple-

mentation of complex Digital Signal Processing (DSP) systems. You can

interactively de�ne a DSP network, create test data and display output in

graphical or numeric form. You may change processing parameters or edit

the network topology interactively. Network consistency checks and analy-

sis of sample rates and sample times are performed on data streams. The

arithmetic of supported targets is simulated. Stand alone code is generated

at the touch of a button for real time execution.

Any target processor with an Ansi C compiler can be supported. All the

standard DSP objects can be ported. It may be desirable to code portions of

some in assembly language for optimum performance. The kernel of a DSP

object can be coded in C++, C or assembly language.

Choosing software development tools involves involves tradeo�s such as:

� E�ciency versus ease of programming (for example assembly language

versus a high level language).

� General purpose low level tools versus application speci�c high level

tools.

� Interactive tools for rapid development versus compiler based tools for

e�cient code.

ObjectProDSP minimizes these tradeo�s. You can take on complex DSP

development applications with con�dence. This is achieved by applying the

techniques of object oriented programming to DSP in an integrated pack-

age. The X-windows/InterViews graphical user interface makes it easy to

understand and manipulate these objects.

C++ provides the framework for this structure. A DSP language, DSP++ is

de�ned within C++ by de�ning DSP classes. Objects are saved as statements

in this language. Programs in this language can be written directly or can be

generated automatically by graphically de�ning and editing DSP networks.

2 1. PURPOSE

 Object
definition

C++ target
 code

 Object
documentation

C target
 code

 Target
executable

LaTeX

Interactive
 library

Interactive
executable

Optimizing
target C
compiler

Optimized
 target
 library

C++ to C
translator

 C++
compiler

 Printed
 manuals

Other
parts of
manuals

C++ interactive
 code

ObjectPro++
 translator

Figure 1: CASE tool for DSP analysis design and implementation

ObjectProDSP Overview and Tutorial 3

C++ has been extended to de�ne interactive objects and their documentation

in the ObjectPro++ language and translator. This allows a single object

de�nition (possibly augmented with optimized assembly language code) to

provide the source for interactive execution, printed and interactive user

documentation and optimized target code. Figure 1 shows how target and

source code and documentation is derived from a single user created source.

This facility provides a powerful object oriented DSP CASE tool.

4 2. INITIAL WINDOWS

2 Initial windows

Figure 2 shows the initial windows. At the top is a help window that is

changed based on your actions. This window can be independently resized.

Below this is the main window. At the top is a menubar that documents

and controls the use of this window. Below this is space for entering DSP++

language statements. These are entered in the highlighted area (click in the

region to make it the selected point for input). Commands once entered are

scrolled into the grey area. This area also contains the language statements

that are generated automatically when a network is created graphically.

Below this is a similar area for entering menu data base commands from the

keyboard. The last three options selected either with the keyboard or the

mouse are scrolled into the grey area. Below this is two or three levels of the

menu data base. Push buttons that have text in bold face select a command

when button is pushed with the left mouse button. If a push button has

normal type it selects another menu. You can `peel o�' any line of the

menu tree by holding the ctrl key down and clicking mouse button one on

a pushbutton. If this is a menu button you will get the �rst line of this menu

in a new window. If this is a command button you will get a copy of the line

containing this button in a new window. (These windows can be removed by

holding the ctrl and shift keys down while typing delete with the cursor

over the window to be deleted.)

All of the shortcut mouse and key options (like holding the control key down

and pressing the left mouse button to peel o� menus) are listed in the pull

down menus at the top of most windows. There is a simple coding scheme for

these. Mouse shortcuts (if available) are in square brackets `[]'. Keyboard

shortcuts are in round brackets `()'. Keyboard shortcuts are denoted as a

single character like `(p)' for lower case `p' or a word that designates the

key like `(space)' for the space bar. A key can be modi�ed with the shift

or control keys. `(shift-space)' means hold the shift key down and press the

space bar. For the most part you can enter shortcut keys whenever the

window is selected and the cursor positioned within it. However there are

some `dead spots' in some windows. If you �nd that shortcut keys are having

no e�ect move the cursor around.

ObjectProDSP Overview and Tutorial 5

Figure 2: Initial windows

6 3. SPECTRAL ANALYSIS EXAMPLE

Figure 3: Network from spectral analysis example

3 Spectral analysis example

To select the example described in this section choose examples from the

second line in the menu. Select fft from the third menu line and �nally

select execute from the third menu line. (The main window never has more

than three menu lines. Menus you peel o� can keep growing up to the length

of the screen.)

First a graphical display of the DSP network will appear followed by three

windows that contain the network input and output signals. The network

display and FFT output plot are shown in �gures 3 and 4. All the plots

in this example are of complex data. The real part is shown in black and

the imaginary part in red (or gray when printed). This is not clear in the

printed plots because there is one point per pixel on the default axis. You

can see more detail by touching the right arrow key and dragging the mouse

between two positions. This will expand the X axis of the entire plot to

cover the distance between the X positions you selected. You can see all

the options for changing the plot scale by touching the F3 function key or

using the mouse to pull down the X or Y Detail menu. Figure 5 shows

and expanded plot of the data in �gure 4. You can easily see the real and

imaginary components. Whenever the plot is expanded to the point where

the individual X coordinates are su�ciently separated a dashed line is drawn

at each sample plotted. You can see more detail in a plot without changing

the scale by making the plot window larger.

ObjectProDSP Overview and Tutorial 7

Figure 4: FFT plot from spectral analysis example

8 3. SPECTRAL ANALYSIS EXAMPLE

Figure 5: Expanded spectral plot

ObjectProDSP Overview and Tutorial 9

Figure 6: Power spectral plot

For a frequency domain plot such as �gure 4, you are often more interested

in the power or decibel power. These are both available at one keystroke.

Position the cursor in the plot you wish to view in a di�erent way and type

ctrl-p to see a plot of the power like �gure 6 or ctrl-b to see a decibel plot

like �gure 7.

If you now select the desc option in the menu for the fft example a window

will appear with a description and program. Figure 8 shows this enlarged to

include the entire program. (To delete help windows like this position the

cursor in the window, hold the ctrl and shift keys down and type delete.)

It is not necessary to know the DSP++ language to de�ne DSP networks.

They can be built by pointing to the DSP nodes you want to connect. How-

10 3. SPECTRAL ANALYSIS EXAMPLE

Figure 7: Decibel spectral plot

ObjectProDSP Overview and Tutorial 11

Figure 8: Program for spectral analysis example

12 3. SPECTRAL ANALYSIS EXAMPLE

Figure 9: Menu for FFT Sig object

ever this language provides a concise and readable record of your work. It is

the format used for saving objects and networks between sessions. It may

be helpful to refer to both the program in �gure 8 and the network display

in �gure 3 in understanding this example.

The nodes in the network display have two names. The top one is the class

name and the lower one is the object name. The �rst node is a CxCos or

complex cosine signal called FFT_Sig. We can refer to the program listing

to see the frequency, phase and amplitude of this signal. We can also get

this information by holding the ctrl key down and clicking the left mouse

button with the cursor in this node. The menu that comes up when you do

this and the description that will appear in the help window when you select

desc from this menu are in �gures 9 and 10. We see from this �gure that

the frequency is 0:02655 radians per sample. From the program we see that

this corresponds to a frequency of 2 � � � :08 radians per sample or :08 hz

with a 1 hz sample rate. A default sample rate of 1 hz. is assumed. You

can set the sample rate for any node in the network and the timing will be

adjusted for all a�ected displays. Select the exec option from the menu for

FFT_Sig and then the SetSampleRate option to change the sample rate of

the network. If you check the spectral plot in �gure 4 you will see there is a

peak at :08 hz. If you now change the sample rate to 4 hz the scale on the

frequency plot will be adjusted so the peak is at .32 hz.

Returning to the display of the entire network in �gure 3 we see that FFT_Sig

is connected to a small box with the number `2' in it. This represents an

output bu�er that drives the inputs of two nodes. One of these is node

FFT_Sum. The `2' in the left hand part of this node stands for two input

channels. Each node can have a variable number of input channels, output

ObjectProDSP Overview and Tutorial 13

Figure 10: Description of FFT Sig object

channels and nodes driven by each output channel. These are represented by

numbers at the left of the node at the right of the node and in the bu�er box

to the right of the node. The output from FFT_Sum goes to a complex FFT

(CxFFT) called FFT_FFT and a plotting node called FFT_Plot. This latter

node generated the spectral plot we just discussed. The other output from

FFT_Sig goes to another plotting node called FFT_PltSignal. Notice that

the plots for both the spectral output and the linear time series are the same

class Plot. This class of node knows the type of data it is receiving and

generates the correctly formatted plot. You need not select di�erent nodes

or enter parameters redundantly to get the correct plot. The other input

to FFT_Sum comes from a Gaussian noise generator FFT_Noise. The output

from this node is also plotted.

14 4. FIR FILTER FREQUENCY RESPONSE

Figure 11: Network to compute FIR �lter response

4 FIR �lter frequency response

Figure 11 shows a network to compute and display the frequency response

of a Finite Impulse Response (FIR) �lter. A complex impulse signal (with

real part 0) is passed through a FIR �lter and a complex FFT. The outputs

of the FIR �lter and FFT are plotted. Figures 12 through 14 show complex

magnitude, power and decibel views of the frequency response. The latter

two plots were obtained by typing ctrl-p and ctrl-b with the cursor over

the �rst plot. The program for this example is in in �gure 17.

The steep descent at the right edge of Figure 14 is a consequence of pro-

cessing the even symmetric impulse repsonse of the FIR �lter with the FFT.

The largest/smallest frequency bin convolves the signal with e

�in

where n is

the sample index. This is the real sequence f�1; 1;�1; 1; :::g. Convolving

this sequence with any even symmetric signal produces 0. The decibel plot

arti�cially limits the smallest value to -200 db.

The impulse signal generator used in this example supports special signals.

You can hold the ctrl key down and click the left mouse button on the

Fir_resp_cximp object in the network display to get the menu for this ob-

ject. Select desc from this menu to get a description of the parameters and

their values in this example. This menu is in �gure 15 and the description is

in �gure 16.

ObjectProDSP Overview and Tutorial 15

Figure 12: Complex plot of FIR �lter frequency response

16 4. FIR FILTER FREQUENCY RESPONSE

Figure 13: Power plot of FIR �lter frequency response

ObjectProDSP Overview and Tutorial 17

Figure 14: Decibel plot of FIR �lter frequency response

Figure 15: Menu for Fir resp cximp object

18 4. FIR FILTER FREQUENCY RESPONSE

Figure 16: Description of Fir resp cximp object

ObjectProDSP Overview and Tutorial 19

Figure 17: Program for FIR �lter response

20 5. MULTI-STAGE FIR FILTER

Figure 18: Network for multiple stage �lter

5 Multi-stage FIR �lter

Figure 18 is a spectral analysis example using a three stage �lter. Each stage

has a resampling factor of 2. This structure can signi�cantly reduce the total

number of multiplies over that required for a single stage �lter with the same

resampling ratio. The input is Gaussian noise and two complex sine waves

at frequencies of .2 and .02 hz. Both of the cosine signals are visible in the

spectral plot of the �lter input in �gure 19. The higher frequency signal is

outside the pass band of the �lter as seen in the �lter output spectral plot in

�gure 20. The frequency axis of these plots are on the same scale. Object-

ProDSP automatically computes the sampling rate ratios of every node in a

network and uses these ratios in labeling the plots.

ObjectProDSP Overview and Tutorial 21

Figure 19: Spectral plot of multi-stage �lter input

22 5. MULTI-STAGE FIR FILTER

Figure 20: Spectral plot of multi-stage �lter output

ObjectProDSP Overview and Tutorial 23

Figure 21: Menu for Fir net object

To create code for a supported target position the cursor over the bar contain-

ing the edit button in the FFT_net window and click the left mouse button

while holding the ctrl key down. Select the exec and then the other op-

tions in the Menu Fir_net window that appears. Now select MakeTarget.

This menu is in �gure 21.

You will now be prompted for three parameters. First is the target type.

If you select the default generic_cpp code will be generated to run on the

computer you are using. This version only provides direct support for generic

C++ code. Next enter `1' to compile and link the code to be generated. If you

select 0 you can compile and link it later by doing a make in a subdirectory

of the one in which the code will be written. Finally you are prompted for a

directory name. If you select the default, a directory will be created under

your current working directory that has the same name as the network you

are making the target for.

Code will be written and a make �le generator process will be started. The

output from this and execution of the make (if you selected create) will be

written to �le msgs FFT Net FFT Net.out in your current directory. The

Makefile and the executable image will be in subdirectory DppNmtar
t of

the directory you speci�ed.

The result of analyzing the network and generating the target code is in the

`help information' window shown in �gure 22. The Replacement complete

lines refer to the replacement of nodes not supported on the selected target.

24 5. MULTI-STAGE FIR FILTER

Figure 22: Target code generation with large bu�ers

ObjectProDSP Overview and Tutorial 25

For example no targets support nodes for plotting. These are replaced by

nodes that write a �le that can be read and plotted later.

First an attempt is made to create a deterministic scheduling scheme for the

network. This is a a list of what nodes to execute in what order and how

many samples to process at each execution. If this requires excessive bu�er

space or the lists become too long a dynamic scheduling scheme is used.

If you want to change the bu�er sizes or other parameters of this scheduling

process you can assign a new bu�er descriptor to the network. First click the

mouse on the Edit button of the network you want to change. Then enter

the command network in the menu database text entry window or make the

menu selections objects and network. Hold the shift key down and click

the right mouse button over the CircBufDes button. You will be prompted

for the new bu�er parameters. You can now select MakeTarget to generate

code based on these parameters.

26 6. CONSTRUCTING AND EDITING DSP NETWORKS

Figure 23: Editing a CxFir node into FFT Net.

6 Constructing and editing DSP networks

You can add additional nodes to any of the example networks. Assume you

want to add a thread to the FFT_Net example that �lters the output of

the FFT_Sum node with the �lter response in the Fir_resp example. First

execute the fft example to get a display of FFT_Net. Click the left mouse

button with the cursor over the Edit push button at the upper left corner

of this display. A check mark should appear. Now select objects and dsp

processing from the �rst and second lines in the menu database. The FIR

�lter we want uses the default coe�cients. To get an instance of the �lter

with the default parameters click the left mouse button with the shift key

depressed and the cursor over CxFir in the third line of the menu data base.

A CxFir node should appear in the Fir_net window as in �gure 23. This

node is not connected yet.

To complete the network and get useful output we need an FFT and a plot-

ting node. We can add all these to the network display before connecting

them. The default FFT size is only 16 points so we want to change this

parameter from its default value. To add an FFT node and set its parame-

ters hold the shift key down while clicking the right mouse button with the

cursor over the CxFFT button in the third row of the menu data base. You

will be prompted for a series of parameters. We only want to change the

size of the FFT or the second parameter. You can type return to select the

default value of the others. For the second parameter you must specify the

ObjectProDSP Overview and Tutorial 27

Figure 24: Selecting FFT Sum to connect to.

log base 2 of the FFT size. To make this comparable to the FFT already in

this example select 9 for an FFT size of 512. Now you should have two dis-

connected nodes in the Fir_net display. To add a plotting node select plot

from the second line of the menu data base and and then hold the shift key

down and click the left mouse button with the cursor over the Plot button

in the third line of the menu data base.

To link these nodes in the network you need to understand how to reference

the three points where a node can be connected. Input channels are refer-

enced with the left mouse button, output channels are referenced with the

middle mouse button and output bu�ers are reference with the right mouse

button. The distinction between output bu�ers and output channels is im-

portant. Nodes have a �xed number of output channels, they can however

have any number of connection from the output bu�er associated with each

output channel. The outputs of the di�erent output channels of a node are

usually di�erent data streams. For example the Demux node demultiplexes

a single data stream into multiple data streams that each contain di�erent

samples from the input. The multiple outputs from a single bu�er all get the

same data.

In editing a network, selecting an output channel selects the next available

28 6. CONSTRUCTING AND EDITING DSP NETWORKS

Figure 25: Completed edit of FFT Net.

channel. If all the output channels of a node are connected you cannot select

an output channel from it. This is always true if we are linking a new thread

into an existing network as we are in this example. However you can always

connect a new node to any bu�er in a network. To link our FIR �lter node

into the network hold the shift key down and click the right mouse button

on the FFT_Sum node. This node should be highlighted as in �gure 24. To

connect to the �lter node hold the shift key down and click the left mouse

button (to select the input) on the CxFir_1 node. This node will be brie
y

highlighted and then the network will be redrawn with this connection. To

complete your additions to the network hold the shift key down for all

operations. (The shift key is the modi�er that denotes network editing

operations.) Click the middle mouse button on CxFir_1 and then the left

button on CxFFT_2. Finally click the the middle button on the CxFFT_2 node

and the right left button on the Plot_4 node. Your network is complete and

should look like �gure 25

To execute the network hold the ctrl key down and click mouse button one

over the gray area at the top of the FFT_Net window. A menu of commands

for FFT_net should appear. Select exec from this menu and then Execute

from the second line as in �gure 26. You will be prompted for the number

of times to execute the input nodes of the network. Make sure you select a

ObjectProDSP Overview and Tutorial 29

Figure 26: Menu to execute edited network.

Figure 27: New complex plot from edited network.

30 6. CONSTRUCTING AND EDITING DSP NETWORKS

Figure 28: Decibel power view of plot.

ObjectProDSP Overview and Tutorial 31

value to generate enough data for your FFT such as 1024. Execution will

produce a new complex plot as in �gure 27. To get a decibel power view of

this data position the cursor over the plot and type ctrl-b. A window like

that in �gure 28 will appear.

You do not need to start with an existing network. If you have not checked

the edit box of a displayed network (or you check it again to turn editing o�)

you can select a node to edit in a new network. Hold the shift key down

while clicking the left (default parameters) or right mouse button on the

selection for any DSP node in the menu data base. An instance of this node

will appear in a new window. You can add additional nodes and connect

them as just described and execute the network.

